tehuti.c 67 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470
  1. /*
  2. * Tehuti Networks(R) Network Driver
  3. * ethtool interface implementation
  4. * Copyright (C) 2007 Tehuti Networks Ltd. All rights reserved
  5. *
  6. * This program is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License as published by
  8. * the Free Software Foundation; either version 2 of the License, or
  9. * (at your option) any later version.
  10. */
  11. /*
  12. * RX HW/SW interaction overview
  13. * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  14. * There are 2 types of RX communication channels between driver and NIC.
  15. * 1) RX Free Fifo - RXF - holds descriptors of empty buffers to accept incoming
  16. * traffic. This Fifo is filled by SW and is readen by HW. Each descriptor holds
  17. * info about buffer's location, size and ID. An ID field is used to identify a
  18. * buffer when it's returned with data via RXD Fifo (see below)
  19. * 2) RX Data Fifo - RXD - holds descriptors of full buffers. This Fifo is
  20. * filled by HW and is readen by SW. Each descriptor holds status and ID.
  21. * HW pops descriptor from RXF Fifo, stores ID, fills buffer with incoming data,
  22. * via dma moves it into host memory, builds new RXD descriptor with same ID,
  23. * pushes it into RXD Fifo and raises interrupt to indicate new RX data.
  24. *
  25. * Current NIC configuration (registers + firmware) makes NIC use 2 RXF Fifos.
  26. * One holds 1.5K packets and another - 26K packets. Depending on incoming
  27. * packet size, HW desides on a RXF Fifo to pop buffer from. When packet is
  28. * filled with data, HW builds new RXD descriptor for it and push it into single
  29. * RXD Fifo.
  30. *
  31. * RX SW Data Structures
  32. * ~~~~~~~~~~~~~~~~~~~~~
  33. * skb db - used to keep track of all skbs owned by SW and their dma addresses.
  34. * For RX case, ownership lasts from allocating new empty skb for RXF until
  35. * accepting full skb from RXD and passing it to OS. Each RXF Fifo has its own
  36. * skb db. Implemented as array with bitmask.
  37. * fifo - keeps info about fifo's size and location, relevant HW registers,
  38. * usage and skb db. Each RXD and RXF Fifo has its own fifo structure.
  39. * Implemented as simple struct.
  40. *
  41. * RX SW Execution Flow
  42. * ~~~~~~~~~~~~~~~~~~~~
  43. * Upon initialization (ifconfig up) driver creates RX fifos and initializes
  44. * relevant registers. At the end of init phase, driver enables interrupts.
  45. * NIC sees that there is no RXF buffers and raises
  46. * RD_INTR interrupt, isr fills skbs and Rx begins.
  47. * Driver has two receive operation modes:
  48. * NAPI - interrupt-driven mixed with polling
  49. * interrupt-driven only
  50. *
  51. * Interrupt-driven only flow is following. When buffer is ready, HW raises
  52. * interrupt and isr is called. isr collects all available packets
  53. * (bdx_rx_receive), refills skbs (bdx_rx_alloc_skbs) and exit.
  54. * Rx buffer allocation note
  55. * ~~~~~~~~~~~~~~~~~~~~~~~~~
  56. * Driver cares to feed such amount of RxF descriptors that respective amount of
  57. * RxD descriptors can not fill entire RxD fifo. The main reason is lack of
  58. * overflow check in Bordeaux for RxD fifo free/used size.
  59. * FIXME: this is NOT fully implemented, more work should be done
  60. *
  61. */
  62. #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  63. #include "tehuti.h"
  64. static DEFINE_PCI_DEVICE_TABLE(bdx_pci_tbl) = {
  65. { PCI_VDEVICE(TEHUTI, 0x3009), },
  66. { PCI_VDEVICE(TEHUTI, 0x3010), },
  67. { PCI_VDEVICE(TEHUTI, 0x3014), },
  68. { 0 }
  69. };
  70. MODULE_DEVICE_TABLE(pci, bdx_pci_tbl);
  71. /* Definitions needed by ISR or NAPI functions */
  72. static void bdx_rx_alloc_skbs(struct bdx_priv *priv, struct rxf_fifo *f);
  73. static void bdx_tx_cleanup(struct bdx_priv *priv);
  74. static int bdx_rx_receive(struct bdx_priv *priv, struct rxd_fifo *f, int budget);
  75. /* Definitions needed by FW loading */
  76. static void bdx_tx_push_desc_safe(struct bdx_priv *priv, void *data, int size);
  77. /* Definitions needed by hw_start */
  78. static int bdx_tx_init(struct bdx_priv *priv);
  79. static int bdx_rx_init(struct bdx_priv *priv);
  80. /* Definitions needed by bdx_close */
  81. static void bdx_rx_free(struct bdx_priv *priv);
  82. static void bdx_tx_free(struct bdx_priv *priv);
  83. /* Definitions needed by bdx_probe */
  84. static void bdx_set_ethtool_ops(struct net_device *netdev);
  85. /*************************************************************************
  86. * Print Info *
  87. *************************************************************************/
  88. static void print_hw_id(struct pci_dev *pdev)
  89. {
  90. struct pci_nic *nic = pci_get_drvdata(pdev);
  91. u16 pci_link_status = 0;
  92. u16 pci_ctrl = 0;
  93. pci_read_config_word(pdev, PCI_LINK_STATUS_REG, &pci_link_status);
  94. pci_read_config_word(pdev, PCI_DEV_CTRL_REG, &pci_ctrl);
  95. pr_info("%s%s\n", BDX_NIC_NAME,
  96. nic->port_num == 1 ? "" : ", 2-Port");
  97. pr_info("srom 0x%x fpga %d build %u lane# %d max_pl 0x%x mrrs 0x%x\n",
  98. readl(nic->regs + SROM_VER), readl(nic->regs + FPGA_VER) & 0xFFF,
  99. readl(nic->regs + FPGA_SEED),
  100. GET_LINK_STATUS_LANES(pci_link_status),
  101. GET_DEV_CTRL_MAXPL(pci_ctrl), GET_DEV_CTRL_MRRS(pci_ctrl));
  102. }
  103. static void print_fw_id(struct pci_nic *nic)
  104. {
  105. pr_info("fw 0x%x\n", readl(nic->regs + FW_VER));
  106. }
  107. static void print_eth_id(struct net_device *ndev)
  108. {
  109. netdev_info(ndev, "%s, Port %c\n",
  110. BDX_NIC_NAME, (ndev->if_port == 0) ? 'A' : 'B');
  111. }
  112. /*************************************************************************
  113. * Code *
  114. *************************************************************************/
  115. #define bdx_enable_interrupts(priv) \
  116. do { WRITE_REG(priv, regIMR, IR_RUN); } while (0)
  117. #define bdx_disable_interrupts(priv) \
  118. do { WRITE_REG(priv, regIMR, 0); } while (0)
  119. /* bdx_fifo_init
  120. * create TX/RX descriptor fifo for host-NIC communication.
  121. * 1K extra space is allocated at the end of the fifo to simplify
  122. * processing of descriptors that wraps around fifo's end
  123. * @priv - NIC private structure
  124. * @f - fifo to initialize
  125. * @fsz_type - fifo size type: 0-4KB, 1-8KB, 2-16KB, 3-32KB
  126. * @reg_XXX - offsets of registers relative to base address
  127. *
  128. * Returns 0 on success, negative value on failure
  129. *
  130. */
  131. static int
  132. bdx_fifo_init(struct bdx_priv *priv, struct fifo *f, int fsz_type,
  133. u16 reg_CFG0, u16 reg_CFG1, u16 reg_RPTR, u16 reg_WPTR)
  134. {
  135. u16 memsz = FIFO_SIZE * (1 << fsz_type);
  136. memset(f, 0, sizeof(struct fifo));
  137. /* pci_alloc_consistent gives us 4k-aligned memory */
  138. f->va = pci_alloc_consistent(priv->pdev,
  139. memsz + FIFO_EXTRA_SPACE, &f->da);
  140. if (!f->va) {
  141. pr_err("pci_alloc_consistent failed\n");
  142. RET(-ENOMEM);
  143. }
  144. f->reg_CFG0 = reg_CFG0;
  145. f->reg_CFG1 = reg_CFG1;
  146. f->reg_RPTR = reg_RPTR;
  147. f->reg_WPTR = reg_WPTR;
  148. f->rptr = 0;
  149. f->wptr = 0;
  150. f->memsz = memsz;
  151. f->size_mask = memsz - 1;
  152. WRITE_REG(priv, reg_CFG0, (u32) ((f->da & TX_RX_CFG0_BASE) | fsz_type));
  153. WRITE_REG(priv, reg_CFG1, H32_64(f->da));
  154. RET(0);
  155. }
  156. /* bdx_fifo_free - free all resources used by fifo
  157. * @priv - NIC private structure
  158. * @f - fifo to release
  159. */
  160. static void bdx_fifo_free(struct bdx_priv *priv, struct fifo *f)
  161. {
  162. ENTER;
  163. if (f->va) {
  164. pci_free_consistent(priv->pdev,
  165. f->memsz + FIFO_EXTRA_SPACE, f->va, f->da);
  166. f->va = NULL;
  167. }
  168. RET();
  169. }
  170. /*
  171. * bdx_link_changed - notifies OS about hw link state.
  172. * @bdx_priv - hw adapter structure
  173. */
  174. static void bdx_link_changed(struct bdx_priv *priv)
  175. {
  176. u32 link = READ_REG(priv, regMAC_LNK_STAT) & MAC_LINK_STAT;
  177. if (!link) {
  178. if (netif_carrier_ok(priv->ndev)) {
  179. netif_stop_queue(priv->ndev);
  180. netif_carrier_off(priv->ndev);
  181. netdev_err(priv->ndev, "Link Down\n");
  182. }
  183. } else {
  184. if (!netif_carrier_ok(priv->ndev)) {
  185. netif_wake_queue(priv->ndev);
  186. netif_carrier_on(priv->ndev);
  187. netdev_err(priv->ndev, "Link Up\n");
  188. }
  189. }
  190. }
  191. static void bdx_isr_extra(struct bdx_priv *priv, u32 isr)
  192. {
  193. if (isr & IR_RX_FREE_0) {
  194. bdx_rx_alloc_skbs(priv, &priv->rxf_fifo0);
  195. DBG("RX_FREE_0\n");
  196. }
  197. if (isr & IR_LNKCHG0)
  198. bdx_link_changed(priv);
  199. if (isr & IR_PCIE_LINK)
  200. netdev_err(priv->ndev, "PCI-E Link Fault\n");
  201. if (isr & IR_PCIE_TOUT)
  202. netdev_err(priv->ndev, "PCI-E Time Out\n");
  203. }
  204. /* bdx_isr - Interrupt Service Routine for Bordeaux NIC
  205. * @irq - interrupt number
  206. * @ndev - network device
  207. * @regs - CPU registers
  208. *
  209. * Return IRQ_NONE if it was not our interrupt, IRQ_HANDLED - otherwise
  210. *
  211. * It reads ISR register to know interrupt reasons, and proceed them one by one.
  212. * Reasons of interest are:
  213. * RX_DESC - new packet has arrived and RXD fifo holds its descriptor
  214. * RX_FREE - number of free Rx buffers in RXF fifo gets low
  215. * TX_FREE - packet was transmited and RXF fifo holds its descriptor
  216. */
  217. static irqreturn_t bdx_isr_napi(int irq, void *dev)
  218. {
  219. struct net_device *ndev = dev;
  220. struct bdx_priv *priv = netdev_priv(ndev);
  221. u32 isr;
  222. ENTER;
  223. isr = (READ_REG(priv, regISR) & IR_RUN);
  224. if (unlikely(!isr)) {
  225. bdx_enable_interrupts(priv);
  226. return IRQ_NONE; /* Not our interrupt */
  227. }
  228. if (isr & IR_EXTRA)
  229. bdx_isr_extra(priv, isr);
  230. if (isr & (IR_RX_DESC_0 | IR_TX_FREE_0)) {
  231. if (likely(napi_schedule_prep(&priv->napi))) {
  232. __napi_schedule(&priv->napi);
  233. RET(IRQ_HANDLED);
  234. } else {
  235. /* NOTE: we get here if intr has slipped into window
  236. * between these lines in bdx_poll:
  237. * bdx_enable_interrupts(priv);
  238. * return 0;
  239. * currently intrs are disabled (since we read ISR),
  240. * and we have failed to register next poll.
  241. * so we read the regs to trigger chip
  242. * and allow further interupts. */
  243. READ_REG(priv, regTXF_WPTR_0);
  244. READ_REG(priv, regRXD_WPTR_0);
  245. }
  246. }
  247. bdx_enable_interrupts(priv);
  248. RET(IRQ_HANDLED);
  249. }
  250. static int bdx_poll(struct napi_struct *napi, int budget)
  251. {
  252. struct bdx_priv *priv = container_of(napi, struct bdx_priv, napi);
  253. int work_done;
  254. ENTER;
  255. bdx_tx_cleanup(priv);
  256. work_done = bdx_rx_receive(priv, &priv->rxd_fifo0, budget);
  257. if ((work_done < budget) ||
  258. (priv->napi_stop++ >= 30)) {
  259. DBG("rx poll is done. backing to isr-driven\n");
  260. /* from time to time we exit to let NAPI layer release
  261. * device lock and allow waiting tasks (eg rmmod) to advance) */
  262. priv->napi_stop = 0;
  263. napi_complete(napi);
  264. bdx_enable_interrupts(priv);
  265. }
  266. return work_done;
  267. }
  268. /* bdx_fw_load - loads firmware to NIC
  269. * @priv - NIC private structure
  270. * Firmware is loaded via TXD fifo, so it must be initialized first.
