ste_dma40.c 84 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364
  1. /*
  2. * Copyright (C) Ericsson AB 2007-2008
  3. * Copyright (C) ST-Ericsson SA 2008-2010
  4. * Author: Per Forlin <per.forlin@stericsson.com> for ST-Ericsson
  5. * Author: Jonas Aaberg <jonas.aberg@stericsson.com> for ST-Ericsson
  6. * License terms: GNU General Public License (GPL) version 2
  7. */
  8. #include <linux/dma-mapping.h>
  9. #include <linux/kernel.h>
  10. #include <linux/slab.h>
  11. #include <linux/export.h>
  12. #include <linux/dmaengine.h>
  13. #include <linux/platform_device.h>
  14. #include <linux/clk.h>
  15. #include <linux/delay.h>
  16. #include <linux/pm.h>
  17. #include <linux/pm_runtime.h>
  18. #include <linux/err.h>
  19. #include <linux/amba/bus.h>
  20. #include <plat/ste_dma40.h>
  21. #include "ste_dma40_ll.h"
  22. #define D40_NAME "dma40"
  23. #define D40_PHY_CHAN -1
  24. /* For masking out/in 2 bit channel positions */
  25. #define D40_CHAN_POS(chan) (2 * (chan / 2))
  26. #define D40_CHAN_POS_MASK(chan) (0x3 << D40_CHAN_POS(chan))
  27. /* Maximum iterations taken before giving up suspending a channel */
  28. #define D40_SUSPEND_MAX_IT 500
  29. /* Milliseconds */
  30. #define DMA40_AUTOSUSPEND_DELAY 100
  31. /* Hardware requirement on LCLA alignment */
  32. #define LCLA_ALIGNMENT 0x40000
  33. /* Max number of links per event group */
  34. #define D40_LCLA_LINK_PER_EVENT_GRP 128
  35. #define D40_LCLA_END D40_LCLA_LINK_PER_EVENT_GRP
  36. /* Attempts before giving up to trying to get pages that are aligned */
  37. #define MAX_LCLA_ALLOC_ATTEMPTS 256
  38. /* Bit markings for allocation map */
  39. #define D40_ALLOC_FREE (1 << 31)
  40. #define D40_ALLOC_PHY (1 << 30)
  41. #define D40_ALLOC_LOG_FREE 0
  42. /**
  43. * enum 40_command - The different commands and/or statuses.
  44. *
  45. * @D40_DMA_STOP: DMA channel command STOP or status STOPPED,
  46. * @D40_DMA_RUN: The DMA channel is RUNNING of the command RUN.
  47. * @D40_DMA_SUSPEND_REQ: Request the DMA to SUSPEND as soon as possible.
  48. * @D40_DMA_SUSPENDED: The DMA channel is SUSPENDED.
  49. */
  50. enum d40_command {
  51. D40_DMA_STOP = 0,
  52. D40_DMA_RUN = 1,
  53. D40_DMA_SUSPEND_REQ = 2,
  54. D40_DMA_SUSPENDED = 3
  55. };
  56. /*
  57. * These are the registers that has to be saved and later restored
  58. * when the DMA hw is powered off.
  59. * TODO: Add save/restore of D40_DREG_GCC on dma40 v3 or later, if that works.
  60. */
  61. static u32 d40_backup_regs[] = {
  62. D40_DREG_LCPA,
  63. D40_DREG_LCLA,
  64. D40_DREG_PRMSE,
  65. D40_DREG_PRMSO,
  66. D40_DREG_PRMOE,
  67. D40_DREG_PRMOO,
  68. };
  69. #define BACKUP_REGS_SZ ARRAY_SIZE(d40_backup_regs)
  70. /* TODO: Check if all these registers have to be saved/restored on dma40 v3 */
  71. static u32 d40_backup_regs_v3[] = {
  72. D40_DREG_PSEG1,
  73. D40_DREG_PSEG2,
  74. D40_DREG_PSEG3,
  75. D40_DREG_PSEG4,
  76. D40_DREG_PCEG1,
  77. D40_DREG_PCEG2,
  78. D40_DREG_PCEG3,
  79. D40_DREG_PCEG4,
  80. D40_DREG_RSEG1,
  81. D40_DREG_RSEG2,
  82. D40_DREG_RSEG3,
  83. D40_DREG_RSEG4,
  84. D40_DREG_RCEG1,
  85. D40_DREG_RCEG2,
  86. D40_DREG_RCEG3,
  87. D40_DREG_RCEG4,
  88. };
  89. #define BACKUP_REGS_SZ_V3 ARRAY_SIZE(d40_backup_regs_v3)
  90. static u32 d40_backup_regs_chan[] = {
  91. D40_CHAN_REG_SSCFG,
  92. D40_CHAN_REG_SSELT,
  93. D40_CHAN_REG_SSPTR,
  94. D40_CHAN_REG_SSLNK,
  95. D40_CHAN_REG_SDCFG,
  96. D40_CHAN_REG_SDELT,
  97. D40_CHAN_REG_SDPTR,
  98. D40_CHAN_REG_SDLNK,
  99. };
  100. /**
  101. * struct d40_lli_pool - Structure for keeping LLIs in memory
  102. *
  103. * @base: Pointer to memory area when the pre_alloc_lli's are not large
  104. * enough, IE bigger than the most common case, 1 dst and 1 src. NULL if
  105. * pre_alloc_lli is used.
  106. * @dma_addr: DMA address, if mapped
  107. * @size: The size in bytes of the memory at base or the size of pre_alloc_lli.
  108. * @pre_alloc_lli: Pre allocated area for the most common case of transfers,
  109. * one buffer to one buffer.
  110. */
  111. struct d40_lli_pool {
  112. void *base;
  113. int size;
  114. dma_addr_t dma_addr;
  115. /* Space for dst and src, plus an extra for padding */
  116. u8 pre_alloc_lli[3 * sizeof(struct d40_phy_lli)];
  117. };
  118. /**
  119. * struct d40_desc - A descriptor is one DMA job.
  120. *
  121. * @lli_phy: LLI settings for physical channel. Both src and dst=
  122. * points into the lli_pool, to base if lli_len > 1 or to pre_alloc_lli if
  123. * lli_len equals one.
  124. * @lli_log: Same as above but for logical channels.
  125. * @lli_pool: The pool with two entries pre-allocated.
  126. * @lli_len: Number of llis of current descriptor.
  127. * @lli_current: Number of transferred llis.
  128. * @lcla_alloc: Number of LCLA entries allocated.
  129. * @txd: DMA engine struct. Used for among other things for communication
  130. * during a transfer.
  131. * @node: List entry.
  132. * @is_in_client_list: true if the client owns this descriptor.
  133. * @cyclic: true if this is a cyclic job
  134. *
  135. * This descriptor is used for both logical and physical transfers.
  136. */
  137. struct d40_desc {
  138. /* LLI physical */
  139. struct d40_phy_lli_bidir lli_phy;
  140. /* LLI logical */
  141. struct d40_log_lli_bidir lli_log;
  142. struct d40_lli_pool lli_pool;
  143. int lli_len;
  144. int lli_current;
  145. int lcla_alloc;
  146. struct dma_async_tx_descriptor txd;
  147. struct list_head node;
  148. bool is_in_client_list;
  149. bool cyclic;
  150. };
  151. /**
  152. * struct d40_lcla_pool - LCLA pool settings and data.
  153. *
  154. * @base: The virtual address of LCLA. 18 bit aligned.
  155. * @base_unaligned: The orignal kmalloc pointer, if kmalloc is used.
  156. * This pointer is only there for clean-up on error.
  157. * @pages: The number of pages needed for all physical channels.
  158. * Only used later for clean-up on error
  159. * @lock: Lock to protect the content in this struct.
  160. * @alloc_map: big map over which LCLA entry is own by which job.
  161. */
  162. struct d40_lcla_pool {
  163. void *base;
  164. dma_addr_t dma_addr;
  165. void *base_unaligned;
  166. int pages;
  167. spinlock_t lock;
  168. struct d40_desc **alloc_map;
  169. };
  170. /**
  171. * struct d40_phy_res - struct for handling eventlines mapped to physical
  172. * channels.
  173. *
  174. * @lock: A lock protection this entity.
  175. * @reserved: True if used by secure world or otherwise.
  176. * @num: The physical channel number of this entity.
  177. * @allocated_src: Bit mapped to show which src event line's are mapped to
  178. * this physical channel. Can also be free or physically allocated.
  179. * @allocated_dst: Same as for src but is dst.
  180. * allocated_dst and allocated_src uses the D40_ALLOC* defines as well as
  181. * event line number.
  182. */
  183. struct d40_phy_res {
  184. spinlock_t lock;
  185. bool reserved;
  186. int num;
  187. u32 allocated_src;
  188. u32 allocated_dst;
  189. };
  190. struct d40_base;
  191. /**
  192. * struct d40_chan - Struct that describes a channel.
  193. *
  194. * @lock: A spinlock to protect this struct.
  195. * @log_num: The logical number, if any of this channel.
