amd5536udc.c 84 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423
  1. /*
  2. * amd5536.c -- AMD 5536 UDC high/full speed USB device controller
  3. *
  4. * Copyright (C) 2005-2007 AMD (http://www.amd.com)
  5. * Author: Thomas Dahlmann
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License as published by
  9. * the Free Software Foundation; either version 2 of the License, or
  10. * (at your option) any later version.
  11. */
  12. /*
  13. * The AMD5536 UDC is part of the x86 southbridge AMD Geode CS5536.
  14. * It is a USB Highspeed DMA capable USB device controller. Beside ep0 it
  15. * provides 4 IN and 4 OUT endpoints (bulk or interrupt type).
  16. *
  17. * Make sure that UDC is assigned to port 4 by BIOS settings (port can also
  18. * be used as host port) and UOC bits PAD_EN and APU are set (should be done
  19. * by BIOS init).
  20. *
  21. * UDC DMA requires 32-bit aligned buffers so DMA with gadget ether does not
  22. * work without updating NET_IP_ALIGN. Or PIO mode (module param "use_dma=0")
  23. * can be used with gadget ether.
  24. */
  25. /* debug control */
  26. /* #define UDC_VERBOSE */
  27. /* Driver strings */
  28. #define UDC_MOD_DESCRIPTION "AMD 5536 UDC - USB Device Controller"
  29. #define UDC_DRIVER_VERSION_STRING "01.00.0206"
  30. /* system */
  31. #include <linux/module.h>
  32. #include <linux/pci.h>
  33. #include <linux/kernel.h>
  34. #include <linux/delay.h>
  35. #include <linux/ioport.h>
  36. #include <linux/sched.h>
  37. #include <linux/slab.h>
  38. #include <linux/errno.h>
  39. #include <linux/init.h>
  40. #include <linux/timer.h>
  41. #include <linux/list.h>
  42. #include <linux/interrupt.h>
  43. #include <linux/ioctl.h>
  44. #include <linux/fs.h>
  45. #include <linux/dmapool.h>
  46. #include <linux/moduleparam.h>
  47. #include <linux/device.h>
  48. #include <linux/io.h>
  49. #include <linux/irq.h>
  50. #include <linux/prefetch.h>
  51. #include <asm/byteorder.h>
  52. #include <asm/system.h>
  53. #include <asm/unaligned.h>
  54. /* gadget stack */
  55. #include <linux/usb/ch9.h>
  56. #include <linux/usb/gadget.h>
  57. /* udc specific */
  58. #include "amd5536udc.h"
  59. static void udc_tasklet_disconnect(unsigned long);
  60. static void empty_req_queue(struct udc_ep *);
  61. static int udc_probe(struct udc *dev);
  62. static void udc_basic_init(struct udc *dev);
  63. static void udc_setup_endpoints(struct udc *dev);
  64. static void udc_soft_reset(struct udc *dev);
  65. static struct udc_request *udc_alloc_bna_dummy(struct udc_ep *ep);
  66. static void udc_free_request(struct usb_ep *usbep, struct usb_request *usbreq);
  67. static int udc_free_dma_chain(struct udc *dev, struct udc_request *req);
  68. static int udc_create_dma_chain(struct udc_ep *ep, struct udc_request *req,
  69. unsigned long buf_len, gfp_t gfp_flags);
  70. static int udc_remote_wakeup(struct udc *dev);
  71. static int udc_pci_probe(struct pci_dev *pdev, const struct pci_device_id *id);
  72. static void udc_pci_remove(struct pci_dev *pdev);
  73. /* description */
  74. static const char mod_desc[] = UDC_MOD_DESCRIPTION;
  75. static const char name[] = "amd5536udc";
  76. /* structure to hold endpoint function pointers */
  77. static const struct usb_ep_ops udc_ep_ops;
  78. /* received setup data */
  79. static union udc_setup_data setup_data;
  80. /* pointer to device object */
  81. static struct udc *udc;
  82. /* irq spin lock for soft reset */
  83. static DEFINE_SPINLOCK(udc_irq_spinlock);
  84. /* stall spin lock */
  85. static DEFINE_SPINLOCK(udc_stall_spinlock);
  86. /*
  87. * slave mode: pending bytes in rx fifo after nyet,
  88. * used if EPIN irq came but no req was available
  89. */
  90. static unsigned int udc_rxfifo_pending;
  91. /* count soft resets after suspend to avoid loop */
  92. static int soft_reset_occured;
  93. static int soft_reset_after_usbreset_occured;
  94. /* timer */
  95. static struct timer_list udc_timer;
  96. static int stop_timer;
  97. /* set_rde -- Is used to control enabling of RX DMA. Problem is
  98. * that UDC has only one bit (RDE) to enable/disable RX DMA for
  99. * all OUT endpoints. So we have to handle race conditions like
  100. * when OUT data reaches the fifo but no request was queued yet.
  101. * This cannot be solved by letting the RX DMA disabled until a
  102. * request gets queued because there may be other OUT packets
  103. * in the FIFO (important for not blocking control traffic).
  104. * The value of set_rde controls the correspondig timer.
  105. *
  106. * set_rde -1 == not used, means it is alloed to be set to 0 or 1
  107. * set_rde 0 == do not touch RDE, do no start the RDE timer
  108. * set_rde 1 == timer function will look whether FIFO has data
  109. * set_rde 2 == set by timer function to enable RX DMA on next call
  110. */
  111. static int set_rde = -1;
  112. static DECLARE_COMPLETION(on_exit);
  113. static struct timer_list udc_pollstall_timer;
  114. static int stop_pollstall_timer;
  115. static DECLARE_COMPLETION(on_pollstall_exit);
  116. /* tasklet for usb disconnect */
  117. static DECLARE_TASKLET(disconnect_tasklet, udc_tasklet_disconnect,
  118. (unsigned long) &udc);
  119. /* endpoint names used for print */
  120. static const char ep0_string[] = "ep0in";
  121. static const char *const ep_string[] = {
  122. ep0_string,
  123. "ep1in-int", "ep2in-bulk", "ep3in-bulk", "ep4in-bulk", "ep5in-bulk",
  124. "ep6in-bulk", "ep7in-bulk", "ep8in-bulk", "ep9in-bulk", "ep10in-bulk",
  125. "ep11in-bulk", "ep12in-bulk", "ep13in-bulk", "ep14in-bulk",
  126. "ep15in-bulk", "ep0out", "ep1out-bulk", "ep2out-bulk", "ep3out-bulk",
  127. "ep4out-bulk", "ep5out-bulk", "ep6out-bulk", "ep7out-bulk",
  128. "ep8out-bulk", "ep9out-bulk", "ep10out-bulk", "ep11out-bulk",
  129. "ep12out-bulk", "ep13out-bulk", "ep14out-bulk", "ep15out-bulk"
  130. };
  131. /* DMA usage flag */
  132. static bool use_dma = 1;
  133. /* packet per buffer dma */
  134. static bool use_dma_ppb = 1;
  135. /* with per descr. update */
  136. static bool use_dma_ppb_du;
  137. /* buffer fill mode */
  138. static int use_dma_bufferfill_mode;
  139. /* full speed only mode */
  140. static bool use_fullspeed;
  141. /* tx buffer size for high speed */
  142. static unsigned long hs_tx_buf = UDC_EPIN_BUFF_SIZE;
  143. /* module parameters */
  144. module_param(use_dma, bool, S_IRUGO);
  145. MODULE_PARM_DESC(use_dma, "true for DMA");
  146. module_param(use_dma_ppb, bool, S_IRUGO);
  147. MODULE_PARM_DESC(use_dma_ppb, "true for DMA in packet per buffer mode");
  148. module_param(use_dma_ppb_du, bool, S_IRUGO);
  149. MODULE_PARM_DESC(use_dma_ppb_du,
  150. "true for DMA in packet per buffer mode with descriptor update");
  151. module_param(use_fullspeed, bool, S_IRUGO);
  152. MODULE_PARM_DESC(use_fullspeed, "true for fullspeed only");
  153. /*---------------------------------------------------------------------------*/
  154. /* Prints UDC device registers and endpoint irq registers */
  155. static void print_regs(struct udc *dev)
  156. {
  157. DBG(dev, "------- Device registers -------\n");
  158. DBG(dev, "dev config = %08x\n", readl(&dev->regs->cfg));
  159. DBG(dev, "dev control = %08x\n", readl(&dev->regs->ctl));
  160. DBG(dev, "dev status = %08x\n", readl(&dev->regs->sts));
  161. DBG(dev, "\n");
  162. DBG(dev, "dev int's = %08x\n", readl(&dev->regs->irqsts));
  163. DBG(dev, "dev intmask = %08x\n", readl(&dev->regs->irqmsk));
  164. DBG(dev, "\n");
  165. DBG(dev, "dev ep int's = %08x\n", readl(&dev->regs->ep_irqsts));
  166. DBG(dev, "dev ep intmask = %08x\n", readl(&dev->regs->ep_irqmsk));
  167. DBG(dev, "\n");
  168. DBG(dev, "USE DMA = %d\n", use_dma);
  169. if (use_dma && use_dma_ppb && !use_dma_ppb_du) {
  170. DBG(dev, "DMA mode = PPBNDU (packet per buffer "
  171. "WITHOUT desc. update)\n");
  172. dev_info(&dev->pdev->dev, "DMA mode (%s)\n", "PPBNDU");
  173. } else if (use_dma && use_dma_ppb && use_dma_ppb_du) {
  174. DBG(dev, "DMA mode = PPBDU (packet per buffer "
  175. "WITH desc. update)\n");
  176. dev_info(&dev->pdev->dev, "DMA mode (%s)\n", "PPBDU");
  177. }
  178. if (use_dma && use_dma_bufferfill_mode) {
  179. DBG(dev, "DMA mode = BF (buffer fill mode)\n");
  180. dev_info(&dev->pdev->dev, "DMA mode (%s)\n", "BF");
  181. }
  182. if (!use_dma)
  183. dev_info(&dev->pdev->dev, "FIFO mode\n");
  184. DBG(dev, "-------------------------------------------------------\n");
  185. }
  186. /* Masks unused interrupts */
  187. static int udc_mask_unused_interrupts(struct udc *dev)
  188. {
  189. u32 tmp;
  190. /* mask all dev interrupts */
  191. tmp = AMD_BIT(UDC_DEVINT_SVC) |
  192. AMD_BIT(UDC_DEVINT_ENUM) |
  193. AMD_BIT(UDC_DEVINT_US) |
  194. AMD_BIT(UDC_DEVINT_UR) |
  195. AMD_BIT(UDC_DEVINT_ES) |
  196. AMD_BIT(UDC_DEVINT_SI) |
  197. AMD_BIT(UDC_DEVINT_SOF)|
  198. AMD_BIT(UDC_DEVINT_SC);
  199. writel(tmp, &dev->regs->irqmsk);
  200. /* mask all ep interrupts */
  201. writel(UDC_EPINT_MSK_DISABLE_ALL, &dev->regs->ep_irqmsk);
  202. return 0;
  203. }
  204. /* Enables endpoint 0 interrupts */
  205. static int udc_enable_ep0_interrupts(struct udc *dev)
  206. {
  207. u32 tmp;
  208. DBG(dev, "udc_enable_ep0_interrupts()\n");
  209. /* read irq mask */
  210. tmp = readl(&dev->regs->ep_irqmsk);
  211. /* enable ep0 irq's */
  212. tmp &= AMD_UNMASK_BIT(UDC_EPINT_IN_EP0)
  213. & AMD_UNMASK_BIT(UDC_EPINT_OUT_EP0);
  214. writel(tmp, &dev->regs->ep_irqmsk);
  215. return 0;
  216. }
  217. /* Enables device interrupts for SET_INTF and SET_CONFIG */
  218. static int udc_enable_dev_setup_interrupts(struct udc *dev)
  219. {
  220. u32 tmp;
  221. DBG(dev, "enable device interrupts for setup data\n");
  222. /* read irq mask */
  223. tmp = readl(&dev->regs->irqmsk);
  224. /* enable SET_INTERFACE, SET_CONFIG and other needed irq's */
  225. tmp &= AMD_UNMASK_BIT(UDC_DEVINT_SI)
  226. & AMD_UNMASK_BIT(UDC_DEVINT_SC)
  227. & AMD_UNMASK_BIT(UDC_DEVINT_UR)
  228. & AMD_UNMASK_BIT(UDC_DEVINT_SVC)
  229. & AMD_UNMASK_BIT(UDC_DEVINT_ENUM);
  230. writel(tmp, &dev->regs->irqmsk);
  231. return 0;
  232. }
  233. /* Calculates fifo start of endpoint based on preceding endpoints */
  234. static int udc_set_txfifo_addr(struct udc_ep *ep)
  235. {
  236. struct udc *dev;
  237. u32 tmp;
  238. int i;
  239. if (!ep || !(ep->in))
  240. return -EINVAL;
  241. dev = ep->dev;
  242. ep->txfifo = dev->txfifo;
  243. /* traverse ep's */
  244. for (i = 0; i < ep->num; i++) {
  245. if (dev->ep[i].regs) {
  246. /* read fifo size */
  247. tmp = readl(&dev->ep[i].regs->bufin_framenum);
  248. tmp = AMD_GETBITS(tmp, UDC_EPIN_BUFF_SIZE);
  249. ep->txfifo += tmp;
  250. }
  251. }
  252. return 0;
  253. }
  254. /* CNAK pending field: bit0 = ep0in, bit16 = ep0out */
  255. static u32 cnak_pending;
  256. static void UDC_QUEUE_CNAK(struct udc_ep *ep, unsigned num)
  257. {
  258. if (readl(&ep->regs->ctl) & AMD_BIT(UDC_EPCTL_NAK)) {
  259. DBG(ep->dev, "NAK could not be cleared for ep%d\n", num);
  260. cnak_pending |= 1 << (num);
  261. ep->naking = 1;
  262. } else
  263. cnak_pending = cnak_pending & (~(1 << (num)));
  264. }
  265. /* Enables endpoint, is called by gadget driver */
  266. static int
  267. udc_ep_enable(struct usb_ep *usbep, const struct usb_endpoint_descriptor *desc)
  268. {
  269. struct udc_ep *ep;
  270. struct udc *dev;
  271. u32 tmp;
  272. unsigned long iflags;
  273. u8 udc_csr_epix;
  274. unsigned maxpacket;
  275. if (!usbep
  276. || usbep->name == ep0_string
  277. || !desc
  278. || desc->bDescriptorType != USB_DT_ENDPOINT)
  279. return -EINVAL;
  280. ep = container_of(usbep, struct udc_ep, ep);
  281. dev = ep->dev;
  282. DBG(dev, "udc_ep_enable() ep %d\n", ep->num);
  283. if (!dev->driver || dev->gadget.speed == USB_SPEED_UNKNOWN)
  284. return -ESHUTDOWN;
  285. spin_lock_irqsave(&dev->lock, iflags);
  286. ep->desc = desc;
  287. ep->halted = 0;
  288. /* set traffic type */
  289. tmp = readl(&dev->ep[ep->num].regs->ctl);
  290. tmp = AMD_ADDBITS(tmp, desc->bmAttributes, UDC_EPCTL_ET);
  291. writel(tmp, &dev->ep[ep->num].regs->ctl);
  292. /* set max packet size */
  293. maxpacket = usb_endpoint_maxp(desc);
  294. tmp = readl(&dev->ep[ep->num].regs->bufout_maxpkt);
  295. tmp = AMD_ADDBITS(tmp, maxpacket, UDC_EP_MAX_PKT_SIZE);
  296. ep->ep.maxpacket = maxpacket;
  297. writel(tmp, &dev->ep[ep->num].regs->bufout_maxpkt);
  298. /* IN ep */
  299. if (ep->in) {
  300. /* ep ix in UDC CSR register space */
  301. udc_csr_epix = ep->num;
  302. /* set buffer size (tx fifo entries) */
  303. tmp = readl(&dev->ep[ep->num].regs->bufin_framenum);
  304. /* double buffering: fifo size = 2 x max packet size */
  305. tmp = AMD_ADDBITS(
  306. tmp,
  307. maxpacket * UDC_EPIN_BUFF_SIZE_MULT
  308. / UDC_DWORD_BYTES,
  309. UDC_EPIN_BUFF_SIZE);
  310. writel(tmp, &dev->ep[ep->num].regs->bufin_framenum);