  271. * Firware must be loaded once per NIC not per PCI device provided by NIC (NIC
  272. * can have few of them). So all drivers use semaphore register to choose one
  273. * that will actually load FW to NIC.
  274. */
  275. static int bdx_fw_load(struct bdx_priv *priv)
  276. {
  277. const struct firmware *fw = NULL;
  278. int master, i;
  279. int rc;
  280. ENTER;
  281. master = READ_REG(priv, regINIT_SEMAPHORE);
  282. if (!READ_REG(priv, regINIT_STATUS) && master) {
  283. rc = request_firmware(&fw, "tehuti/bdx.bin", &priv->pdev->dev);
  284. if (rc)
  285. goto out;
  286. bdx_tx_push_desc_safe(priv, (char *)fw->data, fw->size);
  287. mdelay(100);
  288. }
  289. for (i = 0; i < 200; i++) {
  290. if (READ_REG(priv, regINIT_STATUS)) {
  291. rc = 0;
  292. goto out;
  293. }
  294. mdelay(2);
  295. }
  296. rc = -EIO;
  297. out:
  298. if (master)
  299. WRITE_REG(priv, regINIT_SEMAPHORE, 1);
  300. if (fw)
  301. release_firmware(fw);
  302. if (rc) {
  303. netdev_err(priv->ndev, "firmware loading failed\n");
  304. if (rc == -EIO)
  305. DBG("VPC = 0x%x VIC = 0x%x INIT_STATUS = 0x%x i=%d\n",
  306. READ_REG(priv, regVPC),
  307. READ_REG(priv, regVIC),
  308. READ_REG(priv, regINIT_STATUS), i);
  309. RET(rc);
  310. } else {
  311. DBG("%s: firmware loading success\n", priv->ndev->name);
  312. RET(0);
  313. }
  314. }
  315. static void bdx_restore_mac(struct net_device *ndev, struct bdx_priv *priv)
  316. {
  317. u32 val;
  318. ENTER;
  319. DBG("mac0=%x mac1=%x mac2=%x\n",
  320. READ_REG(priv, regUNC_MAC0_A),
  321. READ_REG(priv, regUNC_MAC1_A), READ_REG(priv, regUNC_MAC2_A));
  322. val = (ndev->dev_addr[0] << 8) | (ndev->dev_addr[1]);
  323. WRITE_REG(priv, regUNC_MAC2_A, val);
  324. val = (ndev->dev_addr[2] << 8) | (ndev->dev_addr[3]);
  325. WRITE_REG(priv, regUNC_MAC1_A, val);
  326. val = (ndev->dev_addr[4] << 8) | (ndev->dev_addr[5]);
  327. WRITE_REG(priv, regUNC_MAC0_A, val);
  328. DBG("mac0=%x mac1=%x mac2=%x\n",
  329. READ_REG(priv, regUNC_MAC0_A),
  330. READ_REG(priv, regUNC_MAC1_A), READ_REG(priv, regUNC_MAC2_A));
  331. RET();
  332. }
  333. /* bdx_hw_start - inits registers and starts HW's Rx and Tx engines
  334. * @priv - NIC private structure
  335. */
  336. static int bdx_hw_start(struct bdx_priv *priv)
  337. {
  338. int rc = -EIO;
  339. struct net_device *ndev = priv->ndev;
  340. ENTER;
  341. bdx_link_changed(priv);
  342. /* 10G overall max length (vlan, eth&ip header, ip payload, crc) */
  343. WRITE_REG(priv, regFRM_LENGTH, 0X3FE0);
  344. WRITE_REG(priv, regPAUSE_QUANT, 0x96);
  345. WRITE_REG(priv, regRX_FIFO_SECTION, 0x800010);
  346. WRITE_REG(priv, regTX_FIFO_SECTION, 0xE00010);
  347. WRITE_REG(priv, regRX_FULLNESS, 0);
  348. WRITE_REG(priv, regTX_FULLNESS, 0);
  349. WRITE_REG(priv, regCTRLST,
  350. regCTRLST_BASE | regCTRLST_RX_ENA | regCTRLST_TX_ENA);
  351. WRITE_REG(priv, regVGLB, 0);
  352. WRITE_REG(priv, regMAX_FRAME_A,
  353. priv->rxf_fifo0.m.pktsz & MAX_FRAME_AB_VAL);
  354. DBG("RDINTCM=%08x\n", priv->rdintcm); /*NOTE: test script uses this */
  355. WRITE_REG(priv, regRDINTCM0, priv->rdintcm);
  356. WRITE_REG(priv, regRDINTCM2, 0); /*cpu_to_le32(rcm.val)); */
  357. DBG("TDINTCM=%08x\n", priv->tdintcm); /*NOTE: test script uses this */
  358. WRITE_REG(priv, regTDINTCM0, priv->tdintcm); /* old val = 0x300064 */
  359. /* Enable timer interrupt once in 2 secs. */
  360. /*WRITE_REG(priv, regGTMR0, ((GTMR_SEC * 2) & GTMR_DATA)); */
  361. bdx_restore_mac(priv->ndev, priv);
  362. WRITE_REG(priv, regGMAC_RXF_A, GMAC_RX_FILTER_OSEN |
  363. GMAC_RX_FILTER_AM | GMAC_RX_FILTER_AB);
  364. #define BDX_IRQ_TYPE ((priv->nic->irq_type == IRQ_MSI) ? 0 : IRQF_SHARED)
  365. rc = request_irq(priv->pdev->irq, bdx_isr_napi, BDX_IRQ_TYPE,
  366. ndev->name, ndev);
  367. if (rc)
  368. goto err_irq;
  369. bdx_enable_interrupts(priv);
  370. RET(0);
  371. err_irq:
  372. RET(rc);
  373. }
  374. static void bdx_hw_stop(struct bdx_priv *priv)
  375. {
  376. ENTER;
  377. bdx_disable_interrupts(priv);
  378. free_irq(priv->pdev->irq, priv->ndev);
  379. netif_carrier_off(priv->ndev);
  380. netif_stop_queue(priv->ndev);
  381. RET();
  382. }
  383. static int bdx_hw_reset_direct(void __iomem *regs)
  384. {
  385. u32 val, i;
  386. ENTER;
  387. /* reset sequences: read, write 1, read, write 0 */
  388. val = readl(regs + regCLKPLL);
  389. writel((val | CLKPLL_SFTRST) + 0x8, regs + regCLKPLL);
  390. udelay(50);
  391. val = readl(regs + regCLKPLL);
  392. writel(val & ~CLKPLL_SFTRST, regs + regCLKPLL);
  393. /* check that the PLLs are locked and reset ended */
  394. for (i = 0; i < 70; i++, mdelay(10))
  395. if ((readl(regs + regCLKPLL) & CLKPLL_LKD) == CLKPLL_LKD) {
  396. /* do any PCI-E read transaction */
  397. readl(regs + regRXD_CFG0_0);
  398. return 0;
  399. }
  400. pr_err("HW reset failed\n");
  401. return 1; /* failure */
  402. }
  403. static int bdx_hw_reset(struct bdx_priv *priv)
  404. {
  405. u32 val, i;
  406. ENTER;
  407. if (priv->port == 0) {
  408. /* reset sequences: read, write 1, read, write 0 */
  409. val = READ_REG(priv, regCLKPLL);
  410. WRITE_REG(priv, regCLKPLL, (val | CLKPLL_SFTRST) + 0x8);
  411. udelay(50);
  412. val = READ_REG(priv, regCLKPLL);
  413. WRITE_REG(priv, regCLKPLL, val & ~CLKPLL_SFTRST);
  414. }
  415. /* check that the PLLs are locked and reset ended */
  416. for (i = 0; i < 70; i++, mdelay(10))
  417. if ((READ_REG(priv, regCLKPLL) & CLKPLL_LKD) == CLKPLL_LKD) {
  418. /* do any PCI-E read transaction */
  419. READ_REG(priv, regRXD_CFG0_0);
  420. return 0;
  421. }
  422. pr_err("HW reset failed\n");
  423. return 1; /* failure */
  424. }
  425. static int bdx_sw_reset(struct bdx_priv *priv)
  426. {
  427. int i;
  428. ENTER;
  429. /* 1. load MAC (obsolete) */
  430. /* 2. disable Rx (and Tx) */
  431. WRITE_REG(priv, regGMAC_RXF_A, 0);
  432. mdelay(100);
  433. /* 3. disable port */
  434. WRITE_REG(priv, regDIS_PORT, 1);
  435. /* 4. disable queue */
  436. WRITE_REG(priv, regDIS_QU, 1);
  437. /* 5. wait until hw is disabled */
  438. for (i = 0; i < 50; i++) {
  439. if (READ_REG(priv, regRST_PORT) & 1)
  440. break;
  441. mdelay(10);
  442. }
  443. if (i == 50)
  444. netdev_err(priv->ndev, "SW reset timeout. continuing anyway\n");
  445. /* 6. disable intrs */
  446. WRITE_REG(priv, regRDINTCM0, 0);
  447. WRITE_REG(priv, regTDINTCM0, 0);
  448. WRITE_REG(priv, regIMR, 0);
  449. READ_REG(priv, regISR);
  450. /* 7. reset queue */
  451. WRITE_REG(priv, regRST_QU, 1);
  452. /* 8. reset port */
  453. WRITE_REG(priv, regRST_PORT, 1);
  454. /* 9. zero all read and write pointers */
  455. for (i = regTXD_WPTR_0; i <= regTXF_RPTR_3; i += 0x10)
  456. DBG("%x = %x\n", i, READ_REG(priv, i) & TXF_WPTR_WR_PTR);
  457. for (i = regTXD_WPTR_0; i <= regTXF_RPTR_3; i += 0x10)
  458. WRITE_REG(priv, i, 0);
  459. /* 10. unseet port disable */
  460. WRITE_REG(priv, regDIS_PORT, 0);
  461. /* 11. unset queue disable */
  462. WRITE_REG(priv, regDIS_QU, 0);
  463. /* 12. unset queue reset */
  464. WRITE_REG(priv, regRST_QU, 0);
  465. /* 13. unset port reset */
  466. WRITE_REG(priv, regRST_PORT, 0);
  467. /* 14. enable Rx */
  468. /* skiped. will be done later */
  469. /* 15. save MAC (obsolete) */
  470. for (i = regTXD_WPTR_0; i <= regTXF_RPTR_3; i += 0x10)
  471. DBG("%x = %x\n", i, READ_REG(priv, i) & TXF_WPTR_WR_PTR);
  472. RET(0);
  473. }
  474. /* bdx_reset - performs right type of reset depending on hw type */
  475. static int bdx_reset(struct bdx_priv *priv)
  476. {
  477. ENTER;
  478. RET((priv->pdev->device == 0x3009)
  479. ? bdx_hw_reset(priv)
  480. : bdx_sw_reset(priv));
  481. }
  482. /**
  483. * bdx_close - Disables a network interface
  484. * @netdev: network interface device structure
  485. *
  486. * Returns 0, this is not allowed to fail
  487. *
  488. * The close entry point is called when an interface is de-activated
  489. * by the OS. The hardware is still under the drivers control, but
  490. * needs to be disabled. A global MAC reset is issued to stop the
  491. * hardware, and all transmit and receive resources are freed.
  492. **/
  493. static int bdx_close(struct net_device *ndev)
  494. {
  495. struct bdx_priv *priv = NULL;
  496. ENTER;
  497. priv = netdev_priv(ndev);
  498. napi_disable(&priv->napi);
  499. bdx_reset(priv);
  500. bdx_hw_stop(priv);
  501. bdx_rx_free(priv);
  502. bdx_tx_free(priv);
  503. RET(0);
  504. }
  505. /**
  506. * bdx_open - Called when a network interface is made active
  507. * @netdev: network interface device structure
  508. *
  509. * Returns 0 on success, negative value on failure
  510. *
  511. * The open entry point is called when a network interface is made
  512. * active by the system (IFF_UP). At this point all resources needed
  513. * for transmit and receive operations are allocated, the interrupt
  514. * handler is registered with the OS, the watchdog timer is started,
  515. * and the stack is notified that the interface is ready.