  196. * @completed: Starts with 1, after first interrupt it is set to dma engine's
  197. * current cookie.
  198. * @pending_tx: The number of pending transfers. Used between interrupt handler
  199. * and tasklet.
  200. * @busy: Set to true when transfer is ongoing on this channel.
  201. * @phy_chan: Pointer to physical channel which this instance runs on. If this
  202. * point is NULL, then the channel is not allocated.
  203. * @chan: DMA engine handle.
  204. * @tasklet: Tasklet that gets scheduled from interrupt context to complete a
  205. * transfer and call client callback.
  206. * @client: Cliented owned descriptor list.
  207. * @pending_queue: Submitted jobs, to be issued by issue_pending()
  208. * @active: Active descriptor.
  209. * @queue: Queued jobs.
  210. * @prepare_queue: Prepared jobs.
  211. * @dma_cfg: The client configuration of this dma channel.
  212. * @configured: whether the dma_cfg configuration is valid
  213. * @base: Pointer to the device instance struct.
  214. * @src_def_cfg: Default cfg register setting for src.
  215. * @dst_def_cfg: Default cfg register setting for dst.
  216. * @log_def: Default logical channel settings.
  217. * @lcpa: Pointer to dst and src lcpa settings.
  218. * @runtime_addr: runtime configured address.
  219. * @runtime_direction: runtime configured direction.
  220. *
  221. * This struct can either "be" a logical or a physical channel.
  222. */
  223. struct d40_chan {
  224. spinlock_t lock;
  225. int log_num;
  226. /* ID of the most recent completed transfer */
  227. int completed;
  228. int pending_tx;
  229. bool busy;
  230. struct d40_phy_res *phy_chan;
  231. struct dma_chan chan;
  232. struct tasklet_struct tasklet;
  233. struct list_head client;
  234. struct list_head pending_queue;
  235. struct list_head active;
  236. struct list_head queue;
  237. struct list_head prepare_queue;
  238. struct stedma40_chan_cfg dma_cfg;
  239. bool configured;
  240. struct d40_base *base;
  241. /* Default register configurations */
  242. u32 src_def_cfg;
  243. u32 dst_def_cfg;
  244. struct d40_def_lcsp log_def;
  245. struct d40_log_lli_full *lcpa;
  246. /* Runtime reconfiguration */
  247. dma_addr_t runtime_addr;
  248. enum dma_transfer_direction runtime_direction;
  249. };
  250. /**
  251. * struct d40_base - The big global struct, one for each probe'd instance.
  252. *
  253. * @interrupt_lock: Lock used to make sure one interrupt is handle a time.
  254. * @execmd_lock: Lock for execute command usage since several channels share
  255. * the same physical register.
  256. * @dev: The device structure.
  257. * @virtbase: The virtual base address of the DMA's register.
  258. * @rev: silicon revision detected.
  259. * @clk: Pointer to the DMA clock structure.
  260. * @phy_start: Physical memory start of the DMA registers.
  261. * @phy_size: Size of the DMA register map.
  262. * @irq: The IRQ number.
  263. * @num_phy_chans: The number of physical channels. Read from HW. This
  264. * is the number of available channels for this driver, not counting "Secure
  265. * mode" allocated physical channels.
  266. * @num_log_chans: The number of logical channels. Calculated from
  267. * num_phy_chans.
  268. * @dma_both: dma_device channels that can do both memcpy and slave transfers.
  269. * @dma_slave: dma_device channels that can do only do slave transfers.
  270. * @dma_memcpy: dma_device channels that can do only do memcpy transfers.
  271. * @phy_chans: Room for all possible physical channels in system.
  272. * @log_chans: Room for all possible logical channels in system.
  273. * @lookup_log_chans: Used to map interrupt number to logical channel. Points
  274. * to log_chans entries.
  275. * @lookup_phy_chans: Used to map interrupt number to physical channel. Points
  276. * to phy_chans entries.
  277. * @plat_data: Pointer to provided platform_data which is the driver
  278. * configuration.
  279. * @lcpa_regulator: Pointer to hold the regulator for the esram bank for lcla.
  280. * @phy_res: Vector containing all physical channels.
  281. * @lcla_pool: lcla pool settings and data.
  282. * @lcpa_base: The virtual mapped address of LCPA.
  283. * @phy_lcpa: The physical address of the LCPA.
  284. * @lcpa_size: The size of the LCPA area.
  285. * @desc_slab: cache for descriptors.
  286. * @reg_val_backup: Here the values of some hardware registers are stored
  287. * before the DMA is powered off. They are restored when the power is back on.
  288. * @reg_val_backup_v3: Backup of registers that only exits on dma40 v3 and
  289. * later.
  290. * @reg_val_backup_chan: Backup data for standard channel parameter registers.
  291. * @gcc_pwr_off_mask: Mask to maintain the channels that can be turned off.
  292. * @initialized: true if the dma has been initialized
  293. */
  294. struct d40_base {
  295. spinlock_t interrupt_lock;
  296. spinlock_t execmd_lock;
  297. struct device *dev;
  298. void __iomem *virtbase;
  299. u8 rev:4;
  300. struct clk *clk;
  301. phys_addr_t phy_start;
  302. resource_size_t phy_size;
  303. int irq;
  304. int num_phy_chans;
  305. int num_log_chans;
  306. struct dma_device dma_both;
  307. struct dma_device dma_slave;
  308. struct dma_device dma_memcpy;
  309. struct d40_chan *phy_chans;
  310. struct d40_chan *log_chans;
  311. struct d40_chan **lookup_log_chans;
  312. struct d40_chan **lookup_phy_chans;
  313. struct stedma40_platform_data *plat_data;
  314. struct regulator *lcpa_regulator;
  315. /* Physical half channels */
  316. struct d40_phy_res *phy_res;
  317. struct d40_lcla_pool lcla_pool;
  318. void *lcpa_base;
  319. dma_addr_t phy_lcpa;
  320. resource_size_t lcpa_size;
  321. struct kmem_cache *desc_slab;
  322. u32 reg_val_backup[BACKUP_REGS_SZ];
  323. u32 reg_val_backup_v3[BACKUP_REGS_SZ_V3];
  324. u32 *reg_val_backup_chan;
  325. u16 gcc_pwr_off_mask;
  326. bool initialized;
  327. };
  328. /**
  329. * struct d40_interrupt_lookup - lookup table for interrupt handler
  330. *
  331. * @src: Interrupt mask register.
  332. * @clr: Interrupt clear register.
  333. * @is_error: true if this is an error interrupt.
  334. * @offset: start delta in the lookup_log_chans in d40_base. If equals to
  335. * D40_PHY_CHAN, the lookup_phy_chans shall be used instead.
  336. */
  337. struct d40_interrupt_lookup {
  338. u32 src;
  339. u32 clr;
  340. bool is_error;
  341. int offset;
  342. };
  343. /**
  344. * struct d40_reg_val - simple lookup struct
  345. *
  346. * @reg: The register.
  347. * @val: The value that belongs to the register in reg.
