ar9003_phy.c 44 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506
  1. /*
  2. * Copyright (c) 2010-2011 Atheros Communications Inc.
  3. *
  4. * Permission to use, copy, modify, and/or distribute this software for any
  5. * purpose with or without fee is hereby granted, provided that the above
  6. * copyright notice and this permission notice appear in all copies.
  7. *
  8. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
  9. * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
  10. * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
  11. * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
  12. * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  13. * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  14. * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  15. */
  16. #include <linux/export.h>
  17. #include "hw.h"
  18. #include "ar9003_phy.h"
  19. static const int firstep_table[] =
  20. /* level: 0 1 2 3 4 5 6 7 8 */
  21. { -4, -2, 0, 2, 4, 6, 8, 10, 12 }; /* lvl 0-8, default 2 */
  22. static const int cycpwrThr1_table[] =
  23. /* level: 0 1 2 3 4 5 6 7 8 */
  24. { -6, -4, -2, 0, 2, 4, 6, 8 }; /* lvl 0-7, default 3 */
  25. /*
  26. * register values to turn OFDM weak signal detection OFF
  27. */
  28. static const int m1ThreshLow_off = 127;
  29. static const int m2ThreshLow_off = 127;
  30. static const int m1Thresh_off = 127;
  31. static const int m2Thresh_off = 127;
  32. static const int m2CountThr_off = 31;
  33. static const int m2CountThrLow_off = 63;
  34. static const int m1ThreshLowExt_off = 127;
  35. static const int m2ThreshLowExt_off = 127;
  36. static const int m1ThreshExt_off = 127;
  37. static const int m2ThreshExt_off = 127;
  38. /**
  39. * ar9003_hw_set_channel - set channel on single-chip device
  40. * @ah: atheros hardware structure
  41. * @chan:
  42. *
  43. * This is the function to change channel on single-chip devices, that is
  44. * for AR9300 family of chipsets.
  45. *
  46. * This function takes the channel value in MHz and sets
  47. * hardware channel value. Assumes writes have been enabled to analog bus.
  48. *
  49. * Actual Expression,
  50. *
  51. * For 2GHz channel,
  52. * Channel Frequency = (3/4) * freq_ref * (chansel[8:0] + chanfrac[16:0]/2^17)
  53. * (freq_ref = 40MHz)
  54. *
  55. * For 5GHz channel,
  56. * Channel Frequency = (3/2) * freq_ref * (chansel[8:0] + chanfrac[16:0]/2^10)
  57. * (freq_ref = 40MHz/(24>>amodeRefSel))
  58. *
  59. * For 5GHz channels which are 5MHz spaced,
  60. * Channel Frequency = (3/2) * freq_ref * (chansel[8:0] + chanfrac[16:0]/2^17)
  61. * (freq_ref = 40MHz)
  62. */
  63. static int ar9003_hw_set_channel(struct ath_hw *ah, struct ath9k_channel *chan)
  64. {
  65. u16 bMode, fracMode = 0, aModeRefSel = 0;
  66. u32 freq, channelSel = 0, reg32 = 0;
  67. struct chan_centers centers;
  68. int loadSynthChannel;
  69. ath9k_hw_get_channel_centers(ah, chan, &centers);
  70. freq = centers.synth_center;
  71. if (freq < 4800) { /* 2 GHz, fractional mode */
  72. if (AR_SREV_9330(ah)) {
  73. u32 chan_frac;
  74. u32 div;
  75. if (ah->is_clk_25mhz)
  76. div = 75;
  77. else
  78. div = 120;
  79. channelSel = (freq * 4) / div;
  80. chan_frac = (((freq * 4) % div) * 0x20000) / div;
  81. channelSel = (channelSel << 17) | chan_frac;
  82. } else if (AR_SREV_9485(ah)) {
  83. u32 chan_frac;
  84. /*
  85. * freq_ref = 40 / (refdiva >> amoderefsel); where refdiva=1 and amoderefsel=0
  86. * ndiv = ((chan_mhz * 4) / 3) / freq_ref;
  87. * chansel = int(ndiv), chanfrac = (ndiv - chansel) * 0x20000
  88. */
  89. channelSel = (freq * 4) / 120;
  90. chan_frac = (((freq * 4) % 120) * 0x20000) / 120;
  91. channelSel = (channelSel << 17) | chan_frac;
  92. } else if (AR_SREV_9340(ah)) {
  93. if (ah->is_clk_25mhz) {
  94. u32 chan_frac;
  95. channelSel = (freq * 2) / 75;
  96. chan_frac = (((freq * 2) % 75) * 0x20000) / 75;
  97. channelSel = (channelSel << 17) | chan_frac;
  98. } else
  99. channelSel = CHANSEL_2G(freq) >> 1;
  100. } else
  101. channelSel = CHANSEL_2G(freq);
  102. /* Set to 2G mode */
  103. bMode = 1;
  104. } else {
  105. if (AR_SREV_9340(ah) && ah->is_clk_25mhz) {
  106. u32 chan_frac;
  107. channelSel = (freq * 2) / 75;
  108. chan_frac = (((freq * 2) % 75) * 0x20000) / 75;
  109. channelSel = (channelSel << 17) | chan_frac;
  110. } else {
  111. channelSel = CHANSEL_5G(freq);
  112. /* Doubler is ON, so, divide channelSel by 2. */
  113. channelSel >>= 1;
  114. }
  115. /* Set to 5G mode */
  116. bMode = 0;
  117. }
  118. /* Enable fractional mode for all channels */
  119. fracMode = 1;
  120. aModeRefSel = 0;
  121. loadSynthChannel = 0;
  122. reg32 = (bMode << 29);
  123. REG_WRITE(ah, AR_PHY_SYNTH_CONTROL, reg32);
  124. /* Enable Long shift Select for Synthesizer */
  125. REG_RMW_FIELD(ah, AR_PHY_65NM_CH0_SYNTH4,
  126. AR_PHY_SYNTH4_LONG_SHIFT_SELECT, 1);
  127. /* Program Synth. setting */
  128. reg32 = (channelSel << 2) | (fracMode << 30) |
  129. (aModeRefSel << 28) | (loadSynthChannel << 31);
  130. REG_WRITE(ah, AR_PHY_65NM_CH0_SYNTH7, reg32);
  131. /* Toggle Load Synth channel bit */
  132. loadSynthChannel = 1;
  133. reg32 = (channelSel << 2) | (fracMode << 30) |
  134. (aModeRefSel << 28) | (loadSynthChannel << 31);
  135. REG_WRITE(ah, AR_PHY_65NM_CH0_SYNTH7, reg32);
  136. ah->curchan = chan;
  137. ah->curchan_rad_index = -1;
  138. return 0;
  139. }
  140. /**
  141. * ar9003_hw_spur_mitigate_mrc_cck - convert baseband spur frequency
  142. * @ah: atheros hardware structure
  143. * @chan:
  144. *
  145. * For single-chip solutions. Converts to baseband spur frequency given the
  146. * input channel frequency and compute register settings below.
  147. *
  148. * Spur mitigation for MRC CCK
  149. */
  150. static void ar9003_hw_spur_mitigate_mrc_cck(struct ath_hw *ah,
  151. struct ath9k_channel *chan)
  152. {
  153. static const u32 spur_freq[4] = { 2420, 2440, 2464, 2480 };
  154. int cur_bb_spur, negative = 0, cck_spur_freq;
  155. int i;
  156. int range, max_spur_cnts, synth_freq;
  157. u8 *spur_fbin_ptr = NULL;
  158. /*
  159. * Need to verify range +/- 10 MHz in control channel, otherwise spur
  160. * is out-of-band and can be ignored.