  516. **/
  517. static int bdx_open(struct net_device *ndev)
  518. {
  519. struct bdx_priv *priv;
  520. int rc;
  521. ENTER;
  522. priv = netdev_priv(ndev);
  523. bdx_reset(priv);
  524. if (netif_running(ndev))
  525. netif_stop_queue(priv->ndev);
  526. if ((rc = bdx_tx_init(priv)) ||
  527. (rc = bdx_rx_init(priv)) ||
  528. (rc = bdx_fw_load(priv)))
  529. goto err;
  530. bdx_rx_alloc_skbs(priv, &priv->rxf_fifo0);
  531. rc = bdx_hw_start(priv);
  532. if (rc)
  533. goto err;
  534. napi_enable(&priv->napi);
  535. print_fw_id(priv->nic);
  536. RET(0);
  537. err:
  538. bdx_close(ndev);
  539. RET(rc);
  540. }
  541. static int bdx_range_check(struct bdx_priv *priv, u32 offset)
  542. {
  543. return (offset > (u32) (BDX_REGS_SIZE / priv->nic->port_num)) ?
  544. -EINVAL : 0;
  545. }
  546. static int bdx_ioctl_priv(struct net_device *ndev, struct ifreq *ifr, int cmd)
  547. {
  548. struct bdx_priv *priv = netdev_priv(ndev);
  549. u32 data[3];
  550. int error;
  551. ENTER;
  552. DBG("jiffies=%ld cmd=%d\n", jiffies, cmd);
  553. if (cmd != SIOCDEVPRIVATE) {
  554. error = copy_from_user(data, ifr->ifr_data, sizeof(data));
  555. if (error) {
  556. pr_err("can't copy from user\n");
  557. RET(-EFAULT);
  558. }
  559. DBG("%d 0x%x 0x%x\n", data[0], data[1], data[2]);
  560. }
  561. if (!capable(CAP_SYS_RAWIO))
  562. return -EPERM;
  563. switch (data[0]) {
  564. case BDX_OP_READ:
  565. error = bdx_range_check(priv, data[1]);
  566. if (error < 0)
  567. return error;
  568. data[2] = READ_REG(priv, data[1]);
  569. DBG("read_reg(0x%x)=0x%x (dec %d)\n", data[1], data[2],
  570. data[2]);
  571. error = copy_to_user(ifr->ifr_data, data, sizeof(data));
  572. if (error)
  573. RET(-EFAULT);
  574. break;
  575. case BDX_OP_WRITE:
  576. error = bdx_range_check(priv, data[1]);
  577. if (error < 0)
  578. return error;
  579. WRITE_REG(priv, data[1], data[2]);
  580. DBG("write_reg(0x%x, 0x%x)\n", data[1], data[2]);
  581. break;
  582. default:
  583. RET(-EOPNOTSUPP);
  584. }
  585. return 0;
  586. }
  587. static int bdx_ioctl(struct net_device *ndev, struct ifreq *ifr, int cmd)
  588. {
  589. ENTER;
  590. if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
  591. RET(bdx_ioctl_priv(ndev, ifr, cmd));
  592. else
  593. RET(-EOPNOTSUPP);
  594. }
  595. /*
  596. * __bdx_vlan_rx_vid - private helper for adding/killing VLAN vid
  597. * by passing VLAN filter table to hardware
  598. * @ndev network device
  599. * @vid VLAN vid
  600. * @op add or kill operation
  601. */
  602. static void __bdx_vlan_rx_vid(struct net_device *ndev, uint16_t vid, int enable)
  603. {
  604. struct bdx_priv *priv = netdev_priv(ndev);
  605. u32 reg, bit, val;
  606. ENTER;
  607. DBG2("vid=%d value=%d\n", (int)vid, enable);
  608. if (unlikely(vid >= 4096)) {
  609. pr_err("invalid VID: %u (> 4096)\n", vid);
  610. RET();
  611. }
  612. reg = regVLAN_0 + (vid / 32) * 4;
  613. bit = 1 << vid % 32;
  614. val = READ_REG(priv, reg);
  615. DBG2("reg=%x, val=%x, bit=%d\n", reg, val, bit);
  616. if (enable)
  617. val |= bit;
  618. else
  619. val &= ~bit;
  620. DBG2("new val %x\n", val);
  621. WRITE_REG(priv, reg, val);
  622. RET();
  623. }
  624. /*
  625. * bdx_vlan_rx_add_vid - kernel hook for adding VLAN vid to hw filtering table
  626. * @ndev network device
  627. * @vid VLAN vid to add
  628. */
  629. static int bdx_vlan_rx_add_vid(struct net_device *ndev, uint16_t vid)
  630. {
  631. __bdx_vlan_rx_vid(ndev, vid, 1);
  632. return 0;
  633. }
  634. /*
  635. * bdx_vlan_rx_kill_vid - kernel hook for killing VLAN vid in hw filtering table
  636. * @ndev network device
  637. * @vid VLAN vid to kill
  638. */
  639. static int bdx_vlan_rx_kill_vid(struct net_device *ndev, unsigned short vid)
  640. {
  641. __bdx_vlan_rx_vid(ndev, vid, 0);
  642. return 0;
  643. }
  644. /**
  645. * bdx_change_mtu - Change the Maximum Transfer Unit
  646. * @netdev: network interface device structure
  647. * @new_mtu: new value for maximum frame size
  648. *
  649. * Returns 0 on success, negative on failure
  650. */
  651. static int bdx_change_mtu(struct net_device *ndev, int new_mtu)
  652. {
  653. ENTER;
  654. if (new_mtu == ndev->mtu)
  655. RET(0);
  656. /* enforce minimum frame size */
  657. if (new_mtu < ETH_ZLEN) {
  658. netdev_err(ndev, "mtu %d is less then minimal %d\n",
  659. new_mtu, ETH_ZLEN);
  660. RET(-EINVAL);
  661. }
  662. ndev->mtu = new_mtu;
  663. if (netif_running(ndev)) {
  664. bdx_close(ndev);
  665. bdx_open(ndev);
  666. }
  667. RET(0);
  668. }
  669. static void bdx_setmulti(struct net_device *ndev)
  670. {
  671. struct bdx_priv *priv = netdev_priv(ndev);
  672. u32 rxf_val =
  673. GMAC_RX_FILTER_AM | GMAC_RX_FILTER_AB | GMAC_RX_FILTER_OSEN;
  674. int i;
  675. ENTER;
  676. /* IMF - imperfect (hash) rx multicat filter */
  677. /* PMF - perfect rx multicat filter */
  678. /* FIXME: RXE(OFF) */
  679. if (ndev->flags & IFF_PROMISC) {
  680. rxf_val |= GMAC_RX_FILTER_PRM;
  681. } else if (ndev->flags & IFF_ALLMULTI) {
  682. /* set IMF to accept all multicast frmaes */
  683. for (i = 0; i < MAC_MCST_HASH_NUM; i++)
  684. WRITE_REG(priv, regRX_MCST_HASH0 + i * 4, ~0);
  685. } else if (!netdev_mc_empty(ndev)) {
  686. u8 hash;
  687. struct netdev_hw_addr *ha;
  688. u32 reg, val;
  689. /* set IMF to deny all multicast frames */
  690. for (i = 0; i < MAC_MCST_HASH_NUM; i++)
  691. WRITE_REG(priv, regRX_MCST_HASH0 + i * 4, 0);
  692. /* set PMF to deny all multicast frames */
  693. for (i = 0; i < MAC_MCST_NUM; i++) {
  694. WRITE_REG(priv, regRX_MAC_MCST0 + i * 8, 0);
  695. WRITE_REG(priv, regRX_MAC_MCST1 + i * 8, 0);
  696. }
  697. /* use PMF to accept first MAC_MCST_NUM (15) addresses */
  698. /* TBD: sort addresses and write them in ascending order
  699. * into RX_MAC_MCST regs. we skip this phase now and accept ALL
  700. * multicast frames throu IMF */
  701. /* accept the rest of addresses throu IMF */
  702. netdev_for_each_mc_addr(ha, ndev) {
  703. hash = 0;
  704. for (i = 0; i < ETH_ALEN; i++)
  705. hash ^= ha->addr[i];
  706. reg = regRX_MCST_HASH0 + ((hash >> 5) << 2);
  707. val = READ_REG(priv, reg);
  708. val |= (1 << (hash % 32));
  709. WRITE_REG(priv, reg, val);
  710. }
  711. } else {
  712. DBG("only own mac %d\n", netdev_mc_count(ndev));
  713. rxf_val |= GMAC_RX_FILTER_AB;
  714. }
  715. WRITE_REG(priv, regGMAC_RXF_A, rxf_val);
  716. /* enable RX */
  717. /* FIXME: RXE(ON) */
  718. RET();
  719. }
  720. static int bdx_set_mac(struct net_device *ndev, void *p)
  721. {
  722. struct bdx_priv *priv = netdev_priv(ndev);
  723. struct sockaddr *addr = p;
  724. ENTER;
  725. /*
  726. if (netif_running(dev))
  727. return -EBUSY
  728. */
  729. memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len);
  730. bdx_restore_mac(ndev, priv);
  731. RET(0);
  732. }
  733. static int bdx_read_mac(struct bdx_priv *priv)
  734. {
  735. u16 macAddress[3], i;
  736. ENTER;
  737. macAddress[2] = READ_REG(priv, regUNC_MAC0_A);
  738. macAddress[2] = READ_REG(priv, regUNC_MAC0_A);
  739. macAddress[1] = READ_REG(priv, regUNC_MAC1_A);
  740. macAddress[1] = READ_REG(priv, regUNC_MAC1_A);
  741. macAddress[0] = READ_REG(priv, regUNC_MAC2_A);
  742. macAddress[0] = READ_REG(priv, regUNC_MAC2_A);
  743. for (i = 0; i < 3; i++) {
  744. priv->ndev->dev_addr[i * 2 + 1] = macAddress[i];
  745. priv->ndev->dev_addr[i * 2] = macAddress[i] >> 8;
  746. }
  747. RET(0);
  748. }
  749. static u64 bdx_read_l2stat(struct bdx_priv *priv, int reg)
  750. {
  751. u64 val;
  752. val = READ_REG(priv, reg);
  753. val |= ((u64) READ_REG(priv, reg + 8)) << 32;
  754. return val;
  755. }
  756. /*Do the statistics-update work*/
  757. static void bdx_update_stats(struct bdx_priv *priv)
  758. {
  759. struct bdx_stats *stats = &priv->hw_stats;
  760. u64 *stats_vector = (u64 *) stats;
  761. int i;
  762. int addr;
  763. /*Fill HW structure */
  764. addr = 0x7200;
  765. /*First 12 statistics - 0x7200 - 0x72B0 */
  766. for (i = 0; i < 12; i++) {
  767. stats_vector[i] = bdx_read_l2stat(priv, addr);
  768. addr += 0x10;
  769. }
  770. BDX_ASSERT(addr != 0x72C0);
  771. /* 0x72C0-0x72E0 RSRV */
  772. addr = 0x72F0;
  773. for (; i < 16; i++) {
  774. stats_vector[i] = bdx_read_l2stat(priv, addr);
  775. addr += 0x10;
  776. }
  777. BDX_ASSERT(addr != 0x7330);
  778. /* 0x7330-0x7360 RSRV */
  779. addr = 0x7370;
  780. for (; i < 19; i++) {
  781. stats_vector[i] = bdx_read_l2stat(priv, addr);
  782. addr += 0x10;
  783. }
  784. BDX_ASSERT(addr != 0x73A0);
  785. /* 0x73A0-0x73B0 RSRV */
  786. addr = 0x73C0;
  787. for (; i < 23; i++) {
  788. stats_vector[i] = bdx_read_l2stat(priv, addr);
  789. addr += 0x10;
  790. }
  791. BDX_ASSERT(addr != 0x7400);
  792. BDX_ASSERT((sizeof(struct bdx_stats) / sizeof(u64)) != i);
  793. }
  794. static void print_rxdd(struct rxd_desc *rxdd, u32 rxd_val1, u16 len,
  795. u16 rxd_vlan);
  796. static void print_rxfd(struct rxf_desc *rxfd);
  797. /*************************************************************************
  798. * Rx DB *
  799. *************************************************************************/
  800. static void bdx_rxdb_destroy(struct rxdb *db)
  801. {
  802. vfree(db);
  803. }
  804. static struct rxdb *bdx_rxdb_create(int nelem)
  805. {
  806. struct rxdb *db;
  807. int i;
  808. db = vmalloc(sizeof(struct rxdb)
  809. + (nelem * sizeof(int))
  810. + (nelem * sizeof(struct rx_map)));
  811. if (likely(db != NULL)) {
  812. db->stack = (int *)(db + 1);
  813. db->elems = (void *)(db->stack + nelem);
  814. db->nelem = nelem;
  815. db->top = nelem;
  816. for (i = 0; i < nelem; i++)
  817. db->stack[i] = nelem - i - 1; /* to make first allocs
  818. close to db struct*/
  819. }
  820. return db;
  821. }
  822. static inline int bdx_rxdb_alloc_elem(struct rxdb *db)
  823. {
  824. BDX_ASSERT(db->top <= 0);
  825. return db->stack[--(db->top)];
  826. }
  827. static inline void *bdx_rxdb_addr_elem(struct rxdb *db, int n)
  828. {
  829. BDX_ASSERT((n < 0) || (n >= db->nelem));
  830. return db->elems + n;
  831. }
  832. static inline int bdx_rxdb_available(struct rxdb *db)
  833. {
  834. return db->top;
  835. }
  836. static inline void bdx_rxdb_free_elem(struct rxdb *db, int n)
  837. {
  838. BDX_ASSERT((n >= db->nelem) || (n < 0));
  839. db->stack[(db->top)++] = n;
  840. }
  841. /*************************************************************************
  842. * Rx Init *
  843. *************************************************************************/
  844. /* bdx_rx_init - initialize RX all related HW and SW resources
  845. * @priv - NIC private structure
  846. *
  847. * Returns 0 on success, negative value on failure
  848. *
  849. * It creates rxf and rxd fifos, update relevant HW registers, preallocate
  850. * skb for rx. It assumes that Rx is desabled in HW
  851. * funcs are grouped for better cache usage
  852. *
  853. * RxD fifo is smaller than RxF fifo by design. Upon high load, RxD will be