  311. /* calc. tx fifo base addr */
  312. udc_set_txfifo_addr(ep);
  313. /* flush fifo */
  314. tmp = readl(&ep->regs->ctl);
  315. tmp |= AMD_BIT(UDC_EPCTL_F);
  316. writel(tmp, &ep->regs->ctl);
  317. /* OUT ep */
  318. } else {
  319. /* ep ix in UDC CSR register space */
  320. udc_csr_epix = ep->num - UDC_CSR_EP_OUT_IX_OFS;
  321. /* set max packet size UDC CSR */
  322. tmp = readl(&dev->csr->ne[ep->num - UDC_CSR_EP_OUT_IX_OFS]);
  323. tmp = AMD_ADDBITS(tmp, maxpacket,
  324. UDC_CSR_NE_MAX_PKT);
  325. writel(tmp, &dev->csr->ne[ep->num - UDC_CSR_EP_OUT_IX_OFS]);
  326. if (use_dma && !ep->in) {
  327. /* alloc and init BNA dummy request */
  328. ep->bna_dummy_req = udc_alloc_bna_dummy(ep);
  329. ep->bna_occurred = 0;
  330. }
  331. if (ep->num != UDC_EP0OUT_IX)
  332. dev->data_ep_enabled = 1;
  333. }
  334. /* set ep values */
  335. tmp = readl(&dev->csr->ne[udc_csr_epix]);
  336. /* max packet */
  337. tmp = AMD_ADDBITS(tmp, maxpacket, UDC_CSR_NE_MAX_PKT);
  338. /* ep number */
  339. tmp = AMD_ADDBITS(tmp, desc->bEndpointAddress, UDC_CSR_NE_NUM);
  340. /* ep direction */
  341. tmp = AMD_ADDBITS(tmp, ep->in, UDC_CSR_NE_DIR);
  342. /* ep type */
  343. tmp = AMD_ADDBITS(tmp, desc->bmAttributes, UDC_CSR_NE_TYPE);
  344. /* ep config */
  345. tmp = AMD_ADDBITS(tmp, ep->dev->cur_config, UDC_CSR_NE_CFG);
  346. /* ep interface */
  347. tmp = AMD_ADDBITS(tmp, ep->dev->cur_intf, UDC_CSR_NE_INTF);
  348. /* ep alt */
  349. tmp = AMD_ADDBITS(tmp, ep->dev->cur_alt, UDC_CSR_NE_ALT);
  350. /* write reg */
  351. writel(tmp, &dev->csr->ne[udc_csr_epix]);
  352. /* enable ep irq */
  353. tmp = readl(&dev->regs->ep_irqmsk);
  354. tmp &= AMD_UNMASK_BIT(ep->num);
  355. writel(tmp, &dev->regs->ep_irqmsk);
  356. /*
  357. * clear NAK by writing CNAK
  358. * avoid BNA for OUT DMA, don't clear NAK until DMA desc. written
  359. */
  360. if (!use_dma || ep->in) {
  361. tmp = readl(&ep->regs->ctl);
  362. tmp |= AMD_BIT(UDC_EPCTL_CNAK);
  363. writel(tmp, &ep->regs->ctl);
  364. ep->naking = 0;
  365. UDC_QUEUE_CNAK(ep, ep->num);
  366. }
  367. tmp = desc->bEndpointAddress;
  368. DBG(dev, "%s enabled\n", usbep->name);
  369. spin_unlock_irqrestore(&dev->lock, iflags);
  370. return 0;
  371. }
  372. /* Resets endpoint */
  373. static void ep_init(struct udc_regs __iomem *regs, struct udc_ep *ep)
  374. {
  375. u32 tmp;
  376. VDBG(ep->dev, "ep-%d reset\n", ep->num);
  377. ep->desc = NULL;
  378. ep->ep.desc = NULL;
  379. ep->ep.ops = &udc_ep_ops;
  380. INIT_LIST_HEAD(&ep->queue);
  381. ep->ep.maxpacket = (u16) ~0;
  382. /* set NAK */
  383. tmp = readl(&ep->regs->ctl);
  384. tmp |= AMD_BIT(UDC_EPCTL_SNAK);
  385. writel(tmp, &ep->regs->ctl);
  386. ep->naking = 1;
  387. /* disable interrupt */
  388. tmp = readl(&regs->ep_irqmsk);
  389. tmp |= AMD_BIT(ep->num);
  390. writel(tmp, &regs->ep_irqmsk);
  391. if (ep->in) {
  392. /* unset P and IN bit of potential former DMA */
  393. tmp = readl(&ep->regs->ctl);
  394. tmp &= AMD_UNMASK_BIT(UDC_EPCTL_P);
  395. writel(tmp, &ep->regs->ctl);
  396. tmp = readl(&ep->regs->sts);
  397. tmp |= AMD_BIT(UDC_EPSTS_IN);
  398. writel(tmp, &ep->regs->sts);
  399. /* flush the fifo */
  400. tmp = readl(&ep->regs->ctl);
  401. tmp |= AMD_BIT(UDC_EPCTL_F);
  402. writel(tmp, &ep->regs->ctl);
  403. }
  404. /* reset desc pointer */
  405. writel(0, &ep->regs->desptr);
  406. }
  407. /* Disables endpoint, is called by gadget driver */
  408. static int udc_ep_disable(struct usb_ep *usbep)
  409. {
  410. struct udc_ep *ep = NULL;
  411. unsigned long iflags;
  412. if (!usbep)
  413. return -EINVAL;
  414. ep = container_of(usbep, struct udc_ep, ep);
  415. if (usbep->name == ep0_string || !ep->desc)
  416. return -EINVAL;
  417. DBG(ep->dev, "Disable ep-%d\n", ep->num);
  418. spin_lock_irqsave(&ep->dev->lock, iflags);
  419. udc_free_request(&ep->ep, &ep->bna_dummy_req->req);
  420. empty_req_queue(ep);
  421. ep_init(ep->dev->regs, ep);
  422. spin_unlock_irqrestore(&ep->dev->lock, iflags);
  423. return 0;
  424. }
  425. /* Allocates request packet, called by gadget driver */
  426. static struct usb_request *
  427. udc_alloc_request(struct usb_ep *usbep, gfp_t gfp)
  428. {
  429. struct udc_request *req;
  430. struct udc_data_dma *dma_desc;
  431. struct udc_ep *ep;
  432. if (!usbep)
  433. return NULL;
  434. ep = container_of(usbep, struct udc_ep, ep);
  435. VDBG(ep->dev, "udc_alloc_req(): ep%d\n", ep->num);
  436. req = kzalloc(sizeof(struct udc_request), gfp);
  437. if (!req)
  438. return NULL;
  439. req->req.dma = DMA_DONT_USE;
  440. INIT_LIST_HEAD(&req->queue);
  441. if (ep->dma) {
  442. /* ep0 in requests are allocated from data pool here */
  443. dma_desc = pci_pool_alloc(ep->dev->data_requests, gfp,
  444. &req->td_phys);
  445. if (!dma_desc) {
  446. kfree(req);
  447. return NULL;
  448. }
  449. VDBG(ep->dev, "udc_alloc_req: req = %p dma_desc = %p, "
  450. "td_phys = %lx\n",
  451. req, dma_desc,
  452. (unsigned long)req->td_phys);
  453. /* prevent from using desc. - set HOST BUSY */
  454. dma_desc->status = AMD_ADDBITS(dma_desc->status,
  455. UDC_DMA_STP_STS_BS_HOST_BUSY,
  456. UDC_DMA_STP_STS_BS);
  457. dma_desc->bufptr = cpu_to_le32(DMA_DONT_USE);
  458. req->td_data = dma_desc;
  459. req->td_data_last = NULL;
  460. req->chain_len = 1;
  461. }
  462. return &req->req;
  463. }
  464. /* Frees request packet, called by gadget driver */
  465. static void
  466. udc_free_request(struct usb_ep *usbep, struct usb_request *usbreq)
  467. {
  468. struct udc_ep *ep;
  469. struct udc_request *req;
  470. if (!usbep || !usbreq)
  471. return;
  472. ep = container_of(usbep, struct udc_ep, ep);
  473. req = container_of(usbreq, struct udc_request, req);
  474. VDBG(ep->dev, "free_req req=%p\n", req);
  475. BUG_ON(!list_empty(&req->queue));
  476. if (req->td_data) {
  477. VDBG(ep->dev, "req->td_data=%p\n", req->td_data);
  478. /* free dma chain if created */
  479. if (req->chain_len > 1)
  480. udc_free_dma_chain(ep->dev, req);
  481. pci_pool_free(ep->dev->data_requests, req->td_data,
  482. req->td_phys);
  483. }
  484. kfree(req);
  485. }
  486. /* Init BNA dummy descriptor for HOST BUSY and pointing to itself */
  487. static void udc_init_bna_dummy(struct udc_request *req)
  488. {
  489. if (req) {
  490. /* set last bit */
  491. req->td_data->status |= AMD_BIT(UDC_DMA_IN_STS_L);
  492. /* set next pointer to itself */
  493. req->td_data->next = req->td_phys;
  494. /* set HOST BUSY */
  495. req->td_data->status
  496. = AMD_ADDBITS(req->td_data->status,
  497. UDC_DMA_STP_STS_BS_DMA_DONE,
  498. UDC_DMA_STP_STS_BS);
  499. #ifdef UDC_VERBOSE
  500. pr_debug("bna desc = %p, sts = %08x\n",
  501. req->td_data, req->td_data->status);
  502. #endif
  503. }
  504. }
  505. /* Allocate BNA dummy descriptor */
  506. static struct udc_request *udc_alloc_bna_dummy(struct udc_ep *ep)
  507. {
  508. struct udc_request *req = NULL;
  509. struct usb_request *_req = NULL;
  510. /* alloc the dummy request */
  511. _req = udc_alloc_request(&ep->ep, GFP_ATOMIC);
  512. if (_req) {
  513. req = container_of(_req, struct udc_request, req);
  514. ep->bna_dummy_req = req;
  515. udc_init_bna_dummy(req);
  516. }
  517. return req;
  518. }
  519. /* Write data to TX fifo for IN packets */
  520. static void
  521. udc_txfifo_write(struct udc_ep *ep, struct usb_request *req)
  522. {
  523. u8 *req_buf;
  524. u32 *buf;
  525. int i, j;
  526. unsigned bytes = 0;
  527. unsigned remaining = 0;
  528. if (!req || !ep)
  529. return;
  530. req_buf = req->buf + req->actual;
  531. prefetch(req_buf);
  532. remaining = req->length - req->actual;
  533. buf = (u32 *) req_buf;
  534. bytes = ep->ep.maxpacket;
  535. if (bytes > remaining)
  536. bytes = remaining;
  537. /* dwords first */
  538. for (i = 0; i < bytes / UDC_DWORD_BYTES; i++)
  539. writel(*(buf + i), ep->txfifo);
  540. /* remaining bytes must be written by byte access */
  541. for (j = 0; j < bytes % UDC_DWORD_BYTES; j++) {
  542. writeb((u8)(*(buf + i) >> (j << UDC_BITS_PER_BYTE_SHIFT)),
  543. ep->txfifo);
  544. }
  545. /* dummy write confirm */
  546. writel(0, &ep->regs->confirm);
  547. }
  548. /* Read dwords from RX fifo for OUT transfers */
  549. static int udc_rxfifo_read_dwords(struct udc *dev, u32 *buf, int dwords)
  550. {
  551. int i;
  552. VDBG(dev, "udc_read_dwords(): %d dwords\n", dwords);
  553. for (i = 0; i < dwords; i++)
  554. *(buf + i) = readl(dev->rxfifo);
  555. return 0;
  556. }
  557. /* Read bytes from RX fifo for OUT transfers */
  558. static int udc_rxfifo_read_bytes(struct udc *dev, u8 *buf, int bytes)
  559. {
  560. int i, j;
  561. u32 tmp;
  562. VDBG(dev, "udc_read_bytes(): %d bytes\n", bytes);
  563. /* dwords first */
  564. for (i = 0; i < bytes / UDC_DWORD_BYTES; i++)
  565. *((u32 *)(buf + (i<<2))) = readl(dev->rxfifo);
  566. /* remaining bytes must be read by byte access */
  567. if (bytes % UDC_DWORD_BYTES) {
  568. tmp = readl(dev->rxfifo);
  569. for (j = 0; j < bytes % UDC_DWORD_BYTES; j++) {
  570. *(buf + (i<<2) + j) = (u8)(tmp & UDC_BYTE_MASK);
  571. tmp = tmp >> UDC_BITS_PER_BYTE;
  572. }
  573. }
  574. return 0;
  575. }
  576. /* Read data from RX fifo for OUT transfers */
  577. static int
  578. udc_rxfifo_read(struct udc_ep *ep, struct udc_request *req)
  579. {
  580. u8 *buf;
  581. unsigned buf_space;
  582. unsigned bytes = 0;
  583. unsigned finished = 0;
  584. /* received number bytes */
  585. bytes = readl(&ep->regs->sts);
  586. bytes = AMD_GETBITS(bytes, UDC_EPSTS_RX_PKT_SIZE);
  587. buf_space = req->req.length - req->req.actual;
  588. buf = req->req.buf + req->req.actual;
  589. if (bytes > buf_space) {
  590. if ((buf_space % ep->ep.maxpacket) != 0) {
  591. DBG(ep->dev,
  592. "%s: rx %d bytes, rx-buf space = %d bytesn\n",
  593. ep->ep.name, bytes, buf_space);
  594. req->req.status = -EOVERFLOW;
  595. }
  596. bytes = buf_space;
  597. }
  598. req->req.actual += bytes;
  599. /* last packet ? */
  600. if (((bytes % ep->ep.maxpacket) != 0) || (!bytes)
  601. || ((req->req.actual == req->req.length) && !req->req.zero))
  602. finished = 1;
  603. /* read rx fifo bytes */
  604. VDBG(ep->dev, "ep %s: rxfifo read %d bytes\n", ep->ep.name, bytes);
  605. udc_rxfifo_read_bytes(ep->dev, buf, bytes);
  606. return finished;
  607. }
  608. /* create/re-init a DMA descriptor or a DMA descriptor chain */
  609. static int prep_dma(struct udc_ep *ep, struct udc_request *req, gfp_t gfp)
  610. {
  611. int retval = 0;
  612. u32 tmp;
  613. VDBG(ep->dev, "prep_dma\n");
  614. VDBG(ep->dev, "prep_dma ep%d req->td_data=%p\n",
  615. ep->num, req->td_data);
  616. /* set buffer pointer */
  617. req->td_data->bufptr = req->req.dma;
  618. /* set last bit */
  619. req->td_data->status |= AMD_BIT(UDC_DMA_IN_STS_L);
  620. /* build/re-init dma chain if maxpkt scatter mode, not for EP0 */
  621. if (use_dma_ppb) {
  622. retval = udc_create_dma_chain(ep, req, ep->ep.maxpacket, gfp);
  623. if (retval != 0) {
  624. if (retval == -ENOMEM)
  625. DBG(ep->dev, "Out of DMA memory\n");
  626. return retval;
  627. }
  628. if (ep->in) {
  629. if (req->req.length == ep->ep.maxpacket) {
  630. /* write tx bytes */
  631. req->td_data->status =
  632. AMD_ADDBITS(req->td_data->status,
  633. ep->ep.maxpacket,
  634. UDC_DMA_IN_STS_TXBYTES);
  635. }
  636. }
  637. }
  638. if (ep->in) {
  639. VDBG(ep->dev, "IN: use_dma_ppb=%d req->req.len=%d "
  640. "maxpacket=%d ep%d\n",
  641. use_dma_ppb, req->req.length,
  642. ep->ep.maxpacket, ep->num);
  643. /*
  644. * if bytes < max packet then tx bytes must
  645. * be written in packet per buffer mode
  646. */
  647. if (!use_dma_ppb || req->req.length < ep->ep.maxpacket
  648. || ep->num == UDC_EP0OUT_IX
  649. || ep->num == UDC_EP0IN_IX) {
  650. /* write tx bytes */
  651. req->td_data->status =
  652. AMD_ADDBITS(req->td_data->status,
  653. req->req.length,
  654. UDC_DMA_IN_STS_TXBYTES);
  655. /* reset frame num */
  656. req->td_data->status =
  657. AMD_ADDBITS(req->td_data->status,
  658. 0,
  659. UDC_DMA_IN_STS_FRAMENUM);
  660. }
  661. /* set HOST BUSY */
  662. req->td_data->status =
  663. AMD_ADDBITS(req->td_data->status,
  664. UDC_DMA_STP_STS_BS_HOST_BUSY,
  665. UDC_DMA_STP_STS_BS);
  666. } else {
  667. VDBG(ep->dev, "OUT set host ready\n");
  668. /* set HOST READY */
  669. req->td_data->status =
  670. AMD_ADDBITS(req->td_data->status,
  671. UDC_DMA_STP_STS_BS_HOST_READY,
  672. UDC_DMA_STP_STS_BS);
  673. /* clear NAK by writing CNAK */
  674. if (ep->naking) {
  675. tmp = readl(&ep->regs->ctl);
  676. tmp |= AMD_BIT(UDC_EPCTL_CNAK);
  677. writel(tmp, &ep->regs->ctl);
  678. ep->naking = 0;
  679. UDC_QUEUE_CNAK(ep, ep->num);
  680. }
  681. }
  682. return retval;
  683. }
  684. /* Completes request packet ... caller MUST hold lock */
