core.c 195 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071807280738074807580768077807880798080808180828083808480858086808780888089809080918092809380948095809680978098809981008101810281038104810581068107810881098110811181128113811481158116811781188119812081218122812381248125812681278128812981308131813281338134813581368137813881398140814181428143814481458146814781488149815081518152815381548155815681578158815981608161816281638164816581668167816881698170817181728173817481758176817781788179818081818182818381848185818681878188
  1. /*
  2. * kernel/sched/core.c
  3. *
  4. * Kernel scheduler and related syscalls
  5. *
  6. * Copyright (C) 1991-2002 Linus Torvalds
  7. *
  8. * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
  9. * make semaphores SMP safe
  10. * 1998-11-19 Implemented schedule_timeout() and related stuff
  11. * by Andrea Arcangeli
  12. * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
  13. * hybrid priority-list and round-robin design with
  14. * an array-switch method of distributing timeslices
  15. * and per-CPU runqueues. Cleanups and useful suggestions
  16. * by Davide Libenzi, preemptible kernel bits by Robert Love.
  17. * 2003-09-03 Interactivity tuning by Con Kolivas.
  18. * 2004-04-02 Scheduler domains code by Nick Piggin
  19. * 2007-04-15 Work begun on replacing all interactivity tuning with a
  20. * fair scheduling design by Con Kolivas.
  21. * 2007-05-05 Load balancing (smp-nice) and other improvements
  22. * by Peter Williams
  23. * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
  24. * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
  25. * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
  26. * Thomas Gleixner, Mike Kravetz
  27. */
  28. #include <linux/mm.h>
  29. #include <linux/module.h>
  30. #include <linux/nmi.h>
  31. #include <linux/init.h>
  32. #include <linux/uaccess.h>
  33. #include <linux/highmem.h>
  34. #include <asm/mmu_context.h>
  35. #include <linux/interrupt.h>
  36. #include <linux/capability.h>
  37. #include <linux/completion.h>
  38. #include <linux/kernel_stat.h>
  39. #include <linux/debug_locks.h>
  40. #include <linux/perf_event.h>
  41. #include <linux/security.h>
  42. #include <linux/notifier.h>
  43. #include <linux/profile.h>
  44. #include <linux/freezer.h>
  45. #include <linux/vmalloc.h>
  46. #include <linux/blkdev.h>
  47. #include <linux/delay.h>
  48. #include <linux/pid_namespace.h>
  49. #include <linux/smp.h>
  50. #include <linux/threads.h>
  51. #include <linux/timer.h>
  52. #include <linux/rcupdate.h>
  53. #include <linux/cpu.h>
  54. #include <linux/cpuset.h>
  55. #include <linux/percpu.h>
  56. #include <linux/proc_fs.h>
  57. #include <linux/seq_file.h>
  58. #include <linux/sysctl.h>
  59. #include <linux/syscalls.h>
  60. #include <linux/times.h>
  61. #include <linux/tsacct_kern.h>
  62. #include <linux/kprobes.h>
  63. #include <linux/delayacct.h>
  64. #include <linux/unistd.h>
  65. #include <linux/pagemap.h>
  66. #include <linux/hrtimer.h>
  67. #include <linux/tick.h>
  68. #include <linux/debugfs.h>
  69. #include <linux/ctype.h>
  70. #include <linux/ftrace.h>
  71. #include <linux/slab.h>
  72. #include <linux/init_task.h>
  73. #include <linux/binfmts.h>
  74. #include <asm/tlb.h>
  75. #include <asm/irq_regs.h>
  76. #include <asm/mutex.h>
  77. #ifdef CONFIG_PARAVIRT
  78. #include <asm/paravirt.h>
  79. #endif
  80. #include "sched.h"
  81. #include "../workqueue_sched.h"
  82. #define CREATE_TRACE_POINTS
  83. #include <trace/events/sched.h>
  84. void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
  85. {
  86. unsigned long delta;
  87. ktime_t soft, hard, now;
  88. for (;;) {
  89. if (hrtimer_active(period_timer))
  90. break;
  91. now = hrtimer_cb_get_time(period_timer);
  92. hrtimer_forward(period_timer, now, period);
  93. soft = hrtimer_get_softexpires(period_timer);
  94. hard = hrtimer_get_expires(period_timer);
  95. delta = ktime_to_ns(ktime_sub(hard, soft));
  96. __hrtimer_start_range_ns(period_timer, soft, delta,
  97. HRTIMER_MODE_ABS_PINNED, 0);
  98. }
  99. }
  100. DEFINE_MUTEX(sched_domains_mutex);
  101. DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
  102. static void update_rq_clock_task(struct rq *rq, s64 delta);
  103. void update_rq_clock(struct rq *rq)
  104. {
  105. s64 delta;
  106. if (rq->skip_clock_update > 0)
  107. return;
  108. delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
  109. rq->clock += delta;
  110. update_rq_clock_task(rq, delta);
  111. }
  112. /*
  113. * Debugging: various feature bits
  114. */
  115. #define SCHED_FEAT(name, enabled) \
  116. (1UL << __SCHED_FEAT_##name) * enabled |
  117. const_debug unsigned int sysctl_sched_features =
  118. #include "features.h"
  119. 0;
  120. #undef SCHED_FEAT
  121. #ifdef CONFIG_SCHED_DEBUG
  122. #define SCHED_FEAT(name, enabled) \
  123. #name ,
  124. static __read_mostly char *sched_feat_names[] = {
  125. #include "features.h"
  126. NULL
  127. };
  128. #undef SCHED_FEAT
  129. static int sched_feat_show(struct seq_file *m, void *v)
  130. {
  131. int i;
  132. for (i = 0; i < __SCHED_FEAT_NR; i++) {
  133. if (!(sysctl_sched_features & (1UL << i)))
  134. seq_puts(m, "NO_");
  135. seq_printf(m, "%s ", sched_feat_names[i]);
  136. }
  137. seq_puts(m, "\n");
  138. return 0;
  139. }
  140. #ifdef HAVE_JUMP_LABEL
  141. #define jump_label_key__true STATIC_KEY_INIT_TRUE
  142. #define jump_label_key__false STATIC_KEY_INIT_FALSE
  143. #define SCHED_FEAT(name, enabled) \
  144. jump_label_key__##enabled ,
  145. struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
  146. #include "features.h"
  147. };
  148. #undef SCHED_FEAT
  149. static void sched_feat_disable(int i)
  150. {
  151. if (static_key_enabled(&sched_feat_keys[i]))
  152. static_key_slow_dec(&sched_feat_keys[i]);
  153. }
  154. static void sched_feat_enable(int i)
  155. {
  156. if (!static_key_enabled(&sched_feat_keys[i]))
  157. static_key_slow_inc(&sched_feat_keys[i]);
  158. }
  159. #else
  160. static void sched_feat_disable(int i) { };
  161. static void sched_feat_enable(int i) { };
  162. #endif /* HAVE_JUMP_LABEL */
  163. static ssize_t
  164. sched_feat_write(struct file *filp, const char __user *ubuf,
  165. size_t cnt, loff_t *ppos)
  166. {
  167. char buf[64];
  168. char *cmp;
  169. int neg = 0;
  170. int i;
  171. if (cnt > 63)
  172. cnt = 63;
  173. if (copy_from_user(&buf, ubuf, cnt))
  174. return -EFAULT;
  175. buf[cnt] = 0;
  176. cmp = strstrip(buf);
  177. if (strncmp(cmp, "NO_", 3) == 0) {
  178. neg = 1;
  179. cmp += 3;
  180. }
  181. for (i = 0; i < __SCHED_FEAT_NR; i++) {
  182. if (strcmp(cmp, sched_feat_names[i]) == 0) {
  183. if (neg) {
  184. sysctl_sched_features &= ~(1UL << i);
  185. sched_feat_disable(i);
  186. } else {
  187. sysctl_sched_features |= (1UL << i);
  188. sched_feat_enable(i);
  189. }
  190. break;
  191. }
  192. }
  193. if (i == __SCHED_FEAT_NR)
  194. return -EINVAL;
  195. *ppos += cnt;
  196. return cnt;
  197. }
  198. static int sched_feat_open(struct inode *inode, struct file *filp)
  199. {
  200. return single_open(filp, sched_feat_show, NULL);
  201. }
  202. static const struct file_operations sched_feat_fops = {
  203. .open = sched_feat_open,
  204. .write = sched_feat_write,
  205. .read = seq_read,
  206. .llseek = seq_lseek,
  207. .release = single_release,
  208. };
  209. static __init int sched_init_debug(void)
  210. {
  211. debugfs_create_file("sched_features", 0644, NULL, NULL,
  212. &sched_feat_fops);
  213. return 0;
  214. }
  215. late_initcall(sched_init_debug);
  216. #endif /* CONFIG_SCHED_DEBUG */
  217. /*
  218. * Number of tasks to iterate in a single balance run.
  219. * Limited because this is done with IRQs disabled.
  220. */
  221. const_debug unsigned int sysctl_sched_nr_migrate = 32;
  222. /*
  223. * period over which we average the RT time consumption, measured
  224. * in ms.
  225. *
  226. * default: 1s
  227. */
  228. const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
  229. /*
  230. * period over which we measure -rt task cpu usage in us.
  231. * default: 1s
  232. */
  233. unsigned int sysctl_sched_rt_period = 1000000;
  234. __read_mostly int scheduler_running;
  235. /*
  236. * part of the period that we allow rt tasks to run in us.
  237. * default: 0.95s
  238. */
  239. int sysctl_sched_rt_runtime = 950000;
  240. /*
  241. * __task_rq_lock - lock the rq @p resides on.
  242. */
  243. static inline struct rq *__task_rq_lock(struct task_struct *p)
  244. __acquires(rq->lock)
  245. {
  246. struct rq *rq;
  247. lockdep_assert_held(&p->pi_lock);
  248. for (;;) {
  249. rq = task_rq(p);
  250. raw_spin_lock(&rq->lock);
  251. if (likely(rq == task_rq(p)))
  252. return rq;
  253. raw_spin_unlock(&rq->lock);
  254. }
  255. }
  256. /*
  257. * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
  258. */
  259. static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
  260. __acquires(p->pi_lock)
  261. __acquires(rq->lock)
  262. {
  263. struct rq *rq;
  264. for (;;) {
  265. raw_spin_lock_irqsave(&p->pi_lock, *flags);
  266. rq = task_rq(p);
  267. raw_spin_lock(&rq->lock);
  268. if (likely(rq == task_rq(p)))
  269. return rq;
  270. raw_spin_unlock(&rq->lock);
  271. raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
  272. }
  273. }
  274. static void __task_rq_unlock(struct rq *rq)
  275. __releases(rq->lock)
  276. {
  277. raw_spin_unlock(&rq->lock);
  278. }
  279. static inline void
  280. task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
  281. __releases(rq->lock)
  282. __releases(p->pi_lock)
  283. {
  284. raw_spin_unlock(&rq->lock);
  285. raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
  286. }
  287. /*
  288. * this_rq_lock - lock this runqueue and disable interrupts.
  289. */
  290. static struct rq *this_rq_lock(void)
  291. __acquires(rq->lock)
  292. {
  293. struct rq *rq;
  294. local_irq_disable();
  295. rq = this_rq();
  296. raw_spin_lock(&rq->lock);
  297. return rq;
  298. }
  299. #ifdef CONFIG_SCHED_HRTICK
  300. /*
  301. * Use HR-timers to deliver accurate preemption points.
  302. *
  303. * Its all a bit involved since we cannot program an hrt while holding the
  304. * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
  305. * reschedule event.
  306. *
  307. * When we get rescheduled we reprogram the hrtick_timer outside of the
  308. * rq->lock.
  309. */
  310. static void hrtick_clear(struct rq *rq)
  311. {
  312. if (hrtimer_active(&rq->hrtick_timer))
  313. hrtimer_cancel(&rq->hrtick_timer);
  314. }
  315. /*
  316. * High-resolution timer tick.
  317. * Runs from hardirq context with interrupts disabled.
  318. */
  319. static enum hrtimer_restart hrtick(struct hrtimer *timer)
  320. {
  321. struct rq *rq = container_of(timer, struct rq, hrtick_timer);
  322. WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
  323. raw_spin_lock(&rq->lock);
  324. update_rq_clock(rq);
  325. rq->curr->sched_class->task_tick(rq, rq->curr, 1);
  326. raw_spin_unlock(&rq->lock);
  327. return HRTIMER_NORESTART;
  328. }
  329. #ifdef CONFIG_SMP
  330. /*
  331. * called from hardirq (IPI) context
  332. */
  333. static void __hrtick_start(void *arg)
  334. {
  335. struct rq *rq = arg;
  336. raw_spin_lock(&rq->lock);
  337. hrtimer_restart(&rq->hrtick_timer);
  338. rq->hrtick_csd_pending = 0;
  339. raw_spin_unlock(&rq->lock);
  340. }
  341. /*
  342. * Called to set the hrtick timer state.
  343. *
  344. * called with rq->lock held and irqs disabled
  345. */
  346. void hrtick_start(struct rq *rq, u64 delay)
  347. {
  348. struct hrtimer *timer = &rq->hrtick_timer;
  349. ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
  350. hrtimer_set_expires(timer, time);
  351. if (rq == this_rq()) {
  352. hrtimer_restart(timer);
  353. } else if (!rq->hrtick_csd_pending) {
  354. __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
  355. rq->hrtick_csd_pending = 1;
  356. }
  357. }
  358. static int
  359. hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
  360. {
  361. int cpu = (int)(long)hcpu;
  362. switch (action) {
  363. case CPU_UP_CANCELED:
  364. case CPU_UP_CANCELED_FROZEN:
  365. case CPU_DOWN_PREPARE:
  366. case CPU_DOWN_PREPARE_FROZEN:
  367. case CPU_DEAD:
  368. case CPU_DEAD_FROZEN:
  369. hrtick_clear(cpu_rq(cpu));
  370. return NOTIFY_OK;
  371. }
  372. return NOTIFY_DONE;
  373. }
  374. static __init void init_hrtick(void)
  375. {
  376. hotcpu_notifier(hotplug_hrtick, 0);
  377. }
  378. #else
  379. /*
  380. * Called to set the hrtick timer state.
  381. *
  382. * called with rq->lock held and irqs disabled
  383. */
  384. void hrtick_start(struct rq *rq, u64 delay)
  385. {
  386. __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
  387. HRTIMER_MODE_REL_PINNED, 0);
  388. }
  389. static inline void init_hrtick(void)
  390. {
  391. }
  392. #endif /* CONFIG_SMP */
  393. static void init_rq_hrtick(struct rq *rq)
  394. {
  395. #ifdef CONFIG_SMP
  396. rq->hrtick_csd_pending = 0;
  397. rq->hrtick_csd.flags = 0;
  398. rq->hrtick_csd.func = __hrtick_start;
  399. rq->hrtick_csd.info = rq;
  400. #endif
  401. hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  402. rq->hrtick_timer.function = hrtick;
  403. }
  404. #else /* CONFIG_SCHED_HRTICK */
  405. static inline void hrtick_clear(struct rq *rq)
  406. {
  407. }
  408. static inline void init_rq_hrtick(struct rq *rq)
  409. {
  410. }
  411. static inline void init_hrtick(void)
  412. {
  413. }
  414. #endif /* CONFIG_SCHED_HRTICK */
  415. /*
  416. * resched_task - mark a task 'to be rescheduled now'.
  417. *
  418. * On UP this means the setting of the need_resched flag, on SMP it
  419. * might also involve a cross-CPU call to trigger the scheduler on
  420. * the target CPU.
  421. */
  422. #ifdef CONFIG_SMP
  423. #ifndef tsk_is_polling
  424. #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
  425. #endif
  426. void resched_task(struct task_struct *p)
  427. {
  428. int cpu;
  429. assert_raw_spin_locked(&task_rq(p)->lock);
  430. if (test_tsk_need_resched(p))
  431. return;
  432. set_tsk_need_resched(p);
  433. cpu = task_cpu(p);
  434. if (cpu == smp_processor_id())
  435. return;
  436. /* NEED_RESCHED must be visible before we test polling */
  437. smp_mb();
  438. if (!tsk_is_polling(p))
  439. smp_send_reschedule(cpu);
  440. }
  441. void resched_cpu(int cpu)
  442. {
  443. struct rq *rq = cpu_rq(cpu);
  444. unsigned long flags;
  445. if (!raw_spin_trylock_irqsave(&rq->lock, flags))
  446. return;
  447. resched_task(cpu_curr(cpu));
  448. raw_spin_unlock_irqrestore(&rq->lock, flags);
  449. }
  450. #ifdef CONFIG_NO_HZ
  451. /*
  452. * In the semi idle case, use the nearest busy cpu for migrating timers
  453. * from an idle cpu. This is good for power-savings.
  454. *
  455. * We don't do similar optimization for completely idle system, as
  456. * selecting an idle cpu will add more delays to the timers than intended
  457. * (as that cpu's timer base may not be uptodate wrt jiffies etc).
  458. */
  459. int get_nohz_timer_target(void)
  460. {
  461. int cpu = smp_processor_id();
  462. int i;
  463. struct sched_domain *sd;
  464. rcu_read_lock();
  465. for_each_domain(cpu, sd) {
  466. for_each_cpu(i, sched_domain_span(sd)) {
  467. if (!idle_cpu(i)) {
  468. cpu = i;
  469. goto unlock;
  470. }
  471. }
  472. }
  473. unlock:
  474. rcu_read_unlock();
  475. return cpu;
  476. }
  477. /*
  478. * When add_timer_on() enqueues a timer into the timer wheel of an
  479. * idle CPU then this timer might expire before the next timer event
  480. * which is scheduled to wake up that CPU. In case of a completely
  481. * idle system the next event might even be infinite time into the
  482. * future. wake_up_idle_cpu() ensures that the CPU is woken up and
  483. * leaves the inner idle loop so the newly added timer is taken into
  484. * account when the CPU goes back to idle and evaluates the timer
  485. * wheel for the next timer event.
  486. */
  487. void wake_up_idle_cpu(int cpu)
  488. {
  489. struct rq *rq = cpu_rq(cpu);
  490. if (cpu == smp_processor_id())
  491. return;
  492. /*
  493. * This is safe, as this function is called with the timer
  494. * wheel base lock of (cpu) held. When the CPU is on the way
  495. * to idle and has not yet set rq->curr to idle then it will
  496. * be serialized on the timer wheel base lock and take the new
  497. * timer into account automatically.
  498. */
  499. if (rq->curr != rq->idle)
  500. return;
  501. /*
  502. * We can set TIF_RESCHED on the idle task of the other CPU
  503. * lockless. The worst case is that the other CPU runs the
  504. * idle task through an additional NOOP schedule()
  505. */
  506. set_tsk_need_resched(rq->idle);
  507. /* NEED_RESCHED must be visible before we test polling */
  508. smp_mb();
  509. if (!tsk_is_polling(rq->idle))
  510. smp_send_reschedule(cpu);
  511. }
  512. static inline bool got_nohz_idle_kick(void)
  513. {
  514. int cpu = smp_processor_id();
  515. return idle_cpu(cpu) && test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
  516. }
  517. #else /* CONFIG_NO_HZ */
  518. static inline bool got_nohz_idle_kick(void)
  519. {
  520. return false;
  521. }
  522. #endif /* CONFIG_NO_HZ */
  523. void sched_avg_update(struct rq *rq)
  524. {
  525. s64 period = sched_avg_period();
  526. while ((s64)(rq->clock - rq->age_stamp) > period) {
  527. /*
  528. * Inline assembly required to prevent the compiler
  529. * optimising this loop into a divmod call.
  530. * See __iter_div_u64_rem() for another example of this.
  531. */
  532. asm("" : "+rm" (rq->age_stamp));
  533. rq->age_stamp += period;
  534. rq->rt_avg /= 2;
  535. }
  536. }
  537. #else /* !CONFIG_SMP */
  538. void resched_task(struct task_struct *p)
  539. {
  540. assert_raw_spin_locked(&task_rq(p)->lock);
  541. set_tsk_need_resched(p);
  542. }
  543. #endif /* CONFIG_SMP */
  544. #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
  545. (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
  546. /*
  547. * Iterate task_group tree rooted at *from, calling @down when first entering a
  548. * node and @up when leaving it for the final time.
  549. *
  550. * Caller must hold rcu_lock or sufficient equivalent.
  551. */
  552. int walk_tg_tree_from(struct task_group *from,
  553. tg_visitor down, tg_visitor up, void *data)
  554. {
  555. struct task_group *parent, *child;
  556. int ret;
  557. parent = from;
  558. down:
  559. ret = (*down)(parent, data);
  560. if (ret)
  561. goto out;
  562. list_for_each_entry_rcu(child, &parent->children, siblings) {
  563. parent = child;
  564. goto down;
  565. up:
  566. continue;
  567. }
  568. ret = (*up)(parent, data);
  569. if (ret || parent == from)
  570. goto out;
  571. child = parent;
  572. parent = parent->parent;
  573. if (parent)
  574. goto up;
  575. out:
  576. return ret;
  577. }
  578. int tg_nop(struct task_group *tg, void *data)
  579. {
  580. return 0;
  581. }
  582. #endif
  583. void update_cpu_load(struct rq *this_rq);
  584. static void set_load_weight(struct task_struct *p)
  585. {
  586. int prio = p->static_prio - MAX_RT_PRIO;
  587. struct load_weight *load = &p->se.load;
  588. /*
  589. * SCHED_IDLE tasks get minimal weight:
  590. */
  591. if (p->policy == SCHED_IDLE) {
  592. load->weight = scale_load(WEIGHT_IDLEPRIO);
  593. load->inv_weight = WMULT_IDLEPRIO;
  594. return;
  595. }
  596. load->weight = scale_load(prio_to_weight[prio]);
  597. load->inv_weight = prio_to_wmult[prio];
  598. }
  599. static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
  600. {
  601. update_rq_clock(rq);
  602. sched_info_queued(p);
  603. p->sched_class->enqueue_task(rq, p, flags);
  604. }
  605. static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
  606. {
  607. update_rq_clock(rq);
  608. sched_info_dequeued(p);
  609. p->sched_class->dequeue_task(rq, p, flags);
  610. }
  611. void activate_task(struct rq *rq, struct task_struct *p, int flags)
  612. {
  613. if (task_contributes_to_load(p))
  614. rq->nr_uninterruptible--;
  615. enqueue_task(rq, p, flags);
  616. }
  617. void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
  618. {
  619. if (task_contributes_to_load(p))
  620. rq->nr_uninterruptible++;
  621. dequeue_task(rq, p, flags);
  622. }
  623. #ifdef CONFIG_IRQ_TIME_ACCOUNTING
  624. /*
  625. * There are no locks covering percpu hardirq/softirq time.
  626. * They are only modified in account_system_vtime, on corresponding CPU
  627. * with interrupts disabled. So, writes are safe.
  628. * They are read and saved off onto struct rq in update_rq_clock().
  629. * This may result in other CPU reading this CPU's irq time and can
  630. * race with irq/account_system_vtime on this CPU. We would either get old
  631. * or new value with a side effect of accounting a slice of irq time to wrong
  632. * task when irq is in progress while we read rq->clock. That is a worthy
  633. * compromise in place of having locks on each irq in account_system_time.
  634. */
  635. static DEFINE_PER_CPU(u64, cpu_hardirq_time);
  636. static DEFINE_PER_CPU(u64, cpu_softirq_time);
  637. static DEFINE_PER_CPU(u64, irq_start_time);
  638. static int sched_clock_irqtime;
  639. void enable_sched_clock_irqtime(void)
  640. {
  641. sched_clock_irqtime = 1;
  642. }
  643. void disable_sched_clock_irqtime(void)
  644. {
  645. sched_clock_irqtime = 0;
  646. }
  647. #ifndef CONFIG_64BIT
  648. static DEFINE_PER_CPU(seqcount_t, irq_time_seq);
  649. static inline void irq_time_write_begin(void)
  650. {
  651. __this_cpu_inc(irq_time_seq.sequence);
  652. smp_wmb();
  653. }
  654. static inline void irq_time_write_end(void)
  655. {
  656. smp_wmb();
  657. __this_cpu_inc(irq_time_seq.sequence);
  658. }
  659. static inline u64 irq_time_read(int cpu)
  660. {
  661. u64 irq_time;
  662. unsigned seq;
  663. do {
  664. seq = read_seqcount_begin(&per_cpu(irq_time_seq, cpu));
  665. irq_time = per_cpu(cpu_softirq_time, cpu) +
  666. per_cpu(cpu_hardirq_time, cpu);
  667. } while (read_seqcount_retry(&per_cpu(irq_time_seq, cpu), seq));
  668. return irq_time;
  669. }
  670. #else /* CONFIG_64BIT */
  671. static inline void irq_time_write_begin(void)
  672. {
  673. }
  674. static inline void irq_time_write_end(void)
  675. {
  676. }
  677. static inline u64 irq_time_read(int cpu)
  678. {
  679. return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu);
  680. }
  681. #endif /* CONFIG_64BIT */
  682. /*
  683. * Called before incrementing preempt_count on {soft,}irq_enter
  684. * and before decrementing preempt_count on {soft,}irq_exit.
  685. */
  686. void account_system_vtime(struct task_struct *curr)
  687. {
  688. unsigned long flags;
  689. s64 delta;
  690. int cpu;
  691. if (!sched_clock_irqtime)
  692. return;
  693. local_irq_save(flags);
  694. cpu = smp_processor_id();
  695. delta = sched_clock_cpu(cpu) - __this_cpu_read(irq_start_time);
  696. __this_cpu_add(irq_start_time, delta);
  697. irq_time_write_begin();
  698. /*
  699. * We do not account for softirq time from ksoftirqd here.
  700. * We want to continue accounting softirq time to ksoftirqd thread
  701. * in that case, so as not to confuse scheduler with a special task
  702. * that do not consume any time, but still wants to run.
  703. */
  704. if (hardirq_count())
  705. __this_cpu_add(cpu_hardirq_time, delta);
  706. else if (in_serving_softirq() && curr != this_cpu_ksoftirqd())
  707. __this_cpu_add(cpu_softirq_time, delta);
  708. irq_time_write_end();
  709. local_irq_restore(flags);
  710. }
  711. EXPORT_SYMBOL_GPL(account_system_vtime);
  712. #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
  713. #ifdef CONFIG_PARAVIRT
  714. static inline u64 steal_ticks(u64 steal)
  715. {
  716. if (unlikely(steal > NSEC_PER_SEC))
  717. return div_u64(steal, TICK_NSEC);
  718. return __iter_div_u64_rem(steal, TICK_NSEC, &steal);
  719. }
  720. #endif
  721. static void update_rq_clock_task(struct rq *rq, s64 delta)
  722. {
  723. /*
  724. * In theory, the compile should just see 0 here, and optimize out the call
  725. * to sched_rt_avg_update. But I don't trust it...
  726. */
  727. #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
  728. s64 steal = 0, irq_delta = 0;
  729. #endif
  730. #ifdef CONFIG_IRQ_TIME_ACCOUNTING
  731. irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
  732. /*
  733. * Since irq_time is only updated on {soft,}irq_exit, we might run into
  734. * this case when a previous update_rq_clock() happened inside a
  735. * {soft,}irq region.
  736. *
  737. * When this happens, we stop ->clock_task and only update the
  738. * prev_irq_time stamp to account for the part that fit, so that a next
  739. * update will consume the rest. This ensures ->clock_task is
  740. * monotonic.
  741. *
  742. * It does however cause some slight miss-attribution of {soft,}irq
  743. * time, a more accurate solution would be to update the irq_time using
  744. * the current rq->clock timestamp, except that would require using
  745. * atomic ops.
  746. */
  747. if (irq_delta > delta)
  748. irq_delta = delta;
  749. rq->prev_irq_time += irq_delta;
  750. delta -= irq_delta;
  751. #endif
  752. #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
  753. if (static_key_false((&paravirt_steal_rq_enabled))) {
  754. u64 st;
  755. steal = paravirt_steal_clock(cpu_of(rq));
  756. steal -= rq->prev_steal_time_rq;
  757. if (unlikely(steal > delta))
  758. steal = delta;
  759. st = steal_ticks(steal);
  760. steal = st * TICK_NSEC;
  761. rq->prev_steal_time_rq += steal;
  762. delta -= steal;
  763. }
  764. #endif
  765. rq->clock_task += delta;
  766. #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
  767. if ((irq_delta + steal) && sched_feat(NONTASK_POWER))
  768. sched_rt_avg_update(rq, irq_delta + steal);
  769. #endif
  770. }
  771. #ifdef CONFIG_IRQ_TIME_ACCOUNTING
  772. static int irqtime_account_hi_update(void)
  773. {
  774. u64 *cpustat = kcpustat_this_cpu->cpustat;
  775. unsigned long flags;
  776. u64 latest_ns;
  777. int ret = 0;
  778. local_irq_save(flags);
  779. latest_ns = this_cpu_read(cpu_hardirq_time);
  780. if (nsecs_to_cputime64(latest_ns) > cpustat[CPUTIME_IRQ])
  781. ret = 1;
  782. local_irq_restore(flags);
  783. return ret;
  784. }
  785. static int irqtime_account_si_update(void)
  786. {
  787. u64 *cpustat = kcpustat_this_cpu->cpustat;
  788. unsigned long flags;
  789. u64 latest_ns;
  790. int ret = 0;
  791. local_irq_save(flags);
  792. latest_ns = this_cpu_read(cpu_softirq_time);
  793. if (nsecs_to_cputime64(latest_ns) > cpustat[CPUTIME_SOFTIRQ])
  794. ret = 1;
  795. local_irq_restore(flags);
  796. return ret;
  797. }
  798. #else /* CONFIG_IRQ_TIME_ACCOUNTING */
  799. #define sched_clock_irqtime (0)
  800. #endif
  801. void sched_set_stop_task(int cpu, struct task_struct *stop)
  802. {
  803. struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
  804. struct task_struct *old_stop = cpu_rq(cpu)->stop;
  805. if (stop) {
  806. /*
  807. * Make it appear like a SCHED_FIFO task, its something
  808. * userspace knows about and won't get confused about.
  809. *
  810. * Also, it will make PI more or less work without too
  811. * much confusion -- but then, stop work should not
  812. * rely on PI working anyway.
  813. */
  814. sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
  815. stop->sched_class = &stop_sched_class;
  816. }
  817. cpu_rq(cpu)->stop = stop;
  818. if (old_stop) {
  819. /*
  820. * Reset it back to a normal scheduling class so that
  821. * it can die in pieces.
  822. */
  823. old_stop->sched_class = &rt_sched_class;
  824. }
  825. }
  826. /*
  827. * __normal_prio - return the priority that is based on the static prio
  828. */
  829. static inline int __normal_prio(struct task_struct *p)
  830. {
  831. return p->static_prio;
  832. }
  833. /*
  834. * Calculate the expected normal priority: i.e. priority
  835. * without taking RT-inheritance into account. Might be
  836. * boosted by interactivity modifiers. Changes upon fork,
  837. * setprio syscalls, and whenever the interactivity
  838. * estimator recalculates.
  839. */
  840. static inline int normal_prio(struct task_struct *p)
  841. {
  842. int prio;
  843. if (task_has_rt_policy(p))
  844. prio = MAX_RT_PRIO-1 - p->rt_priority;
  845. else
  846. prio = __normal_prio(p);
  847. return prio;
  848. }
  849. /*
  850. * Calculate the current priority, i.e. the priority
  851. * taken into account by the scheduler. This value might
  852. * be boosted by RT tasks, or might be boosted by
  853. * interactivity modifiers. Will be RT if the task got
  854. * RT-boosted. If not then it returns p->normal_prio.
  855. */
  856. static int effective_prio(struct task_struct *p)
  857. {
  858. p->normal_prio = normal_prio(p);
  859. /*
  860. * If we are RT tasks or we were boosted to RT priority,
  861. * keep the priority unchanged. Otherwise, update priority
  862. * to the normal priority:
  863. */
  864. if (!rt_prio(p->prio))
  865. return p->normal_prio;
  866. return p->prio;
  867. }
  868. /**
  869. * task_curr - is this task currently executing on a CPU?
  870. * @p: the task in question.
  871. */
  872. inline int task_curr(const struct task_struct *p)
  873. {
  874. return cpu_curr(task_cpu(p)) == p;
  875. }
  876. static inline void check_class_changed(struct rq *rq, struct task_struct *p,
  877. const struct sched_class *prev_class,
  878. int oldprio)
  879. {
  880. if (prev_class != p->sched_class) {
  881. if (prev_class->switched_from)
  882. prev_class->switched_from(rq, p);
  883. p->sched_class->switched_to(rq, p);
  884. } else if (oldprio != p->prio)
  885. p->sched_class->prio_changed(rq, p, oldprio);
  886. }
  887. void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
  888. {
  889. const struct sched_class *class;
  890. if (p->sched_class == rq->curr->sched_class) {
  891. rq->curr->sched_class->check_preempt_curr(rq, p, flags);
  892. } else {
  893. for_each_class(class) {
  894. if (class == rq->curr->sched_class)
  895. break;
  896. if (class == p->sched_class) {
  897. resched_task(rq->curr);
  898. break;
  899. }
  900. }
  901. }
  902. /*
  903. * A queue event has occurred, and we're going to schedule. In
  904. * this case, we can save a useless back to back clock update.
