iwl-eeprom.c 32 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094
  1. /******************************************************************************
  2. *
  3. * This file is provided under a dual BSD/GPLv2 license. When using or
  4. * redistributing this file, you may do so under either license.
  5. *
  6. * GPL LICENSE SUMMARY
  7. *
  8. * Copyright(c) 2008 - 2012 Intel Corporation. All rights reserved.
  9. *
  10. * This program is free software; you can redistribute it and/or modify
  11. * it under the terms of version 2 of the GNU General Public License as
  12. * published by the Free Software Foundation.
  13. *
  14. * This program is distributed in the hope that it will be useful, but
  15. * WITHOUT ANY WARRANTY; without even the implied warranty of
  16. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  17. * General Public License for more details.
  18. *
  19. * You should have received a copy of the GNU General Public License
  20. * along with this program; if not, write to the Free Software
  21. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110,
  22. * USA
  23. *
  24. * The full GNU General Public License is included in this distribution
  25. * in the file called LICENSE.GPL.
  26. *
  27. * Contact Information:
  28. * Intel Linux Wireless <ilw@linux.intel.com>
  29. * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
  30. *
  31. * BSD LICENSE
  32. *
  33. * Copyright(c) 2005 - 2012 Intel Corporation. All rights reserved.
  34. * All rights reserved.
  35. *
  36. * Redistribution and use in source and binary forms, with or without
  37. * modification, are permitted provided that the following conditions
  38. * are met:
  39. *
  40. * * Redistributions of source code must retain the above copyright
  41. * notice, this list of conditions and the following disclaimer.
  42. * * Redistributions in binary form must reproduce the above copyright
  43. * notice, this list of conditions and the following disclaimer in
  44. * the documentation and/or other materials provided with the
  45. * distribution.
  46. * * Neither the name Intel Corporation nor the names of its
  47. * contributors may be used to endorse or promote products derived
  48. * from this software without specific prior written permission.
  49. *
  50. * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
  51. * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
  52. * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
  53. * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
  54. * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
  55. * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
  56. * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
  57. * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
  58. * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
  59. * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
  60. * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  61. *****************************************************************************/
  62. #include <linux/kernel.h>
  63. #include <linux/module.h>
  64. #include <linux/slab.h>
  65. #include <linux/init.h>
  66. #include <net/mac80211.h>
  67. #include "iwl-commands.h"
  68. #include "iwl-dev.h"
  69. #include "iwl-core.h"
  70. #include "iwl-debug.h"
  71. #include "iwl-agn.h"
  72. #include "iwl-eeprom.h"
  73. #include "iwl-io.h"
  74. #include "iwl-prph.h"
  75. /************************** EEPROM BANDS ****************************
  76. *
  77. * The iwl_eeprom_band definitions below provide the mapping from the
  78. * EEPROM contents to the specific channel number supported for each
  79. * band.
  80. *
  81. * For example, iwl_priv->eeprom.band_3_channels[4] from the band_3
  82. * definition below maps to physical channel 42 in the 5.2GHz spectrum.
  83. * The specific geography and calibration information for that channel
  84. * is contained in the eeprom map itself.
  85. *
  86. * During init, we copy the eeprom information and channel map
  87. * information into priv->channel_info_24/52 and priv->channel_map_24/52
  88. *
  89. * channel_map_24/52 provides the index in the channel_info array for a
  90. * given channel. We have to have two separate maps as there is channel
  91. * overlap with the 2.4GHz and 5.2GHz spectrum as seen in band_1 and
  92. * band_2
  93. *
  94. * A value of 0xff stored in the channel_map indicates that the channel
  95. * is not supported by the hardware at all.
  96. *
  97. * A value of 0xfe in the channel_map indicates that the channel is not
  98. * valid for Tx with the current hardware. This means that
  99. * while the system can tune and receive on a given channel, it may not
  100. * be able to associate or transmit any frames on that
  101. * channel. There is no corresponding channel information for that
  102. * entry.
  103. *
  104. *********************************************************************/
  105. /* 2.4 GHz */
  106. const u8 iwl_eeprom_band_1[14] = {
  107. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14
  108. };
  109. /* 5.2 GHz bands */
  110. static const u8 iwl_eeprom_band_2[] = { /* 4915-5080MHz */
  111. 183, 184, 185, 187, 188, 189, 192, 196, 7, 8, 11, 12, 16
  112. };
  113. static const u8 iwl_eeprom_band_3[] = { /* 5170-5320MHz */
  114. 34, 36, 38, 40, 42, 44, 46, 48, 52, 56, 60, 64
  115. };
  116. static const u8 iwl_eeprom_band_4[] = { /* 5500-5700MHz */
  117. 100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140
  118. };
  119. static const u8 iwl_eeprom_band_5[] = { /* 5725-5825MHz */
  120. 145, 149, 153, 157, 161, 165
  121. };
  122. static const u8 iwl_eeprom_band_6[] = { /* 2.4 ht40 channel */
  123. 1, 2, 3, 4, 5, 6, 7
  124. };
  125. static const u8 iwl_eeprom_band_7[] = { /* 5.2 ht40 channel */
  126. 36, 44, 52, 60, 100, 108, 116, 124, 132, 149, 157
  127. };
  128. /******************************************************************************
  129. *
  130. * generic NVM functions
  131. *
  132. ******************************************************************************/
  133. /*
  134. * The device's EEPROM semaphore prevents conflicts between driver and uCode
  135. * when accessing the EEPROM; each access is a series of pulses to/from the
  136. * EEPROM chip, not a single event, so even reads could conflict if they
  137. * weren't arbitrated by the semaphore.