  161. */
  162. if (AR_SREV_9485(ah) || AR_SREV_9340(ah) || AR_SREV_9330(ah)) {
  163. spur_fbin_ptr = ar9003_get_spur_chan_ptr(ah,
  164. IS_CHAN_2GHZ(chan));
  165. if (spur_fbin_ptr[0] == 0) /* No spur */
  166. return;
  167. max_spur_cnts = 5;
  168. if (IS_CHAN_HT40(chan)) {
  169. range = 19;
  170. if (REG_READ_FIELD(ah, AR_PHY_GEN_CTRL,
  171. AR_PHY_GC_DYN2040_PRI_CH) == 0)
  172. synth_freq = chan->channel + 10;
  173. else
  174. synth_freq = chan->channel - 10;
  175. } else {
  176. range = 10;
  177. synth_freq = chan->channel;
  178. }
  179. } else {
  180. range = AR_SREV_9462(ah) ? 5 : 10;
  181. max_spur_cnts = 4;
  182. synth_freq = chan->channel;
  183. }
  184. for (i = 0; i < max_spur_cnts; i++) {
  185. if (AR_SREV_9462(ah) && (i == 0 || i == 3))
  186. continue;
  187. negative = 0;
  188. if (AR_SREV_9485(ah) || AR_SREV_9340(ah) || AR_SREV_9330(ah))
  189. cur_bb_spur = FBIN2FREQ(spur_fbin_ptr[i],
  190. IS_CHAN_2GHZ(chan)) - synth_freq;
  191. else
  192. cur_bb_spur = spur_freq[i] - synth_freq;
  193. if (cur_bb_spur < 0) {
  194. negative = 1;
  195. cur_bb_spur = -cur_bb_spur;
  196. }
  197. if (cur_bb_spur < range) {
  198. cck_spur_freq = (int)((cur_bb_spur << 19) / 11);
  199. if (negative == 1)
  200. cck_spur_freq = -cck_spur_freq;
  201. cck_spur_freq = cck_spur_freq & 0xfffff;
  202. REG_RMW_FIELD(ah, AR_PHY_AGC_CONTROL,
  203. AR_PHY_AGC_CONTROL_YCOK_MAX, 0x7);
  204. REG_RMW_FIELD(ah, AR_PHY_CCK_SPUR_MIT,
  205. AR_PHY_CCK_SPUR_MIT_SPUR_RSSI_THR, 0x7f);
  206. REG_RMW_FIELD(ah, AR_PHY_CCK_SPUR_MIT,
  207. AR_PHY_CCK_SPUR_MIT_SPUR_FILTER_TYPE,
  208. 0x2);
  209. REG_RMW_FIELD(ah, AR_PHY_CCK_SPUR_MIT,
  210. AR_PHY_CCK_SPUR_MIT_USE_CCK_SPUR_MIT,
  211. 0x1);
  212. REG_RMW_FIELD(ah, AR_PHY_CCK_SPUR_MIT,
  213. AR_PHY_CCK_SPUR_MIT_CCK_SPUR_FREQ,
  214. cck_spur_freq);
  215. return;
  216. }
  217. }
  218. REG_RMW_FIELD(ah, AR_PHY_AGC_CONTROL,
  219. AR_PHY_AGC_CONTROL_YCOK_MAX, 0x5);
  220. REG_RMW_FIELD(ah, AR_PHY_CCK_SPUR_MIT,
  221. AR_PHY_CCK_SPUR_MIT_USE_CCK_SPUR_MIT, 0x0);
  222. REG_RMW_FIELD(ah, AR_PHY_CCK_SPUR_MIT,
  223. AR_PHY_CCK_SPUR_MIT_CCK_SPUR_FREQ, 0x0);
  224. }
  225. /* Clean all spur register fields */
  226. static void ar9003_hw_spur_ofdm_clear(struct ath_hw *ah)
  227. {
  228. REG_RMW_FIELD(ah, AR_PHY_TIMING4,
  229. AR_PHY_TIMING4_ENABLE_SPUR_FILTER, 0);
  230. REG_RMW_FIELD(ah, AR_PHY_TIMING11,
  231. AR_PHY_TIMING11_SPUR_FREQ_SD, 0);
  232. REG_RMW_FIELD(ah, AR_PHY_TIMING11,
  233. AR_PHY_TIMING11_SPUR_DELTA_PHASE, 0);
  234. REG_RMW_FIELD(ah, AR_PHY_SFCORR_EXT,
  235. AR_PHY_SFCORR_EXT_SPUR_SUBCHANNEL_SD, 0);
  236. REG_RMW_FIELD(ah, AR_PHY_TIMING11,
  237. AR_PHY_TIMING11_USE_SPUR_FILTER_IN_AGC, 0);
  238. REG_RMW_FIELD(ah, AR_PHY_TIMING11,
  239. AR_PHY_TIMING11_USE_SPUR_FILTER_IN_SELFCOR, 0);
  240. REG_RMW_FIELD(ah, AR_PHY_TIMING4,
  241. AR_PHY_TIMING4_ENABLE_SPUR_RSSI, 0);
  242. REG_RMW_FIELD(ah, AR_PHY_SPUR_REG,
  243. AR_PHY_SPUR_REG_EN_VIT_SPUR_RSSI, 0);
  244. REG_RMW_FIELD(ah, AR_PHY_SPUR_REG,
  245. AR_PHY_SPUR_REG_ENABLE_NF_RSSI_SPUR_MIT, 0);
  246. REG_RMW_FIELD(ah, AR_PHY_SPUR_REG,
  247. AR_PHY_SPUR_REG_ENABLE_MASK_PPM, 0);
  248. REG_RMW_FIELD(ah, AR_PHY_TIMING4,
  249. AR_PHY_TIMING4_ENABLE_PILOT_MASK, 0);
  250. REG_RMW_FIELD(ah, AR_PHY_TIMING4,
  251. AR_PHY_TIMING4_ENABLE_CHAN_MASK, 0);
  252. REG_RMW_FIELD(ah, AR_PHY_PILOT_SPUR_MASK,
  253. AR_PHY_PILOT_SPUR_MASK_CF_PILOT_MASK_IDX_A, 0);
  254. REG_RMW_FIELD(ah, AR_PHY_SPUR_MASK_A,
  255. AR_PHY_SPUR_MASK_A_CF_PUNC_MASK_IDX_A, 0);
  256. REG_RMW_FIELD(ah, AR_PHY_CHAN_SPUR_MASK,
  257. AR_PHY_CHAN_SPUR_MASK_CF_CHAN_MASK_IDX_A, 0);
  258. REG_RMW_FIELD(ah, AR_PHY_PILOT_SPUR_MASK,
  259. AR_PHY_PILOT_SPUR_MASK_CF_PILOT_MASK_A, 0);
  260. REG_RMW_FIELD(ah, AR_PHY_CHAN_SPUR_MASK,
  261. AR_PHY_CHAN_SPUR_MASK_CF_CHAN_MASK_A, 0);
  262. REG_RMW_FIELD(ah, AR_PHY_SPUR_MASK_A,
  263. AR_PHY_SPUR_MASK_A_CF_PUNC_MASK_A, 0);
  264. REG_RMW_FIELD(ah, AR_PHY_SPUR_REG,
  265. AR_PHY_SPUR_REG_MASK_RATE_CNTL, 0);
  266. }
  267. static void ar9003_hw_spur_ofdm(struct ath_hw *ah,
  268. int freq_offset,
  269. int spur_freq_sd,
  270. int spur_delta_phase,
  271. int spur_subchannel_sd)
  272. {
  273. int mask_index = 0;
  274. /* OFDM Spur mitigation */
  275. REG_RMW_FIELD(ah, AR_PHY_TIMING4,
  276. AR_PHY_TIMING4_ENABLE_SPUR_FILTER, 0x1);
  277. REG_RMW_FIELD(ah, AR_PHY_TIMING11,
  278. AR_PHY_TIMING11_SPUR_FREQ_SD, spur_freq_sd);
  279. REG_RMW_FIELD(ah, AR_PHY_TIMING11,
  280. AR_PHY_TIMING11_SPUR_DELTA_PHASE, spur_delta_phase);
  281. REG_RMW_FIELD(ah, AR_PHY_SFCORR_EXT,
  282. AR_PHY_SFCORR_EXT_SPUR_SUBCHANNEL_SD, spur_subchannel_sd);
  283. REG_RMW_FIELD(ah, AR_PHY_TIMING11,
  284. AR_PHY_TIMING11_USE_SPUR_FILTER_IN_AGC, 0x1);
  285. REG_RMW_FIELD(ah, AR_PHY_TIMING11,
  286. AR_PHY_TIMING11_USE_SPUR_FILTER_IN_SELFCOR, 0x1);
  287. REG_RMW_FIELD(ah, AR_PHY_TIMING4,
  288. AR_PHY_TIMING4_ENABLE_SPUR_RSSI, 0x1);
  289. REG_RMW_FIELD(ah, AR_PHY_SPUR_REG,
  290. AR_PHY_SPUR_REG_SPUR_RSSI_THRESH, 34);
  291. REG_RMW_FIELD(ah, AR_PHY_SPUR_REG,
  292. AR_PHY_SPUR_REG_EN_VIT_SPUR_RSSI, 1);
  293. if (REG_READ_FIELD(ah, AR_PHY_MODE,
  294. AR_PHY_MODE_DYNAMIC) == 0x1)
  295. REG_RMW_FIELD(ah, AR_PHY_SPUR_REG,
  296. AR_PHY_SPUR_REG_ENABLE_NF_RSSI_SPUR_MIT, 1);
  297. mask_index = (freq_offset << 4) / 5;
  298. if (mask_index < 0)
  299. mask_index = mask_index - 1;
  300. mask_index = mask_index & 0x7f;
  301. REG_RMW_FIELD(ah, AR_PHY_SPUR_REG,
  302. AR_PHY_SPUR_REG_ENABLE_MASK_PPM, 0x1);
  303. REG_RMW_FIELD(ah, AR_PHY_TIMING4,
  304. AR_PHY_TIMING4_ENABLE_PILOT_MASK, 0x1);
  305. REG_RMW_FIELD(ah, AR_PHY_TIMING4,
  306. AR_PHY_TIMING4_ENABLE_CHAN_MASK, 0x1);
  307. REG_RMW_FIELD(ah, AR_PHY_PILOT_SPUR_MASK,
  308. AR_PHY_PILOT_SPUR_MASK_CF_PILOT_MASK_IDX_A, mask_index);
  309. REG_RMW_FIELD(ah, AR_PHY_SPUR_MASK_A,
  310. AR_PHY_SPUR_MASK_A_CF_PUNC_MASK_IDX_A, mask_index);
  311. REG_RMW_FIELD(ah, AR_PHY_CHAN_SPUR_MASK,
  312. AR_PHY_CHAN_SPUR_MASK_CF_CHAN_MASK_IDX_A, mask_index);
  313. REG_RMW_FIELD(ah, AR_PHY_PILOT_SPUR_MASK,
  314. AR_PHY_PILOT_SPUR_MASK_CF_PILOT_MASK_A, 0xc);
  315. REG_RMW_FIELD(ah, AR_PHY_CHAN_SPUR_MASK,
  316. AR_PHY_CHAN_SPUR_MASK_CF_CHAN_MASK_A, 0xc);
  317. REG_RMW_FIELD(ah, AR_PHY_SPUR_MASK_A,
  318. AR_PHY_SPUR_MASK_A_CF_PUNC_MASK_A, 0xa0);
  319. REG_RMW_FIELD(ah, AR_PHY_SPUR_REG,
  320. AR_PHY_SPUR_REG_MASK_RATE_CNTL, 0xff);
  321. }
  322. static void ar9003_hw_spur_ofdm_work(struct ath_hw *ah,