  905. */
  906. if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
  907. rq->skip_clock_update = 1;
  908. }
  909. #ifdef CONFIG_SMP
  910. void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
  911. {
  912. #ifdef CONFIG_SCHED_DEBUG
  913. /*
  914. * We should never call set_task_cpu() on a blocked task,
  915. * ttwu() will sort out the placement.
  916. */
  917. WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
  918. !(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
  919. #ifdef CONFIG_LOCKDEP
  920. /*
  921. * The caller should hold either p->pi_lock or rq->lock, when changing
  922. * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
  923. *
  924. * sched_move_task() holds both and thus holding either pins the cgroup,
  925. * see set_task_rq().
  926. *
  927. * Furthermore, all task_rq users should acquire both locks, see
  928. * task_rq_lock().
  929. */
  930. WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
  931. lockdep_is_held(&task_rq(p)->lock)));
  932. #endif
  933. #endif
  934. trace_sched_migrate_task(p, new_cpu);
  935. if (task_cpu(p) != new_cpu) {
  936. p->se.nr_migrations++;
  937. perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
  938. }
  939. __set_task_cpu(p, new_cpu);
  940. }
  941. struct migration_arg {
  942. struct task_struct *task;
  943. int dest_cpu;
  944. };
  945. static int migration_cpu_stop(void *data);
  946. /*
  947. * wait_task_inactive - wait for a thread to unschedule.
  948. *
  949. * If @match_state is nonzero, it's the @p->state value just checked and
  950. * not expected to change. If it changes, i.e. @p might have woken up,
  951. * then return zero. When we succeed in waiting for @p to be off its CPU,
  952. * we return a positive number (its total switch count). If a second call
  953. * a short while later returns the same number, the caller can be sure that
  954. * @p has remained unscheduled the whole time.
  955. *
  956. * The caller must ensure that the task *will* unschedule sometime soon,
  957. * else this function might spin for a *long* time. This function can't
  958. * be called with interrupts off, or it may introduce deadlock with
  959. * smp_call_function() if an IPI is sent by the same process we are
  960. * waiting to become inactive.
  961. */
  962. unsigned long wait_task_inactive(struct task_struct *p, long match_state)
  963. {
  964. unsigned long flags;
  965. int running, on_rq;
  966. unsigned long ncsw;
  967. struct rq *rq;
  968. for (;;) {
  969. /*
  970. * We do the initial early heuristics without holding
  971. * any task-queue locks at all. We'll only try to get
  972. * the runqueue lock when things look like they will
  973. * work out!
  974. */
  975. rq = task_rq(p);
  976. /*
  977. * If the task is actively running on another CPU
  978. * still, just relax and busy-wait without holding
  979. * any locks.
  980. *
  981. * NOTE! Since we don't hold any locks, it's not
  982. * even sure that "rq" stays as the right runqueue!
  983. * But we don't care, since "task_running()" will
  984. * return false if the runqueue has changed and p
  985. * is actually now running somewhere else!
  986. */
  987. while (task_running(rq, p)) {
  988. if (match_state && unlikely(p->state != match_state))
  989. return 0;
  990. cpu_relax();
  991. }
  992. /*
  993. * Ok, time to look more closely! We need the rq
  994. * lock now, to be *sure*. If we're wrong, we'll
  995. * just go back and repeat.
  996. */
  997. rq = task_rq_lock(p, &flags);
  998. trace_sched_wait_task(p);
  999. running = task_running(rq, p);
  1000. on_rq = p->on_rq;
  1001. ncsw = 0;
  1002. if (!match_state || p->state == match_state)
  1003. ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
  1004. task_rq_unlock(rq, p, &flags);
  1005. /*
  1006. * If it changed from the expected state, bail out now.
  1007. */
  1008. if (unlikely(!ncsw))
  1009. break;
  1010. /*
  1011. * Was it really running after all now that we
  1012. * checked with the proper locks actually held?
  1013. *
  1014. * Oops. Go back and try again..
  1015. */
  1016. if (unlikely(running)) {
  1017. cpu_relax();
  1018. continue;
  1019. }
  1020. /*
  1021. * It's not enough that it's not actively running,
  1022. * it must be off the runqueue _entirely_, and not
  1023. * preempted!
  1024. *
  1025. * So if it was still runnable (but just not actively
  1026. * running right now), it's preempted, and we should
  1027. * yield - it could be a while.
  1028. */
  1029. if (unlikely(on_rq)) {
  1030. ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
  1031. set_current_state(TASK_UNINTERRUPTIBLE);
  1032. schedule_hrtimeout(&to, HRTIMER_MODE_REL);
  1033. continue;
  1034. }
  1035. /*
  1036. * Ahh, all good. It wasn't running, and it wasn't
  1037. * runnable, which means that it will never become
  1038. * running in the future either. We're all done!
  1039. */
  1040. break;
  1041. }
  1042. return ncsw;
  1043. }
  1044. /***
  1045. * kick_process - kick a running thread to enter/exit the kernel
  1046. * @p: the to-be-kicked thread
  1047. *
  1048. * Cause a process which is running on another CPU to enter
  1049. * kernel-mode, without any delay. (to get signals handled.)
  1050. *
  1051. * NOTE: this function doesn't have to take the runqueue lock,
  1052. * because all it wants to ensure is that the remote task enters
  1053. * the kernel. If the IPI races and the task has been migrated
  1054. * to another CPU then no harm is done and the purpose has been
  1055. * achieved as well.
  1056. */
  1057. void kick_process(struct task_struct *p)
  1058. {
  1059. int cpu;
  1060. preempt_disable();
  1061. cpu = task_cpu(p);
  1062. if ((cpu != smp_processor_id()) && task_curr(p))
  1063. smp_send_reschedule(cpu);
  1064. preempt_enable();
  1065. }
  1066. EXPORT_SYMBOL_GPL(kick_process);
  1067. #endif /* CONFIG_SMP */
  1068. #ifdef CONFIG_SMP
  1069. /*
  1070. * ->cpus_allowed is protected by both rq->lock and p->pi_lock
  1071. */
  1072. static int select_fallback_rq(int cpu, struct task_struct *p)
  1073. {
  1074. int dest_cpu;
  1075. const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));
  1076. /* Look for allowed, online CPU in same node. */
  1077. for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask)
  1078. if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
  1079. return dest_cpu;
  1080. /* Any allowed, online CPU? */
  1081. dest_cpu = cpumask_any_and(tsk_cpus_allowed(p), cpu_active_mask);
  1082. if (dest_cpu < nr_cpu_ids)
  1083. return dest_cpu;
  1084. /* No more Mr. Nice Guy. */
  1085. dest_cpu = cpuset_cpus_allowed_fallback(p);
  1086. /*
  1087. * Don't tell them about moving exiting tasks or
  1088. * kernel threads (both mm NULL), since they never
  1089. * leave kernel.
  1090. */
  1091. if (p->mm && printk_ratelimit()) {
  1092. printk_sched("process %d (%s) no longer affine to cpu%d\n",
  1093. task_pid_nr(p), p->comm, cpu);
  1094. }
  1095. return dest_cpu;
  1096. }
  1097. /*
  1098. * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
  1099. */
  1100. static inline
  1101. int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
  1102. {
  1103. int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags);
  1104. /*
  1105. * In order not to call set_task_cpu() on a blocking task we need
  1106. * to rely on ttwu() to place the task on a valid ->cpus_allowed
  1107. * cpu.
  1108. *
  1109. * Since this is common to all placement strategies, this lives here.
  1110. *
  1111. * [ this allows ->select_task() to simply return task_cpu(p) and
  1112. * not worry about this generic constraint ]
  1113. */
  1114. if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
  1115. !cpu_online(cpu)))
  1116. cpu = select_fallback_rq(task_cpu(p), p);
  1117. return cpu;
  1118. }
  1119. static void update_avg(u64 *avg, u64 sample)
  1120. {
  1121. s64 diff = sample - *avg;
  1122. *avg += diff >> 3;
  1123. }
  1124. #endif
  1125. static void
  1126. ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
  1127. {
  1128. #ifdef CONFIG_SCHEDSTATS
  1129. struct rq *rq = this_rq();
  1130. #ifdef CONFIG_SMP
  1131. int this_cpu = smp_processor_id();
  1132. if (cpu == this_cpu) {
  1133. schedstat_inc(rq, ttwu_local);
  1134. schedstat_inc(p, se.statistics.nr_wakeups_local);
  1135. } else {
  1136. struct sched_domain *sd;
  1137. schedstat_inc(p, se.statistics.nr_wakeups_remote);
  1138. rcu_read_lock();
  1139. for_each_domain(this_cpu, sd) {
  1140. if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
  1141. schedstat_inc(sd, ttwu_wake_remote);
  1142. break;
  1143. }
  1144. }
  1145. rcu_read_unlock();
  1146. }
  1147. if (wake_flags & WF_MIGRATED)
  1148. schedstat_inc(p, se.statistics.nr_wakeups_migrate);
  1149. #endif /* CONFIG_SMP */
  1150. schedstat_inc(rq, ttwu_count);
  1151. schedstat_inc(p, se.statistics.nr_wakeups);
  1152. if (wake_flags & WF_SYNC)
  1153. schedstat_inc(p, se.statistics.nr_wakeups_sync);
  1154. #endif /* CONFIG_SCHEDSTATS */
  1155. }
  1156. static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
  1157. {
  1158. activate_task(rq, p, en_flags);
  1159. p->on_rq = 1;
  1160. /* if a worker is waking up, notify workqueue */
  1161. if (p->flags & PF_WQ_WORKER)
  1162. wq_worker_waking_up(p, cpu_of(rq));
  1163. }
  1164. /*
  1165. * Mark the task runnable and perform wakeup-preemption.
  1166. */
  1167. static void
  1168. ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
  1169. {
  1170. trace_sched_wakeup(p, true);
  1171. check_preempt_curr(rq, p, wake_flags);
  1172. p->state = TASK_RUNNING;
  1173. #ifdef CONFIG_SMP
  1174. if (p->sched_class->task_woken)
  1175. p->sched_class->task_woken(rq, p);
  1176. if (rq->idle_stamp) {
  1177. u64 delta = rq->clock - rq->idle_stamp;
  1178. u64 max = 2*sysctl_sched_migration_cost;
  1179. if (delta > max)
  1180. rq->avg_idle = max;
  1181. else
  1182. update_avg(&rq->avg_idle, delta);
  1183. rq->idle_stamp = 0;
  1184. }
  1185. #endif
  1186. }
  1187. static void
  1188. ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
  1189. {
  1190. #ifdef CONFIG_SMP
  1191. if (p->sched_contributes_to_load)
  1192. rq->nr_uninterruptible--;
  1193. #endif
  1194. ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
  1195. ttwu_do_wakeup(rq, p, wake_flags);
  1196. }
  1197. /*
  1198. * Called in case the task @p isn't fully descheduled from its runqueue,
  1199. * in this case we must do a remote wakeup. Its a 'light' wakeup though,
  1200. * since all we need to do is flip p->state to TASK_RUNNING, since
  1201. * the task is still ->on_rq.
  1202. */
  1203. static int ttwu_remote(struct task_struct *p, int wake_flags)
  1204. {
  1205. struct rq *rq;
  1206. int ret = 0;
  1207. rq = __task_rq_lock(p);
  1208. if (p->on_rq) {
  1209. ttwu_do_wakeup(rq, p, wake_flags);
  1210. ret = 1;
  1211. }
  1212. __task_rq_unlock(rq);
  1213. return ret;
  1214. }
  1215. #ifdef CONFIG_SMP
  1216. static void sched_ttwu_pending(void)
  1217. {
  1218. struct rq *rq = this_rq();
  1219. struct llist_node *llist = llist_del_all(&rq->wake_list);
  1220. struct task_struct *p;
  1221. raw_spin_lock(&rq->lock);
  1222. while (llist) {
  1223. p = llist_entry(llist, struct task_struct, wake_entry);
  1224. llist = llist_next(llist);
  1225. ttwu_do_activate(rq, p, 0);
  1226. }
  1227. raw_spin_unlock(&rq->lock);
  1228. }
  1229. void scheduler_ipi(void)
  1230. {
  1231. if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
  1232. return;
  1233. /*
  1234. * Not all reschedule IPI handlers call irq_enter/irq_exit, since
  1235. * traditionally all their work was done from the interrupt return
  1236. * path. Now that we actually do some work, we need to make sure
  1237. * we do call them.
  1238. *
  1239. * Some archs already do call them, luckily irq_enter/exit nest
  1240. * properly.
  1241. *
  1242. * Arguably we should visit all archs and update all handlers,
  1243. * however a fair share of IPIs are still resched only so this would
  1244. * somewhat pessimize the simple resched case.
  1245. */
  1246. irq_enter();
  1247. sched_ttwu_pending();
  1248. /*
  1249. * Check if someone kicked us for doing the nohz idle load balance.
  1250. */
  1251. if (unlikely(got_nohz_idle_kick() && !need_resched())) {
  1252. this_rq()->idle_balance = 1;
  1253. raise_softirq_irqoff(SCHED_SOFTIRQ);
  1254. }
  1255. irq_exit();
  1256. }
  1257. static void ttwu_queue_remote(struct task_struct *p, int cpu)
  1258. {
  1259. if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list))
  1260. smp_send_reschedule(cpu);
  1261. }
  1262. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  1263. static int ttwu_activate_remote(struct task_struct *p, int wake_flags)
  1264. {
  1265. struct rq *rq;
  1266. int ret = 0;
  1267. rq = __task_rq_lock(p);
  1268. if (p->on_cpu) {
  1269. ttwu_activate(rq, p, ENQUEUE_WAKEUP);
  1270. ttwu_do_wakeup(rq, p, wake_flags);
  1271. ret = 1;
  1272. }
  1273. __task_rq_unlock(rq);
  1274. return ret;
  1275. }
  1276. #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
  1277. bool cpus_share_cache(int this_cpu, int that_cpu)
  1278. {
  1279. return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
  1280. }
  1281. #endif /* CONFIG_SMP */
  1282. static void ttwu_queue(struct task_struct *p, int cpu)
  1283. {
  1284. struct rq *rq = cpu_rq(cpu);
  1285. #if defined(CONFIG_SMP)
  1286. if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
  1287. sched_clock_cpu(cpu); /* sync clocks x-cpu */
  1288. ttwu_queue_remote(p, cpu);
  1289. return;
  1290. }
  1291. #endif
  1292. raw_spin_lock(&rq->lock);
  1293. ttwu_do_activate(rq, p, 0);
  1294. raw_spin_unlock(&rq->lock);
  1295. }
  1296. /**
  1297. * try_to_wake_up - wake up a thread
  1298. * @p: the thread to be awakened
  1299. * @state: the mask of task states that can be woken
  1300. * @wake_flags: wake modifier flags (WF_*)
  1301. *
  1302. * Put it on the run-queue if it's not already there. The "current"
  1303. * thread is always on the run-queue (except when the actual
  1304. * re-schedule is in progress), and as such you're allowed to do
  1305. * the simpler "current->state = TASK_RUNNING" to mark yourself
  1306. * runnable without the overhead of this.
  1307. *
  1308. * Returns %true if @p was woken up, %false if it was already running
  1309. * or @state didn't match @p's state.
  1310. */
  1311. static int
  1312. try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
  1313. {
  1314. unsigned long flags;
  1315. int cpu, success = 0;
  1316. smp_wmb();
  1317. raw_spin_lock_irqsave(&p->pi_lock, flags);
  1318. if (!(p->state & state))
  1319. goto out;
  1320. success = 1; /* we're going to change ->state */
  1321. cpu = task_cpu(p);
  1322. if (p->on_rq && ttwu_remote(p, wake_flags))
  1323. goto stat;
  1324. #ifdef CONFIG_SMP
  1325. /*
  1326. * If the owning (remote) cpu is still in the middle of schedule() with
  1327. * this task as prev, wait until its done referencing the task.
  1328. */
  1329. while (p->on_cpu) {
  1330. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  1331. /*
  1332. * In case the architecture enables interrupts in
  1333. * context_switch(), we cannot busy wait, since that
  1334. * would lead to deadlocks when an interrupt hits and
  1335. * tries to wake up @prev. So bail and do a complete
  1336. * remote wakeup.
  1337. */
  1338. if (ttwu_activate_remote(p, wake_flags))
  1339. goto stat;
  1340. #else
  1341. cpu_relax();
  1342. #endif
  1343. }
  1344. /*
  1345. * Pairs with the smp_wmb() in finish_lock_switch().
  1346. */
  1347. smp_rmb();
  1348. p->sched_contributes_to_load = !!task_contributes_to_load(p);
  1349. p->state = TASK_WAKING;
  1350. if (p->sched_class->task_waking)
  1351. p->sched_class->task_waking(p);
  1352. cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
  1353. if (task_cpu(p) != cpu) {
  1354. wake_flags |= WF_MIGRATED;
  1355. set_task_cpu(p, cpu);
  1356. }
  1357. #endif /* CONFIG_SMP */
  1358. ttwu_queue(p, cpu);
  1359. stat:
  1360. ttwu_stat(p, cpu, wake_flags);
  1361. out:
  1362. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  1363. return success;
  1364. }
  1365. /**
  1366. * try_to_wake_up_local - try to wake up a local task with rq lock held
  1367. * @p: the thread to be awakened
  1368. *
  1369. * Put @p on the run-queue if it's not already there. The caller must
  1370. * ensure that this_rq() is locked, @p is bound to this_rq() and not
  1371. * the current task.
  1372. */
  1373. static void try_to_wake_up_local(struct task_struct *p)
  1374. {
  1375. struct rq *rq = task_rq(p);
  1376. BUG_ON(rq != this_rq());
  1377. BUG_ON(p == current);
  1378. lockdep_assert_held(&rq->lock);
  1379. if (!raw_spin_trylock(&p->pi_lock)) {
  1380. raw_spin_unlock(&rq->lock);
  1381. raw_spin_lock(&p->pi_lock);
  1382. raw_spin_lock(&rq->lock);
  1383. }
  1384. if (!(p->state & TASK_NORMAL))
  1385. goto out;
  1386. if (!p->on_rq)
  1387. ttwu_activate(rq, p, ENQUEUE_WAKEUP);
  1388. ttwu_do_wakeup(rq, p, 0);
  1389. ttwu_stat(p, smp_processor_id(), 0);
  1390. out:
  1391. raw_spin_unlock(&p->pi_lock);
  1392. }
  1393. /**
  1394. * wake_up_process - Wake up a specific process
  1395. * @p: The process to be woken up.
  1396. *
  1397. * Attempt to wake up the nominated process and move it to the set of runnable
  1398. * processes. Returns 1 if the process was woken up, 0 if it was already
  1399. * running.
  1400. *
  1401. * It may be assumed that this function implies a write memory barrier before
  1402. * changing the task state if and only if any tasks are woken up.
  1403. */
  1404. int wake_up_process(struct task_struct *p)
  1405. {
  1406. return try_to_wake_up(p, TASK_ALL, 0);
  1407. }
  1408. EXPORT_SYMBOL(wake_up_process);
  1409. int wake_up_state(struct task_struct *p, unsigned int state)
  1410. {
  1411. return try_to_wake_up(p, state, 0);
  1412. }
  1413. /*
  1414. * Perform scheduler related setup for a newly forked process p.
  1415. * p is forked by current.
  1416. *
  1417. * __sched_fork() is basic setup used by init_idle() too:
  1418. */
  1419. static void __sched_fork(struct task_struct *p)
  1420. {
  1421. p->on_rq = 0;
  1422. p->se.on_rq = 0;
  1423. p->se.exec_start = 0;
  1424. p->se.sum_exec_runtime = 0;
  1425. p->se.prev_sum_exec_runtime = 0;
  1426. p->se.nr_migrations = 0;
  1427. p->se.vruntime = 0;
  1428. INIT_LIST_HEAD(&p->se.group_node);
  1429. #ifdef CONFIG_SCHEDSTATS
  1430. memset(&p->se.statistics, 0, sizeof(p->se.statistics));
  1431. #endif
  1432. INIT_LIST_HEAD(&p->rt.run_list);
  1433. #ifdef CONFIG_PREEMPT_NOTIFIERS
  1434. INIT_HLIST_HEAD(&p->preempt_notifiers);
  1435. #endif
  1436. }
  1437. /*
  1438. * fork()/clone()-time setup:
  1439. */
  1440. void sched_fork(struct task_struct *p)
  1441. {
  1442. unsigned long flags;
  1443. int cpu = get_cpu();
  1444. __sched_fork(p);
  1445. /*
  1446. * We mark the process as running here. This guarantees that
  1447. * nobody will actually run it, and a signal or other external
  1448. * event cannot wake it up and insert it on the runqueue either.
  1449. */
  1450. p->state = TASK_RUNNING;
  1451. /*
  1452. * Make sure we do not leak PI boosting priority to the child.
  1453. */
  1454. p->prio = current->normal_prio;
  1455. /*
  1456. * Revert to default priority/policy on fork if requested.
  1457. */
  1458. if (unlikely(p->sched_reset_on_fork)) {
  1459. if (task_has_rt_policy(p)) {
  1460. p->policy = SCHED_NORMAL;
  1461. p->static_prio = NICE_TO_PRIO(0);
  1462. p->rt_priority = 0;
  1463. } else if (PRIO_TO_NICE(p->static_prio) < 0)
  1464. p->static_prio = NICE_TO_PRIO(0);
  1465. p->prio = p->normal_prio = __normal_prio(p);
  1466. set_load_weight(p);
  1467. /*
  1468. * We don't need the reset flag anymore after the fork. It has
  1469. * fulfilled its duty:
  1470. */
  1471. p->sched_reset_on_fork = 0;
  1472. }
  1473. if (!rt_prio(p->prio))
  1474. p->sched_class = &fair_sched_class;
  1475. if (p->sched_class->task_fork)
  1476. p->sched_class->task_fork(p);
  1477. /*
  1478. * The child is not yet in the pid-hash so no cgroup attach races,
  1479. * and the cgroup is pinned to this child due to cgroup_fork()
  1480. * is ran before sched_fork().
  1481. *
  1482. * Silence PROVE_RCU.
  1483. */
  1484. raw_spin_lock_irqsave(&p->pi_lock, flags);
  1485. set_task_cpu(p, cpu);
  1486. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  1487. #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
  1488. if (likely(sched_info_on()))
  1489. memset(&p->sched_info, 0, sizeof(p->sched_info));
  1490. #endif
  1491. #if defined(CONFIG_SMP)
  1492. p->on_cpu = 0;
  1493. #endif
  1494. #ifdef CONFIG_PREEMPT_COUNT
  1495. /* Want to start with kernel preemption disabled. */
  1496. task_thread_info(p)->preempt_count = 1;
  1497. #endif
  1498. #ifdef CONFIG_SMP
  1499. plist_node_init(&p->pushable_tasks, MAX_PRIO);
  1500. #endif
  1501. put_cpu();
  1502. }
  1503. /*
  1504. * wake_up_new_task - wake up a newly created task for the first time.
  1505. *
  1506. * This function will do some initial scheduler statistics housekeeping
  1507. * that must be done for every newly created context, then puts the task
  1508. * on the runqueue and wakes it.
  1509. */
  1510. void wake_up_new_task(struct task_struct *p)
  1511. {
  1512. unsigned long flags;
  1513. struct rq *rq;
  1514. raw_spin_lock_irqsave(&p->pi_lock, flags);
  1515. #ifdef CONFIG_SMP
  1516. /*
  1517. * Fork balancing, do it here and not earlier because:
  1518. * - cpus_allowed can change in the fork path
  1519. * - any previously selected cpu might disappear through hotplug
  1520. */
  1521. set_task_cpu(p, select_task_rq(p, SD_BALANCE_FORK, 0));
  1522. #endif
  1523. rq = __task_rq_lock(p);
  1524. activate_task(rq, p, 0);
  1525. p->on_rq = 1;
  1526. trace_sched_wakeup_new(p, true);
  1527. check_preempt_curr(rq, p, WF_FORK);
  1528. #ifdef CONFIG_SMP
  1529. if (p->sched_class->task_woken)
  1530. p->sched_class->task_woken(rq, p);
  1531. #endif
  1532. task_rq_unlock(rq, p, &flags);
  1533. }
  1534. #ifdef CONFIG_PREEMPT_NOTIFIERS
  1535. /**
  1536. * preempt_notifier_register - tell me when current is being preempted & rescheduled
  1537. * @notifier: notifier struct to register
  1538. */
  1539. void preempt_notifier_register(struct preempt_notifier *notifier)
  1540. {
  1541. hlist_add_head(&notifier->link, &current->preempt_notifiers);
  1542. }
  1543. EXPORT_SYMBOL_GPL(preempt_notifier_register);
  1544. /**
  1545. * preempt_notifier_unregister - no longer interested in preemption notifications
  1546. * @notifier: notifier struct to unregister
  1547. *
  1548. * This is safe to call from within a preemption notifier.
  1549. */
  1550. void preempt_notifier_unregister(struct preempt_notifier *notifier)
  1551. {
  1552. hlist_del(&notifier->link);
  1553. }
  1554. EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
  1555. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  1556. {
  1557. struct preempt_notifier *notifier;
  1558. struct hlist_node *node;
  1559. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  1560. notifier->ops->sched_in(notifier, raw_smp_processor_id());
  1561. }
  1562. static void
  1563. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  1564. struct task_struct *next)
  1565. {
  1566. struct preempt_notifier *notifier;
  1567. struct hlist_node *node;
  1568. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  1569. notifier->ops->sched_out(notifier, next);
  1570. }
  1571. #else /* !CONFIG_PREEMPT_NOTIFIERS */
  1572. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  1573. {
  1574. }
  1575. static void
  1576. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  1577. struct task_struct *next)
  1578. {
  1579. }
  1580. #endif /* CONFIG_PREEMPT_NOTIFIERS */
  1581. /**
  1582. * prepare_task_switch - prepare to switch tasks
  1583. * @rq: the runqueue preparing to switch
  1584. * @prev: the current task that is being switched out
  1585. * @next: the task we are going to switch to.
  1586. *
  1587. * This is called with the rq lock held and interrupts off. It must
  1588. * be paired with a subsequent finish_task_switch after the context
  1589. * switch.
  1590. *
  1591. * prepare_task_switch sets up locking and calls architecture specific
  1592. * hooks.
  1593. */
  1594. static inline void
  1595. prepare_task_switch(struct rq *rq, struct task_struct *prev,
  1596. struct task_struct *next)
  1597. {
  1598. sched_info_switch(prev, next);
  1599. perf_event_task_sched_out(prev, next);
  1600. fire_sched_out_preempt_notifiers(prev, next);
  1601. prepare_lock_switch(rq, next);
  1602. prepare_arch_switch(next);
  1603. trace_sched_switch(prev, next);
  1604. }
  1605. /**
  1606. * finish_task_switch - clean up after a task-switch
  1607. * @rq: runqueue associated with task-switch
  1608. * @prev: the thread we just switched away from.
  1609. *
  1610. * finish_task_switch must be called after the context switch, paired
  1611. * with a prepare_task_switch call before the context switch.
  1612. * finish_task_switch will reconcile locking set up by prepare_task_switch,
  1613. * and do any other architecture-specific cleanup actions.
  1614. *
  1615. * Note that we may have delayed dropping an mm in context_switch(). If
  1616. * so, we finish that here outside of the runqueue lock. (Doing it
  1617. * with the lock held can cause deadlocks; see schedule() for
  1618. * details.)
  1619. */
  1620. static void finish_task_switch(struct rq *rq, struct task_struct *prev)
  1621. __releases(rq->lock)
  1622. {
  1623. struct mm_struct *mm = rq->prev_mm;
  1624. long prev_state;
  1625. rq->prev_mm = NULL;
  1626. /*
  1627. * A task struct has one reference for the use as "current".
  1628. * If a task dies, then it sets TASK_DEAD in tsk->state and calls
  1629. * schedule one last time. The schedule call will never return, and
  1630. * the scheduled task must drop that reference.
  1631. * The test for TASK_DEAD must occur while the runqueue locks are
  1632. * still held, otherwise prev could be scheduled on another cpu, die
  1633. * there before we look at prev->state, and then the reference would
  1634. * be dropped twice.
  1635. * Manfred Spraul <manfred@colorfullife.com>
  1636. */
  1637. prev_state = prev->state;
  1638. finish_arch_switch(prev);
  1639. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  1640. local_irq_disable();
  1641. #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
  1642. perf_event_task_sched_in(prev, current);
  1643. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  1644. local_irq_enable();
  1645. #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
  1646. finish_lock_switch(rq, prev);
  1647. fire_sched_in_preempt_notifiers(current);
  1648. if (mm)
  1649. mmdrop(mm);
  1650. if (unlikely(prev_state == TASK_DEAD)) {
  1651. /*
  1652. * Remove function-return probe instances associated with this
  1653. * task and put them back on the free list.
  1654. */
  1655. kprobe_flush_task(prev);
  1656. put_task_struct(prev);
  1657. }
  1658. }
  1659. #ifdef CONFIG_SMP
  1660. /* assumes rq->lock is held */
  1661. static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
  1662. {
  1663. if (prev->sched_class->pre_schedule)
  1664. prev->sched_class->pre_schedule(rq, prev);
  1665. }
  1666. /* rq->lock is NOT held, but preemption is disabled */
  1667. static inline void post_schedule(struct rq *rq)
  1668. {
  1669. if (rq->post_schedule) {
  1670. unsigned long flags;
  1671. raw_spin_lock_irqsave(&rq->lock, flags);
  1672. if (rq->curr->sched_class->post_schedule)
  1673. rq->curr->sched_class->post_schedule(rq);
  1674. raw_spin_unlock_irqrestore(&rq->lock, flags);
  1675. rq->post_schedule = 0;
  1676. }
  1677. }
  1678. #else
  1679. static inline void pre_schedule(struct rq *rq, struct task_struct *p)
  1680. {
  1681. }
  1682. static inline void post_schedule(struct rq *rq)
  1683. {
  1684. }
  1685. #endif
  1686. /**
  1687. * schedule_tail - first thing a freshly forked thread must call.
  1688. * @prev: the thread we just switched away from.
  1689. */
  1690. asmlinkage void schedule_tail(struct task_struct *prev)
  1691. __releases(rq->lock)
  1692. {
  1693. struct rq *rq = this_rq();
  1694. finish_task_switch(rq, prev);
  1695. /*
  1696. * FIXME: do we need to worry about rq being invalidated by the
  1697. * task_switch?
  1698. */
  1699. post_schedule(rq);
  1700. #ifdef __ARCH_WANT_UNLOCKED_CTXSW
  1701. /* In this case, finish_task_switch does not reenable preemption */
  1702. preempt_enable();
  1703. #endif
  1704. if (current->set_child_tid)
  1705. put_user(task_pid_vnr(current), current->set_child_tid);
  1706. }
  1707. /*
  1708. * context_switch - switch to the new MM and the new
  1709. * thread's register state.
  1710. */
  1711. static inline void
  1712. context_switch(struct rq *rq, struct task_struct *prev,
  1713. struct task_struct *next)
  1714. {
  1715. struct mm_struct *mm, *oldmm;
  1716. prepare_task_switch(rq, prev, next);
  1717. mm = next->mm;
  1718. oldmm = prev->active_mm;
  1719. /*
  1720. * For paravirt, this is coupled with an exit in switch_to to
  1721. * combine the page table reload and the switch backend into
  1722. * one hypercall.
  1723. */
  1724. arch_start_context_switch(prev);
  1725. if (!mm) {
  1726. next->active_mm = oldmm;
  1727. atomic_inc(&oldmm->mm_count);
  1728. enter_lazy_tlb(oldmm, next);
  1729. } else
  1730. switch_mm(oldmm, mm, next);
  1731. if (!prev->mm) {
  1732. prev->active_mm = NULL;
  1733. rq->prev_mm = oldmm;
  1734. }
  1735. /*
  1736. * Since the runqueue lock will be released by the next
  1737. * task (which is an invalid locking op but in the case
  1738. * of the scheduler it's an obvious special-case), so we
  1739. * do an early lockdep release here:
  1740. */
  1741. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  1742. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  1743. #endif
  1744. /* Here we just switch the register state and the stack. */
  1745. switch_to(prev, next, prev);
  1746. barrier();
  1747. /*
  1748. * this_rq must be evaluated again because prev may have moved
  1749. * CPUs since it called schedule(), thus the 'rq' on its stack
  1750. * frame will be invalid.
  1751. */
  1752. finish_task_switch(this_rq(), prev);
  1753. }
  1754. /*
  1755. * nr_running, nr_uninterruptible and nr_context_switches:
  1756. *
  1757. * externally visible scheduler statistics: current number of runnable
  1758. * threads, current number of uninterruptible-sleeping threads, total
  1759. * number of context switches performed since bootup.
