ucb1x00-ts.c 10 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425
  1. /*
  2. * Touchscreen driver for UCB1x00-based touchscreens
  3. *
  4. * Copyright (C) 2001 Russell King, All Rights Reserved.
  5. * Copyright (C) 2005 Pavel Machek
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License version 2 as
  9. * published by the Free Software Foundation.
  10. *
  11. * 21-Jan-2002 <jco@ict.es> :
  12. *
  13. * Added support for synchronous A/D mode. This mode is useful to
  14. * avoid noise induced in the touchpanel by the LCD, provided that
  15. * the UCB1x00 has a valid LCD sync signal routed to its ADCSYNC pin.
  16. * It is important to note that the signal connected to the ADCSYNC
  17. * pin should provide pulses even when the LCD is blanked, otherwise
  18. * a pen touch needed to unblank the LCD will never be read.
  19. */
  20. #include <linux/module.h>
  21. #include <linux/moduleparam.h>
  22. #include <linux/init.h>
  23. #include <linux/smp.h>
  24. #include <linux/sched.h>
  25. #include <linux/completion.h>
  26. #include <linux/delay.h>
  27. #include <linux/string.h>
  28. #include <linux/input.h>
  29. #include <linux/device.h>
  30. #include <linux/freezer.h>
  31. #include <linux/slab.h>
  32. #include <linux/kthread.h>
  33. #include <linux/mfd/ucb1x00.h>
  34. #include <mach/dma.h>
  35. #include <mach/collie.h>
  36. #include <asm/mach-types.h>
  37. struct ucb1x00_ts {
  38. struct input_dev *idev;
  39. struct ucb1x00 *ucb;
  40. wait_queue_head_t irq_wait;
  41. struct task_struct *rtask;
  42. u16 x_res;
  43. u16 y_res;
  44. unsigned int adcsync:1;
  45. };
  46. static int adcsync;
  47. static inline void ucb1x00_ts_evt_add(struct ucb1x00_ts *ts, u16 pressure, u16 x, u16 y)
  48. {
  49. struct input_dev *idev = ts->idev;
  50. input_report_abs(idev, ABS_X, x);
  51. input_report_abs(idev, ABS_Y, y);
  52. input_report_abs(idev, ABS_PRESSURE, pressure);
  53. input_report_key(idev, BTN_TOUCH, 1);
  54. input_sync(idev);
  55. }
  56. static inline void ucb1x00_ts_event_release(struct ucb1x00_ts *ts)
  57. {
  58. struct input_dev *idev = ts->idev;
  59. input_report_abs(idev, ABS_PRESSURE, 0);
  60. input_report_key(idev, BTN_TOUCH, 0);
  61. input_sync(idev);
  62. }
  63. /*
  64. * Switch to interrupt mode.
  65. */
  66. static inline void ucb1x00_ts_mode_int(struct ucb1x00_ts *ts)
  67. {
  68. ucb1x00_reg_write(ts->ucb, UCB_TS_CR,
  69. UCB_TS_CR_TSMX_POW | UCB_TS_CR_TSPX_POW |
  70. UCB_TS_CR_TSMY_GND | UCB_TS_CR_TSPY_GND |
  71. UCB_TS_CR_MODE_INT);
  72. }
  73. /*
  74. * Switch to pressure mode, and read pressure. We don't need to wait
  75. * here, since both plates are being driven.
  76. */
  77. static inline unsigned int ucb1x00_ts_read_pressure(struct ucb1x00_ts *ts)
  78. {
  79. if (machine_is_collie()) {
  80. ucb1x00_io_write(ts->ucb, COLLIE_TC35143_GPIO_TBL_CHK, 0);
  81. ucb1x00_reg_write(ts->ucb, UCB_TS_CR,
  82. UCB_TS_CR_TSPX_POW | UCB_TS_CR_TSMX_POW |
  83. UCB_TS_CR_MODE_POS | UCB_TS_CR_BIAS_ENA);
  84. udelay(55);
  85. return ucb1x00_adc_read(ts->ucb, UCB_ADC_INP_AD2, ts->adcsync);
  86. } else {
  87. ucb1x00_reg_write(ts->ucb, UCB_TS_CR,
  88. UCB_TS_CR_TSMX_POW | UCB_TS_CR_TSPX_POW |
  89. UCB_TS_CR_TSMY_GND | UCB_TS_CR_TSPY_GND |
  90. UCB_TS_CR_MODE_PRES | UCB_TS_CR_BIAS_ENA);
  91. return ucb1x00_adc_read(ts->ucb, UCB_ADC_INP_TSPY, ts->adcsync);
  92. }
  93. }
  94. /*
  95. * Switch to X position mode and measure Y plate. We switch the plate
  96. * configuration in pressure mode, then switch to position mode. This
  97. * gives a faster response time. Even so, we need to wait about 55us
  98. * for things to stabilise.