  348. */
  349. struct d40_reg_val {
  350. unsigned int reg;
  351. unsigned int val;
  352. };
  353. static struct device *chan2dev(struct d40_chan *d40c)
  354. {
  355. return &d40c->chan.dev->device;
  356. }
  357. static bool chan_is_physical(struct d40_chan *chan)
  358. {
  359. return chan->log_num == D40_PHY_CHAN;
  360. }
  361. static bool chan_is_logical(struct d40_chan *chan)
  362. {
  363. return !chan_is_physical(chan);
  364. }
  365. static void __iomem *chan_base(struct d40_chan *chan)
  366. {
  367. return chan->base->virtbase + D40_DREG_PCBASE +
  368. chan->phy_chan->num * D40_DREG_PCDELTA;
  369. }
  370. #define d40_err(dev, format, arg...) \
  371. dev_err(dev, "[%s] " format, __func__, ## arg)
  372. #define chan_err(d40c, format, arg...) \
  373. d40_err(chan2dev(d40c), format, ## arg)
  374. static int d40_pool_lli_alloc(struct d40_chan *d40c, struct d40_desc *d40d,
  375. int lli_len)
  376. {
  377. bool is_log = chan_is_logical(d40c);
  378. u32 align;
  379. void *base;
  380. if (is_log)
  381. align = sizeof(struct d40_log_lli);
  382. else
  383. align = sizeof(struct d40_phy_lli);
  384. if (lli_len == 1) {
  385. base = d40d->lli_pool.pre_alloc_lli;
  386. d40d->lli_pool.size = sizeof(d40d->lli_pool.pre_alloc_lli);
  387. d40d->lli_pool.base = NULL;
  388. } else {
  389. d40d->lli_pool.size = lli_len * 2 * align;
  390. base = kmalloc(d40d->lli_pool.size + align, GFP_NOWAIT);
  391. d40d->lli_pool.base = base;
  392. if (d40d->lli_pool.base == NULL)
  393. return -ENOMEM;
  394. }
  395. if (is_log) {
  396. d40d->lli_log.src = PTR_ALIGN(base, align);
  397. d40d->lli_log.dst = d40d->lli_log.src + lli_len;
  398. d40d->lli_pool.dma_addr = 0;
  399. } else {
  400. d40d->lli_phy.src = PTR_ALIGN(base, align);
  401. d40d->lli_phy.dst = d40d->lli_phy.src + lli_len;
  402. d40d->lli_pool.dma_addr = dma_map_single(d40c->base->dev,
  403. d40d->lli_phy.src,
  404. d40d->lli_pool.size,
  405. DMA_TO_DEVICE);
  406. if (dma_mapping_error(d40c->base->dev,
  407. d40d->lli_pool.dma_addr)) {
  408. kfree(d40d->lli_pool.base);
  409. d40d->lli_pool.base = NULL;
  410. d40d->lli_pool.dma_addr = 0;
  411. return -ENOMEM;
  412. }
  413. }
  414. return 0;
  415. }
  416. static void d40_pool_lli_free(struct d40_chan *d40c, struct d40_desc *d40d)
  417. {
  418. if (d40d->lli_pool.dma_addr)
  419. dma_unmap_single(d40c->base->dev, d40d->lli_pool.dma_addr,
  420. d40d->lli_pool.size, DMA_TO_DEVICE);
  421. kfree(d40d->lli_pool.base);
  422. d40d->lli_pool.base = NULL;
  423. d40d->lli_pool.size = 0;
  424. d40d->lli_log.src = NULL;
  425. d40d->lli_log.dst = NULL;
  426. d40d->lli_phy.src = NULL;
  427. d40d->lli_phy.dst = NULL;
  428. }
  429. static int d40_lcla_alloc_one(struct d40_chan *d40c,
  430. struct d40_desc *d40d)
  431. {
  432. unsigned long flags;
  433. int i;
  434. int ret = -EINVAL;
  435. int p;
  436. spin_lock_irqsave(&d40c->base->lcla_pool.lock, flags);
  437. p = d40c->phy_chan->num * D40_LCLA_LINK_PER_EVENT_GRP;
  438. /*
  439. * Allocate both src and dst at the same time, therefore the half
  440. * start on 1 since 0 can't be used since zero is used as end marker.
  441. */
  442. for (i = 1 ; i < D40_LCLA_LINK_PER_EVENT_GRP / 2; i++) {
  443. if (!d40c->base->lcla_pool.alloc_map[p + i]) {
  444. d40c->base->lcla_pool.alloc_map[p + i] = d40d;
  445. d40d->lcla_alloc++;
  446. ret = i;
  447. break;
  448. }
  449. }
  450. spin_unlock_irqrestore(&d40c->base->lcla_pool.lock, flags);
  451. return ret;
  452. }
  453. static int d40_lcla_free_all(struct d40_chan *d40c,
  454. struct d40_desc *d40d)
  455. {
  456. unsigned long flags;
  457. int i;
  458. int ret = -EINVAL;
  459. if (chan_is_physical(d40c))
  460. return 0;
  461. spin_lock_irqsave(&d40c->base->lcla_pool.lock, flags);
  462. for (i = 1 ; i < D40_LCLA_LINK_PER_EVENT_GRP / 2; i++) {
  463. if (d40c->base->lcla_pool.alloc_map[d40c->phy_chan->num *
  464. D40_LCLA_LINK_PER_EVENT_GRP + i] == d40d) {
  465. d40c->base->lcla_pool.alloc_map[d40c->phy_chan->num *
  466. D40_LCLA_LINK_PER_EVENT_GRP + i] = NULL;
  467. d40d->lcla_alloc--;
  468. if (d40d->lcla_alloc == 0) {
  469. ret = 0;
  470. break;
  471. }
  472. }
  473. }
  474. spin_unlock_irqrestore(&d40c->base->lcla_pool.lock, flags);
  475. return ret;
  476. }
  477. static void d40_desc_remove(struct d40_desc *d40d)
  478. {
  479. list_del(&d40d->node);
  480. }
  481. static struct d40_desc *d40_desc_get(struct d40_chan *d40c)
  482. {
  483. struct d40_desc *desc = NULL;
  484. if (!list_empty(&d40c->client)) {
  485. struct d40_desc *d;
  486. struct d40_desc *_d;
  487. list_for_each_entry_safe(d, _d, &d40c->client, node) {
  488. if (async_tx_test_ack(&d->txd)) {
  489. d40_desc_remove(d);
  490. desc = d;
  491. memset(desc, 0, sizeof(*desc));
  492. break;
  493. }
  494. }
  495. }
  496. if (!desc)
  497. desc = kmem_cache_zalloc(d40c->base->desc_slab, GFP_NOWAIT);
  498. if (desc)
  499. INIT_LIST_HEAD(&desc->node);
  500. return desc;
  501. }
  502. static void d40_desc_free(struct d40_chan *d40c, struct d40_desc *d40d)
  503. {
  504. d40_pool_lli_free(d40c, d40d);
  505. d40_lcla_free_all(d40c, d40d);
  506. kmem_cache_free(d40c->base->desc_slab, d40d);
  507. }
  508. static void d40_desc_submit(struct d40_chan *d40c, struct d40_desc *desc)
  509. {
  510. list_add_tail(&desc->node, &d40c->active);
  511. }
  512. static void d40_phy_lli_load(struct d40_chan *chan, struct d40_desc *desc)
  513. {
  514. struct d40_phy_lli *lli_dst = desc->lli_phy.dst;
  515. struct d40_phy_lli *lli_src = desc->lli_phy.src;
  516. void __iomem *base = chan_base(chan);
  517. writel(lli_src->reg_cfg, base + D40_CHAN_REG_SSCFG);
  518. writel(lli_src->reg_elt, base + D40_CHAN_REG_SSELT);
  519. writel(lli_src->reg_ptr, base + D40_CHAN_REG_SSPTR);
  520. writel(lli_src->reg_lnk, base + D40_CHAN_REG_SSLNK);
  521. writel(lli_dst->reg_cfg, base + D40_CHAN_REG_SDCFG);
  522. writel(lli_dst->reg_elt, base + D40_CHAN_REG_SDELT);
  523. writel(lli_dst->reg_ptr, base + D40_CHAN_REG_SDPTR);
  524. writel(lli_dst->reg_lnk, base + D40_CHAN_REG_SDLNK);
  525. }
  526. static void d40_log_lli_to_lcxa(struct d40_chan *chan, struct d40_desc *desc)
  527. {
  528. struct d40_lcla_pool *pool = &chan->base->lcla_pool;
  529. struct d40_log_lli_bidir *lli = &desc->lli_log;
  530. int lli_current = desc->lli_current;
  531. int lli_len = desc->lli_len;
  532. bool cyclic = desc->cyclic;
  533. int curr_lcla = -EINVAL;
  534. int first_lcla = 0;
  535. bool use_esram_lcla = chan->base->plat_data->use_esram_lcla;
  536. bool linkback;
  537. /*
  538. * We may have partially running cyclic transfers, in case we did't get
  539. * enough LCLA entries.
  540. */
  541. linkback = cyclic && lli_current == 0;
  542. /*
  543. * For linkback, we need one LCLA even with only one link, because we
  544. * can't link back to the one in LCPA space
  545. */
  546. if (linkback || (lli_len - lli_current > 1)) {
  547. curr_lcla = d40_lcla_alloc_one(chan, desc);
  548. first_lcla = curr_lcla;
  549. }
  550. /*
  551. * For linkback, we normally load the LCPA in the loop since we need to
  552. * link it to the second LCLA and not the first. However, if we
  553. * couldn't even get a first LCLA, then we have to run in LCPA and
  554. * reload manually.
  555. */
  556. if (!linkback || curr_lcla == -EINVAL) {
  557. unsigned int flags = 0;
  558. if (curr_lcla == -EINVAL)
  559. flags |= LLI_TERM_INT;
  560. d40_log_lli_lcpa_write(chan->lcpa,
  561. &lli->dst[lli_current],
  562. &lli->src[lli_current],
  563. curr_lcla,
  564. flags);
  565. lli_current++;
  566. }
  567. if (curr_lcla < 0)
  568. goto out;
  569. for (; lli_current < lli_len; lli_current++) {
  570. unsigned int lcla_offset = chan->phy_chan->num * 1024 +
  571. 8 * curr_lcla * 2;
  572. struct d40_log_lli *lcla = pool->base + lcla_offset;
  573. unsigned int flags = 0;
  574. int next_lcla;
  575. if (lli_current + 1 < lli_len)
  576. next_lcla = d40_lcla_alloc_one(chan, desc);
  577. else
  578. next_lcla = linkback ? first_lcla : -EINVAL;
  579. if (cyclic || next_lcla == -EINVAL)
  580. flags |= LLI_TERM_INT;
  581. if (linkback && curr_lcla == first_lcla) {
  582. /* First link goes in both LCPA and LCLA */
  583. d40_log_lli_lcpa_write(chan->lcpa,
  584. &lli->dst[lli_current],
  585. &lli->src[lli_current],
  586. next_lcla, flags);
  587. }
  588. /*
  589. * One unused LCLA in the cyclic case if the very first
  590. * next_lcla fails...