  1760. */
  1761. unsigned long nr_running(void)
  1762. {
  1763. unsigned long i, sum = 0;
  1764. for_each_online_cpu(i)
  1765. sum += cpu_rq(i)->nr_running;
  1766. return sum;
  1767. }
  1768. unsigned long nr_uninterruptible(void)
  1769. {
  1770. unsigned long i, sum = 0;
  1771. for_each_possible_cpu(i)
  1772. sum += cpu_rq(i)->nr_uninterruptible;
  1773. /*
  1774. * Since we read the counters lockless, it might be slightly
  1775. * inaccurate. Do not allow it to go below zero though:
  1776. */
  1777. if (unlikely((long)sum < 0))
  1778. sum = 0;
  1779. return sum;
  1780. }
  1781. unsigned long long nr_context_switches(void)
  1782. {
  1783. int i;
  1784. unsigned long long sum = 0;
  1785. for_each_possible_cpu(i)
  1786. sum += cpu_rq(i)->nr_switches;
  1787. return sum;
  1788. }
  1789. unsigned long nr_iowait(void)
  1790. {
  1791. unsigned long i, sum = 0;
  1792. for_each_possible_cpu(i)
  1793. sum += atomic_read(&cpu_rq(i)->nr_iowait);
  1794. return sum;
  1795. }
  1796. unsigned long nr_iowait_cpu(int cpu)
  1797. {
  1798. struct rq *this = cpu_rq(cpu);
  1799. return atomic_read(&this->nr_iowait);
  1800. }
  1801. unsigned long this_cpu_load(void)
  1802. {
  1803. struct rq *this = this_rq();
  1804. return this->cpu_load[0];
  1805. }
  1806. /* Variables and functions for calc_load */
  1807. static atomic_long_t calc_load_tasks;
  1808. static unsigned long calc_load_update;
  1809. unsigned long avenrun[3];
  1810. EXPORT_SYMBOL(avenrun);
  1811. static long calc_load_fold_active(struct rq *this_rq)
  1812. {
  1813. long nr_active, delta = 0;
  1814. nr_active = this_rq->nr_running;
  1815. nr_active += (long) this_rq->nr_uninterruptible;
  1816. if (nr_active != this_rq->calc_load_active) {
  1817. delta = nr_active - this_rq->calc_load_active;
  1818. this_rq->calc_load_active = nr_active;
  1819. }
  1820. return delta;
  1821. }
  1822. static unsigned long
  1823. calc_load(unsigned long load, unsigned long exp, unsigned long active)
  1824. {
  1825. load *= exp;
  1826. load += active * (FIXED_1 - exp);
  1827. load += 1UL << (FSHIFT - 1);
  1828. return load >> FSHIFT;
  1829. }
  1830. #ifdef CONFIG_NO_HZ
  1831. /*
  1832. * For NO_HZ we delay the active fold to the next LOAD_FREQ update.
  1833. *
  1834. * When making the ILB scale, we should try to pull this in as well.
  1835. */
  1836. static atomic_long_t calc_load_tasks_idle;
  1837. void calc_load_account_idle(struct rq *this_rq)
  1838. {
  1839. long delta;
  1840. delta = calc_load_fold_active(this_rq);
  1841. if (delta)
  1842. atomic_long_add(delta, &calc_load_tasks_idle);
  1843. }
  1844. static long calc_load_fold_idle(void)
  1845. {
  1846. long delta = 0;
  1847. /*
  1848. * Its got a race, we don't care...
  1849. */
  1850. if (atomic_long_read(&calc_load_tasks_idle))
  1851. delta = atomic_long_xchg(&calc_load_tasks_idle, 0);
  1852. return delta;
  1853. }
  1854. /**
  1855. * fixed_power_int - compute: x^n, in O(log n) time
  1856. *
  1857. * @x: base of the power
  1858. * @frac_bits: fractional bits of @x
  1859. * @n: power to raise @x to.
  1860. *
  1861. * By exploiting the relation between the definition of the natural power
  1862. * function: x^n := x*x*...*x (x multiplied by itself for n times), and
  1863. * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i,
  1864. * (where: n_i \elem {0, 1}, the binary vector representing n),
  1865. * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is
  1866. * of course trivially computable in O(log_2 n), the length of our binary
  1867. * vector.
  1868. */
  1869. static unsigned long
  1870. fixed_power_int(unsigned long x, unsigned int frac_bits, unsigned int n)
  1871. {
  1872. unsigned long result = 1UL << frac_bits;
  1873. if (n) for (;;) {
  1874. if (n & 1) {
  1875. result *= x;
  1876. result += 1UL << (frac_bits - 1);
  1877. result >>= frac_bits;
  1878. }
  1879. n >>= 1;
  1880. if (!n)
  1881. break;
  1882. x *= x;
  1883. x += 1UL << (frac_bits - 1);
  1884. x >>= frac_bits;
  1885. }
  1886. return result;
  1887. }
  1888. /*
  1889. * a1 = a0 * e + a * (1 - e)
  1890. *
  1891. * a2 = a1 * e + a * (1 - e)
  1892. * = (a0 * e + a * (1 - e)) * e + a * (1 - e)
  1893. * = a0 * e^2 + a * (1 - e) * (1 + e)
  1894. *
  1895. * a3 = a2 * e + a * (1 - e)
  1896. * = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e)
  1897. * = a0 * e^3 + a * (1 - e) * (1 + e + e^2)
  1898. *
  1899. * ...
  1900. *
  1901. * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1]
  1902. * = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e)
  1903. * = a0 * e^n + a * (1 - e^n)
  1904. *
  1905. * [1] application of the geometric series:
  1906. *
  1907. * n 1 - x^(n+1)
  1908. * S_n := \Sum x^i = -------------
  1909. * i=0 1 - x
  1910. */
  1911. static unsigned long
  1912. calc_load_n(unsigned long load, unsigned long exp,
  1913. unsigned long active, unsigned int n)
  1914. {
  1915. return calc_load(load, fixed_power_int(exp, FSHIFT, n), active);
  1916. }
  1917. /*
  1918. * NO_HZ can leave us missing all per-cpu ticks calling
  1919. * calc_load_account_active(), but since an idle CPU folds its delta into
  1920. * calc_load_tasks_idle per calc_load_account_idle(), all we need to do is fold
  1921. * in the pending idle delta if our idle period crossed a load cycle boundary.
  1922. *
  1923. * Once we've updated the global active value, we need to apply the exponential
  1924. * weights adjusted to the number of cycles missed.
  1925. */
  1926. static void calc_global_nohz(void)
  1927. {
  1928. long delta, active, n;
  1929. /*
  1930. * If we crossed a calc_load_update boundary, make sure to fold
  1931. * any pending idle changes, the respective CPUs might have
  1932. * missed the tick driven calc_load_account_active() update
  1933. * due to NO_HZ.
  1934. */
  1935. delta = calc_load_fold_idle();
  1936. if (delta)
  1937. atomic_long_add(delta, &calc_load_tasks);
  1938. /*
  1939. * It could be the one fold was all it took, we done!
  1940. */
  1941. if (time_before(jiffies, calc_load_update + 10))
  1942. return;
  1943. /*
  1944. * Catch-up, fold however many we are behind still
  1945. */
  1946. delta = jiffies - calc_load_update - 10;
  1947. n = 1 + (delta / LOAD_FREQ);
  1948. active = atomic_long_read(&calc_load_tasks);
  1949. active = active > 0 ? active * FIXED_1 : 0;
  1950. avenrun[0] = calc_load_n(avenrun[0], EXP_1, active, n);
  1951. avenrun[1] = calc_load_n(avenrun[1], EXP_5, active, n);
  1952. avenrun[2] = calc_load_n(avenrun[2], EXP_15, active, n);
  1953. calc_load_update += n * LOAD_FREQ;
  1954. }
  1955. #else
  1956. void calc_load_account_idle(struct rq *this_rq)
  1957. {
  1958. }
  1959. static inline long calc_load_fold_idle(void)
  1960. {
  1961. return 0;
  1962. }
  1963. static void calc_global_nohz(void)
  1964. {
  1965. }
  1966. #endif
  1967. /**
  1968. * get_avenrun - get the load average array
  1969. * @loads: pointer to dest load array
  1970. * @offset: offset to add
  1971. * @shift: shift count to shift the result left
  1972. *
  1973. * These values are estimates at best, so no need for locking.
  1974. */
  1975. void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
  1976. {
  1977. loads[0] = (avenrun[0] + offset) << shift;
  1978. loads[1] = (avenrun[1] + offset) << shift;
  1979. loads[2] = (avenrun[2] + offset) << shift;
  1980. }
  1981. /*
  1982. * calc_load - update the avenrun load estimates 10 ticks after the
  1983. * CPUs have updated calc_load_tasks.
  1984. */
  1985. void calc_global_load(unsigned long ticks)
  1986. {
  1987. long active;
  1988. if (time_before(jiffies, calc_load_update + 10))
  1989. return;
  1990. active = atomic_long_read(&calc_load_tasks);
  1991. active = active > 0 ? active * FIXED_1 : 0;
  1992. avenrun[0] = calc_load(avenrun[0], EXP_1, active);
  1993. avenrun[1] = calc_load(avenrun[1], EXP_5, active);
  1994. avenrun[2] = calc_load(avenrun[2], EXP_15, active);
  1995. calc_load_update += LOAD_FREQ;
  1996. /*
  1997. * Account one period with whatever state we found before
  1998. * folding in the nohz state and ageing the entire idle period.
  1999. *
  2000. * This avoids loosing a sample when we go idle between
  2001. * calc_load_account_active() (10 ticks ago) and now and thus
  2002. * under-accounting.
  2003. */
  2004. calc_global_nohz();
  2005. }
  2006. /*
  2007. * Called from update_cpu_load() to periodically update this CPU's
  2008. * active count.
  2009. */
  2010. static void calc_load_account_active(struct rq *this_rq)
  2011. {
  2012. long delta;
  2013. if (time_before(jiffies, this_rq->calc_load_update))
  2014. return;
  2015. delta = calc_load_fold_active(this_rq);
  2016. delta += calc_load_fold_idle();
  2017. if (delta)
  2018. atomic_long_add(delta, &calc_load_tasks);
  2019. this_rq->calc_load_update += LOAD_FREQ;
  2020. }
  2021. /*
  2022. * The exact cpuload at various idx values, calculated at every tick would be
  2023. * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
  2024. *
  2025. * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
  2026. * on nth tick when cpu may be busy, then we have:
  2027. * load = ((2^idx - 1) / 2^idx)^(n-1) * load
  2028. * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
  2029. *
  2030. * decay_load_missed() below does efficient calculation of
  2031. * load = ((2^idx - 1) / 2^idx)^(n-1) * load
  2032. * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
  2033. *
  2034. * The calculation is approximated on a 128 point scale.
  2035. * degrade_zero_ticks is the number of ticks after which load at any
  2036. * particular idx is approximated to be zero.
  2037. * degrade_factor is a precomputed table, a row for each load idx.
  2038. * Each column corresponds to degradation factor for a power of two ticks,
  2039. * based on 128 point scale.
  2040. * Example:
  2041. * row 2, col 3 (=12) says that the degradation at load idx 2 after
  2042. * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
  2043. *
  2044. * With this power of 2 load factors, we can degrade the load n times
  2045. * by looking at 1 bits in n and doing as many mult/shift instead of
  2046. * n mult/shifts needed by the exact degradation.
  2047. */
  2048. #define DEGRADE_SHIFT 7
  2049. static const unsigned char
  2050. degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
  2051. static const unsigned char
  2052. degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
  2053. {0, 0, 0, 0, 0, 0, 0, 0},
  2054. {64, 32, 8, 0, 0, 0, 0, 0},
  2055. {96, 72, 40, 12, 1, 0, 0},
  2056. {112, 98, 75, 43, 15, 1, 0},
  2057. {120, 112, 98, 76, 45, 16, 2} };
  2058. /*
  2059. * Update cpu_load for any missed ticks, due to tickless idle. The backlog
  2060. * would be when CPU is idle and so we just decay the old load without
  2061. * adding any new load.
  2062. */
  2063. static unsigned long
  2064. decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
  2065. {
  2066. int j = 0;
  2067. if (!missed_updates)
  2068. return load;
  2069. if (missed_updates >= degrade_zero_ticks[idx])
  2070. return 0;
  2071. if (idx == 1)
  2072. return load >> missed_updates;
  2073. while (missed_updates) {
  2074. if (missed_updates % 2)
  2075. load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
  2076. missed_updates >>= 1;
  2077. j++;
  2078. }
  2079. return load;
  2080. }
  2081. /*
  2082. * Update rq->cpu_load[] statistics. This function is usually called every
  2083. * scheduler tick (TICK_NSEC). With tickless idle this will not be called
  2084. * every tick. We fix it up based on jiffies.
  2085. */
  2086. void update_cpu_load(struct rq *this_rq)
  2087. {
  2088. unsigned long this_load = this_rq->load.weight;
  2089. unsigned long curr_jiffies = jiffies;
  2090. unsigned long pending_updates;
  2091. int i, scale;
  2092. this_rq->nr_load_updates++;
  2093. /* Avoid repeated calls on same jiffy, when moving in and out of idle */
  2094. if (curr_jiffies == this_rq->last_load_update_tick)
  2095. return;
  2096. pending_updates = curr_jiffies - this_rq->last_load_update_tick;
  2097. this_rq->last_load_update_tick = curr_jiffies;
  2098. /* Update our load: */
  2099. this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
  2100. for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
  2101. unsigned long old_load, new_load;
  2102. /* scale is effectively 1 << i now, and >> i divides by scale */
  2103. old_load = this_rq->cpu_load[i];
  2104. old_load = decay_load_missed(old_load, pending_updates - 1, i);
  2105. new_load = this_load;
  2106. /*
  2107. * Round up the averaging division if load is increasing. This
  2108. * prevents us from getting stuck on 9 if the load is 10, for
  2109. * example.
  2110. */
  2111. if (new_load > old_load)
  2112. new_load += scale - 1;
  2113. this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
  2114. }
  2115. sched_avg_update(this_rq);
  2116. }
  2117. static void update_cpu_load_active(struct rq *this_rq)
  2118. {
  2119. update_cpu_load(this_rq);
  2120. calc_load_account_active(this_rq);
  2121. }
  2122. #ifdef CONFIG_SMP
  2123. /*
  2124. * sched_exec - execve() is a valuable balancing opportunity, because at
  2125. * this point the task has the smallest effective memory and cache footprint.
  2126. */
  2127. void sched_exec(void)
  2128. {
  2129. struct task_struct *p = current;
  2130. unsigned long flags;
  2131. int dest_cpu;
  2132. raw_spin_lock_irqsave(&p->pi_lock, flags);
  2133. dest_cpu = p->sched_class->select_task_rq(p, SD_BALANCE_EXEC, 0);
  2134. if (dest_cpu == smp_processor_id())
  2135. goto unlock;
  2136. if (likely(cpu_active(dest_cpu))) {
  2137. struct migration_arg arg = { p, dest_cpu };
  2138. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  2139. stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
  2140. return;
  2141. }
  2142. unlock:
  2143. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  2144. }
  2145. #endif
  2146. DEFINE_PER_CPU(struct kernel_stat, kstat);
  2147. DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
  2148. EXPORT_PER_CPU_SYMBOL(kstat);
  2149. EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
  2150. /*
  2151. * Return any ns on the sched_clock that have not yet been accounted in
  2152. * @p in case that task is currently running.
  2153. *
  2154. * Called with task_rq_lock() held on @rq.
  2155. */
  2156. static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
  2157. {
  2158. u64 ns = 0;
  2159. if (task_current(rq, p)) {
  2160. update_rq_clock(rq);
  2161. ns = rq->clock_task - p->se.exec_start;
  2162. if ((s64)ns < 0)
  2163. ns = 0;
  2164. }
  2165. return ns;
  2166. }
  2167. unsigned long long task_delta_exec(struct task_struct *p)
  2168. {
  2169. unsigned long flags;
  2170. struct rq *rq;
  2171. u64 ns = 0;
  2172. rq = task_rq_lock(p, &flags);
  2173. ns = do_task_delta_exec(p, rq);
  2174. task_rq_unlock(rq, p, &flags);
  2175. return ns;
  2176. }
  2177. /*
  2178. * Return accounted runtime for the task.
  2179. * In case the task is currently running, return the runtime plus current's
  2180. * pending runtime that have not been accounted yet.
  2181. */
  2182. unsigned long long task_sched_runtime(struct task_struct *p)
  2183. {
  2184. unsigned long flags;
  2185. struct rq *rq;
  2186. u64 ns = 0;
  2187. rq = task_rq_lock(p, &flags);
  2188. ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
  2189. task_rq_unlock(rq, p, &flags);
  2190. return ns;
  2191. }
  2192. #ifdef CONFIG_CGROUP_CPUACCT
  2193. struct cgroup_subsys cpuacct_subsys;
  2194. struct cpuacct root_cpuacct;
  2195. #endif
  2196. static inline void task_group_account_field(struct task_struct *p, int index,
  2197. u64 tmp)
  2198. {
  2199. #ifdef CONFIG_CGROUP_CPUACCT
  2200. struct kernel_cpustat *kcpustat;
  2201. struct cpuacct *ca;
  2202. #endif
  2203. /*
  2204. * Since all updates are sure to touch the root cgroup, we
  2205. * get ourselves ahead and touch it first. If the root cgroup
  2206. * is the only cgroup, then nothing else should be necessary.
  2207. *
  2208. */
  2209. __get_cpu_var(kernel_cpustat).cpustat[index] += tmp;
  2210. #ifdef CONFIG_CGROUP_CPUACCT
  2211. if (unlikely(!cpuacct_subsys.active))
  2212. return;
  2213. rcu_read_lock();
  2214. ca = task_ca(p);
  2215. while (ca && (ca != &root_cpuacct)) {
  2216. kcpustat = this_cpu_ptr(ca->cpustat);
  2217. kcpustat->cpustat[index] += tmp;
  2218. ca = parent_ca(ca);
  2219. }
  2220. rcu_read_unlock();
  2221. #endif
  2222. }
  2223. /*
  2224. * Account user cpu time to a process.
  2225. * @p: the process that the cpu time gets accounted to
  2226. * @cputime: the cpu time spent in user space since the last update
  2227. * @cputime_scaled: cputime scaled by cpu frequency
  2228. */
  2229. void account_user_time(struct task_struct *p, cputime_t cputime,
  2230. cputime_t cputime_scaled)
  2231. {
  2232. int index;
  2233. /* Add user time to process. */
  2234. p->utime += cputime;
  2235. p->utimescaled += cputime_scaled;
  2236. account_group_user_time(p, cputime);
  2237. index = (TASK_NICE(p) > 0) ? CPUTIME_NICE : CPUTIME_USER;
  2238. /* Add user time to cpustat. */
  2239. task_group_account_field(p, index, (__force u64) cputime);
  2240. /* Account for user time used */
  2241. acct_update_integrals(p);
  2242. }
  2243. /*
  2244. * Account guest cpu time to a process.
  2245. * @p: the process that the cpu time gets accounted to
  2246. * @cputime: the cpu time spent in virtual machine since the last update
  2247. * @cputime_scaled: cputime scaled by cpu frequency
  2248. */
  2249. static void account_guest_time(struct task_struct *p, cputime_t cputime,
  2250. cputime_t cputime_scaled)
  2251. {
  2252. u64 *cpustat = kcpustat_this_cpu->cpustat;
  2253. /* Add guest time to process. */
  2254. p->utime += cputime;
  2255. p->utimescaled += cputime_scaled;
  2256. account_group_user_time(p, cputime);
  2257. p->gtime += cputime;
  2258. /* Add guest time to cpustat. */
  2259. if (TASK_NICE(p) > 0) {
  2260. cpustat[CPUTIME_NICE] += (__force u64) cputime;
  2261. cpustat[CPUTIME_GUEST_NICE] += (__force u64) cputime;
  2262. } else {
  2263. cpustat[CPUTIME_USER] += (__force u64) cputime;
  2264. cpustat[CPUTIME_GUEST] += (__force u64) cputime;
  2265. }
  2266. }
  2267. /*
  2268. * Account system cpu time to a process and desired cpustat field
  2269. * @p: the process that the cpu time gets accounted to
  2270. * @cputime: the cpu time spent in kernel space since the last update
  2271. * @cputime_scaled: cputime scaled by cpu frequency
  2272. * @target_cputime64: pointer to cpustat field that has to be updated
  2273. */
  2274. static inline
  2275. void __account_system_time(struct task_struct *p, cputime_t cputime,
  2276. cputime_t cputime_scaled, int index)
  2277. {
  2278. /* Add system time to process. */
  2279. p->stime += cputime;
  2280. p->stimescaled += cputime_scaled;
  2281. account_group_system_time(p, cputime);
  2282. /* Add system time to cpustat. */
  2283. task_group_account_field(p, index, (__force u64) cputime);
  2284. /* Account for system time used */
  2285. acct_update_integrals(p);
  2286. }
  2287. /*
  2288. * Account system cpu time to a process.
  2289. * @p: the process that the cpu time gets accounted to
  2290. * @hardirq_offset: the offset to subtract from hardirq_count()
  2291. * @cputime: the cpu time spent in kernel space since the last update
  2292. * @cputime_scaled: cputime scaled by cpu frequency
  2293. */
  2294. void account_system_time(struct task_struct *p, int hardirq_offset,
  2295. cputime_t cputime, cputime_t cputime_scaled)
  2296. {
  2297. int index;
  2298. if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
  2299. account_guest_time(p, cputime, cputime_scaled);
  2300. return;
  2301. }
  2302. if (hardirq_count() - hardirq_offset)
  2303. index = CPUTIME_IRQ;
  2304. else if (in_serving_softirq())
  2305. index = CPUTIME_SOFTIRQ;
  2306. else
  2307. index = CPUTIME_SYSTEM;
  2308. __account_system_time(p, cputime, cputime_scaled, index);
  2309. }
  2310. /*
  2311. * Account for involuntary wait time.
  2312. * @cputime: the cpu time spent in involuntary wait
  2313. */
  2314. void account_steal_time(cputime_t cputime)
  2315. {
  2316. u64 *cpustat = kcpustat_this_cpu->cpustat;
  2317. cpustat[CPUTIME_STEAL] += (__force u64) cputime;
  2318. }
  2319. /*
  2320. * Account for idle time.
  2321. * @cputime: the cpu time spent in idle wait
  2322. */
  2323. void account_idle_time(cputime_t cputime)
  2324. {
  2325. u64 *cpustat = kcpustat_this_cpu->cpustat;
  2326. struct rq *rq = this_rq();
  2327. if (atomic_read(&rq->nr_iowait) > 0)
  2328. cpustat[CPUTIME_IOWAIT] += (__force u64) cputime;
  2329. else
  2330. cpustat[CPUTIME_IDLE] += (__force u64) cputime;
  2331. }
  2332. static __always_inline bool steal_account_process_tick(void)
  2333. {
  2334. #ifdef CONFIG_PARAVIRT
  2335. if (static_key_false(&paravirt_steal_enabled)) {
  2336. u64 steal, st = 0;
  2337. steal = paravirt_steal_clock(smp_processor_id());
  2338. steal -= this_rq()->prev_steal_time;
  2339. st = steal_ticks(steal);
  2340. this_rq()->prev_steal_time += st * TICK_NSEC;
  2341. account_steal_time(st);
  2342. return st;
  2343. }
  2344. #endif
  2345. return false;
  2346. }
  2347. #ifndef CONFIG_VIRT_CPU_ACCOUNTING
  2348. #ifdef CONFIG_IRQ_TIME_ACCOUNTING
  2349. /*
  2350. * Account a tick to a process and cpustat
  2351. * @p: the process that the cpu time gets accounted to
  2352. * @user_tick: is the tick from userspace
  2353. * @rq: the pointer to rq
  2354. *
  2355. * Tick demultiplexing follows the order
  2356. * - pending hardirq update
  2357. * - pending softirq update
  2358. * - user_time
  2359. * - idle_time
  2360. * - system time
  2361. * - check for guest_time
  2362. * - else account as system_time
  2363. *
  2364. * Check for hardirq is done both for system and user time as there is
  2365. * no timer going off while we are on hardirq and hence we may never get an
  2366. * opportunity to update it solely in system time.
  2367. * p->stime and friends are only updated on system time and not on irq
  2368. * softirq as those do not count in task exec_runtime any more.
  2369. */
  2370. static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
  2371. struct rq *rq)
  2372. {
  2373. cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
  2374. u64 *cpustat = kcpustat_this_cpu->cpustat;
  2375. if (steal_account_process_tick())
  2376. return;
  2377. if (irqtime_account_hi_update()) {
  2378. cpustat[CPUTIME_IRQ] += (__force u64) cputime_one_jiffy;
  2379. } else if (irqtime_account_si_update()) {
  2380. cpustat[CPUTIME_SOFTIRQ] += (__force u64) cputime_one_jiffy;
  2381. } else if (this_cpu_ksoftirqd() == p) {
  2382. /*
  2383. * ksoftirqd time do not get accounted in cpu_softirq_time.
  2384. * So, we have to handle it separately here.
  2385. * Also, p->stime needs to be updated for ksoftirqd.
  2386. */
  2387. __account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
  2388. CPUTIME_SOFTIRQ);
  2389. } else if (user_tick) {
  2390. account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
  2391. } else if (p == rq->idle) {
  2392. account_idle_time(cputime_one_jiffy);
  2393. } else if (p->flags & PF_VCPU) { /* System time or guest time */
  2394. account_guest_time(p, cputime_one_jiffy, one_jiffy_scaled);
  2395. } else {
  2396. __account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
  2397. CPUTIME_SYSTEM);
  2398. }
  2399. }
  2400. static void irqtime_account_idle_ticks(int ticks)
  2401. {
  2402. int i;
  2403. struct rq *rq = this_rq();
  2404. for (i = 0; i < ticks; i++)
  2405. irqtime_account_process_tick(current, 0, rq);
  2406. }
  2407. #else /* CONFIG_IRQ_TIME_ACCOUNTING */
  2408. static void irqtime_account_idle_ticks(int ticks) {}
  2409. static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
  2410. struct rq *rq) {}
  2411. #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
  2412. /*
  2413. * Account a single tick of cpu time.
  2414. * @p: the process that the cpu time gets accounted to
  2415. * @user_tick: indicates if the tick is a user or a system tick
  2416. */
  2417. void account_process_tick(struct task_struct *p, int user_tick)
  2418. {
  2419. cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
  2420. struct rq *rq = this_rq();
  2421. if (sched_clock_irqtime) {
  2422. irqtime_account_process_tick(p, user_tick, rq);
  2423. return;
  2424. }
  2425. if (steal_account_process_tick())
  2426. return;
  2427. if (user_tick)
  2428. account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
  2429. else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
  2430. account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
  2431. one_jiffy_scaled);
  2432. else
  2433. account_idle_time(cputime_one_jiffy);
  2434. }
  2435. /*
  2436. * Account multiple ticks of steal time.
  2437. * @p: the process from which the cpu time has been stolen
  2438. * @ticks: number of stolen ticks
  2439. */
  2440. void account_steal_ticks(unsigned long ticks)
  2441. {
  2442. account_steal_time(jiffies_to_cputime(ticks));
  2443. }
  2444. /*
  2445. * Account multiple ticks of idle time.
  2446. * @ticks: number of stolen ticks
  2447. */
  2448. void account_idle_ticks(unsigned long ticks)
  2449. {
  2450. if (sched_clock_irqtime) {
  2451. irqtime_account_idle_ticks(ticks);
  2452. return;
  2453. }
  2454. account_idle_time(jiffies_to_cputime(ticks));
  2455. }
  2456. #endif
  2457. /*
  2458. * Use precise platform statistics if available:
  2459. */
  2460. #ifdef CONFIG_VIRT_CPU_ACCOUNTING
  2461. void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
  2462. {
  2463. *ut = p->utime;
  2464. *st = p->stime;
  2465. }
  2466. void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
  2467. {
  2468. struct task_cputime cputime;
  2469. thread_group_cputime(p, &cputime);
  2470. *ut = cputime.utime;
  2471. *st = cputime.stime;
  2472. }
  2473. #else
  2474. #ifndef nsecs_to_cputime
  2475. # define nsecs_to_cputime(__nsecs) nsecs_to_jiffies(__nsecs)
  2476. #endif
  2477. void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
  2478. {
  2479. cputime_t rtime, utime = p->utime, total = utime + p->stime;
  2480. /*
  2481. * Use CFS's precise accounting:
  2482. */
  2483. rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
  2484. if (total) {
  2485. u64 temp = (__force u64) rtime;
  2486. temp *= (__force u64) utime;
  2487. do_div(temp, (__force u32) total);
  2488. utime = (__force cputime_t) temp;
  2489. } else
  2490. utime = rtime;
  2491. /*
  2492. * Compare with previous values, to keep monotonicity:
  2493. */
  2494. p->prev_utime = max(p->prev_utime, utime);
  2495. p->prev_stime = max(p->prev_stime, rtime - p->prev_utime);
  2496. *ut = p->prev_utime;
  2497. *st = p->prev_stime;
  2498. }
  2499. /*
  2500. * Must be called with siglock held.
  2501. */
  2502. void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
  2503. {
  2504. struct signal_struct *sig = p->signal;
  2505. struct task_cputime cputime;
  2506. cputime_t rtime, utime, total;
  2507. thread_group_cputime(p, &cputime);
  2508. total = cputime.utime + cputime.stime;
  2509. rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
  2510. if (total) {
  2511. u64 temp = (__force u64) rtime;
  2512. temp *= (__force u64) cputime.utime;
  2513. do_div(temp, (__force u32) total);
  2514. utime = (__force cputime_t) temp;
  2515. } else
  2516. utime = rtime;
  2517. sig->prev_utime = max(sig->prev_utime, utime);
  2518. sig->prev_stime = max(sig->prev_stime, rtime - sig->prev_utime);
  2519. *ut = sig->prev_utime;
  2520. *st = sig->prev_stime;
  2521. }
  2522. #endif
  2523. /*
  2524. * This function gets called by the timer code, with HZ frequency.
  2525. * We call it with interrupts disabled.
  2526. */
  2527. void scheduler_tick(void)
  2528. {
  2529. int cpu = smp_processor_id();
  2530. struct rq *rq = cpu_rq(cpu);
  2531. struct task_struct *curr = rq->curr;
  2532. sched_clock_tick();
  2533. raw_spin_lock(&rq->lock);
  2534. update_rq_clock(rq);
  2535. update_cpu_load_active(rq);
  2536. curr->sched_class->task_tick(rq, curr, 0);
  2537. raw_spin_unlock(&rq->lock);
  2538. perf_event_task_tick();
  2539. #ifdef CONFIG_SMP
  2540. rq->idle_balance = idle_cpu(cpu);
  2541. trigger_load_balance(rq, cpu);
  2542. #endif
  2543. }
  2544. notrace unsigned long get_parent_ip(unsigned long addr)
  2545. {
  2546. if (in_lock_functions(addr)) {
  2547. addr = CALLER_ADDR2;
  2548. if (in_lock_functions(addr))
  2549. addr = CALLER_ADDR3;
  2550. }
  2551. return addr;
  2552. }
  2553. #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
  2554. defined(CONFIG_PREEMPT_TRACER))
  2555. void __kprobes add_preempt_count(int val)
  2556. {
  2557. #ifdef CONFIG_DEBUG_PREEMPT
  2558. /*
  2559. * Underflow?
  2560. */
  2561. if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
  2562. return;
  2563. #endif
  2564. preempt_count() += val;
  2565. #ifdef CONFIG_DEBUG_PREEMPT
  2566. /*
  2567. * Spinlock count overflowing soon?
  2568. */
  2569. DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
  2570. PREEMPT_MASK - 10);
  2571. #endif
  2572. if (preempt_count() == val)
  2573. trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
  2574. }
  2575. EXPORT_SYMBOL(add_preempt_count);
  2576. void __kprobes sub_preempt_count(int val)
  2577. {
  2578. #ifdef CONFIG_DEBUG_PREEMPT
  2579. /*
  2580. * Underflow?
  2581. */
  2582. if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
  2583. return;
  2584. /*
  2585. * Is the spinlock portion underflowing?