  138. */
  139. #define EEPROM_SEM_TIMEOUT 10 /* milliseconds */
  140. #define EEPROM_SEM_RETRY_LIMIT 1000 /* number of attempts (not time) */
  141. static int iwl_eeprom_acquire_semaphore(struct iwl_trans *trans)
  142. {
  143. u16 count;
  144. int ret;
  145. for (count = 0; count < EEPROM_SEM_RETRY_LIMIT; count++) {
  146. /* Request semaphore */
  147. iwl_set_bit(trans, CSR_HW_IF_CONFIG_REG,
  148. CSR_HW_IF_CONFIG_REG_BIT_EEPROM_OWN_SEM);
  149. /* See if we got it */
  150. ret = iwl_poll_bit(trans, CSR_HW_IF_CONFIG_REG,
  151. CSR_HW_IF_CONFIG_REG_BIT_EEPROM_OWN_SEM,
  152. CSR_HW_IF_CONFIG_REG_BIT_EEPROM_OWN_SEM,
  153. EEPROM_SEM_TIMEOUT);
  154. if (ret >= 0) {
  155. IWL_DEBUG_EEPROM(trans,
  156. "Acquired semaphore after %d tries.\n",
  157. count+1);
  158. return ret;
  159. }
  160. }
  161. return ret;
  162. }
  163. static void iwl_eeprom_release_semaphore(struct iwl_trans *trans)
  164. {
  165. iwl_clear_bit(trans, CSR_HW_IF_CONFIG_REG,
  166. CSR_HW_IF_CONFIG_REG_BIT_EEPROM_OWN_SEM);
  167. }
  168. static int iwl_eeprom_verify_signature(struct iwl_trans *trans)
  169. {
  170. u32 gp = iwl_read32(trans, CSR_EEPROM_GP) &
  171. CSR_EEPROM_GP_VALID_MSK;
  172. int ret = 0;
  173. IWL_DEBUG_EEPROM(trans, "EEPROM signature=0x%08x\n", gp);
  174. switch (gp) {
  175. case CSR_EEPROM_GP_BAD_SIG_EEP_GOOD_SIG_OTP:
  176. if (trans->nvm_device_type != NVM_DEVICE_TYPE_OTP) {
  177. IWL_ERR(trans, "EEPROM with bad signature: 0x%08x\n",
  178. gp);
  179. ret = -ENOENT;
  180. }
  181. break;
  182. case CSR_EEPROM_GP_GOOD_SIG_EEP_LESS_THAN_4K:
  183. case CSR_EEPROM_GP_GOOD_SIG_EEP_MORE_THAN_4K:
  184. if (trans->nvm_device_type != NVM_DEVICE_TYPE_EEPROM) {
  185. IWL_ERR(trans, "OTP with bad signature: 0x%08x\n", gp);
  186. ret = -ENOENT;
  187. }
  188. break;
  189. case CSR_EEPROM_GP_BAD_SIGNATURE_BOTH_EEP_AND_OTP:
  190. default:
  191. IWL_ERR(trans, "bad EEPROM/OTP signature, type=%s, "
  192. "EEPROM_GP=0x%08x\n",
  193. (trans->nvm_device_type == NVM_DEVICE_TYPE_OTP)
  194. ? "OTP" : "EEPROM", gp);
  195. ret = -ENOENT;
  196. break;
  197. }
  198. return ret;
  199. }
  200. u16 iwl_eeprom_query16(const struct iwl_shared *shrd, size_t offset)
  201. {
  202. if (!shrd->eeprom)
  203. return 0;
  204. return (u16)shrd->eeprom[offset] | ((u16)shrd->eeprom[offset + 1] << 8);
  205. }
  206. int iwl_eeprom_check_version(struct iwl_priv *priv)
  207. {
  208. u16 eeprom_ver;
  209. u16 calib_ver;
  210. eeprom_ver = iwl_eeprom_query16(priv->shrd, EEPROM_VERSION);
  211. calib_ver = iwl_eeprom_calib_version(priv->shrd);
  212. if (eeprom_ver < cfg(priv)->eeprom_ver ||
  213. calib_ver < cfg(priv)->eeprom_calib_ver)
  214. goto err;
  215. IWL_INFO(priv, "device EEPROM VER=0x%x, CALIB=0x%x\n",
  216. eeprom_ver, calib_ver);
  217. return 0;
  218. err:
  219. IWL_ERR(priv, "Unsupported (too old) EEPROM VER=0x%x < 0x%x "
  220. "CALIB=0x%x < 0x%x\n",
  221. eeprom_ver, cfg(priv)->eeprom_ver,
  222. calib_ver, cfg(priv)->eeprom_calib_ver);
  223. return -EINVAL;
  224. }
  225. int iwl_eeprom_init_hw_params(struct iwl_priv *priv)
  226. {
  227. struct iwl_shared *shrd = priv->shrd;
  228. u16 radio_cfg;
  229. hw_params(priv).sku = iwl_eeprom_query16(shrd, EEPROM_SKU_CAP);
  230. if (hw_params(priv).sku & EEPROM_SKU_CAP_11N_ENABLE &&
  231. !cfg(priv)->ht_params) {
  232. IWL_ERR(priv, "Invalid 11n configuration\n");
  233. return -EINVAL;
  234. }
  235. if (!hw_params(priv).sku) {
  236. IWL_ERR(priv, "Invalid device sku\n");
  237. return -EINVAL;
  238. }
  239. IWL_INFO(priv, "Device SKU: 0x%X\n", hw_params(priv).sku);
  240. radio_cfg = iwl_eeprom_query16(shrd, EEPROM_RADIO_CONFIG);
  241. hw_params(priv).valid_tx_ant = EEPROM_RF_CFG_TX_ANT_MSK(radio_cfg);
  242. hw_params(priv).valid_rx_ant = EEPROM_RF_CFG_RX_ANT_MSK(radio_cfg);
  243. /* check overrides (some devices have wrong EEPROM) */
  244. if (cfg(priv)->valid_tx_ant)
  245. hw_params(priv).valid_tx_ant = cfg(priv)->valid_tx_ant;
  246. if (cfg(priv)->valid_rx_ant)
  247. hw_params(priv).valid_rx_ant = cfg(priv)->valid_rx_ant;
  248. if (!hw_params(priv).valid_tx_ant || !hw_params(priv).valid_rx_ant) {
  249. IWL_ERR(priv, "Invalid chain (0x%X, 0x%X)\n",
  250. hw_params(priv).valid_tx_ant,
  251. hw_params(priv).valid_rx_ant);
  252. return -EINVAL;
  253. }
  254. IWL_INFO(priv, "Valid Tx ant: 0x%X, Valid Rx ant: 0x%X\n",
  255. hw_params(priv).valid_tx_ant, hw_params(priv).valid_rx_ant);
  256. return 0;
  257. }
  258. void iwl_eeprom_get_mac(const struct iwl_shared *shrd, u8 *mac)
  259. {
  260. const u8 *addr = iwl_eeprom_query_addr(shrd,