  591. */
  592. d40_log_lli_lcla_write(lcla,
  593. &lli->dst[lli_current],
  594. &lli->src[lli_current],
  595. next_lcla, flags);
  596. /*
  597. * Cache maintenance is not needed if lcla is
  598. * mapped in esram
  599. */
  600. if (!use_esram_lcla) {
  601. dma_sync_single_range_for_device(chan->base->dev,
  602. pool->dma_addr, lcla_offset,
  603. 2 * sizeof(struct d40_log_lli),
  604. DMA_TO_DEVICE);
  605. }
  606. curr_lcla = next_lcla;
  607. if (curr_lcla == -EINVAL || curr_lcla == first_lcla) {
  608. lli_current++;
  609. break;
  610. }
  611. }
  612. out:
  613. desc->lli_current = lli_current;
  614. }
  615. static void d40_desc_load(struct d40_chan *d40c, struct d40_desc *d40d)
  616. {
  617. if (chan_is_physical(d40c)) {
  618. d40_phy_lli_load(d40c, d40d);
  619. d40d->lli_current = d40d->lli_len;
  620. } else
  621. d40_log_lli_to_lcxa(d40c, d40d);
  622. }
  623. static struct d40_desc *d40_first_active_get(struct d40_chan *d40c)
  624. {
  625. struct d40_desc *d;
  626. if (list_empty(&d40c->active))
  627. return NULL;
  628. d = list_first_entry(&d40c->active,
  629. struct d40_desc,
  630. node);
  631. return d;
  632. }
  633. /* remove desc from current queue and add it to the pending_queue */
  634. static void d40_desc_queue(struct d40_chan *d40c, struct d40_desc *desc)
  635. {
  636. d40_desc_remove(desc);
  637. desc->is_in_client_list = false;
  638. list_add_tail(&desc->node, &d40c->pending_queue);
  639. }
  640. static struct d40_desc *d40_first_pending(struct d40_chan *d40c)
  641. {
  642. struct d40_desc *d;
  643. if (list_empty(&d40c->pending_queue))
  644. return NULL;
  645. d = list_first_entry(&d40c->pending_queue,
  646. struct d40_desc,
  647. node);
  648. return d;
  649. }
  650. static struct d40_desc *d40_first_queued(struct d40_chan *d40c)
  651. {
  652. struct d40_desc *d;
  653. if (list_empty(&d40c->queue))
  654. return NULL;
  655. d = list_first_entry(&d40c->queue,
  656. struct d40_desc,
  657. node);
  658. return d;
  659. }
  660. static int d40_psize_2_burst_size(bool is_log, int psize)
  661. {
  662. if (is_log) {
  663. if (psize == STEDMA40_PSIZE_LOG_1)
  664. return 1;
  665. } else {
  666. if (psize == STEDMA40_PSIZE_PHY_1)
  667. return 1;
  668. }
  669. return 2 << psize;
  670. }
  671. /*
  672. * The dma only supports transmitting packages up to
  673. * STEDMA40_MAX_SEG_SIZE << data_width. Calculate the total number of
  674. * dma elements required to send the entire sg list
  675. */
  676. static int d40_size_2_dmalen(int size, u32 data_width1, u32 data_width2)
  677. {
  678. int dmalen;
  679. u32 max_w = max(data_width1, data_width2);
  680. u32 min_w = min(data_width1, data_width2);
  681. u32 seg_max = ALIGN(STEDMA40_MAX_SEG_SIZE << min_w, 1 << max_w);
  682. if (seg_max > STEDMA40_MAX_SEG_SIZE)
  683. seg_max -= (1 << max_w);
  684. if (!IS_ALIGNED(size, 1 << max_w))
  685. return -EINVAL;
  686. if (size <= seg_max)
  687. dmalen = 1;
  688. else {
  689. dmalen = size / seg_max;
  690. if (dmalen * seg_max < size)
  691. dmalen++;
  692. }
  693. return dmalen;
  694. }
  695. static int d40_sg_2_dmalen(struct scatterlist *sgl, int sg_len,
  696. u32 data_width1, u32 data_width2)
  697. {
  698. struct scatterlist *sg;
  699. int i;
  700. int len = 0;
  701. int ret;
  702. for_each_sg(sgl, sg, sg_len, i) {
  703. ret = d40_size_2_dmalen(sg_dma_len(sg),
  704. data_width1, data_width2);
  705. if (ret < 0)
  706. return ret;
  707. len += ret;
  708. }
  709. return len;
  710. }
  711. #ifdef CONFIG_PM
  712. static void dma40_backup(void __iomem *baseaddr, u32 *backup,
  713. u32 *regaddr, int num, bool save)
  714. {
  715. int i;
  716. for (i = 0; i < num; i++) {
  717. void __iomem *addr = baseaddr + regaddr[i];
  718. if (save)
  719. backup[i] = readl_relaxed(addr);
  720. else
  721. writel_relaxed(backup[i], addr);
  722. }
  723. }
  724. static void d40_save_restore_registers(struct d40_base *base, bool save)
  725. {
  726. int i;
  727. /* Save/Restore channel specific registers */
  728. for (i = 0; i < base->num_phy_chans; i++) {
  729. void __iomem *addr;
  730. int idx;
  731. if (base->phy_res[i].reserved)
  732. continue;
  733. addr = base->virtbase + D40_DREG_PCBASE + i * D40_DREG_PCDELTA;
  734. idx = i * ARRAY_SIZE(d40_backup_regs_chan);
  735. dma40_backup(addr, &base->reg_val_backup_chan[idx],
  736. d40_backup_regs_chan,
  737. ARRAY_SIZE(d40_backup_regs_chan),
  738. save);
  739. }
  740. /* Save/Restore global registers */
  741. dma40_backup(base->virtbase, base->reg_val_backup,
  742. d40_backup_regs, ARRAY_SIZE(d40_backup_regs),
  743. save);
  744. /* Save/Restore registers only existing on dma40 v3 and later */
  745. if (base->rev >= 3)
  746. dma40_backup(base->virtbase, base->reg_val_backup_v3,
  747. d40_backup_regs_v3,
  748. ARRAY_SIZE(d40_backup_regs_v3),
  749. save);
  750. }
  751. #else
  752. static void d40_save_restore_registers(struct d40_base *base, bool save)
  753. {
  754. }
  755. #endif
  756. static int d40_channel_execute_command(struct d40_chan *d40c,
  757. enum d40_command command)
  758. {
  759. u32 status;
  760. int i;
  761. void __iomem *active_reg;
  762. int ret = 0;
  763. unsigned long flags;
  764. u32 wmask;
  765. spin_lock_irqsave(&d40c->base->execmd_lock, flags);
  766. if (d40c->phy_chan->num % 2 == 0)
  767. active_reg = d40c->base->virtbase + D40_DREG_ACTIVE;
  768. else
  769. active_reg = d40c->base->virtbase + D40_DREG_ACTIVO;
  770. if (command == D40_DMA_SUSPEND_REQ) {
  771. status = (readl(active_reg) &
  772. D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
  773. D40_CHAN_POS(d40c->phy_chan->num);
  774. if (status == D40_DMA_SUSPENDED || status == D40_DMA_STOP)
  775. goto done;
  776. }
  777. wmask = 0xffffffff & ~(D40_CHAN_POS_MASK(d40c->phy_chan->num));
  778. writel(wmask | (command << D40_CHAN_POS(d40c->phy_chan->num)),
  779. active_reg);
  780. if (command == D40_DMA_SUSPEND_REQ) {
  781. for (i = 0 ; i < D40_SUSPEND_MAX_IT; i++) {
  782. status = (readl(active_reg) &
  783. D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
  784. D40_CHAN_POS(d40c->phy_chan->num);
  785. cpu_relax();
  786. /*
  787. * Reduce the number of bus accesses while
  788. * waiting for the DMA to suspend.