  2586. */
  2587. if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
  2588. !(preempt_count() & PREEMPT_MASK)))
  2589. return;
  2590. #endif
  2591. if (preempt_count() == val)
  2592. trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
  2593. preempt_count() -= val;
  2594. }
  2595. EXPORT_SYMBOL(sub_preempt_count);
  2596. #endif
  2597. /*
  2598. * Print scheduling while atomic bug:
  2599. */
  2600. static noinline void __schedule_bug(struct task_struct *prev)
  2601. {
  2602. struct pt_regs *regs = get_irq_regs();
  2603. if (oops_in_progress)
  2604. return;
  2605. printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
  2606. prev->comm, prev->pid, preempt_count());
  2607. debug_show_held_locks(prev);
  2608. print_modules();
  2609. if (irqs_disabled())
  2610. print_irqtrace_events(prev);
  2611. if (regs)
  2612. show_regs(regs);
  2613. else
  2614. dump_stack();
  2615. }
  2616. /*
  2617. * Various schedule()-time debugging checks and statistics:
  2618. */
  2619. static inline void schedule_debug(struct task_struct *prev)
  2620. {
  2621. /*
  2622. * Test if we are atomic. Since do_exit() needs to call into
  2623. * schedule() atomically, we ignore that path for now.
  2624. * Otherwise, whine if we are scheduling when we should not be.
  2625. */
  2626. if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
  2627. __schedule_bug(prev);
  2628. rcu_sleep_check();
  2629. profile_hit(SCHED_PROFILING, __builtin_return_address(0));
  2630. schedstat_inc(this_rq(), sched_count);
  2631. }
  2632. static void put_prev_task(struct rq *rq, struct task_struct *prev)
  2633. {
  2634. if (prev->on_rq || rq->skip_clock_update < 0)
  2635. update_rq_clock(rq);
  2636. prev->sched_class->put_prev_task(rq, prev);
  2637. }
  2638. /*
  2639. * Pick up the highest-prio task:
  2640. */
  2641. static inline struct task_struct *
  2642. pick_next_task(struct rq *rq)
  2643. {
  2644. const struct sched_class *class;
  2645. struct task_struct *p;
  2646. /*
  2647. * Optimization: we know that if all tasks are in
  2648. * the fair class we can call that function directly:
  2649. */
  2650. if (likely(rq->nr_running == rq->cfs.h_nr_running)) {
  2651. p = fair_sched_class.pick_next_task(rq);
  2652. if (likely(p))
  2653. return p;
  2654. }
  2655. for_each_class(class) {
  2656. p = class->pick_next_task(rq);
  2657. if (p)
  2658. return p;
  2659. }
  2660. BUG(); /* the idle class will always have a runnable task */
  2661. }
  2662. /*
  2663. * __schedule() is the main scheduler function.
  2664. */
  2665. static void __sched __schedule(void)
  2666. {
  2667. struct task_struct *prev, *next;
  2668. unsigned long *switch_count;
  2669. struct rq *rq;
  2670. int cpu;
  2671. need_resched:
  2672. preempt_disable();
  2673. cpu = smp_processor_id();
  2674. rq = cpu_rq(cpu);
  2675. rcu_note_context_switch(cpu);
  2676. prev = rq->curr;
  2677. schedule_debug(prev);
  2678. if (sched_feat(HRTICK))
  2679. hrtick_clear(rq);
  2680. raw_spin_lock_irq(&rq->lock);
  2681. switch_count = &prev->nivcsw;
  2682. if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
  2683. if (unlikely(signal_pending_state(prev->state, prev))) {
  2684. prev->state = TASK_RUNNING;
  2685. } else {
  2686. deactivate_task(rq, prev, DEQUEUE_SLEEP);
  2687. prev->on_rq = 0;
  2688. /*
  2689. * If a worker went to sleep, notify and ask workqueue
  2690. * whether it wants to wake up a task to maintain
  2691. * concurrency.
  2692. */
  2693. if (prev->flags & PF_WQ_WORKER) {
  2694. struct task_struct *to_wakeup;
  2695. to_wakeup = wq_worker_sleeping(prev, cpu);
  2696. if (to_wakeup)
  2697. try_to_wake_up_local(to_wakeup);
  2698. }
  2699. }
  2700. switch_count = &prev->nvcsw;
  2701. }
  2702. pre_schedule(rq, prev);
  2703. if (unlikely(!rq->nr_running))
  2704. idle_balance(cpu, rq);
  2705. put_prev_task(rq, prev);
  2706. next = pick_next_task(rq);
  2707. clear_tsk_need_resched(prev);
  2708. rq->skip_clock_update = 0;
  2709. if (likely(prev != next)) {
  2710. rq->nr_switches++;
  2711. rq->curr = next;
  2712. ++*switch_count;
  2713. context_switch(rq, prev, next); /* unlocks the rq */
  2714. /*
  2715. * The context switch have flipped the stack from under us
  2716. * and restored the local variables which were saved when
  2717. * this task called schedule() in the past. prev == current
  2718. * is still correct, but it can be moved to another cpu/rq.
  2719. */
  2720. cpu = smp_processor_id();
  2721. rq = cpu_rq(cpu);
  2722. } else
  2723. raw_spin_unlock_irq(&rq->lock);
  2724. post_schedule(rq);
  2725. sched_preempt_enable_no_resched();
  2726. if (need_resched())
  2727. goto need_resched;
  2728. }
  2729. static inline void sched_submit_work(struct task_struct *tsk)
  2730. {
  2731. if (!tsk->state || tsk_is_pi_blocked(tsk))
  2732. return;
  2733. /*
  2734. * If we are going to sleep and we have plugged IO queued,
  2735. * make sure to submit it to avoid deadlocks.
  2736. */
  2737. if (blk_needs_flush_plug(tsk))
  2738. blk_schedule_flush_plug(tsk);
  2739. }
  2740. asmlinkage void __sched schedule(void)
  2741. {
  2742. struct task_struct *tsk = current;
  2743. sched_submit_work(tsk);
  2744. __schedule();
  2745. }
  2746. EXPORT_SYMBOL(schedule);
  2747. /**
  2748. * schedule_preempt_disabled - called with preemption disabled
  2749. *
  2750. * Returns with preemption disabled. Note: preempt_count must be 1
  2751. */
  2752. void __sched schedule_preempt_disabled(void)
  2753. {
  2754. sched_preempt_enable_no_resched();
  2755. schedule();
  2756. preempt_disable();
  2757. }
  2758. #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
  2759. static inline bool owner_running(struct mutex *lock, struct task_struct *owner)
  2760. {
  2761. if (lock->owner != owner)
  2762. return false;
  2763. /*
  2764. * Ensure we emit the owner->on_cpu, dereference _after_ checking
  2765. * lock->owner still matches owner, if that fails, owner might
  2766. * point to free()d memory, if it still matches, the rcu_read_lock()
  2767. * ensures the memory stays valid.
  2768. */
  2769. barrier();
  2770. return owner->on_cpu;
  2771. }
  2772. /*
  2773. * Look out! "owner" is an entirely speculative pointer
  2774. * access and not reliable.
  2775. */
  2776. int mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner)
  2777. {
  2778. if (!sched_feat(OWNER_SPIN))
  2779. return 0;
  2780. rcu_read_lock();
  2781. while (owner_running(lock, owner)) {
  2782. if (need_resched())
  2783. break;
  2784. arch_mutex_cpu_relax();
  2785. }
  2786. rcu_read_unlock();
  2787. /*
  2788. * We break out the loop above on need_resched() and when the
  2789. * owner changed, which is a sign for heavy contention. Return
  2790. * success only when lock->owner is NULL.
  2791. */
  2792. return lock->owner == NULL;
  2793. }
  2794. #endif
  2795. #ifdef CONFIG_PREEMPT
  2796. /*
  2797. * this is the entry point to schedule() from in-kernel preemption
  2798. * off of preempt_enable. Kernel preemptions off return from interrupt
  2799. * occur there and call schedule directly.
  2800. */
  2801. asmlinkage void __sched notrace preempt_schedule(void)
  2802. {
  2803. struct thread_info *ti = current_thread_info();
  2804. /*
  2805. * If there is a non-zero preempt_count or interrupts are disabled,
  2806. * we do not want to preempt the current task. Just return..
  2807. */
  2808. if (likely(ti->preempt_count || irqs_disabled()))
  2809. return;
  2810. do {
  2811. add_preempt_count_notrace(PREEMPT_ACTIVE);
  2812. __schedule();
  2813. sub_preempt_count_notrace(PREEMPT_ACTIVE);
  2814. /*
  2815. * Check again in case we missed a preemption opportunity
  2816. * between schedule and now.
  2817. */
  2818. barrier();
  2819. } while (need_resched());
  2820. }
  2821. EXPORT_SYMBOL(preempt_schedule);
  2822. /*
  2823. * this is the entry point to schedule() from kernel preemption
  2824. * off of irq context.
  2825. * Note, that this is called and return with irqs disabled. This will
  2826. * protect us against recursive calling from irq.
  2827. */
  2828. asmlinkage void __sched preempt_schedule_irq(void)
  2829. {
  2830. struct thread_info *ti = current_thread_info();
  2831. /* Catch callers which need to be fixed */
  2832. BUG_ON(ti->preempt_count || !irqs_disabled());
  2833. do {
  2834. add_preempt_count(PREEMPT_ACTIVE);
  2835. local_irq_enable();
  2836. __schedule();
  2837. local_irq_disable();
  2838. sub_preempt_count(PREEMPT_ACTIVE);
  2839. /*
  2840. * Check again in case we missed a preemption opportunity
  2841. * between schedule and now.
  2842. */
  2843. barrier();
  2844. } while (need_resched());
  2845. }
  2846. #endif /* CONFIG_PREEMPT */
  2847. int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
  2848. void *key)
  2849. {
  2850. return try_to_wake_up(curr->private, mode, wake_flags);
  2851. }
  2852. EXPORT_SYMBOL(default_wake_function);
  2853. /*
  2854. * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
  2855. * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
  2856. * number) then we wake all the non-exclusive tasks and one exclusive task.
  2857. *
  2858. * There are circumstances in which we can try to wake a task which has already
  2859. * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
  2860. * zero in this (rare) case, and we handle it by continuing to scan the queue.
  2861. */
  2862. static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
  2863. int nr_exclusive, int wake_flags, void *key)
  2864. {
  2865. wait_queue_t *curr, *next;
  2866. list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
  2867. unsigned flags = curr->flags;
  2868. if (curr->func(curr, mode, wake_flags, key) &&
  2869. (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
  2870. break;
  2871. }
  2872. }
  2873. /**
  2874. * __wake_up - wake up threads blocked on a waitqueue.
  2875. * @q: the waitqueue
  2876. * @mode: which threads
  2877. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  2878. * @key: is directly passed to the wakeup function
  2879. *
  2880. * It may be assumed that this function implies a write memory barrier before
  2881. * changing the task state if and only if any tasks are woken up.
  2882. */
  2883. void __wake_up(wait_queue_head_t *q, unsigned int mode,
  2884. int nr_exclusive, void *key)
  2885. {
  2886. unsigned long flags;
  2887. spin_lock_irqsave(&q->lock, flags);
  2888. __wake_up_common(q, mode, nr_exclusive, 0, key);
  2889. spin_unlock_irqrestore(&q->lock, flags);
  2890. }
  2891. EXPORT_SYMBOL(__wake_up);
  2892. /*
  2893. * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
  2894. */
  2895. void __wake_up_locked(wait_queue_head_t *q, unsigned int mode, int nr)
  2896. {
  2897. __wake_up_common(q, mode, nr, 0, NULL);
  2898. }
  2899. EXPORT_SYMBOL_GPL(__wake_up_locked);
  2900. void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
  2901. {
  2902. __wake_up_common(q, mode, 1, 0, key);
  2903. }
  2904. EXPORT_SYMBOL_GPL(__wake_up_locked_key);
  2905. /**
  2906. * __wake_up_sync_key - wake up threads blocked on a waitqueue.
  2907. * @q: the waitqueue
  2908. * @mode: which threads
  2909. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  2910. * @key: opaque value to be passed to wakeup targets
  2911. *
  2912. * The sync wakeup differs that the waker knows that it will schedule
  2913. * away soon, so while the target thread will be woken up, it will not
  2914. * be migrated to another CPU - ie. the two threads are 'synchronized'
  2915. * with each other. This can prevent needless bouncing between CPUs.
  2916. *
  2917. * On UP it can prevent extra preemption.
  2918. *
  2919. * It may be assumed that this function implies a write memory barrier before
  2920. * changing the task state if and only if any tasks are woken up.
  2921. */
  2922. void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
  2923. int nr_exclusive, void *key)
  2924. {
  2925. unsigned long flags;
  2926. int wake_flags = WF_SYNC;
  2927. if (unlikely(!q))
  2928. return;
  2929. if (unlikely(!nr_exclusive))
  2930. wake_flags = 0;
  2931. spin_lock_irqsave(&q->lock, flags);
  2932. __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
  2933. spin_unlock_irqrestore(&q->lock, flags);
  2934. }
  2935. EXPORT_SYMBOL_GPL(__wake_up_sync_key);
  2936. /*
  2937. * __wake_up_sync - see __wake_up_sync_key()
  2938. */
  2939. void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
  2940. {
  2941. __wake_up_sync_key(q, mode, nr_exclusive, NULL);
  2942. }
  2943. EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
  2944. /**
  2945. * complete: - signals a single thread waiting on this completion
  2946. * @x: holds the state of this particular completion
  2947. *
  2948. * This will wake up a single thread waiting on this completion. Threads will be
  2949. * awakened in the same order in which they were queued.
  2950. *
  2951. * See also complete_all(), wait_for_completion() and related routines.
  2952. *
  2953. * It may be assumed that this function implies a write memory barrier before
  2954. * changing the task state if and only if any tasks are woken up.
  2955. */
  2956. void complete(struct completion *x)
  2957. {
  2958. unsigned long flags;
  2959. spin_lock_irqsave(&x->wait.lock, flags);
  2960. x->done++;
  2961. __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
  2962. spin_unlock_irqrestore(&x->wait.lock, flags);
  2963. }
  2964. EXPORT_SYMBOL(complete);
  2965. /**
  2966. * complete_all: - signals all threads waiting on this completion
  2967. * @x: holds the state of this particular completion
  2968. *
  2969. * This will wake up all threads waiting on this particular completion event.
  2970. *
  2971. * It may be assumed that this function implies a write memory barrier before
  2972. * changing the task state if and only if any tasks are woken up.
  2973. */
  2974. void complete_all(struct completion *x)
  2975. {
  2976. unsigned long flags;
  2977. spin_lock_irqsave(&x->wait.lock, flags);
  2978. x->done += UINT_MAX/2;
  2979. __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
  2980. spin_unlock_irqrestore(&x->wait.lock, flags);
  2981. }
  2982. EXPORT_SYMBOL(complete_all);
  2983. static inline long __sched
  2984. do_wait_for_common(struct completion *x, long timeout, int state)
  2985. {
  2986. if (!x->done) {
  2987. DECLARE_WAITQUEUE(wait, current);
  2988. __add_wait_queue_tail_exclusive(&x->wait, &wait);
  2989. do {
  2990. if (signal_pending_state(state, current)) {
  2991. timeout = -ERESTARTSYS;
  2992. break;
  2993. }
  2994. __set_current_state(state);
  2995. spin_unlock_irq(&x->wait.lock);
  2996. timeout = schedule_timeout(timeout);
  2997. spin_lock_irq(&x->wait.lock);
  2998. } while (!x->done && timeout);
  2999. __remove_wait_queue(&x->wait, &wait);
  3000. if (!x->done)
  3001. return timeout;
  3002. }
  3003. x->done--;
  3004. return timeout ?: 1;
  3005. }
  3006. static long __sched
  3007. wait_for_common(struct completion *x, long timeout, int state)
  3008. {
  3009. might_sleep();
  3010. spin_lock_irq(&x->wait.lock);
  3011. timeout = do_wait_for_common(x, timeout, state);
  3012. spin_unlock_irq(&x->wait.lock);
  3013. return timeout;
  3014. }
  3015. /**
  3016. * wait_for_completion: - waits for completion of a task
  3017. * @x: holds the state of this particular completion
  3018. *
  3019. * This waits to be signaled for completion of a specific task. It is NOT
  3020. * interruptible and there is no timeout.
  3021. *
  3022. * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
  3023. * and interrupt capability. Also see complete().
  3024. */
  3025. void __sched wait_for_completion(struct completion *x)
  3026. {
  3027. wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
  3028. }
  3029. EXPORT_SYMBOL(wait_for_completion);
  3030. /**
  3031. * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
  3032. * @x: holds the state of this particular completion
  3033. * @timeout: timeout value in jiffies
  3034. *
  3035. * This waits for either a completion of a specific task to be signaled or for a
  3036. * specified timeout to expire. The timeout is in jiffies. It is not
  3037. * interruptible.
  3038. *
  3039. * The return value is 0 if timed out, and positive (at least 1, or number of
  3040. * jiffies left till timeout) if completed.
  3041. */
  3042. unsigned long __sched
  3043. wait_for_completion_timeout(struct completion *x, unsigned long timeout)
  3044. {
  3045. return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
  3046. }
  3047. EXPORT_SYMBOL(wait_for_completion_timeout);
  3048. /**
  3049. * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
  3050. * @x: holds the state of this particular completion
  3051. *
  3052. * This waits for completion of a specific task to be signaled. It is
  3053. * interruptible.
  3054. *
  3055. * The return value is -ERESTARTSYS if interrupted, 0 if completed.
  3056. */
  3057. int __sched wait_for_completion_interruptible(struct completion *x)
  3058. {
  3059. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
  3060. if (t == -ERESTARTSYS)
  3061. return t;
  3062. return 0;
  3063. }
  3064. EXPORT_SYMBOL(wait_for_completion_interruptible);
  3065. /**
  3066. * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
  3067. * @x: holds the state of this particular completion
  3068. * @timeout: timeout value in jiffies
  3069. *
  3070. * This waits for either a completion of a specific task to be signaled or for a
  3071. * specified timeout to expire. It is interruptible. The timeout is in jiffies.
  3072. *
  3073. * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
  3074. * positive (at least 1, or number of jiffies left till timeout) if completed.
  3075. */
  3076. long __sched
  3077. wait_for_completion_interruptible_timeout(struct completion *x,
  3078. unsigned long timeout)
  3079. {
  3080. return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
  3081. }
  3082. EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
  3083. /**
  3084. * wait_for_completion_killable: - waits for completion of a task (killable)
  3085. * @x: holds the state of this particular completion
  3086. *
  3087. * This waits to be signaled for completion of a specific task. It can be
  3088. * interrupted by a kill signal.
  3089. *
  3090. * The return value is -ERESTARTSYS if interrupted, 0 if completed.
  3091. */
  3092. int __sched wait_for_completion_killable(struct completion *x)
  3093. {
  3094. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
  3095. if (t == -ERESTARTSYS)
  3096. return t;
  3097. return 0;
  3098. }
  3099. EXPORT_SYMBOL(wait_for_completion_killable);
  3100. /**
  3101. * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
  3102. * @x: holds the state of this particular completion
  3103. * @timeout: timeout value in jiffies
  3104. *
  3105. * This waits for either a completion of a specific task to be
  3106. * signaled or for a specified timeout to expire. It can be
  3107. * interrupted by a kill signal. The timeout is in jiffies.
  3108. *
  3109. * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
  3110. * positive (at least 1, or number of jiffies left till timeout) if completed.
  3111. */
  3112. long __sched
  3113. wait_for_completion_killable_timeout(struct completion *x,
  3114. unsigned long timeout)
  3115. {
  3116. return wait_for_common(x, timeout, TASK_KILLABLE);
  3117. }
  3118. EXPORT_SYMBOL(wait_for_completion_killable_timeout);
  3119. /**
  3120. * try_wait_for_completion - try to decrement a completion without blocking
  3121. * @x: completion structure
  3122. *
  3123. * Returns: 0 if a decrement cannot be done without blocking
  3124. * 1 if a decrement succeeded.
  3125. *
  3126. * If a completion is being used as a counting completion,
  3127. * attempt to decrement the counter without blocking. This
  3128. * enables us to avoid waiting if the resource the completion
  3129. * is protecting is not available.
  3130. */
  3131. bool try_wait_for_completion(struct completion *x)
  3132. {
  3133. unsigned long flags;
  3134. int ret = 1;
  3135. spin_lock_irqsave(&x->wait.lock, flags);
  3136. if (!x->done)
  3137. ret = 0;
  3138. else
  3139. x->done--;
  3140. spin_unlock_irqrestore(&x->wait.lock, flags);
  3141. return ret;
  3142. }
  3143. EXPORT_SYMBOL(try_wait_for_completion);
  3144. /**
  3145. * completion_done - Test to see if a completion has any waiters
  3146. * @x: completion structure
  3147. *
  3148. * Returns: 0 if there are waiters (wait_for_completion() in progress)
  3149. * 1 if there are no waiters.
  3150. *
  3151. */
  3152. bool completion_done(struct completion *x)
  3153. {
  3154. unsigned long flags;
  3155. int ret = 1;
  3156. spin_lock_irqsave(&x->wait.lock, flags);
  3157. if (!x->done)
  3158. ret = 0;
  3159. spin_unlock_irqrestore(&x->wait.lock, flags);
  3160. return ret;
  3161. }
  3162. EXPORT_SYMBOL(completion_done);
  3163. static long __sched
  3164. sleep_on_common(wait_queue_head_t *q, int state, long timeout)
  3165. {
  3166. unsigned long flags;
  3167. wait_queue_t wait;
  3168. init_waitqueue_entry(&wait, current);
  3169. __set_current_state(state);
  3170. spin_lock_irqsave(&q->lock, flags);
  3171. __add_wait_queue(q, &wait);
  3172. spin_unlock(&q->lock);
  3173. timeout = schedule_timeout(timeout);
  3174. spin_lock_irq(&q->lock);
  3175. __remove_wait_queue(q, &wait);
  3176. spin_unlock_irqrestore(&q->lock, flags);
  3177. return timeout;
  3178. }
  3179. void __sched interruptible_sleep_on(wait_queue_head_t *q)
  3180. {
  3181. sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  3182. }
  3183. EXPORT_SYMBOL(interruptible_sleep_on);
  3184. long __sched
  3185. interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
  3186. {
  3187. return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
  3188. }
  3189. EXPORT_SYMBOL(interruptible_sleep_on_timeout);
  3190. void __sched sleep_on(wait_queue_head_t *q)
  3191. {
  3192. sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  3193. }
  3194. EXPORT_SYMBOL(sleep_on);
  3195. long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
  3196. {
  3197. return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
  3198. }
  3199. EXPORT_SYMBOL(sleep_on_timeout);
  3200. #ifdef CONFIG_RT_MUTEXES
  3201. /*
  3202. * rt_mutex_setprio - set the current priority of a task
  3203. * @p: task
  3204. * @prio: prio value (kernel-internal form)
  3205. *
  3206. * This function changes the 'effective' priority of a task. It does
  3207. * not touch ->normal_prio like __setscheduler().
  3208. *
  3209. * Used by the rt_mutex code to implement priority inheritance logic.
  3210. */
  3211. void rt_mutex_setprio(struct task_struct *p, int prio)
  3212. {
  3213. int oldprio, on_rq, running;
  3214. struct rq *rq;
  3215. const struct sched_class *prev_class;
  3216. BUG_ON(prio < 0 || prio > MAX_PRIO);
  3217. rq = __task_rq_lock(p);
  3218. /*
  3219. * Idle task boosting is a nono in general. There is one
  3220. * exception, when PREEMPT_RT and NOHZ is active:
  3221. *
  3222. * The idle task calls get_next_timer_interrupt() and holds
  3223. * the timer wheel base->lock on the CPU and another CPU wants
  3224. * to access the timer (probably to cancel it). We can safely
  3225. * ignore the boosting request, as the idle CPU runs this code
  3226. * with interrupts disabled and will complete the lock
  3227. * protected section without being interrupted. So there is no
  3228. * real need to boost.
  3229. */
  3230. if (unlikely(p == rq->idle)) {
  3231. WARN_ON(p != rq->curr);
  3232. WARN_ON(p->pi_blocked_on);
  3233. goto out_unlock;
  3234. }
  3235. trace_sched_pi_setprio(p, prio);
  3236. oldprio = p->prio;
  3237. prev_class = p->sched_class;
  3238. on_rq = p->on_rq;
  3239. running = task_current(rq, p);
  3240. if (on_rq)
  3241. dequeue_task(rq, p, 0);
  3242. if (running)
  3243. p->sched_class->put_prev_task(rq, p);
  3244. if (rt_prio(prio))
  3245. p->sched_class = &rt_sched_class;
  3246. else
  3247. p->sched_class = &fair_sched_class;
  3248. p->prio = prio;
  3249. if (running)
  3250. p->sched_class->set_curr_task(rq);
  3251. if (on_rq)
  3252. enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
  3253. check_class_changed(rq, p, prev_class, oldprio);
  3254. out_unlock:
  3255. __task_rq_unlock(rq);
  3256. }
  3257. #endif
  3258. void set_user_nice(struct task_struct *p, long nice)
  3259. {
  3260. int old_prio, delta, on_rq;
  3261. unsigned long flags;
  3262. struct rq *rq;
  3263. if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
  3264. return;
  3265. /*
  3266. * We have to be careful, if called from sys_setpriority(),
  3267. * the task might be in the middle of scheduling on another CPU.
  3268. */
  3269. rq = task_rq_lock(p, &flags);
  3270. /*
  3271. * The RT priorities are set via sched_setscheduler(), but we still
  3272. * allow the 'normal' nice value to be set - but as expected
  3273. * it wont have any effect on scheduling until the task is
  3274. * SCHED_FIFO/SCHED_RR:
  3275. */
  3276. if (task_has_rt_policy(p)) {
  3277. p->static_prio = NICE_TO_PRIO(nice);
  3278. goto out_unlock;
  3279. }
  3280. on_rq = p->on_rq;
  3281. if (on_rq)
  3282. dequeue_task(rq, p, 0);
  3283. p->static_prio = NICE_TO_PRIO(nice);
  3284. set_load_weight(p);
  3285. old_prio = p->prio;
  3286. p->prio = effective_prio(p);
  3287. delta = p->prio - old_prio;
  3288. if (on_rq) {
  3289. enqueue_task(rq, p, 0);
  3290. /*
  3291. * If the task increased its priority or is running and
  3292. * lowered its priority, then reschedule its CPU:
  3293. */
  3294. if (delta < 0 || (delta > 0 && task_running(rq, p)))
  3295. resched_task(rq->curr);
  3296. }
  3297. out_unlock:
  3298. task_rq_unlock(rq, p, &flags);
  3299. }
  3300. EXPORT_SYMBOL(set_user_nice);
  3301. /*
  3302. * can_nice - check if a task can reduce its nice value
  3303. * @p: task
  3304. * @nice: nice value
  3305. */
  3306. int can_nice(const struct task_struct *p, const int nice)
  3307. {
  3308. /* convert nice value [19,-20] to rlimit style value [1,40] */
  3309. int nice_rlim = 20 - nice;
  3310. return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
  3311. capable(CAP_SYS_NICE));
  3312. }
  3313. #ifdef __ARCH_WANT_SYS_NICE
  3314. /*
  3315. * sys_nice - change the priority of the current process.
  3316. * @increment: priority increment
  3317. *
  3318. * sys_setpriority is a more generic, but much slower function that
  3319. * does similar things.
  3320. */
  3321. SYSCALL_DEFINE1(nice, int, increment)
  3322. {
  3323. long nice, retval;
  3324. /*
  3325. * Setpriority might change our priority at the same moment.
  3326. * We don't have to worry. Conceptually one call occurs first
  3327. * and we have a single winner.
  3328. */
  3329. if (increment < -40)
  3330. increment = -40;
  3331. if (increment > 40)
  3332. increment = 40;
  3333. nice = TASK_NICE(current) + increment;
  3334. if (nice < -20)
  3335. nice = -20;
  3336. if (nice > 19)
  3337. nice = 19;
  3338. if (increment < 0 && !can_nice(current, nice))
  3339. return -EPERM;
  3340. retval = security_task_setnice(current, nice);
  3341. if (retval)
  3342. return retval;
  3343. set_user_nice(current, nice);
  3344. return 0;
  3345. }
  3346. #endif
  3347. /**
  3348. * task_prio - return the priority value of a given task.
  3349. * @p: the task in question.
  3350. *
  3351. * This is the priority value as seen by users in /proc.
  3352. * RT tasks are offset by -200. Normal tasks are centered
  3353. * around 0, value goes from -16 to +15.
  3354. */
  3355. int task_prio(const struct task_struct *p)
  3356. {
  3357. return p->prio - MAX_RT_PRIO;
  3358. }
  3359. /**
  3360. * task_nice - return the nice value of a given task.
  3361. * @p: the task in question.
  3362. */
  3363. int task_nice(const struct task_struct *p)
  3364. {
  3365. return TASK_NICE(p);
  3366. }
  3367. EXPORT_SYMBOL(task_nice);
  3368. /**
  3369. * idle_cpu - is a given cpu idle currently?
  3370. * @cpu: the processor in question.
  3371. */
  3372. int idle_cpu(int cpu)
  3373. {
  3374. struct rq *rq = cpu_rq(cpu);
  3375. if (rq->curr != rq->idle)
  3376. return 0;
  3377. if (rq->nr_running)
  3378. return 0;
  3379. #ifdef CONFIG_SMP
  3380. if (!llist_empty(&rq->wake_list))
  3381. return 0;
  3382. #endif
  3383. return 1;
  3384. }
  3385. /**
  3386. * idle_task - return the idle task for a given cpu.
  3387. * @cpu: the processor in question.
  3388. */
  3389. struct task_struct *idle_task(int cpu)
  3390. {
  3391. return cpu_rq(cpu)->idle;
  3392. }
  3393. /**
  3394. * find_process_by_pid - find a process with a matching PID value.
  3395. * @pid: the pid in question.
  3396. */
  3397. static struct task_struct *find_process_by_pid(pid_t pid)
  3398. {
  3399. return pid ? find_task_by_vpid(pid) : current;
  3400. }
  3401. /* Actually do priority change: must hold rq lock. */
  3402. static void
  3403. __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
  3404. {
  3405. p->policy = policy;
  3406. p->rt_priority = prio;
  3407. p->normal_prio = normal_prio(p);
  3408. /* we are holding p->pi_lock already */
  3409. p->prio = rt_mutex_getprio(p);
  3410. if (rt_prio(p->prio))
  3411. p->sched_class = &rt_sched_class;
  3412. else
  3413. p->sched_class = &fair_sched_class;
  3414. set_load_weight(p);
  3415. }
  3416. /*
  3417. * check the target process has a UID that matches the current process's
  3418. */
  3419. static bool check_same_owner(struct task_struct *p)
  3420. {
  3421. const struct cred *cred = current_cred(), *pcred;
  3422. bool match;
  3423. rcu_read_lock();
  3424. pcred = __task_cred(p);
  3425. if (cred->user->user_ns == pcred->user->user_ns)
  3426. match = (cred->euid == pcred->euid ||
  3427. cred->euid == pcred->uid);
  3428. else
  3429. match = false;
  3430. rcu_read_unlock();
  3431. return match;
  3432. }
  3433. static int __sched_setscheduler(struct task_struct *p, int policy,
  3434. const struct sched_param *param, bool user)
  3435. {
  3436. int retval, oldprio, oldpolicy = -1, on_rq, running;
  3437. unsigned long flags;
  3438. const struct sched_class *prev_class;
  3439. struct rq *rq;
  3440. int reset_on_fork;
  3441. /* may grab non-irq protected spin_locks */
  3442. BUG_ON(in_interrupt());
  3443. recheck:
  3444. /* double check policy once rq lock held */
  3445. if (policy < 0) {
  3446. reset_on_fork = p->sched_reset_on_fork;
  3447. policy = oldpolicy = p->policy;
  3448. } else {
  3449. reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
  3450. policy &= ~SCHED_RESET_ON_FORK;
  3451. if (policy != SCHED_FIFO && policy != SCHED_RR &&
  3452. policy != SCHED_NORMAL && policy != SCHED_BATCH &&
  3453. policy != SCHED_IDLE)
  3454. return -EINVAL;
  3455. }
  3456. /*
  3457. * Valid priorities for SCHED_FIFO and SCHED_RR are
  3458. * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
  3459. * SCHED_BATCH and SCHED_IDLE is 0.
  3460. */
  3461. if (param->sched_priority < 0 ||
  3462. (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
  3463. (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
  3464. return -EINVAL;
  3465. if (rt_policy(policy) != (param->sched_priority != 0))
  3466. return -EINVAL;
  3467. /*
  3468. * Allow unprivileged RT tasks to decrease priority:
  3469. */
  3470. if (user && !capable(CAP_SYS_NICE)) {
  3471. if (rt_policy(policy)) {
  3472. unsigned long rlim_rtprio =
  3473. task_rlimit(p, RLIMIT_RTPRIO);
  3474. /* can't set/change the rt policy */
  3475. if (policy != p->policy && !rlim_rtprio)
  3476. return -EPERM;
  3477. /* can't increase priority */
  3478. if (param->sched_priority > p->rt_priority &&
  3479. param->sched_priority > rlim_rtprio)
  3480. return -EPERM;
  3481. }
  3482. /*
  3483. * Treat SCHED_IDLE as nice 20. Only allow a switch to
  3484. * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
  3485. */
  3486. if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
  3487. if (!can_nice(p, TASK_NICE(p)))
  3488. return -EPERM;
  3489. }
  3490. /* can't change other user's priorities */
  3491. if (!check_same_owner(p))
  3492. return -EPERM;
  3493. /* Normal users shall not reset the sched_reset_on_fork flag */
  3494. if (p->sched_reset_on_fork && !reset_on_fork)
  3495. return -EPERM;
  3496. }
  3497. if (user) {
  3498. retval = security_task_setscheduler(p);
  3499. if (retval)
  3500. return retval;
  3501. }
  3502. /*
  3503. * make sure no PI-waiters arrive (or leave) while we are
  3504. * changing the priority of the task:
  3505. *
  3506. * To be able to change p->policy safely, the appropriate
  3507. * runqueue lock must be held.