  323. struct ath9k_channel *chan,
  324. int freq_offset)
  325. {
  326. int spur_freq_sd = 0;
  327. int spur_subchannel_sd = 0;
  328. int spur_delta_phase = 0;
  329. if (IS_CHAN_HT40(chan)) {
  330. if (freq_offset < 0) {
  331. if (REG_READ_FIELD(ah, AR_PHY_GEN_CTRL,
  332. AR_PHY_GC_DYN2040_PRI_CH) == 0x0)
  333. spur_subchannel_sd = 1;
  334. else
  335. spur_subchannel_sd = 0;
  336. spur_freq_sd = (freq_offset << 9) / 11;
  337. } else {
  338. if (REG_READ_FIELD(ah, AR_PHY_GEN_CTRL,
  339. AR_PHY_GC_DYN2040_PRI_CH) == 0x0)
  340. spur_subchannel_sd = 0;
  341. else
  342. spur_subchannel_sd = 1;
  343. spur_freq_sd = (freq_offset << 9) / 11;
  344. }
  345. spur_delta_phase = (freq_offset << 17) / 5;
  346. } else {
  347. spur_subchannel_sd = 0;
  348. spur_freq_sd = (freq_offset << 9) /11;
  349. spur_delta_phase = (freq_offset << 18) / 5;
  350. }
  351. spur_freq_sd = spur_freq_sd & 0x3ff;
  352. spur_delta_phase = spur_delta_phase & 0xfffff;
  353. ar9003_hw_spur_ofdm(ah,
  354. freq_offset,
  355. spur_freq_sd,
  356. spur_delta_phase,
  357. spur_subchannel_sd);
  358. }
  359. /* Spur mitigation for OFDM */
  360. static void ar9003_hw_spur_mitigate_ofdm(struct ath_hw *ah,
  361. struct ath9k_channel *chan)
  362. {
  363. int synth_freq;
  364. int range = 10;
  365. int freq_offset = 0;
  366. int mode;
  367. u8* spurChansPtr;
  368. unsigned int i;
  369. struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
  370. if (IS_CHAN_5GHZ(chan)) {
  371. spurChansPtr = &(eep->modalHeader5G.spurChans[0]);
  372. mode = 0;
  373. }
  374. else {
  375. spurChansPtr = &(eep->modalHeader2G.spurChans[0]);
  376. mode = 1;
  377. }
  378. if (spurChansPtr[0] == 0)
  379. return; /* No spur in the mode */
  380. if (IS_CHAN_HT40(chan)) {
  381. range = 19;
  382. if (REG_READ_FIELD(ah, AR_PHY_GEN_CTRL,
  383. AR_PHY_GC_DYN2040_PRI_CH) == 0x0)
  384. synth_freq = chan->channel - 10;
  385. else
  386. synth_freq = chan->channel + 10;
  387. } else {
  388. range = 10;
  389. synth_freq = chan->channel;
  390. }
  391. ar9003_hw_spur_ofdm_clear(ah);
  392. for (i = 0; i < AR_EEPROM_MODAL_SPURS && spurChansPtr[i]; i++) {
  393. freq_offset = FBIN2FREQ(spurChansPtr[i], mode) - synth_freq;
  394. if (abs(freq_offset) < range) {
  395. ar9003_hw_spur_ofdm_work(ah, chan, freq_offset);
  396. break;
  397. }
  398. }
  399. }
  400. static void ar9003_hw_spur_mitigate(struct ath_hw *ah,
  401. struct ath9k_channel *chan)
  402. {
  403. ar9003_hw_spur_mitigate_mrc_cck(ah, chan);
  404. ar9003_hw_spur_mitigate_ofdm(ah, chan);
  405. }
  406. static u32 ar9003_hw_compute_pll_control(struct ath_hw *ah,
  407. struct ath9k_channel *chan)
  408. {
  409. u32 pll;
  410. pll = SM(0x5, AR_RTC_9300_PLL_REFDIV);
  411. if (chan && IS_CHAN_HALF_RATE(chan))
  412. pll |= SM(0x1, AR_RTC_9300_PLL_CLKSEL);
  413. else if (chan && IS_CHAN_QUARTER_RATE(chan))
  414. pll |= SM(0x2, AR_RTC_9300_PLL_CLKSEL);
  415. pll |= SM(0x2c, AR_RTC_9300_PLL_DIV);
  416. return pll;
  417. }
  418. static void ar9003_hw_set_channel_regs(struct ath_hw *ah,
  419. struct ath9k_channel *chan)
  420. {
  421. u32 phymode;
  422. u32 enableDacFifo = 0;
  423. enableDacFifo =
  424. (REG_READ(ah, AR_PHY_GEN_CTRL) & AR_PHY_GC_ENABLE_DAC_FIFO);
  425. /* Enable 11n HT, 20 MHz */
  426. phymode = AR_PHY_GC_HT_EN | AR_PHY_GC_SINGLE_HT_LTF1 |
  427. AR_PHY_GC_SHORT_GI_40 | enableDacFifo;
  428. /* Configure baseband for dynamic 20/40 operation */
  429. if (IS_CHAN_HT40(chan)) {
  430. phymode |= AR_PHY_GC_DYN2040_EN;
  431. /* Configure control (primary) channel at +-10MHz */
  432. if ((chan->chanmode == CHANNEL_A_HT40PLUS) ||
  433. (chan->chanmode == CHANNEL_G_HT40PLUS))
  434. phymode |= AR_PHY_GC_DYN2040_PRI_CH;
  435. }
  436. /* make sure we preserve INI settings */
  437. phymode |= REG_READ(ah, AR_PHY_GEN_CTRL);
  438. /* turn off Green Field detection for STA for now */
  439. phymode &= ~AR_PHY_GC_GF_DETECT_EN;
  440. REG_WRITE(ah, AR_PHY_GEN_CTRL, phymode);
  441. /* Configure MAC for 20/40 operation */
  442. ath9k_hw_set11nmac2040(ah);
  443. /* global transmit timeout (25 TUs default)*/
  444. REG_WRITE(ah, AR_GTXTO, 25 << AR_GTXTO_TIMEOUT_LIMIT_S);
  445. /* carrier sense timeout */
  446. REG_WRITE(ah, AR_CST, 0xF << AR_CST_TIMEOUT_LIMIT_S);
  447. }
  448. static void ar9003_hw_init_bb(struct ath_hw *ah,
  449. struct ath9k_channel *chan)
  450. {
  451. u32 synthDelay;
  452. /*
  453. * Wait for the frequency synth to settle (synth goes on
  454. * via AR_PHY_ACTIVE_EN). Read the phy active delay register.
  455. * Value is in 100ns increments.
  456. */
  457. synthDelay = REG_READ(ah, AR_PHY_RX_DELAY) & AR_PHY_RX_DELAY_DELAY;
  458. if (IS_CHAN_B(chan))
  459. synthDelay = (4 * synthDelay) / 22;
  460. else
  461. synthDelay /= 10;
  462. /* Activate the PHY (includes baseband activate + synthesizer on) */
  463. REG_WRITE(ah, AR_PHY_ACTIVE, AR_PHY_ACTIVE_EN);
  464. /*
  465. * There is an issue if the AP starts the calibration before
  466. * the base band timeout completes. This could result in the
  467. * rx_clear false triggering. As a workaround we add delay an
  468. * extra BASE_ACTIVATE_DELAY usecs to ensure this condition
  469. * does not happen.
  470. */
  471. udelay(synthDelay + BASE_ACTIVATE_DELAY);
  472. }
  473. static void ar9003_hw_set_chain_masks(struct ath_hw *ah, u8 rx, u8 tx)
  474. {
  475. switch (rx) {
  476. case 0x5:
  477. REG_SET_BIT(ah, AR_PHY_ANALOG_SWAP,
  478. AR_PHY_SWAP_ALT_CHAIN);
  479. case 0x3:
  480. case 0x1:
  481. case 0x2:
  482. case 0x7:
  483. REG_WRITE(ah, AR_PHY_RX_CHAINMASK, rx);
  484. REG_WRITE(ah, AR_PHY_CAL_CHAINMASK, rx);
  485. break;
  486. default:
  487. break;
  488. }
  489. if ((ah->caps.hw_caps & ATH9K_HW_CAP_APM) && (tx == 0x7))
  490. REG_WRITE(ah, AR_SELFGEN_MASK, 0x3);
  491. else if (AR_SREV_9462(ah))
  492. /* xxx only when MCI support is enabled */
  493. REG_WRITE(ah, AR_SELFGEN_MASK, 0x3);
  494. else
  495. REG_WRITE(ah, AR_SELFGEN_MASK, tx);
  496. if (tx == 0x5) {
  497. REG_SET_BIT(ah, AR_PHY_ANALOG_SWAP,
  498. AR_PHY_SWAP_ALT_CHAIN);
  499. }
  500. }
  501. /*
  502. * Override INI values with chip specific configuration.
  503. */
  504. static void ar9003_hw_override_ini(struct ath_hw *ah)
  505. {
  506. u32 val;
  507. /*
  508. * Set the RX_ABORT and RX_DIS and clear it only after
  509. * RXE is set for MAC. This prevents frames with
  510. * corrupted descriptor status.