  789. */
  790. udelay(3);
  791. if (status == D40_DMA_STOP ||
  792. status == D40_DMA_SUSPENDED)
  793. break;
  794. }
  795. if (i == D40_SUSPEND_MAX_IT) {
  796. chan_err(d40c,
  797. "unable to suspend the chl %d (log: %d) status %x\n",
  798. d40c->phy_chan->num, d40c->log_num,
  799. status);
  800. dump_stack();
  801. ret = -EBUSY;
  802. }
  803. }
  804. done:
  805. spin_unlock_irqrestore(&d40c->base->execmd_lock, flags);
  806. return ret;
  807. }
  808. static void d40_term_all(struct d40_chan *d40c)
  809. {
  810. struct d40_desc *d40d;
  811. struct d40_desc *_d;
  812. /* Release active descriptors */
  813. while ((d40d = d40_first_active_get(d40c))) {
  814. d40_desc_remove(d40d);
  815. d40_desc_free(d40c, d40d);
  816. }
  817. /* Release queued descriptors waiting for transfer */
  818. while ((d40d = d40_first_queued(d40c))) {
  819. d40_desc_remove(d40d);
  820. d40_desc_free(d40c, d40d);
  821. }
  822. /* Release pending descriptors */
  823. while ((d40d = d40_first_pending(d40c))) {
  824. d40_desc_remove(d40d);
  825. d40_desc_free(d40c, d40d);
  826. }
  827. /* Release client owned descriptors */
  828. if (!list_empty(&d40c->client))
  829. list_for_each_entry_safe(d40d, _d, &d40c->client, node) {
  830. d40_desc_remove(d40d);
  831. d40_desc_free(d40c, d40d);
  832. }
  833. /* Release descriptors in prepare queue */
  834. if (!list_empty(&d40c->prepare_queue))
  835. list_for_each_entry_safe(d40d, _d,
  836. &d40c->prepare_queue, node) {
  837. d40_desc_remove(d40d);
  838. d40_desc_free(d40c, d40d);
  839. }
  840. d40c->pending_tx = 0;
  841. d40c->busy = false;
  842. }
  843. static void __d40_config_set_event(struct d40_chan *d40c, bool enable,
  844. u32 event, int reg)
  845. {
  846. void __iomem *addr = chan_base(d40c) + reg;
  847. int tries;
  848. if (!enable) {
  849. writel((D40_DEACTIVATE_EVENTLINE << D40_EVENTLINE_POS(event))
  850. | ~D40_EVENTLINE_MASK(event), addr);
  851. return;
  852. }
  853. /*
  854. * The hardware sometimes doesn't register the enable when src and dst
  855. * event lines are active on the same logical channel. Retry to ensure
  856. * it does. Usually only one retry is sufficient.
  857. */
  858. tries = 100;
  859. while (--tries) {
  860. writel((D40_ACTIVATE_EVENTLINE << D40_EVENTLINE_POS(event))
  861. | ~D40_EVENTLINE_MASK(event), addr);
  862. if (readl(addr) & D40_EVENTLINE_MASK(event))
  863. break;
  864. }
  865. if (tries != 99)
  866. dev_dbg(chan2dev(d40c),
  867. "[%s] workaround enable S%cLNK (%d tries)\n",
  868. __func__, reg == D40_CHAN_REG_SSLNK ? 'S' : 'D',
  869. 100 - tries);
  870. WARN_ON(!tries);
  871. }
  872. static void d40_config_set_event(struct d40_chan *d40c, bool do_enable)
  873. {
  874. unsigned long flags;
  875. spin_lock_irqsave(&d40c->phy_chan->lock, flags);
  876. /* Enable event line connected to device (or memcpy) */
  877. if ((d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) ||
  878. (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_PERIPH)) {
  879. u32 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.src_dev_type);
  880. __d40_config_set_event(d40c, do_enable, event,
  881. D40_CHAN_REG_SSLNK);
  882. }
  883. if (d40c->dma_cfg.dir != STEDMA40_PERIPH_TO_MEM) {
  884. u32 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dst_dev_type);
  885. __d40_config_set_event(d40c, do_enable, event,
  886. D40_CHAN_REG_SDLNK);
  887. }
  888. spin_unlock_irqrestore(&d40c->phy_chan->lock, flags);
  889. }
  890. static u32 d40_chan_has_events(struct d40_chan *d40c)
  891. {
  892. void __iomem *chanbase = chan_base(d40c);
  893. u32 val;
  894. val = readl(chanbase + D40_CHAN_REG_SSLNK);
  895. val |= readl(chanbase + D40_CHAN_REG_SDLNK);
  896. return val;
  897. }
  898. static u32 d40_get_prmo(struct d40_chan *d40c)
  899. {
  900. static const unsigned int phy_map[] = {
  901. [STEDMA40_PCHAN_BASIC_MODE]
  902. = D40_DREG_PRMO_PCHAN_BASIC,
  903. [STEDMA40_PCHAN_MODULO_MODE]
  904. = D40_DREG_PRMO_PCHAN_MODULO,
  905. [STEDMA40_PCHAN_DOUBLE_DST_MODE]
  906. = D40_DREG_PRMO_PCHAN_DOUBLE_DST,
  907. };
  908. static const unsigned int log_map[] = {
  909. [STEDMA40_LCHAN_SRC_PHY_DST_LOG]
  910. = D40_DREG_PRMO_LCHAN_SRC_PHY_DST_LOG,
  911. [STEDMA40_LCHAN_SRC_LOG_DST_PHY]
  912. = D40_DREG_PRMO_LCHAN_SRC_LOG_DST_PHY,
  913. [STEDMA40_LCHAN_SRC_LOG_DST_LOG]
  914. = D40_DREG_PRMO_LCHAN_SRC_LOG_DST_LOG,
  915. };
  916. if (chan_is_physical(d40c))
  917. return phy_map[d40c->dma_cfg.mode_opt];
  918. else
  919. return log_map[d40c->dma_cfg.mode_opt];
  920. }
  921. static void d40_config_write(struct d40_chan *d40c)
  922. {
  923. u32 addr_base;
  924. u32 var;
  925. /* Odd addresses are even addresses + 4 */
  926. addr_base = (d40c->phy_chan->num % 2) * 4;
  927. /* Setup channel mode to logical or physical */
  928. var = ((u32)(chan_is_logical(d40c)) + 1) <<
  929. D40_CHAN_POS(d40c->phy_chan->num);
  930. writel(var, d40c->base->virtbase + D40_DREG_PRMSE + addr_base);
  931. /* Setup operational mode option register */
  932. var = d40_get_prmo(d40c) << D40_CHAN_POS(d40c->phy_chan->num);
  933. writel(var, d40c->base->virtbase + D40_DREG_PRMOE + addr_base);
  934. if (chan_is_logical(d40c)) {
  935. int lidx = (d40c->phy_chan->num << D40_SREG_ELEM_LOG_LIDX_POS)
  936. & D40_SREG_ELEM_LOG_LIDX_MASK;
  937. void __iomem *chanbase = chan_base(d40c);
  938. /* Set default config for CFG reg */
  939. writel(d40c->src_def_cfg, chanbase + D40_CHAN_REG_SSCFG);
  940. writel(d40c->dst_def_cfg, chanbase + D40_CHAN_REG_SDCFG);
  941. /* Set LIDX for lcla */
  942. writel(lidx, chanbase + D40_CHAN_REG_SSELT);
  943. writel(lidx, chanbase + D40_CHAN_REG_SDELT);
  944. /* Clear LNK which will be used by d40_chan_has_events() */
  945. writel(0, chanbase + D40_CHAN_REG_SSLNK);
  946. writel(0, chanbase + D40_CHAN_REG_SDLNK);
  947. }
  948. }
  949. static u32 d40_residue(struct d40_chan *d40c)
  950. {
  951. u32 num_elt;
  952. if (chan_is_logical(d40c))
  953. num_elt = (readl(&d40c->lcpa->lcsp2) & D40_MEM_LCSP2_ECNT_MASK)
  954. >> D40_MEM_LCSP2_ECNT_POS;
  955. else {
  956. u32 val = readl(chan_base(d40c) + D40_CHAN_REG_SDELT);
  957. num_elt = (val & D40_SREG_ELEM_PHY_ECNT_MASK)
  958. >> D40_SREG_ELEM_PHY_ECNT_POS;
  959. }
  960. return num_elt * (1 << d40c->dma_cfg.dst_info.data_width);
  961. }
  962. static bool d40_tx_is_linked(struct d40_chan *d40c)
  963. {
  964. bool is_link;
  965. if (chan_is_logical(d40c))
  966. is_link = readl(&d40c->lcpa->lcsp3) & D40_MEM_LCSP3_DLOS_MASK;
  967. else
  968. is_link = readl(chan_base(d40c) + D40_CHAN_REG_SDLNK)
  969. & D40_SREG_LNK_PHYS_LNK_MASK;
  970. return is_link;
  971. }
  972. static int d40_pause(struct d40_chan *d40c)
  973. {
  974. int res = 0;
  975. unsigned long flags;
  976. if (!d40c->busy)
  977. return 0;
  978. pm_runtime_get_sync(d40c->base->dev);
  979. spin_lock_irqsave(&d40c->lock, flags);
  980. res = d40_channel_execute_command(d40c, D40_DMA_SUSPEND_REQ);
  981. if (res == 0) {
  982. if (chan_is_logical(d40c)) {
  983. d40_config_set_event(d40c, false);
  984. /* Resume the other logical channels if any */
  985. if (d40_chan_has_events(d40c))
  986. res = d40_channel_execute_command(d40c,
  987. D40_DMA_RUN);
  988. }
  989. }
  990. pm_runtime_mark_last_busy(d40c->base->dev);
  991. pm_runtime_put_autosuspend(d40c->base->dev);
  992. spin_unlock_irqrestore(&d40c->lock, flags);
  993. return res;
  994. }
  995. static int d40_resume(struct d40_chan *d40c)
  996. {
  997. int res = 0;
  998. unsigned long flags;
  999. if (!d40c->busy)
  1000. return 0;
  1001. spin_lock_irqsave(&d40c->lock, flags);
  1002. pm_runtime_get_sync(d40c->base->dev);
  1003. if (d40c->base->rev == 0)
  1004. if (chan_is_logical(d40c)) {