  3508. */
  3509. rq = task_rq_lock(p, &flags);
  3510. /*
  3511. * Changing the policy of the stop threads its a very bad idea
  3512. */
  3513. if (p == rq->stop) {
  3514. task_rq_unlock(rq, p, &flags);
  3515. return -EINVAL;
  3516. }
  3517. /*
  3518. * If not changing anything there's no need to proceed further:
  3519. */
  3520. if (unlikely(policy == p->policy && (!rt_policy(policy) ||
  3521. param->sched_priority == p->rt_priority))) {
  3522. __task_rq_unlock(rq);
  3523. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  3524. return 0;
  3525. }
  3526. #ifdef CONFIG_RT_GROUP_SCHED
  3527. if (user) {
  3528. /*
  3529. * Do not allow realtime tasks into groups that have no runtime
  3530. * assigned.
  3531. */
  3532. if (rt_bandwidth_enabled() && rt_policy(policy) &&
  3533. task_group(p)->rt_bandwidth.rt_runtime == 0 &&
  3534. !task_group_is_autogroup(task_group(p))) {
  3535. task_rq_unlock(rq, p, &flags);
  3536. return -EPERM;
  3537. }
  3538. }
  3539. #endif
  3540. /* recheck policy now with rq lock held */
  3541. if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
  3542. policy = oldpolicy = -1;
  3543. task_rq_unlock(rq, p, &flags);
  3544. goto recheck;
  3545. }
  3546. on_rq = p->on_rq;
  3547. running = task_current(rq, p);
  3548. if (on_rq)
  3549. dequeue_task(rq, p, 0);
  3550. if (running)
  3551. p->sched_class->put_prev_task(rq, p);
  3552. p->sched_reset_on_fork = reset_on_fork;
  3553. oldprio = p->prio;
  3554. prev_class = p->sched_class;
  3555. __setscheduler(rq, p, policy, param->sched_priority);
  3556. if (running)
  3557. p->sched_class->set_curr_task(rq);
  3558. if (on_rq)
  3559. enqueue_task(rq, p, 0);
  3560. check_class_changed(rq, p, prev_class, oldprio);
  3561. task_rq_unlock(rq, p, &flags);
  3562. rt_mutex_adjust_pi(p);
  3563. return 0;
  3564. }
  3565. /**
  3566. * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
  3567. * @p: the task in question.
  3568. * @policy: new policy.
  3569. * @param: structure containing the new RT priority.
  3570. *
  3571. * NOTE that the task may be already dead.
  3572. */
  3573. int sched_setscheduler(struct task_struct *p, int policy,
  3574. const struct sched_param *param)
  3575. {
  3576. return __sched_setscheduler(p, policy, param, true);
  3577. }
  3578. EXPORT_SYMBOL_GPL(sched_setscheduler);
  3579. /**
  3580. * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
  3581. * @p: the task in question.
  3582. * @policy: new policy.
  3583. * @param: structure containing the new RT priority.
  3584. *
  3585. * Just like sched_setscheduler, only don't bother checking if the
  3586. * current context has permission. For example, this is needed in
  3587. * stop_machine(): we create temporary high priority worker threads,
  3588. * but our caller might not have that capability.
  3589. */
  3590. int sched_setscheduler_nocheck(struct task_struct *p, int policy,
  3591. const struct sched_param *param)
  3592. {
  3593. return __sched_setscheduler(p, policy, param, false);
  3594. }
  3595. static int
  3596. do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
  3597. {
  3598. struct sched_param lparam;
  3599. struct task_struct *p;
  3600. int retval;
  3601. if (!param || pid < 0)
  3602. return -EINVAL;
  3603. if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
  3604. return -EFAULT;
  3605. rcu_read_lock();
  3606. retval = -ESRCH;
  3607. p = find_process_by_pid(pid);
  3608. if (p != NULL)
  3609. retval = sched_setscheduler(p, policy, &lparam);
  3610. rcu_read_unlock();
  3611. return retval;
  3612. }
  3613. /**
  3614. * sys_sched_setscheduler - set/change the scheduler policy and RT priority
  3615. * @pid: the pid in question.
  3616. * @policy: new policy.
  3617. * @param: structure containing the new RT priority.
  3618. */
  3619. SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
  3620. struct sched_param __user *, param)
  3621. {
  3622. /* negative values for policy are not valid */
  3623. if (policy < 0)
  3624. return -EINVAL;
  3625. return do_sched_setscheduler(pid, policy, param);
  3626. }
  3627. /**
  3628. * sys_sched_setparam - set/change the RT priority of a thread
  3629. * @pid: the pid in question.
  3630. * @param: structure containing the new RT priority.
  3631. */
  3632. SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
  3633. {
  3634. return do_sched_setscheduler(pid, -1, param);
  3635. }
  3636. /**
  3637. * sys_sched_getscheduler - get the policy (scheduling class) of a thread
  3638. * @pid: the pid in question.
  3639. */
  3640. SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
  3641. {
  3642. struct task_struct *p;
  3643. int retval;
  3644. if (pid < 0)
  3645. return -EINVAL;
  3646. retval = -ESRCH;
  3647. rcu_read_lock();
  3648. p = find_process_by_pid(pid);
  3649. if (p) {
  3650. retval = security_task_getscheduler(p);
  3651. if (!retval)
  3652. retval = p->policy
  3653. | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
  3654. }
  3655. rcu_read_unlock();
  3656. return retval;
  3657. }
  3658. /**
  3659. * sys_sched_getparam - get the RT priority of a thread
  3660. * @pid: the pid in question.
  3661. * @param: structure containing the RT priority.
  3662. */
  3663. SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
  3664. {
  3665. struct sched_param lp;
  3666. struct task_struct *p;
  3667. int retval;
  3668. if (!param || pid < 0)
  3669. return -EINVAL;
  3670. rcu_read_lock();
  3671. p = find_process_by_pid(pid);
  3672. retval = -ESRCH;
  3673. if (!p)
  3674. goto out_unlock;
  3675. retval = security_task_getscheduler(p);
  3676. if (retval)
  3677. goto out_unlock;
  3678. lp.sched_priority = p->rt_priority;
  3679. rcu_read_unlock();
  3680. /*
  3681. * This one might sleep, we cannot do it with a spinlock held ...
  3682. */
  3683. retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
  3684. return retval;
  3685. out_unlock:
  3686. rcu_read_unlock();
  3687. return retval;
  3688. }
  3689. long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
  3690. {
  3691. cpumask_var_t cpus_allowed, new_mask;
  3692. struct task_struct *p;
  3693. int retval;
  3694. get_online_cpus();
  3695. rcu_read_lock();
  3696. p = find_process_by_pid(pid);
  3697. if (!p) {
  3698. rcu_read_unlock();
  3699. put_online_cpus();
  3700. return -ESRCH;
  3701. }
  3702. /* Prevent p going away */
  3703. get_task_struct(p);
  3704. rcu_read_unlock();
  3705. if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
  3706. retval = -ENOMEM;
  3707. goto out_put_task;
  3708. }
  3709. if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
  3710. retval = -ENOMEM;
  3711. goto out_free_cpus_allowed;
  3712. }
  3713. retval = -EPERM;
  3714. if (!check_same_owner(p) && !ns_capable(task_user_ns(p), CAP_SYS_NICE))
  3715. goto out_unlock;
  3716. retval = security_task_setscheduler(p);
  3717. if (retval)
  3718. goto out_unlock;
  3719. cpuset_cpus_allowed(p, cpus_allowed);
  3720. cpumask_and(new_mask, in_mask, cpus_allowed);
  3721. again:
  3722. retval = set_cpus_allowed_ptr(p, new_mask);
  3723. if (!retval) {
  3724. cpuset_cpus_allowed(p, cpus_allowed);
  3725. if (!cpumask_subset(new_mask, cpus_allowed)) {
  3726. /*
  3727. * We must have raced with a concurrent cpuset
  3728. * update. Just reset the cpus_allowed to the
  3729. * cpuset's cpus_allowed
  3730. */
  3731. cpumask_copy(new_mask, cpus_allowed);
  3732. goto again;
  3733. }
  3734. }
  3735. out_unlock:
  3736. free_cpumask_var(new_mask);
  3737. out_free_cpus_allowed:
  3738. free_cpumask_var(cpus_allowed);
  3739. out_put_task:
  3740. put_task_struct(p);
  3741. put_online_cpus();
  3742. return retval;
  3743. }
  3744. static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
  3745. struct cpumask *new_mask)
  3746. {
  3747. if (len < cpumask_size())
  3748. cpumask_clear(new_mask);
  3749. else if (len > cpumask_size())
  3750. len = cpumask_size();
  3751. return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
  3752. }
  3753. /**
  3754. * sys_sched_setaffinity - set the cpu affinity of a process
  3755. * @pid: pid of the process
  3756. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  3757. * @user_mask_ptr: user-space pointer to the new cpu mask
  3758. */
  3759. SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
  3760. unsigned long __user *, user_mask_ptr)
  3761. {
  3762. cpumask_var_t new_mask;
  3763. int retval;
  3764. if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
  3765. return -ENOMEM;
  3766. retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
  3767. if (retval == 0)
  3768. retval = sched_setaffinity(pid, new_mask);
  3769. free_cpumask_var(new_mask);
  3770. return retval;
  3771. }
  3772. long sched_getaffinity(pid_t pid, struct cpumask *mask)
  3773. {
  3774. struct task_struct *p;
  3775. unsigned long flags;
  3776. int retval;
  3777. get_online_cpus();
  3778. rcu_read_lock();
  3779. retval = -ESRCH;
  3780. p = find_process_by_pid(pid);
  3781. if (!p)
  3782. goto out_unlock;
  3783. retval = security_task_getscheduler(p);
  3784. if (retval)
  3785. goto out_unlock;
  3786. raw_spin_lock_irqsave(&p->pi_lock, flags);
  3787. cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
  3788. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  3789. out_unlock:
  3790. rcu_read_unlock();
  3791. put_online_cpus();
  3792. return retval;
  3793. }
  3794. /**
  3795. * sys_sched_getaffinity - get the cpu affinity of a process
  3796. * @pid: pid of the process
  3797. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  3798. * @user_mask_ptr: user-space pointer to hold the current cpu mask
  3799. */
  3800. SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
  3801. unsigned long __user *, user_mask_ptr)
  3802. {
  3803. int ret;
  3804. cpumask_var_t mask;
  3805. if ((len * BITS_PER_BYTE) < nr_cpu_ids)
  3806. return -EINVAL;
  3807. if (len & (sizeof(unsigned long)-1))
  3808. return -EINVAL;
  3809. if (!alloc_cpumask_var(&mask, GFP_KERNEL))
  3810. return -ENOMEM;
  3811. ret = sched_getaffinity(pid, mask);
  3812. if (ret == 0) {
  3813. size_t retlen = min_t(size_t, len, cpumask_size());
  3814. if (copy_to_user(user_mask_ptr, mask, retlen))
  3815. ret = -EFAULT;
  3816. else
  3817. ret = retlen;
  3818. }
  3819. free_cpumask_var(mask);
  3820. return ret;
  3821. }
  3822. /**
  3823. * sys_sched_yield - yield the current processor to other threads.
  3824. *
  3825. * This function yields the current CPU to other tasks. If there are no
  3826. * other threads running on this CPU then this function will return.
  3827. */
  3828. SYSCALL_DEFINE0(sched_yield)
  3829. {
  3830. struct rq *rq = this_rq_lock();
  3831. schedstat_inc(rq, yld_count);
  3832. current->sched_class->yield_task(rq);
  3833. /*
  3834. * Since we are going to call schedule() anyway, there's
  3835. * no need to preempt or enable interrupts:
  3836. */
  3837. __release(rq->lock);
  3838. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  3839. do_raw_spin_unlock(&rq->lock);
  3840. sched_preempt_enable_no_resched();
  3841. schedule();
  3842. return 0;
  3843. }
  3844. static inline int should_resched(void)
  3845. {
  3846. return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
  3847. }
  3848. static void __cond_resched(void)
  3849. {
  3850. add_preempt_count(PREEMPT_ACTIVE);
  3851. __schedule();
  3852. sub_preempt_count(PREEMPT_ACTIVE);
  3853. }
  3854. int __sched _cond_resched(void)
  3855. {
  3856. if (should_resched()) {
  3857. __cond_resched();
  3858. return 1;
  3859. }
  3860. return 0;
  3861. }
  3862. EXPORT_SYMBOL(_cond_resched);
  3863. /*
  3864. * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
  3865. * call schedule, and on return reacquire the lock.
  3866. *
  3867. * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
  3868. * operations here to prevent schedule() from being called twice (once via
  3869. * spin_unlock(), once by hand).
  3870. */
  3871. int __cond_resched_lock(spinlock_t *lock)
  3872. {
  3873. int resched = should_resched();
  3874. int ret = 0;
  3875. lockdep_assert_held(lock);
  3876. if (spin_needbreak(lock) || resched) {
  3877. spin_unlock(lock);
  3878. if (resched)
  3879. __cond_resched();
  3880. else
  3881. cpu_relax();
  3882. ret = 1;
  3883. spin_lock(lock);
  3884. }
  3885. return ret;
  3886. }
  3887. EXPORT_SYMBOL(__cond_resched_lock);
  3888. int __sched __cond_resched_softirq(void)
  3889. {
  3890. BUG_ON(!in_softirq());
  3891. if (should_resched()) {
  3892. local_bh_enable();
  3893. __cond_resched();
  3894. local_bh_disable();
  3895. return 1;
  3896. }
  3897. return 0;
  3898. }
  3899. EXPORT_SYMBOL(__cond_resched_softirq);
  3900. /**
  3901. * yield - yield the current processor to other threads.
  3902. *
  3903. * Do not ever use this function, there's a 99% chance you're doing it wrong.
  3904. *
  3905. * The scheduler is at all times free to pick the calling task as the most
  3906. * eligible task to run, if removing the yield() call from your code breaks
  3907. * it, its already broken.
  3908. *
  3909. * Typical broken usage is:
  3910. *
  3911. * while (!event)
  3912. * yield();
  3913. *
  3914. * where one assumes that yield() will let 'the other' process run that will
  3915. * make event true. If the current task is a SCHED_FIFO task that will never
  3916. * happen. Never use yield() as a progress guarantee!!
  3917. *
  3918. * If you want to use yield() to wait for something, use wait_event().
  3919. * If you want to use yield() to be 'nice' for others, use cond_resched().
  3920. * If you still want to use yield(), do not!
  3921. */
  3922. void __sched yield(void)
  3923. {
  3924. set_current_state(TASK_RUNNING);
  3925. sys_sched_yield();
  3926. }
  3927. EXPORT_SYMBOL(yield);
  3928. /**
  3929. * yield_to - yield the current processor to another thread in
  3930. * your thread group, or accelerate that thread toward the
  3931. * processor it's on.
  3932. * @p: target task
  3933. * @preempt: whether task preemption is allowed or not
  3934. *
  3935. * It's the caller's job to ensure that the target task struct
  3936. * can't go away on us before we can do any checks.
  3937. *
  3938. * Returns true if we indeed boosted the target task.
  3939. */
  3940. bool __sched yield_to(struct task_struct *p, bool preempt)
  3941. {
  3942. struct task_struct *curr = current;
  3943. struct rq *rq, *p_rq;
  3944. unsigned long flags;
  3945. bool yielded = 0;
  3946. local_irq_save(flags);
  3947. rq = this_rq();
  3948. again:
  3949. p_rq = task_rq(p);
  3950. double_rq_lock(rq, p_rq);
  3951. while (task_rq(p) != p_rq) {
  3952. double_rq_unlock(rq, p_rq);
  3953. goto again;
  3954. }
  3955. if (!curr->sched_class->yield_to_task)
  3956. goto out;
  3957. if (curr->sched_class != p->sched_class)
  3958. goto out;
  3959. if (task_running(p_rq, p) || p->state)
  3960. goto out;
  3961. yielded = curr->sched_class->yield_to_task(rq, p, preempt);
  3962. if (yielded) {
  3963. schedstat_inc(rq, yld_count);
  3964. /*
  3965. * Make p's CPU reschedule; pick_next_entity takes care of
  3966. * fairness.
  3967. */
  3968. if (preempt && rq != p_rq)
  3969. resched_task(p_rq->curr);
  3970. } else {
  3971. /*
  3972. * We might have set it in task_yield_fair(), but are
  3973. * not going to schedule(), so don't want to skip
  3974. * the next update.
  3975. */
  3976. rq->skip_clock_update = 0;
  3977. }
  3978. out:
  3979. double_rq_unlock(rq, p_rq);
  3980. local_irq_restore(flags);
  3981. if (yielded)
  3982. schedule();
  3983. return yielded;
  3984. }
  3985. EXPORT_SYMBOL_GPL(yield_to);
  3986. /*
  3987. * This task is about to go to sleep on IO. Increment rq->nr_iowait so
  3988. * that process accounting knows that this is a task in IO wait state.
  3989. */
  3990. void __sched io_schedule(void)
  3991. {
  3992. struct rq *rq = raw_rq();
  3993. delayacct_blkio_start();
  3994. atomic_inc(&rq->nr_iowait);
  3995. blk_flush_plug(current);
  3996. current->in_iowait = 1;
  3997. schedule();
  3998. current->in_iowait = 0;
  3999. atomic_dec(&rq->nr_iowait);
  4000. delayacct_blkio_end();
  4001. }
  4002. EXPORT_SYMBOL(io_schedule);
  4003. long __sched io_schedule_timeout(long timeout)
  4004. {
  4005. struct rq *rq = raw_rq();
  4006. long ret;
  4007. delayacct_blkio_start();
  4008. atomic_inc(&rq->nr_iowait);
  4009. blk_flush_plug(current);
  4010. current->in_iowait = 1;
  4011. ret = schedule_timeout(timeout);
  4012. current->in_iowait = 0;
  4013. atomic_dec(&rq->nr_iowait);
  4014. delayacct_blkio_end();
  4015. return ret;
  4016. }
  4017. /**
  4018. * sys_sched_get_priority_max - return maximum RT priority.
  4019. * @policy: scheduling class.
  4020. *
  4021. * this syscall returns the maximum rt_priority that can be used
  4022. * by a given scheduling class.
  4023. */
  4024. SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
  4025. {
  4026. int ret = -EINVAL;
  4027. switch (policy) {
  4028. case SCHED_FIFO:
  4029. case SCHED_RR:
  4030. ret = MAX_USER_RT_PRIO-1;
  4031. break;
  4032. case SCHED_NORMAL:
  4033. case SCHED_BATCH:
  4034. case SCHED_IDLE:
  4035. ret = 0;
  4036. break;
  4037. }
  4038. return ret;
  4039. }
  4040. /**
  4041. * sys_sched_get_priority_min - return minimum RT priority.
  4042. * @policy: scheduling class.
  4043. *
  4044. * this syscall returns the minimum rt_priority that can be used
  4045. * by a given scheduling class.
  4046. */
  4047. SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
  4048. {
  4049. int ret = -EINVAL;
  4050. switch (policy) {
  4051. case SCHED_FIFO:
  4052. case SCHED_RR:
  4053. ret = 1;
  4054. break;
  4055. case SCHED_NORMAL:
  4056. case SCHED_BATCH:
  4057. case SCHED_IDLE:
  4058. ret = 0;
  4059. }
  4060. return ret;
  4061. }
  4062. /**
  4063. * sys_sched_rr_get_interval - return the default timeslice of a process.
  4064. * @pid: pid of the process.
  4065. * @interval: userspace pointer to the timeslice value.
  4066. *
  4067. * this syscall writes the default timeslice value of a given process
  4068. * into the user-space timespec buffer. A value of '0' means infinity.
  4069. */
  4070. SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
  4071. struct timespec __user *, interval)
  4072. {
  4073. struct task_struct *p;
  4074. unsigned int time_slice;
  4075. unsigned long flags;
  4076. struct rq *rq;
  4077. int retval;
  4078. struct timespec t;
  4079. if (pid < 0)
  4080. return -EINVAL;
  4081. retval = -ESRCH;
  4082. rcu_read_lock();
  4083. p = find_process_by_pid(pid);
  4084. if (!p)
  4085. goto out_unlock;
  4086. retval = security_task_getscheduler(p);
  4087. if (retval)
  4088. goto out_unlock;
  4089. rq = task_rq_lock(p, &flags);
  4090. time_slice = p->sched_class->get_rr_interval(rq, p);
  4091. task_rq_unlock(rq, p, &flags);
  4092. rcu_read_unlock();
  4093. jiffies_to_timespec(time_slice, &t);
  4094. retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
  4095. return retval;
  4096. out_unlock:
  4097. rcu_read_unlock();
  4098. return retval;
  4099. }
  4100. static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
  4101. void sched_show_task(struct task_struct *p)
  4102. {
  4103. unsigned long free = 0;
  4104. unsigned state;
  4105. state = p->state ? __ffs(p->state) + 1 : 0;
  4106. printk(KERN_INFO "%-15.15s %c", p->comm,
  4107. state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
  4108. #if BITS_PER_LONG == 32
  4109. if (state == TASK_RUNNING)
  4110. printk(KERN_CONT " running ");
  4111. else
  4112. printk(KERN_CONT " %08lx ", thread_saved_pc(p));
  4113. #else
  4114. if (state == TASK_RUNNING)
  4115. printk(KERN_CONT " running task ");
  4116. else
  4117. printk(KERN_CONT " %016lx ", thread_saved_pc(p));
  4118. #endif
  4119. #ifdef CONFIG_DEBUG_STACK_USAGE
  4120. free = stack_not_used(p);
  4121. #endif
  4122. printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
  4123. task_pid_nr(p), task_pid_nr(rcu_dereference(p->real_parent)),
  4124. (unsigned long)task_thread_info(p)->flags);
  4125. show_stack(p, NULL);
  4126. }
  4127. void show_state_filter(unsigned long state_filter)
  4128. {
  4129. struct task_struct *g, *p;
  4130. #if BITS_PER_LONG == 32
  4131. printk(KERN_INFO
  4132. " task PC stack pid father\n");
  4133. #else
  4134. printk(KERN_INFO
  4135. " task PC stack pid father\n");
  4136. #endif
  4137. rcu_read_lock();
  4138. do_each_thread(g, p) {
  4139. /*
  4140. * reset the NMI-timeout, listing all files on a slow
  4141. * console might take a lot of time:
  4142. */
  4143. touch_nmi_watchdog();
  4144. if (!state_filter || (p->state & state_filter))
  4145. sched_show_task(p);
  4146. } while_each_thread(g, p);
  4147. touch_all_softlockup_watchdogs();
  4148. #ifdef CONFIG_SCHED_DEBUG
  4149. sysrq_sched_debug_show();
  4150. #endif
  4151. rcu_read_unlock();
  4152. /*
  4153. * Only show locks if all tasks are dumped:
  4154. */
  4155. if (!state_filter)
  4156. debug_show_all_locks();
  4157. }
  4158. void __cpuinit init_idle_bootup_task(struct task_struct *idle)
  4159. {
  4160. idle->sched_class = &idle_sched_class;
  4161. }
  4162. /**
  4163. * init_idle - set up an idle thread for a given CPU
  4164. * @idle: task in question
  4165. * @cpu: cpu the idle task belongs to
  4166. *
  4167. * NOTE: this function does not set the idle thread's NEED_RESCHED
  4168. * flag, to make booting more robust.
  4169. */
  4170. void __cpuinit init_idle(struct task_struct *idle, int cpu)
  4171. {
  4172. struct rq *rq = cpu_rq(cpu);
  4173. unsigned long flags;
  4174. raw_spin_lock_irqsave(&rq->lock, flags);
  4175. __sched_fork(idle);
  4176. idle->state = TASK_RUNNING;
  4177. idle->se.exec_start = sched_clock();
  4178. do_set_cpus_allowed(idle, cpumask_of(cpu));
  4179. /*
  4180. * We're having a chicken and egg problem, even though we are
  4181. * holding rq->lock, the cpu isn't yet set to this cpu so the
  4182. * lockdep check in task_group() will fail.
  4183. *
  4184. * Similar case to sched_fork(). / Alternatively we could
  4185. * use task_rq_lock() here and obtain the other rq->lock.
  4186. *
  4187. * Silence PROVE_RCU
  4188. */
  4189. rcu_read_lock();
  4190. __set_task_cpu(idle, cpu);
  4191. rcu_read_unlock();
  4192. rq->curr = rq->idle = idle;
  4193. #if defined(CONFIG_SMP)
  4194. idle->on_cpu = 1;
  4195. #endif
  4196. raw_spin_unlock_irqrestore(&rq->lock, flags);
  4197. /* Set the preempt count _outside_ the spinlocks! */
  4198. task_thread_info(idle)->preempt_count = 0;
  4199. /*
  4200. * The idle tasks have their own, simple scheduling class:
  4201. */
  4202. idle->sched_class = &idle_sched_class;
  4203. ftrace_graph_init_idle_task(idle, cpu);
  4204. #if defined(CONFIG_SMP)
  4205. sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
  4206. #endif
  4207. }
  4208. #ifdef CONFIG_SMP
  4209. void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
  4210. {
  4211. if (p->sched_class && p->sched_class->set_cpus_allowed)
  4212. p->sched_class->set_cpus_allowed(p, new_mask);
  4213. cpumask_copy(&p->cpus_allowed, new_mask);
  4214. p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
  4215. }
  4216. /*
  4217. * This is how migration works:
  4218. *
  4219. * 1) we invoke migration_cpu_stop() on the target CPU using
  4220. * stop_one_cpu().
  4221. * 2) stopper starts to run (implicitly forcing the migrated thread
  4222. * off the CPU)
  4223. * 3) it checks whether the migrated task is still in the wrong runqueue.
  4224. * 4) if it's in the wrong runqueue then the migration thread removes
  4225. * it and puts it into the right queue.
  4226. * 5) stopper completes and stop_one_cpu() returns and the migration
  4227. * is done.
  4228. */
  4229. /*
  4230. * Change a given task's CPU affinity. Migrate the thread to a
  4231. * proper CPU and schedule it away if the CPU it's executing on
  4232. * is removed from the allowed bitmask.
  4233. *
  4234. * NOTE: the caller must have a valid reference to the task, the
  4235. * task must not exit() & deallocate itself prematurely. The
  4236. * call is not atomic; no spinlocks may be held.
  4237. */
  4238. int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
  4239. {
  4240. unsigned long flags;
  4241. struct rq *rq;
  4242. unsigned int dest_cpu;
  4243. int ret = 0;
  4244. rq = task_rq_lock(p, &flags);
  4245. if (cpumask_equal(&p->cpus_allowed, new_mask))
  4246. goto out;
  4247. if (!cpumask_intersects(new_mask, cpu_active_mask)) {
  4248. ret = -EINVAL;
  4249. goto out;
  4250. }
  4251. if (unlikely((p->flags & PF_THREAD_BOUND) && p != current)) {
  4252. ret = -EINVAL;
  4253. goto out;
  4254. }
  4255. do_set_cpus_allowed(p, new_mask);
  4256. /* Can the task run on the task's current CPU? If so, we're done */
  4257. if (cpumask_test_cpu(task_cpu(p), new_mask))
  4258. goto out;
  4259. dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
  4260. if (p->on_rq) {
  4261. struct migration_arg arg = { p, dest_cpu };
  4262. /* Need help from migration thread: drop lock and wait. */
  4263. task_rq_unlock(rq, p, &flags);
  4264. stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
  4265. tlb_migrate_finish(p->mm);
  4266. return 0;
  4267. }
  4268. out:
  4269. task_rq_unlock(rq, p, &flags);
  4270. return ret;
  4271. }
  4272. EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
  4273. /*
  4274. * Move (not current) task off this cpu, onto dest cpu. We're doing
  4275. * this because either it can't run here any more (set_cpus_allowed()
  4276. * away from this CPU, or CPU going down), or because we're
  4277. * attempting to rebalance this task on exec (sched_exec).
  4278. *
  4279. * So we race with normal scheduler movements, but that's OK, as long
  4280. * as the task is no longer on this CPU.
  4281. *
  4282. * Returns non-zero if task was successfully migrated.
  4283. */
  4284. static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
  4285. {
  4286. struct rq *rq_dest, *rq_src;
  4287. int ret = 0;
  4288. if (unlikely(!cpu_active(dest_cpu)))
  4289. return ret;
  4290. rq_src = cpu_rq(src_cpu);
  4291. rq_dest = cpu_rq(dest_cpu);
  4292. raw_spin_lock(&p->pi_lock);
  4293. double_rq_lock(rq_src, rq_dest);
  4294. /* Already moved. */
  4295. if (task_cpu(p) != src_cpu)
  4296. goto done;
  4297. /* Affinity changed (again). */
  4298. if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
  4299. goto fail;
  4300. /*
  4301. * If we're not on a rq, the next wake-up will ensure we're
  4302. * placed properly.
  4303. */
  4304. if (p->on_rq) {
  4305. dequeue_task(rq_src, p, 0);
  4306. set_task_cpu(p, dest_cpu);
  4307. enqueue_task(rq_dest, p, 0);
  4308. check_preempt_curr(rq_dest, p, 0);
  4309. }
  4310. done:
  4311. ret = 1;
  4312. fail:
  4313. double_rq_unlock(rq_src, rq_dest);
  4314. raw_spin_unlock(&p->pi_lock);
  4315. return ret;
  4316. }
  4317. /*
  4318. * migration_cpu_stop - this will be executed by a highprio stopper thread
  4319. * and performs thread migration by bumping thread off CPU then
  4320. * 'pushing' onto another runqueue.
  4321. */
  4322. static int migration_cpu_stop(void *data)
  4323. {
  4324. struct migration_arg *arg = data;
  4325. /*
  4326. * The original target cpu might have gone down and we might
  4327. * be on another cpu but it doesn't matter.
  4328. */
  4329. local_irq_disable();
  4330. __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
  4331. local_irq_enable();
  4332. return 0;
  4333. }
  4334. #ifdef CONFIG_HOTPLUG_CPU
  4335. /*
  4336. * Ensures that the idle task is using init_mm right before its cpu goes
  4337. * offline.
  4338. */
  4339. void idle_task_exit(void)
  4340. {
  4341. struct mm_struct *mm = current->active_mm;
  4342. BUG_ON(cpu_online(smp_processor_id()));
  4343. if (mm != &init_mm)
  4344. switch_mm(mm, &init_mm, current);
  4345. mmdrop(mm);
  4346. }
  4347. /*
  4348. * While a dead CPU has no uninterruptible tasks queued at this point,
  4349. * it might still have a nonzero ->nr_uninterruptible counter, because
  4350. * for performance reasons the counter is not stricly tracking tasks to
  4351. * their home CPUs. So we just add the counter to another CPU's counter,
  4352. * to keep the global sum constant after CPU-down:
  4353. */
  4354. static void migrate_nr_uninterruptible(struct rq *rq_src)
  4355. {
  4356. struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
  4357. rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
  4358. rq_src->nr_uninterruptible = 0;
  4359. }
  4360. /*
  4361. * remove the tasks which were accounted by rq from calc_load_tasks.
  4362. */
  4363. static void calc_global_load_remove(struct rq *rq)
  4364. {
  4365. atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
  4366. rq->calc_load_active = 0;
  4367. }
  4368. /*
  4369. * Migrate all tasks from the rq, sleeping tasks will be migrated by
  4370. * try_to_wake_up()->select_task_rq().
  4371. *
  4372. * Called with rq->lock held even though we'er in stop_machine() and
  4373. * there's no concurrency possible, we hold the required locks anyway
  4374. * because of lock validation efforts.
  4375. */
  4376. static void migrate_tasks(unsigned int dead_cpu)
  4377. {
  4378. struct rq *rq = cpu_rq(dead_cpu);
  4379. struct task_struct *next, *stop = rq->stop;
  4380. int dest_cpu;
  4381. /*
  4382. * Fudge the rq selection such that the below task selection loop
  4383. * doesn't get stuck on the currently eligible stop task.
  4384. *
  4385. * We're currently inside stop_machine() and the rq is either stuck
  4386. * in the stop_machine_cpu_stop() loop, or we're executing this code,
  4387. * either way we should never end up calling schedule() until we're
  4388. * done here.