  99. */
  100. static inline unsigned int ucb1x00_ts_read_xpos(struct ucb1x00_ts *ts)
  101. {
  102. if (machine_is_collie())
  103. ucb1x00_io_write(ts->ucb, 0, COLLIE_TC35143_GPIO_TBL_CHK);
  104. else {
  105. ucb1x00_reg_write(ts->ucb, UCB_TS_CR,
  106. UCB_TS_CR_TSMX_GND | UCB_TS_CR_TSPX_POW |
  107. UCB_TS_CR_MODE_PRES | UCB_TS_CR_BIAS_ENA);
  108. ucb1x00_reg_write(ts->ucb, UCB_TS_CR,
  109. UCB_TS_CR_TSMX_GND | UCB_TS_CR_TSPX_POW |
  110. UCB_TS_CR_MODE_PRES | UCB_TS_CR_BIAS_ENA);
  111. }
  112. ucb1x00_reg_write(ts->ucb, UCB_TS_CR,
  113. UCB_TS_CR_TSMX_GND | UCB_TS_CR_TSPX_POW |
  114. UCB_TS_CR_MODE_POS | UCB_TS_CR_BIAS_ENA);
  115. udelay(55);
  116. return ucb1x00_adc_read(ts->ucb, UCB_ADC_INP_TSPY, ts->adcsync);
  117. }
  118. /*
  119. * Switch to Y position mode and measure X plate. We switch the plate
  120. * configuration in pressure mode, then switch to position mode. This
  121. * gives a faster response time. Even so, we need to wait about 55us
  122. * for things to stabilise.
  123. */
  124. static inline unsigned int ucb1x00_ts_read_ypos(struct ucb1x00_ts *ts)
  125. {
  126. if (machine_is_collie())
  127. ucb1x00_io_write(ts->ucb, 0, COLLIE_TC35143_GPIO_TBL_CHK);
  128. else {
  129. ucb1x00_reg_write(ts->ucb, UCB_TS_CR,
  130. UCB_TS_CR_TSMY_GND | UCB_TS_CR_TSPY_POW |
  131. UCB_TS_CR_MODE_PRES | UCB_TS_CR_BIAS_ENA);
  132. ucb1x00_reg_write(ts->ucb, UCB_TS_CR,
  133. UCB_TS_CR_TSMY_GND | UCB_TS_CR_TSPY_POW |
  134. UCB_TS_CR_MODE_PRES | UCB_TS_CR_BIAS_ENA);
  135. }
  136. ucb1x00_reg_write(ts->ucb, UCB_TS_CR,
  137. UCB_TS_CR_TSMY_GND | UCB_TS_CR_TSPY_POW |
  138. UCB_TS_CR_MODE_POS | UCB_TS_CR_BIAS_ENA);
  139. udelay(55);
  140. return ucb1x00_adc_read(ts->ucb, UCB_ADC_INP_TSPX, ts->adcsync);
  141. }
  142. /*
  143. * Switch to X plate resistance mode. Set MX to ground, PX to
  144. * supply. Measure current.
  145. */
  146. static inline unsigned int ucb1x00_ts_read_xres(struct ucb1x00_ts *ts)
  147. {
  148. ucb1x00_reg_write(ts->ucb, UCB_TS_CR,
  149. UCB_TS_CR_TSMX_GND | UCB_TS_CR_TSPX_POW |
  150. UCB_TS_CR_MODE_PRES | UCB_TS_CR_BIAS_ENA);
  151. return ucb1x00_adc_read(ts->ucb, 0, ts->adcsync);
  152. }
  153. /*
  154. * Switch to Y plate resistance mode. Set MY to ground, PY to
  155. * supply. Measure current.