  261. EEPROM_MAC_ADDRESS);
  262. memcpy(mac, addr, ETH_ALEN);
  263. }
  264. /******************************************************************************
  265. *
  266. * OTP related functions
  267. *
  268. ******************************************************************************/
  269. static void iwl_set_otp_access(struct iwl_trans *trans,
  270. enum iwl_access_mode mode)
  271. {
  272. iwl_read32(trans, CSR_OTP_GP_REG);
  273. if (mode == IWL_OTP_ACCESS_ABSOLUTE)
  274. iwl_clear_bit(trans, CSR_OTP_GP_REG,
  275. CSR_OTP_GP_REG_OTP_ACCESS_MODE);
  276. else
  277. iwl_set_bit(trans, CSR_OTP_GP_REG,
  278. CSR_OTP_GP_REG_OTP_ACCESS_MODE);
  279. }
  280. static int iwl_get_nvm_type(struct iwl_trans *trans, u32 hw_rev)
  281. {
  282. u32 otpgp;
  283. int nvm_type;
  284. /* OTP only valid for CP/PP and after */
  285. switch (hw_rev & CSR_HW_REV_TYPE_MSK) {
  286. case CSR_HW_REV_TYPE_NONE:
  287. IWL_ERR(trans, "Unknown hardware type\n");
  288. return -ENOENT;
  289. case CSR_HW_REV_TYPE_5300:
  290. case CSR_HW_REV_TYPE_5350:
  291. case CSR_HW_REV_TYPE_5100:
  292. case CSR_HW_REV_TYPE_5150:
  293. nvm_type = NVM_DEVICE_TYPE_EEPROM;
  294. break;
  295. default:
  296. otpgp = iwl_read32(trans, CSR_OTP_GP_REG);
  297. if (otpgp & CSR_OTP_GP_REG_DEVICE_SELECT)
  298. nvm_type = NVM_DEVICE_TYPE_OTP;
  299. else
  300. nvm_type = NVM_DEVICE_TYPE_EEPROM;
  301. break;
  302. }
  303. return nvm_type;
  304. }
  305. static int iwl_init_otp_access(struct iwl_trans *trans)
  306. {
  307. int ret;
  308. /* Enable 40MHz radio clock */
  309. iwl_write32(trans, CSR_GP_CNTRL,
  310. iwl_read32(trans, CSR_GP_CNTRL) |
  311. CSR_GP_CNTRL_REG_FLAG_INIT_DONE);
  312. /* wait for clock to be ready */
  313. ret = iwl_poll_bit(trans, CSR_GP_CNTRL,
  314. CSR_GP_CNTRL_REG_FLAG_MAC_CLOCK_READY,
  315. CSR_GP_CNTRL_REG_FLAG_MAC_CLOCK_READY,
  316. 25000);
  317. if (ret < 0)
  318. IWL_ERR(trans, "Time out access OTP\n");
  319. else {
  320. iwl_set_bits_prph(trans, APMG_PS_CTRL_REG,
  321. APMG_PS_CTRL_VAL_RESET_REQ);
  322. udelay(5);
  323. iwl_clear_bits_prph(trans, APMG_PS_CTRL_REG,
  324. APMG_PS_CTRL_VAL_RESET_REQ);
  325. /*
  326. * CSR auto clock gate disable bit -
  327. * this is only applicable for HW with OTP shadow RAM
  328. */
  329. if (cfg(trans)->base_params->shadow_ram_support)
  330. iwl_set_bit(trans, CSR_DBG_LINK_PWR_MGMT_REG,
  331. CSR_RESET_LINK_PWR_MGMT_DISABLED);
  332. }
  333. return ret;
  334. }
  335. static int iwl_read_otp_word(struct iwl_trans *trans, u16 addr,
  336. __le16 *eeprom_data)
  337. {
  338. int ret = 0;
  339. u32 r;
  340. u32 otpgp;
  341. iwl_write32(trans, CSR_EEPROM_REG,
  342. CSR_EEPROM_REG_MSK_ADDR & (addr << 1));
  343. ret = iwl_poll_bit(trans, CSR_EEPROM_REG,
  344. CSR_EEPROM_REG_READ_VALID_MSK,
  345. CSR_EEPROM_REG_READ_VALID_MSK,
  346. IWL_EEPROM_ACCESS_TIMEOUT);
  347. if (ret < 0) {
  348. IWL_ERR(trans, "Time out reading OTP[%d]\n", addr);
  349. return ret;
  350. }
  351. r = iwl_read32(trans, CSR_EEPROM_REG);
  352. /* check for ECC errors: */
  353. otpgp = iwl_read32(trans, CSR_OTP_GP_REG);
  354. if (otpgp & CSR_OTP_GP_REG_ECC_UNCORR_STATUS_MSK) {
  355. /* stop in this case */
  356. /* set the uncorrectable OTP ECC bit for acknowledgement */
  357. iwl_set_bit(trans, CSR_OTP_GP_REG,
  358. CSR_OTP_GP_REG_ECC_UNCORR_STATUS_MSK);
  359. IWL_ERR(trans, "Uncorrectable OTP ECC error, abort OTP read\n");
  360. return -EINVAL;
  361. }
  362. if (otpgp & CSR_OTP_GP_REG_ECC_CORR_STATUS_MSK) {
  363. /* continue in this case */
  364. /* set the correctable OTP ECC bit for acknowledgement */
  365. iwl_set_bit(trans, CSR_OTP_GP_REG,
  366. CSR_OTP_GP_REG_ECC_CORR_STATUS_MSK);
  367. IWL_ERR(trans, "Correctable OTP ECC error, continue read\n");
  368. }
  369. *eeprom_data = cpu_to_le16(r >> 16);
  370. return 0;
  371. }
  372. /*
  373. * iwl_is_otp_empty: check for empty OTP
  374. */
  375. static bool iwl_is_otp_empty(struct iwl_trans *trans)
  376. {
  377. u16 next_link_addr = 0;
  378. __le16 link_value;
  379. bool is_empty = false;
  380. /* locate the beginning of OTP link list */
  381. if (!iwl_read_otp_word(trans, next_link_addr, &link_value)) {
  382. if (!link_value) {
  383. IWL_ERR(trans, "OTP is empty\n");
  384. is_empty = true;
  385. }
  386. } else {
  387. IWL_ERR(trans, "Unable to read first block of OTP list.\n");
  388. is_empty = true;
  389. }
  390. return is_empty;
  391. }
  392. /*
  393. * iwl_find_otp_image: find EEPROM image in OTP
  394. * finding the OTP block that contains the EEPROM image.