  4389. */
  4390. rq->stop = NULL;
  4391. /* Ensure any throttled groups are reachable by pick_next_task */
  4392. unthrottle_offline_cfs_rqs(rq);
  4393. for ( ; ; ) {
  4394. /*
  4395. * There's this thread running, bail when that's the only
  4396. * remaining thread.
  4397. */
  4398. if (rq->nr_running == 1)
  4399. break;
  4400. next = pick_next_task(rq);
  4401. BUG_ON(!next);
  4402. next->sched_class->put_prev_task(rq, next);
  4403. /* Find suitable destination for @next, with force if needed. */
  4404. dest_cpu = select_fallback_rq(dead_cpu, next);
  4405. raw_spin_unlock(&rq->lock);
  4406. __migrate_task(next, dead_cpu, dest_cpu);
  4407. raw_spin_lock(&rq->lock);
  4408. }
  4409. rq->stop = stop;
  4410. }
  4411. #endif /* CONFIG_HOTPLUG_CPU */
  4412. #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
  4413. static struct ctl_table sd_ctl_dir[] = {
  4414. {
  4415. .procname = "sched_domain",
  4416. .mode = 0555,
  4417. },
  4418. {}
  4419. };
  4420. static struct ctl_table sd_ctl_root[] = {
  4421. {
  4422. .procname = "kernel",
  4423. .mode = 0555,
  4424. .child = sd_ctl_dir,
  4425. },
  4426. {}
  4427. };
  4428. static struct ctl_table *sd_alloc_ctl_entry(int n)
  4429. {
  4430. struct ctl_table *entry =
  4431. kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
  4432. return entry;
  4433. }
  4434. static void sd_free_ctl_entry(struct ctl_table **tablep)
  4435. {
  4436. struct ctl_table *entry;
  4437. /*
  4438. * In the intermediate directories, both the child directory and
  4439. * procname are dynamically allocated and could fail but the mode
  4440. * will always be set. In the lowest directory the names are
  4441. * static strings and all have proc handlers.
  4442. */
  4443. for (entry = *tablep; entry->mode; entry++) {
  4444. if (entry->child)
  4445. sd_free_ctl_entry(&entry->child);
  4446. if (entry->proc_handler == NULL)
  4447. kfree(entry->procname);
  4448. }
  4449. kfree(*tablep);
  4450. *tablep = NULL;
  4451. }
  4452. static void
  4453. set_table_entry(struct ctl_table *entry,
  4454. const char *procname, void *data, int maxlen,
  4455. umode_t mode, proc_handler *proc_handler)
  4456. {
  4457. entry->procname = procname;
  4458. entry->data = data;
  4459. entry->maxlen = maxlen;
  4460. entry->mode = mode;
  4461. entry->proc_handler = proc_handler;
  4462. }
  4463. static struct ctl_table *
  4464. sd_alloc_ctl_domain_table(struct sched_domain *sd)
  4465. {
  4466. struct ctl_table *table = sd_alloc_ctl_entry(13);
  4467. if (table == NULL)
  4468. return NULL;
  4469. set_table_entry(&table[0], "min_interval", &sd->min_interval,
  4470. sizeof(long), 0644, proc_doulongvec_minmax);
  4471. set_table_entry(&table[1], "max_interval", &sd->max_interval,
  4472. sizeof(long), 0644, proc_doulongvec_minmax);
  4473. set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
  4474. sizeof(int), 0644, proc_dointvec_minmax);
  4475. set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
  4476. sizeof(int), 0644, proc_dointvec_minmax);
  4477. set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
  4478. sizeof(int), 0644, proc_dointvec_minmax);
  4479. set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
  4480. sizeof(int), 0644, proc_dointvec_minmax);
  4481. set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
  4482. sizeof(int), 0644, proc_dointvec_minmax);
  4483. set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
  4484. sizeof(int), 0644, proc_dointvec_minmax);
  4485. set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
  4486. sizeof(int), 0644, proc_dointvec_minmax);
  4487. set_table_entry(&table[9], "cache_nice_tries",
  4488. &sd->cache_nice_tries,
  4489. sizeof(int), 0644, proc_dointvec_minmax);
  4490. set_table_entry(&table[10], "flags", &sd->flags,
  4491. sizeof(int), 0644, proc_dointvec_minmax);
  4492. set_table_entry(&table[11], "name", sd->name,
  4493. CORENAME_MAX_SIZE, 0444, proc_dostring);
  4494. /* &table[12] is terminator */
  4495. return table;
  4496. }
  4497. static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
  4498. {
  4499. struct ctl_table *entry, *table;
  4500. struct sched_domain *sd;
  4501. int domain_num = 0, i;
  4502. char buf[32];
  4503. for_each_domain(cpu, sd)
  4504. domain_num++;
  4505. entry = table = sd_alloc_ctl_entry(domain_num + 1);
  4506. if (table == NULL)
  4507. return NULL;
  4508. i = 0;
  4509. for_each_domain(cpu, sd) {
  4510. snprintf(buf, 32, "domain%d", i);
  4511. entry->procname = kstrdup(buf, GFP_KERNEL);
  4512. entry->mode = 0555;
  4513. entry->child = sd_alloc_ctl_domain_table(sd);
  4514. entry++;
  4515. i++;
  4516. }
  4517. return table;
  4518. }
  4519. static struct ctl_table_header *sd_sysctl_header;
  4520. static void register_sched_domain_sysctl(void)
  4521. {
  4522. int i, cpu_num = num_possible_cpus();
  4523. struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
  4524. char buf[32];
  4525. WARN_ON(sd_ctl_dir[0].child);
  4526. sd_ctl_dir[0].child = entry;
  4527. if (entry == NULL)
  4528. return;
  4529. for_each_possible_cpu(i) {
  4530. snprintf(buf, 32, "cpu%d", i);
  4531. entry->procname = kstrdup(buf, GFP_KERNEL);
  4532. entry->mode = 0555;
  4533. entry->child = sd_alloc_ctl_cpu_table(i);
  4534. entry++;
  4535. }
  4536. WARN_ON(sd_sysctl_header);
  4537. sd_sysctl_header = register_sysctl_table(sd_ctl_root);
  4538. }
  4539. /* may be called multiple times per register */
  4540. static void unregister_sched_domain_sysctl(void)
  4541. {
  4542. if (sd_sysctl_header)
  4543. unregister_sysctl_table(sd_sysctl_header);
  4544. sd_sysctl_header = NULL;
  4545. if (sd_ctl_dir[0].child)
  4546. sd_free_ctl_entry(&sd_ctl_dir[0].child);
  4547. }
  4548. #else
  4549. static void register_sched_domain_sysctl(void)
  4550. {
  4551. }
  4552. static void unregister_sched_domain_sysctl(void)
  4553. {
  4554. }
  4555. #endif
  4556. static void set_rq_online(struct rq *rq)
  4557. {
  4558. if (!rq->online) {
  4559. const struct sched_class *class;
  4560. cpumask_set_cpu(rq->cpu, rq->rd->online);
  4561. rq->online = 1;
  4562. for_each_class(class) {
  4563. if (class->rq_online)
  4564. class->rq_online(rq);
  4565. }
  4566. }
  4567. }
  4568. static void set_rq_offline(struct rq *rq)
  4569. {
  4570. if (rq->online) {
  4571. const struct sched_class *class;
  4572. for_each_class(class) {
  4573. if (class->rq_offline)
  4574. class->rq_offline(rq);
  4575. }
  4576. cpumask_clear_cpu(rq->cpu, rq->rd->online);
  4577. rq->online = 0;
  4578. }
  4579. }
  4580. /*
  4581. * migration_call - callback that gets triggered when a CPU is added.
  4582. * Here we can start up the necessary migration thread for the new CPU.
  4583. */
  4584. static int __cpuinit
  4585. migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
  4586. {
  4587. int cpu = (long)hcpu;
  4588. unsigned long flags;
  4589. struct rq *rq = cpu_rq(cpu);
  4590. switch (action & ~CPU_TASKS_FROZEN) {
  4591. case CPU_UP_PREPARE:
  4592. rq->calc_load_update = calc_load_update;
  4593. break;
  4594. case CPU_ONLINE:
  4595. /* Update our root-domain */
  4596. raw_spin_lock_irqsave(&rq->lock, flags);
  4597. if (rq->rd) {
  4598. BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
  4599. set_rq_online(rq);
  4600. }
  4601. raw_spin_unlock_irqrestore(&rq->lock, flags);
  4602. break;
  4603. #ifdef CONFIG_HOTPLUG_CPU
  4604. case CPU_DYING:
  4605. sched_ttwu_pending();
  4606. /* Update our root-domain */
  4607. raw_spin_lock_irqsave(&rq->lock, flags);
  4608. if (rq->rd) {
  4609. BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
  4610. set_rq_offline(rq);
  4611. }
  4612. migrate_tasks(cpu);
  4613. BUG_ON(rq->nr_running != 1); /* the migration thread */
  4614. raw_spin_unlock_irqrestore(&rq->lock, flags);
  4615. migrate_nr_uninterruptible(rq);
  4616. calc_global_load_remove(rq);
  4617. break;
  4618. #endif
  4619. }
  4620. update_max_interval();
  4621. return NOTIFY_OK;
  4622. }
  4623. /*
  4624. * Register at high priority so that task migration (migrate_all_tasks)
  4625. * happens before everything else. This has to be lower priority than
  4626. * the notifier in the perf_event subsystem, though.
  4627. */
  4628. static struct notifier_block __cpuinitdata migration_notifier = {
  4629. .notifier_call = migration_call,
  4630. .priority = CPU_PRI_MIGRATION,
  4631. };
  4632. static int __cpuinit sched_cpu_active(struct notifier_block *nfb,
  4633. unsigned long action, void *hcpu)
  4634. {
  4635. switch (action & ~CPU_TASKS_FROZEN) {
  4636. case CPU_STARTING:
  4637. case CPU_DOWN_FAILED:
  4638. set_cpu_active((long)hcpu, true);
  4639. return NOTIFY_OK;
  4640. default:
  4641. return NOTIFY_DONE;
  4642. }
  4643. }
  4644. static int __cpuinit sched_cpu_inactive(struct notifier_block *nfb,
  4645. unsigned long action, void *hcpu)
  4646. {
  4647. switch (action & ~CPU_TASKS_FROZEN) {
  4648. case CPU_DOWN_PREPARE:
  4649. set_cpu_active((long)hcpu, false);
  4650. return NOTIFY_OK;
  4651. default:
  4652. return NOTIFY_DONE;
  4653. }
  4654. }
  4655. static int __init migration_init(void)
  4656. {
  4657. void *cpu = (void *)(long)smp_processor_id();
  4658. int err;
  4659. /* Initialize migration for the boot CPU */
  4660. err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
  4661. BUG_ON(err == NOTIFY_BAD);
  4662. migration_call(&migration_notifier, CPU_ONLINE, cpu);
  4663. register_cpu_notifier(&migration_notifier);
  4664. /* Register cpu active notifiers */
  4665. cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
  4666. cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
  4667. return 0;
  4668. }
  4669. early_initcall(migration_init);
  4670. #endif
  4671. #ifdef CONFIG_SMP
  4672. static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
  4673. #ifdef CONFIG_SCHED_DEBUG
  4674. static __read_mostly int sched_domain_debug_enabled;
  4675. static int __init sched_domain_debug_setup(char *str)
  4676. {
  4677. sched_domain_debug_enabled = 1;
  4678. return 0;
  4679. }
  4680. early_param("sched_debug", sched_domain_debug_setup);
  4681. static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
  4682. struct cpumask *groupmask)
  4683. {
  4684. struct sched_group *group = sd->groups;
  4685. char str[256];
  4686. cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
  4687. cpumask_clear(groupmask);
  4688. printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
  4689. if (!(sd->flags & SD_LOAD_BALANCE)) {
  4690. printk("does not load-balance\n");
  4691. if (sd->parent)
  4692. printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
  4693. " has parent");
  4694. return -1;
  4695. }
  4696. printk(KERN_CONT "span %s level %s\n", str, sd->name);
  4697. if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
  4698. printk(KERN_ERR "ERROR: domain->span does not contain "
  4699. "CPU%d\n", cpu);
  4700. }
  4701. if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
  4702. printk(KERN_ERR "ERROR: domain->groups does not contain"
  4703. " CPU%d\n", cpu);
  4704. }
  4705. printk(KERN_DEBUG "%*s groups:", level + 1, "");
  4706. do {
  4707. if (!group) {
  4708. printk("\n");
  4709. printk(KERN_ERR "ERROR: group is NULL\n");
  4710. break;
  4711. }
  4712. if (!group->sgp->power) {
  4713. printk(KERN_CONT "\n");
  4714. printk(KERN_ERR "ERROR: domain->cpu_power not "
  4715. "set\n");
  4716. break;
  4717. }
  4718. if (!cpumask_weight(sched_group_cpus(group))) {
  4719. printk(KERN_CONT "\n");
  4720. printk(KERN_ERR "ERROR: empty group\n");
  4721. break;
  4722. }
  4723. if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
  4724. printk(KERN_CONT "\n");
  4725. printk(KERN_ERR "ERROR: repeated CPUs\n");
  4726. break;
  4727. }
  4728. cpumask_or(groupmask, groupmask, sched_group_cpus(group));
  4729. cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
  4730. printk(KERN_CONT " %s", str);
  4731. if (group->sgp->power != SCHED_POWER_SCALE) {
  4732. printk(KERN_CONT " (cpu_power = %d)",
  4733. group->sgp->power);
  4734. }
  4735. group = group->next;
  4736. } while (group != sd->groups);
  4737. printk(KERN_CONT "\n");
  4738. if (!cpumask_equal(sched_domain_span(sd), groupmask))
  4739. printk(KERN_ERR "ERROR: groups don't span domain->span\n");
  4740. if (sd->parent &&
  4741. !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
  4742. printk(KERN_ERR "ERROR: parent span is not a superset "
  4743. "of domain->span\n");
  4744. return 0;
  4745. }
  4746. static void sched_domain_debug(struct sched_domain *sd, int cpu)
  4747. {
  4748. int level = 0;
  4749. if (!sched_domain_debug_enabled)
  4750. return;
  4751. if (!sd) {
  4752. printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
  4753. return;
  4754. }
  4755. printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
  4756. for (;;) {
  4757. if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
  4758. break;
  4759. level++;
  4760. sd = sd->parent;
  4761. if (!sd)
  4762. break;
  4763. }
  4764. }
  4765. #else /* !CONFIG_SCHED_DEBUG */
  4766. # define sched_domain_debug(sd, cpu) do { } while (0)
  4767. #endif /* CONFIG_SCHED_DEBUG */
  4768. static int sd_degenerate(struct sched_domain *sd)
  4769. {
  4770. if (cpumask_weight(sched_domain_span(sd)) == 1)
  4771. return 1;
  4772. /* Following flags need at least 2 groups */
  4773. if (sd->flags & (SD_LOAD_BALANCE |
  4774. SD_BALANCE_NEWIDLE |
  4775. SD_BALANCE_FORK |
  4776. SD_BALANCE_EXEC |
  4777. SD_SHARE_CPUPOWER |
  4778. SD_SHARE_PKG_RESOURCES)) {
  4779. if (sd->groups != sd->groups->next)
  4780. return 0;
  4781. }
  4782. /* Following flags don't use groups */
  4783. if (sd->flags & (SD_WAKE_AFFINE))
  4784. return 0;
  4785. return 1;
  4786. }
  4787. static int
  4788. sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
  4789. {
  4790. unsigned long cflags = sd->flags, pflags = parent->flags;
  4791. if (sd_degenerate(parent))
  4792. return 1;
  4793. if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
  4794. return 0;
  4795. /* Flags needing groups don't count if only 1 group in parent */
  4796. if (parent->groups == parent->groups->next) {
  4797. pflags &= ~(SD_LOAD_BALANCE |
  4798. SD_BALANCE_NEWIDLE |
  4799. SD_BALANCE_FORK |
  4800. SD_BALANCE_EXEC |
  4801. SD_SHARE_CPUPOWER |
  4802. SD_SHARE_PKG_RESOURCES);
  4803. if (nr_node_ids == 1)
  4804. pflags &= ~SD_SERIALIZE;
  4805. }
  4806. if (~cflags & pflags)
  4807. return 0;
  4808. return 1;
  4809. }
  4810. static void free_rootdomain(struct rcu_head *rcu)
  4811. {
  4812. struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
  4813. cpupri_cleanup(&rd->cpupri);
  4814. free_cpumask_var(rd->rto_mask);
  4815. free_cpumask_var(rd->online);
  4816. free_cpumask_var(rd->span);
  4817. kfree(rd);
  4818. }
  4819. static void rq_attach_root(struct rq *rq, struct root_domain *rd)
  4820. {
  4821. struct root_domain *old_rd = NULL;
  4822. unsigned long flags;
  4823. raw_spin_lock_irqsave(&rq->lock, flags);
  4824. if (rq->rd) {
  4825. old_rd = rq->rd;
  4826. if (cpumask_test_cpu(rq->cpu, old_rd->online))
  4827. set_rq_offline(rq);
  4828. cpumask_clear_cpu(rq->cpu, old_rd->span);
  4829. /*
  4830. * If we dont want to free the old_rt yet then
  4831. * set old_rd to NULL to skip the freeing later
  4832. * in this function:
  4833. */
  4834. if (!atomic_dec_and_test(&old_rd->refcount))
  4835. old_rd = NULL;
  4836. }
  4837. atomic_inc(&rd->refcount);
  4838. rq->rd = rd;
  4839. cpumask_set_cpu(rq->cpu, rd->span);
  4840. if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
  4841. set_rq_online(rq);
  4842. raw_spin_unlock_irqrestore(&rq->lock, flags);
  4843. if (old_rd)
  4844. call_rcu_sched(&old_rd->rcu, free_rootdomain);
  4845. }
  4846. static int init_rootdomain(struct root_domain *rd)
  4847. {
  4848. memset(rd, 0, sizeof(*rd));
  4849. if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
  4850. goto out;
  4851. if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
  4852. goto free_span;
  4853. if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
  4854. goto free_online;
  4855. if (cpupri_init(&rd->cpupri) != 0)
  4856. goto free_rto_mask;
  4857. return 0;
  4858. free_rto_mask:
  4859. free_cpumask_var(rd->rto_mask);
  4860. free_online:
  4861. free_cpumask_var(rd->online);
  4862. free_span:
  4863. free_cpumask_var(rd->span);
  4864. out:
  4865. return -ENOMEM;
  4866. }
  4867. /*
  4868. * By default the system creates a single root-domain with all cpus as
  4869. * members (mimicking the global state we have today).
  4870. */
  4871. struct root_domain def_root_domain;
  4872. static void init_defrootdomain(void)
  4873. {
  4874. init_rootdomain(&def_root_domain);
  4875. atomic_set(&def_root_domain.refcount, 1);
  4876. }
  4877. static struct root_domain *alloc_rootdomain(void)
  4878. {
  4879. struct root_domain *rd;
  4880. rd = kmalloc(sizeof(*rd), GFP_KERNEL);
  4881. if (!rd)
  4882. return NULL;
  4883. if (init_rootdomain(rd) != 0) {
  4884. kfree(rd);
  4885. return NULL;
  4886. }
  4887. return rd;
  4888. }
  4889. static void free_sched_groups(struct sched_group *sg, int free_sgp)
  4890. {
  4891. struct sched_group *tmp, *first;
  4892. if (!sg)
  4893. return;
  4894. first = sg;
  4895. do {
  4896. tmp = sg->next;
  4897. if (free_sgp && atomic_dec_and_test(&sg->sgp->ref))
  4898. kfree(sg->sgp);
  4899. kfree(sg);
  4900. sg = tmp;
  4901. } while (sg != first);
  4902. }
  4903. static void free_sched_domain(struct rcu_head *rcu)
  4904. {
  4905. struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
  4906. /*
  4907. * If its an overlapping domain it has private groups, iterate and
  4908. * nuke them all.
  4909. */
  4910. if (sd->flags & SD_OVERLAP) {
  4911. free_sched_groups(sd->groups, 1);
  4912. } else if (atomic_dec_and_test(&sd->groups->ref)) {
  4913. kfree(sd->groups->sgp);
  4914. kfree(sd->groups);
  4915. }
  4916. kfree(sd);
  4917. }
  4918. static void destroy_sched_domain(struct sched_domain *sd, int cpu)
  4919. {
  4920. call_rcu(&sd->rcu, free_sched_domain);
  4921. }
  4922. static void destroy_sched_domains(struct sched_domain *sd, int cpu)
  4923. {
  4924. for (; sd; sd = sd->parent)
  4925. destroy_sched_domain(sd, cpu);
  4926. }
  4927. /*
  4928. * Keep a special pointer to the highest sched_domain that has
  4929. * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
  4930. * allows us to avoid some pointer chasing select_idle_sibling().
  4931. *
  4932. * Also keep a unique ID per domain (we use the first cpu number in
  4933. * the cpumask of the domain), this allows us to quickly tell if
  4934. * two cpus are in the same cache domain, see cpus_share_cache().
  4935. */
  4936. DEFINE_PER_CPU(struct sched_domain *, sd_llc);
  4937. DEFINE_PER_CPU(int, sd_llc_id);
  4938. static void update_top_cache_domain(int cpu)
  4939. {
  4940. struct sched_domain *sd;
  4941. int id = cpu;
  4942. sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
  4943. if (sd)
  4944. id = cpumask_first(sched_domain_span(sd));
  4945. rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
  4946. per_cpu(sd_llc_id, cpu) = id;
  4947. }
  4948. /*
  4949. * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
  4950. * hold the hotplug lock.
  4951. */
  4952. static void
  4953. cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
  4954. {
  4955. struct rq *rq = cpu_rq(cpu);
  4956. struct sched_domain *tmp;
  4957. /* Remove the sched domains which do not contribute to scheduling. */
  4958. for (tmp = sd; tmp; ) {
  4959. struct sched_domain *parent = tmp->parent;
  4960. if (!parent)
  4961. break;
  4962. if (sd_parent_degenerate(tmp, parent)) {
  4963. tmp->parent = parent->parent;
  4964. if (parent->parent)
  4965. parent->parent->child = tmp;
  4966. destroy_sched_domain(parent, cpu);
  4967. } else
  4968. tmp = tmp->parent;
  4969. }
  4970. if (sd && sd_degenerate(sd)) {
  4971. tmp = sd;
  4972. sd = sd->parent;
  4973. destroy_sched_domain(tmp, cpu);
  4974. if (sd)
  4975. sd->child = NULL;
  4976. }
  4977. sched_domain_debug(sd, cpu);
  4978. rq_attach_root(rq, rd);
  4979. tmp = rq->sd;
  4980. rcu_assign_pointer(rq->sd, sd);
  4981. destroy_sched_domains(tmp, cpu);
  4982. update_top_cache_domain(cpu);
  4983. }
  4984. /* cpus with isolated domains */
  4985. static cpumask_var_t cpu_isolated_map;
  4986. /* Setup the mask of cpus configured for isolated domains */
  4987. static int __init isolated_cpu_setup(char *str)
  4988. {
  4989. alloc_bootmem_cpumask_var(&cpu_isolated_map);
  4990. cpulist_parse(str, cpu_isolated_map);
  4991. return 1;
  4992. }
  4993. __setup("isolcpus=", isolated_cpu_setup);
  4994. #ifdef CONFIG_NUMA
  4995. /**
  4996. * find_next_best_node - find the next node to include in a sched_domain
  4997. * @node: node whose sched_domain we're building
  4998. * @used_nodes: nodes already in the sched_domain
  4999. *
  5000. * Find the next node to include in a given scheduling domain. Simply
  5001. * finds the closest node not already in the @used_nodes map.
  5002. *
  5003. * Should use nodemask_t.
  5004. */
  5005. static int find_next_best_node(int node, nodemask_t *used_nodes)
  5006. {
  5007. int i, n, val, min_val, best_node = -1;
  5008. min_val = INT_MAX;
  5009. for (i = 0; i < nr_node_ids; i++) {
  5010. /* Start at @node */
  5011. n = (node + i) % nr_node_ids;
  5012. if (!nr_cpus_node(n))
  5013. continue;
  5014. /* Skip already used nodes */
  5015. if (node_isset(n, *used_nodes))
  5016. continue;
  5017. /* Simple min distance search */
  5018. val = node_distance(node, n);
  5019. if (val < min_val) {
  5020. min_val = val;
  5021. best_node = n;
  5022. }
  5023. }
  5024. if (best_node != -1)
  5025. node_set(best_node, *used_nodes);
  5026. return best_node;
  5027. }
  5028. /**
  5029. * sched_domain_node_span - get a cpumask for a node's sched_domain
  5030. * @node: node whose cpumask we're constructing
  5031. * @span: resulting cpumask
  5032. *
  5033. * Given a node, construct a good cpumask for its sched_domain to span. It
  5034. * should be one that prevents unnecessary balancing, but also spreads tasks
  5035. * out optimally.
  5036. */
  5037. static void sched_domain_node_span(int node, struct cpumask *span)
  5038. {
  5039. nodemask_t used_nodes;
  5040. int i;
  5041. cpumask_clear(span);
  5042. nodes_clear(used_nodes);
  5043. cpumask_or(span, span, cpumask_of_node(node));
  5044. node_set(node, used_nodes);
  5045. for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
  5046. int next_node = find_next_best_node(node, &used_nodes);
  5047. if (next_node < 0)
  5048. break;
  5049. cpumask_or(span, span, cpumask_of_node(next_node));
  5050. }
  5051. }
  5052. static const struct cpumask *cpu_node_mask(int cpu)
  5053. {
  5054. lockdep_assert_held(&sched_domains_mutex);
  5055. sched_domain_node_span(cpu_to_node(cpu), sched_domains_tmpmask);
  5056. return sched_domains_tmpmask;
  5057. }
  5058. static const struct cpumask *cpu_allnodes_mask(int cpu)
  5059. {
  5060. return cpu_possible_mask;
  5061. }
  5062. #endif /* CONFIG_NUMA */
  5063. static const struct cpumask *cpu_cpu_mask(int cpu)
  5064. {
  5065. return cpumask_of_node(cpu_to_node(cpu));
  5066. }
  5067. int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
  5068. struct sd_data {
  5069. struct sched_domain **__percpu sd;
  5070. struct sched_group **__percpu sg;
  5071. struct sched_group_power **__percpu sgp;
  5072. };
  5073. struct s_data {
  5074. struct sched_domain ** __percpu sd;
  5075. struct root_domain *rd;
  5076. };
  5077. enum s_alloc {
  5078. sa_rootdomain,
  5079. sa_sd,
  5080. sa_sd_storage,
  5081. sa_none,
  5082. };
  5083. struct sched_domain_topology_level;
  5084. typedef struct sched_domain *(*sched_domain_init_f)(struct sched_domain_topology_level *tl, int cpu);
  5085. typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);
  5086. #define SDTL_OVERLAP 0x01
  5087. struct sched_domain_topology_level {
  5088. sched_domain_init_f init;
  5089. sched_domain_mask_f mask;
  5090. int flags;
  5091. struct sd_data data;
  5092. };
  5093. static int
  5094. build_overlap_sched_groups(struct sched_domain *sd, int cpu)
  5095. {
  5096. struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
  5097. const struct cpumask *span = sched_domain_span(sd);
  5098. struct cpumask *covered = sched_domains_tmpmask;
  5099. struct sd_data *sdd = sd->private;
  5100. struct sched_domain *child;
  5101. int i;
  5102. cpumask_clear(covered);
  5103. for_each_cpu(i, span) {
  5104. struct cpumask *sg_span;
  5105. if (cpumask_test_cpu(i, covered))
  5106. continue;
  5107. sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
  5108. GFP_KERNEL, cpu_to_node(cpu));
  5109. if (!sg)
  5110. goto fail;
  5111. sg_span = sched_group_cpus(sg);
  5112. child = *per_cpu_ptr(sdd->sd, i);
  5113. if (child->child) {
  5114. child = child->child;
  5115. cpumask_copy(sg_span, sched_domain_span(child));
  5116. } else
  5117. cpumask_set_cpu(i, sg_span);
  5118. cpumask_or(covered, covered, sg_span);
  5119. sg->sgp = *per_cpu_ptr(sdd->sgp, cpumask_first(sg_span));
  5120. atomic_inc(&sg->sgp->ref);
  5121. if (cpumask_test_cpu(cpu, sg_span))
  5122. groups = sg;
  5123. if (!first)
  5124. first = sg;
  5125. if (last)
  5126. last->next = sg;
  5127. last = sg;
  5128. last->next = first;
  5129. }
  5130. sd->groups = groups;
  5131. return 0;
  5132. fail:
  5133. free_sched_groups(first, 0);
  5134. return -ENOMEM;
  5135. }
  5136. static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
  5137. {
  5138. struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
  5139. struct sched_domain *child = sd->child;
  5140. if (child)
  5141. cpu = cpumask_first(sched_domain_span(child));
  5142. if (sg) {
  5143. *sg = *per_cpu_ptr(sdd->sg, cpu);
  5144. (*sg)->sgp = *per_cpu_ptr(sdd->sgp, cpu);
  5145. atomic_set(&(*sg)->sgp->ref, 1); /* for claim_allocations */
  5146. }
  5147. return cpu;
  5148. }
  5149. /*
  5150. * build_sched_groups will build a circular linked list of the groups
  5151. * covered by the given span, and will set each group's ->cpumask correctly,
  5152. * and ->cpu_power to 0.
  5153. *
  5154. * Assumes the sched_domain tree is fully constructed
  5155. */
  5156. static int
  5157. build_sched_groups(struct sched_domain *sd, int cpu)
  5158. {
  5159. struct sched_group *first = NULL, *last = NULL;
  5160. struct sd_data *sdd = sd->private;
  5161. const struct cpumask *span = sched_domain_span(sd);
  5162. struct cpumask *covered;
  5163. int i;
  5164. get_group(cpu, sdd, &sd->groups);
  5165. atomic_inc(&sd->groups->ref);
  5166. if (cpu != cpumask_first(sched_domain_span(sd)))
  5167. return 0;
  5168. lockdep_assert_held(&sched_domains_mutex);
  5169. covered = sched_domains_tmpmask;
  5170. cpumask_clear(covered);
  5171. for_each_cpu(i, span) {
  5172. struct sched_group *sg;
  5173. int group = get_group(i, sdd, &sg);
  5174. int j;
  5175. if (cpumask_test_cpu(i, covered))
  5176. continue;
  5177. cpumask_clear(sched_group_cpus(sg));
  5178. sg->sgp->power = 0;
  5179. for_each_cpu(j, span) {
  5180. if (get_group(j, sdd, NULL) != group)
  5181. continue;
  5182. cpumask_set_cpu(j, covered);
  5183. cpumask_set_cpu(j, sched_group_cpus(sg));
  5184. }
  5185. if (!first)
  5186. first = sg;
  5187. if (last)
  5188. last->next = sg;
  5189. last = sg;
  5190. }
  5191. last->next = first;
  5192. return 0;
  5193. }
  5194. /*
  5195. * Initialize sched groups cpu_power.
  5196. *
  5197. * cpu_power indicates the capacity of sched group, which is used while
  5198. * distributing the load between different sched groups in a sched domain.
  5199. * Typically cpu_power for all the groups in a sched domain will be same unless
  5200. * there are asymmetries in the topology. If there are asymmetries, group
  5201. * having more cpu_power will pickup more load compared to the group having
  5202. * less cpu_power.