  511. */
  512. REG_SET_BIT(ah, AR_DIAG_SW, (AR_DIAG_RX_DIS | AR_DIAG_RX_ABORT));
  513. /*
  514. * For AR9280 and above, there is a new feature that allows
  515. * Multicast search based on both MAC Address and Key ID. By default,
  516. * this feature is enabled. But since the driver is not using this
  517. * feature, we switch it off; otherwise multicast search based on
  518. * MAC addr only will fail.
  519. */
  520. val = REG_READ(ah, AR_PCU_MISC_MODE2) & (~AR_ADHOC_MCAST_KEYID_ENABLE);
  521. REG_WRITE(ah, AR_PCU_MISC_MODE2,
  522. val | AR_AGG_WEP_ENABLE_FIX | AR_AGG_WEP_ENABLE);
  523. REG_SET_BIT(ah, AR_PHY_CCK_DETECT,
  524. AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV);
  525. }
  526. static void ar9003_hw_prog_ini(struct ath_hw *ah,
  527. struct ar5416IniArray *iniArr,
  528. int column)
  529. {
  530. unsigned int i, regWrites = 0;
  531. /* New INI format: Array may be undefined (pre, core, post arrays) */
  532. if (!iniArr->ia_array)
  533. return;
  534. /*
  535. * New INI format: Pre, core, and post arrays for a given subsystem
  536. * may be modal (> 2 columns) or non-modal (2 columns). Determine if
  537. * the array is non-modal and force the column to 1.
  538. */
  539. if (column >= iniArr->ia_columns)
  540. column = 1;
  541. for (i = 0; i < iniArr->ia_rows; i++) {
  542. u32 reg = INI_RA(iniArr, i, 0);
  543. u32 val = INI_RA(iniArr, i, column);
  544. REG_WRITE(ah, reg, val);
  545. DO_DELAY(regWrites);
  546. }
  547. }
  548. static int ar9003_hw_process_ini(struct ath_hw *ah,
  549. struct ath9k_channel *chan)
  550. {
  551. unsigned int regWrites = 0, i;
  552. u32 modesIndex;
  553. switch (chan->chanmode) {
  554. case CHANNEL_A:
  555. case CHANNEL_A_HT20:
  556. modesIndex = 1;
  557. break;
  558. case CHANNEL_A_HT40PLUS:
  559. case CHANNEL_A_HT40MINUS:
  560. modesIndex = 2;
  561. break;
  562. case CHANNEL_G:
  563. case CHANNEL_G_HT20:
  564. case CHANNEL_B:
  565. modesIndex = 4;
  566. break;
  567. case CHANNEL_G_HT40PLUS:
  568. case CHANNEL_G_HT40MINUS:
  569. modesIndex = 3;
  570. break;
  571. default:
  572. return -EINVAL;
  573. }
  574. for (i = 0; i < ATH_INI_NUM_SPLIT; i++) {
  575. ar9003_hw_prog_ini(ah, &ah->iniSOC[i], modesIndex);
  576. ar9003_hw_prog_ini(ah, &ah->iniMac[i], modesIndex);
  577. ar9003_hw_prog_ini(ah, &ah->iniBB[i], modesIndex);
  578. ar9003_hw_prog_ini(ah, &ah->iniRadio[i], modesIndex);
  579. if (i == ATH_INI_POST && AR_SREV_9462_20(ah))
  580. ar9003_hw_prog_ini(ah,
  581. &ah->ini_radio_post_sys2ant,
  582. modesIndex);
  583. }
  584. REG_WRITE_ARRAY(&ah->iniModesRxGain, 1, regWrites);
  585. REG_WRITE_ARRAY(&ah->iniModesTxGain, modesIndex, regWrites);
  586. /*
  587. * For 5GHz channels requiring Fast Clock, apply
  588. * different modal values.
  589. */
  590. if (IS_CHAN_A_FAST_CLOCK(ah, chan))
  591. REG_WRITE_ARRAY(&ah->iniModesFastClock,
  592. modesIndex, regWrites);
  593. REG_WRITE_ARRAY(&ah->iniAdditional, 1, regWrites);
  594. if (AR_SREV_9462(ah))
  595. ar9003_hw_prog_ini(ah, &ah->ini_BTCOEX_MAX_TXPWR, 1);
  596. if (chan->channel == 2484)
  597. ar9003_hw_prog_ini(ah, &ah->ini_japan2484, 1);
  598. ah->modes_index = modesIndex;
  599. ar9003_hw_override_ini(ah);
  600. ar9003_hw_set_channel_regs(ah, chan);
  601. ar9003_hw_set_chain_masks(ah, ah->rxchainmask, ah->txchainmask);
  602. ath9k_hw_apply_txpower(ah, chan);
  603. if (AR_SREV_9462(ah)) {
  604. if (REG_READ_FIELD(ah, AR_PHY_TX_IQCAL_CONTROL_0,
  605. AR_PHY_TX_IQCAL_CONTROL_0_ENABLE_TXIQ_CAL))
  606. ah->enabled_cals |= TX_IQ_CAL;
  607. else
  608. ah->enabled_cals &= ~TX_IQ_CAL;
  609. if (REG_READ(ah, AR_PHY_CL_CAL_CTL) & AR_PHY_CL_CAL_ENABLE)
  610. ah->enabled_cals |= TX_CL_CAL;
  611. else
  612. ah->enabled_cals &= ~TX_CL_CAL;
  613. }
  614. return 0;
  615. }
  616. static void ar9003_hw_set_rfmode(struct ath_hw *ah,
  617. struct ath9k_channel *chan)
  618. {
  619. u32 rfMode = 0;
  620. if (chan == NULL)
  621. return;
  622. rfMode |= (IS_CHAN_B(chan) || IS_CHAN_G(chan))
  623. ? AR_PHY_MODE_DYNAMIC : AR_PHY_MODE_OFDM;
  624. if (IS_CHAN_A_FAST_CLOCK(ah, chan))
  625. rfMode |= (AR_PHY_MODE_DYNAMIC | AR_PHY_MODE_DYN_CCK_DISABLE);
  626. REG_WRITE(ah, AR_PHY_MODE, rfMode);
  627. }
  628. static void ar9003_hw_mark_phy_inactive(struct ath_hw *ah)
  629. {
  630. REG_WRITE(ah, AR_PHY_ACTIVE, AR_PHY_ACTIVE_DIS);
  631. }
  632. static void ar9003_hw_set_delta_slope(struct ath_hw *ah,
  633. struct ath9k_channel *chan)
  634. {
  635. u32 coef_scaled, ds_coef_exp, ds_coef_man;
  636. u32 clockMhzScaled = 0x64000000;
  637. struct chan_centers centers;
  638. /*
  639. * half and quarter rate can divide the scaled clock by 2 or 4
  640. * scale for selected channel bandwidth
  641. */
  642. if (IS_CHAN_HALF_RATE(chan))
  643. clockMhzScaled = clockMhzScaled >> 1;
  644. else if (IS_CHAN_QUARTER_RATE(chan))
  645. clockMhzScaled = clockMhzScaled >> 2;
  646. /*
  647. * ALGO -> coef = 1e8/fcarrier*fclock/40;
  648. * scaled coef to provide precision for this floating calculation
  649. */
  650. ath9k_hw_get_channel_centers(ah, chan, &centers);
  651. coef_scaled = clockMhzScaled / centers.synth_center;
  652. ath9k_hw_get_delta_slope_vals(ah, coef_scaled, &ds_coef_man,
  653. &ds_coef_exp);
  654. REG_RMW_FIELD(ah, AR_PHY_TIMING3,
  655. AR_PHY_TIMING3_DSC_MAN, ds_coef_man);
  656. REG_RMW_FIELD(ah, AR_PHY_TIMING3,
  657. AR_PHY_TIMING3_DSC_EXP, ds_coef_exp);
  658. /*
  659. * For Short GI,
  660. * scaled coeff is 9/10 that of normal coeff
  661. */
  662. coef_scaled = (9 * coef_scaled) / 10;
  663. ath9k_hw_get_delta_slope_vals(ah, coef_scaled, &ds_coef_man,
  664. &ds_coef_exp);
  665. /* for short gi */
  666. REG_RMW_FIELD(ah, AR_PHY_SGI_DELTA,
  667. AR_PHY_SGI_DSC_MAN, ds_coef_man);
  668. REG_RMW_FIELD(ah, AR_PHY_SGI_DELTA,
  669. AR_PHY_SGI_DSC_EXP, ds_coef_exp);
  670. }
  671. static bool ar9003_hw_rfbus_req(struct ath_hw *ah)
  672. {
  673. REG_WRITE(ah, AR_PHY_RFBUS_REQ, AR_PHY_RFBUS_REQ_EN);
  674. return ath9k_hw_wait(ah, AR_PHY_RFBUS_GRANT, AR_PHY_RFBUS_GRANT_EN,
  675. AR_PHY_RFBUS_GRANT_EN, AH_WAIT_TIMEOUT);
  676. }
  677. /*
  678. * Wait for the frequency synth to settle (synth goes on via PHY_ACTIVE_EN).
  679. * Read the phy active delay register. Value is in 100ns increments.