  395. * the last valid block on the link list (the block _before_ the last block)
  396. * is the block we should read and used to configure the device.
  397. * If all the available OTP blocks are full, the last block will be the block
  398. * we should read and used to configure the device.
  399. * only perform this operation if shadow RAM is disabled
  400. */
  401. static int iwl_find_otp_image(struct iwl_trans *trans,
  402. u16 *validblockaddr)
  403. {
  404. u16 next_link_addr = 0, valid_addr;
  405. __le16 link_value = 0;
  406. int usedblocks = 0;
  407. /* set addressing mode to absolute to traverse the link list */
  408. iwl_set_otp_access(trans, IWL_OTP_ACCESS_ABSOLUTE);
  409. /* checking for empty OTP or error */
  410. if (iwl_is_otp_empty(trans))
  411. return -EINVAL;
  412. /*
  413. * start traverse link list
  414. * until reach the max number of OTP blocks
  415. * different devices have different number of OTP blocks
  416. */
  417. do {
  418. /* save current valid block address
  419. * check for more block on the link list
  420. */
  421. valid_addr = next_link_addr;
  422. next_link_addr = le16_to_cpu(link_value) * sizeof(u16);
  423. IWL_DEBUG_EEPROM(trans, "OTP blocks %d addr 0x%x\n",
  424. usedblocks, next_link_addr);
  425. if (iwl_read_otp_word(trans, next_link_addr, &link_value))
  426. return -EINVAL;
  427. if (!link_value) {
  428. /*
  429. * reach the end of link list, return success and
  430. * set address point to the starting address
  431. * of the image
  432. */
  433. *validblockaddr = valid_addr;
  434. /* skip first 2 bytes (link list pointer) */
  435. *validblockaddr += 2;
  436. return 0;
  437. }
  438. /* more in the link list, continue */
  439. usedblocks++;
  440. } while (usedblocks <= cfg(trans)->base_params->max_ll_items);
  441. /* OTP has no valid blocks */
  442. IWL_DEBUG_EEPROM(trans, "OTP has no valid blocks\n");
  443. return -EINVAL;
  444. }
  445. /******************************************************************************
  446. *
  447. * Tx Power related functions
  448. *
  449. ******************************************************************************/
  450. /**
  451. * iwl_get_max_txpower_avg - get the highest tx power from all chains.
  452. * find the highest tx power from all chains for the channel
  453. */
  454. static s8 iwl_get_max_txpower_avg(const struct iwl_cfg *cfg,
  455. struct iwl_eeprom_enhanced_txpwr *enhanced_txpower,
  456. int element, s8 *max_txpower_in_half_dbm)
  457. {
  458. s8 max_txpower_avg = 0; /* (dBm) */
  459. /* Take the highest tx power from any valid chains */
  460. if ((cfg->valid_tx_ant & ANT_A) &&
  461. (enhanced_txpower[element].chain_a_max > max_txpower_avg))
  462. max_txpower_avg = enhanced_txpower[element].chain_a_max;
  463. if ((cfg->valid_tx_ant & ANT_B) &&
  464. (enhanced_txpower[element].chain_b_max > max_txpower_avg))
  465. max_txpower_avg = enhanced_txpower[element].chain_b_max;
  466. if ((cfg->valid_tx_ant & ANT_C) &&
  467. (enhanced_txpower[element].chain_c_max > max_txpower_avg))
  468. max_txpower_avg = enhanced_txpower[element].chain_c_max;
  469. if (((cfg->valid_tx_ant == ANT_AB) |
  470. (cfg->valid_tx_ant == ANT_BC) |
  471. (cfg->valid_tx_ant == ANT_AC)) &&
  472. (enhanced_txpower[element].mimo2_max > max_txpower_avg))
  473. max_txpower_avg = enhanced_txpower[element].mimo2_max;
  474. if ((cfg->valid_tx_ant == ANT_ABC) &&
  475. (enhanced_txpower[element].mimo3_max > max_txpower_avg))
  476. max_txpower_avg = enhanced_txpower[element].mimo3_max;
  477. /*
  478. * max. tx power in EEPROM is in 1/2 dBm format
  479. * convert from 1/2 dBm to dBm (round-up convert)
  480. * but we also do not want to loss 1/2 dBm resolution which
  481. * will impact performance
  482. */
  483. *max_txpower_in_half_dbm = max_txpower_avg;
  484. return (max_txpower_avg & 0x01) + (max_txpower_avg >> 1);
  485. }
  486. static void
  487. iwl_eeprom_enh_txp_read_element(struct iwl_priv *priv,
  488. struct iwl_eeprom_enhanced_txpwr *txp,
  489. s8 max_txpower_avg)
  490. {
  491. int ch_idx;
  492. bool is_ht40 = txp->flags & IWL_EEPROM_ENH_TXP_FL_40MHZ;
  493. enum ieee80211_band band;
  494. band = txp->flags & IWL_EEPROM_ENH_TXP_FL_BAND_52G ?