  854. * filled and packets will be dropped by nic without getting into host or
  855. * cousing interrupt. Anyway, in that condition, host has no chance to process
  856. * all packets, but dropping in nic is cheaper, since it takes 0 cpu cycles
  857. */
  858. /* TBD: ensure proper packet size */
  859. static int bdx_rx_init(struct bdx_priv *priv)
  860. {
  861. ENTER;
  862. if (bdx_fifo_init(priv, &priv->rxd_fifo0.m, priv->rxd_size,
  863. regRXD_CFG0_0, regRXD_CFG1_0,
  864. regRXD_RPTR_0, regRXD_WPTR_0))
  865. goto err_mem;
  866. if (bdx_fifo_init(priv, &priv->rxf_fifo0.m, priv->rxf_size,
  867. regRXF_CFG0_0, regRXF_CFG1_0,
  868. regRXF_RPTR_0, regRXF_WPTR_0))
  869. goto err_mem;
  870. priv->rxdb = bdx_rxdb_create(priv->rxf_fifo0.m.memsz /
  871. sizeof(struct rxf_desc));
  872. if (!priv->rxdb)
  873. goto err_mem;
  874. priv->rxf_fifo0.m.pktsz = priv->ndev->mtu + VLAN_ETH_HLEN;
  875. return 0;
  876. err_mem:
  877. netdev_err(priv->ndev, "Rx init failed\n");
  878. return -ENOMEM;
  879. }
  880. /* bdx_rx_free_skbs - frees and unmaps all skbs allocated for the fifo
  881. * @priv - NIC private structure
  882. * @f - RXF fifo
  883. */
  884. static void bdx_rx_free_skbs(struct bdx_priv *priv, struct rxf_fifo *f)
  885. {
  886. struct rx_map *dm;
  887. struct rxdb *db = priv->rxdb;
  888. u16 i;
  889. ENTER;
  890. DBG("total=%d free=%d busy=%d\n", db->nelem, bdx_rxdb_available(db),
  891. db->nelem - bdx_rxdb_available(db));
  892. while (bdx_rxdb_available(db) > 0) {
  893. i = bdx_rxdb_alloc_elem(db);
  894. dm = bdx_rxdb_addr_elem(db, i);
  895. dm->dma = 0;
  896. }
  897. for (i = 0; i < db->nelem; i++) {
  898. dm = bdx_rxdb_addr_elem(db, i);
  899. if (dm->dma) {
  900. pci_unmap_single(priv->pdev,
  901. dm->dma, f->m.pktsz,
  902. PCI_DMA_FROMDEVICE);
  903. dev_kfree_skb(dm->skb);
  904. }
  905. }
  906. }
  907. /* bdx_rx_free - release all Rx resources
  908. * @priv - NIC private structure
  909. * It assumes that Rx is desabled in HW
  910. */
  911. static void bdx_rx_free(struct bdx_priv *priv)
  912. {
  913. ENTER;
  914. if (priv->rxdb) {
  915. bdx_rx_free_skbs(priv, &priv->rxf_fifo0);
  916. bdx_rxdb_destroy(priv->rxdb);
  917. priv->rxdb = NULL;
  918. }
  919. bdx_fifo_free(priv, &priv->rxf_fifo0.m);
  920. bdx_fifo_free(priv, &priv->rxd_fifo0.m);
  921. RET();
  922. }
  923. /*************************************************************************
  924. * Rx Engine *
  925. *************************************************************************/
  926. /* bdx_rx_alloc_skbs - fill rxf fifo with new skbs
  927. * @priv - nic's private structure
  928. * @f - RXF fifo that needs skbs
  929. * It allocates skbs, build rxf descs and push it (rxf descr) into rxf fifo.
  930. * skb's virtual and physical addresses are stored in skb db.
  931. * To calculate free space, func uses cached values of RPTR and WPTR
  932. * When needed, it also updates RPTR and WPTR.
  933. */
  934. /* TBD: do not update WPTR if no desc were written */
  935. static void bdx_rx_alloc_skbs(struct bdx_priv *priv, struct rxf_fifo *f)
  936. {
  937. struct sk_buff *skb;
  938. struct rxf_desc *rxfd;
  939. struct rx_map *dm;
  940. int dno, delta, idx;
  941. struct rxdb *db = priv->rxdb;
  942. ENTER;
  943. dno = bdx_rxdb_available(db) - 1;
  944. while (dno > 0) {
  945. skb = netdev_alloc_skb(priv->ndev, f->m.pktsz + NET_IP_ALIGN);
  946. if (!skb) {
  947. pr_err("NO MEM: netdev_alloc_skb failed\n");
  948. break;
  949. }
  950. skb_reserve(skb, NET_IP_ALIGN);
  951. idx = bdx_rxdb_alloc_elem(db);
  952. dm = bdx_rxdb_addr_elem(db, idx);
  953. dm->dma = pci_map_single(priv->pdev,
  954. skb->data, f->m.pktsz,
  955. PCI_DMA_FROMDEVICE);
  956. dm->skb = skb;
  957. rxfd = (struct rxf_desc *)(f->m.va + f->m.wptr);
  958. rxfd->info = CPU_CHIP_SWAP32(0x10003); /* INFO=1 BC=3 */
  959. rxfd->va_lo = idx;
  960. rxfd->pa_lo = CPU_CHIP_SWAP32(L32_64(dm->dma));
  961. rxfd->pa_hi = CPU_CHIP_SWAP32(H32_64(dm->dma));
  962. rxfd->len = CPU_CHIP_SWAP32(f->m.pktsz);
  963. print_rxfd(rxfd);
  964. f->m.wptr += sizeof(struct rxf_desc);
  965. delta = f->m.wptr - f->m.memsz;
  966. if (unlikely(delta >= 0)) {
  967. f->m.wptr = delta;
  968. if (delta > 0) {
  969. memcpy(f->m.va, f->m.va + f->m.memsz, delta);
  970. DBG("wrapped descriptor\n");
  971. }
  972. }
  973. dno--;
  974. }
  975. /*TBD: to do - delayed rxf wptr like in txd */
  976. WRITE_REG(priv, f->m.reg_WPTR, f->m.wptr & TXF_WPTR_WR_PTR);
  977. RET();
  978. }
  979. static inline void
  980. NETIF_RX_MUX(struct bdx_priv *priv, u32 rxd_val1, u16 rxd_vlan,
  981. struct sk_buff *skb)
  982. {
  983. ENTER;
  984. DBG("rxdd->flags.bits.vtag=%d\n", GET_RXD_VTAG(rxd_val1));
  985. if (GET_RXD_VTAG(rxd_val1)) {
  986. DBG("%s: vlan rcv vlan '%x' vtag '%x'\n",
  987. priv->ndev->name,
  988. GET_RXD_VLAN_ID(rxd_vlan),
  989. GET_RXD_VTAG(rxd_val1));
  990. __vlan_hwaccel_put_tag(skb, GET_RXD_VLAN_TCI(rxd_vlan));
  991. }
  992. netif_receive_skb(skb);
  993. }
  994. static void bdx_recycle_skb(struct bdx_priv *priv, struct rxd_desc *rxdd)
  995. {
  996. struct rxf_desc *rxfd;
  997. struct rx_map *dm;
  998. struct rxf_fifo *f;
  999. struct rxdb *db;
  1000. struct sk_buff *skb;
  1001. int delta;
  1002. ENTER;
  1003. DBG("priv=%p rxdd=%p\n", priv, rxdd);
  1004. f = &priv->rxf_fifo0;
  1005. db = priv->rxdb;
  1006. DBG("db=%p f=%p\n", db, f);
  1007. dm = bdx_rxdb_addr_elem(db, rxdd->va_lo);
  1008. DBG("dm=%p\n", dm);
  1009. skb = dm->skb;
  1010. rxfd = (struct rxf_desc *)(f->m.va + f->m.wptr);
  1011. rxfd->info = CPU_CHIP_SWAP32(0x10003); /* INFO=1 BC=3 */
  1012. rxfd->va_lo = rxdd->va_lo;
  1013. rxfd->pa_lo = CPU_CHIP_SWAP32(L32_64(dm->dma));
  1014. rxfd->pa_hi = CPU_CHIP_SWAP32(H32_64(dm->dma));
  1015. rxfd->len = CPU_CHIP_SWAP32(f->m.pktsz);
  1016. print_rxfd(rxfd);
  1017. f->m.wptr += sizeof(struct rxf_desc);
  1018. delta = f->m.wptr - f->m.memsz;
  1019. if (unlikely(delta >= 0)) {
  1020. f->m.wptr = delta;
  1021. if (delta > 0) {
  1022. memcpy(f->m.va, f->m.va + f->m.memsz, delta);
  1023. DBG("wrapped descriptor\n");
  1024. }
  1025. }
  1026. RET();
  1027. }
  1028. /* bdx_rx_receive - receives full packets from RXD fifo and pass them to OS
  1029. * NOTE: a special treatment is given to non-continuous descriptors
  1030. * that start near the end, wraps around and continue at the beginning. a second
  1031. * part is copied right after the first, and then descriptor is interpreted as
  1032. * normal. fifo has an extra space to allow such operations
  1033. * @priv - nic's private structure
  1034. * @f - RXF fifo that needs skbs
  1035. */
  1036. /* TBD: replace memcpy func call by explicite inline asm */
  1037. static int bdx_rx_receive(struct bdx_priv *priv, struct rxd_fifo *f, int budget)
  1038. {
  1039. struct net_device *ndev = priv->ndev;
  1040. struct sk_buff *skb, *skb2;
  1041. struct rxd_desc *rxdd;
  1042. struct rx_map *dm;
  1043. struct rxf_fifo *rxf_fifo;
  1044. int tmp_len, size;
  1045. int done = 0;
  1046. int max_done = BDX_MAX_RX_DONE;
  1047. struct rxdb *db = NULL;
  1048. /* Unmarshalled descriptor - copy of descriptor in host order */
  1049. u32 rxd_val1;
  1050. u16 len;
  1051. u16 rxd_vlan;
  1052. ENTER;
  1053. max_done = budget;
  1054. f->m.wptr = READ_REG(priv, f->m.reg_WPTR) & TXF_WPTR_WR_PTR;
  1055. size = f->m.wptr - f->m.rptr;
  1056. if (size < 0)
  1057. size = f->m.memsz + size; /* size is negative :-) */
  1058. while (size > 0) {
  1059. rxdd = (struct rxd_desc *)(f->m.va + f->m.rptr);
  1060. rxd_val1 = CPU_CHIP_SWAP32(rxdd->rxd_val1);
  1061. len = CPU_CHIP_SWAP16(rxdd->len);
  1062. rxd_vlan = CPU_CHIP_SWAP16(rxdd->rxd_vlan);
  1063. print_rxdd(rxdd, rxd_val1, len, rxd_vlan);
  1064. tmp_len = GET_RXD_BC(rxd_val1) << 3;
  1065. BDX_ASSERT(tmp_len <= 0);
  1066. size -= tmp_len;
  1067. if (size < 0) /* test for partially arrived descriptor */
  1068. break;
  1069. f->m.rptr += tmp_len;
  1070. tmp_len = f->m.rptr - f->m.memsz;
  1071. if (unlikely(tmp_len >= 0)) {
  1072. f->m.rptr = tmp_len;
  1073. if (tmp_len > 0) {
  1074. DBG("wrapped desc rptr=%d tmp_len=%d\n",
  1075. f->m.rptr, tmp_len);
  1076. memcpy(f->m.va + f->m.memsz, f->m.va, tmp_len);
  1077. }
  1078. }
  1079. if (unlikely(GET_RXD_ERR(rxd_val1))) {
  1080. DBG("rxd_err = 0x%x\n", GET_RXD_ERR(rxd_val1));
  1081. ndev->stats.rx_errors++;
  1082. bdx_recycle_skb(priv, rxdd);
  1083. continue;
  1084. }
  1085. rxf_fifo = &priv->rxf_fifo0;
  1086. db = priv->rxdb;
  1087. dm = bdx_rxdb_addr_elem(db, rxdd->va_lo);
  1088. skb = dm->skb;
  1089. if (len < BDX_COPYBREAK &&
  1090. (skb2 = netdev_alloc_skb(priv->ndev, len + NET_IP_ALIGN))) {
  1091. skb_reserve(skb2, NET_IP_ALIGN);
  1092. /*skb_put(skb2, len); */
  1093. pci_dma_sync_single_for_cpu(priv->pdev,
  1094. dm->dma, rxf_fifo->m.pktsz,
  1095. PCI_DMA_FROMDEVICE);
  1096. memcpy(skb2->data, skb->data, len);
  1097. bdx_recycle_skb(priv, rxdd);
  1098. skb = skb2;
  1099. } else {
  1100. pci_unmap_single(priv->pdev,
  1101. dm->dma, rxf_fifo->m.pktsz,
  1102. PCI_DMA_FROMDEVICE);
  1103. bdx_rxdb_free_elem(db, rxdd->va_lo);
  1104. }
  1105. ndev->stats.rx_bytes += len;
  1106. skb_put(skb, len);
  1107. skb->protocol = eth_type_trans(skb, ndev);
  1108. /* Non-IP packets aren't checksum-offloaded */
  1109. if (GET_RXD_PKT_ID(rxd_val1) == 0)
  1110. skb_checksum_none_assert(skb);
  1111. else
  1112. skb->ip_summed = CHECKSUM_UNNECESSARY;
  1113. NETIF_RX_MUX(priv, rxd_val1, rxd_vlan, skb);
  1114. if (++done >= max_done)
  1115. break;
  1116. }
  1117. ndev->stats.rx_packets += done;
  1118. /* FIXME: do smth to minimize pci accesses */
  1119. WRITE_REG(priv, f->m.reg_RPTR, f->m.rptr & TXF_WPTR_WR_PTR);
  1120. bdx_rx_alloc_skbs(priv, &priv->rxf_fifo0);
  1121. RET(done);
  1122. }
  1123. /*************************************************************************
  1124. * Debug / Temprorary Code *
  1125. *************************************************************************/
  1126. static void print_rxdd(struct rxd_desc *rxdd, u32 rxd_val1, u16 len,
  1127. u16 rxd_vlan)
  1128. {
  1129. DBG("ERROR: rxdd bc %d rxfq %d to %d type %d err %d rxp %d pkt_id %d vtag %d len %d vlan_id %d cfi %d prio %d va_lo %d va_hi %d\n",
  1130. GET_RXD_BC(rxd_val1), GET_RXD_RXFQ(rxd_val1), GET_RXD_TO(rxd_val1),
  1131. GET_RXD_TYPE(rxd_val1), GET_RXD_ERR(rxd_val1),
  1132. GET_RXD_RXP(rxd_val1), GET_RXD_PKT_ID(rxd_val1),
  1133. GET_RXD_VTAG(rxd_val1), len, GET_RXD_VLAN_ID(rxd_vlan),
  1134. GET_RXD_CFI(rxd_vlan), GET_RXD_PRIO(rxd_vlan), rxdd->va_lo,
  1135. rxdd->va_hi);
  1136. }
  1137. static void print_rxfd(struct rxf_desc *rxfd)
  1138. {
  1139. DBG("=== RxF desc CHIP ORDER/ENDIANESS =============\n"
  1140. "info 0x%x va_lo %u pa_lo 0x%x pa_hi 0x%x len 0x%x\n",
  1141. rxfd->info, rxfd->va_lo, rxfd->pa_lo, rxfd->pa_hi, rxfd->len);
  1142. }
  1143. /*
  1144. * TX HW/SW interaction overview
  1145. * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  1146. * There are 2 types of TX communication channels between driver and NIC.