  680. */
  681. static void ar9003_hw_rfbus_done(struct ath_hw *ah)
  682. {
  683. u32 synthDelay = REG_READ(ah, AR_PHY_RX_DELAY) & AR_PHY_RX_DELAY_DELAY;
  684. if (IS_CHAN_B(ah->curchan))
  685. synthDelay = (4 * synthDelay) / 22;
  686. else
  687. synthDelay /= 10;
  688. udelay(synthDelay + BASE_ACTIVATE_DELAY);
  689. REG_WRITE(ah, AR_PHY_RFBUS_REQ, 0);
  690. }
  691. static bool ar9003_hw_ani_control(struct ath_hw *ah,
  692. enum ath9k_ani_cmd cmd, int param)
  693. {
  694. struct ath_common *common = ath9k_hw_common(ah);
  695. struct ath9k_channel *chan = ah->curchan;
  696. struct ar5416AniState *aniState = &chan->ani;
  697. s32 value, value2;
  698. switch (cmd & ah->ani_function) {
  699. case ATH9K_ANI_OFDM_WEAK_SIGNAL_DETECTION:{
  700. /*
  701. * on == 1 means ofdm weak signal detection is ON
  702. * on == 1 is the default, for less noise immunity
  703. *
  704. * on == 0 means ofdm weak signal detection is OFF
  705. * on == 0 means more noise imm
  706. */
  707. u32 on = param ? 1 : 0;
  708. /*
  709. * make register setting for default
  710. * (weak sig detect ON) come from INI file
  711. */
  712. int m1ThreshLow = on ?
  713. aniState->iniDef.m1ThreshLow : m1ThreshLow_off;
  714. int m2ThreshLow = on ?
  715. aniState->iniDef.m2ThreshLow : m2ThreshLow_off;
  716. int m1Thresh = on ?
  717. aniState->iniDef.m1Thresh : m1Thresh_off;
  718. int m2Thresh = on ?
  719. aniState->iniDef.m2Thresh : m2Thresh_off;
  720. int m2CountThr = on ?
  721. aniState->iniDef.m2CountThr : m2CountThr_off;
  722. int m2CountThrLow = on ?
  723. aniState->iniDef.m2CountThrLow : m2CountThrLow_off;
  724. int m1ThreshLowExt = on ?
  725. aniState->iniDef.m1ThreshLowExt : m1ThreshLowExt_off;
  726. int m2ThreshLowExt = on ?
  727. aniState->iniDef.m2ThreshLowExt : m2ThreshLowExt_off;
  728. int m1ThreshExt = on ?
  729. aniState->iniDef.m1ThreshExt : m1ThreshExt_off;
  730. int m2ThreshExt = on ?
  731. aniState->iniDef.m2ThreshExt : m2ThreshExt_off;
  732. REG_RMW_FIELD(ah, AR_PHY_SFCORR_LOW,
  733. AR_PHY_SFCORR_LOW_M1_THRESH_LOW,
  734. m1ThreshLow);
  735. REG_RMW_FIELD(ah, AR_PHY_SFCORR_LOW,
  736. AR_PHY_SFCORR_LOW_M2_THRESH_LOW,
  737. m2ThreshLow);
  738. REG_RMW_FIELD(ah, AR_PHY_SFCORR,
  739. AR_PHY_SFCORR_M1_THRESH, m1Thresh);
  740. REG_RMW_FIELD(ah, AR_PHY_SFCORR,
  741. AR_PHY_SFCORR_M2_THRESH, m2Thresh);
  742. REG_RMW_FIELD(ah, AR_PHY_SFCORR,
  743. AR_PHY_SFCORR_M2COUNT_THR, m2CountThr);
  744. REG_RMW_FIELD(ah, AR_PHY_SFCORR_LOW,
  745. AR_PHY_SFCORR_LOW_M2COUNT_THR_LOW,
  746. m2CountThrLow);
  747. REG_RMW_FIELD(ah, AR_PHY_SFCORR_EXT,
  748. AR_PHY_SFCORR_EXT_M1_THRESH_LOW, m1ThreshLowExt);
  749. REG_RMW_FIELD(ah, AR_PHY_SFCORR_EXT,
  750. AR_PHY_SFCORR_EXT_M2_THRESH_LOW, m2ThreshLowExt);
  751. REG_RMW_FIELD(ah, AR_PHY_SFCORR_EXT,
  752. AR_PHY_SFCORR_EXT_M1_THRESH, m1ThreshExt);
  753. REG_RMW_FIELD(ah, AR_PHY_SFCORR_EXT,
  754. AR_PHY_SFCORR_EXT_M2_THRESH, m2ThreshExt);
  755. if (on)
  756. REG_SET_BIT(ah, AR_PHY_SFCORR_LOW,
  757. AR_PHY_SFCORR_LOW_USE_SELF_CORR_LOW);
  758. else
  759. REG_CLR_BIT(ah, AR_PHY_SFCORR_LOW,
  760. AR_PHY_SFCORR_LOW_USE_SELF_CORR_LOW);
  761. if (!on != aniState->ofdmWeakSigDetectOff) {
  762. ath_dbg(common, ANI,
  763. "** ch %d: ofdm weak signal: %s=>%s\n",
  764. chan->channel,
  765. !aniState->ofdmWeakSigDetectOff ?
  766. "on" : "off",
  767. on ? "on" : "off");
  768. if (on)
  769. ah->stats.ast_ani_ofdmon++;
  770. else
  771. ah->stats.ast_ani_ofdmoff++;
  772. aniState->ofdmWeakSigDetectOff = !on;
  773. }
  774. break;
  775. }
  776. case ATH9K_ANI_FIRSTEP_LEVEL:{
  777. u32 level = param;
  778. if (level >= ARRAY_SIZE(firstep_table)) {
  779. ath_dbg(common, ANI,
  780. "ATH9K_ANI_FIRSTEP_LEVEL: level out of range (%u > %zu)\n",
  781. level, ARRAY_SIZE(firstep_table));
  782. return false;
  783. }
  784. /*
  785. * make register setting relative to default
  786. * from INI file & cap value
  787. */
  788. value = firstep_table[level] -
  789. firstep_table[ATH9K_ANI_FIRSTEP_LVL_NEW] +
  790. aniState->iniDef.firstep;
  791. if (value < ATH9K_SIG_FIRSTEP_SETTING_MIN)
  792. value = ATH9K_SIG_FIRSTEP_SETTING_MIN;
  793. if (value > ATH9K_SIG_FIRSTEP_SETTING_MAX)
  794. value = ATH9K_SIG_FIRSTEP_SETTING_MAX;
  795. REG_RMW_FIELD(ah, AR_PHY_FIND_SIG,
  796. AR_PHY_FIND_SIG_FIRSTEP,
  797. value);
  798. /*
  799. * we need to set first step low register too
  800. * make register setting relative to default
  801. * from INI file & cap value
  802. */
  803. value2 = firstep_table[level] -
  804. firstep_table[ATH9K_ANI_FIRSTEP_LVL_NEW] +
  805. aniState->iniDef.firstepLow;
  806. if (value2 < ATH9K_SIG_FIRSTEP_SETTING_MIN)
  807. value2 = ATH9K_SIG_FIRSTEP_SETTING_MIN;
  808. if (value2 > ATH9K_SIG_FIRSTEP_SETTING_MAX)
  809. value2 = ATH9K_SIG_FIRSTEP_SETTING_MAX;
  810. REG_RMW_FIELD(ah, AR_PHY_FIND_SIG_LOW,
  811. AR_PHY_FIND_SIG_LOW_FIRSTEP_LOW, value2);
  812. if (level != aniState->firstepLevel) {
  813. ath_dbg(common, ANI,
  814. "** ch %d: level %d=>%d[def:%d] firstep[level]=%d ini=%d\n",
  815. chan->channel,
  816. aniState->firstepLevel,
  817. level,
  818. ATH9K_ANI_FIRSTEP_LVL_NEW,
  819. value,
  820. aniState->iniDef.firstep);
  821. ath_dbg(common, ANI,
  822. "** ch %d: level %d=>%d[def:%d] firstep_low[level]=%d ini=%d\n",
  823. chan->channel,
  824. aniState->firstepLevel,
  825. level,
  826. ATH9K_ANI_FIRSTEP_LVL_NEW,
  827. value2,
  828. aniState->iniDef.firstepLow);
  829. if (level > aniState->firstepLevel)