  495. IEEE80211_BAND_5GHZ : IEEE80211_BAND_2GHZ;
  496. for (ch_idx = 0; ch_idx < priv->channel_count; ch_idx++) {
  497. struct iwl_channel_info *ch_info = &priv->channel_info[ch_idx];
  498. /* update matching channel or from common data only */
  499. if (txp->channel != 0 && ch_info->channel != txp->channel)
  500. continue;
  501. /* update matching band only */
  502. if (band != ch_info->band)
  503. continue;
  504. if (ch_info->max_power_avg < max_txpower_avg && !is_ht40) {
  505. ch_info->max_power_avg = max_txpower_avg;
  506. ch_info->curr_txpow = max_txpower_avg;
  507. ch_info->scan_power = max_txpower_avg;
  508. }
  509. if (is_ht40 && ch_info->ht40_max_power_avg < max_txpower_avg)
  510. ch_info->ht40_max_power_avg = max_txpower_avg;
  511. }
  512. }
  513. #define EEPROM_TXP_OFFS (0x00 | INDIRECT_ADDRESS | INDIRECT_TXP_LIMIT)
  514. #define EEPROM_TXP_ENTRY_LEN sizeof(struct iwl_eeprom_enhanced_txpwr)
  515. #define EEPROM_TXP_SZ_OFFS (0x00 | INDIRECT_ADDRESS | INDIRECT_TXP_LIMIT_SIZE)
  516. #define TXP_CHECK_AND_PRINT(x) ((txp->flags & IWL_EEPROM_ENH_TXP_FL_##x) \
  517. ? # x " " : "")
  518. static void iwl_eeprom_enhanced_txpower(struct iwl_priv *priv)
  519. {
  520. struct iwl_shared *shrd = priv->shrd;
  521. struct iwl_eeprom_enhanced_txpwr *txp_array, *txp;
  522. int idx, entries;
  523. __le16 *txp_len;
  524. s8 max_txp_avg, max_txp_avg_halfdbm;
  525. BUILD_BUG_ON(sizeof(struct iwl_eeprom_enhanced_txpwr) != 8);
  526. /* the length is in 16-bit words, but we want entries */
  527. txp_len = (__le16 *) iwl_eeprom_query_addr(shrd, EEPROM_TXP_SZ_OFFS);
  528. entries = le16_to_cpup(txp_len) * 2 / EEPROM_TXP_ENTRY_LEN;
  529. txp_array = (void *) iwl_eeprom_query_addr(shrd, EEPROM_TXP_OFFS);
  530. for (idx = 0; idx < entries; idx++) {
  531. txp = &txp_array[idx];
  532. /* skip invalid entries */
  533. if (!(txp->flags & IWL_EEPROM_ENH_TXP_FL_VALID))
  534. continue;
  535. IWL_DEBUG_EEPROM(priv, "%s %d:\t %s%s%s%s%s%s%s%s (0x%02x)\n",
  536. (txp->channel && (txp->flags &
  537. IWL_EEPROM_ENH_TXP_FL_COMMON_TYPE)) ?
  538. "Common " : (txp->channel) ?
  539. "Channel" : "Common",
  540. (txp->channel),
  541. TXP_CHECK_AND_PRINT(VALID),
  542. TXP_CHECK_AND_PRINT(BAND_52G),
  543. TXP_CHECK_AND_PRINT(OFDM),
  544. TXP_CHECK_AND_PRINT(40MHZ),
  545. TXP_CHECK_AND_PRINT(HT_AP),
  546. TXP_CHECK_AND_PRINT(RES1),
  547. TXP_CHECK_AND_PRINT(RES2),
  548. TXP_CHECK_AND_PRINT(COMMON_TYPE),
  549. txp->flags);
  550. IWL_DEBUG_EEPROM(priv, "\t\t chain_A: 0x%02x "
  551. "chain_B: 0X%02x chain_C: 0X%02x\n",
  552. txp->chain_a_max, txp->chain_b_max,
  553. txp->chain_c_max);
  554. IWL_DEBUG_EEPROM(priv, "\t\t MIMO2: 0x%02x "
  555. "MIMO3: 0x%02x High 20_on_40: 0x%02x "
  556. "Low 20_on_40: 0x%02x\n",
  557. txp->mimo2_max, txp->mimo3_max,
  558. ((txp->delta_20_in_40 & 0xf0) >> 4),
  559. (txp->delta_20_in_40 & 0x0f));
  560. max_txp_avg = iwl_get_max_txpower_avg(cfg(priv), txp_array, idx,
  561. &max_txp_avg_halfdbm);
  562. /*
  563. * Update the user limit values values to the highest
  564. * power supported by any channel
  565. */
  566. if (max_txp_avg > priv->tx_power_user_lmt)
  567. priv->tx_power_user_lmt = max_txp_avg;
  568. if (max_txp_avg_halfdbm > priv->tx_power_lmt_in_half_dbm)
  569. priv->tx_power_lmt_in_half_dbm = max_txp_avg_halfdbm;
  570. iwl_eeprom_enh_txp_read_element(priv, txp, max_txp_avg);
  571. }
  572. }
  573. /**
  574. * iwl_eeprom_init - read EEPROM contents
  575. *
  576. * Load the EEPROM contents from adapter into shrd->eeprom
  577. *
  578. * NOTE: This routine uses the non-debug IO access functions.