  1147. * 1) TX Free Fifo - TXF - holds ack descriptors for sent packets
  1148. * 2) TX Data Fifo - TXD - holds descriptors of full buffers.
  1149. *
  1150. * Currently NIC supports TSO, checksuming and gather DMA
  1151. * UFO and IP fragmentation is on the way
  1152. *
  1153. * RX SW Data Structures
  1154. * ~~~~~~~~~~~~~~~~~~~~~
  1155. * txdb - used to keep track of all skbs owned by SW and their dma addresses.
  1156. * For TX case, ownership lasts from geting packet via hard_xmit and until HW
  1157. * acknowledges sent by TXF descriptors.
  1158. * Implemented as cyclic buffer.
  1159. * fifo - keeps info about fifo's size and location, relevant HW registers,
  1160. * usage and skb db. Each RXD and RXF Fifo has its own fifo structure.
  1161. * Implemented as simple struct.
  1162. *
  1163. * TX SW Execution Flow
  1164. * ~~~~~~~~~~~~~~~~~~~~
  1165. * OS calls driver's hard_xmit method with packet to sent.
  1166. * Driver creates DMA mappings, builds TXD descriptors and kicks HW
  1167. * by updating TXD WPTR.
  1168. * When packet is sent, HW write us TXF descriptor and SW frees original skb.
  1169. * To prevent TXD fifo overflow without reading HW registers every time,
  1170. * SW deploys "tx level" technique.
  1171. * Upon strart up, tx level is initialized to TXD fifo length.
  1172. * For every sent packet, SW gets its TXD descriptor sizei
  1173. * (from precalculated array) and substructs it from tx level.
  1174. * The size is also stored in txdb. When TXF ack arrives, SW fetch size of
  1175. * original TXD descriptor from txdb and adds it to tx level.
  1176. * When Tx level drops under some predefined treshhold, the driver
  1177. * stops the TX queue. When TX level rises above that level,
  1178. * the tx queue is enabled again.
  1179. *
  1180. * This technique avoids eccessive reading of RPTR and WPTR registers.
  1181. * As our benchmarks shows, it adds 1.5 Gbit/sec to NIS's throuput.
  1182. */
  1183. /*************************************************************************
  1184. * Tx DB *
  1185. *************************************************************************/
  1186. static inline int bdx_tx_db_size(struct txdb *db)
  1187. {
  1188. int taken = db->wptr - db->rptr;
  1189. if (taken < 0)
  1190. taken = db->size + 1 + taken; /* (size + 1) equals memsz */
  1191. return db->size - taken;
  1192. }
  1193. /* __bdx_tx_ptr_next - helper function, increment read/write pointer + wrap
  1194. * @d - tx data base
  1195. * @ptr - read or write pointer
  1196. */
  1197. static inline void __bdx_tx_db_ptr_next(struct txdb *db, struct tx_map **pptr)
  1198. {
  1199. BDX_ASSERT(db == NULL || pptr == NULL); /* sanity */
  1200. BDX_ASSERT(*pptr != db->rptr && /* expect either read */
  1201. *pptr != db->wptr); /* or write pointer */
  1202. BDX_ASSERT(*pptr < db->start || /* pointer has to be */
  1203. *pptr >= db->end); /* in range */
  1204. ++*pptr;
  1205. if (unlikely(*pptr == db->end))
  1206. *pptr = db->start;
  1207. }
  1208. /* bdx_tx_db_inc_rptr - increment read pointer
  1209. * @d - tx data base
  1210. */
  1211. static inline void bdx_tx_db_inc_rptr(struct txdb *db)
  1212. {
  1213. BDX_ASSERT(db->rptr == db->wptr); /* can't read from empty db */
  1214. __bdx_tx_db_ptr_next(db, &db->rptr);
  1215. }
  1216. /* bdx_tx_db_inc_rptr - increment write pointer
  1217. * @d - tx data base
  1218. */
  1219. static inline void bdx_tx_db_inc_wptr(struct txdb *db)
  1220. {
  1221. __bdx_tx_db_ptr_next(db, &db->wptr);
  1222. BDX_ASSERT(db->rptr == db->wptr); /* we can not get empty db as
  1223. a result of write */
  1224. }
  1225. /* bdx_tx_db_init - creates and initializes tx db
  1226. * @d - tx data base
  1227. * @sz_type - size of tx fifo
  1228. * Returns 0 on success, error code otherwise
  1229. */
  1230. static int bdx_tx_db_init(struct txdb *d, int sz_type)
  1231. {
  1232. int memsz = FIFO_SIZE * (1 << (sz_type + 1));
  1233. d->start = vmalloc(memsz);
  1234. if (!d->start)
  1235. return -ENOMEM;
  1236. /*
  1237. * In order to differentiate between db is empty and db is full
  1238. * states at least one element should always be empty in order to
  1239. * avoid rptr == wptr which means db is empty
  1240. */
  1241. d->size = memsz / sizeof(struct tx_map) - 1;
  1242. d->end = d->start + d->size + 1; /* just after last element */
  1243. /* all dbs are created equally empty */
  1244. d->rptr = d->start;
  1245. d->wptr = d->start;
  1246. return 0;
  1247. }
  1248. /* bdx_tx_db_close - closes tx db and frees all memory
  1249. * @d - tx data base
  1250. */
  1251. static void bdx_tx_db_close(struct txdb *d)
  1252. {
  1253. BDX_ASSERT(d == NULL);
  1254. vfree(d->start);
  1255. d->start = NULL;
  1256. }
  1257. /*************************************************************************
  1258. * Tx Engine *
  1259. *************************************************************************/
  1260. /* sizes of tx desc (including padding if needed) as function
  1261. * of skb's frag number */
  1262. static struct {
  1263. u16 bytes;
  1264. u16 qwords; /* qword = 64 bit */
  1265. } txd_sizes[MAX_SKB_FRAGS + 1];
  1266. /* txdb_map_skb - creates and stores dma mappings for skb's data blocks
  1267. * @priv - NIC private structure
  1268. * @skb - socket buffer to map
  1269. *
  1270. * It makes dma mappings for skb's data blocks and writes them to PBL of
  1271. * new tx descriptor. It also stores them in the tx db, so they could be
  1272. * unmaped after data was sent. It is reponsibility of a caller to make
  1273. * sure that there is enough space in the tx db. Last element holds pointer
  1274. * to skb itself and marked with zero length
  1275. */
  1276. static inline void
  1277. bdx_tx_map_skb(struct bdx_priv *priv, struct sk_buff *skb,
  1278. struct txd_desc *txdd)
  1279. {
  1280. struct txdb *db = &priv->txdb;
  1281. struct pbl *pbl = &txdd->pbl[0];
  1282. int nr_frags = skb_shinfo(skb)->nr_frags;
  1283. int i;
  1284. db->wptr->len = skb_headlen(skb);
  1285. db->wptr->addr.dma = pci_map_single(priv->pdev, skb->data,
  1286. db->wptr->len, PCI_DMA_TODEVICE);
  1287. pbl->len = CPU_CHIP_SWAP32(db->wptr->len);
  1288. pbl->pa_lo = CPU_CHIP_SWAP32(L32_64(db->wptr->addr.dma));
  1289. pbl->pa_hi = CPU_CHIP_SWAP32(H32_64(db->wptr->addr.dma));
  1290. DBG("=== pbl len: 0x%x ================\n", pbl->len);
  1291. DBG("=== pbl pa_lo: 0x%x ================\n", pbl->pa_lo);
  1292. DBG("=== pbl pa_hi: 0x%x ================\n", pbl->pa_hi);
  1293. bdx_tx_db_inc_wptr(db);
  1294. for (i = 0; i < nr_frags; i++) {
  1295. const struct skb_frag_struct *frag;
  1296. frag = &skb_shinfo(skb)->frags[i];
  1297. db->wptr->len = skb_frag_size(frag);
  1298. db->wptr->addr.dma = skb_frag_dma_map(&priv->pdev->dev, frag,
  1299. 0, skb_frag_size(frag),
  1300. DMA_TO_DEVICE);
  1301. pbl++;
  1302. pbl->len = CPU_CHIP_SWAP32(db->wptr->len);
  1303. pbl->pa_lo = CPU_CHIP_SWAP32(L32_64(db->wptr->addr.dma));
  1304. pbl->pa_hi = CPU_CHIP_SWAP32(H32_64(db->wptr->addr.dma));
  1305. bdx_tx_db_inc_wptr(db);
  1306. }
  1307. /* add skb clean up info. */
  1308. db->wptr->len = -txd_sizes[nr_frags].bytes;
  1309. db->wptr->addr.skb = skb;
  1310. bdx_tx_db_inc_wptr(db);
  1311. }
  1312. /* init_txd_sizes - precalculate sizes of descriptors for skbs up to 16 frags
  1313. * number of frags is used as index to fetch correct descriptors size,
  1314. * instead of calculating it each time */
  1315. static void __init init_txd_sizes(void)
  1316. {
  1317. int i, lwords;
  1318. /* 7 - is number of lwords in txd with one phys buffer
  1319. * 3 - is number of lwords used for every additional phys buffer */
  1320. for (i = 0; i < MAX_SKB_FRAGS + 1; i++) {
  1321. lwords = 7 + (i * 3);
  1322. if (lwords & 1)
  1323. lwords++; /* pad it with 1 lword */
  1324. txd_sizes[i].qwords = lwords >> 1;
  1325. txd_sizes[i].bytes = lwords << 2;
  1326. }
  1327. }
  1328. /* bdx_tx_init - initialize all Tx related stuff.