  830. ah->stats.ast_ani_stepup++;
  831. else if (level < aniState->firstepLevel)
  832. ah->stats.ast_ani_stepdown++;
  833. aniState->firstepLevel = level;
  834. }
  835. break;
  836. }
  837. case ATH9K_ANI_SPUR_IMMUNITY_LEVEL:{
  838. u32 level = param;
  839. if (level >= ARRAY_SIZE(cycpwrThr1_table)) {
  840. ath_dbg(common, ANI,
  841. "ATH9K_ANI_SPUR_IMMUNITY_LEVEL: level out of range (%u > %zu)\n",
  842. level, ARRAY_SIZE(cycpwrThr1_table));
  843. return false;
  844. }
  845. /*
  846. * make register setting relative to default
  847. * from INI file & cap value
  848. */
  849. value = cycpwrThr1_table[level] -
  850. cycpwrThr1_table[ATH9K_ANI_SPUR_IMMUNE_LVL_NEW] +
  851. aniState->iniDef.cycpwrThr1;
  852. if (value < ATH9K_SIG_SPUR_IMM_SETTING_MIN)
  853. value = ATH9K_SIG_SPUR_IMM_SETTING_MIN;
  854. if (value > ATH9K_SIG_SPUR_IMM_SETTING_MAX)
  855. value = ATH9K_SIG_SPUR_IMM_SETTING_MAX;
  856. REG_RMW_FIELD(ah, AR_PHY_TIMING5,
  857. AR_PHY_TIMING5_CYCPWR_THR1,
  858. value);
  859. /*
  860. * set AR_PHY_EXT_CCA for extension channel
  861. * make register setting relative to default
  862. * from INI file & cap value
  863. */
  864. value2 = cycpwrThr1_table[level] -
  865. cycpwrThr1_table[ATH9K_ANI_SPUR_IMMUNE_LVL_NEW] +
  866. aniState->iniDef.cycpwrThr1Ext;
  867. if (value2 < ATH9K_SIG_SPUR_IMM_SETTING_MIN)
  868. value2 = ATH9K_SIG_SPUR_IMM_SETTING_MIN;
  869. if (value2 > ATH9K_SIG_SPUR_IMM_SETTING_MAX)
  870. value2 = ATH9K_SIG_SPUR_IMM_SETTING_MAX;
  871. REG_RMW_FIELD(ah, AR_PHY_EXT_CCA,
  872. AR_PHY_EXT_CYCPWR_THR1, value2);
  873. if (level != aniState->spurImmunityLevel) {
  874. ath_dbg(common, ANI,
  875. "** ch %d: level %d=>%d[def:%d] cycpwrThr1[level]=%d ini=%d\n",
  876. chan->channel,
  877. aniState->spurImmunityLevel,
  878. level,
  879. ATH9K_ANI_SPUR_IMMUNE_LVL_NEW,
  880. value,
  881. aniState->iniDef.cycpwrThr1);
  882. ath_dbg(common, ANI,
  883. "** ch %d: level %d=>%d[def:%d] cycpwrThr1Ext[level]=%d ini=%d\n",
  884. chan->channel,
  885. aniState->spurImmunityLevel,
  886. level,
  887. ATH9K_ANI_SPUR_IMMUNE_LVL_NEW,
  888. value2,
  889. aniState->iniDef.cycpwrThr1Ext);
  890. if (level > aniState->spurImmunityLevel)
  891. ah->stats.ast_ani_spurup++;
  892. else if (level < aniState->spurImmunityLevel)
  893. ah->stats.ast_ani_spurdown++;
  894. aniState->spurImmunityLevel = level;
  895. }
  896. break;
  897. }
  898. case ATH9K_ANI_MRC_CCK:{
  899. /*
  900. * is_on == 1 means MRC CCK ON (default, less noise imm)
  901. * is_on == 0 means MRC CCK is OFF (more noise imm)
  902. */
  903. bool is_on = param ? 1 : 0;
  904. REG_RMW_FIELD(ah, AR_PHY_MRC_CCK_CTRL,
  905. AR_PHY_MRC_CCK_ENABLE, is_on);
  906. REG_RMW_FIELD(ah, AR_PHY_MRC_CCK_CTRL,
  907. AR_PHY_MRC_CCK_MUX_REG, is_on);
  908. if (!is_on != aniState->mrcCCKOff) {
  909. ath_dbg(common, ANI, "** ch %d: MRC CCK: %s=>%s\n",
  910. chan->channel,
  911. !aniState->mrcCCKOff ? "on" : "off",
  912. is_on ? "on" : "off");
  913. if (is_on)
  914. ah->stats.ast_ani_ccklow++;
  915. else
  916. ah->stats.ast_ani_cckhigh++;
  917. aniState->mrcCCKOff = !is_on;
  918. }
  919. break;
  920. }
  921. case ATH9K_ANI_PRESENT:
  922. break;
  923. default:
  924. ath_dbg(common, ANI, "invalid cmd %u\n", cmd);
  925. return false;
  926. }
  927. ath_dbg(common, ANI,
  928. "ANI parameters: SI=%d, ofdmWS=%s FS=%d MRCcck=%s listenTime=%d ofdmErrs=%d cckErrs=%d\n",
  929. aniState->spurImmunityLevel,
  930. !aniState->ofdmWeakSigDetectOff ? "on" : "off",
  931. aniState->firstepLevel,
  932. !aniState->mrcCCKOff ? "on" : "off",
  933. aniState->listenTime,
  934. aniState->ofdmPhyErrCount,
  935. aniState->cckPhyErrCount);
  936. return true;
  937. }
  938. static void ar9003_hw_do_getnf(struct ath_hw *ah,
  939. int16_t nfarray[NUM_NF_READINGS])
  940. {
  941. #define AR_PHY_CH_MINCCA_PWR 0x1FF00000
  942. #define AR_PHY_CH_MINCCA_PWR_S 20
  943. #define AR_PHY_CH_EXT_MINCCA_PWR 0x01FF0000
  944. #define AR_PHY_CH_EXT_MINCCA_PWR_S 16
  945. int16_t nf;
  946. int i;
  947. for (i = 0; i < AR9300_MAX_CHAINS; i++) {
  948. if (ah->rxchainmask & BIT(i)) {
  949. nf = MS(REG_READ(ah, ah->nf_regs[i]),
  950. AR_PHY_CH_MINCCA_PWR);
  951. nfarray[i] = sign_extend32(nf, 8);
  952. if (IS_CHAN_HT40(ah->curchan)) {
  953. u8 ext_idx = AR9300_MAX_CHAINS + i;
  954. nf = MS(REG_READ(ah, ah->nf_regs[ext_idx]),
  955. AR_PHY_CH_EXT_MINCCA_PWR);
  956. nfarray[ext_idx] = sign_extend32(nf, 8);
  957. }
  958. }
  959. }
  960. }
  961. static void ar9003_hw_set_nf_limits(struct ath_hw *ah)
  962. {
  963. ah->nf_2g.max = AR_PHY_CCA_MAX_GOOD_VAL_9300_2GHZ;
  964. ah->nf_2g.min = AR_PHY_CCA_MIN_GOOD_VAL_9300_2GHZ;
  965. ah->nf_2g.nominal = AR_PHY_CCA_NOM_VAL_9300_2GHZ;
  966. ah->nf_5g.max = AR_PHY_CCA_MAX_GOOD_VAL_9300_5GHZ;
  967. ah->nf_5g.min = AR_PHY_CCA_MIN_GOOD_VAL_9300_5GHZ;
  968. ah->nf_5g.nominal = AR_PHY_CCA_NOM_VAL_9300_5GHZ;
  969. if (AR_SREV_9330(ah))
  970. ah->nf_2g.nominal = AR_PHY_CCA_NOM_VAL_9330_2GHZ;
  971. if (AR_SREV_9462(ah)) {
  972. ah->nf_2g.min = AR_PHY_CCA_MIN_GOOD_VAL_9462_2GHZ;
  973. ah->nf_2g.nominal = AR_PHY_CCA_NOM_VAL_9462_2GHZ;
  974. ah->nf_5g.min = AR_PHY_CCA_MIN_GOOD_VAL_9462_5GHZ;
  975. ah->nf_5g.nominal = AR_PHY_CCA_NOM_VAL_9462_5GHZ;
  976. }
  977. }
  978. /*
  979. * Initialize the ANI register values with default (ini) values.
  980. * This routine is called during a (full) hardware reset after
  981. * all the registers are initialised from the INI.