  579. */
  580. int iwl_eeprom_init(struct iwl_trans *trans, u32 hw_rev)
  581. {
  582. __le16 *e;
  583. u32 gp = iwl_read32(trans, CSR_EEPROM_GP);
  584. int sz;
  585. int ret;
  586. u16 addr;
  587. u16 validblockaddr = 0;
  588. u16 cache_addr = 0;
  589. trans->nvm_device_type = iwl_get_nvm_type(trans, hw_rev);
  590. if (trans->nvm_device_type == -ENOENT)
  591. return -ENOENT;
  592. /* allocate eeprom */
  593. sz = cfg(trans)->base_params->eeprom_size;
  594. IWL_DEBUG_EEPROM(trans, "NVM size = %d\n", sz);
  595. trans->shrd->eeprom = kzalloc(sz, GFP_KERNEL);
  596. if (!trans->shrd->eeprom) {
  597. ret = -ENOMEM;
  598. goto alloc_err;
  599. }
  600. e = (__le16 *)trans->shrd->eeprom;
  601. ret = iwl_eeprom_verify_signature(trans);
  602. if (ret < 0) {
  603. IWL_ERR(trans, "EEPROM not found, EEPROM_GP=0x%08x\n", gp);
  604. ret = -ENOENT;
  605. goto err;
  606. }
  607. /* Make sure driver (instead of uCode) is allowed to read EEPROM */
  608. ret = iwl_eeprom_acquire_semaphore(trans);
  609. if (ret < 0) {
  610. IWL_ERR(trans, "Failed to acquire EEPROM semaphore.\n");
  611. ret = -ENOENT;
  612. goto err;
  613. }
  614. if (trans->nvm_device_type == NVM_DEVICE_TYPE_OTP) {
  615. ret = iwl_init_otp_access(trans);
  616. if (ret) {
  617. IWL_ERR(trans, "Failed to initialize OTP access.\n");
  618. ret = -ENOENT;
  619. goto done;
  620. }
  621. iwl_write32(trans, CSR_EEPROM_GP,
  622. iwl_read32(trans, CSR_EEPROM_GP) &
  623. ~CSR_EEPROM_GP_IF_OWNER_MSK);
  624. iwl_set_bit(trans, CSR_OTP_GP_REG,
  625. CSR_OTP_GP_REG_ECC_CORR_STATUS_MSK |
  626. CSR_OTP_GP_REG_ECC_UNCORR_STATUS_MSK);
  627. /* traversing the linked list if no shadow ram supported */
  628. if (!cfg(trans)->base_params->shadow_ram_support) {
  629. if (iwl_find_otp_image(trans, &validblockaddr)) {
  630. ret = -ENOENT;
  631. goto done;
  632. }
  633. }
  634. for (addr = validblockaddr; addr < validblockaddr + sz;
  635. addr += sizeof(u16)) {
  636. __le16 eeprom_data;
  637. ret = iwl_read_otp_word(trans, addr, &eeprom_data);
  638. if (ret)
  639. goto done;
  640. e[cache_addr / 2] = eeprom_data;
  641. cache_addr += sizeof(u16);
  642. }
  643. } else {
  644. /* eeprom is an array of 16bit values */
  645. for (addr = 0; addr < sz; addr += sizeof(u16)) {
  646. u32 r;
  647. iwl_write32(trans, CSR_EEPROM_REG,
  648. CSR_EEPROM_REG_MSK_ADDR & (addr << 1));
  649. ret = iwl_poll_bit(trans, CSR_EEPROM_REG,
  650. CSR_EEPROM_REG_READ_VALID_MSK,
  651. CSR_EEPROM_REG_READ_VALID_MSK,
  652. IWL_EEPROM_ACCESS_TIMEOUT);
  653. if (ret < 0) {
  654. IWL_ERR(trans,
  655. "Time out reading EEPROM[%d]\n", addr);
  656. goto done;
  657. }
  658. r = iwl_read32(trans, CSR_EEPROM_REG);
  659. e[addr / 2] = cpu_to_le16(r >> 16);
  660. }
  661. }
  662. IWL_DEBUG_EEPROM(trans, "NVM Type: %s, version: 0x%x\n",
  663. (trans->nvm_device_type == NVM_DEVICE_TYPE_OTP)
  664. ? "OTP" : "EEPROM",
  665. iwl_eeprom_query16(trans->shrd, EEPROM_VERSION));
  666. ret = 0;
  667. done:
  668. iwl_eeprom_release_semaphore(trans);
  669. err:
  670. if (ret)
  671. iwl_eeprom_free(trans->shrd);
  672. alloc_err:
  673. return ret;
  674. }
  675. void iwl_eeprom_free(struct iwl_shared *shrd)
  676. {
  677. kfree(shrd->eeprom);
  678. shrd->eeprom = NULL;
  679. }
  680. static void iwl_init_band_reference(const struct iwl_priv *priv,
  681. int eep_band, int *eeprom_ch_count,
  682. const struct iwl_eeprom_channel **eeprom_ch_info,
  683. const u8 **eeprom_ch_index)
  684. {
  685. struct iwl_shared *shrd = priv->shrd;
  686. u32 offset = cfg(priv)->lib->
  687. eeprom_ops.regulatory_bands[eep_band - 1];
  688. switch (eep_band) {
  689. case 1: /* 2.4GHz band */
  690. *eeprom_ch_count = ARRAY_SIZE(iwl_eeprom_band_1);
  691. *eeprom_ch_info = (struct iwl_eeprom_channel *)
  692. iwl_eeprom_query_addr(shrd, offset);
  693. *eeprom_ch_index = iwl_eeprom_band_1;
  694. break;
  695. case 2: /* 4.9GHz band */
  696. *eeprom_ch_count = ARRAY_SIZE(iwl_eeprom_band_2);
  697. *eeprom_ch_info = (struct iwl_eeprom_channel *)
  698. iwl_eeprom_query_addr(shrd, offset);
  699. *eeprom_ch_index = iwl_eeprom_band_2;
  700. break;
  701. case 3: /* 5.2GHz band */
  702. *eeprom_ch_count = ARRAY_SIZE(iwl_eeprom_band_3);
  703. *eeprom_ch_info = (struct iwl_eeprom_channel *)
  704. iwl_eeprom_query_addr(shrd, offset);
  705. *eeprom_ch_index = iwl_eeprom_band_3;
  706. break;
  707. case 4: /* 5.5GHz band */
  708. *eeprom_ch_count = ARRAY_SIZE(iwl_eeprom_band_4);
  709. *eeprom_ch_info = (struct iwl_eeprom_channel *)
  710. iwl_eeprom_query_addr(shrd, offset);
  711. *eeprom_ch_index = iwl_eeprom_band_4;
  712. break;
  713. case 5: /* 5.7GHz band */
  714. *eeprom_ch_count = ARRAY_SIZE(iwl_eeprom_band_5);
  715. *eeprom_ch_info = (struct iwl_eeprom_channel *)
  716. iwl_eeprom_query_addr(shrd, offset);
  717. *eeprom_ch_index = iwl_eeprom_band_5;
  718. break;
  719. case 6: /* 2.4GHz ht40 channels */
  720. *eeprom_ch_count = ARRAY_SIZE(iwl_eeprom_band_6);
  721. *eeprom_ch_info = (struct iwl_eeprom_channel *)
  722. iwl_eeprom_query_addr(shrd, offset);
  723. *eeprom_ch_index = iwl_eeprom_band_6;
  724. break;
  725. case 7: /* 5 GHz ht40 channels */
  726. *eeprom_ch_count = ARRAY_SIZE(iwl_eeprom_band_7);
  727. *eeprom_ch_info = (struct iwl_eeprom_channel *)
  728. iwl_eeprom_query_addr(shrd, offset);
  729. *eeprom_ch_index = iwl_eeprom_band_7;
  730. break;
  731. default:
  732. BUG();
  733. return;
  734. }
  735. }
  736. #define CHECK_AND_PRINT(x) ((eeprom_ch->flags & EEPROM_CHANNEL_##x) \
  737. ? # x " " : "")
  738. /**
  739. * iwl_mod_ht40_chan_info - Copy ht40 channel info into driver's priv.