  685. static void
  686. complete_req(struct udc_ep *ep, struct udc_request *req, int sts)
  687. __releases(ep->dev->lock)
  688. __acquires(ep->dev->lock)
  689. {
  690. struct udc *dev;
  691. unsigned halted;
  692. VDBG(ep->dev, "complete_req(): ep%d\n", ep->num);
  693. dev = ep->dev;
  694. /* unmap DMA */
  695. if (ep->dma)
  696. usb_gadget_unmap_request(&dev->gadget, &req->req, ep->in);
  697. halted = ep->halted;
  698. ep->halted = 1;
  699. /* set new status if pending */
  700. if (req->req.status == -EINPROGRESS)
  701. req->req.status = sts;
  702. /* remove from ep queue */
  703. list_del_init(&req->queue);
  704. VDBG(ep->dev, "req %p => complete %d bytes at %s with sts %d\n",
  705. &req->req, req->req.length, ep->ep.name, sts);
  706. spin_unlock(&dev->lock);
  707. req->req.complete(&ep->ep, &req->req);
  708. spin_lock(&dev->lock);
  709. ep->halted = halted;
  710. }
  711. /* frees pci pool descriptors of a DMA chain */
  712. static int udc_free_dma_chain(struct udc *dev, struct udc_request *req)
  713. {
  714. int ret_val = 0;
  715. struct udc_data_dma *td;
  716. struct udc_data_dma *td_last = NULL;
  717. unsigned int i;
  718. DBG(dev, "free chain req = %p\n", req);
  719. /* do not free first desc., will be done by free for request */
  720. td_last = req->td_data;
  721. td = phys_to_virt(td_last->next);
  722. for (i = 1; i < req->chain_len; i++) {
  723. pci_pool_free(dev->data_requests, td,
  724. (dma_addr_t) td_last->next);
  725. td_last = td;
  726. td = phys_to_virt(td_last->next);
  727. }
  728. return ret_val;
  729. }
  730. /* Iterates to the end of a DMA chain and returns last descriptor */
  731. static struct udc_data_dma *udc_get_last_dma_desc(struct udc_request *req)
  732. {
  733. struct udc_data_dma *td;
  734. td = req->td_data;
  735. while (td && !(td->status & AMD_BIT(UDC_DMA_IN_STS_L)))
  736. td = phys_to_virt(td->next);
  737. return td;
  738. }
  739. /* Iterates to the end of a DMA chain and counts bytes received */
  740. static u32 udc_get_ppbdu_rxbytes(struct udc_request *req)
  741. {
  742. struct udc_data_dma *td;
  743. u32 count;
  744. td = req->td_data;
  745. /* received number bytes */
  746. count = AMD_GETBITS(td->status, UDC_DMA_OUT_STS_RXBYTES);
  747. while (td && !(td->status & AMD_BIT(UDC_DMA_IN_STS_L))) {
  748. td = phys_to_virt(td->next);
  749. /* received number bytes */
  750. if (td) {
  751. count += AMD_GETBITS(td->status,
  752. UDC_DMA_OUT_STS_RXBYTES);
  753. }
  754. }
  755. return count;
  756. }
  757. /* Creates or re-inits a DMA chain */
  758. static int udc_create_dma_chain(
  759. struct udc_ep *ep,
  760. struct udc_request *req,
  761. unsigned long buf_len, gfp_t gfp_flags
  762. )
  763. {
  764. unsigned long bytes = req->req.length;
  765. unsigned int i;
  766. dma_addr_t dma_addr;
  767. struct udc_data_dma *td = NULL;
  768. struct udc_data_dma *last = NULL;
  769. unsigned long txbytes;
  770. unsigned create_new_chain = 0;
  771. unsigned len;
  772. VDBG(ep->dev, "udc_create_dma_chain: bytes=%ld buf_len=%ld\n",
  773. bytes, buf_len);
  774. dma_addr = DMA_DONT_USE;
  775. /* unset L bit in first desc for OUT */
  776. if (!ep->in)
  777. req->td_data->status &= AMD_CLEAR_BIT(UDC_DMA_IN_STS_L);
  778. /* alloc only new desc's if not already available */
  779. len = req->req.length / ep->ep.maxpacket;
  780. if (req->req.length % ep->ep.maxpacket)
  781. len++;
  782. if (len > req->chain_len) {
  783. /* shorter chain already allocated before */
  784. if (req->chain_len > 1)
  785. udc_free_dma_chain(ep->dev, req);
  786. req->chain_len = len;
  787. create_new_chain = 1;
  788. }
  789. td = req->td_data;
  790. /* gen. required number of descriptors and buffers */
  791. for (i = buf_len; i < bytes; i += buf_len) {
  792. /* create or determine next desc. */
  793. if (create_new_chain) {
  794. td = pci_pool_alloc(ep->dev->data_requests,
  795. gfp_flags, &dma_addr);
  796. if (!td)
  797. return -ENOMEM;
  798. td->status = 0;
  799. } else if (i == buf_len) {
  800. /* first td */
  801. td = (struct udc_data_dma *) phys_to_virt(
  802. req->td_data->next);
  803. td->status = 0;
  804. } else {
  805. td = (struct udc_data_dma *) phys_to_virt(last->next);
  806. td->status = 0;
  807. }
  808. if (td)
  809. td->bufptr = req->req.dma + i; /* assign buffer */
  810. else
  811. break;
  812. /* short packet ? */
  813. if ((bytes - i) >= buf_len) {
  814. txbytes = buf_len;
  815. } else {
  816. /* short packet */
  817. txbytes = bytes - i;
  818. }
  819. /* link td and assign tx bytes */
  820. if (i == buf_len) {
  821. if (create_new_chain)
  822. req->td_data->next = dma_addr;
  823. /*
  824. else
  825. req->td_data->next = virt_to_phys(td);
  826. */
  827. /* write tx bytes */
  828. if (ep->in) {
  829. /* first desc */
  830. req->td_data->status =
  831. AMD_ADDBITS(req->td_data->status,
  832. ep->ep.maxpacket,
  833. UDC_DMA_IN_STS_TXBYTES);
  834. /* second desc */
  835. td->status = AMD_ADDBITS(td->status,
  836. txbytes,
  837. UDC_DMA_IN_STS_TXBYTES);
  838. }
  839. } else {
  840. if (create_new_chain)
  841. last->next = dma_addr;
  842. /*
  843. else
  844. last->next = virt_to_phys(td);
  845. */
  846. if (ep->in) {
  847. /* write tx bytes */
  848. td->status = AMD_ADDBITS(td->status,
  849. txbytes,
  850. UDC_DMA_IN_STS_TXBYTES);
  851. }
  852. }
  853. last = td;
  854. }
  855. /* set last bit */
  856. if (td) {
  857. td->status |= AMD_BIT(UDC_DMA_IN_STS_L);
  858. /* last desc. points to itself */
  859. req->td_data_last = td;
  860. }
  861. return 0;
  862. }
  863. /* Enabling RX DMA */
  864. static void udc_set_rde(struct udc *dev)
  865. {
  866. u32 tmp;
  867. VDBG(dev, "udc_set_rde()\n");
  868. /* stop RDE timer */
  869. if (timer_pending(&udc_timer)) {
  870. set_rde = 0;
  871. mod_timer(&udc_timer, jiffies - 1);
  872. }
  873. /* set RDE */
  874. tmp = readl(&dev->regs->ctl);
  875. tmp |= AMD_BIT(UDC_DEVCTL_RDE);
  876. writel(tmp, &dev->regs->ctl);
  877. }
  878. /* Queues a request packet, called by gadget driver */
  879. static int
  880. udc_queue(struct usb_ep *usbep, struct usb_request *usbreq, gfp_t gfp)
  881. {
  882. int retval = 0;
  883. u8 open_rxfifo = 0;
  884. unsigned long iflags;
  885. struct udc_ep *ep;
  886. struct udc_request *req;
  887. struct udc *dev;
  888. u32 tmp;
  889. /* check the inputs */
  890. req = container_of(usbreq, struct udc_request, req);
  891. if (!usbep || !usbreq || !usbreq->complete || !usbreq->buf
  892. || !list_empty(&req->queue))
  893. return -EINVAL;
  894. ep = container_of(usbep, struct udc_ep, ep);
  895. if (!ep->desc && (ep->num != 0 && ep->num != UDC_EP0OUT_IX))
  896. return -EINVAL;
  897. VDBG(ep->dev, "udc_queue(): ep%d-in=%d\n", ep->num, ep->in);
  898. dev = ep->dev;
  899. if (!dev->driver || dev->gadget.speed == USB_SPEED_UNKNOWN)
  900. return -ESHUTDOWN;
  901. /* map dma (usually done before) */
  902. if (ep->dma) {
  903. VDBG(dev, "DMA map req %p\n", req);
  904. retval = usb_gadget_map_request(&udc->gadget, usbreq, ep->in);
  905. if (retval)
  906. return retval;
  907. }
  908. VDBG(dev, "%s queue req %p, len %d req->td_data=%p buf %p\n",
  909. usbep->name, usbreq, usbreq->length,
  910. req->td_data, usbreq->buf);
  911. spin_lock_irqsave(&dev->lock, iflags);
  912. usbreq->actual = 0;
  913. usbreq->status = -EINPROGRESS;
  914. req->dma_done = 0;
  915. /* on empty queue just do first transfer */
  916. if (list_empty(&ep->queue)) {
  917. /* zlp */
  918. if (usbreq->length == 0) {
  919. /* IN zlp's are handled by hardware */
  920. complete_req(ep, req, 0);
  921. VDBG(dev, "%s: zlp\n", ep->ep.name);
  922. /*
  923. * if set_config or set_intf is waiting for ack by zlp
  924. * then set CSR_DONE
  925. */
  926. if (dev->set_cfg_not_acked) {
  927. tmp = readl(&dev->regs->ctl);
  928. tmp |= AMD_BIT(UDC_DEVCTL_CSR_DONE);
  929. writel(tmp, &dev->regs->ctl);
  930. dev->set_cfg_not_acked = 0;
  931. }
  932. /* setup command is ACK'ed now by zlp */
  933. if (dev->waiting_zlp_ack_ep0in) {
  934. /* clear NAK by writing CNAK in EP0_IN */
  935. tmp = readl(&dev->ep[UDC_EP0IN_IX].regs->ctl);
  936. tmp |= AMD_BIT(UDC_EPCTL_CNAK);
  937. writel(tmp, &dev->ep[UDC_EP0IN_IX].regs->ctl);
  938. dev->ep[UDC_EP0IN_IX].naking = 0;
  939. UDC_QUEUE_CNAK(&dev->ep[UDC_EP0IN_IX],
  940. UDC_EP0IN_IX);
  941. dev->waiting_zlp_ack_ep0in = 0;
  942. }
  943. goto finished;
  944. }
  945. if (ep->dma) {
  946. retval = prep_dma(ep, req, gfp);
  947. if (retval != 0)
  948. goto finished;
  949. /* write desc pointer to enable DMA */
  950. if (ep->in) {
  951. /* set HOST READY */
  952. req->td_data->status =
  953. AMD_ADDBITS(req->td_data->status,
  954. UDC_DMA_IN_STS_BS_HOST_READY,
  955. UDC_DMA_IN_STS_BS);
  956. }
  957. /* disabled rx dma while descriptor update */
  958. if (!ep->in) {
  959. /* stop RDE timer */
  960. if (timer_pending(&udc_timer)) {
  961. set_rde = 0;
  962. mod_timer(&udc_timer, jiffies - 1);
  963. }
  964. /* clear RDE */
  965. tmp = readl(&dev->regs->ctl);
  966. tmp &= AMD_UNMASK_BIT(UDC_DEVCTL_RDE);
  967. writel(tmp, &dev->regs->ctl);
  968. open_rxfifo = 1;
  969. /*
  970. * if BNA occurred then let BNA dummy desc.
  971. * point to current desc.
  972. */
  973. if (ep->bna_occurred) {
  974. VDBG(dev, "copy to BNA dummy desc.\n");
  975. memcpy(ep->bna_dummy_req->td_data,
  976. req->td_data,
  977. sizeof(struct udc_data_dma));
  978. }
  979. }
  980. /* write desc pointer */
  981. writel(req->td_phys, &ep->regs->desptr);
  982. /* clear NAK by writing CNAK */
  983. if (ep->naking) {
  984. tmp = readl(&ep->regs->ctl);
  985. tmp |= AMD_BIT(UDC_EPCTL_CNAK);
  986. writel(tmp, &ep->regs->ctl);
  987. ep->naking = 0;
  988. UDC_QUEUE_CNAK(ep, ep->num);
  989. }
  990. if (ep->in) {
  991. /* enable ep irq */
  992. tmp = readl(&dev->regs->ep_irqmsk);
  993. tmp &= AMD_UNMASK_BIT(ep->num);
  994. writel(tmp, &dev->regs->ep_irqmsk);
  995. }
  996. } else if (ep->in) {
  997. /* enable ep irq */
  998. tmp = readl(&dev->regs->ep_irqmsk);
  999. tmp &= AMD_UNMASK_BIT(ep->num);
  1000. writel(tmp, &dev->regs->ep_irqmsk);
  1001. }
  1002. } else if (ep->dma) {
  1003. /*
  1004. * prep_dma not used for OUT ep's, this is not possible
  1005. * for PPB modes, because of chain creation reasons
  1006. */
  1007. if (ep->in) {
  1008. retval = prep_dma(ep, req, gfp);
  1009. if (retval != 0)
  1010. goto finished;
  1011. }
  1012. }
  1013. VDBG(dev, "list_add\n");
  1014. /* add request to ep queue */
  1015. if (req) {
  1016. list_add_tail(&req->queue, &ep->queue);
  1017. /* open rxfifo if out data queued */
  1018. if (open_rxfifo) {
  1019. /* enable DMA */
  1020. req->dma_going = 1;
  1021. udc_set_rde(dev);
  1022. if (ep->num != UDC_EP0OUT_IX)
  1023. dev->data_ep_queued = 1;
  1024. }
  1025. /* stop OUT naking */
  1026. if (!ep->in) {
  1027. if (!use_dma && udc_rxfifo_pending) {
  1028. DBG(dev, "udc_queue(): pending bytes in "
  1029. "rxfifo after nyet\n");
  1030. /*
  1031. * read pending bytes afer nyet:
  1032. * referring to isr
  1033. */
  1034. if (udc_rxfifo_read(ep, req)) {
  1035. /* finish */
  1036. complete_req(ep, req, 0);
  1037. }
  1038. udc_rxfifo_pending = 0;
  1039. }
  1040. }
  1041. }
  1042. finished:
  1043. spin_unlock_irqrestore(&dev->lock, iflags);
  1044. return retval;
  1045. }
  1046. /* Empty request queue of an endpoint; caller holds spinlock */
  1047. static void empty_req_queue(struct udc_ep *ep)
  1048. {
  1049. struct udc_request *req;
  1050. ep->halted = 1;
  1051. while (!list_empty(&ep->queue)) {
  1052. req = list_entry(ep->queue.next,
  1053. struct udc_request,
  1054. queue);
  1055. complete_req(ep, req, -ESHUTDOWN);
  1056. }
  1057. }
  1058. /* Dequeues a request packet, called by gadget driver */
  1059. static int udc_dequeue(struct usb_ep *usbep, struct usb_request *usbreq)
  1060. {
  1061. struct udc_ep *ep;
  1062. struct udc_request *req;
  1063. unsigned halted;
  1064. unsigned long iflags;
  1065. ep = container_of(usbep, struct udc_ep, ep);
  1066. if (!usbep || !usbreq || (!ep->desc && (ep->num != 0
  1067. && ep->num != UDC_EP0OUT_IX)))
  1068. return -EINVAL;
  1069. req = container_of(usbreq, struct udc_request, req);
  1070. spin_lock_irqsave(&ep->dev->lock, iflags);
  1071. halted = ep->halted;
  1072. ep->halted = 1;
  1073. /* request in processing or next one */
  1074. if (ep->queue.next == &req->queue) {
  1075. if (ep->dma && req->dma_going) {
  1076. if (ep->in)
  1077. ep->cancel_transfer = 1;
  1078. else {
  1079. u32 tmp;
  1080. u32 dma_sts;
  1081. /* stop potential receive DMA */
  1082. tmp = readl(&udc->regs->ctl);
  1083. writel(tmp & AMD_UNMASK_BIT(UDC_DEVCTL_RDE),
  1084. &udc->regs->ctl);
  1085. /*
  1086. * Cancel transfer later in ISR
  1087. * if descriptor was touched.