  1005. res = d40_channel_execute_command(d40c,
  1006. D40_DMA_SUSPEND_REQ);
  1007. goto no_suspend;
  1008. }
  1009. /* If bytes left to transfer or linked tx resume job */
  1010. if (d40_residue(d40c) || d40_tx_is_linked(d40c)) {
  1011. if (chan_is_logical(d40c))
  1012. d40_config_set_event(d40c, true);
  1013. res = d40_channel_execute_command(d40c, D40_DMA_RUN);
  1014. }
  1015. no_suspend:
  1016. pm_runtime_mark_last_busy(d40c->base->dev);
  1017. pm_runtime_put_autosuspend(d40c->base->dev);
  1018. spin_unlock_irqrestore(&d40c->lock, flags);
  1019. return res;
  1020. }
  1021. static int d40_terminate_all(struct d40_chan *chan)
  1022. {
  1023. unsigned long flags;
  1024. int ret = 0;
  1025. ret = d40_pause(chan);
  1026. if (!ret && chan_is_physical(chan))
  1027. ret = d40_channel_execute_command(chan, D40_DMA_STOP);
  1028. spin_lock_irqsave(&chan->lock, flags);
  1029. d40_term_all(chan);
  1030. spin_unlock_irqrestore(&chan->lock, flags);
  1031. return ret;
  1032. }
  1033. static dma_cookie_t d40_tx_submit(struct dma_async_tx_descriptor *tx)
  1034. {
  1035. struct d40_chan *d40c = container_of(tx->chan,
  1036. struct d40_chan,
  1037. chan);
  1038. struct d40_desc *d40d = container_of(tx, struct d40_desc, txd);
  1039. unsigned long flags;
  1040. spin_lock_irqsave(&d40c->lock, flags);
  1041. d40c->chan.cookie++;
  1042. if (d40c->chan.cookie < 0)
  1043. d40c->chan.cookie = 1;
  1044. d40d->txd.cookie = d40c->chan.cookie;
  1045. d40_desc_queue(d40c, d40d);
  1046. spin_unlock_irqrestore(&d40c->lock, flags);
  1047. return tx->cookie;
  1048. }
  1049. static int d40_start(struct d40_chan *d40c)
  1050. {
  1051. if (d40c->base->rev == 0) {
  1052. int err;
  1053. if (chan_is_logical(d40c)) {
  1054. err = d40_channel_execute_command(d40c,
  1055. D40_DMA_SUSPEND_REQ);
  1056. if (err)
  1057. return err;
  1058. }
  1059. }
  1060. if (chan_is_logical(d40c))
  1061. d40_config_set_event(d40c, true);
  1062. return d40_channel_execute_command(d40c, D40_DMA_RUN);
  1063. }
  1064. static struct d40_desc *d40_queue_start(struct d40_chan *d40c)
  1065. {
  1066. struct d40_desc *d40d;
  1067. int err;
  1068. /* Start queued jobs, if any */
  1069. d40d = d40_first_queued(d40c);
  1070. if (d40d != NULL) {
  1071. if (!d40c->busy)
  1072. d40c->busy = true;
  1073. pm_runtime_get_sync(d40c->base->dev);
  1074. /* Remove from queue */
  1075. d40_desc_remove(d40d);
  1076. /* Add to active queue */
  1077. d40_desc_submit(d40c, d40d);
  1078. /* Initiate DMA job */
  1079. d40_desc_load(d40c, d40d);
  1080. /* Start dma job */
  1081. err = d40_start(d40c);
  1082. if (err)
  1083. return NULL;
  1084. }
  1085. return d40d;
  1086. }
  1087. /* called from interrupt context */
  1088. static void dma_tc_handle(struct d40_chan *d40c)
  1089. {
  1090. struct d40_desc *d40d;
  1091. /* Get first active entry from list */
  1092. d40d = d40_first_active_get(d40c);
  1093. if (d40d == NULL)
  1094. return;
  1095. if (d40d->cyclic) {
  1096. /*
  1097. * If this was a paritially loaded list, we need to reloaded
  1098. * it, and only when the list is completed. We need to check
  1099. * for done because the interrupt will hit for every link, and
  1100. * not just the last one.
  1101. */
  1102. if (d40d->lli_current < d40d->lli_len
  1103. && !d40_tx_is_linked(d40c)
  1104. && !d40_residue(d40c)) {
  1105. d40_lcla_free_all(d40c, d40d);
  1106. d40_desc_load(d40c, d40d);
  1107. (void) d40_start(d40c);
  1108. if (d40d->lli_current == d40d->lli_len)
  1109. d40d->lli_current = 0;
  1110. }
  1111. } else {
  1112. d40_lcla_free_all(d40c, d40d);
  1113. if (d40d->lli_current < d40d->lli_len) {
  1114. d40_desc_load(d40c, d40d);
  1115. /* Start dma job */
  1116. (void) d40_start(d40c);
  1117. return;
  1118. }
  1119. if (d40_queue_start(d40c) == NULL)
  1120. d40c->busy = false;
  1121. pm_runtime_mark_last_busy(d40c->base->dev);
  1122. pm_runtime_put_autosuspend(d40c->base->dev);
  1123. }
  1124. d40c->pending_tx++;
  1125. tasklet_schedule(&d40c->tasklet);
  1126. }
  1127. static void dma_tasklet(unsigned long data)
  1128. {
  1129. struct d40_chan *d40c = (struct d40_chan *) data;
  1130. struct d40_desc *d40d;
  1131. unsigned long flags;
  1132. dma_async_tx_callback callback;
  1133. void *callback_param;
  1134. spin_lock_irqsave(&d40c->lock, flags);
  1135. /* Get first active entry from list */
  1136. d40d = d40_first_active_get(d40c);
  1137. if (d40d == NULL)
  1138. goto err;
  1139. if (!d40d->cyclic)
  1140. d40c->completed = d40d->txd.cookie;
  1141. /*
  1142. * If terminating a channel pending_tx is set to zero.
  1143. * This prevents any finished active jobs to return to the client.
  1144. */
  1145. if (d40c->pending_tx == 0) {
  1146. spin_unlock_irqrestore(&d40c->lock, flags);
  1147. return;
  1148. }
  1149. /* Callback to client */
  1150. callback = d40d->txd.callback;
  1151. callback_param = d40d->txd.callback_param;
  1152. if (!d40d->cyclic) {
  1153. if (async_tx_test_ack(&d40d->txd)) {
  1154. d40_desc_remove(d40d);
  1155. d40_desc_free(d40c, d40d);
  1156. } else {
  1157. if (!d40d->is_in_client_list) {
  1158. d40_desc_remove(d40d);
  1159. d40_lcla_free_all(d40c, d40d);
  1160. list_add_tail(&d40d->node, &d40c->client);
  1161. d40d->is_in_client_list = true;
  1162. }
  1163. }
  1164. }
  1165. d40c->pending_tx--;
  1166. if (d40c->pending_tx)
  1167. tasklet_schedule(&d40c->tasklet);
  1168. spin_unlock_irqrestore(&d40c->lock, flags);
  1169. if (callback && (d40d->txd.flags & DMA_PREP_INTERRUPT))
  1170. callback(callback_param);
  1171. return;
  1172. err:
  1173. /* Rescue manoeuvre if receiving double interrupts */
  1174. if (d40c->pending_tx > 0)
  1175. d40c->pending_tx--;
  1176. spin_unlock_irqrestore(&d40c->lock, flags);
  1177. }
  1178. static irqreturn_t d40_handle_interrupt(int irq, void *data)
  1179. {
  1180. static const struct d40_interrupt_lookup il[] = {
  1181. {D40_DREG_LCTIS0, D40_DREG_LCICR0, false, 0},
  1182. {D40_DREG_LCTIS1, D40_DREG_LCICR1, false, 32},
  1183. {D40_DREG_LCTIS2, D40_DREG_LCICR2, false, 64},
  1184. {D40_DREG_LCTIS3, D40_DREG_LCICR3, false, 96},
  1185. {D40_DREG_LCEIS0, D40_DREG_LCICR0, true, 0},
  1186. {D40_DREG_LCEIS1, D40_DREG_LCICR1, true, 32},
  1187. {D40_DREG_LCEIS2, D40_DREG_LCICR2, true, 64},
  1188. {D40_DREG_LCEIS3, D40_DREG_LCICR3, true, 96},
  1189. {D40_DREG_PCTIS, D40_DREG_PCICR, false, D40_PHY_CHAN},
  1190. {D40_DREG_PCEIS, D40_DREG_PCICR, true, D40_PHY_CHAN},
  1191. };
  1192. int i;
  1193. u32 regs[ARRAY_SIZE(il)];
  1194. u32 idx;
  1195. u32 row;
  1196. long chan = -1;
  1197. struct d40_chan *d40c;
  1198. unsigned long flags;
  1199. struct d40_base *base = data;
  1200. spin_lock_irqsave(&base->interrupt_lock, flags);
  1201. /* Read interrupt status of both logical and physical channels */
  1202. for (i = 0; i < ARRAY_SIZE(il); i++)
  1203. regs[i] = readl(base->virtbase + il[i].src);
  1204. for (;;) {
  1205. chan = find_next_bit((unsigned long *)regs,
  1206. BITS_PER_LONG * ARRAY_SIZE(il), chan + 1);
  1207. /* No more set bits found? */
  1208. if (chan == BITS_PER_LONG * ARRAY_SIZE(il))
  1209. break;
  1210. row = chan / BITS_PER_LONG;
  1211. idx = chan & (BITS_PER_LONG - 1);
  1212. /* ACK interrupt */
  1213. writel(1 << idx, base->virtbase + il[row].clr);
  1214. if (il[row].offset == D40_PHY_CHAN)
  1215. d40c = base->lookup_phy_chans[idx];
  1216. else
  1217. d40c = base->lookup_log_chans[il[row].offset + idx];
  1218. spin_lock(&d40c->lock);
  1219. if (!il[row].is_error)
  1220. dma_tc_handle(d40c);
  1221. else
  1222. d40_err(base->dev, "IRQ chan: %ld offset %d idx %d\n",
  1223. chan, il[row].offset, idx);
  1224. spin_unlock(&d40c->lock);
  1225. }