  156. */
  157. static inline unsigned int ucb1x00_ts_read_yres(struct ucb1x00_ts *ts)
  158. {
  159. ucb1x00_reg_write(ts->ucb, UCB_TS_CR,
  160. UCB_TS_CR_TSMY_GND | UCB_TS_CR_TSPY_POW |
  161. UCB_TS_CR_MODE_PRES | UCB_TS_CR_BIAS_ENA);
  162. return ucb1x00_adc_read(ts->ucb, 0, ts->adcsync);
  163. }
  164. static inline int ucb1x00_ts_pen_down(struct ucb1x00_ts *ts)
  165. {
  166. unsigned int val = ucb1x00_reg_read(ts->ucb, UCB_TS_CR);
  167. if (machine_is_collie())
  168. return (!(val & (UCB_TS_CR_TSPX_LOW)));
  169. else
  170. return (val & (UCB_TS_CR_TSPX_LOW | UCB_TS_CR_TSMX_LOW));
  171. }
  172. /*
  173. * This is a RT kernel thread that handles the ADC accesses
  174. * (mainly so we can use semaphores in the UCB1200 core code
  175. * to serialise accesses to the ADC).
  176. */
  177. static int ucb1x00_thread(void *_ts)
  178. {
  179. struct ucb1x00_ts *ts = _ts;
  180. DECLARE_WAITQUEUE(wait, current);
  181. bool frozen, ignore = false;
  182. int valid = 0;
  183. set_freezable();
  184. add_wait_queue(&ts->irq_wait, &wait);
  185. while (!kthread_freezable_should_stop(&frozen)) {
  186. unsigned int x, y, p;
  187. signed long timeout;
  188. if (frozen)
  189. ignore = true;
  190. ucb1x00_adc_enable(ts->ucb);
  191. x = ucb1x00_ts_read_xpos(ts);
  192. y = ucb1x00_ts_read_ypos(ts);
  193. p = ucb1x00_ts_read_pressure(ts);
  194. /*
  195. * Switch back to interrupt mode.
  196. */
  197. ucb1x00_ts_mode_int(ts);
  198. ucb1x00_adc_disable(ts->ucb);
  199. msleep(10);
  200. ucb1x00_enable(ts->ucb);
  201. if (ucb1x00_ts_pen_down(ts)) {
  202. set_current_state(TASK_INTERRUPTIBLE);
  203. ucb1x00_enable_irq(ts->ucb, UCB_IRQ_TSPX, machine_is_collie() ? UCB_RISING : UCB_FALLING);
  204. ucb1x00_disable(ts->ucb);
  205. /*
  206. * If we spat out a valid sample set last time,
  207. * spit out a "pen off" sample here.
  208. */
  209. if (valid) {
  210. ucb1x00_ts_event_release(ts);
  211. valid = 0;
  212. }
  213. timeout = MAX_SCHEDULE_TIMEOUT;
  214. } else {
  215. ucb1x00_disable(ts->ucb);
  216. /*
  217. * Filtering is policy. Policy belongs in user
  218. * space. We therefore leave it to user space
  219. * to do any filtering they please.
  220. */
  221. if (!ignore) {
  222. ucb1x00_ts_evt_add(ts, p, x, y);
  223. valid = 1;
  224. }
  225. set_current_state(TASK_INTERRUPTIBLE);
  226. timeout = HZ / 100;
  227. }
  228. schedule_timeout(timeout);
  229. }
  230. remove_wait_queue(&ts->irq_wait, &wait);
  231. ts->rtask = NULL;
  232. return 0;
  233. }
  234. /*
  235. * We only detect touch screen _touches_ with this interrupt
  236. * handler, and even then we just schedule our task.
  237. */
  238. static void ucb1x00_ts_irq(int idx, void *id)
  239. {
  240. struct ucb1x00_ts *ts = id;
  241. ucb1x00_disable_irq(ts->ucb, UCB_IRQ_TSPX, UCB_FALLING);
  242. wake_up(&ts->irq_wait);
  243. }
  244. static int ucb1x00_ts_open(struct input_dev *idev)
  245. {
  246. struct ucb1x00_ts *ts = input_get_drvdata(idev);
  247. int ret = 0;
  248. BUG_ON(ts->rtask);
  249. init_waitqueue_head(&ts->irq_wait);
  250. ret = ucb1x00_hook_irq(ts->ucb, UCB_IRQ_TSPX, ucb1x00_ts_irq, ts);
  251. if (ret < 0)
  252. goto out;
  253. /*
  254. * If we do this at all, we should allow the user to
  255. * measure and read the X and Y resistance at any time.