  1088. */
  1089. dma_sts = AMD_GETBITS(req->td_data->status,
  1090. UDC_DMA_OUT_STS_BS);
  1091. if (dma_sts != UDC_DMA_OUT_STS_BS_HOST_READY)
  1092. ep->cancel_transfer = 1;
  1093. else {
  1094. udc_init_bna_dummy(ep->req);
  1095. writel(ep->bna_dummy_req->td_phys,
  1096. &ep->regs->desptr);
  1097. }
  1098. writel(tmp, &udc->regs->ctl);
  1099. }
  1100. }
  1101. }
  1102. complete_req(ep, req, -ECONNRESET);
  1103. ep->halted = halted;
  1104. spin_unlock_irqrestore(&ep->dev->lock, iflags);
  1105. return 0;
  1106. }
  1107. /* Halt or clear halt of endpoint */
  1108. static int
  1109. udc_set_halt(struct usb_ep *usbep, int halt)
  1110. {
  1111. struct udc_ep *ep;
  1112. u32 tmp;
  1113. unsigned long iflags;
  1114. int retval = 0;
  1115. if (!usbep)
  1116. return -EINVAL;
  1117. pr_debug("set_halt %s: halt=%d\n", usbep->name, halt);
  1118. ep = container_of(usbep, struct udc_ep, ep);
  1119. if (!ep->desc && (ep->num != 0 && ep->num != UDC_EP0OUT_IX))
  1120. return -EINVAL;
  1121. if (!ep->dev->driver || ep->dev->gadget.speed == USB_SPEED_UNKNOWN)
  1122. return -ESHUTDOWN;
  1123. spin_lock_irqsave(&udc_stall_spinlock, iflags);
  1124. /* halt or clear halt */
  1125. if (halt) {
  1126. if (ep->num == 0)
  1127. ep->dev->stall_ep0in = 1;
  1128. else {
  1129. /*
  1130. * set STALL
  1131. * rxfifo empty not taken into acount
  1132. */
  1133. tmp = readl(&ep->regs->ctl);
  1134. tmp |= AMD_BIT(UDC_EPCTL_S);
  1135. writel(tmp, &ep->regs->ctl);
  1136. ep->halted = 1;
  1137. /* setup poll timer */
  1138. if (!timer_pending(&udc_pollstall_timer)) {
  1139. udc_pollstall_timer.expires = jiffies +
  1140. HZ * UDC_POLLSTALL_TIMER_USECONDS
  1141. / (1000 * 1000);
  1142. if (!stop_pollstall_timer) {
  1143. DBG(ep->dev, "start polltimer\n");
  1144. add_timer(&udc_pollstall_timer);
  1145. }
  1146. }
  1147. }
  1148. } else {
  1149. /* ep is halted by set_halt() before */
  1150. if (ep->halted) {
  1151. tmp = readl(&ep->regs->ctl);
  1152. /* clear stall bit */
  1153. tmp = tmp & AMD_CLEAR_BIT(UDC_EPCTL_S);
  1154. /* clear NAK by writing CNAK */
  1155. tmp |= AMD_BIT(UDC_EPCTL_CNAK);
  1156. writel(tmp, &ep->regs->ctl);
  1157. ep->halted = 0;
  1158. UDC_QUEUE_CNAK(ep, ep->num);
  1159. }
  1160. }
  1161. spin_unlock_irqrestore(&udc_stall_spinlock, iflags);
  1162. return retval;
  1163. }
  1164. /* gadget interface */
  1165. static const struct usb_ep_ops udc_ep_ops = {
  1166. .enable = udc_ep_enable,
  1167. .disable = udc_ep_disable,
  1168. .alloc_request = udc_alloc_request,
  1169. .free_request = udc_free_request,
  1170. .queue = udc_queue,
  1171. .dequeue = udc_dequeue,
  1172. .set_halt = udc_set_halt,
  1173. /* fifo ops not implemented */
  1174. };
  1175. /*-------------------------------------------------------------------------*/
  1176. /* Get frame counter (not implemented) */
  1177. static int udc_get_frame(struct usb_gadget *gadget)
  1178. {
  1179. return -EOPNOTSUPP;
  1180. }
  1181. /* Remote wakeup gadget interface */
  1182. static int udc_wakeup(struct usb_gadget *gadget)
  1183. {
  1184. struct udc *dev;
  1185. if (!gadget)
  1186. return -EINVAL;
  1187. dev = container_of(gadget, struct udc, gadget);
  1188. udc_remote_wakeup(dev);
  1189. return 0;
  1190. }
  1191. static int amd5536_start(struct usb_gadget_driver *driver,
  1192. int (*bind)(struct usb_gadget *));
  1193. static int amd5536_stop(struct usb_gadget_driver *driver);
  1194. /* gadget operations */
  1195. static const struct usb_gadget_ops udc_ops = {
  1196. .wakeup = udc_wakeup,
  1197. .get_frame = udc_get_frame,
  1198. .start = amd5536_start,
  1199. .stop = amd5536_stop,
  1200. };
  1201. /* Setups endpoint parameters, adds endpoints to linked list */
  1202. static void make_ep_lists(struct udc *dev)
  1203. {
  1204. /* make gadget ep lists */
  1205. INIT_LIST_HEAD(&dev->gadget.ep_list);
  1206. list_add_tail(&dev->ep[UDC_EPIN_STATUS_IX].ep.ep_list,
  1207. &dev->gadget.ep_list);
  1208. list_add_tail(&dev->ep[UDC_EPIN_IX].ep.ep_list,
  1209. &dev->gadget.ep_list);
  1210. list_add_tail(&dev->ep[UDC_EPOUT_IX].ep.ep_list,
  1211. &dev->gadget.ep_list);
  1212. /* fifo config */
  1213. dev->ep[UDC_EPIN_STATUS_IX].fifo_depth = UDC_EPIN_SMALLINT_BUFF_SIZE;
  1214. if (dev->gadget.speed == USB_SPEED_FULL)
  1215. dev->ep[UDC_EPIN_IX].fifo_depth = UDC_FS_EPIN_BUFF_SIZE;
  1216. else if (dev->gadget.speed == USB_SPEED_HIGH)
  1217. dev->ep[UDC_EPIN_IX].fifo_depth = hs_tx_buf;
  1218. dev->ep[UDC_EPOUT_IX].fifo_depth = UDC_RXFIFO_SIZE;
  1219. }
  1220. /* init registers at driver load time */
  1221. static int startup_registers(struct udc *dev)
  1222. {
  1223. u32 tmp;
  1224. /* init controller by soft reset */
  1225. udc_soft_reset(dev);
  1226. /* mask not needed interrupts */
  1227. udc_mask_unused_interrupts(dev);
  1228. /* put into initial config */
  1229. udc_basic_init(dev);
  1230. /* link up all endpoints */
  1231. udc_setup_endpoints(dev);
  1232. /* program speed */
  1233. tmp = readl(&dev->regs->cfg);
  1234. if (use_fullspeed)
  1235. tmp = AMD_ADDBITS(tmp, UDC_DEVCFG_SPD_FS, UDC_DEVCFG_SPD);
  1236. else
  1237. tmp = AMD_ADDBITS(tmp, UDC_DEVCFG_SPD_HS, UDC_DEVCFG_SPD);
  1238. writel(tmp, &dev->regs->cfg);
  1239. return 0;
  1240. }
  1241. /* Inits UDC context */
  1242. static void udc_basic_init(struct udc *dev)
  1243. {
  1244. u32 tmp;
  1245. DBG(dev, "udc_basic_init()\n");
  1246. dev->gadget.speed = USB_SPEED_UNKNOWN;
  1247. /* stop RDE timer */
  1248. if (timer_pending(&udc_timer)) {
  1249. set_rde = 0;
  1250. mod_timer(&udc_timer, jiffies - 1);
  1251. }
  1252. /* stop poll stall timer */
  1253. if (timer_pending(&udc_pollstall_timer))
  1254. mod_timer(&udc_pollstall_timer, jiffies - 1);
  1255. /* disable DMA */
  1256. tmp = readl(&dev->regs->ctl);
  1257. tmp &= AMD_UNMASK_BIT(UDC_DEVCTL_RDE);
  1258. tmp &= AMD_UNMASK_BIT(UDC_DEVCTL_TDE);
  1259. writel(tmp, &dev->regs->ctl);
  1260. /* enable dynamic CSR programming */
  1261. tmp = readl(&dev->regs->cfg);
  1262. tmp |= AMD_BIT(UDC_DEVCFG_CSR_PRG);
  1263. /* set self powered */
  1264. tmp |= AMD_BIT(UDC_DEVCFG_SP);
  1265. /* set remote wakeupable */
  1266. tmp |= AMD_BIT(UDC_DEVCFG_RWKP);
  1267. writel(tmp, &dev->regs->cfg);
  1268. make_ep_lists(dev);
  1269. dev->data_ep_enabled = 0;
  1270. dev->data_ep_queued = 0;
  1271. }
  1272. /* Sets initial endpoint parameters */
  1273. static void udc_setup_endpoints(struct udc *dev)
  1274. {
  1275. struct udc_ep *ep;
  1276. u32 tmp;
  1277. u32 reg;
  1278. DBG(dev, "udc_setup_endpoints()\n");
  1279. /* read enum speed */
  1280. tmp = readl(&dev->regs->sts);
  1281. tmp = AMD_GETBITS(tmp, UDC_DEVSTS_ENUM_SPEED);
  1282. if (tmp == UDC_DEVSTS_ENUM_SPEED_HIGH)
  1283. dev->gadget.speed = USB_SPEED_HIGH;
  1284. else if (tmp == UDC_DEVSTS_ENUM_SPEED_FULL)
  1285. dev->gadget.speed = USB_SPEED_FULL;
  1286. /* set basic ep parameters */
  1287. for (tmp = 0; tmp < UDC_EP_NUM; tmp++) {
  1288. ep = &dev->ep[tmp];
  1289. ep->dev = dev;
  1290. ep->ep.name = ep_string[tmp];
  1291. ep->num = tmp;
  1292. /* txfifo size is calculated at enable time */
  1293. ep->txfifo = dev->txfifo;
  1294. /* fifo size */
  1295. if (tmp < UDC_EPIN_NUM) {
  1296. ep->fifo_depth = UDC_TXFIFO_SIZE;
  1297. ep->in = 1;
  1298. } else {
  1299. ep->fifo_depth = UDC_RXFIFO_SIZE;
  1300. ep->in = 0;
  1301. }
  1302. ep->regs = &dev->ep_regs[tmp];
  1303. /*
  1304. * ep will be reset only if ep was not enabled before to avoid
  1305. * disabling ep interrupts when ENUM interrupt occurs but ep is
  1306. * not enabled by gadget driver
  1307. */
  1308. if (!ep->desc)
  1309. ep_init(dev->regs, ep);
  1310. if (use_dma) {
  1311. /*
  1312. * ep->dma is not really used, just to indicate that
  1313. * DMA is active: remove this
  1314. * dma regs = dev control regs
  1315. */
  1316. ep->dma = &dev->regs->ctl;
  1317. /* nak OUT endpoints until enable - not for ep0 */
  1318. if (tmp != UDC_EP0IN_IX && tmp != UDC_EP0OUT_IX
  1319. && tmp > UDC_EPIN_NUM) {
  1320. /* set NAK */
  1321. reg = readl(&dev->ep[tmp].regs->ctl);
  1322. reg |= AMD_BIT(UDC_EPCTL_SNAK);
  1323. writel(reg, &dev->ep[tmp].regs->ctl);
  1324. dev->ep[tmp].naking = 1;
  1325. }
  1326. }
  1327. }
  1328. /* EP0 max packet */
  1329. if (dev->gadget.speed == USB_SPEED_FULL) {
  1330. dev->ep[UDC_EP0IN_IX].ep.maxpacket = UDC_FS_EP0IN_MAX_PKT_SIZE;
  1331. dev->ep[UDC_EP0OUT_IX].ep.maxpacket =
  1332. UDC_FS_EP0OUT_MAX_PKT_SIZE;
  1333. } else if (dev->gadget.speed == USB_SPEED_HIGH) {
  1334. dev->ep[UDC_EP0IN_IX].ep.maxpacket = UDC_EP0IN_MAX_PKT_SIZE;
  1335. dev->ep[UDC_EP0OUT_IX].ep.maxpacket = UDC_EP0OUT_MAX_PKT_SIZE;
  1336. }
  1337. /*
  1338. * with suspend bug workaround, ep0 params for gadget driver
  1339. * are set at gadget driver bind() call
  1340. */
  1341. dev->gadget.ep0 = &dev->ep[UDC_EP0IN_IX].ep;
  1342. dev->ep[UDC_EP0IN_IX].halted = 0;
  1343. INIT_LIST_HEAD(&dev->gadget.ep0->ep_list);
  1344. /* init cfg/alt/int */
  1345. dev->cur_config = 0;
  1346. dev->cur_intf = 0;
  1347. dev->cur_alt = 0;
  1348. }
  1349. /* Bringup after Connect event, initial bringup to be ready for ep0 events */
  1350. static void usb_connect(struct udc *dev)
  1351. {
  1352. dev_info(&dev->pdev->dev, "USB Connect\n");
  1353. dev->connected = 1;
  1354. /* put into initial config */
  1355. udc_basic_init(dev);
  1356. /* enable device setup interrupts */
  1357. udc_enable_dev_setup_interrupts(dev);
  1358. }
  1359. /*
  1360. * Calls gadget with disconnect event and resets the UDC and makes
  1361. * initial bringup to be ready for ep0 events
  1362. */
  1363. static void usb_disconnect(struct udc *dev)
  1364. {
  1365. dev_info(&dev->pdev->dev, "USB Disconnect\n");
  1366. dev->connected = 0;
  1367. /* mask interrupts */
  1368. udc_mask_unused_interrupts(dev);
  1369. /* REVISIT there doesn't seem to be a point to having this
  1370. * talk to a tasklet ... do it directly, we already hold
  1371. * the spinlock needed to process the disconnect.
  1372. */
  1373. tasklet_schedule(&disconnect_tasklet);
  1374. }
  1375. /* Tasklet for disconnect to be outside of interrupt context */
  1376. static void udc_tasklet_disconnect(unsigned long par)
  1377. {
  1378. struct udc *dev = (struct udc *)(*((struct udc **) par));
  1379. u32 tmp;
  1380. DBG(dev, "Tasklet disconnect\n");
  1381. spin_lock_irq(&dev->lock);
  1382. if (dev->driver) {
  1383. spin_unlock(&dev->lock);
  1384. dev->driver->disconnect(&dev->gadget);
  1385. spin_lock(&dev->lock);
  1386. /* empty queues */
  1387. for (tmp = 0; tmp < UDC_EP_NUM; tmp++)
  1388. empty_req_queue(&dev->ep[tmp]);
  1389. }
  1390. /* disable ep0 */
  1391. ep_init(dev->regs,
  1392. &dev->ep[UDC_EP0IN_IX]);
  1393. if (!soft_reset_occured) {
  1394. /* init controller by soft reset */
  1395. udc_soft_reset(dev);
  1396. soft_reset_occured++;
  1397. }
  1398. /* re-enable dev interrupts */
  1399. udc_enable_dev_setup_interrupts(dev);
  1400. /* back to full speed ? */
  1401. if (use_fullspeed) {
  1402. tmp = readl(&dev->regs->cfg);
  1403. tmp = AMD_ADDBITS(tmp, UDC_DEVCFG_SPD_FS, UDC_DEVCFG_SPD);
  1404. writel(tmp, &dev->regs->cfg);
  1405. }
  1406. spin_unlock_irq(&dev->lock);
  1407. }
  1408. /* Reset the UDC core */
  1409. static void udc_soft_reset(struct udc *dev)
  1410. {
  1411. unsigned long flags;
  1412. DBG(dev, "Soft reset\n");
  1413. /*
  1414. * reset possible waiting interrupts, because int.
  1415. * status is lost after soft reset,
  1416. * ep int. status reset
  1417. */
  1418. writel(UDC_EPINT_MSK_DISABLE_ALL, &dev->regs->ep_irqsts);
  1419. /* device int. status reset */
  1420. writel(UDC_DEV_MSK_DISABLE, &dev->regs->irqsts);
  1421. spin_lock_irqsave(&udc_irq_spinlock, flags);
  1422. writel(AMD_BIT(UDC_DEVCFG_SOFTRESET), &dev->regs->cfg);
  1423. readl(&dev->regs->cfg);
  1424. spin_unlock_irqrestore(&udc_irq_spinlock, flags);
  1425. }
  1426. /* RDE timer callback to set RDE bit */
  1427. static void udc_timer_function(unsigned long v)
  1428. {
  1429. u32 tmp;
  1430. spin_lock_irq(&udc_irq_spinlock);
  1431. if (set_rde > 0) {
  1432. /*
  1433. * open the fifo if fifo was filled on last timer call
  1434. * conditionally
  1435. */
  1436. if (set_rde > 1) {
  1437. /* set RDE to receive setup data */
  1438. tmp = readl(&udc->regs->ctl);
  1439. tmp |= AMD_BIT(UDC_DEVCTL_RDE);
  1440. writel(tmp, &udc->regs->ctl);
  1441. set_rde = -1;
  1442. } else if (readl(&udc->regs->sts)
  1443. & AMD_BIT(UDC_DEVSTS_RXFIFO_EMPTY)) {
  1444. /*
  1445. * if fifo empty setup polling, do not just
  1446. * open the fifo
  1447. */
  1448. udc_timer.expires = jiffies + HZ/UDC_RDE_TIMER_DIV;
  1449. if (!stop_timer)
  1450. add_timer(&udc_timer);
  1451. } else {
  1452. /*
  1453. * fifo contains data now, setup timer for opening
  1454. * the fifo when timer expires to be able to receive
  1455. * setup packets, when data packets gets queued by
  1456. * gadget layer then timer will forced to expire with
  1457. * set_rde=0 (RDE is set in udc_queue())
  1458. */
  1459. set_rde++;
  1460. /* debug: lhadmot_timer_start = 221070 */
  1461. udc_timer.expires = jiffies + HZ*UDC_RDE_TIMER_SECONDS;
  1462. if (!stop_timer)
  1463. add_timer(&udc_timer);
  1464. }
  1465. } else
  1466. set_rde = -1; /* RDE was set by udc_queue() */
  1467. spin_unlock_irq(&udc_irq_spinlock);
  1468. if (stop_timer)
  1469. complete(&on_exit);
  1470. }
  1471. /* Handle halt state, used in stall poll timer */
  1472. static void udc_handle_halt_state(struct udc_ep *ep)
  1473. {
  1474. u32 tmp;
  1475. /* set stall as long not halted */
  1476. if (ep->halted == 1) {
  1477. tmp = readl(&ep->regs->ctl);
  1478. /* STALL cleared ? */
  1479. if (!(tmp & AMD_BIT(UDC_EPCTL_S))) {
  1480. /*
  1481. * FIXME: MSC spec requires that stall remains
  1482. * even on receivng of CLEAR_FEATURE HALT. So
  1483. * we would set STALL again here to be compliant.