  5203. */
  5204. static void init_sched_groups_power(int cpu, struct sched_domain *sd)
  5205. {
  5206. struct sched_group *sg = sd->groups;
  5207. WARN_ON(!sd || !sg);
  5208. do {
  5209. sg->group_weight = cpumask_weight(sched_group_cpus(sg));
  5210. sg = sg->next;
  5211. } while (sg != sd->groups);
  5212. if (cpu != group_first_cpu(sg))
  5213. return;
  5214. update_group_power(sd, cpu);
  5215. atomic_set(&sg->sgp->nr_busy_cpus, sg->group_weight);
  5216. }
  5217. int __weak arch_sd_sibling_asym_packing(void)
  5218. {
  5219. return 0*SD_ASYM_PACKING;
  5220. }
  5221. /*
  5222. * Initializers for schedule domains
  5223. * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
  5224. */
  5225. #ifdef CONFIG_SCHED_DEBUG
  5226. # define SD_INIT_NAME(sd, type) sd->name = #type
  5227. #else
  5228. # define SD_INIT_NAME(sd, type) do { } while (0)
  5229. #endif
  5230. #define SD_INIT_FUNC(type) \
  5231. static noinline struct sched_domain * \
  5232. sd_init_##type(struct sched_domain_topology_level *tl, int cpu) \
  5233. { \
  5234. struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu); \
  5235. *sd = SD_##type##_INIT; \
  5236. SD_INIT_NAME(sd, type); \
  5237. sd->private = &tl->data; \
  5238. return sd; \
  5239. }
  5240. SD_INIT_FUNC(CPU)
  5241. #ifdef CONFIG_NUMA
  5242. SD_INIT_FUNC(ALLNODES)
  5243. SD_INIT_FUNC(NODE)
  5244. #endif
  5245. #ifdef CONFIG_SCHED_SMT
  5246. SD_INIT_FUNC(SIBLING)
  5247. #endif
  5248. #ifdef CONFIG_SCHED_MC
  5249. SD_INIT_FUNC(MC)
  5250. #endif
  5251. #ifdef CONFIG_SCHED_BOOK
  5252. SD_INIT_FUNC(BOOK)
  5253. #endif
  5254. static int default_relax_domain_level = -1;
  5255. int sched_domain_level_max;
  5256. static int __init setup_relax_domain_level(char *str)
  5257. {
  5258. unsigned long val;
  5259. val = simple_strtoul(str, NULL, 0);
  5260. if (val < sched_domain_level_max)
  5261. default_relax_domain_level = val;
  5262. return 1;
  5263. }
  5264. __setup("relax_domain_level=", setup_relax_domain_level);
  5265. static void set_domain_attribute(struct sched_domain *sd,
  5266. struct sched_domain_attr *attr)
  5267. {
  5268. int request;
  5269. if (!attr || attr->relax_domain_level < 0) {
  5270. if (default_relax_domain_level < 0)
  5271. return;
  5272. else
  5273. request = default_relax_domain_level;
  5274. } else
  5275. request = attr->relax_domain_level;
  5276. if (request < sd->level) {
  5277. /* turn off idle balance on this domain */
  5278. sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
  5279. } else {
  5280. /* turn on idle balance on this domain */
  5281. sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
  5282. }
  5283. }
  5284. static void __sdt_free(const struct cpumask *cpu_map);
  5285. static int __sdt_alloc(const struct cpumask *cpu_map);
  5286. static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
  5287. const struct cpumask *cpu_map)
  5288. {
  5289. switch (what) {
  5290. case sa_rootdomain:
  5291. if (!atomic_read(&d->rd->refcount))
  5292. free_rootdomain(&d->rd->rcu); /* fall through */
  5293. case sa_sd:
  5294. free_percpu(d->sd); /* fall through */
  5295. case sa_sd_storage:
  5296. __sdt_free(cpu_map); /* fall through */
  5297. case sa_none:
  5298. break;
  5299. }
  5300. }
  5301. static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
  5302. const struct cpumask *cpu_map)
  5303. {
  5304. memset(d, 0, sizeof(*d));
  5305. if (__sdt_alloc(cpu_map))
  5306. return sa_sd_storage;
  5307. d->sd = alloc_percpu(struct sched_domain *);
  5308. if (!d->sd)
  5309. return sa_sd_storage;
  5310. d->rd = alloc_rootdomain();
  5311. if (!d->rd)
  5312. return sa_sd;
  5313. return sa_rootdomain;
  5314. }
  5315. /*
  5316. * NULL the sd_data elements we've used to build the sched_domain and
  5317. * sched_group structure so that the subsequent __free_domain_allocs()
  5318. * will not free the data we're using.
  5319. */
  5320. static void claim_allocations(int cpu, struct sched_domain *sd)
  5321. {
  5322. struct sd_data *sdd = sd->private;
  5323. WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
  5324. *per_cpu_ptr(sdd->sd, cpu) = NULL;
  5325. if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
  5326. *per_cpu_ptr(sdd->sg, cpu) = NULL;
  5327. if (atomic_read(&(*per_cpu_ptr(sdd->sgp, cpu))->ref))
  5328. *per_cpu_ptr(sdd->sgp, cpu) = NULL;
  5329. }
  5330. #ifdef CONFIG_SCHED_SMT
  5331. static const struct cpumask *cpu_smt_mask(int cpu)
  5332. {
  5333. return topology_thread_cpumask(cpu);
  5334. }
  5335. #endif
  5336. /*
  5337. * Topology list, bottom-up.
  5338. */
  5339. static struct sched_domain_topology_level default_topology[] = {
  5340. #ifdef CONFIG_SCHED_SMT
  5341. { sd_init_SIBLING, cpu_smt_mask, },
  5342. #endif
  5343. #ifdef CONFIG_SCHED_MC
  5344. { sd_init_MC, cpu_coregroup_mask, },
  5345. #endif
  5346. #ifdef CONFIG_SCHED_BOOK
  5347. { sd_init_BOOK, cpu_book_mask, },
  5348. #endif
  5349. { sd_init_CPU, cpu_cpu_mask, },
  5350. #ifdef CONFIG_NUMA
  5351. { sd_init_NODE, cpu_node_mask, SDTL_OVERLAP, },
  5352. { sd_init_ALLNODES, cpu_allnodes_mask, },
  5353. #endif
  5354. { NULL, },
  5355. };
  5356. static struct sched_domain_topology_level *sched_domain_topology = default_topology;
  5357. static int __sdt_alloc(const struct cpumask *cpu_map)
  5358. {
  5359. struct sched_domain_topology_level *tl;
  5360. int j;
  5361. for (tl = sched_domain_topology; tl->init; tl++) {
  5362. struct sd_data *sdd = &tl->data;
  5363. sdd->sd = alloc_percpu(struct sched_domain *);
  5364. if (!sdd->sd)
  5365. return -ENOMEM;
  5366. sdd->sg = alloc_percpu(struct sched_group *);
  5367. if (!sdd->sg)
  5368. return -ENOMEM;
  5369. sdd->sgp = alloc_percpu(struct sched_group_power *);
  5370. if (!sdd->sgp)
  5371. return -ENOMEM;
  5372. for_each_cpu(j, cpu_map) {
  5373. struct sched_domain *sd;
  5374. struct sched_group *sg;
  5375. struct sched_group_power *sgp;
  5376. sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
  5377. GFP_KERNEL, cpu_to_node(j));
  5378. if (!sd)
  5379. return -ENOMEM;
  5380. *per_cpu_ptr(sdd->sd, j) = sd;
  5381. sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
  5382. GFP_KERNEL, cpu_to_node(j));
  5383. if (!sg)
  5384. return -ENOMEM;
  5385. *per_cpu_ptr(sdd->sg, j) = sg;
  5386. sgp = kzalloc_node(sizeof(struct sched_group_power),
  5387. GFP_KERNEL, cpu_to_node(j));
  5388. if (!sgp)
  5389. return -ENOMEM;
  5390. *per_cpu_ptr(sdd->sgp, j) = sgp;
  5391. }
  5392. }
  5393. return 0;
  5394. }
  5395. static void __sdt_free(const struct cpumask *cpu_map)
  5396. {
  5397. struct sched_domain_topology_level *tl;
  5398. int j;
  5399. for (tl = sched_domain_topology; tl->init; tl++) {
  5400. struct sd_data *sdd = &tl->data;
  5401. for_each_cpu(j, cpu_map) {
  5402. struct sched_domain *sd = *per_cpu_ptr(sdd->sd, j);
  5403. if (sd && (sd->flags & SD_OVERLAP))
  5404. free_sched_groups(sd->groups, 0);
  5405. kfree(*per_cpu_ptr(sdd->sd, j));
  5406. kfree(*per_cpu_ptr(sdd->sg, j));
  5407. kfree(*per_cpu_ptr(sdd->sgp, j));
  5408. }
  5409. free_percpu(sdd->sd);
  5410. free_percpu(sdd->sg);
  5411. free_percpu(sdd->sgp);
  5412. }
  5413. }
  5414. struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
  5415. struct s_data *d, const struct cpumask *cpu_map,
  5416. struct sched_domain_attr *attr, struct sched_domain *child,
  5417. int cpu)
  5418. {
  5419. struct sched_domain *sd = tl->init(tl, cpu);
  5420. if (!sd)
  5421. return child;
  5422. set_domain_attribute(sd, attr);
  5423. cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
  5424. if (child) {
  5425. sd->level = child->level + 1;
  5426. sched_domain_level_max = max(sched_domain_level_max, sd->level);
  5427. child->parent = sd;
  5428. }
  5429. sd->child = child;
  5430. return sd;
  5431. }
  5432. /*
  5433. * Build sched domains for a given set of cpus and attach the sched domains
  5434. * to the individual cpus
  5435. */
  5436. static int build_sched_domains(const struct cpumask *cpu_map,
  5437. struct sched_domain_attr *attr)
  5438. {
  5439. enum s_alloc alloc_state = sa_none;
  5440. struct sched_domain *sd;
  5441. struct s_data d;
  5442. int i, ret = -ENOMEM;
  5443. alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
  5444. if (alloc_state != sa_rootdomain)
  5445. goto error;
  5446. /* Set up domains for cpus specified by the cpu_map. */
  5447. for_each_cpu(i, cpu_map) {
  5448. struct sched_domain_topology_level *tl;
  5449. sd = NULL;
  5450. for (tl = sched_domain_topology; tl->init; tl++) {
  5451. sd = build_sched_domain(tl, &d, cpu_map, attr, sd, i);
  5452. if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
  5453. sd->flags |= SD_OVERLAP;
  5454. if (cpumask_equal(cpu_map, sched_domain_span(sd)))
  5455. break;
  5456. }
  5457. while (sd->child)
  5458. sd = sd->child;
  5459. *per_cpu_ptr(d.sd, i) = sd;
  5460. }
  5461. /* Build the groups for the domains */
  5462. for_each_cpu(i, cpu_map) {
  5463. for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
  5464. sd->span_weight = cpumask_weight(sched_domain_span(sd));
  5465. if (sd->flags & SD_OVERLAP) {
  5466. if (build_overlap_sched_groups(sd, i))
  5467. goto error;
  5468. } else {
  5469. if (build_sched_groups(sd, i))
  5470. goto error;
  5471. }
  5472. }
  5473. }
  5474. /* Calculate CPU power for physical packages and nodes */
  5475. for (i = nr_cpumask_bits-1; i >= 0; i--) {
  5476. if (!cpumask_test_cpu(i, cpu_map))
  5477. continue;
  5478. for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
  5479. claim_allocations(i, sd);
  5480. init_sched_groups_power(i, sd);
  5481. }
  5482. }
  5483. /* Attach the domains */
  5484. rcu_read_lock();
  5485. for_each_cpu(i, cpu_map) {
  5486. sd = *per_cpu_ptr(d.sd, i);
  5487. cpu_attach_domain(sd, d.rd, i);
  5488. }
  5489. rcu_read_unlock();
  5490. ret = 0;
  5491. error:
  5492. __free_domain_allocs(&d, alloc_state, cpu_map);
  5493. return ret;
  5494. }
  5495. static cpumask_var_t *doms_cur; /* current sched domains */
  5496. static int ndoms_cur; /* number of sched domains in 'doms_cur' */
  5497. static struct sched_domain_attr *dattr_cur;
  5498. /* attribues of custom domains in 'doms_cur' */
  5499. /*
  5500. * Special case: If a kmalloc of a doms_cur partition (array of
  5501. * cpumask) fails, then fallback to a single sched domain,
  5502. * as determined by the single cpumask fallback_doms.
  5503. */
  5504. static cpumask_var_t fallback_doms;
  5505. /*
  5506. * arch_update_cpu_topology lets virtualized architectures update the
  5507. * cpu core maps. It is supposed to return 1 if the topology changed
  5508. * or 0 if it stayed the same.
  5509. */
  5510. int __attribute__((weak)) arch_update_cpu_topology(void)
  5511. {
  5512. return 0;
  5513. }
  5514. cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
  5515. {
  5516. int i;
  5517. cpumask_var_t *doms;
  5518. doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
  5519. if (!doms)
  5520. return NULL;
  5521. for (i = 0; i < ndoms; i++) {
  5522. if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
  5523. free_sched_domains(doms, i);
  5524. return NULL;
  5525. }
  5526. }
  5527. return doms;
  5528. }
  5529. void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
  5530. {
  5531. unsigned int i;
  5532. for (i = 0; i < ndoms; i++)
  5533. free_cpumask_var(doms[i]);
  5534. kfree(doms);
  5535. }
  5536. /*
  5537. * Set up scheduler domains and groups. Callers must hold the hotplug lock.
  5538. * For now this just excludes isolated cpus, but could be used to
  5539. * exclude other special cases in the future.
  5540. */
  5541. static int init_sched_domains(const struct cpumask *cpu_map)
  5542. {
  5543. int err;
  5544. arch_update_cpu_topology();
  5545. ndoms_cur = 1;
  5546. doms_cur = alloc_sched_domains(ndoms_cur);
  5547. if (!doms_cur)
  5548. doms_cur = &fallback_doms;
  5549. cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
  5550. dattr_cur = NULL;
  5551. err = build_sched_domains(doms_cur[0], NULL);
  5552. register_sched_domain_sysctl();
  5553. return err;
  5554. }
  5555. /*
  5556. * Detach sched domains from a group of cpus specified in cpu_map
  5557. * These cpus will now be attached to the NULL domain
  5558. */
  5559. static void detach_destroy_domains(const struct cpumask *cpu_map)
  5560. {
  5561. int i;
  5562. rcu_read_lock();
  5563. for_each_cpu(i, cpu_map)
  5564. cpu_attach_domain(NULL, &def_root_domain, i);
  5565. rcu_read_unlock();
  5566. }
  5567. /* handle null as "default" */
  5568. static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
  5569. struct sched_domain_attr *new, int idx_new)
  5570. {
  5571. struct sched_domain_attr tmp;
  5572. /* fast path */
  5573. if (!new && !cur)
  5574. return 1;
  5575. tmp = SD_ATTR_INIT;
  5576. return !memcmp(cur ? (cur + idx_cur) : &tmp,
  5577. new ? (new + idx_new) : &tmp,
  5578. sizeof(struct sched_domain_attr));
  5579. }
  5580. /*
  5581. * Partition sched domains as specified by the 'ndoms_new'
  5582. * cpumasks in the array doms_new[] of cpumasks. This compares
  5583. * doms_new[] to the current sched domain partitioning, doms_cur[].
  5584. * It destroys each deleted domain and builds each new domain.
  5585. *
  5586. * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
  5587. * The masks don't intersect (don't overlap.) We should setup one
  5588. * sched domain for each mask. CPUs not in any of the cpumasks will
  5589. * not be load balanced. If the same cpumask appears both in the
  5590. * current 'doms_cur' domains and in the new 'doms_new', we can leave
  5591. * it as it is.
  5592. *
  5593. * The passed in 'doms_new' should be allocated using
  5594. * alloc_sched_domains. This routine takes ownership of it and will
  5595. * free_sched_domains it when done with it. If the caller failed the
  5596. * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
  5597. * and partition_sched_domains() will fallback to the single partition
  5598. * 'fallback_doms', it also forces the domains to be rebuilt.
  5599. *
  5600. * If doms_new == NULL it will be replaced with cpu_online_mask.
  5601. * ndoms_new == 0 is a special case for destroying existing domains,
  5602. * and it will not create the default domain.
  5603. *
  5604. * Call with hotplug lock held
  5605. */
  5606. void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
  5607. struct sched_domain_attr *dattr_new)
  5608. {
  5609. int i, j, n;
  5610. int new_topology;
  5611. mutex_lock(&sched_domains_mutex);
  5612. /* always unregister in case we don't destroy any domains */
  5613. unregister_sched_domain_sysctl();
  5614. /* Let architecture update cpu core mappings. */
  5615. new_topology = arch_update_cpu_topology();
  5616. n = doms_new ? ndoms_new : 0;
  5617. /* Destroy deleted domains */
  5618. for (i = 0; i < ndoms_cur; i++) {
  5619. for (j = 0; j < n && !new_topology; j++) {
  5620. if (cpumask_equal(doms_cur[i], doms_new[j])
  5621. && dattrs_equal(dattr_cur, i, dattr_new, j))
  5622. goto match1;
  5623. }
  5624. /* no match - a current sched domain not in new doms_new[] */
  5625. detach_destroy_domains(doms_cur[i]);
  5626. match1:
  5627. ;
  5628. }
  5629. if (doms_new == NULL) {
  5630. ndoms_cur = 0;
  5631. doms_new = &fallback_doms;
  5632. cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
  5633. WARN_ON_ONCE(dattr_new);
  5634. }
  5635. /* Build new domains */
  5636. for (i = 0; i < ndoms_new; i++) {
  5637. for (j = 0; j < ndoms_cur && !new_topology; j++) {
  5638. if (cpumask_equal(doms_new[i], doms_cur[j])
  5639. && dattrs_equal(dattr_new, i, dattr_cur, j))
  5640. goto match2;
  5641. }
  5642. /* no match - add a new doms_new */
  5643. build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
  5644. match2:
  5645. ;
  5646. }
  5647. /* Remember the new sched domains */
  5648. if (doms_cur != &fallback_doms)
  5649. free_sched_domains(doms_cur, ndoms_cur);
  5650. kfree(dattr_cur); /* kfree(NULL) is safe */
  5651. doms_cur = doms_new;
  5652. dattr_cur = dattr_new;
  5653. ndoms_cur = ndoms_new;
  5654. register_sched_domain_sysctl();
  5655. mutex_unlock(&sched_domains_mutex);
  5656. }
  5657. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  5658. static void reinit_sched_domains(void)
  5659. {
  5660. get_online_cpus();
  5661. /* Destroy domains first to force the rebuild */
  5662. partition_sched_domains(0, NULL, NULL);
  5663. rebuild_sched_domains();
  5664. put_online_cpus();
  5665. }
  5666. static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
  5667. {
  5668. unsigned int level = 0;
  5669. if (sscanf(buf, "%u", &level) != 1)
  5670. return -EINVAL;
  5671. /*
  5672. * level is always be positive so don't check for
  5673. * level < POWERSAVINGS_BALANCE_NONE which is 0
  5674. * What happens on 0 or 1 byte write,
  5675. * need to check for count as well?
  5676. */
  5677. if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
  5678. return -EINVAL;
  5679. if (smt)
  5680. sched_smt_power_savings = level;
  5681. else
  5682. sched_mc_power_savings = level;
  5683. reinit_sched_domains();
  5684. return count;
  5685. }
  5686. #ifdef CONFIG_SCHED_MC
  5687. static ssize_t sched_mc_power_savings_show(struct device *dev,
  5688. struct device_attribute *attr,
  5689. char *buf)
  5690. {
  5691. return sprintf(buf, "%u\n", sched_mc_power_savings);
  5692. }
  5693. static ssize_t sched_mc_power_savings_store(struct device *dev,
  5694. struct device_attribute *attr,
  5695. const char *buf, size_t count)
  5696. {
  5697. return sched_power_savings_store(buf, count, 0);
  5698. }
  5699. static DEVICE_ATTR(sched_mc_power_savings, 0644,
  5700. sched_mc_power_savings_show,
  5701. sched_mc_power_savings_store);
  5702. #endif
  5703. #ifdef CONFIG_SCHED_SMT
  5704. static ssize_t sched_smt_power_savings_show(struct device *dev,
  5705. struct device_attribute *attr,
  5706. char *buf)
  5707. {
  5708. return sprintf(buf, "%u\n", sched_smt_power_savings);
  5709. }
  5710. static ssize_t sched_smt_power_savings_store(struct device *dev,
  5711. struct device_attribute *attr,
  5712. const char *buf, size_t count)
  5713. {
  5714. return sched_power_savings_store(buf, count, 1);
  5715. }
  5716. static DEVICE_ATTR(sched_smt_power_savings, 0644,
  5717. sched_smt_power_savings_show,
  5718. sched_smt_power_savings_store);
  5719. #endif
  5720. int __init sched_create_sysfs_power_savings_entries(struct device *dev)
  5721. {
  5722. int err = 0;
  5723. #ifdef CONFIG_SCHED_SMT
  5724. if (smt_capable())
  5725. err = device_create_file(dev, &dev_attr_sched_smt_power_savings);
  5726. #endif
  5727. #ifdef CONFIG_SCHED_MC
  5728. if (!err && mc_capable())
  5729. err = device_create_file(dev, &dev_attr_sched_mc_power_savings);
  5730. #endif
  5731. return err;
  5732. }
  5733. #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
  5734. /*
  5735. * Update cpusets according to cpu_active mask. If cpusets are
  5736. * disabled, cpuset_update_active_cpus() becomes a simple wrapper
  5737. * around partition_sched_domains().
  5738. */
  5739. static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
  5740. void *hcpu)
  5741. {
  5742. switch (action & ~CPU_TASKS_FROZEN) {
  5743. case CPU_ONLINE:
  5744. case CPU_DOWN_FAILED:
  5745. cpuset_update_active_cpus();
  5746. return NOTIFY_OK;
  5747. default:
  5748. return NOTIFY_DONE;
  5749. }
  5750. }
  5751. static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
  5752. void *hcpu)
  5753. {
  5754. switch (action & ~CPU_TASKS_FROZEN) {
  5755. case CPU_DOWN_PREPARE:
  5756. cpuset_update_active_cpus();
  5757. return NOTIFY_OK;
  5758. default:
  5759. return NOTIFY_DONE;
  5760. }
  5761. }
  5762. void __init sched_init_smp(void)
  5763. {
  5764. cpumask_var_t non_isolated_cpus;
  5765. alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
  5766. alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
  5767. get_online_cpus();
  5768. mutex_lock(&sched_domains_mutex);
  5769. init_sched_domains(cpu_active_mask);
  5770. cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
  5771. if (cpumask_empty(non_isolated_cpus))
  5772. cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
  5773. mutex_unlock(&sched_domains_mutex);
  5774. put_online_cpus();
  5775. hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
  5776. hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
  5777. /* RT runtime code needs to handle some hotplug events */
  5778. hotcpu_notifier(update_runtime, 0);
  5779. init_hrtick();
  5780. /* Move init over to a non-isolated CPU */
  5781. if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
  5782. BUG();
  5783. sched_init_granularity();
  5784. free_cpumask_var(non_isolated_cpus);
  5785. init_sched_rt_class();
  5786. }
  5787. #else
  5788. void __init sched_init_smp(void)
  5789. {
  5790. sched_init_granularity();
  5791. }
  5792. #endif /* CONFIG_SMP */
  5793. const_debug unsigned int sysctl_timer_migration = 1;
  5794. int in_sched_functions(unsigned long addr)
  5795. {
  5796. return in_lock_functions(addr) ||
  5797. (addr >= (unsigned long)__sched_text_start
  5798. && addr < (unsigned long)__sched_text_end);
  5799. }
  5800. #ifdef CONFIG_CGROUP_SCHED
  5801. struct task_group root_task_group;
  5802. #endif
  5803. DECLARE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
  5804. void __init sched_init(void)
  5805. {
  5806. int i, j;
  5807. unsigned long alloc_size = 0, ptr;
  5808. #ifdef CONFIG_FAIR_GROUP_SCHED
  5809. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  5810. #endif
  5811. #ifdef CONFIG_RT_GROUP_SCHED
  5812. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  5813. #endif
  5814. #ifdef CONFIG_CPUMASK_OFFSTACK
  5815. alloc_size += num_possible_cpus() * cpumask_size();
  5816. #endif
  5817. if (alloc_size) {
  5818. ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
  5819. #ifdef CONFIG_FAIR_GROUP_SCHED
  5820. root_task_group.se = (struct sched_entity **)ptr;
  5821. ptr += nr_cpu_ids * sizeof(void **);
  5822. root_task_group.cfs_rq = (struct cfs_rq **)ptr;
  5823. ptr += nr_cpu_ids * sizeof(void **);
  5824. #endif /* CONFIG_FAIR_GROUP_SCHED */
  5825. #ifdef CONFIG_RT_GROUP_SCHED
  5826. root_task_group.rt_se = (struct sched_rt_entity **)ptr;
  5827. ptr += nr_cpu_ids * sizeof(void **);
  5828. root_task_group.rt_rq = (struct rt_rq **)ptr;
  5829. ptr += nr_cpu_ids * sizeof(void **);
  5830. #endif /* CONFIG_RT_GROUP_SCHED */
  5831. #ifdef CONFIG_CPUMASK_OFFSTACK
  5832. for_each_possible_cpu(i) {
  5833. per_cpu(load_balance_tmpmask, i) = (void *)ptr;
  5834. ptr += cpumask_size();
  5835. }
  5836. #endif /* CONFIG_CPUMASK_OFFSTACK */
  5837. }
  5838. #ifdef CONFIG_SMP
  5839. init_defrootdomain();
  5840. #endif
  5841. init_rt_bandwidth(&def_rt_bandwidth,
  5842. global_rt_period(), global_rt_runtime());
  5843. #ifdef CONFIG_RT_GROUP_SCHED
  5844. init_rt_bandwidth(&root_task_group.rt_bandwidth,
  5845. global_rt_period(), global_rt_runtime());
  5846. #endif /* CONFIG_RT_GROUP_SCHED */
  5847. #ifdef CONFIG_CGROUP_SCHED
  5848. list_add(&root_task_group.list, &task_groups);
  5849. INIT_LIST_HEAD(&root_task_group.children);
  5850. INIT_LIST_HEAD(&root_task_group.siblings);
  5851. autogroup_init(&init_task);
  5852. #endif /* CONFIG_CGROUP_SCHED */
  5853. #ifdef CONFIG_CGROUP_CPUACCT
  5854. root_cpuacct.cpustat = &kernel_cpustat;
  5855. root_cpuacct.cpuusage = alloc_percpu(u64);
  5856. /* Too early, not expected to fail */
  5857. BUG_ON(!root_cpuacct.cpuusage);
  5858. #endif
  5859. for_each_possible_cpu(i) {
  5860. struct rq *rq;
  5861. rq = cpu_rq(i);
  5862. raw_spin_lock_init(&rq->lock);
  5863. rq->nr_running = 0;
  5864. rq->calc_load_active = 0;
  5865. rq->calc_load_update = jiffies + LOAD_FREQ;
  5866. init_cfs_rq(&rq->cfs);
  5867. init_rt_rq(&rq->rt, rq);
  5868. #ifdef CONFIG_FAIR_GROUP_SCHED
  5869. root_task_group.shares = ROOT_TASK_GROUP_LOAD;
  5870. INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
  5871. /*
  5872. * How much cpu bandwidth does root_task_group get?
  5873. *
  5874. * In case of task-groups formed thr' the cgroup filesystem, it
  5875. * gets 100% of the cpu resources in the system. This overall
  5876. * system cpu resource is divided among the tasks of
  5877. * root_task_group and its child task-groups in a fair manner,
  5878. * based on each entity's (task or task-group's) weight
  5879. * (se->load.weight).
  5880. *
  5881. * In other words, if root_task_group has 10 tasks of weight
  5882. * 1024) and two child groups A0 and A1 (of weight 1024 each),
  5883. * then A0's share of the cpu resource is:
  5884. *
  5885. * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
  5886. *
  5887. * We achieve this by letting root_task_group's tasks sit
  5888. * directly in rq->cfs (i.e root_task_group->se[] = NULL).
  5889. */
  5890. init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
  5891. init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
  5892. #endif /* CONFIG_FAIR_GROUP_SCHED */
  5893. rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
  5894. #ifdef CONFIG_RT_GROUP_SCHED
  5895. INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
  5896. init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
  5897. #endif
  5898. for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
  5899. rq->cpu_load[j] = 0;
  5900. rq->last_load_update_tick = jiffies;
  5901. #ifdef CONFIG_SMP
  5902. rq->sd = NULL;
  5903. rq->rd = NULL;
  5904. rq->cpu_power = SCHED_POWER_SCALE;
  5905. rq->post_schedule = 0;
  5906. rq->active_balance = 0;
  5907. rq->next_balance = jiffies;
  5908. rq->push_cpu = 0;
  5909. rq->cpu = i;
  5910. rq->online = 0;
  5911. rq->idle_stamp = 0;
  5912. rq->avg_idle = 2*sysctl_sched_migration_cost;
  5913. INIT_LIST_HEAD(&rq->cfs_tasks);
  5914. rq_attach_root(rq, &def_root_domain);
  5915. #ifdef CONFIG_NO_HZ
  5916. rq->nohz_flags = 0;
  5917. #endif
  5918. #endif
  5919. init_rq_hrtick(rq);
  5920. atomic_set(&rq->nr_iowait, 0);
  5921. }
  5922. set_load_weight(&init_task);
  5923. #ifdef CONFIG_PREEMPT_NOTIFIERS
  5924. INIT_HLIST_HEAD(&init_task.preempt_notifiers);
  5925. #endif
  5926. #ifdef CONFIG_RT_MUTEXES
  5927. plist_head_init(&init_task.pi_waiters);
  5928. #endif
  5929. /*
  5930. * The boot idle thread does lazy MMU switching as well:
  5931. */
  5932. atomic_inc(&init_mm.mm_count);
  5933. enter_lazy_tlb(&init_mm, current);
  5934. /*
  5935. * Make us the idle thread. Technically, schedule() should not be
  5936. * called from this thread, however somewhere below it might be,
  5937. * but because we are the idle thread, we just pick up running again
  5938. * when this runqueue becomes "idle".
  5939. */
  5940. init_idle(current, smp_processor_id());
  5941. calc_load_update = jiffies + LOAD_FREQ;
  5942. /*
  5943. * During early bootup we pretend to be a normal task:
  5944. */
  5945. current->sched_class = &fair_sched_class;
  5946. #ifdef CONFIG_SMP
  5947. zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
  5948. /* May be allocated at isolcpus cmdline parse time */
  5949. if (cpu_isolated_map == NULL)
  5950. zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
  5951. #endif
  5952. init_sched_fair_class();
  5953. scheduler_running = 1;
  5954. }
  5955. #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
  5956. static inline int preempt_count_equals(int preempt_offset)
  5957. {
  5958. int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
  5959. return (nested == preempt_offset);
  5960. }
  5961. void __might_sleep(const char *file, int line, int preempt_offset)
  5962. {
  5963. static unsigned long prev_jiffy; /* ratelimiting */
  5964. rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
  5965. if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
  5966. system_state != SYSTEM_RUNNING || oops_in_progress)
  5967. return;
  5968. if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
  5969. return;
  5970. prev_jiffy = jiffies;
  5971. printk(KERN_ERR
  5972. "BUG: sleeping function called from invalid context at %s:%d\n",
  5973. file, line);
  5974. printk(KERN_ERR
  5975. "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
  5976. in_atomic(), irqs_disabled(),
  5977. current->pid, current->comm);
  5978. debug_show_held_locks(current);
  5979. if (irqs_disabled())
  5980. print_irqtrace_events(current);
  5981. dump_stack();
  5982. }
  5983. EXPORT_SYMBOL(__might_sleep);
  5984. #endif
  5985. #ifdef CONFIG_MAGIC_SYSRQ
  5986. static void normalize_task(struct rq *rq, struct task_struct *p)
  5987. {
  5988. const struct sched_class *prev_class = p->sched_class;
  5989. int old_prio = p->prio;
  5990. int on_rq;
  5991. on_rq = p->on_rq;
  5992. if (on_rq)
  5993. dequeue_task(rq, p, 0);
  5994. __setscheduler(rq, p, SCHED_NORMAL, 0);
  5995. if (on_rq) {
  5996. enqueue_task(rq, p, 0);
  5997. resched_task(rq->curr);
  5998. }
  5999. check_class_changed(rq, p, prev_class, old_prio);
  6000. }
  6001. void normalize_rt_tasks(void)
  6002. {
  6003. struct task_struct *g, *p;
  6004. unsigned long flags;
  6005. struct rq *rq;
  6006. read_lock_irqsave(&tasklist_lock, flags);
  6007. do_each_thread(g, p) {
  6008. /*
  6009. * Only normalize user tasks:
  6010. */
  6011. if (!p->mm)
  6012. continue;
  6013. p->se.exec_start = 0;
  6014. #ifdef CONFIG_SCHEDSTATS
  6015. p->se.statistics.wait_start = 0;
  6016. p->se.statistics.sleep_start = 0;
  6017. p->se.statistics.block_start = 0;
  6018. #endif
  6019. if (!rt_task(p)) {
  6020. /*
  6021. * Renice negative nice level userspace
  6022. * tasks back to 0:
  6023. */
  6024. if (TASK_NICE(p) < 0 && p->mm)
  6025. set_user_nice(p, 0);
  6026. continue;
  6027. }
  6028. raw_spin_lock(&p->pi_lock);
  6029. rq = __task_rq_lock(p);
  6030. normalize_task(rq, p);
  6031. __task_rq_unlock(rq);
  6032. raw_spin_unlock(&p->pi_lock);
  6033. } while_each_thread(g, p);
  6034. read_unlock_irqrestore(&tasklist_lock, flags);
  6035. }
  6036. #endif /* CONFIG_MAGIC_SYSRQ */
  6037. #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
  6038. /*
  6039. * These functions are only useful for the IA64 MCA handling, or kdb.
  6040. *
  6041. * They can only be called when the whole system has been
  6042. * stopped - every CPU needs to be quiescent, and no scheduling
  6043. * activity can take place. Using them for anything else would
  6044. * be a serious bug, and as a result, they aren't even visible
  6045. * under any other configuration.
  6046. */
  6047. /**
  6048. * curr_task - return the current task for a given cpu.
  6049. * @cpu: the processor in question.