  982. */
  983. static void ar9003_hw_ani_cache_ini_regs(struct ath_hw *ah)
  984. {
  985. struct ar5416AniState *aniState;
  986. struct ath_common *common = ath9k_hw_common(ah);
  987. struct ath9k_channel *chan = ah->curchan;
  988. struct ath9k_ani_default *iniDef;
  989. u32 val;
  990. aniState = &ah->curchan->ani;
  991. iniDef = &aniState->iniDef;
  992. ath_dbg(common, ANI, "ver %d.%d opmode %u chan %d Mhz/0x%x\n",
  993. ah->hw_version.macVersion,
  994. ah->hw_version.macRev,
  995. ah->opmode,
  996. chan->channel,
  997. chan->channelFlags);
  998. val = REG_READ(ah, AR_PHY_SFCORR);
  999. iniDef->m1Thresh = MS(val, AR_PHY_SFCORR_M1_THRESH);
  1000. iniDef->m2Thresh = MS(val, AR_PHY_SFCORR_M2_THRESH);
  1001. iniDef->m2CountThr = MS(val, AR_PHY_SFCORR_M2COUNT_THR);
  1002. val = REG_READ(ah, AR_PHY_SFCORR_LOW);
  1003. iniDef->m1ThreshLow = MS(val, AR_PHY_SFCORR_LOW_M1_THRESH_LOW);
  1004. iniDef->m2ThreshLow = MS(val, AR_PHY_SFCORR_LOW_M2_THRESH_LOW);
  1005. iniDef->m2CountThrLow = MS(val, AR_PHY_SFCORR_LOW_M2COUNT_THR_LOW);
  1006. val = REG_READ(ah, AR_PHY_SFCORR_EXT);
  1007. iniDef->m1ThreshExt = MS(val, AR_PHY_SFCORR_EXT_M1_THRESH);
  1008. iniDef->m2ThreshExt = MS(val, AR_PHY_SFCORR_EXT_M2_THRESH);
  1009. iniDef->m1ThreshLowExt = MS(val, AR_PHY_SFCORR_EXT_M1_THRESH_LOW);
  1010. iniDef->m2ThreshLowExt = MS(val, AR_PHY_SFCORR_EXT_M2_THRESH_LOW);
  1011. iniDef->firstep = REG_READ_FIELD(ah,
  1012. AR_PHY_FIND_SIG,
  1013. AR_PHY_FIND_SIG_FIRSTEP);
  1014. iniDef->firstepLow = REG_READ_FIELD(ah,
  1015. AR_PHY_FIND_SIG_LOW,
  1016. AR_PHY_FIND_SIG_LOW_FIRSTEP_LOW);
  1017. iniDef->cycpwrThr1 = REG_READ_FIELD(ah,
  1018. AR_PHY_TIMING5,
  1019. AR_PHY_TIMING5_CYCPWR_THR1);
  1020. iniDef->cycpwrThr1Ext = REG_READ_FIELD(ah,
  1021. AR_PHY_EXT_CCA,
  1022. AR_PHY_EXT_CYCPWR_THR1);
  1023. /* these levels just got reset to defaults by the INI */
  1024. aniState->spurImmunityLevel = ATH9K_ANI_SPUR_IMMUNE_LVL_NEW;
  1025. aniState->firstepLevel = ATH9K_ANI_FIRSTEP_LVL_NEW;
  1026. aniState->ofdmWeakSigDetectOff = !ATH9K_ANI_USE_OFDM_WEAK_SIG;
  1027. aniState->mrcCCKOff = !ATH9K_ANI_ENABLE_MRC_CCK;
  1028. }
  1029. static void ar9003_hw_set_radar_params(struct ath_hw *ah,
  1030. struct ath_hw_radar_conf *conf)
  1031. {
  1032. u32 radar_0 = 0, radar_1 = 0;
  1033. if (!conf) {
  1034. REG_CLR_BIT(ah, AR_PHY_RADAR_0, AR_PHY_RADAR_0_ENA);
  1035. return;
  1036. }
  1037. radar_0 |= AR_PHY_RADAR_0_ENA | AR_PHY_RADAR_0_FFT_ENA;
  1038. radar_0 |= SM(conf->fir_power, AR_PHY_RADAR_0_FIRPWR);
  1039. radar_0 |= SM(conf->radar_rssi, AR_PHY_RADAR_0_RRSSI);
  1040. radar_0 |= SM(conf->pulse_height, AR_PHY_RADAR_0_HEIGHT);
  1041. radar_0 |= SM(conf->pulse_rssi, AR_PHY_RADAR_0_PRSSI);
  1042. radar_0 |= SM(conf->pulse_inband, AR_PHY_RADAR_0_INBAND);
  1043. radar_1 |= AR_PHY_RADAR_1_MAX_RRSSI;
  1044. radar_1 |= AR_PHY_RADAR_1_BLOCK_CHECK;
  1045. radar_1 |= SM(conf->pulse_maxlen, AR_PHY_RADAR_1_MAXLEN);
  1046. radar_1 |= SM(conf->pulse_inband_step, AR_PHY_RADAR_1_RELSTEP_THRESH);
  1047. radar_1 |= SM(conf->radar_inband, AR_PHY_RADAR_1_RELPWR_THRESH);
  1048. REG_WRITE(ah, AR_PHY_RADAR_0, radar_0);
  1049. REG_WRITE(ah, AR_PHY_RADAR_1, radar_1);
  1050. if (conf->ext_channel)
  1051. REG_SET_BIT(ah, AR_PHY_RADAR_EXT, AR_PHY_RADAR_EXT_ENA);
  1052. else
  1053. REG_CLR_BIT(ah, AR_PHY_RADAR_EXT, AR_PHY_RADAR_EXT_ENA);
  1054. }
  1055. static void ar9003_hw_set_radar_conf(struct ath_hw *ah)
  1056. {
  1057. struct ath_hw_radar_conf *conf = &ah->radar_conf;
  1058. conf->fir_power = -28;
  1059. conf->radar_rssi = 0;
  1060. conf->pulse_height = 10;
  1061. conf->pulse_rssi = 24;
  1062. conf->pulse_inband = 8;
  1063. conf->pulse_maxlen = 255;
  1064. conf->pulse_inband_step = 12;
  1065. conf->radar_inband = 8;
  1066. }
  1067. static void ar9003_hw_antdiv_comb_conf_get(struct ath_hw *ah,
  1068. struct ath_hw_antcomb_conf *antconf)
  1069. {
  1070. u32 regval;
  1071. regval = REG_READ(ah, AR_PHY_MC_GAIN_CTRL);
  1072. antconf->main_lna_conf = (regval & AR_PHY_9485_ANT_DIV_MAIN_LNACONF) >>
  1073. AR_PHY_9485_ANT_DIV_MAIN_LNACONF_S;
  1074. antconf->alt_lna_conf = (regval & AR_PHY_9485_ANT_DIV_ALT_LNACONF) >>
  1075. AR_PHY_9485_ANT_DIV_ALT_LNACONF_S;
  1076. antconf->fast_div_bias = (regval & AR_PHY_9485_ANT_FAST_DIV_BIAS) >>
  1077. AR_PHY_9485_ANT_FAST_DIV_BIAS_S;
  1078. if (AR_SREV_9330_11(ah)) {
  1079. antconf->lna1_lna2_delta = -9;
  1080. antconf->div_group = 1;
  1081. } else if (AR_SREV_9485(ah)) {
  1082. antconf->lna1_lna2_delta = -9;
  1083. antconf->div_group = 2;
  1084. } else {
  1085. antconf->lna1_lna2_delta = -3;
  1086. antconf->div_group = 0;
  1087. }
  1088. }
  1089. static void ar9003_hw_antdiv_comb_conf_set(struct ath_hw *ah,
  1090. struct ath_hw_antcomb_conf *antconf)
  1091. {
  1092. u32 regval;
  1093. regval = REG_READ(ah, AR_PHY_MC_GAIN_CTRL);
  1094. regval &= ~(AR_PHY_9485_ANT_DIV_MAIN_LNACONF |
  1095. AR_PHY_9485_ANT_DIV_ALT_LNACONF |
  1096. AR_PHY_9485_ANT_FAST_DIV_BIAS |
  1097. AR_PHY_9485_ANT_DIV_MAIN_GAINTB |
  1098. AR_PHY_9485_ANT_DIV_ALT_GAINTB);
  1099. regval |= ((antconf->main_lna_conf <<
  1100. AR_PHY_9485_ANT_DIV_MAIN_LNACONF_S)
  1101. & AR_PHY_9485_ANT_DIV_MAIN_LNACONF);
  1102. regval |= ((antconf->alt_lna_conf << AR_PHY_9485_ANT_DIV_ALT_LNACONF_S)
  1103. & AR_PHY_9485_ANT_DIV_ALT_LNACONF);
  1104. regval |= ((antconf->fast_div_bias << AR_PHY_9485_ANT_FAST_DIV_BIAS_S)
  1105. & AR_PHY_9485_ANT_FAST_DIV_BIAS);
  1106. regval |= ((antconf->main_gaintb << AR_PHY_9485_ANT_DIV_MAIN_GAINTB_S)
  1107. & AR_PHY_9485_ANT_DIV_MAIN_GAINTB);
  1108. regval |= ((antconf->alt_gaintb << AR_PHY_9485_ANT_DIV_ALT_GAINTB_S)
  1109. & AR_PHY_9485_ANT_DIV_ALT_GAINTB);
  1110. REG_WRITE(ah, AR_PHY_MC_GAIN_CTRL, regval);
  1111. }
  1112. static int ar9003_hw_fast_chan_change(struct ath_hw *ah,
  1113. struct ath9k_channel *chan,
  1114. u8 *ini_reloaded)
  1115. {
  1116. unsigned int regWrites = 0;
  1117. u32 modesIndex;
  1118. switch (chan->chanmode) {
  1119. case CHANNEL_A:
  1120. case CHANNEL_A_HT20:
  1121. modesIndex = 1;
  1122. break;
  1123. case CHANNEL_A_HT40PLUS:
  1124. case CHANNEL_A_HT40MINUS:
  1125. modesIndex = 2;
  1126. break;
  1127. case CHANNEL_G:
  1128. case CHANNEL_G_HT20:
  1129. case CHANNEL_B:
  1130. modesIndex = 4;
  1131. break;
  1132. case CHANNEL_G_HT40PLUS:
  1133. case CHANNEL_G_HT40MINUS:
  1134. modesIndex = 3;
  1135. break;
  1136. default:
  1137. return -EINVAL;
  1138. }
  1139. if (modesIndex == ah->modes_index) {
  1140. *ini_reloaded = false;
  1141. goto set_rfmode;
  1142. }
  1143. ar9003_hw_prog_ini(ah, &ah->iniSOC[ATH_INI_POST], modesIndex);
  1144. ar9003_hw_prog_ini(ah, &ah->iniMac[ATH_INI_POST], modesIndex);
  1145. ar9003_hw_prog_ini(ah, &ah->iniBB[ATH_INI_POST], modesIndex);
  1146. ar9003_hw_prog_ini(ah, &ah->iniRadio[ATH_INI_POST], modesIndex);
  1147. if (AR_SREV_9462_20(ah))
  1148. ar9003_hw_prog_ini(ah,
  1149. &ah->ini_radio_post_sys2ant,
  1150. modesIndex);
  1151. REG_WRITE_ARRAY(&ah->iniModesTxGain, modesIndex, regWrites);
  1152. /*
  1153. * For 5GHz channels requiring Fast Clock, apply
  1154. * different modal values.