  1484. * But with current mass storage drivers this does
  1485. * not work (would produce endless host retries).
  1486. * So we clear halt on CLEAR_FEATURE.
  1487. *
  1488. DBG(ep->dev, "ep %d: set STALL again\n", ep->num);
  1489. tmp |= AMD_BIT(UDC_EPCTL_S);
  1490. writel(tmp, &ep->regs->ctl);*/
  1491. /* clear NAK by writing CNAK */
  1492. tmp |= AMD_BIT(UDC_EPCTL_CNAK);
  1493. writel(tmp, &ep->regs->ctl);
  1494. ep->halted = 0;
  1495. UDC_QUEUE_CNAK(ep, ep->num);
  1496. }
  1497. }
  1498. }
  1499. /* Stall timer callback to poll S bit and set it again after */
  1500. static void udc_pollstall_timer_function(unsigned long v)
  1501. {
  1502. struct udc_ep *ep;
  1503. int halted = 0;
  1504. spin_lock_irq(&udc_stall_spinlock);
  1505. /*
  1506. * only one IN and OUT endpoints are handled
  1507. * IN poll stall
  1508. */
  1509. ep = &udc->ep[UDC_EPIN_IX];
  1510. udc_handle_halt_state(ep);
  1511. if (ep->halted)
  1512. halted = 1;
  1513. /* OUT poll stall */
  1514. ep = &udc->ep[UDC_EPOUT_IX];
  1515. udc_handle_halt_state(ep);
  1516. if (ep->halted)
  1517. halted = 1;
  1518. /* setup timer again when still halted */
  1519. if (!stop_pollstall_timer && halted) {
  1520. udc_pollstall_timer.expires = jiffies +
  1521. HZ * UDC_POLLSTALL_TIMER_USECONDS
  1522. / (1000 * 1000);
  1523. add_timer(&udc_pollstall_timer);
  1524. }
  1525. spin_unlock_irq(&udc_stall_spinlock);
  1526. if (stop_pollstall_timer)
  1527. complete(&on_pollstall_exit);
  1528. }
  1529. /* Inits endpoint 0 so that SETUP packets are processed */
  1530. static void activate_control_endpoints(struct udc *dev)
  1531. {
  1532. u32 tmp;
  1533. DBG(dev, "activate_control_endpoints\n");
  1534. /* flush fifo */
  1535. tmp = readl(&dev->ep[UDC_EP0IN_IX].regs->ctl);
  1536. tmp |= AMD_BIT(UDC_EPCTL_F);
  1537. writel(tmp, &dev->ep[UDC_EP0IN_IX].regs->ctl);
  1538. /* set ep0 directions */
  1539. dev->ep[UDC_EP0IN_IX].in = 1;
  1540. dev->ep[UDC_EP0OUT_IX].in = 0;
  1541. /* set buffer size (tx fifo entries) of EP0_IN */
  1542. tmp = readl(&dev->ep[UDC_EP0IN_IX].regs->bufin_framenum);
  1543. if (dev->gadget.speed == USB_SPEED_FULL)
  1544. tmp = AMD_ADDBITS(tmp, UDC_FS_EPIN0_BUFF_SIZE,
  1545. UDC_EPIN_BUFF_SIZE);
  1546. else if (dev->gadget.speed == USB_SPEED_HIGH)
  1547. tmp = AMD_ADDBITS(tmp, UDC_EPIN0_BUFF_SIZE,
  1548. UDC_EPIN_BUFF_SIZE);
  1549. writel(tmp, &dev->ep[UDC_EP0IN_IX].regs->bufin_framenum);
  1550. /* set max packet size of EP0_IN */
  1551. tmp = readl(&dev->ep[UDC_EP0IN_IX].regs->bufout_maxpkt);
  1552. if (dev->gadget.speed == USB_SPEED_FULL)
  1553. tmp = AMD_ADDBITS(tmp, UDC_FS_EP0IN_MAX_PKT_SIZE,
  1554. UDC_EP_MAX_PKT_SIZE);
  1555. else if (dev->gadget.speed == USB_SPEED_HIGH)
  1556. tmp = AMD_ADDBITS(tmp, UDC_EP0IN_MAX_PKT_SIZE,
  1557. UDC_EP_MAX_PKT_SIZE);
  1558. writel(tmp, &dev->ep[UDC_EP0IN_IX].regs->bufout_maxpkt);
  1559. /* set max packet size of EP0_OUT */
  1560. tmp = readl(&dev->ep[UDC_EP0OUT_IX].regs->bufout_maxpkt);
  1561. if (dev->gadget.speed == USB_SPEED_FULL)
  1562. tmp = AMD_ADDBITS(tmp, UDC_FS_EP0OUT_MAX_PKT_SIZE,
  1563. UDC_EP_MAX_PKT_SIZE);
  1564. else if (dev->gadget.speed == USB_SPEED_HIGH)
  1565. tmp = AMD_ADDBITS(tmp, UDC_EP0OUT_MAX_PKT_SIZE,
  1566. UDC_EP_MAX_PKT_SIZE);
  1567. writel(tmp, &dev->ep[UDC_EP0OUT_IX].regs->bufout_maxpkt);
  1568. /* set max packet size of EP0 in UDC CSR */
  1569. tmp = readl(&dev->csr->ne[0]);
  1570. if (dev->gadget.speed == USB_SPEED_FULL)
  1571. tmp = AMD_ADDBITS(tmp, UDC_FS_EP0OUT_MAX_PKT_SIZE,
  1572. UDC_CSR_NE_MAX_PKT);
  1573. else if (dev->gadget.speed == USB_SPEED_HIGH)
  1574. tmp = AMD_ADDBITS(tmp, UDC_EP0OUT_MAX_PKT_SIZE,
  1575. UDC_CSR_NE_MAX_PKT);
  1576. writel(tmp, &dev->csr->ne[0]);
  1577. if (use_dma) {
  1578. dev->ep[UDC_EP0OUT_IX].td->status |=
  1579. AMD_BIT(UDC_DMA_OUT_STS_L);
  1580. /* write dma desc address */
  1581. writel(dev->ep[UDC_EP0OUT_IX].td_stp_dma,
  1582. &dev->ep[UDC_EP0OUT_IX].regs->subptr);
  1583. writel(dev->ep[UDC_EP0OUT_IX].td_phys,
  1584. &dev->ep[UDC_EP0OUT_IX].regs->desptr);
  1585. /* stop RDE timer */
  1586. if (timer_pending(&udc_timer)) {
  1587. set_rde = 0;
  1588. mod_timer(&udc_timer, jiffies - 1);
  1589. }
  1590. /* stop pollstall timer */
  1591. if (timer_pending(&udc_pollstall_timer))
  1592. mod_timer(&udc_pollstall_timer, jiffies - 1);
  1593. /* enable DMA */
  1594. tmp = readl(&dev->regs->ctl);
  1595. tmp |= AMD_BIT(UDC_DEVCTL_MODE)
  1596. | AMD_BIT(UDC_DEVCTL_RDE)
  1597. | AMD_BIT(UDC_DEVCTL_TDE);
  1598. if (use_dma_bufferfill_mode)
  1599. tmp |= AMD_BIT(UDC_DEVCTL_BF);
  1600. else if (use_dma_ppb_du)
  1601. tmp |= AMD_BIT(UDC_DEVCTL_DU);
  1602. writel(tmp, &dev->regs->ctl);
  1603. }
  1604. /* clear NAK by writing CNAK for EP0IN */
  1605. tmp = readl(&dev->ep[UDC_EP0IN_IX].regs->ctl);
  1606. tmp |= AMD_BIT(UDC_EPCTL_CNAK);
  1607. writel(tmp, &dev->ep[UDC_EP0IN_IX].regs->ctl);
  1608. dev->ep[UDC_EP0IN_IX].naking = 0;
  1609. UDC_QUEUE_CNAK(&dev->ep[UDC_EP0IN_IX], UDC_EP0IN_IX);
  1610. /* clear NAK by writing CNAK for EP0OUT */
  1611. tmp = readl(&dev->ep[UDC_EP0OUT_IX].regs->ctl);
  1612. tmp |= AMD_BIT(UDC_EPCTL_CNAK);
  1613. writel(tmp, &dev->ep[UDC_EP0OUT_IX].regs->ctl);
  1614. dev->ep[UDC_EP0OUT_IX].naking = 0;
  1615. UDC_QUEUE_CNAK(&dev->ep[UDC_EP0OUT_IX], UDC_EP0OUT_IX);
  1616. }
  1617. /* Make endpoint 0 ready for control traffic */
  1618. static int setup_ep0(struct udc *dev)
  1619. {
  1620. activate_control_endpoints(dev);
  1621. /* enable ep0 interrupts */
  1622. udc_enable_ep0_interrupts(dev);
  1623. /* enable device setup interrupts */
  1624. udc_enable_dev_setup_interrupts(dev);
  1625. return 0;
  1626. }
  1627. /* Called by gadget driver to register itself */
  1628. static int amd5536_start(struct usb_gadget_driver *driver,
  1629. int (*bind)(struct usb_gadget *))
  1630. {
  1631. struct udc *dev = udc;
  1632. int retval;
  1633. u32 tmp;
  1634. if (!driver || !bind || !driver->setup
  1635. || driver->max_speed < USB_SPEED_HIGH)
  1636. return -EINVAL;
  1637. if (!dev)
  1638. return -ENODEV;
  1639. if (dev->driver)
  1640. return -EBUSY;
  1641. driver->driver.bus = NULL;
  1642. dev->driver = driver;
  1643. dev->gadget.dev.driver = &driver->driver;
  1644. retval = bind(&dev->gadget);
  1645. /* Some gadget drivers use both ep0 directions.
  1646. * NOTE: to gadget driver, ep0 is just one endpoint...
  1647. */
  1648. dev->ep[UDC_EP0OUT_IX].ep.driver_data =
  1649. dev->ep[UDC_EP0IN_IX].ep.driver_data;
  1650. if (retval) {
  1651. DBG(dev, "binding to %s returning %d\n",
  1652. driver->driver.name, retval);
  1653. dev->driver = NULL;
  1654. dev->gadget.dev.driver = NULL;
  1655. return retval;
  1656. }
  1657. /* get ready for ep0 traffic */
  1658. setup_ep0(dev);
  1659. /* clear SD */
  1660. tmp = readl(&dev->regs->ctl);
  1661. tmp = tmp & AMD_CLEAR_BIT(UDC_DEVCTL_SD);
  1662. writel(tmp, &dev->regs->ctl);
  1663. usb_connect(dev);
  1664. return 0;
  1665. }
  1666. /* shutdown requests and disconnect from gadget */
  1667. static void
  1668. shutdown(struct udc *dev, struct usb_gadget_driver *driver)
  1669. __releases(dev->lock)
  1670. __acquires(dev->lock)
  1671. {
  1672. int tmp;
  1673. if (dev->gadget.speed != USB_SPEED_UNKNOWN) {
  1674. spin_unlock(&dev->lock);
  1675. driver->disconnect(&dev->gadget);
  1676. spin_lock(&dev->lock);
  1677. }
  1678. /* empty queues and init hardware */
  1679. udc_basic_init(dev);
  1680. for (tmp = 0; tmp < UDC_EP_NUM; tmp++)
  1681. empty_req_queue(&dev->ep[tmp]);
  1682. udc_setup_endpoints(dev);
  1683. }
  1684. /* Called by gadget driver to unregister itself */
  1685. static int amd5536_stop(struct usb_gadget_driver *driver)
  1686. {
  1687. struct udc *dev = udc;
  1688. unsigned long flags;
  1689. u32 tmp;
  1690. if (!dev)
  1691. return -ENODEV;
  1692. if (!driver || driver != dev->driver || !driver->unbind)
  1693. return -EINVAL;
  1694. spin_lock_irqsave(&dev->lock, flags);
  1695. udc_mask_unused_interrupts(dev);
  1696. shutdown(dev, driver);
  1697. spin_unlock_irqrestore(&dev->lock, flags);
  1698. driver->unbind(&dev->gadget);
  1699. dev->gadget.dev.driver = NULL;
  1700. dev->driver = NULL;
  1701. /* set SD */
  1702. tmp = readl(&dev->regs->ctl);
  1703. tmp |= AMD_BIT(UDC_DEVCTL_SD);
  1704. writel(tmp, &dev->regs->ctl);
  1705. DBG(dev, "%s: unregistered\n", driver->driver.name);
  1706. return 0;
  1707. }
  1708. /* Clear pending NAK bits */
  1709. static void udc_process_cnak_queue(struct udc *dev)
  1710. {
  1711. u32 tmp;
  1712. u32 reg;
  1713. /* check epin's */
  1714. DBG(dev, "CNAK pending queue processing\n");
  1715. for (tmp = 0; tmp < UDC_EPIN_NUM_USED; tmp++) {
  1716. if (cnak_pending & (1 << tmp)) {
  1717. DBG(dev, "CNAK pending for ep%d\n", tmp);
  1718. /* clear NAK by writing CNAK */
  1719. reg = readl(&dev->ep[tmp].regs->ctl);
  1720. reg |= AMD_BIT(UDC_EPCTL_CNAK);
  1721. writel(reg, &dev->ep[tmp].regs->ctl);
  1722. dev->ep[tmp].naking = 0;
  1723. UDC_QUEUE_CNAK(&dev->ep[tmp], dev->ep[tmp].num);
  1724. }
  1725. }
  1726. /* ... and ep0out */
  1727. if (cnak_pending & (1 << UDC_EP0OUT_IX)) {
  1728. DBG(dev, "CNAK pending for ep%d\n", UDC_EP0OUT_IX);
  1729. /* clear NAK by writing CNAK */
  1730. reg = readl(&dev->ep[UDC_EP0OUT_IX].regs->ctl);
  1731. reg |= AMD_BIT(UDC_EPCTL_CNAK);
  1732. writel(reg, &dev->ep[UDC_EP0OUT_IX].regs->ctl);
  1733. dev->ep[UDC_EP0OUT_IX].naking = 0;
  1734. UDC_QUEUE_CNAK(&dev->ep[UDC_EP0OUT_IX],
  1735. dev->ep[UDC_EP0OUT_IX].num);
  1736. }
  1737. }
  1738. /* Enabling RX DMA after setup packet */
  1739. static void udc_ep0_set_rde(struct udc *dev)
  1740. {
  1741. if (use_dma) {
  1742. /*
  1743. * only enable RXDMA when no data endpoint enabled
  1744. * or data is queued
  1745. */
  1746. if (!dev->data_ep_enabled || dev->data_ep_queued) {
  1747. udc_set_rde(dev);
  1748. } else {
  1749. /*
  1750. * setup timer for enabling RDE (to not enable
  1751. * RXFIFO DMA for data endpoints to early)
  1752. */
  1753. if (set_rde != 0 && !timer_pending(&udc_timer)) {
  1754. udc_timer.expires =
  1755. jiffies + HZ/UDC_RDE_TIMER_DIV;
  1756. set_rde = 1;
  1757. if (!stop_timer)
  1758. add_timer(&udc_timer);
  1759. }
  1760. }
  1761. }
  1762. }
  1763. /* Interrupt handler for data OUT traffic */
  1764. static irqreturn_t udc_data_out_isr(struct udc *dev, int ep_ix)
  1765. {
  1766. irqreturn_t ret_val = IRQ_NONE;
  1767. u32 tmp;
  1768. struct udc_ep *ep;
  1769. struct udc_request *req;
  1770. unsigned int count;
  1771. struct udc_data_dma *td = NULL;
  1772. unsigned dma_done;
  1773. VDBG(dev, "ep%d irq\n", ep_ix);
  1774. ep = &dev->ep[ep_ix];
  1775. tmp = readl(&ep->regs->sts);
  1776. if (use_dma) {
  1777. /* BNA event ? */
  1778. if (tmp & AMD_BIT(UDC_EPSTS_BNA)) {
  1779. DBG(dev, "BNA ep%dout occurred - DESPTR = %x\n",
  1780. ep->num, readl(&ep->regs->desptr));
  1781. /* clear BNA */
  1782. writel(tmp | AMD_BIT(UDC_EPSTS_BNA), &ep->regs->sts);
  1783. if (!ep->cancel_transfer)
  1784. ep->bna_occurred = 1;
  1785. else
  1786. ep->cancel_transfer = 0;
  1787. ret_val = IRQ_HANDLED;
  1788. goto finished;
  1789. }
  1790. }
  1791. /* HE event ? */
  1792. if (tmp & AMD_BIT(UDC_EPSTS_HE)) {
  1793. dev_err(&dev->pdev->dev, "HE ep%dout occurred\n", ep->num);
  1794. /* clear HE */
  1795. writel(tmp | AMD_BIT(UDC_EPSTS_HE), &ep->regs->sts);
  1796. ret_val = IRQ_HANDLED;
  1797. goto finished;
  1798. }
  1799. if (!list_empty(&ep->queue)) {
  1800. /* next request */
  1801. req = list_entry(ep->queue.next,
  1802. struct udc_request, queue);
  1803. } else {
  1804. req = NULL;
  1805. udc_rxfifo_pending = 1;
  1806. }
  1807. VDBG(dev, "req = %p\n", req);
  1808. /* fifo mode */
  1809. if (!use_dma) {
  1810. /* read fifo */
  1811. if (req && udc_rxfifo_read(ep, req)) {
  1812. ret_val = IRQ_HANDLED;
  1813. /* finish */
  1814. complete_req(ep, req, 0);
  1815. /* next request */
  1816. if (!list_empty(&ep->queue) && !ep->halted) {
  1817. req = list_entry(ep->queue.next,
  1818. struct udc_request, queue);
  1819. } else
  1820. req = NULL;
  1821. }
  1822. /* DMA */
  1823. } else if (!ep->cancel_transfer && req != NULL) {
  1824. ret_val = IRQ_HANDLED;
  1825. /* check for DMA done */
  1826. if (!use_dma_ppb) {
  1827. dma_done = AMD_GETBITS(req->td_data->status,
  1828. UDC_DMA_OUT_STS_BS);
  1829. /* packet per buffer mode - rx bytes */
  1830. } else {
  1831. /*
  1832. * if BNA occurred then recover desc. from
  1833. * BNA dummy desc.