  1226. spin_unlock_irqrestore(&base->interrupt_lock, flags);
  1227. return IRQ_HANDLED;
  1228. }
  1229. static int d40_validate_conf(struct d40_chan *d40c,
  1230. struct stedma40_chan_cfg *conf)
  1231. {
  1232. int res = 0;
  1233. u32 dst_event_group = D40_TYPE_TO_GROUP(conf->dst_dev_type);
  1234. u32 src_event_group = D40_TYPE_TO_GROUP(conf->src_dev_type);
  1235. bool is_log = conf->mode == STEDMA40_MODE_LOGICAL;
  1236. if (!conf->dir) {
  1237. chan_err(d40c, "Invalid direction.\n");
  1238. res = -EINVAL;
  1239. }
  1240. if (conf->dst_dev_type != STEDMA40_DEV_DST_MEMORY &&
  1241. d40c->base->plat_data->dev_tx[conf->dst_dev_type] == 0 &&
  1242. d40c->runtime_addr == 0) {
  1243. chan_err(d40c, "Invalid TX channel address (%d)\n",
  1244. conf->dst_dev_type);
  1245. res = -EINVAL;
  1246. }
  1247. if (conf->src_dev_type != STEDMA40_DEV_SRC_MEMORY &&
  1248. d40c->base->plat_data->dev_rx[conf->src_dev_type] == 0 &&
  1249. d40c->runtime_addr == 0) {
  1250. chan_err(d40c, "Invalid RX channel address (%d)\n",
  1251. conf->src_dev_type);
  1252. res = -EINVAL;
  1253. }
  1254. if (conf->dir == STEDMA40_MEM_TO_PERIPH &&
  1255. dst_event_group == STEDMA40_DEV_DST_MEMORY) {
  1256. chan_err(d40c, "Invalid dst\n");
  1257. res = -EINVAL;
  1258. }
  1259. if (conf->dir == STEDMA40_PERIPH_TO_MEM &&
  1260. src_event_group == STEDMA40_DEV_SRC_MEMORY) {
  1261. chan_err(d40c, "Invalid src\n");
  1262. res = -EINVAL;
  1263. }
  1264. if (src_event_group == STEDMA40_DEV_SRC_MEMORY &&
  1265. dst_event_group == STEDMA40_DEV_DST_MEMORY && is_log) {
  1266. chan_err(d40c, "No event line\n");
  1267. res = -EINVAL;
  1268. }
  1269. if (conf->dir == STEDMA40_PERIPH_TO_PERIPH &&
  1270. (src_event_group != dst_event_group)) {
  1271. chan_err(d40c, "Invalid event group\n");
  1272. res = -EINVAL;
  1273. }
  1274. if (conf->dir == STEDMA40_PERIPH_TO_PERIPH) {
  1275. /*
  1276. * DMAC HW supports it. Will be added to this driver,
  1277. * in case any dma client requires it.
  1278. */
  1279. chan_err(d40c, "periph to periph not supported\n");
  1280. res = -EINVAL;
  1281. }
  1282. if (d40_psize_2_burst_size(is_log, conf->src_info.psize) *
  1283. (1 << conf->src_info.data_width) !=
  1284. d40_psize_2_burst_size(is_log, conf->dst_info.psize) *
  1285. (1 << conf->dst_info.data_width)) {
  1286. /*
  1287. * The DMAC hardware only supports
  1288. * src (burst x width) == dst (burst x width)
  1289. */
  1290. chan_err(d40c, "src (burst x width) != dst (burst x width)\n");
  1291. res = -EINVAL;
  1292. }
  1293. return res;
  1294. }
  1295. static bool d40_alloc_mask_set(struct d40_phy_res *phy,
  1296. bool is_src, int log_event_line, bool is_log,
  1297. bool *first_user)
  1298. {
  1299. unsigned long flags;
  1300. spin_lock_irqsave(&phy->lock, flags);
  1301. *first_user = ((phy->allocated_src | phy->allocated_dst)
  1302. == D40_ALLOC_FREE);
  1303. if (!is_log) {
  1304. /* Physical interrupts are masked per physical full channel */
  1305. if (phy->allocated_src == D40_ALLOC_FREE &&
  1306. phy->allocated_dst == D40_ALLOC_FREE) {
  1307. phy->allocated_dst = D40_ALLOC_PHY;
  1308. phy->allocated_src = D40_ALLOC_PHY;
  1309. goto found;
  1310. } else
  1311. goto not_found;
  1312. }
  1313. /* Logical channel */
  1314. if (is_src) {
  1315. if (phy->allocated_src == D40_ALLOC_PHY)
  1316. goto not_found;
  1317. if (phy->allocated_src == D40_ALLOC_FREE)
  1318. phy->allocated_src = D40_ALLOC_LOG_FREE;
  1319. if (!(phy->allocated_src & (1 << log_event_line))) {
  1320. phy->allocated_src |= 1 << log_event_line;
  1321. goto found;
  1322. } else
  1323. goto not_found;
  1324. } else {
  1325. if (phy->allocated_dst == D40_ALLOC_PHY)
  1326. goto not_found;
  1327. if (phy->allocated_dst == D40_ALLOC_FREE)
  1328. phy->allocated_dst = D40_ALLOC_LOG_FREE;
  1329. if (!(phy->allocated_dst & (1 << log_event_line))) {
  1330. phy->allocated_dst |= 1 << log_event_line;
  1331. goto found;
  1332. } else
  1333. goto not_found;
  1334. }
  1335. not_found:
  1336. spin_unlock_irqrestore(&phy->lock, flags);
  1337. return false;
  1338. found:
  1339. spin_unlock_irqrestore(&phy->lock, flags);
  1340. return true;
  1341. }
  1342. static bool d40_alloc_mask_free(struct d40_phy_res *phy, bool is_src,
  1343. int log_event_line)
  1344. {
  1345. unsigned long flags;
  1346. bool is_free = false;
  1347. spin_lock_irqsave(&phy->lock, flags);
  1348. if (!log_event_line) {
  1349. phy->allocated_dst = D40_ALLOC_FREE;
  1350. phy->allocated_src = D40_ALLOC_FREE;
  1351. is_free = true;
  1352. goto out;
  1353. }
  1354. /* Logical channel */
  1355. if (is_src) {
  1356. phy->allocated_src &= ~(1 << log_event_line);
  1357. if (phy->allocated_src == D40_ALLOC_LOG_FREE)
  1358. phy->allocated_src = D40_ALLOC_FREE;
  1359. } else {
  1360. phy->allocated_dst &= ~(1 << log_event_line);
  1361. if (phy->allocated_dst == D40_ALLOC_LOG_FREE)
  1362. phy->allocated_dst = D40_ALLOC_FREE;
  1363. }
  1364. is_free = ((phy->allocated_src | phy->allocated_dst) ==
  1365. D40_ALLOC_FREE);
  1366. out:
  1367. spin_unlock_irqrestore(&phy->lock, flags);
  1368. return is_free;
  1369. }
  1370. static int d40_allocate_channel(struct d40_chan *d40c, bool *first_phy_user)
  1371. {
  1372. int dev_type;
  1373. int event_group;
  1374. int event_line;
  1375. struct d40_phy_res *phys;
  1376. int i;
  1377. int j;
  1378. int log_num;
  1379. bool is_src;
  1380. bool is_log = d40c->dma_cfg.mode == STEDMA40_MODE_LOGICAL;
  1381. phys = d40c->base->phy_res;
  1382. if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) {
  1383. dev_type = d40c->dma_cfg.src_dev_type;
  1384. log_num = 2 * dev_type;
  1385. is_src = true;
  1386. } else if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_PERIPH ||
  1387. d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) {
  1388. /* dst event lines are used for logical memcpy */
  1389. dev_type = d40c->dma_cfg.dst_dev_type;
  1390. log_num = 2 * dev_type + 1;
  1391. is_src = false;
  1392. } else
  1393. return -EINVAL;
  1394. event_group = D40_TYPE_TO_GROUP(dev_type);
  1395. event_line = D40_TYPE_TO_EVENT(dev_type);
  1396. if (!is_log) {
  1397. if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) {
  1398. /* Find physical half channel */
  1399. for (i = 0; i < d40c->base->num_phy_chans; i++) {
  1400. if (d40_alloc_mask_set(&phys[i], is_src,
  1401. 0, is_log,
  1402. first_phy_user))
  1403. goto found_phy;
  1404. }
  1405. } else
  1406. for (j = 0; j < d40c->base->num_phy_chans; j += 8) {
  1407. int phy_num = j + event_group * 2;
  1408. for (i = phy_num; i < phy_num + 2; i++) {
  1409. if (d40_alloc_mask_set(&phys[i],
  1410. is_src,
  1411. 0,
  1412. is_log,
  1413. first_phy_user))
  1414. goto found_phy;
  1415. }
  1416. }
  1417. return -EINVAL;
  1418. found_phy:
  1419. d40c->phy_chan = &phys[i];
  1420. d40c->log_num = D40_PHY_CHAN;
  1421. goto out;
  1422. }
  1423. if (dev_type == -1)
  1424. return -EINVAL;
  1425. /* Find logical channel */
  1426. for (j = 0; j < d40c->base->num_phy_chans; j += 8) {
  1427. int phy_num = j + event_group * 2;
  1428. if (d40c->dma_cfg.use_fixed_channel) {
  1429. i = d40c->dma_cfg.phy_channel;
  1430. if ((i != phy_num) && (i != phy_num + 1)) {
  1431. dev_err(chan2dev(d40c),
  1432. "invalid fixed phy channel %d\n", i);
  1433. return -EINVAL;
  1434. }
  1435. if (d40_alloc_mask_set(&phys[i], is_src, event_line,
  1436. is_log, first_phy_user))
  1437. goto found_log;
  1438. dev_err(chan2dev(d40c),
  1439. "could not allocate fixed phy channel %d\n", i);
  1440. return -EINVAL;
  1441. }
  1442. /*
  1443. * Spread logical channels across all available physical rather
  1444. * than pack every logical channel at the first available phy
  1445. * channels.