  6050. *
  6051. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  6052. */
  6053. struct task_struct *curr_task(int cpu)
  6054. {
  6055. return cpu_curr(cpu);
  6056. }
  6057. #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
  6058. #ifdef CONFIG_IA64
  6059. /**
  6060. * set_curr_task - set the current task for a given cpu.
  6061. * @cpu: the processor in question.
  6062. * @p: the task pointer to set.
  6063. *
  6064. * Description: This function must only be used when non-maskable interrupts
  6065. * are serviced on a separate stack. It allows the architecture to switch the
  6066. * notion of the current task on a cpu in a non-blocking manner. This function
  6067. * must be called with all CPU's synchronized, and interrupts disabled, the
  6068. * and caller must save the original value of the current task (see
  6069. * curr_task() above) and restore that value before reenabling interrupts and
  6070. * re-starting the system.
  6071. *
  6072. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  6073. */
  6074. void set_curr_task(int cpu, struct task_struct *p)
  6075. {
  6076. cpu_curr(cpu) = p;
  6077. }
  6078. #endif
  6079. #ifdef CONFIG_CGROUP_SCHED
  6080. /* task_group_lock serializes the addition/removal of task groups */
  6081. static DEFINE_SPINLOCK(task_group_lock);
  6082. static void free_sched_group(struct task_group *tg)
  6083. {
  6084. free_fair_sched_group(tg);
  6085. free_rt_sched_group(tg);
  6086. autogroup_free(tg);
  6087. kfree(tg);
  6088. }
  6089. /* allocate runqueue etc for a new task group */
  6090. struct task_group *sched_create_group(struct task_group *parent)
  6091. {
  6092. struct task_group *tg;
  6093. unsigned long flags;
  6094. tg = kzalloc(sizeof(*tg), GFP_KERNEL);
  6095. if (!tg)
  6096. return ERR_PTR(-ENOMEM);
  6097. if (!alloc_fair_sched_group(tg, parent))
  6098. goto err;
  6099. if (!alloc_rt_sched_group(tg, parent))
  6100. goto err;
  6101. spin_lock_irqsave(&task_group_lock, flags);
  6102. list_add_rcu(&tg->list, &task_groups);
  6103. WARN_ON(!parent); /* root should already exist */
  6104. tg->parent = parent;
  6105. INIT_LIST_HEAD(&tg->children);
  6106. list_add_rcu(&tg->siblings, &parent->children);
  6107. spin_unlock_irqrestore(&task_group_lock, flags);
  6108. return tg;
  6109. err:
  6110. free_sched_group(tg);
  6111. return ERR_PTR(-ENOMEM);
  6112. }
  6113. /* rcu callback to free various structures associated with a task group */
  6114. static void free_sched_group_rcu(struct rcu_head *rhp)
  6115. {
  6116. /* now it should be safe to free those cfs_rqs */
  6117. free_sched_group(container_of(rhp, struct task_group, rcu));
  6118. }
  6119. /* Destroy runqueue etc associated with a task group */
  6120. void sched_destroy_group(struct task_group *tg)
  6121. {
  6122. unsigned long flags;
  6123. int i;
  6124. /* end participation in shares distribution */
  6125. for_each_possible_cpu(i)
  6126. unregister_fair_sched_group(tg, i);
  6127. spin_lock_irqsave(&task_group_lock, flags);
  6128. list_del_rcu(&tg->list);
  6129. list_del_rcu(&tg->siblings);
  6130. spin_unlock_irqrestore(&task_group_lock, flags);
  6131. /* wait for possible concurrent references to cfs_rqs complete */
  6132. call_rcu(&tg->rcu, free_sched_group_rcu);
  6133. }
  6134. /* change task's runqueue when it moves between groups.
  6135. * The caller of this function should have put the task in its new group
  6136. * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
  6137. * reflect its new group.
  6138. */
  6139. void sched_move_task(struct task_struct *tsk)
  6140. {
  6141. int on_rq, running;
  6142. unsigned long flags;
  6143. struct rq *rq;
  6144. rq = task_rq_lock(tsk, &flags);
  6145. running = task_current(rq, tsk);
  6146. on_rq = tsk->on_rq;
  6147. if (on_rq)
  6148. dequeue_task(rq, tsk, 0);
  6149. if (unlikely(running))
  6150. tsk->sched_class->put_prev_task(rq, tsk);
  6151. #ifdef CONFIG_FAIR_GROUP_SCHED
  6152. if (tsk->sched_class->task_move_group)
  6153. tsk->sched_class->task_move_group(tsk, on_rq);
  6154. else
  6155. #endif
  6156. set_task_rq(tsk, task_cpu(tsk));
  6157. if (unlikely(running))
  6158. tsk->sched_class->set_curr_task(rq);
  6159. if (on_rq)
  6160. enqueue_task(rq, tsk, 0);
  6161. task_rq_unlock(rq, tsk, &flags);
  6162. }
  6163. #endif /* CONFIG_CGROUP_SCHED */
  6164. #if defined(CONFIG_RT_GROUP_SCHED) || defined(CONFIG_CFS_BANDWIDTH)
  6165. static unsigned long to_ratio(u64 period, u64 runtime)
  6166. {
  6167. if (runtime == RUNTIME_INF)
  6168. return 1ULL << 20;
  6169. return div64_u64(runtime << 20, period);
  6170. }
  6171. #endif
  6172. #ifdef CONFIG_RT_GROUP_SCHED
  6173. /*
  6174. * Ensure that the real time constraints are schedulable.
  6175. */
  6176. static DEFINE_MUTEX(rt_constraints_mutex);
  6177. /* Must be called with tasklist_lock held */
  6178. static inline int tg_has_rt_tasks(struct task_group *tg)
  6179. {
  6180. struct task_struct *g, *p;
  6181. do_each_thread(g, p) {
  6182. if (rt_task(p) && task_rq(p)->rt.tg == tg)
  6183. return 1;
  6184. } while_each_thread(g, p);
  6185. return 0;
  6186. }
  6187. struct rt_schedulable_data {
  6188. struct task_group *tg;
  6189. u64 rt_period;
  6190. u64 rt_runtime;
  6191. };
  6192. static int tg_rt_schedulable(struct task_group *tg, void *data)
  6193. {
  6194. struct rt_schedulable_data *d = data;
  6195. struct task_group *child;
  6196. unsigned long total, sum = 0;
  6197. u64 period, runtime;
  6198. period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  6199. runtime = tg->rt_bandwidth.rt_runtime;
  6200. if (tg == d->tg) {
  6201. period = d->rt_period;
  6202. runtime = d->rt_runtime;
  6203. }
  6204. /*
  6205. * Cannot have more runtime than the period.
  6206. */
  6207. if (runtime > period && runtime != RUNTIME_INF)
  6208. return -EINVAL;
  6209. /*
  6210. * Ensure we don't starve existing RT tasks.
  6211. */
  6212. if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
  6213. return -EBUSY;
  6214. total = to_ratio(period, runtime);
  6215. /*
  6216. * Nobody can have more than the global setting allows.
  6217. */
  6218. if (total > to_ratio(global_rt_period(), global_rt_runtime()))
  6219. return -EINVAL;
  6220. /*
  6221. * The sum of our children's runtime should not exceed our own.
  6222. */
  6223. list_for_each_entry_rcu(child, &tg->children, siblings) {
  6224. period = ktime_to_ns(child->rt_bandwidth.rt_period);
  6225. runtime = child->rt_bandwidth.rt_runtime;
  6226. if (child == d->tg) {
  6227. period = d->rt_period;
  6228. runtime = d->rt_runtime;
  6229. }
  6230. sum += to_ratio(period, runtime);
  6231. }
  6232. if (sum > total)
  6233. return -EINVAL;
  6234. return 0;
  6235. }
  6236. static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
  6237. {
  6238. int ret;
  6239. struct rt_schedulable_data data = {
  6240. .tg = tg,
  6241. .rt_period = period,
  6242. .rt_runtime = runtime,
  6243. };
  6244. rcu_read_lock();
  6245. ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
  6246. rcu_read_unlock();
  6247. return ret;
  6248. }
  6249. static int tg_set_rt_bandwidth(struct task_group *tg,
  6250. u64 rt_period, u64 rt_runtime)
  6251. {
  6252. int i, err = 0;
  6253. mutex_lock(&rt_constraints_mutex);
  6254. read_lock(&tasklist_lock);
  6255. err = __rt_schedulable(tg, rt_period, rt_runtime);
  6256. if (err)
  6257. goto unlock;
  6258. raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  6259. tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
  6260. tg->rt_bandwidth.rt_runtime = rt_runtime;
  6261. for_each_possible_cpu(i) {
  6262. struct rt_rq *rt_rq = tg->rt_rq[i];
  6263. raw_spin_lock(&rt_rq->rt_runtime_lock);
  6264. rt_rq->rt_runtime = rt_runtime;
  6265. raw_spin_unlock(&rt_rq->rt_runtime_lock);
  6266. }
  6267. raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  6268. unlock:
  6269. read_unlock(&tasklist_lock);
  6270. mutex_unlock(&rt_constraints_mutex);
  6271. return err;
  6272. }
  6273. int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
  6274. {
  6275. u64 rt_runtime, rt_period;
  6276. rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  6277. rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
  6278. if (rt_runtime_us < 0)
  6279. rt_runtime = RUNTIME_INF;
  6280. return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
  6281. }
  6282. long sched_group_rt_runtime(struct task_group *tg)
  6283. {
  6284. u64 rt_runtime_us;
  6285. if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
  6286. return -1;
  6287. rt_runtime_us = tg->rt_bandwidth.rt_runtime;
  6288. do_div(rt_runtime_us, NSEC_PER_USEC);
  6289. return rt_runtime_us;
  6290. }
  6291. int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
  6292. {
  6293. u64 rt_runtime, rt_period;
  6294. rt_period = (u64)rt_period_us * NSEC_PER_USEC;
  6295. rt_runtime = tg->rt_bandwidth.rt_runtime;
  6296. if (rt_period == 0)
  6297. return -EINVAL;
  6298. return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
  6299. }
  6300. long sched_group_rt_period(struct task_group *tg)
  6301. {
  6302. u64 rt_period_us;
  6303. rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
  6304. do_div(rt_period_us, NSEC_PER_USEC);
  6305. return rt_period_us;
  6306. }
  6307. static int sched_rt_global_constraints(void)
  6308. {
  6309. u64 runtime, period;
  6310. int ret = 0;
  6311. if (sysctl_sched_rt_period <= 0)
  6312. return -EINVAL;
  6313. runtime = global_rt_runtime();
  6314. period = global_rt_period();
  6315. /*
  6316. * Sanity check on the sysctl variables.
  6317. */
  6318. if (runtime > period && runtime != RUNTIME_INF)
  6319. return -EINVAL;
  6320. mutex_lock(&rt_constraints_mutex);
  6321. read_lock(&tasklist_lock);
  6322. ret = __rt_schedulable(NULL, 0, 0);
  6323. read_unlock(&tasklist_lock);
  6324. mutex_unlock(&rt_constraints_mutex);
  6325. return ret;
  6326. }
  6327. int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
  6328. {
  6329. /* Don't accept realtime tasks when there is no way for them to run */
  6330. if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
  6331. return 0;
  6332. return 1;
  6333. }
  6334. #else /* !CONFIG_RT_GROUP_SCHED */
  6335. static int sched_rt_global_constraints(void)
  6336. {
  6337. unsigned long flags;
  6338. int i;
  6339. if (sysctl_sched_rt_period <= 0)
  6340. return -EINVAL;
  6341. /*
  6342. * There's always some RT tasks in the root group
  6343. * -- migration, kstopmachine etc..
  6344. */
  6345. if (sysctl_sched_rt_runtime == 0)
  6346. return -EBUSY;
  6347. raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
  6348. for_each_possible_cpu(i) {
  6349. struct rt_rq *rt_rq = &cpu_rq(i)->rt;
  6350. raw_spin_lock(&rt_rq->rt_runtime_lock);
  6351. rt_rq->rt_runtime = global_rt_runtime();
  6352. raw_spin_unlock(&rt_rq->rt_runtime_lock);
  6353. }
  6354. raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
  6355. return 0;
  6356. }
  6357. #endif /* CONFIG_RT_GROUP_SCHED */
  6358. int sched_rt_handler(struct ctl_table *table, int write,
  6359. void __user *buffer, size_t *lenp,
  6360. loff_t *ppos)
  6361. {
  6362. int ret;
  6363. int old_period, old_runtime;
  6364. static DEFINE_MUTEX(mutex);
  6365. mutex_lock(&mutex);
  6366. old_period = sysctl_sched_rt_period;
  6367. old_runtime = sysctl_sched_rt_runtime;
  6368. ret = proc_dointvec(table, write, buffer, lenp, ppos);
  6369. if (!ret && write) {
  6370. ret = sched_rt_global_constraints();
  6371. if (ret) {
  6372. sysctl_sched_rt_period = old_period;
  6373. sysctl_sched_rt_runtime = old_runtime;
  6374. } else {
  6375. def_rt_bandwidth.rt_runtime = global_rt_runtime();
  6376. def_rt_bandwidth.rt_period =
  6377. ns_to_ktime(global_rt_period());
  6378. }
  6379. }
  6380. mutex_unlock(&mutex);
  6381. return ret;
  6382. }
  6383. #ifdef CONFIG_CGROUP_SCHED
  6384. /* return corresponding task_group object of a cgroup */
  6385. static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
  6386. {
  6387. return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
  6388. struct task_group, css);
  6389. }
  6390. static struct cgroup_subsys_state *cpu_cgroup_create(struct cgroup *cgrp)
  6391. {
  6392. struct task_group *tg, *parent;
  6393. if (!cgrp->parent) {
  6394. /* This is early initialization for the top cgroup */
  6395. return &root_task_group.css;
  6396. }
  6397. parent = cgroup_tg(cgrp->parent);
  6398. tg = sched_create_group(parent);
  6399. if (IS_ERR(tg))
  6400. return ERR_PTR(-ENOMEM);
  6401. return &tg->css;
  6402. }
  6403. static void cpu_cgroup_destroy(struct cgroup *cgrp)
  6404. {
  6405. struct task_group *tg = cgroup_tg(cgrp);
  6406. sched_destroy_group(tg);
  6407. }
  6408. static int cpu_cgroup_can_attach(struct cgroup *cgrp,
  6409. struct cgroup_taskset *tset)
  6410. {
  6411. struct task_struct *task;
  6412. cgroup_taskset_for_each(task, cgrp, tset) {
  6413. #ifdef CONFIG_RT_GROUP_SCHED
  6414. if (!sched_rt_can_attach(cgroup_tg(cgrp), task))
  6415. return -EINVAL;
  6416. #else
  6417. /* We don't support RT-tasks being in separate groups */
  6418. if (task->sched_class != &fair_sched_class)
  6419. return -EINVAL;
  6420. #endif
  6421. }
  6422. return 0;
  6423. }
  6424. static void cpu_cgroup_attach(struct cgroup *cgrp,
  6425. struct cgroup_taskset *tset)
  6426. {
  6427. struct task_struct *task;
  6428. cgroup_taskset_for_each(task, cgrp, tset)
  6429. sched_move_task(task);
  6430. }
  6431. static void
  6432. cpu_cgroup_exit(struct cgroup *cgrp, struct cgroup *old_cgrp,
  6433. struct task_struct *task)
  6434. {
  6435. /*
  6436. * cgroup_exit() is called in the copy_process() failure path.
  6437. * Ignore this case since the task hasn't ran yet, this avoids
  6438. * trying to poke a half freed task state from generic code.
  6439. */
  6440. if (!(task->flags & PF_EXITING))
  6441. return;
  6442. sched_move_task(task);
  6443. }
  6444. #ifdef CONFIG_FAIR_GROUP_SCHED
  6445. static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
  6446. u64 shareval)
  6447. {
  6448. return sched_group_set_shares(cgroup_tg(cgrp), scale_load(shareval));
  6449. }
  6450. static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
  6451. {
  6452. struct task_group *tg = cgroup_tg(cgrp);
  6453. return (u64) scale_load_down(tg->shares);
  6454. }
  6455. #ifdef CONFIG_CFS_BANDWIDTH
  6456. static DEFINE_MUTEX(cfs_constraints_mutex);
  6457. const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
  6458. const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
  6459. static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
  6460. static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
  6461. {
  6462. int i, ret = 0, runtime_enabled, runtime_was_enabled;
  6463. struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
  6464. if (tg == &root_task_group)
  6465. return -EINVAL;
  6466. /*
  6467. * Ensure we have at some amount of bandwidth every period. This is
  6468. * to prevent reaching a state of large arrears when throttled via
  6469. * entity_tick() resulting in prolonged exit starvation.
  6470. */
  6471. if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
  6472. return -EINVAL;
  6473. /*
  6474. * Likewise, bound things on the otherside by preventing insane quota
  6475. * periods. This also allows us to normalize in computing quota
  6476. * feasibility.
  6477. */
  6478. if (period > max_cfs_quota_period)
  6479. return -EINVAL;
  6480. mutex_lock(&cfs_constraints_mutex);
  6481. ret = __cfs_schedulable(tg, period, quota);
  6482. if (ret)
  6483. goto out_unlock;
  6484. runtime_enabled = quota != RUNTIME_INF;
  6485. runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
  6486. account_cfs_bandwidth_used(runtime_enabled, runtime_was_enabled);
  6487. raw_spin_lock_irq(&cfs_b->lock);
  6488. cfs_b->period = ns_to_ktime(period);
  6489. cfs_b->quota = quota;
  6490. __refill_cfs_bandwidth_runtime(cfs_b);
  6491. /* restart the period timer (if active) to handle new period expiry */
  6492. if (runtime_enabled && cfs_b->timer_active) {
  6493. /* force a reprogram */
  6494. cfs_b->timer_active = 0;
  6495. __start_cfs_bandwidth(cfs_b);
  6496. }
  6497. raw_spin_unlock_irq(&cfs_b->lock);
  6498. for_each_possible_cpu(i) {
  6499. struct cfs_rq *cfs_rq = tg->cfs_rq[i];
  6500. struct rq *rq = cfs_rq->rq;
  6501. raw_spin_lock_irq(&rq->lock);
  6502. cfs_rq->runtime_enabled = runtime_enabled;
  6503. cfs_rq->runtime_remaining = 0;
  6504. if (cfs_rq->throttled)
  6505. unthrottle_cfs_rq(cfs_rq);
  6506. raw_spin_unlock_irq(&rq->lock);
  6507. }
  6508. out_unlock:
  6509. mutex_unlock(&cfs_constraints_mutex);
  6510. return ret;
  6511. }
  6512. int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
  6513. {
  6514. u64 quota, period;
  6515. period = ktime_to_ns(tg->cfs_bandwidth.period);
  6516. if (cfs_quota_us < 0)
  6517. quota = RUNTIME_INF;
  6518. else
  6519. quota = (u64)cfs_quota_us * NSEC_PER_USEC;
  6520. return tg_set_cfs_bandwidth(tg, period, quota);
  6521. }
  6522. long tg_get_cfs_quota(struct task_group *tg)
  6523. {
  6524. u64 quota_us;
  6525. if (tg->cfs_bandwidth.quota == RUNTIME_INF)
  6526. return -1;
  6527. quota_us = tg->cfs_bandwidth.quota;
  6528. do_div(quota_us, NSEC_PER_USEC);
  6529. return quota_us;
  6530. }
  6531. int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
  6532. {
  6533. u64 quota, period;
  6534. period = (u64)cfs_period_us * NSEC_PER_USEC;
  6535. quota = tg->cfs_bandwidth.quota;
  6536. return tg_set_cfs_bandwidth(tg, period, quota);
  6537. }
  6538. long tg_get_cfs_period(struct task_group *tg)
  6539. {
  6540. u64 cfs_period_us;
  6541. cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
  6542. do_div(cfs_period_us, NSEC_PER_USEC);
  6543. return cfs_period_us;
  6544. }
  6545. static s64 cpu_cfs_quota_read_s64(struct cgroup *cgrp, struct cftype *cft)
  6546. {
  6547. return tg_get_cfs_quota(cgroup_tg(cgrp));
  6548. }
  6549. static int cpu_cfs_quota_write_s64(struct cgroup *cgrp, struct cftype *cftype,
  6550. s64 cfs_quota_us)
  6551. {
  6552. return tg_set_cfs_quota(cgroup_tg(cgrp), cfs_quota_us);
  6553. }
  6554. static u64 cpu_cfs_period_read_u64(struct cgroup *cgrp, struct cftype *cft)
  6555. {
  6556. return tg_get_cfs_period(cgroup_tg(cgrp));
  6557. }
  6558. static int cpu_cfs_period_write_u64(struct cgroup *cgrp, struct cftype *cftype,
  6559. u64 cfs_period_us)
  6560. {
  6561. return tg_set_cfs_period(cgroup_tg(cgrp), cfs_period_us);
  6562. }
  6563. struct cfs_schedulable_data {
  6564. struct task_group *tg;
  6565. u64 period, quota;
  6566. };
  6567. /*
  6568. * normalize group quota/period to be quota/max_period
  6569. * note: units are usecs
  6570. */
  6571. static u64 normalize_cfs_quota(struct task_group *tg,
  6572. struct cfs_schedulable_data *d)
  6573. {
  6574. u64 quota, period;
  6575. if (tg == d->tg) {
  6576. period = d->period;
  6577. quota = d->quota;
  6578. } else {
  6579. period = tg_get_cfs_period(tg);
  6580. quota = tg_get_cfs_quota(tg);
  6581. }
  6582. /* note: these should typically be equivalent */
  6583. if (quota == RUNTIME_INF || quota == -1)
  6584. return RUNTIME_INF;
  6585. return to_ratio(period, quota);
  6586. }
  6587. static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
  6588. {
  6589. struct cfs_schedulable_data *d = data;
  6590. struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
  6591. s64 quota = 0, parent_quota = -1;
  6592. if (!tg->parent) {
  6593. quota = RUNTIME_INF;
  6594. } else {
  6595. struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
  6596. quota = normalize_cfs_quota(tg, d);
  6597. parent_quota = parent_b->hierarchal_quota;
  6598. /*
  6599. * ensure max(child_quota) <= parent_quota, inherit when no
  6600. * limit is set
  6601. */
  6602. if (quota == RUNTIME_INF)
  6603. quota = parent_quota;
  6604. else if (parent_quota != RUNTIME_INF && quota > parent_quota)
  6605. return -EINVAL;
  6606. }
  6607. cfs_b->hierarchal_quota = quota;
  6608. return 0;
  6609. }
  6610. static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
  6611. {
  6612. int ret;
  6613. struct cfs_schedulable_data data = {
  6614. .tg = tg,
  6615. .period = period,
  6616. .quota = quota,
  6617. };
  6618. if (quota != RUNTIME_INF) {
  6619. do_div(data.period, NSEC_PER_USEC);
  6620. do_div(data.quota, NSEC_PER_USEC);
  6621. }
  6622. rcu_read_lock();
  6623. ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
  6624. rcu_read_unlock();
  6625. return ret;
  6626. }
  6627. static int cpu_stats_show(struct cgroup *cgrp, struct cftype *cft,
  6628. struct cgroup_map_cb *cb)
  6629. {
  6630. struct task_group *tg = cgroup_tg(cgrp);
  6631. struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
  6632. cb->fill(cb, "nr_periods", cfs_b->nr_periods);
  6633. cb->fill(cb, "nr_throttled", cfs_b->nr_throttled);
  6634. cb->fill(cb, "throttled_time", cfs_b->throttled_time);
  6635. return 0;
  6636. }
  6637. #endif /* CONFIG_CFS_BANDWIDTH */
  6638. #endif /* CONFIG_FAIR_GROUP_SCHED */
  6639. #ifdef CONFIG_RT_GROUP_SCHED
  6640. static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
  6641. s64 val)
  6642. {
  6643. return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
  6644. }
  6645. static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
  6646. {
  6647. return sched_group_rt_runtime(cgroup_tg(cgrp));
  6648. }
  6649. static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
  6650. u64 rt_period_us)
  6651. {
  6652. return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
  6653. }
  6654. static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
  6655. {
  6656. return sched_group_rt_period(cgroup_tg(cgrp));
  6657. }
  6658. #endif /* CONFIG_RT_GROUP_SCHED */
  6659. static struct cftype cpu_files[] = {
  6660. #ifdef CONFIG_FAIR_GROUP_SCHED
  6661. {
  6662. .name = "shares",
  6663. .read_u64 = cpu_shares_read_u64,
  6664. .write_u64 = cpu_shares_write_u64,
  6665. },
  6666. #endif
  6667. #ifdef CONFIG_CFS_BANDWIDTH
  6668. {
  6669. .name = "cfs_quota_us",
  6670. .read_s64 = cpu_cfs_quota_read_s64,
  6671. .write_s64 = cpu_cfs_quota_write_s64,
  6672. },
  6673. {
  6674. .name = "cfs_period_us",
  6675. .read_u64 = cpu_cfs_period_read_u64,
  6676. .write_u64 = cpu_cfs_period_write_u64,
  6677. },
  6678. {
  6679. .name = "stat",
  6680. .read_map = cpu_stats_show,
  6681. },
  6682. #endif
  6683. #ifdef CONFIG_RT_GROUP_SCHED
  6684. {
  6685. .name = "rt_runtime_us",
  6686. .read_s64 = cpu_rt_runtime_read,
  6687. .write_s64 = cpu_rt_runtime_write,
  6688. },
  6689. {
  6690. .name = "rt_period_us",
  6691. .read_u64 = cpu_rt_period_read_uint,
  6692. .write_u64 = cpu_rt_period_write_uint,
  6693. },
  6694. #endif
  6695. };
  6696. static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
  6697. {
  6698. return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
  6699. }
  6700. struct cgroup_subsys cpu_cgroup_subsys = {
  6701. .name = "cpu",
  6702. .create = cpu_cgroup_create,
  6703. .destroy = cpu_cgroup_destroy,
  6704. .can_attach = cpu_cgroup_can_attach,
  6705. .attach = cpu_cgroup_attach,
  6706. .exit = cpu_cgroup_exit,
  6707. .populate = cpu_cgroup_populate,
  6708. .subsys_id = cpu_cgroup_subsys_id,
  6709. .early_init = 1,
  6710. };
  6711. #endif /* CONFIG_CGROUP_SCHED */
  6712. #ifdef CONFIG_CGROUP_CPUACCT
  6713. /*
  6714. * CPU accounting code for task groups.
  6715. *
  6716. * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
  6717. * (balbir@in.ibm.com).
  6718. */
  6719. /* create a new cpu accounting group */
  6720. static struct cgroup_subsys_state *cpuacct_create(struct cgroup *cgrp)
  6721. {
  6722. struct cpuacct *ca;
  6723. if (!cgrp->parent)
  6724. return &root_cpuacct.css;
  6725. ca = kzalloc(sizeof(*ca), GFP_KERNEL);
  6726. if (!ca)
  6727. goto out;
  6728. ca->cpuusage = alloc_percpu(u64);
  6729. if (!ca->cpuusage)
  6730. goto out_free_ca;
  6731. ca->cpustat = alloc_percpu(struct kernel_cpustat);
  6732. if (!ca->cpustat)
  6733. goto out_free_cpuusage;
  6734. return &ca->css;
  6735. out_free_cpuusage:
  6736. free_percpu(ca->cpuusage);
  6737. out_free_ca:
  6738. kfree(ca);
  6739. out:
  6740. return ERR_PTR(-ENOMEM);
  6741. }
  6742. /* destroy an existing cpu accounting group */
  6743. static void cpuacct_destroy(struct cgroup *cgrp)
  6744. {
  6745. struct cpuacct *ca = cgroup_ca(cgrp);
  6746. free_percpu(ca->cpustat);
  6747. free_percpu(ca->cpuusage);
  6748. kfree(ca);
  6749. }
  6750. static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
  6751. {
  6752. u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
  6753. u64 data;
  6754. #ifndef CONFIG_64BIT
  6755. /*
  6756. * Take rq->lock to make 64-bit read safe on 32-bit platforms.
  6757. */
  6758. raw_spin_lock_irq(&cpu_rq(cpu)->lock);
  6759. data = *cpuusage;
  6760. raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
  6761. #else
  6762. data = *cpuusage;
  6763. #endif
  6764. return data;
  6765. }
  6766. static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
  6767. {
  6768. u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
  6769. #ifndef CONFIG_64BIT
  6770. /*
  6771. * Take rq->lock to make 64-bit write safe on 32-bit platforms.
  6772. */
  6773. raw_spin_lock_irq(&cpu_rq(cpu)->lock);
  6774. *cpuusage = val;
  6775. raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
  6776. #else
  6777. *cpuusage = val;
  6778. #endif
  6779. }
  6780. /* return total cpu usage (in nanoseconds) of a group */
  6781. static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
  6782. {
  6783. struct cpuacct *ca = cgroup_ca(cgrp);
  6784. u64 totalcpuusage = 0;
  6785. int i;
  6786. for_each_present_cpu(i)
  6787. totalcpuusage += cpuacct_cpuusage_read(ca, i);
  6788. return totalcpuusage;
  6789. }
  6790. static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
  6791. u64 reset)
  6792. {
  6793. struct cpuacct *ca = cgroup_ca(cgrp);
  6794. int err = 0;
  6795. int i;
  6796. if (reset) {
  6797. err = -EINVAL;
  6798. goto out;
  6799. }
  6800. for_each_present_cpu(i)
  6801. cpuacct_cpuusage_write(ca, i, 0);
  6802. out:
  6803. return err;
  6804. }
  6805. static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
  6806. struct seq_file *m)
  6807. {
  6808. struct cpuacct *ca = cgroup_ca(cgroup);
  6809. u64 percpu;
  6810. int i;
  6811. for_each_present_cpu(i) {
  6812. percpu = cpuacct_cpuusage_read(ca, i);
  6813. seq_printf(m, "%llu ", (unsigned long long) percpu);
  6814. }
  6815. seq_printf(m, "\n");
  6816. return 0;
  6817. }
  6818. static const char *cpuacct_stat_desc[] = {
  6819. [CPUACCT_STAT_USER] = "user",
  6820. [CPUACCT_STAT_SYSTEM] = "system",
  6821. };
  6822. static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
  6823. struct cgroup_map_cb *cb)
  6824. {
  6825. struct cpuacct *ca = cgroup_ca(cgrp);
  6826. int cpu;
  6827. s64 val = 0;
  6828. for_each_online_cpu(cpu) {
  6829. struct kernel_cpustat *kcpustat = per_cpu_ptr(ca->cpustat, cpu);
  6830. val += kcpustat->cpustat[CPUTIME_USER];
  6831. val += kcpustat->cpustat[CPUTIME_NICE];
  6832. }
  6833. val = cputime64_to_clock_t(val);
  6834. cb->fill(cb, cpuacct_stat_desc[CPUACCT_STAT_USER], val);
  6835. val = 0;
  6836. for_each_online_cpu(cpu) {
  6837. struct kernel_cpustat *kcpustat = per_cpu_ptr(ca->cpustat, cpu);
  6838. val += kcpustat->cpustat[CPUTIME_SYSTEM];
  6839. val += kcpustat->cpustat[CPUTIME_IRQ];
  6840. val += kcpustat->cpustat[CPUTIME_SOFTIRQ];
  6841. }
  6842. val = cputime64_to_clock_t(val);
  6843. cb->fill(cb, cpuacct_stat_desc[CPUACCT_STAT_SYSTEM], val);
  6844. return 0;
  6845. }
  6846. static struct cftype files[] = {
  6847. {
  6848. .name = "usage",
  6849. .read_u64 = cpuusage_read,
  6850. .write_u64 = cpuusage_write,
  6851. },
  6852. {
  6853. .name = "usage_percpu",
  6854. .read_seq_string = cpuacct_percpu_seq_read,
  6855. },
  6856. {
  6857. .name = "stat",
  6858. .read_map = cpuacct_stats_show,
  6859. },
  6860. };
  6861. static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
  6862. {
  6863. return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
  6864. }
  6865. /*
  6866. * charge this task's execution time to its accounting group.
  6867. *
  6868. * called with rq->lock held.
  6869. */
  6870. void cpuacct_charge(struct task_struct *tsk, u64 cputime)
  6871. {
  6872. struct cpuacct *ca;
  6873. int cpu;
  6874. if (unlikely(!cpuacct_subsys.active))
  6875. return;
  6876. cpu = task_cpu(tsk);
  6877. rcu_read_lock();
  6878. ca = task_ca(tsk);
  6879. for (; ca; ca = parent_ca(ca)) {
  6880. u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
  6881. *cpuusage += cputime;
  6882. }
  6883. rcu_read_unlock();
  6884. }
  6885. struct cgroup_subsys cpuacct_subsys = {
  6886. .name = "cpuacct",
  6887. .create = cpuacct_create,
  6888. .destroy = cpuacct_destroy,
  6889. .populate = cpuacct_populate,
  6890. .subsys_id = cpuacct_subsys_id,
  6891. };
  6892. #endif /* CONFIG_CGROUP_CPUACCT */