  1834. */
  1835. if (ep->bna_occurred) {
  1836. VDBG(dev, "Recover desc. from BNA dummy\n");
  1837. memcpy(req->td_data, ep->bna_dummy_req->td_data,
  1838. sizeof(struct udc_data_dma));
  1839. ep->bna_occurred = 0;
  1840. udc_init_bna_dummy(ep->req);
  1841. }
  1842. td = udc_get_last_dma_desc(req);
  1843. dma_done = AMD_GETBITS(td->status, UDC_DMA_OUT_STS_BS);
  1844. }
  1845. if (dma_done == UDC_DMA_OUT_STS_BS_DMA_DONE) {
  1846. /* buffer fill mode - rx bytes */
  1847. if (!use_dma_ppb) {
  1848. /* received number bytes */
  1849. count = AMD_GETBITS(req->td_data->status,
  1850. UDC_DMA_OUT_STS_RXBYTES);
  1851. VDBG(dev, "rx bytes=%u\n", count);
  1852. /* packet per buffer mode - rx bytes */
  1853. } else {
  1854. VDBG(dev, "req->td_data=%p\n", req->td_data);
  1855. VDBG(dev, "last desc = %p\n", td);
  1856. /* received number bytes */
  1857. if (use_dma_ppb_du) {
  1858. /* every desc. counts bytes */
  1859. count = udc_get_ppbdu_rxbytes(req);
  1860. } else {
  1861. /* last desc. counts bytes */
  1862. count = AMD_GETBITS(td->status,
  1863. UDC_DMA_OUT_STS_RXBYTES);
  1864. if (!count && req->req.length
  1865. == UDC_DMA_MAXPACKET) {
  1866. /*
  1867. * on 64k packets the RXBYTES
  1868. * field is zero
  1869. */
  1870. count = UDC_DMA_MAXPACKET;
  1871. }
  1872. }
  1873. VDBG(dev, "last desc rx bytes=%u\n", count);
  1874. }
  1875. tmp = req->req.length - req->req.actual;
  1876. if (count > tmp) {
  1877. if ((tmp % ep->ep.maxpacket) != 0) {
  1878. DBG(dev, "%s: rx %db, space=%db\n",
  1879. ep->ep.name, count, tmp);
  1880. req->req.status = -EOVERFLOW;
  1881. }
  1882. count = tmp;
  1883. }
  1884. req->req.actual += count;
  1885. req->dma_going = 0;
  1886. /* complete request */
  1887. complete_req(ep, req, 0);
  1888. /* next request */
  1889. if (!list_empty(&ep->queue) && !ep->halted) {
  1890. req = list_entry(ep->queue.next,
  1891. struct udc_request,
  1892. queue);
  1893. /*
  1894. * DMA may be already started by udc_queue()
  1895. * called by gadget drivers completion
  1896. * routine. This happens when queue
  1897. * holds one request only.
  1898. */
  1899. if (req->dma_going == 0) {
  1900. /* next dma */
  1901. if (prep_dma(ep, req, GFP_ATOMIC) != 0)
  1902. goto finished;
  1903. /* write desc pointer */
  1904. writel(req->td_phys,
  1905. &ep->regs->desptr);
  1906. req->dma_going = 1;
  1907. /* enable DMA */
  1908. udc_set_rde(dev);
  1909. }
  1910. } else {
  1911. /*
  1912. * implant BNA dummy descriptor to allow
  1913. * RXFIFO opening by RDE
  1914. */
  1915. if (ep->bna_dummy_req) {
  1916. /* write desc pointer */
  1917. writel(ep->bna_dummy_req->td_phys,
  1918. &ep->regs->desptr);
  1919. ep->bna_occurred = 0;
  1920. }
  1921. /*
  1922. * schedule timer for setting RDE if queue
  1923. * remains empty to allow ep0 packets pass
  1924. * through
  1925. */
  1926. if (set_rde != 0
  1927. && !timer_pending(&udc_timer)) {
  1928. udc_timer.expires =
  1929. jiffies
  1930. + HZ*UDC_RDE_TIMER_SECONDS;
  1931. set_rde = 1;
  1932. if (!stop_timer)
  1933. add_timer(&udc_timer);
  1934. }
  1935. if (ep->num != UDC_EP0OUT_IX)
  1936. dev->data_ep_queued = 0;
  1937. }
  1938. } else {
  1939. /*
  1940. * RX DMA must be reenabled for each desc in PPBDU mode
  1941. * and must be enabled for PPBNDU mode in case of BNA
  1942. */
  1943. udc_set_rde(dev);
  1944. }
  1945. } else if (ep->cancel_transfer) {
  1946. ret_val = IRQ_HANDLED;
  1947. ep->cancel_transfer = 0;
  1948. }
  1949. /* check pending CNAKS */
  1950. if (cnak_pending) {
  1951. /* CNAk processing when rxfifo empty only */
  1952. if (readl(&dev->regs->sts) & AMD_BIT(UDC_DEVSTS_RXFIFO_EMPTY))
  1953. udc_process_cnak_queue(dev);
  1954. }
  1955. /* clear OUT bits in ep status */
  1956. writel(UDC_EPSTS_OUT_CLEAR, &ep->regs->sts);
  1957. finished:
  1958. return ret_val;
  1959. }
  1960. /* Interrupt handler for data IN traffic */
  1961. static irqreturn_t udc_data_in_isr(struct udc *dev, int ep_ix)
  1962. {
  1963. irqreturn_t ret_val = IRQ_NONE;
  1964. u32 tmp;
  1965. u32 epsts;
  1966. struct udc_ep *ep;
  1967. struct udc_request *req;
  1968. struct udc_data_dma *td;
  1969. unsigned dma_done;
  1970. unsigned len;
  1971. ep = &dev->ep[ep_ix];
  1972. epsts = readl(&ep->regs->sts);
  1973. if (use_dma) {
  1974. /* BNA ? */
  1975. if (epsts & AMD_BIT(UDC_EPSTS_BNA)) {
  1976. dev_err(&dev->pdev->dev,
  1977. "BNA ep%din occurred - DESPTR = %08lx\n",
  1978. ep->num,
  1979. (unsigned long) readl(&ep->regs->desptr));
  1980. /* clear BNA */
  1981. writel(epsts, &ep->regs->sts);
  1982. ret_val = IRQ_HANDLED;
  1983. goto finished;
  1984. }
  1985. }
  1986. /* HE event ? */
  1987. if (epsts & AMD_BIT(UDC_EPSTS_HE)) {
  1988. dev_err(&dev->pdev->dev,
  1989. "HE ep%dn occurred - DESPTR = %08lx\n",
  1990. ep->num, (unsigned long) readl(&ep->regs->desptr));
  1991. /* clear HE */
  1992. writel(epsts | AMD_BIT(UDC_EPSTS_HE), &ep->regs->sts);
  1993. ret_val = IRQ_HANDLED;
  1994. goto finished;
  1995. }
  1996. /* DMA completion */
  1997. if (epsts & AMD_BIT(UDC_EPSTS_TDC)) {
  1998. VDBG(dev, "TDC set- completion\n");
  1999. ret_val = IRQ_HANDLED;
  2000. if (!ep->cancel_transfer && !list_empty(&ep->queue)) {
  2001. req = list_entry(ep->queue.next,
  2002. struct udc_request, queue);
  2003. /*
  2004. * length bytes transferred
  2005. * check dma done of last desc. in PPBDU mode
  2006. */
  2007. if (use_dma_ppb_du) {
  2008. td = udc_get_last_dma_desc(req);
  2009. if (td) {
  2010. dma_done =
  2011. AMD_GETBITS(td->status,
  2012. UDC_DMA_IN_STS_BS);
  2013. /* don't care DMA done */
  2014. req->req.actual = req->req.length;
  2015. }
  2016. } else {
  2017. /* assume all bytes transferred */
  2018. req->req.actual = req->req.length;
  2019. }
  2020. if (req->req.actual == req->req.length) {
  2021. /* complete req */
  2022. complete_req(ep, req, 0);
  2023. req->dma_going = 0;
  2024. /* further request available ? */
  2025. if (list_empty(&ep->queue)) {
  2026. /* disable interrupt */
  2027. tmp = readl(&dev->regs->ep_irqmsk);
  2028. tmp |= AMD_BIT(ep->num);
  2029. writel(tmp, &dev->regs->ep_irqmsk);
  2030. }
  2031. }
  2032. }
  2033. ep->cancel_transfer = 0;
  2034. }
  2035. /*
  2036. * status reg has IN bit set and TDC not set (if TDC was handled,
  2037. * IN must not be handled (UDC defect) ?
  2038. */
  2039. if ((epsts & AMD_BIT(UDC_EPSTS_IN))
  2040. && !(epsts & AMD_BIT(UDC_EPSTS_TDC))) {
  2041. ret_val = IRQ_HANDLED;
  2042. if (!list_empty(&ep->queue)) {
  2043. /* next request */
  2044. req = list_entry(ep->queue.next,
  2045. struct udc_request, queue);
  2046. /* FIFO mode */
  2047. if (!use_dma) {
  2048. /* write fifo */
  2049. udc_txfifo_write(ep, &req->req);
  2050. len = req->req.length - req->req.actual;
  2051. if (len > ep->ep.maxpacket)
  2052. len = ep->ep.maxpacket;
  2053. req->req.actual += len;
  2054. if (req->req.actual == req->req.length
  2055. || (len != ep->ep.maxpacket)) {
  2056. /* complete req */
  2057. complete_req(ep, req, 0);
  2058. }
  2059. /* DMA */
  2060. } else if (req && !req->dma_going) {
  2061. VDBG(dev, "IN DMA : req=%p req->td_data=%p\n",
  2062. req, req->td_data);
  2063. if (req->td_data) {
  2064. req->dma_going = 1;
  2065. /*
  2066. * unset L bit of first desc.
  2067. * for chain
  2068. */
  2069. if (use_dma_ppb && req->req.length >
  2070. ep->ep.maxpacket) {
  2071. req->td_data->status &=
  2072. AMD_CLEAR_BIT(
  2073. UDC_DMA_IN_STS_L);
  2074. }
  2075. /* write desc pointer */
  2076. writel(req->td_phys, &ep->regs->desptr);
  2077. /* set HOST READY */
  2078. req->td_data->status =
  2079. AMD_ADDBITS(
  2080. req->td_data->status,
  2081. UDC_DMA_IN_STS_BS_HOST_READY,
  2082. UDC_DMA_IN_STS_BS);
  2083. /* set poll demand bit */
  2084. tmp = readl(&ep->regs->ctl);
  2085. tmp |= AMD_BIT(UDC_EPCTL_P);
  2086. writel(tmp, &ep->regs->ctl);
  2087. }
  2088. }
  2089. } else if (!use_dma && ep->in) {
  2090. /* disable interrupt */
  2091. tmp = readl(
  2092. &dev->regs->ep_irqmsk);
  2093. tmp |= AMD_BIT(ep->num);
  2094. writel(tmp,
  2095. &dev->regs->ep_irqmsk);
  2096. }
  2097. }
  2098. /* clear status bits */
  2099. writel(epsts, &ep->regs->sts);
  2100. finished:
  2101. return ret_val;
  2102. }
  2103. /* Interrupt handler for Control OUT traffic */
  2104. static irqreturn_t udc_control_out_isr(struct udc *dev)
  2105. __releases(dev->lock)
  2106. __acquires(dev->lock)
  2107. {
  2108. irqreturn_t ret_val = IRQ_NONE;
  2109. u32 tmp;
  2110. int setup_supported;
  2111. u32 count;
  2112. int set = 0;
  2113. struct udc_ep *ep;
  2114. struct udc_ep *ep_tmp;
  2115. ep = &dev->ep[UDC_EP0OUT_IX];
  2116. /* clear irq */
  2117. writel(AMD_BIT(UDC_EPINT_OUT_EP0), &dev->regs->ep_irqsts);
  2118. tmp = readl(&dev->ep[UDC_EP0OUT_IX].regs->sts);
  2119. /* check BNA and clear if set */
  2120. if (tmp & AMD_BIT(UDC_EPSTS_BNA)) {
  2121. VDBG(dev, "ep0: BNA set\n");
  2122. writel(AMD_BIT(UDC_EPSTS_BNA),
  2123. &dev->ep[UDC_EP0OUT_IX].regs->sts);
  2124. ep->bna_occurred = 1;
  2125. ret_val = IRQ_HANDLED;
  2126. goto finished;
  2127. }
  2128. /* type of data: SETUP or DATA 0 bytes */
  2129. tmp = AMD_GETBITS(tmp, UDC_EPSTS_OUT);
  2130. VDBG(dev, "data_typ = %x\n", tmp);
  2131. /* setup data */
  2132. if (tmp == UDC_EPSTS_OUT_SETUP) {
  2133. ret_val = IRQ_HANDLED;
  2134. ep->dev->stall_ep0in = 0;
  2135. dev->waiting_zlp_ack_ep0in = 0;
  2136. /* set NAK for EP0_IN */
  2137. tmp = readl(&dev->ep[UDC_EP0IN_IX].regs->ctl);
  2138. tmp |= AMD_BIT(UDC_EPCTL_SNAK);
  2139. writel(tmp, &dev->ep[UDC_EP0IN_IX].regs->ctl);
  2140. dev->ep[UDC_EP0IN_IX].naking = 1;
  2141. /* get setup data */
  2142. if (use_dma) {
  2143. /* clear OUT bits in ep status */
  2144. writel(UDC_EPSTS_OUT_CLEAR,
  2145. &dev->ep[UDC_EP0OUT_IX].regs->sts);
  2146. setup_data.data[0] =
  2147. dev->ep[UDC_EP0OUT_IX].td_stp->data12;
  2148. setup_data.data[1] =
  2149. dev->ep[UDC_EP0OUT_IX].td_stp->data34;
  2150. /* set HOST READY */
  2151. dev->ep[UDC_EP0OUT_IX].td_stp->status =
  2152. UDC_DMA_STP_STS_BS_HOST_READY;
  2153. } else {
  2154. /* read fifo */
  2155. udc_rxfifo_read_dwords(dev, setup_data.data, 2);
  2156. }
  2157. /* determine direction of control data */
  2158. if ((setup_data.request.bRequestType & USB_DIR_IN) != 0) {
  2159. dev->gadget.ep0 = &dev->ep[UDC_EP0IN_IX].ep;
  2160. /* enable RDE */
  2161. udc_ep0_set_rde(dev);
  2162. set = 0;
  2163. } else {
  2164. dev->gadget.ep0 = &dev->ep[UDC_EP0OUT_IX].ep;
  2165. /*
  2166. * implant BNA dummy descriptor to allow RXFIFO opening
  2167. * by RDE
  2168. */
  2169. if (ep->bna_dummy_req) {
  2170. /* write desc pointer */
  2171. writel(ep->bna_dummy_req->td_phys,
  2172. &dev->ep[UDC_EP0OUT_IX].regs->desptr);
  2173. ep->bna_occurred = 0;
  2174. }
  2175. set = 1;
  2176. dev->ep[UDC_EP0OUT_IX].naking = 1;
  2177. /*
  2178. * setup timer for enabling RDE (to not enable
  2179. * RXFIFO DMA for data to early)
  2180. */
  2181. set_rde = 1;
  2182. if (!timer_pending(&udc_timer)) {
  2183. udc_timer.expires = jiffies +
  2184. HZ/UDC_RDE_TIMER_DIV;
  2185. if (!stop_timer)
  2186. add_timer(&udc_timer);
  2187. }
  2188. }
  2189. /*
  2190. * mass storage reset must be processed here because
  2191. * next packet may be a CLEAR_FEATURE HALT which would not
  2192. * clear the stall bit when no STALL handshake was received
  2193. * before (autostall can cause this)
  2194. */
  2195. if (setup_data.data[0] == UDC_MSCRES_DWORD0
  2196. && setup_data.data[1] == UDC_MSCRES_DWORD1) {
  2197. DBG(dev, "MSC Reset\n");
  2198. /*
  2199. * clear stall bits
  2200. * only one IN and OUT endpoints are handled
  2201. */
  2202. ep_tmp = &udc->ep[UDC_EPIN_IX];
  2203. udc_set_halt(&ep_tmp->ep, 0);
  2204. ep_tmp = &udc->ep[UDC_EPOUT_IX];
  2205. udc_set_halt(&ep_tmp->ep, 0);
  2206. }
  2207. /* call gadget with setup data received */
  2208. spin_unlock(&dev->lock);
  2209. setup_supported = dev->driver->setup(&dev->gadget,
  2210. &setup_data.request);
  2211. spin_lock(&dev->lock);
  2212. tmp = readl(&dev->ep[UDC_EP0IN_IX].regs->ctl);
  2213. /* ep0 in returns data (not zlp) on IN phase */