  1155. */
  1156. if (IS_CHAN_A_FAST_CLOCK(ah, chan))
  1157. REG_WRITE_ARRAY(&ah->iniModesFastClock, modesIndex, regWrites);
  1158. REG_WRITE_ARRAY(&ah->iniAdditional, 1, regWrites);
  1159. ah->modes_index = modesIndex;
  1160. *ini_reloaded = true;
  1161. set_rfmode:
  1162. ar9003_hw_set_rfmode(ah, chan);
  1163. return 0;
  1164. }
  1165. void ar9003_hw_attach_phy_ops(struct ath_hw *ah)
  1166. {
  1167. struct ath_hw_private_ops *priv_ops = ath9k_hw_private_ops(ah);
  1168. struct ath_hw_ops *ops = ath9k_hw_ops(ah);
  1169. static const u32 ar9300_cca_regs[6] = {
  1170. AR_PHY_CCA_0,
  1171. AR_PHY_CCA_1,
  1172. AR_PHY_CCA_2,
  1173. AR_PHY_EXT_CCA,
  1174. AR_PHY_EXT_CCA_1,
  1175. AR_PHY_EXT_CCA_2,
  1176. };
  1177. priv_ops->rf_set_freq = ar9003_hw_set_channel;
  1178. priv_ops->spur_mitigate_freq = ar9003_hw_spur_mitigate;
  1179. priv_ops->compute_pll_control = ar9003_hw_compute_pll_control;
  1180. priv_ops->set_channel_regs = ar9003_hw_set_channel_regs;
  1181. priv_ops->init_bb = ar9003_hw_init_bb;
  1182. priv_ops->process_ini = ar9003_hw_process_ini;
  1183. priv_ops->set_rfmode = ar9003_hw_set_rfmode;
  1184. priv_ops->mark_phy_inactive = ar9003_hw_mark_phy_inactive;
  1185. priv_ops->set_delta_slope = ar9003_hw_set_delta_slope;
  1186. priv_ops->rfbus_req = ar9003_hw_rfbus_req;
  1187. priv_ops->rfbus_done = ar9003_hw_rfbus_done;
  1188. priv_ops->ani_control = ar9003_hw_ani_control;
  1189. priv_ops->do_getnf = ar9003_hw_do_getnf;
  1190. priv_ops->ani_cache_ini_regs = ar9003_hw_ani_cache_ini_regs;
  1191. priv_ops->set_radar_params = ar9003_hw_set_radar_params;
  1192. priv_ops->fast_chan_change = ar9003_hw_fast_chan_change;
  1193. ops->antdiv_comb_conf_get = ar9003_hw_antdiv_comb_conf_get;
  1194. ops->antdiv_comb_conf_set = ar9003_hw_antdiv_comb_conf_set;
  1195. ar9003_hw_set_nf_limits(ah);
  1196. ar9003_hw_set_radar_conf(ah);
  1197. memcpy(ah->nf_regs, ar9300_cca_regs, sizeof(ah->nf_regs));
  1198. }
  1199. void ar9003_hw_bb_watchdog_config(struct ath_hw *ah)
  1200. {
  1201. struct ath_common *common = ath9k_hw_common(ah);
  1202. u32 idle_tmo_ms = ah->bb_watchdog_timeout_ms;
  1203. u32 val, idle_count;
  1204. if (!idle_tmo_ms) {
  1205. /* disable IRQ, disable chip-reset for BB panic */
  1206. REG_WRITE(ah, AR_PHY_WATCHDOG_CTL_2,
  1207. REG_READ(ah, AR_PHY_WATCHDOG_CTL_2) &
  1208. ~(AR_PHY_WATCHDOG_RST_ENABLE |
  1209. AR_PHY_WATCHDOG_IRQ_ENABLE));
  1210. /* disable watchdog in non-IDLE mode, disable in IDLE mode */
  1211. REG_WRITE(ah, AR_PHY_WATCHDOG_CTL_1,
  1212. REG_READ(ah, AR_PHY_WATCHDOG_CTL_1) &
  1213. ~(AR_PHY_WATCHDOG_NON_IDLE_ENABLE |
  1214. AR_PHY_WATCHDOG_IDLE_ENABLE));
  1215. ath_dbg(common, RESET, "Disabled BB Watchdog\n");
  1216. return;
  1217. }
  1218. /* enable IRQ, disable chip-reset for BB watchdog */
  1219. val = REG_READ(ah, AR_PHY_WATCHDOG_CTL_2) & AR_PHY_WATCHDOG_CNTL2_MASK;
  1220. REG_WRITE(ah, AR_PHY_WATCHDOG_CTL_2,
  1221. (val | AR_PHY_WATCHDOG_IRQ_ENABLE) &
  1222. ~AR_PHY_WATCHDOG_RST_ENABLE);
  1223. /* bound limit to 10 secs */
  1224. if (idle_tmo_ms > 10000)
  1225. idle_tmo_ms = 10000;
  1226. /*
  1227. * The time unit for watchdog event is 2^15 44/88MHz cycles.
  1228. *
  1229. * For HT20 we have a time unit of 2^15/44 MHz = .74 ms per tick
  1230. * For HT40 we have a time unit of 2^15/88 MHz = .37 ms per tick
  1231. *
  1232. * Given we use fast clock now in 5 GHz, these time units should
  1233. * be common for both 2 GHz and 5 GHz.
  1234. */
  1235. idle_count = (100 * idle_tmo_ms) / 74;
  1236. if (ah->curchan && IS_CHAN_HT40(ah->curchan))
  1237. idle_count = (100 * idle_tmo_ms) / 37;
  1238. /*
  1239. * enable watchdog in non-IDLE mode, disable in IDLE mode,
  1240. * set idle time-out.
  1241. */
  1242. REG_WRITE(ah, AR_PHY_WATCHDOG_CTL_1,
  1243. AR_PHY_WATCHDOG_NON_IDLE_ENABLE |
  1244. AR_PHY_WATCHDOG_IDLE_MASK |
  1245. (AR_PHY_WATCHDOG_NON_IDLE_MASK & (idle_count << 2)));
  1246. ath_dbg(common, RESET, "Enabled BB Watchdog timeout (%u ms)\n",
  1247. idle_tmo_ms);
  1248. }
  1249. void ar9003_hw_bb_watchdog_read(struct ath_hw *ah)
  1250. {
  1251. /*
  1252. * we want to avoid printing in ISR context so we save the
  1253. * watchdog status to be printed later in bottom half context.
  1254. */
  1255. ah->bb_watchdog_last_status = REG_READ(ah, AR_PHY_WATCHDOG_STATUS);
  1256. /*
  1257. * the watchdog timer should reset on status read but to be sure
  1258. * sure we write 0 to the watchdog status bit.
  1259. */
  1260. REG_WRITE(ah, AR_PHY_WATCHDOG_STATUS,
  1261. ah->bb_watchdog_last_status & ~AR_PHY_WATCHDOG_STATUS_CLR);
  1262. }
  1263. void ar9003_hw_bb_watchdog_dbg_info(struct ath_hw *ah)
  1264. {
  1265. struct ath_common *common = ath9k_hw_common(ah);
  1266. u32 status;
  1267. if (likely(!(common->debug_mask & ATH_DBG_RESET)))
  1268. return;
  1269. status = ah->bb_watchdog_last_status;
  1270. ath_dbg(common, RESET,
  1271. "\n==== BB update: BB status=0x%08x ====\n", status);
  1272. ath_dbg(common, RESET,
  1273. "** BB state: wd=%u det=%u rdar=%u rOFDM=%d rCCK=%u tOFDM=%u tCCK=%u agc=%u src=%u **\n",
  1274. MS(status, AR_PHY_WATCHDOG_INFO),
  1275. MS(status, AR_PHY_WATCHDOG_DET_HANG),
  1276. MS(status, AR_PHY_WATCHDOG_RADAR_SM),
  1277. MS(status, AR_PHY_WATCHDOG_RX_OFDM_SM),
  1278. MS(status, AR_PHY_WATCHDOG_RX_CCK_SM),
  1279. MS(status, AR_PHY_WATCHDOG_TX_OFDM_SM),
  1280. MS(status, AR_PHY_WATCHDOG_TX_CCK_SM),
  1281. MS(status, AR_PHY_WATCHDOG_AGC_SM),
  1282. MS(status, AR_PHY_WATCHDOG_SRCH_SM));
  1283. ath_dbg(common, RESET, "** BB WD cntl: cntl1=0x%08x cntl2=0x%08x **\n",
  1284. REG_READ(ah, AR_PHY_WATCHDOG_CTL_1),
  1285. REG_READ(ah, AR_PHY_WATCHDOG_CTL_2));
  1286. ath_dbg(common, RESET, "** BB mode: BB_gen_controls=0x%08x **\n",
  1287. REG_READ(ah, AR_PHY_GEN_CTRL));
  1288. #define PCT(_field) (common->cc_survey._field * 100 / common->cc_survey.cycles)
  1289. if (common->cc_survey.cycles)
  1290. ath_dbg(common, RESET,
  1291. "** BB busy times: rx_clear=%d%%, rx_frame=%d%%, tx_frame=%d%% **\n",
  1292. PCT(rx_busy), PCT(rx_frame), PCT(tx_frame));
  1293. ath_dbg(common, RESET, "==== BB update: done ====\n\n");
  1294. }
  1295. EXPORT_SYMBOL(ar9003_hw_bb_watchdog_dbg_info);
  1296. void ar9003_hw_disable_phy_restart(struct ath_hw *ah)
  1297. {
  1298. u32 val;
  1299. /* While receiving unsupported rate frame rx state machine
  1300. * gets into a state 0xb and if phy_restart happens in that
  1301. * state, BB would go hang. If RXSM is in 0xb state after
  1302. * first bb panic, ensure to disable the phy_restart.
  1303. */
  1304. if (!((MS(ah->bb_watchdog_last_status,
  1305. AR_PHY_WATCHDOG_RX_OFDM_SM) == 0xb) ||
  1306. ah->bb_hang_rx_ofdm))
  1307. return;
  1308. ah->bb_hang_rx_ofdm = true;
  1309. val = REG_READ(ah, AR_PHY_RESTART);
  1310. val &= ~AR_PHY_RESTART_ENA;
  1311. REG_WRITE(ah, AR_PHY_RESTART, val);
  1312. }
  1313. EXPORT_SYMBOL(ar9003_hw_disable_phy_restart);