  256. */
  257. ucb1x00_adc_enable(ts->ucb);
  258. ts->x_res = ucb1x00_ts_read_xres(ts);
  259. ts->y_res = ucb1x00_ts_read_yres(ts);
  260. ucb1x00_adc_disable(ts->ucb);
  261. ts->rtask = kthread_run(ucb1x00_thread, ts, "ktsd");
  262. if (!IS_ERR(ts->rtask)) {
  263. ret = 0;
  264. } else {
  265. ucb1x00_free_irq(ts->ucb, UCB_IRQ_TSPX, ts);
  266. ts->rtask = NULL;
  267. ret = -EFAULT;
  268. }
  269. out:
  270. return ret;
  271. }
  272. /*
  273. * Release touchscreen resources. Disable IRQs.
  274. */
  275. static void ucb1x00_ts_close(struct input_dev *idev)
  276. {
  277. struct ucb1x00_ts *ts = input_get_drvdata(idev);
  278. if (ts->rtask)
  279. kthread_stop(ts->rtask);
  280. ucb1x00_enable(ts->ucb);
  281. ucb1x00_free_irq(ts->ucb, UCB_IRQ_TSPX, ts);
  282. ucb1x00_reg_write(ts->ucb, UCB_TS_CR, 0);
  283. ucb1x00_disable(ts->ucb);
  284. }
  285. /*
  286. * Initialisation.
  287. */
  288. static int ucb1x00_ts_add(struct ucb1x00_dev *dev)
  289. {
  290. struct ucb1x00_ts *ts;
  291. struct input_dev *idev;
  292. int err;
  293. ts = kzalloc(sizeof(struct ucb1x00_ts), GFP_KERNEL);
  294. idev = input_allocate_device();
  295. if (!ts || !idev) {
  296. err = -ENOMEM;
  297. goto fail;
  298. }
  299. ts->ucb = dev->ucb;
  300. ts->idev = idev;
  301. ts->adcsync = adcsync ? UCB_SYNC : UCB_NOSYNC;
  302. idev->name = "Touchscreen panel";
  303. idev->id.product = ts->ucb->id;
  304. idev->open = ucb1x00_ts_open;
  305. idev->close = ucb1x00_ts_close;
  306. idev->evbit[0] = BIT_MASK(EV_ABS) | BIT_MASK(EV_KEY);
  307. idev->keybit[BIT_WORD(BTN_TOUCH)] = BIT_MASK(BTN_TOUCH);
  308. input_set_drvdata(idev, ts);
  309. ucb1x00_adc_enable(ts->ucb);
  310. ts->x_res = ucb1x00_ts_read_xres(ts);
  311. ts->y_res = ucb1x00_ts_read_yres(ts);
  312. ucb1x00_adc_disable(ts->ucb);
  313. input_set_abs_params(idev, ABS_X, 0, ts->x_res, 0, 0);
  314. input_set_abs_params(idev, ABS_Y, 0, ts->y_res, 0, 0);
  315. input_set_abs_params(idev, ABS_PRESSURE, 0, 0, 0, 0);
  316. err = input_register_device(idev);
  317. if (err)
  318. goto fail;
  319. dev->priv = ts;
  320. return 0;
  321. fail:
  322. input_free_device(idev);
  323. kfree(ts);
  324. return err;
  325. }
  326. static void ucb1x00_ts_remove(struct ucb1x00_dev *dev)
  327. {
  328. struct ucb1x00_ts *ts = dev->priv;
  329. input_unregister_device(ts->idev);
  330. kfree(ts);
  331. }
  332. static struct ucb1x00_driver ucb1x00_ts_driver = {
  333. .add = ucb1x00_ts_add,
  334. .remove = ucb1x00_ts_remove,
  335. };
  336. static int __init ucb1x00_ts_init(void)
  337. {
  338. return ucb1x00_register_driver(&ucb1x00_ts_driver);
  339. }
  340. static void __exit ucb1x00_ts_exit(void)
  341. {
  342. ucb1x00_unregister_driver(&ucb1x00_ts_driver);
  343. }
  344. module_param(adcsync, int, 0444);
  345. module_init(ucb1x00_ts_init);
  346. module_exit(ucb1x00_ts_exit);
  347. MODULE_AUTHOR("Russell King <rmk@arm.linux.org.uk>");
  348. MODULE_DESCRIPTION("UCB1x00 touchscreen driver");
  349. MODULE_LICENSE("GPL");