  2214. if (setup_supported >= 0 && setup_supported <
  2215. UDC_EP0IN_MAXPACKET) {
  2216. /* clear NAK by writing CNAK in EP0_IN */
  2217. tmp |= AMD_BIT(UDC_EPCTL_CNAK);
  2218. writel(tmp, &dev->ep[UDC_EP0IN_IX].regs->ctl);
  2219. dev->ep[UDC_EP0IN_IX].naking = 0;
  2220. UDC_QUEUE_CNAK(&dev->ep[UDC_EP0IN_IX], UDC_EP0IN_IX);
  2221. /* if unsupported request then stall */
  2222. } else if (setup_supported < 0) {
  2223. tmp |= AMD_BIT(UDC_EPCTL_S);
  2224. writel(tmp, &dev->ep[UDC_EP0IN_IX].regs->ctl);
  2225. } else
  2226. dev->waiting_zlp_ack_ep0in = 1;
  2227. /* clear NAK by writing CNAK in EP0_OUT */
  2228. if (!set) {
  2229. tmp = readl(&dev->ep[UDC_EP0OUT_IX].regs->ctl);
  2230. tmp |= AMD_BIT(UDC_EPCTL_CNAK);
  2231. writel(tmp, &dev->ep[UDC_EP0OUT_IX].regs->ctl);
  2232. dev->ep[UDC_EP0OUT_IX].naking = 0;
  2233. UDC_QUEUE_CNAK(&dev->ep[UDC_EP0OUT_IX], UDC_EP0OUT_IX);
  2234. }
  2235. if (!use_dma) {
  2236. /* clear OUT bits in ep status */
  2237. writel(UDC_EPSTS_OUT_CLEAR,
  2238. &dev->ep[UDC_EP0OUT_IX].regs->sts);
  2239. }
  2240. /* data packet 0 bytes */
  2241. } else if (tmp == UDC_EPSTS_OUT_DATA) {
  2242. /* clear OUT bits in ep status */
  2243. writel(UDC_EPSTS_OUT_CLEAR, &dev->ep[UDC_EP0OUT_IX].regs->sts);
  2244. /* get setup data: only 0 packet */
  2245. if (use_dma) {
  2246. /* no req if 0 packet, just reactivate */
  2247. if (list_empty(&dev->ep[UDC_EP0OUT_IX].queue)) {
  2248. VDBG(dev, "ZLP\n");
  2249. /* set HOST READY */
  2250. dev->ep[UDC_EP0OUT_IX].td->status =
  2251. AMD_ADDBITS(
  2252. dev->ep[UDC_EP0OUT_IX].td->status,
  2253. UDC_DMA_OUT_STS_BS_HOST_READY,
  2254. UDC_DMA_OUT_STS_BS);
  2255. /* enable RDE */
  2256. udc_ep0_set_rde(dev);
  2257. ret_val = IRQ_HANDLED;
  2258. } else {
  2259. /* control write */
  2260. ret_val |= udc_data_out_isr(dev, UDC_EP0OUT_IX);
  2261. /* re-program desc. pointer for possible ZLPs */
  2262. writel(dev->ep[UDC_EP0OUT_IX].td_phys,
  2263. &dev->ep[UDC_EP0OUT_IX].regs->desptr);
  2264. /* enable RDE */
  2265. udc_ep0_set_rde(dev);
  2266. }
  2267. } else {
  2268. /* received number bytes */
  2269. count = readl(&dev->ep[UDC_EP0OUT_IX].regs->sts);
  2270. count = AMD_GETBITS(count, UDC_EPSTS_RX_PKT_SIZE);
  2271. /* out data for fifo mode not working */
  2272. count = 0;
  2273. /* 0 packet or real data ? */
  2274. if (count != 0) {
  2275. ret_val |= udc_data_out_isr(dev, UDC_EP0OUT_IX);
  2276. } else {
  2277. /* dummy read confirm */
  2278. readl(&dev->ep[UDC_EP0OUT_IX].regs->confirm);
  2279. ret_val = IRQ_HANDLED;
  2280. }
  2281. }
  2282. }
  2283. /* check pending CNAKS */
  2284. if (cnak_pending) {
  2285. /* CNAk processing when rxfifo empty only */
  2286. if (readl(&dev->regs->sts) & AMD_BIT(UDC_DEVSTS_RXFIFO_EMPTY))
  2287. udc_process_cnak_queue(dev);
  2288. }
  2289. finished:
  2290. return ret_val;
  2291. }
  2292. /* Interrupt handler for Control IN traffic */
  2293. static irqreturn_t udc_control_in_isr(struct udc *dev)
  2294. {
  2295. irqreturn_t ret_val = IRQ_NONE;
  2296. u32 tmp;
  2297. struct udc_ep *ep;
  2298. struct udc_request *req;
  2299. unsigned len;
  2300. ep = &dev->ep[UDC_EP0IN_IX];
  2301. /* clear irq */
  2302. writel(AMD_BIT(UDC_EPINT_IN_EP0), &dev->regs->ep_irqsts);
  2303. tmp = readl(&dev->ep[UDC_EP0IN_IX].regs->sts);
  2304. /* DMA completion */
  2305. if (tmp & AMD_BIT(UDC_EPSTS_TDC)) {
  2306. VDBG(dev, "isr: TDC clear\n");
  2307. ret_val = IRQ_HANDLED;
  2308. /* clear TDC bit */
  2309. writel(AMD_BIT(UDC_EPSTS_TDC),
  2310. &dev->ep[UDC_EP0IN_IX].regs->sts);
  2311. /* status reg has IN bit set ? */
  2312. } else if (tmp & AMD_BIT(UDC_EPSTS_IN)) {
  2313. ret_val = IRQ_HANDLED;
  2314. if (ep->dma) {
  2315. /* clear IN bit */
  2316. writel(AMD_BIT(UDC_EPSTS_IN),
  2317. &dev->ep[UDC_EP0IN_IX].regs->sts);
  2318. }
  2319. if (dev->stall_ep0in) {
  2320. DBG(dev, "stall ep0in\n");
  2321. /* halt ep0in */
  2322. tmp = readl(&ep->regs->ctl);
  2323. tmp |= AMD_BIT(UDC_EPCTL_S);
  2324. writel(tmp, &ep->regs->ctl);
  2325. } else {
  2326. if (!list_empty(&ep->queue)) {
  2327. /* next request */
  2328. req = list_entry(ep->queue.next,
  2329. struct udc_request, queue);
  2330. if (ep->dma) {
  2331. /* write desc pointer */
  2332. writel(req->td_phys, &ep->regs->desptr);
  2333. /* set HOST READY */
  2334. req->td_data->status =
  2335. AMD_ADDBITS(
  2336. req->td_data->status,
  2337. UDC_DMA_STP_STS_BS_HOST_READY,
  2338. UDC_DMA_STP_STS_BS);
  2339. /* set poll demand bit */
  2340. tmp =
  2341. readl(&dev->ep[UDC_EP0IN_IX].regs->ctl);
  2342. tmp |= AMD_BIT(UDC_EPCTL_P);
  2343. writel(tmp,
  2344. &dev->ep[UDC_EP0IN_IX].regs->ctl);
  2345. /* all bytes will be transferred */
  2346. req->req.actual = req->req.length;
  2347. /* complete req */
  2348. complete_req(ep, req, 0);
  2349. } else {
  2350. /* write fifo */
  2351. udc_txfifo_write(ep, &req->req);
  2352. /* lengh bytes transferred */
  2353. len = req->req.length - req->req.actual;
  2354. if (len > ep->ep.maxpacket)
  2355. len = ep->ep.maxpacket;
  2356. req->req.actual += len;
  2357. if (req->req.actual == req->req.length
  2358. || (len != ep->ep.maxpacket)) {
  2359. /* complete req */
  2360. complete_req(ep, req, 0);
  2361. }
  2362. }
  2363. }
  2364. }
  2365. ep->halted = 0;
  2366. dev->stall_ep0in = 0;
  2367. if (!ep->dma) {
  2368. /* clear IN bit */
  2369. writel(AMD_BIT(UDC_EPSTS_IN),
  2370. &dev->ep[UDC_EP0IN_IX].regs->sts);
  2371. }
  2372. }
  2373. return ret_val;
  2374. }
  2375. /* Interrupt handler for global device events */
  2376. static irqreturn_t udc_dev_isr(struct udc *dev, u32 dev_irq)
  2377. __releases(dev->lock)
  2378. __acquires(dev->lock)
  2379. {
  2380. irqreturn_t ret_val = IRQ_NONE;
  2381. u32 tmp;
  2382. u32 cfg;
  2383. struct udc_ep *ep;
  2384. u16 i;
  2385. u8 udc_csr_epix;
  2386. /* SET_CONFIG irq ? */
  2387. if (dev_irq & AMD_BIT(UDC_DEVINT_SC)) {
  2388. ret_val = IRQ_HANDLED;
  2389. /* read config value */
  2390. tmp = readl(&dev->regs->sts);
  2391. cfg = AMD_GETBITS(tmp, UDC_DEVSTS_CFG);
  2392. DBG(dev, "SET_CONFIG interrupt: config=%d\n", cfg);
  2393. dev->cur_config = cfg;
  2394. dev->set_cfg_not_acked = 1;
  2395. /* make usb request for gadget driver */
  2396. memset(&setup_data, 0 , sizeof(union udc_setup_data));
  2397. setup_data.request.bRequest = USB_REQ_SET_CONFIGURATION;
  2398. setup_data.request.wValue = cpu_to_le16(dev->cur_config);
  2399. /* programm the NE registers */
  2400. for (i = 0; i < UDC_EP_NUM; i++) {
  2401. ep = &dev->ep[i];
  2402. if (ep->in) {
  2403. /* ep ix in UDC CSR register space */
  2404. udc_csr_epix = ep->num;
  2405. /* OUT ep */
  2406. } else {
  2407. /* ep ix in UDC CSR register space */
  2408. udc_csr_epix = ep->num - UDC_CSR_EP_OUT_IX_OFS;
  2409. }
  2410. tmp = readl(&dev->csr->ne[udc_csr_epix]);
  2411. /* ep cfg */
  2412. tmp = AMD_ADDBITS(tmp, ep->dev->cur_config,
  2413. UDC_CSR_NE_CFG);
  2414. /* write reg */
  2415. writel(tmp, &dev->csr->ne[udc_csr_epix]);
  2416. /* clear stall bits */
  2417. ep->halted = 0;
  2418. tmp = readl(&ep->regs->ctl);
  2419. tmp = tmp & AMD_CLEAR_BIT(UDC_EPCTL_S);
  2420. writel(tmp, &ep->regs->ctl);
  2421. }
  2422. /* call gadget zero with setup data received */
  2423. spin_unlock(&dev->lock);
  2424. tmp = dev->driver->setup(&dev->gadget, &setup_data.request);
  2425. spin_lock(&dev->lock);
  2426. } /* SET_INTERFACE ? */
  2427. if (dev_irq & AMD_BIT(UDC_DEVINT_SI)) {
  2428. ret_val = IRQ_HANDLED;
  2429. dev->set_cfg_not_acked = 1;
  2430. /* read interface and alt setting values */
  2431. tmp = readl(&dev->regs->sts);
  2432. dev->cur_alt = AMD_GETBITS(tmp, UDC_DEVSTS_ALT);
  2433. dev->cur_intf = AMD_GETBITS(tmp, UDC_DEVSTS_INTF);
  2434. /* make usb request for gadget driver */
  2435. memset(&setup_data, 0 , sizeof(union udc_setup_data));
  2436. setup_data.request.bRequest = USB_REQ_SET_INTERFACE;
  2437. setup_data.request.bRequestType = USB_RECIP_INTERFACE;
  2438. setup_data.request.wValue = cpu_to_le16(dev->cur_alt);
  2439. setup_data.request.wIndex = cpu_to_le16(dev->cur_intf);
  2440. DBG(dev, "SET_INTERFACE interrupt: alt=%d intf=%d\n",
  2441. dev->cur_alt, dev->cur_intf);
  2442. /* programm the NE registers */
  2443. for (i = 0; i < UDC_EP_NUM; i++) {
  2444. ep = &dev->ep[i];
  2445. if (ep->in) {
  2446. /* ep ix in UDC CSR register space */
  2447. udc_csr_epix = ep->num;
  2448. /* OUT ep */
  2449. } else {
  2450. /* ep ix in UDC CSR register space */
  2451. udc_csr_epix = ep->num - UDC_CSR_EP_OUT_IX_OFS;
  2452. }
  2453. /* UDC CSR reg */
  2454. /* set ep values */
  2455. tmp = readl(&dev->csr->ne[udc_csr_epix]);
  2456. /* ep interface */
  2457. tmp = AMD_ADDBITS(tmp, ep->dev->cur_intf,
  2458. UDC_CSR_NE_INTF);
  2459. /* tmp = AMD_ADDBITS(tmp, 2, UDC_CSR_NE_INTF); */
  2460. /* ep alt */
  2461. tmp = AMD_ADDBITS(tmp, ep->dev->cur_alt,
  2462. UDC_CSR_NE_ALT);
  2463. /* write reg */
  2464. writel(tmp, &dev->csr->ne[udc_csr_epix]);
  2465. /* clear stall bits */
  2466. ep->halted = 0;
  2467. tmp = readl(&ep->regs->ctl);
  2468. tmp = tmp & AMD_CLEAR_BIT(UDC_EPCTL_S);
  2469. writel(tmp, &ep->regs->ctl);
  2470. }
  2471. /* call gadget zero with setup data received */
  2472. spin_unlock(&dev->lock);
  2473. tmp = dev->driver->setup(&dev->gadget, &setup_data.request);
  2474. spin_lock(&dev->lock);
  2475. } /* USB reset */
  2476. if (dev_irq & AMD_BIT(UDC_DEVINT_UR)) {
  2477. DBG(dev, "USB Reset interrupt\n");
  2478. ret_val = IRQ_HANDLED;
  2479. /* allow soft reset when suspend occurs */
  2480. soft_reset_occured = 0;
  2481. dev->waiting_zlp_ack_ep0in = 0;
  2482. dev->set_cfg_not_acked = 0;
  2483. /* mask not needed interrupts */
  2484. udc_mask_unused_interrupts(dev);
  2485. /* call gadget to resume and reset configs etc. */
  2486. spin_unlock(&dev->lock);
  2487. if (dev->sys_suspended && dev->driver->resume) {
  2488. dev->driver->resume(&dev->gadget);
  2489. dev->sys_suspended = 0;
  2490. }
  2491. dev->driver->disconnect(&dev->gadget);
  2492. spin_lock(&dev->lock);
  2493. /* disable ep0 to empty req queue */
  2494. empty_req_queue(&dev->ep[UDC_EP0IN_IX]);
  2495. ep_init(dev->regs, &dev->ep[UDC_EP0IN_IX]);
  2496. /* soft reset when rxfifo not empty */
  2497. tmp = readl(&dev->regs->sts);
  2498. if (!(tmp & AMD_BIT(UDC_DEVSTS_RXFIFO_EMPTY))
  2499. && !soft_reset_after_usbreset_occured) {
  2500. udc_soft_reset(dev);
  2501. soft_reset_after_usbreset_occured++;
  2502. }
  2503. /*
  2504. * DMA reset to kill potential old DMA hw hang,
  2505. * POLL bit is already reset by ep_init() through
  2506. * disconnect()
  2507. */
  2508. DBG(dev, "DMA machine reset\n");
  2509. tmp = readl(&dev->regs->cfg);
  2510. writel(tmp | AMD_BIT(UDC_DEVCFG_DMARST), &dev->regs->cfg);
  2511. writel(tmp, &dev->regs->cfg);
  2512. /* put into initial config */
  2513. udc_basic_init(dev);
  2514. /* enable device setup interrupts */
  2515. udc_enable_dev_setup_interrupts(dev);
  2516. /* enable suspend interrupt */
  2517. tmp = readl(&dev->regs->irqmsk);
  2518. tmp &= AMD_UNMASK_BIT(UDC_DEVINT_US);
  2519. writel(tmp, &dev->regs->irqmsk);
  2520. } /* USB suspend */
  2521. if (dev_irq & AMD_BIT(UDC_DEVINT_US)) {
  2522. DBG(dev, "USB Suspend interrupt\n");
  2523. ret_val = IRQ_HANDLED;
  2524. if (dev->driver->suspend) {
  2525. spin_unlock(&dev->lock);
  2526. dev->sys_suspended = 1;
  2527. dev->driver->suspend(&dev->gadget);
  2528. spin_lock(&dev->lock);
  2529. }
  2530. } /* new speed ? */
  2531. if (dev_irq & AMD_BIT(UDC_DEVINT_ENUM)) {
  2532. DBG(dev, "ENUM interrupt\n");
  2533. ret_val = IRQ_HANDLED;
  2534. soft_reset_after_usbreset_occured = 0;
  2535. /* disable ep0 to empty req queue */
  2536. empty_req_queue(&dev->ep[UDC_EP0IN_IX]);
  2537. ep_init(dev->regs, &dev->ep[UDC_EP0IN_IX]);
  2538. /* link up all endpoints */
  2539. udc_setup_endpoints(dev);
  2540. dev_info(&dev->pdev->dev, "Connect: %s\n",
  2541. usb_speed_string(dev->gadget.speed));
  2542. /* init ep 0 */
  2543. activate_control_endpoints(dev);
  2544. /* enable ep0 interrupts */
  2545. udc_enable_ep0_interrupts(dev);
  2546. }
  2547. /* session valid change interrupt */