  1329. * Namely, TXD and TXF fifos, database etc */
  1330. static int bdx_tx_init(struct bdx_priv *priv)
  1331. {
  1332. if (bdx_fifo_init(priv, &priv->txd_fifo0.m, priv->txd_size,
  1333. regTXD_CFG0_0,
  1334. regTXD_CFG1_0, regTXD_RPTR_0, regTXD_WPTR_0))
  1335. goto err_mem;
  1336. if (bdx_fifo_init(priv, &priv->txf_fifo0.m, priv->txf_size,
  1337. regTXF_CFG0_0,
  1338. regTXF_CFG1_0, regTXF_RPTR_0, regTXF_WPTR_0))
  1339. goto err_mem;
  1340. /* The TX db has to keep mappings for all packets sent (on TxD)
  1341. * and not yet reclaimed (on TxF) */
  1342. if (bdx_tx_db_init(&priv->txdb, max(priv->txd_size, priv->txf_size)))
  1343. goto err_mem;
  1344. priv->tx_level = BDX_MAX_TX_LEVEL;
  1345. #ifdef BDX_DELAY_WPTR
  1346. priv->tx_update_mark = priv->tx_level - 1024;
  1347. #endif
  1348. return 0;
  1349. err_mem:
  1350. netdev_err(priv->ndev, "Tx init failed\n");
  1351. return -ENOMEM;
  1352. }
  1353. /*
  1354. * bdx_tx_space - calculates available space in TX fifo
  1355. * @priv - NIC private structure
  1356. * Returns available space in TX fifo in bytes
  1357. */
  1358. static inline int bdx_tx_space(struct bdx_priv *priv)
  1359. {
  1360. struct txd_fifo *f = &priv->txd_fifo0;
  1361. int fsize;
  1362. f->m.rptr = READ_REG(priv, f->m.reg_RPTR) & TXF_WPTR_WR_PTR;
  1363. fsize = f->m.rptr - f->m.wptr;
  1364. if (fsize <= 0)
  1365. fsize = f->m.memsz + fsize;
  1366. return fsize;
  1367. }
  1368. /* bdx_tx_transmit - send packet to NIC
  1369. * @skb - packet to send
  1370. * ndev - network device assigned to NIC
  1371. * Return codes:
  1372. * o NETDEV_TX_OK everything ok.
  1373. * o NETDEV_TX_BUSY Cannot transmit packet, try later
  1374. * Usually a bug, means queue start/stop flow control is broken in
  1375. * the driver. Note: the driver must NOT put the skb in its DMA ring.
  1376. * o NETDEV_TX_LOCKED Locking failed, please retry quickly.
  1377. */
  1378. static netdev_tx_t bdx_tx_transmit(struct sk_buff *skb,
  1379. struct net_device *ndev)
  1380. {
  1381. struct bdx_priv *priv = netdev_priv(ndev);
  1382. struct txd_fifo *f = &priv->txd_fifo0;
  1383. int txd_checksum = 7; /* full checksum */
  1384. int txd_lgsnd = 0;
  1385. int txd_vlan_id = 0;
  1386. int txd_vtag = 0;
  1387. int txd_mss = 0;
  1388. int nr_frags = skb_shinfo(skb)->nr_frags;
  1389. struct txd_desc *txdd;
  1390. int len;
  1391. unsigned long flags;
  1392. ENTER;
  1393. local_irq_save(flags);
  1394. if (!spin_trylock(&priv->tx_lock)) {
  1395. local_irq_restore(flags);
  1396. DBG("%s[%s]: TX locked, returning NETDEV_TX_LOCKED\n",
  1397. BDX_DRV_NAME, ndev->name);
  1398. return NETDEV_TX_LOCKED;
  1399. }
  1400. /* build tx descriptor */
  1401. BDX_ASSERT(f->m.wptr >= f->m.memsz); /* started with valid wptr */
  1402. txdd = (struct txd_desc *)(f->m.va + f->m.wptr);
  1403. if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL))
  1404. txd_checksum = 0;
  1405. if (skb_shinfo(skb)->gso_size) {
  1406. txd_mss = skb_shinfo(skb)->gso_size;
  1407. txd_lgsnd = 1;
  1408. DBG("skb %p skb len %d gso size = %d\n", skb, skb->len,
  1409. txd_mss);
  1410. }
  1411. if (vlan_tx_tag_present(skb)) {
  1412. /*Cut VLAN ID to 12 bits */
  1413. txd_vlan_id = vlan_tx_tag_get(skb) & BITS_MASK(12);
  1414. txd_vtag = 1;
  1415. }
  1416. txdd->length = CPU_CHIP_SWAP16(skb->len);
  1417. txdd->mss = CPU_CHIP_SWAP16(txd_mss);
  1418. txdd->txd_val1 =
  1419. CPU_CHIP_SWAP32(TXD_W1_VAL
  1420. (txd_sizes[nr_frags].qwords, txd_checksum, txd_vtag,
  1421. txd_lgsnd, txd_vlan_id));
  1422. DBG("=== TxD desc =====================\n");
  1423. DBG("=== w1: 0x%x ================\n", txdd->txd_val1);
  1424. DBG("=== w2: mss 0x%x len 0x%x\n", txdd->mss, txdd->length);
  1425. bdx_tx_map_skb(priv, skb, txdd);
  1426. /* increment TXD write pointer. In case of
  1427. fifo wrapping copy reminder of the descriptor
  1428. to the beginning */
  1429. f->m.wptr += txd_sizes[nr_frags].bytes;
  1430. len = f->m.wptr - f->m.memsz;
  1431. if (unlikely(len >= 0)) {
  1432. f->m.wptr = len;
  1433. if (len > 0) {
  1434. BDX_ASSERT(len > f->m.memsz);
  1435. memcpy(f->m.va, f->m.va + f->m.memsz, len);
  1436. }
  1437. }
  1438. BDX_ASSERT(f->m.wptr >= f->m.memsz); /* finished with valid wptr */
  1439. priv->tx_level -= txd_sizes[nr_frags].bytes;
  1440. BDX_ASSERT(priv->tx_level <= 0 || priv->tx_level > BDX_MAX_TX_LEVEL);
  1441. #ifdef BDX_DELAY_WPTR
  1442. if (priv->tx_level > priv->tx_update_mark) {
  1443. /* Force memory writes to complete before letting h/w
  1444. know there are new descriptors to fetch.
  1445. (might be needed on platforms like IA64)
  1446. wmb(); */
  1447. WRITE_REG(priv, f->m.reg_WPTR, f->m.wptr & TXF_WPTR_WR_PTR);
  1448. } else {
  1449. if (priv->tx_noupd++ > BDX_NO_UPD_PACKETS) {
  1450. priv->tx_noupd = 0;
  1451. WRITE_REG(priv, f->m.reg_WPTR,
  1452. f->m.wptr & TXF_WPTR_WR_PTR);
  1453. }
  1454. }
  1455. #else
  1456. /* Force memory writes to complete before letting h/w
  1457. know there are new descriptors to fetch.
  1458. (might be needed on platforms like IA64)
  1459. wmb(); */
  1460. WRITE_REG(priv, f->m.reg_WPTR, f->m.wptr & TXF_WPTR_WR_PTR);
  1461. #endif
  1462. #ifdef BDX_LLTX
  1463. ndev->trans_start = jiffies; /* NETIF_F_LLTX driver :( */
  1464. #endif
  1465. ndev->stats.tx_packets++;
  1466. ndev->stats.tx_bytes += skb->len;
  1467. if (priv->tx_level < BDX_MIN_TX_LEVEL) {
  1468. DBG("%s: %s: TX Q STOP level %d\n",
  1469. BDX_DRV_NAME, ndev->name, priv->tx_level);
  1470. netif_stop_queue(ndev);
  1471. }
  1472. spin_unlock_irqrestore(&priv->tx_lock, flags);
  1473. return NETDEV_TX_OK;
  1474. }
  1475. /* bdx_tx_cleanup - clean TXF fifo, run in the context of IRQ.
  1476. * @priv - bdx adapter
  1477. * It scans TXF fifo for descriptors, frees DMA mappings and reports to OS
  1478. * that those packets were sent
  1479. */
  1480. static void bdx_tx_cleanup(struct bdx_priv *priv)
  1481. {
  1482. struct txf_fifo *f = &priv->txf_fifo0;
  1483. struct txdb *db = &priv->txdb;
  1484. int tx_level = 0;
  1485. ENTER;
  1486. f->m.wptr = READ_REG(priv, f->m.reg_WPTR) & TXF_WPTR_MASK;
  1487. BDX_ASSERT(f->m.rptr >= f->m.memsz); /* started with valid rptr */
  1488. while (f->m.wptr != f->m.rptr) {
  1489. f->m.rptr += BDX_TXF_DESC_SZ;
  1490. f->m.rptr &= f->m.size_mask;
  1491. /* unmap all the fragments */
  1492. /* first has to come tx_maps containing dma */
  1493. BDX_ASSERT(db->rptr->len == 0);
  1494. do {
  1495. BDX_ASSERT(db->rptr->addr.dma == 0);
  1496. pci_unmap_page(priv->pdev, db->rptr->addr.dma,
  1497. db->rptr->len, PCI_DMA_TODEVICE);
  1498. bdx_tx_db_inc_rptr(db);
  1499. } while (db->rptr->len > 0);
  1500. tx_level -= db->rptr->len; /* '-' koz len is negative */
  1501. /* now should come skb pointer - free it */
  1502. dev_kfree_skb_irq(db->rptr->addr.skb);
  1503. bdx_tx_db_inc_rptr(db);
  1504. }
  1505. /* let h/w know which TXF descriptors were cleaned */
  1506. BDX_ASSERT((f->m.wptr & TXF_WPTR_WR_PTR) >= f->m.memsz);
  1507. WRITE_REG(priv, f->m.reg_RPTR, f->m.rptr & TXF_WPTR_WR_PTR);
  1508. /* We reclaimed resources, so in case the Q is stopped by xmit callback,
  1509. * we resume the transmition and use tx_lock to synchronize with xmit.*/
  1510. spin_lock(&priv->tx_lock);
  1511. priv->tx_level += tx_level;
  1512. BDX_ASSERT(priv->tx_level <= 0 || priv->tx_level > BDX_MAX_TX_LEVEL);
  1513. #ifdef BDX_DELAY_WPTR
  1514. if (priv->tx_noupd) {
  1515. priv->tx_noupd = 0;
  1516. WRITE_REG(priv, priv->txd_fifo0.m.reg_WPTR,
  1517. priv->txd_fifo0.m.wptr & TXF_WPTR_WR_PTR);
  1518. }
  1519. #endif
  1520. if (unlikely(netif_queue_stopped(priv->ndev) &&
  1521. netif_carrier_ok(priv->ndev) &&
  1522. (priv->tx_level >= BDX_MIN_TX_LEVEL))) {
  1523. DBG("%s: %s: TX Q WAKE level %d\n",
  1524. BDX_DRV_NAME, priv->ndev->name, priv->tx_level);
  1525. netif_wake_queue(priv->ndev);
  1526. }
  1527. spin_unlock(&priv->tx_lock);
  1528. }
  1529. /* bdx_tx_free_skbs - frees all skbs from TXD fifo.
  1530. * It gets called when OS stops this dev, eg upon "ifconfig down" or rmmod
  1531. */
  1532. static void bdx_tx_free_skbs(struct bdx_priv *priv)
  1533. {
  1534. struct txdb *db = &priv->txdb;
  1535. ENTER;
  1536. while (db->rptr != db->wptr) {
  1537. if (likely(db->rptr->len))
  1538. pci_unmap_page(priv->pdev, db->rptr->addr.dma,
  1539. db->rptr->len, PCI_DMA_TODEVICE);
  1540. else
  1541. dev_kfree_skb(db->rptr->addr.skb);
  1542. bdx_tx_db_inc_rptr(db);
  1543. }
  1544. RET();
  1545. }
  1546. /* bdx_tx_free - frees all Tx resources */
  1547. static void bdx_tx_free(struct bdx_priv *priv)
  1548. {
  1549. ENTER;
  1550. bdx_tx_free_skbs(priv);
  1551. bdx_fifo_free(priv, &priv->txd_fifo0.m);
  1552. bdx_fifo_free(priv, &priv->txf_fifo0.m);
  1553. bdx_tx_db_close(&priv->txdb);
  1554. }
  1555. /* bdx_tx_push_desc - push descriptor to TxD fifo
  1556. * @priv - NIC private structure
  1557. * @data - desc's data
  1558. * @size - desc's size
  1559. *
  1560. * Pushes desc to TxD fifo and overlaps it if needed.
  1561. * NOTE: this func does not check for available space. this is responsibility
  1562. * of the caller. Neither does it check that data size is smaller than
  1563. * fifo size.