  740. *
  741. * Does not set up a command, or touch hardware.
  742. */
  743. static int iwl_mod_ht40_chan_info(struct iwl_priv *priv,
  744. enum ieee80211_band band, u16 channel,
  745. const struct iwl_eeprom_channel *eeprom_ch,
  746. u8 clear_ht40_extension_channel)
  747. {
  748. struct iwl_channel_info *ch_info;
  749. ch_info = (struct iwl_channel_info *)
  750. iwl_get_channel_info(priv, band, channel);
  751. if (!is_channel_valid(ch_info))
  752. return -1;
  753. IWL_DEBUG_EEPROM(priv, "HT40 Ch. %d [%sGHz] %s%s%s%s%s(0x%02x %ddBm):"
  754. " Ad-Hoc %ssupported\n",
  755. ch_info->channel,
  756. is_channel_a_band(ch_info) ?
  757. "5.2" : "2.4",
  758. CHECK_AND_PRINT(IBSS),
  759. CHECK_AND_PRINT(ACTIVE),
  760. CHECK_AND_PRINT(RADAR),
  761. CHECK_AND_PRINT(WIDE),
  762. CHECK_AND_PRINT(DFS),
  763. eeprom_ch->flags,
  764. eeprom_ch->max_power_avg,
  765. ((eeprom_ch->flags & EEPROM_CHANNEL_IBSS)
  766. && !(eeprom_ch->flags & EEPROM_CHANNEL_RADAR)) ?
  767. "" : "not ");
  768. ch_info->ht40_eeprom = *eeprom_ch;
  769. ch_info->ht40_max_power_avg = eeprom_ch->max_power_avg;
  770. ch_info->ht40_flags = eeprom_ch->flags;
  771. if (eeprom_ch->flags & EEPROM_CHANNEL_VALID)
  772. ch_info->ht40_extension_channel &= ~clear_ht40_extension_channel;
  773. return 0;
  774. }
  775. #define CHECK_AND_PRINT_I(x) ((eeprom_ch_info[ch].flags & EEPROM_CHANNEL_##x) \
  776. ? # x " " : "")
  777. /**
  778. * iwl_init_channel_map - Set up driver's info for all possible channels
  779. */
  780. int iwl_init_channel_map(struct iwl_priv *priv)
  781. {
  782. int eeprom_ch_count = 0;
  783. const u8 *eeprom_ch_index = NULL;
  784. const struct iwl_eeprom_channel *eeprom_ch_info = NULL;
  785. int band, ch;
  786. struct iwl_channel_info *ch_info;
  787. if (priv->channel_count) {
  788. IWL_DEBUG_EEPROM(priv, "Channel map already initialized.\n");
  789. return 0;
  790. }
  791. IWL_DEBUG_EEPROM(priv, "Initializing regulatory info from EEPROM\n");
  792. priv->channel_count =
  793. ARRAY_SIZE(iwl_eeprom_band_1) +
  794. ARRAY_SIZE(iwl_eeprom_band_2) +
  795. ARRAY_SIZE(iwl_eeprom_band_3) +
  796. ARRAY_SIZE(iwl_eeprom_band_4) +
  797. ARRAY_SIZE(iwl_eeprom_band_5);
  798. IWL_DEBUG_EEPROM(priv, "Parsing data for %d channels.\n",
  799. priv->channel_count);
  800. priv->channel_info = kcalloc(priv->channel_count,
  801. sizeof(struct iwl_channel_info),
  802. GFP_KERNEL);
  803. if (!priv->channel_info) {
  804. IWL_ERR(priv, "Could not allocate channel_info\n");
  805. priv->channel_count = 0;
  806. return -ENOMEM;
  807. }
  808. ch_info = priv->channel_info;
  809. /* Loop through the 5 EEPROM bands adding them in order to the
  810. * channel map we maintain (that contains additional information than
  811. * what just in the EEPROM) */
  812. for (band = 1; band <= 5; band++) {
  813. iwl_init_band_reference(priv, band, &eeprom_ch_count,
  814. &eeprom_ch_info, &eeprom_ch_index);
  815. /* Loop through each band adding each of the channels */
  816. for (ch = 0; ch < eeprom_ch_count; ch++) {
  817. ch_info->channel = eeprom_ch_index[ch];
  818. ch_info->band = (band == 1) ? IEEE80211_BAND_2GHZ :
  819. IEEE80211_BAND_5GHZ;
  820. /* permanently store EEPROM's channel regulatory flags
  821. * and max power in channel info database. */
  822. ch_info->eeprom = eeprom_ch_info[ch];
  823. /* Copy the run-time flags so they are there even on
  824. * invalid channels */
  825. ch_info->flags = eeprom_ch_info[ch].flags;
  826. /* First write that ht40 is not enabled, and then enable
  827. * one by one */
  828. ch_info->ht40_extension_channel =
  829. IEEE80211_CHAN_NO_HT40;
  830. if (!(is_channel_valid(ch_info))) {
  831. IWL_DEBUG_EEPROM(priv,
  832. "Ch. %d Flags %x [%sGHz] - "
  833. "No traffic\n",
  834. ch_info->channel,
  835. ch_info->flags,
  836. is_channel_a_band(ch_info) ?