  2548. if (dev_irq & AMD_BIT(UDC_DEVINT_SVC)) {
  2549. DBG(dev, "USB SVC interrupt\n");
  2550. ret_val = IRQ_HANDLED;
  2551. /* check that session is not valid to detect disconnect */
  2552. tmp = readl(&dev->regs->sts);
  2553. if (!(tmp & AMD_BIT(UDC_DEVSTS_SESSVLD))) {
  2554. /* disable suspend interrupt */
  2555. tmp = readl(&dev->regs->irqmsk);
  2556. tmp |= AMD_BIT(UDC_DEVINT_US);
  2557. writel(tmp, &dev->regs->irqmsk);
  2558. DBG(dev, "USB Disconnect (session valid low)\n");
  2559. /* cleanup on disconnect */
  2560. usb_disconnect(udc);
  2561. }
  2562. }
  2563. return ret_val;
  2564. }
  2565. /* Interrupt Service Routine, see Linux Kernel Doc for parameters */
  2566. static irqreturn_t udc_irq(int irq, void *pdev)
  2567. {
  2568. struct udc *dev = pdev;
  2569. u32 reg;
  2570. u16 i;
  2571. u32 ep_irq;
  2572. irqreturn_t ret_val = IRQ_NONE;
  2573. spin_lock(&dev->lock);
  2574. /* check for ep irq */
  2575. reg = readl(&dev->regs->ep_irqsts);
  2576. if (reg) {
  2577. if (reg & AMD_BIT(UDC_EPINT_OUT_EP0))
  2578. ret_val |= udc_control_out_isr(dev);
  2579. if (reg & AMD_BIT(UDC_EPINT_IN_EP0))
  2580. ret_val |= udc_control_in_isr(dev);
  2581. /*
  2582. * data endpoint
  2583. * iterate ep's
  2584. */
  2585. for (i = 1; i < UDC_EP_NUM; i++) {
  2586. ep_irq = 1 << i;
  2587. if (!(reg & ep_irq) || i == UDC_EPINT_OUT_EP0)
  2588. continue;
  2589. /* clear irq status */
  2590. writel(ep_irq, &dev->regs->ep_irqsts);
  2591. /* irq for out ep ? */
  2592. if (i > UDC_EPIN_NUM)
  2593. ret_val |= udc_data_out_isr(dev, i);
  2594. else
  2595. ret_val |= udc_data_in_isr(dev, i);
  2596. }
  2597. }
  2598. /* check for dev irq */
  2599. reg = readl(&dev->regs->irqsts);
  2600. if (reg) {
  2601. /* clear irq */
  2602. writel(reg, &dev->regs->irqsts);
  2603. ret_val |= udc_dev_isr(dev, reg);
  2604. }
  2605. spin_unlock(&dev->lock);
  2606. return ret_val;
  2607. }
  2608. /* Tears down device */
  2609. static void gadget_release(struct device *pdev)
  2610. {
  2611. struct amd5536udc *dev = dev_get_drvdata(pdev);
  2612. kfree(dev);
  2613. }
  2614. /* Cleanup on device remove */
  2615. static void udc_remove(struct udc *dev)
  2616. {
  2617. /* remove timer */
  2618. stop_timer++;
  2619. if (timer_pending(&udc_timer))
  2620. wait_for_completion(&on_exit);
  2621. if (udc_timer.data)
  2622. del_timer_sync(&udc_timer);
  2623. /* remove pollstall timer */
  2624. stop_pollstall_timer++;
  2625. if (timer_pending(&udc_pollstall_timer))
  2626. wait_for_completion(&on_pollstall_exit);
  2627. if (udc_pollstall_timer.data)
  2628. del_timer_sync(&udc_pollstall_timer);
  2629. udc = NULL;
  2630. }
  2631. /* Reset all pci context */
  2632. static void udc_pci_remove(struct pci_dev *pdev)
  2633. {
  2634. struct udc *dev;
  2635. dev = pci_get_drvdata(pdev);
  2636. usb_del_gadget_udc(&udc->gadget);
  2637. /* gadget driver must not be registered */
  2638. BUG_ON(dev->driver != NULL);
  2639. /* dma pool cleanup */
  2640. if (dev->data_requests)
  2641. pci_pool_destroy(dev->data_requests);
  2642. if (dev->stp_requests) {
  2643. /* cleanup DMA desc's for ep0in */
  2644. pci_pool_free(dev->stp_requests,
  2645. dev->ep[UDC_EP0OUT_IX].td_stp,
  2646. dev->ep[UDC_EP0OUT_IX].td_stp_dma);
  2647. pci_pool_free(dev->stp_requests,
  2648. dev->ep[UDC_EP0OUT_IX].td,
  2649. dev->ep[UDC_EP0OUT_IX].td_phys);
  2650. pci_pool_destroy(dev->stp_requests);
  2651. }
  2652. /* reset controller */
  2653. writel(AMD_BIT(UDC_DEVCFG_SOFTRESET), &dev->regs->cfg);
  2654. if (dev->irq_registered)
  2655. free_irq(pdev->irq, dev);
  2656. if (dev->regs)
  2657. iounmap(dev->regs);
  2658. if (dev->mem_region)
  2659. release_mem_region(pci_resource_start(pdev, 0),
  2660. pci_resource_len(pdev, 0));
  2661. if (dev->active)
  2662. pci_disable_device(pdev);
  2663. device_unregister(&dev->gadget.dev);
  2664. pci_set_drvdata(pdev, NULL);
  2665. udc_remove(dev);
  2666. }
  2667. /* create dma pools on init */
  2668. static int init_dma_pools(struct udc *dev)
  2669. {
  2670. struct udc_stp_dma *td_stp;
  2671. struct udc_data_dma *td_data;
  2672. int retval;
  2673. /* consistent DMA mode setting ? */
  2674. if (use_dma_ppb) {
  2675. use_dma_bufferfill_mode = 0;
  2676. } else {
  2677. use_dma_ppb_du = 0;
  2678. use_dma_bufferfill_mode = 1;
  2679. }
  2680. /* DMA setup */
  2681. dev->data_requests = dma_pool_create("data_requests", NULL,
  2682. sizeof(struct udc_data_dma), 0, 0);
  2683. if (!dev->data_requests) {
  2684. DBG(dev, "can't get request data pool\n");
  2685. retval = -ENOMEM;
  2686. goto finished;
  2687. }
  2688. /* EP0 in dma regs = dev control regs */
  2689. dev->ep[UDC_EP0IN_IX].dma = &dev->regs->ctl;
  2690. /* dma desc for setup data */
  2691. dev->stp_requests = dma_pool_create("setup requests", NULL,
  2692. sizeof(struct udc_stp_dma), 0, 0);
  2693. if (!dev->stp_requests) {
  2694. DBG(dev, "can't get stp request pool\n");
  2695. retval = -ENOMEM;
  2696. goto finished;
  2697. }
  2698. /* setup */
  2699. td_stp = dma_pool_alloc(dev->stp_requests, GFP_KERNEL,
  2700. &dev->ep[UDC_EP0OUT_IX].td_stp_dma);
  2701. if (td_stp == NULL) {
  2702. retval = -ENOMEM;
  2703. goto finished;
  2704. }
  2705. dev->ep[UDC_EP0OUT_IX].td_stp = td_stp;
  2706. /* data: 0 packets !? */
  2707. td_data = dma_pool_alloc(dev->stp_requests, GFP_KERNEL,
  2708. &dev->ep[UDC_EP0OUT_IX].td_phys);
  2709. if (td_data == NULL) {
  2710. retval = -ENOMEM;
  2711. goto finished;
  2712. }
  2713. dev->ep[UDC_EP0OUT_IX].td = td_data;
  2714. return 0;
  2715. finished:
  2716. return retval;
  2717. }
  2718. /* Called by pci bus driver to init pci context */
  2719. static int udc_pci_probe(
  2720. struct pci_dev *pdev,
  2721. const struct pci_device_id *id
  2722. )
  2723. {
  2724. struct udc *dev;
  2725. unsigned long resource;
  2726. unsigned long len;
  2727. int retval = 0;
  2728. /* one udc only */
  2729. if (udc) {
  2730. dev_dbg(&pdev->dev, "already probed\n");
  2731. return -EBUSY;
  2732. }
  2733. /* init */
  2734. dev = kzalloc(sizeof(struct udc), GFP_KERNEL);
  2735. if (!dev) {
  2736. retval = -ENOMEM;
  2737. goto finished;
  2738. }
  2739. /* pci setup */
  2740. if (pci_enable_device(pdev) < 0) {
  2741. kfree(dev);
  2742. dev = NULL;
  2743. retval = -ENODEV;
  2744. goto finished;
  2745. }
  2746. dev->active = 1;
  2747. /* PCI resource allocation */
  2748. resource = pci_resource_start(pdev, 0);
  2749. len = pci_resource_len(pdev, 0);
  2750. if (!request_mem_region(resource, len, name)) {
  2751. dev_dbg(&pdev->dev, "pci device used already\n");
  2752. kfree(dev);
  2753. dev = NULL;
  2754. retval = -EBUSY;
  2755. goto finished;
  2756. }
  2757. dev->mem_region = 1;
  2758. dev->virt_addr = ioremap_nocache(resource, len);
  2759. if (dev->virt_addr == NULL) {
  2760. dev_dbg(&pdev->dev, "start address cannot be mapped\n");
  2761. kfree(dev);
  2762. dev = NULL;
  2763. retval = -EFAULT;
  2764. goto finished;
  2765. }
  2766. if (!pdev->irq) {
  2767. dev_err(&dev->pdev->dev, "irq not set\n");
  2768. kfree(dev);
  2769. dev = NULL;
  2770. retval = -ENODEV;
  2771. goto finished;
  2772. }
  2773. spin_lock_init(&dev->lock);
  2774. /* udc csr registers base */
  2775. dev->csr = dev->virt_addr + UDC_CSR_ADDR;
  2776. /* dev registers base */
  2777. dev->regs = dev->virt_addr + UDC_DEVCFG_ADDR;
  2778. /* ep registers base */
  2779. dev->ep_regs = dev->virt_addr + UDC_EPREGS_ADDR;
  2780. /* fifo's base */
  2781. dev->rxfifo = (u32 __iomem *)(dev->virt_addr + UDC_RXFIFO_ADDR);
  2782. dev->txfifo = (u32 __iomem *)(dev->virt_addr + UDC_TXFIFO_ADDR);
  2783. if (request_irq(pdev->irq, udc_irq, IRQF_SHARED, name, dev) != 0) {
  2784. dev_dbg(&dev->pdev->dev, "request_irq(%d) fail\n", pdev->irq);
  2785. kfree(dev);
  2786. dev = NULL;
  2787. retval = -EBUSY;
  2788. goto finished;
  2789. }
  2790. dev->irq_registered = 1;
  2791. pci_set_drvdata(pdev, dev);
  2792. /* chip revision for Hs AMD5536 */
  2793. dev->chiprev = pdev->revision;
  2794. pci_set_master(pdev);
  2795. pci_try_set_mwi(pdev);
  2796. /* init dma pools */
  2797. if (use_dma) {
  2798. retval = init_dma_pools(dev);
  2799. if (retval != 0)
  2800. goto finished;
  2801. }
  2802. dev->phys_addr = resource;
  2803. dev->irq = pdev->irq;
  2804. dev->pdev = pdev;
  2805. dev->gadget.dev.parent = &pdev->dev;
  2806. dev->gadget.dev.dma_mask = pdev->dev.dma_mask;
  2807. /* general probing */
  2808. if (udc_probe(dev) == 0)
  2809. return 0;
  2810. finished:
  2811. if (dev)
  2812. udc_pci_remove(pdev);
  2813. return retval;
  2814. }
  2815. /* general probe */
  2816. static int udc_probe(struct udc *dev)
  2817. {
  2818. char tmp[128];
  2819. u32 reg;
  2820. int retval;
  2821. /* mark timer as not initialized */
  2822. udc_timer.data = 0;
  2823. udc_pollstall_timer.data = 0;
  2824. /* device struct setup */
  2825. dev->gadget.ops = &udc_ops;
  2826. dev_set_name(&dev->gadget.dev, "gadget");
  2827. dev->gadget.dev.release = gadget_release;
  2828. dev->gadget.name = name;
  2829. dev->gadget.max_speed = USB_SPEED_HIGH;
  2830. /* init registers, interrupts, ... */
  2831. startup_registers(dev);
  2832. dev_info(&dev->pdev->dev, "%s\n", mod_desc);
  2833. snprintf(tmp, sizeof tmp, "%d", dev->irq);
  2834. dev_info(&dev->pdev->dev,
  2835. "irq %s, pci mem %08lx, chip rev %02x(Geode5536 %s)\n",
  2836. tmp, dev->phys_addr, dev->chiprev,
  2837. (dev->chiprev == UDC_HSA0_REV) ? "A0" : "B1");
  2838. strcpy(tmp, UDC_DRIVER_VERSION_STRING);
  2839. if (dev->chiprev == UDC_HSA0_REV) {
  2840. dev_err(&dev->pdev->dev, "chip revision is A0; too old\n");
  2841. retval = -ENODEV;
  2842. goto finished;
  2843. }
  2844. dev_info(&dev->pdev->dev,
  2845. "driver version: %s(for Geode5536 B1)\n", tmp);
  2846. udc = dev;
  2847. retval = usb_add_gadget_udc(&udc->pdev->dev, &dev->gadget);
  2848. if (retval)
  2849. goto finished;
  2850. retval = device_register(&dev->gadget.dev);
  2851. if (retval) {
  2852. usb_del_gadget_udc(&dev->gadget);
  2853. put_device(&dev->gadget.dev);
  2854. goto finished;
  2855. }
  2856. /* timer init */
  2857. init_timer(&udc_timer);
  2858. udc_timer.function = udc_timer_function;
  2859. udc_timer.data = 1;
  2860. /* timer pollstall init */
  2861. init_timer(&udc_pollstall_timer);
  2862. udc_pollstall_timer.function = udc_pollstall_timer_function;
  2863. udc_pollstall_timer.data = 1;
  2864. /* set SD */
  2865. reg = readl(&dev->regs->ctl);
  2866. reg |= AMD_BIT(UDC_DEVCTL_SD);
  2867. writel(reg, &dev->regs->ctl);
  2868. /* print dev register info */
  2869. print_regs(dev);
  2870. return 0;
  2871. finished:
  2872. return retval;
  2873. }
  2874. /* Initiates a remote wakeup */
  2875. static int udc_remote_wakeup(struct udc *dev)
  2876. {
  2877. unsigned long flags;
  2878. u32 tmp;
  2879. DBG(dev, "UDC initiates remote wakeup\n");
  2880. spin_lock_irqsave(&dev->lock, flags);
  2881. tmp = readl(&dev->regs->ctl);
  2882. tmp |= AMD_BIT(UDC_DEVCTL_RES);
  2883. writel(tmp, &dev->regs->ctl);
  2884. tmp &= AMD_CLEAR_BIT(UDC_DEVCTL_RES);
  2885. writel(tmp, &dev->regs->ctl);
  2886. spin_unlock_irqrestore(&dev->lock, flags);
  2887. return 0;
  2888. }
  2889. /* PCI device parameters */
  2890. static DEFINE_PCI_DEVICE_TABLE(pci_id) = {
  2891. {
  2892. PCI_DEVICE(PCI_VENDOR_ID_AMD, 0x2096),
  2893. .class = (PCI_CLASS_SERIAL_USB << 8) | 0xfe,
  2894. .class_mask = 0xffffffff,
  2895. },
  2896. {},
  2897. };
  2898. MODULE_DEVICE_TABLE(pci, pci_id);
  2899. /* PCI functions */
  2900. static struct pci_driver udc_pci_driver = {
  2901. .name = (char *) name,
  2902. .id_table = pci_id,
  2903. .probe = udc_pci_probe,
  2904. .remove = udc_pci_remove,
  2905. };
  2906. /* Inits driver */
  2907. static int __init init(void)
  2908. {
  2909. return pci_register_driver(&udc_pci_driver);
  2910. }
  2911. module_init(init);
  2912. /* Cleans driver */
  2913. static void __exit cleanup(void)
  2914. {
  2915. pci_unregister_driver(&udc_pci_driver);
  2916. }
  2917. module_exit(cleanup);
  2918. MODULE_DESCRIPTION(UDC_MOD_DESCRIPTION);
  2919. MODULE_AUTHOR("Thomas Dahlmann");
  2920. MODULE_LICENSE("GPL");