  1564. */
  1565. static void bdx_tx_push_desc(struct bdx_priv *priv, void *data, int size)
  1566. {
  1567. struct txd_fifo *f = &priv->txd_fifo0;
  1568. int i = f->m.memsz - f->m.wptr;
  1569. if (size == 0)
  1570. return;
  1571. if (i > size) {
  1572. memcpy(f->m.va + f->m.wptr, data, size);
  1573. f->m.wptr += size;
  1574. } else {
  1575. memcpy(f->m.va + f->m.wptr, data, i);
  1576. f->m.wptr = size - i;
  1577. memcpy(f->m.va, data + i, f->m.wptr);
  1578. }
  1579. WRITE_REG(priv, f->m.reg_WPTR, f->m.wptr & TXF_WPTR_WR_PTR);
  1580. }
  1581. /* bdx_tx_push_desc_safe - push descriptor to TxD fifo in a safe way
  1582. * @priv - NIC private structure
  1583. * @data - desc's data
  1584. * @size - desc's size
  1585. *
  1586. * NOTE: this func does check for available space and, if necessary, waits for
  1587. * NIC to read existing data before writing new one.
  1588. */
  1589. static void bdx_tx_push_desc_safe(struct bdx_priv *priv, void *data, int size)
  1590. {
  1591. int timer = 0;
  1592. ENTER;
  1593. while (size > 0) {
  1594. /* we substruct 8 because when fifo is full rptr == wptr
  1595. which also means that fifo is empty, we can understand
  1596. the difference, but could hw do the same ??? :) */
  1597. int avail = bdx_tx_space(priv) - 8;
  1598. if (avail <= 0) {
  1599. if (timer++ > 300) { /* prevent endless loop */
  1600. DBG("timeout while writing desc to TxD fifo\n");
  1601. break;
  1602. }
  1603. udelay(50); /* give hw a chance to clean fifo */
  1604. continue;
  1605. }
  1606. avail = min(avail, size);
  1607. DBG("about to push %d bytes starting %p size %d\n", avail,
  1608. data, size);
  1609. bdx_tx_push_desc(priv, data, avail);
  1610. size -= avail;
  1611. data += avail;
  1612. }
  1613. RET();
  1614. }
  1615. static const struct net_device_ops bdx_netdev_ops = {
  1616. .ndo_open = bdx_open,
  1617. .ndo_stop = bdx_close,
  1618. .ndo_start_xmit = bdx_tx_transmit,
  1619. .ndo_validate_addr = eth_validate_addr,
  1620. .ndo_do_ioctl = bdx_ioctl,
  1621. .ndo_set_rx_mode = bdx_setmulti,
  1622. .ndo_change_mtu = bdx_change_mtu,
  1623. .ndo_set_mac_address = bdx_set_mac,
  1624. .ndo_vlan_rx_add_vid = bdx_vlan_rx_add_vid,
  1625. .ndo_vlan_rx_kill_vid = bdx_vlan_rx_kill_vid,
  1626. };
  1627. /**
  1628. * bdx_probe - Device Initialization Routine
  1629. * @pdev: PCI device information struct
  1630. * @ent: entry in bdx_pci_tbl
  1631. *
  1632. * Returns 0 on success, negative on failure
  1633. *
  1634. * bdx_probe initializes an adapter identified by a pci_dev structure.
  1635. * The OS initialization, configuring of the adapter private structure,
  1636. * and a hardware reset occur.
  1637. *
  1638. * functions and their order used as explained in
  1639. * /usr/src/linux/Documentation/DMA-{API,mapping}.txt
  1640. *
  1641. */
  1642. /* TBD: netif_msg should be checked and implemented. I disable it for now */
  1643. static int __devinit
  1644. bdx_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
  1645. {
  1646. struct net_device *ndev;
  1647. struct bdx_priv *priv;
  1648. int err, pci_using_dac, port;
  1649. unsigned long pciaddr;
  1650. u32 regionSize;
  1651. struct pci_nic *nic;
  1652. ENTER;
  1653. nic = vmalloc(sizeof(*nic));
  1654. if (!nic)
  1655. RET(-ENOMEM);
  1656. /************** pci *****************/
  1657. err = pci_enable_device(pdev);
  1658. if (err) /* it triggers interrupt, dunno why. */
  1659. goto err_pci; /* it's not a problem though */
  1660. if (!(err = pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) &&
  1661. !(err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64)))) {
  1662. pci_using_dac = 1;
  1663. } else {
  1664. if ((err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32))) ||
  1665. (err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32)))) {
  1666. pr_err("No usable DMA configuration, aborting\n");
  1667. goto err_dma;
  1668. }
  1669. pci_using_dac = 0;
  1670. }
  1671. err = pci_request_regions(pdev, BDX_DRV_NAME);
  1672. if (err)
  1673. goto err_dma;
  1674. pci_set_master(pdev);
  1675. pciaddr = pci_resource_start(pdev, 0);
  1676. if (!pciaddr) {
  1677. err = -EIO;
  1678. pr_err("no MMIO resource\n");
  1679. goto err_out_res;
  1680. }
  1681. regionSize = pci_resource_len(pdev, 0);
  1682. if (regionSize < BDX_REGS_SIZE) {
  1683. err = -EIO;
  1684. pr_err("MMIO resource (%x) too small\n", regionSize);
  1685. goto err_out_res;
  1686. }
  1687. nic->regs = ioremap(pciaddr, regionSize);
  1688. if (!nic->regs) {
  1689. err = -EIO;
  1690. pr_err("ioremap failed\n");
  1691. goto err_out_res;
  1692. }
  1693. if (pdev->irq < 2) {
  1694. err = -EIO;
  1695. pr_err("invalid irq (%d)\n", pdev->irq);
  1696. goto err_out_iomap;
  1697. }
  1698. pci_set_drvdata(pdev, nic);
  1699. if (pdev->device == 0x3014)
  1700. nic->port_num = 2;
  1701. else
  1702. nic->port_num = 1;
  1703. print_hw_id(pdev);
  1704. bdx_hw_reset_direct(nic->regs);
  1705. nic->irq_type = IRQ_INTX;
  1706. #ifdef BDX_MSI
  1707. if ((readl(nic->regs + FPGA_VER) & 0xFFF) >= 378) {
  1708. err = pci_enable_msi(pdev);
  1709. if (err)
  1710. pr_err("Can't eneble msi. error is %d\n", err);
  1711. else
  1712. nic->irq_type = IRQ_MSI;
  1713. } else
  1714. DBG("HW does not support MSI\n");
  1715. #endif
  1716. /************** netdev **************/
  1717. for (port = 0; port < nic->port_num; port++) {
  1718. ndev = alloc_etherdev(sizeof(struct bdx_priv));
  1719. if (!ndev) {
  1720. err = -ENOMEM;
  1721. goto err_out_iomap;
  1722. }
  1723. ndev->netdev_ops = &bdx_netdev_ops;
  1724. ndev->tx_queue_len = BDX_NDEV_TXQ_LEN;
  1725. bdx_set_ethtool_ops(ndev); /* ethtool interface */
  1726. /* these fields are used for info purposes only
  1727. * so we can have them same for all ports of the board */
  1728. ndev->if_port = port;
  1729. ndev->base_addr = pciaddr;
  1730. ndev->mem_start = pciaddr;
  1731. ndev->mem_end = pciaddr + regionSize;
  1732. ndev->irq = pdev->irq;
  1733. ndev->features = NETIF_F_IP_CSUM | NETIF_F_SG | NETIF_F_TSO
  1734. | NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX |
  1735. NETIF_F_HW_VLAN_FILTER | NETIF_F_RXCSUM
  1736. /*| NETIF_F_FRAGLIST */
  1737. ;
  1738. ndev->hw_features = NETIF_F_IP_CSUM | NETIF_F_SG |
  1739. NETIF_F_TSO | NETIF_F_HW_VLAN_TX;
  1740. if (pci_using_dac)
  1741. ndev->features |= NETIF_F_HIGHDMA;
  1742. /************** priv ****************/
  1743. priv = nic->priv[port] = netdev_priv(ndev);
  1744. priv->pBdxRegs = nic->regs + port * 0x8000;
  1745. priv->port = port;
  1746. priv->pdev = pdev;
  1747. priv->ndev = ndev;
  1748. priv->nic = nic;
  1749. priv->msg_enable = BDX_DEF_MSG_ENABLE;
  1750. netif_napi_add(ndev, &priv->napi, bdx_poll, 64);
  1751. if ((readl(nic->regs + FPGA_VER) & 0xFFF) == 308) {
  1752. DBG("HW statistics not supported\n");
  1753. priv->stats_flag = 0;
  1754. } else {
  1755. priv->stats_flag = 1;
  1756. }
  1757. /* Initialize fifo sizes. */
  1758. priv->txd_size = 2;
  1759. priv->txf_size = 2;
  1760. priv->rxd_size = 2;
  1761. priv->rxf_size = 3;
  1762. /* Initialize the initial coalescing registers. */
  1763. priv->rdintcm = INT_REG_VAL(0x20, 1, 4, 12);
  1764. priv->tdintcm = INT_REG_VAL(0x20, 1, 0, 12);
  1765. /* ndev->xmit_lock spinlock is not used.
  1766. * Private priv->tx_lock is used for synchronization
  1767. * between transmit and TX irq cleanup. In addition
  1768. * set multicast list callback has to use priv->tx_lock.
  1769. */
  1770. #ifdef BDX_LLTX
  1771. ndev->features |= NETIF_F_LLTX;
  1772. #endif
  1773. spin_lock_init(&priv->tx_lock);
  1774. /*bdx_hw_reset(priv); */
  1775. if (bdx_read_mac(priv)) {
  1776. pr_err("load MAC address failed\n");
  1777. goto err_out_iomap;
  1778. }
  1779. SET_NETDEV_DEV(ndev, &pdev->dev);
  1780. err = register_netdev(ndev);
  1781. if (err) {
  1782. pr_err("register_netdev failed\n");
  1783. goto err_out_free;
  1784. }
  1785. netif_carrier_off(ndev);
  1786. netif_stop_queue(ndev);
  1787. print_eth_id(ndev);
  1788. }
  1789. RET(0);
  1790. err_out_free:
  1791. free_netdev(ndev);
  1792. err_out_iomap:
  1793. iounmap(nic->regs);
  1794. err_out_res:
  1795. pci_release_regions(pdev);
  1796. err_dma:
  1797. pci_disable_device(pdev);
  1798. err_pci:
  1799. vfree(nic);
  1800. RET(err);
  1801. }
  1802. /****************** Ethtool interface *********************/
  1803. /* get strings for statistics counters */
  1804. static const char
  1805. bdx_stat_names[][ETH_GSTRING_LEN] = {
  1806. "InUCast", /* 0x7200 */
  1807. "InMCast", /* 0x7210 */
  1808. "InBCast", /* 0x7220 */
  1809. "InPkts", /* 0x7230 */
  1810. "InErrors", /* 0x7240 */
  1811. "InDropped", /* 0x7250 */
  1812. "FrameTooLong", /* 0x7260 */
  1813. "FrameSequenceErrors", /* 0x7270 */
  1814. "InVLAN", /* 0x7280 */
  1815. "InDroppedDFE", /* 0x7290 */
  1816. "InDroppedIntFull", /* 0x72A0 */
  1817. "InFrameAlignErrors", /* 0x72B0 */
  1818. /* 0x72C0-0x72E0 RSRV */
  1819. "OutUCast", /* 0x72F0 */
  1820. "OutMCast", /* 0x7300 */
  1821. "OutBCast", /* 0x7310 */
  1822. "OutPkts", /* 0x7320 */
  1823. /* 0x7330-0x7360 RSRV */
  1824. "OutVLAN", /* 0x7370 */
  1825. "InUCastOctects", /* 0x7380 */
  1826. "OutUCastOctects", /* 0x7390 */
  1827. /* 0x73A0-0x73B0 RSRV */
  1828. "InBCastOctects", /* 0x73C0 */
  1829. "OutBCastOctects", /* 0x73D0 */
  1830. "InOctects", /* 0x73E0 */
  1831. "OutOctects", /* 0x73F0 */
  1832. };
  1833. /*
  1834. * bdx_get_settings - get device-specific settings
  1835. * @netdev
  1836. * @ecmd
  1837. */
  1838. static int bdx_get_settings(struct net_device *netdev, struct ethtool_cmd *ecmd)
  1839. {
  1840. u32 rdintcm;
  1841. u32 tdintcm;
  1842. struct bdx_priv *priv = netdev_priv(netdev);
  1843. rdintcm = priv->rdintcm;
  1844. tdintcm = priv->tdintcm;
  1845. ecmd->supported = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE);
  1846. ecmd->advertising = (ADVERTISED_10000baseT_Full | ADVERTISED_FIBRE);
  1847. ethtool_cmd_speed_set(ecmd, SPEED_10000);
  1848. ecmd->duplex = DUPLEX_FULL;