  837. "5.2" : "2.4");
  838. ch_info++;
  839. continue;
  840. }
  841. /* Initialize regulatory-based run-time data */
  842. ch_info->max_power_avg = ch_info->curr_txpow =
  843. eeprom_ch_info[ch].max_power_avg;
  844. ch_info->scan_power = eeprom_ch_info[ch].max_power_avg;
  845. ch_info->min_power = 0;
  846. IWL_DEBUG_EEPROM(priv, "Ch. %d [%sGHz] "
  847. "%s%s%s%s%s%s(0x%02x %ddBm):"
  848. " Ad-Hoc %ssupported\n",
  849. ch_info->channel,
  850. is_channel_a_band(ch_info) ?
  851. "5.2" : "2.4",
  852. CHECK_AND_PRINT_I(VALID),
  853. CHECK_AND_PRINT_I(IBSS),
  854. CHECK_AND_PRINT_I(ACTIVE),
  855. CHECK_AND_PRINT_I(RADAR),
  856. CHECK_AND_PRINT_I(WIDE),
  857. CHECK_AND_PRINT_I(DFS),
  858. eeprom_ch_info[ch].flags,
  859. eeprom_ch_info[ch].max_power_avg,
  860. ((eeprom_ch_info[ch].
  861. flags & EEPROM_CHANNEL_IBSS)
  862. && !(eeprom_ch_info[ch].
  863. flags & EEPROM_CHANNEL_RADAR))
  864. ? "" : "not ");
  865. ch_info++;
  866. }
  867. }
  868. /* Check if we do have HT40 channels */
  869. if (cfg(priv)->lib->eeprom_ops.regulatory_bands[5] ==
  870. EEPROM_REGULATORY_BAND_NO_HT40 &&
  871. cfg(priv)->lib->eeprom_ops.regulatory_bands[6] ==
  872. EEPROM_REGULATORY_BAND_NO_HT40)
  873. return 0;
  874. /* Two additional EEPROM bands for 2.4 and 5 GHz HT40 channels */
  875. for (band = 6; band <= 7; band++) {
  876. enum ieee80211_band ieeeband;
  877. iwl_init_band_reference(priv, band, &eeprom_ch_count,
  878. &eeprom_ch_info, &eeprom_ch_index);
  879. /* EEPROM band 6 is 2.4, band 7 is 5 GHz */
  880. ieeeband =
  881. (band == 6) ? IEEE80211_BAND_2GHZ : IEEE80211_BAND_5GHZ;
  882. /* Loop through each band adding each of the channels */
  883. for (ch = 0; ch < eeprom_ch_count; ch++) {
  884. /* Set up driver's info for lower half */
  885. iwl_mod_ht40_chan_info(priv, ieeeband,
  886. eeprom_ch_index[ch],
  887. &eeprom_ch_info[ch],
  888. IEEE80211_CHAN_NO_HT40PLUS);
  889. /* Set up driver's info for upper half */
  890. iwl_mod_ht40_chan_info(priv, ieeeband,
  891. eeprom_ch_index[ch] + 4,
  892. &eeprom_ch_info[ch],
  893. IEEE80211_CHAN_NO_HT40MINUS);
  894. }
  895. }
  896. /* for newer device (6000 series and up)
  897. * EEPROM contain enhanced tx power information
  898. * driver need to process addition information
  899. * to determine the max channel tx power limits
  900. */
  901. if (cfg(priv)->lib->eeprom_ops.enhanced_txpower)
  902. iwl_eeprom_enhanced_txpower(priv);
  903. return 0;
  904. }
  905. /*
  906. * iwl_free_channel_map - undo allocations in iwl_init_channel_map
  907. */
  908. void iwl_free_channel_map(struct iwl_priv *priv)
  909. {
  910. kfree(priv->channel_info);
  911. priv->channel_count = 0;
  912. }
  913. /**
  914. * iwl_get_channel_info - Find driver's private channel info
  915. *
  916. * Based on band and channel number.
  917. */
  918. const struct iwl_channel_info *iwl_get_channel_info(const struct iwl_priv *priv,
  919. enum ieee80211_band band, u16 channel)
  920. {
  921. int i;
  922. switch (band) {
  923. case IEEE80211_BAND_5GHZ:
  924. for (i = 14; i < priv->channel_count; i++) {
  925. if (priv->channel_info[i].channel == channel)
  926. return &priv->channel_info[i];
  927. }
  928. break;
  929. case IEEE80211_BAND_2GHZ:
  930. if (channel >= 1 && channel <= 14)
  931. return &priv->channel_info[channel - 1];
  932. break;
  933. default:
  934. BUG();
  935. }
  936. return NULL;
  937. }
  938. void iwl_rf_config(struct iwl_priv *priv)
  939. {
  940. u16 radio_cfg;
  941. radio_cfg = iwl_eeprom_query16(priv->shrd, EEPROM_RADIO_CONFIG);
  942. /* write radio config values to register */
  943. if (EEPROM_RF_CFG_TYPE_MSK(radio_cfg) <= EEPROM_RF_CONFIG_TYPE_MAX) {
  944. iwl_set_bit(trans(priv), CSR_HW_IF_CONFIG_REG,
  945. EEPROM_RF_CFG_TYPE_MSK(radio_cfg) |
  946. EEPROM_RF_CFG_STEP_MSK(radio_cfg) |
  947. EEPROM_RF_CFG_DASH_MSK(radio_cfg));
  948. IWL_INFO(priv, "Radio type=0x%x-0x%x-0x%x\n",
  949. EEPROM_RF_CFG_TYPE_MSK(radio_cfg),
  950. EEPROM_RF_CFG_STEP_MSK(radio_cfg),
  951. EEPROM_RF_CFG_DASH_MSK(radio_cfg));
  952. } else
  953. WARN_ON(1);
  954. /* set CSR_HW_CONFIG_REG for uCode use */
  955. iwl_set_bit(trans(priv), CSR_HW_IF_CONFIG_REG,
  956. CSR_HW_IF_CONFIG_REG_BIT_RADIO_SI |
  957. CSR_HW_IF_CONFIG_REG_BIT_MAC_SI);
  958. }