  1849. ecmd->port = PORT_FIBRE;
  1850. ecmd->transceiver = XCVR_EXTERNAL; /* what does it mean? */
  1851. ecmd->autoneg = AUTONEG_DISABLE;
  1852. /* PCK_TH measures in multiples of FIFO bytes
  1853. We translate to packets */
  1854. ecmd->maxtxpkt =
  1855. ((GET_PCK_TH(tdintcm) * PCK_TH_MULT) / BDX_TXF_DESC_SZ);
  1856. ecmd->maxrxpkt =
  1857. ((GET_PCK_TH(rdintcm) * PCK_TH_MULT) / sizeof(struct rxf_desc));
  1858. return 0;
  1859. }
  1860. /*
  1861. * bdx_get_drvinfo - report driver information
  1862. * @netdev
  1863. * @drvinfo
  1864. */
  1865. static void
  1866. bdx_get_drvinfo(struct net_device *netdev, struct ethtool_drvinfo *drvinfo)
  1867. {
  1868. struct bdx_priv *priv = netdev_priv(netdev);
  1869. strlcat(drvinfo->driver, BDX_DRV_NAME, sizeof(drvinfo->driver));
  1870. strlcat(drvinfo->version, BDX_DRV_VERSION, sizeof(drvinfo->version));
  1871. strlcat(drvinfo->fw_version, "N/A", sizeof(drvinfo->fw_version));
  1872. strlcat(drvinfo->bus_info, pci_name(priv->pdev),
  1873. sizeof(drvinfo->bus_info));
  1874. drvinfo->n_stats = ((priv->stats_flag) ? ARRAY_SIZE(bdx_stat_names) : 0);
  1875. drvinfo->testinfo_len = 0;
  1876. drvinfo->regdump_len = 0;
  1877. drvinfo->eedump_len = 0;
  1878. }
  1879. /*
  1880. * bdx_get_coalesce - get interrupt coalescing parameters
  1881. * @netdev
  1882. * @ecoal
  1883. */
  1884. static int
  1885. bdx_get_coalesce(struct net_device *netdev, struct ethtool_coalesce *ecoal)
  1886. {
  1887. u32 rdintcm;
  1888. u32 tdintcm;
  1889. struct bdx_priv *priv = netdev_priv(netdev);
  1890. rdintcm = priv->rdintcm;
  1891. tdintcm = priv->tdintcm;
  1892. /* PCK_TH measures in multiples of FIFO bytes
  1893. We translate to packets */
  1894. ecoal->rx_coalesce_usecs = GET_INT_COAL(rdintcm) * INT_COAL_MULT;
  1895. ecoal->rx_max_coalesced_frames =
  1896. ((GET_PCK_TH(rdintcm) * PCK_TH_MULT) / sizeof(struct rxf_desc));
  1897. ecoal->tx_coalesce_usecs = GET_INT_COAL(tdintcm) * INT_COAL_MULT;
  1898. ecoal->tx_max_coalesced_frames =
  1899. ((GET_PCK_TH(tdintcm) * PCK_TH_MULT) / BDX_TXF_DESC_SZ);
  1900. /* adaptive parameters ignored */
  1901. return 0;
  1902. }
  1903. /*
  1904. * bdx_set_coalesce - set interrupt coalescing parameters
  1905. * @netdev
  1906. * @ecoal
  1907. */
  1908. static int
  1909. bdx_set_coalesce(struct net_device *netdev, struct ethtool_coalesce *ecoal)
  1910. {
  1911. u32 rdintcm;
  1912. u32 tdintcm;
  1913. struct bdx_priv *priv = netdev_priv(netdev);
  1914. int rx_coal;
  1915. int tx_coal;
  1916. int rx_max_coal;
  1917. int tx_max_coal;
  1918. /* Check for valid input */
  1919. rx_coal = ecoal->rx_coalesce_usecs / INT_COAL_MULT;
  1920. tx_coal = ecoal->tx_coalesce_usecs / INT_COAL_MULT;
  1921. rx_max_coal = ecoal->rx_max_coalesced_frames;
  1922. tx_max_coal = ecoal->tx_max_coalesced_frames;
  1923. /* Translate from packets to multiples of FIFO bytes */
  1924. rx_max_coal =
  1925. (((rx_max_coal * sizeof(struct rxf_desc)) + PCK_TH_MULT - 1)
  1926. / PCK_TH_MULT);
  1927. tx_max_coal =
  1928. (((tx_max_coal * BDX_TXF_DESC_SZ) + PCK_TH_MULT - 1)
  1929. / PCK_TH_MULT);
  1930. if ((rx_coal > 0x7FFF) || (tx_coal > 0x7FFF) ||
  1931. (rx_max_coal > 0xF) || (tx_max_coal > 0xF))
  1932. return -EINVAL;
  1933. rdintcm = INT_REG_VAL(rx_coal, GET_INT_COAL_RC(priv->rdintcm),
  1934. GET_RXF_TH(priv->rdintcm), rx_max_coal);
  1935. tdintcm = INT_REG_VAL(tx_coal, GET_INT_COAL_RC(priv->tdintcm), 0,
  1936. tx_max_coal);
  1937. priv->rdintcm = rdintcm;
  1938. priv->tdintcm = tdintcm;
  1939. WRITE_REG(priv, regRDINTCM0, rdintcm);
  1940. WRITE_REG(priv, regTDINTCM0, tdintcm);
  1941. return 0;
  1942. }
  1943. /* Convert RX fifo size to number of pending packets */
  1944. static inline int bdx_rx_fifo_size_to_packets(int rx_size)
  1945. {
  1946. return (FIFO_SIZE * (1 << rx_size)) / sizeof(struct rxf_desc);
  1947. }
  1948. /* Convert TX fifo size to number of pending packets */
  1949. static inline int bdx_tx_fifo_size_to_packets(int tx_size)
  1950. {
  1951. return (FIFO_SIZE * (1 << tx_size)) / BDX_TXF_DESC_SZ;
  1952. }
  1953. /*
  1954. * bdx_get_ringparam - report ring sizes
  1955. * @netdev
  1956. * @ring
  1957. */
  1958. static void
  1959. bdx_get_ringparam(struct net_device *netdev, struct ethtool_ringparam *ring)
  1960. {
  1961. struct bdx_priv *priv = netdev_priv(netdev);
  1962. /*max_pending - the maximum-sized FIFO we allow */
  1963. ring->rx_max_pending = bdx_rx_fifo_size_to_packets(3);
  1964. ring->tx_max_pending = bdx_tx_fifo_size_to_packets(3);
  1965. ring->rx_pending = bdx_rx_fifo_size_to_packets(priv->rxf_size);
  1966. ring->tx_pending = bdx_tx_fifo_size_to_packets(priv->txd_size);
  1967. }
  1968. /*
  1969. * bdx_set_ringparam - set ring sizes
  1970. * @netdev
  1971. * @ring
  1972. */
  1973. static int
  1974. bdx_set_ringparam(struct net_device *netdev, struct ethtool_ringparam *ring)
  1975. {
  1976. struct bdx_priv *priv = netdev_priv(netdev);
  1977. int rx_size = 0;
  1978. int tx_size = 0;
  1979. for (; rx_size < 4; rx_size++) {
  1980. if (bdx_rx_fifo_size_to_packets(rx_size) >= ring->rx_pending)
  1981. break;
  1982. }
  1983. if (rx_size == 4)
  1984. rx_size = 3;
  1985. for (; tx_size < 4; tx_size++) {
  1986. if (bdx_tx_fifo_size_to_packets(tx_size) >= ring->tx_pending)
  1987. break;
  1988. }
  1989. if (tx_size == 4)
  1990. tx_size = 3;
  1991. /*Is there anything to do? */
  1992. if ((rx_size == priv->rxf_size) &&
  1993. (tx_size == priv->txd_size))
  1994. return 0;
  1995. priv->rxf_size = rx_size;
  1996. if (rx_size > 1)
  1997. priv->rxd_size = rx_size - 1;
  1998. else
  1999. priv->rxd_size = rx_size;
  2000. priv->txf_size = priv->txd_size = tx_size;
  2001. if (netif_running(netdev)) {
  2002. bdx_close(netdev);
  2003. bdx_open(netdev);
  2004. }
  2005. return 0;
  2006. }
  2007. /*
  2008. * bdx_get_strings - return a set of strings that describe the requested objects
  2009. * @netdev
  2010. * @data
  2011. */
  2012. static void bdx_get_strings(struct net_device *netdev, u32 stringset, u8 *data)
  2013. {
  2014. switch (stringset) {
  2015. case ETH_SS_STATS:
  2016. memcpy(data, *bdx_stat_names, sizeof(bdx_stat_names));
  2017. break;
  2018. }
  2019. }
  2020. /*
  2021. * bdx_get_sset_count - return number of statistics or tests
  2022. * @netdev
  2023. */
  2024. static int bdx_get_sset_count(struct net_device *netdev, int stringset)
  2025. {
  2026. struct bdx_priv *priv = netdev_priv(netdev);
  2027. switch (stringset) {
  2028. case ETH_SS_STATS:
  2029. BDX_ASSERT(ARRAY_SIZE(bdx_stat_names)
  2030. != sizeof(struct bdx_stats) / sizeof(u64));
  2031. return (priv->stats_flag) ? ARRAY_SIZE(bdx_stat_names) : 0;
  2032. }
  2033. return -EINVAL;
  2034. }
  2035. /*
  2036. * bdx_get_ethtool_stats - return device's hardware L2 statistics
  2037. * @netdev
  2038. * @stats
  2039. * @data
  2040. */
  2041. static void bdx_get_ethtool_stats(struct net_device *netdev,
  2042. struct ethtool_stats *stats, u64 *data)
  2043. {
  2044. struct bdx_priv *priv = netdev_priv(netdev);
  2045. if (priv->stats_flag) {
  2046. /* Update stats from HW */
  2047. bdx_update_stats(priv);
  2048. /* Copy data to user buffer */
  2049. memcpy(data, &priv->hw_stats, sizeof(priv->hw_stats));
  2050. }
  2051. }
  2052. /*
  2053. * bdx_set_ethtool_ops - ethtool interface implementation
  2054. * @netdev
  2055. */
  2056. static void bdx_set_ethtool_ops(struct net_device *netdev)
  2057. {
  2058. static const struct ethtool_ops bdx_ethtool_ops = {
  2059. .get_settings = bdx_get_settings,
  2060. .get_drvinfo = bdx_get_drvinfo,
  2061. .get_link = ethtool_op_get_link,
  2062. .get_coalesce = bdx_get_coalesce,
  2063. .set_coalesce = bdx_set_coalesce,
  2064. .get_ringparam = bdx_get_ringparam,
  2065. .set_ringparam = bdx_set_ringparam,
  2066. .get_strings = bdx_get_strings,
  2067. .get_sset_count = bdx_get_sset_count,
  2068. .get_ethtool_stats = bdx_get_ethtool_stats,
  2069. };
  2070. SET_ETHTOOL_OPS(netdev, &bdx_ethtool_ops);
  2071. }
  2072. /**
  2073. * bdx_remove - Device Removal Routine
  2074. * @pdev: PCI device information struct
  2075. *
  2076. * bdx_remove is called by the PCI subsystem to alert the driver
  2077. * that it should release a PCI device. The could be caused by a
  2078. * Hot-Plug event, or because the driver is going to be removed from
  2079. * memory.
  2080. **/
  2081. static void __devexit bdx_remove(struct pci_dev *pdev)
  2082. {
  2083. struct pci_nic *nic = pci_get_drvdata(pdev);
  2084. struct net_device *ndev;
  2085. int port;
  2086. for (port = 0; port < nic->port_num; port++) {
  2087. ndev = nic->priv[port]->ndev;
  2088. unregister_netdev(ndev);
  2089. free_netdev(ndev);
  2090. }
  2091. /*bdx_hw_reset_direct(nic->regs); */
  2092. #ifdef BDX_MSI
  2093. if (nic->irq_type == IRQ_MSI)
  2094. pci_disable_msi(pdev);
  2095. #endif
  2096. iounmap(nic->regs);
  2097. pci_release_regions(pdev);
  2098. pci_disable_device(pdev);
  2099. pci_set_drvdata(pdev, NULL);
  2100. vfree(nic);
  2101. RET();
  2102. }
  2103. static struct pci_driver bdx_pci_driver = {
  2104. .name = BDX_DRV_NAME,
  2105. .id_table = bdx_pci_tbl,
  2106. .probe = bdx_probe,
  2107. .remove = __devexit_p(bdx_remove),
  2108. };
  2109. /*
  2110. * print_driver_id - print parameters of the driver build
  2111. */
  2112. static void __init print_driver_id(void)
  2113. {
  2114. pr_info("%s, %s\n", BDX_DRV_DESC, BDX_DRV_VERSION);
  2115. pr_info("Options: hw_csum %s\n", BDX_MSI_STRING);
  2116. }
  2117. static int __init bdx_module_init(void)
  2118. {
  2119. ENTER;
  2120. init_txd_sizes();
  2121. print_driver_id();
  2122. RET(pci_register_driver(&bdx_pci_driver));
  2123. }
  2124. module_init(bdx_module_init);
  2125. static void __exit bdx_module_exit(void)
  2126. {
  2127. ENTER;
  2128. pci_unregister_driver(&bdx_pci_driver);
  2129. RET();
  2130. }
  2131. module_exit(bdx_module_exit);
  2132. MODULE_LICENSE("GPL");
  2133. MODULE_AUTHOR(DRIVER_AUTHOR);
  2134. MODULE_DESCRIPTION(BDX_DRV_DESC);
  2135. MODULE_FIRMWARE("tehuti/bdx.bin");