  1446. */
  1447. if (is_src) {
  1448. for (i = phy_num; i < phy_num + 2; i++) {
  1449. if (d40_alloc_mask_set(&phys[i], is_src,
  1450. event_line, is_log,
  1451. first_phy_user))
  1452. goto found_log;
  1453. }
  1454. } else {
  1455. for (i = phy_num + 1; i >= phy_num; i--) {
  1456. if (d40_alloc_mask_set(&phys[i], is_src,
  1457. event_line, is_log,
  1458. first_phy_user))
  1459. goto found_log;
  1460. }
  1461. }
  1462. }
  1463. return -EINVAL;
  1464. found_log:
  1465. d40c->phy_chan = &phys[i];
  1466. d40c->log_num = log_num;
  1467. out:
  1468. if (is_log)
  1469. d40c->base->lookup_log_chans[d40c->log_num] = d40c;
  1470. else
  1471. d40c->base->lookup_phy_chans[d40c->phy_chan->num] = d40c;
  1472. return 0;
  1473. }
  1474. static int d40_config_memcpy(struct d40_chan *d40c)
  1475. {
  1476. dma_cap_mask_t cap = d40c->chan.device->cap_mask;
  1477. if (dma_has_cap(DMA_MEMCPY, cap) && !dma_has_cap(DMA_SLAVE, cap)) {
  1478. d40c->dma_cfg = *d40c->base->plat_data->memcpy_conf_log;
  1479. d40c->dma_cfg.src_dev_type = STEDMA40_DEV_SRC_MEMORY;
  1480. d40c->dma_cfg.dst_dev_type = d40c->base->plat_data->
  1481. memcpy[d40c->chan.chan_id];
  1482. } else if (dma_has_cap(DMA_MEMCPY, cap) &&
  1483. dma_has_cap(DMA_SLAVE, cap)) {
  1484. d40c->dma_cfg = *d40c->base->plat_data->memcpy_conf_phy;
  1485. } else {
  1486. chan_err(d40c, "No memcpy\n");
  1487. return -EINVAL;
  1488. }
  1489. return 0;
  1490. }
  1491. static int d40_free_dma(struct d40_chan *d40c)
  1492. {
  1493. int res = 0;
  1494. u32 event;
  1495. struct d40_phy_res *phy = d40c->phy_chan;
  1496. bool is_src;
  1497. /* Terminate all queued and active transfers */
  1498. d40_term_all(d40c);
  1499. if (phy == NULL) {
  1500. chan_err(d40c, "phy == null\n");
  1501. return -EINVAL;
  1502. }
  1503. if (phy->allocated_src == D40_ALLOC_FREE &&
  1504. phy->allocated_dst == D40_ALLOC_FREE) {
  1505. chan_err(d40c, "channel already free\n");
  1506. return -EINVAL;
  1507. }
  1508. if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_PERIPH ||
  1509. d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) {
  1510. event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dst_dev_type);
  1511. is_src = false;
  1512. } else if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) {
  1513. event = D40_TYPE_TO_EVENT(d40c->dma_cfg.src_dev_type);
  1514. is_src = true;
  1515. } else {
  1516. chan_err(d40c, "Unknown direction\n");
  1517. return -EINVAL;
  1518. }
  1519. pm_runtime_get_sync(d40c->base->dev);
  1520. res = d40_channel_execute_command(d40c, D40_DMA_SUSPEND_REQ);
  1521. if (res) {
  1522. chan_err(d40c, "suspend failed\n");
  1523. goto out;
  1524. }
  1525. if (chan_is_logical(d40c)) {
  1526. /* Release logical channel, deactivate the event line */
  1527. d40_config_set_event(d40c, false);
  1528. d40c->base->lookup_log_chans[d40c->log_num] = NULL;
  1529. /*
  1530. * Check if there are more logical allocation
  1531. * on this phy channel.
  1532. */
  1533. if (!d40_alloc_mask_free(phy, is_src, event)) {
  1534. /* Resume the other logical channels if any */
  1535. if (d40_chan_has_events(d40c)) {
  1536. res = d40_channel_execute_command(d40c,
  1537. D40_DMA_RUN);
  1538. if (res)
  1539. chan_err(d40c,
  1540. "Executing RUN command\n");
  1541. }
  1542. goto out;
  1543. }
  1544. } else {
  1545. (void) d40_alloc_mask_free(phy, is_src, 0);
  1546. }
  1547. /* Release physical channel */
  1548. res = d40_channel_execute_command(d40c, D40_DMA_STOP);
  1549. if (res) {
  1550. chan_err(d40c, "Failed to stop channel\n");
  1551. goto out;
  1552. }
  1553. if (d40c->busy) {
  1554. pm_runtime_mark_last_busy(d40c->base->dev);
  1555. pm_runtime_put_autosuspend(d40c->base->dev);
  1556. }
  1557. d40c->busy = false;
  1558. d40c->phy_chan = NULL;
  1559. d40c->configured = false;
  1560. d40c->base->lookup_phy_chans[phy->num] = NULL;
  1561. out:
  1562. pm_runtime_mark_last_busy(d40c->base->dev);
  1563. pm_runtime_put_autosuspend(d40c->base->dev);
  1564. return res;
  1565. }
  1566. static bool d40_is_paused(struct d40_chan *d40c)
  1567. {
  1568. void __iomem *chanbase = chan_base(d40c);
  1569. bool is_paused = false;
  1570. unsigned long flags;
  1571. void __iomem *active_reg;
  1572. u32 status;
  1573. u32 event;
  1574. spin_lock_irqsave(&d40c->lock, flags);
  1575. if (chan_is_physical(d40c)) {
  1576. if (d40c->phy_chan->num % 2 == 0)
  1577. active_reg = d40c->base->virtbase + D40_DREG_ACTIVE;
  1578. else
  1579. active_reg = d40c->base->virtbase + D40_DREG_ACTIVO;
  1580. status = (readl(active_reg) &
  1581. D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
  1582. D40_CHAN_POS(d40c->phy_chan->num);
  1583. if (status == D40_DMA_SUSPENDED || status == D40_DMA_STOP)
  1584. is_paused = true;
  1585. goto _exit;
  1586. }
  1587. if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_PERIPH ||
  1588. d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) {
  1589. event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dst_dev_type);
  1590. status = readl(chanbase + D40_CHAN_REG_SDLNK);
  1591. } else if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) {
  1592. event = D40_TYPE_TO_EVENT(d40c->dma_cfg.src_dev_type);
  1593. status = readl(chanbase + D40_CHAN_REG_SSLNK);
  1594. } else {
  1595. chan_err(d40c, "Unknown direction\n");
  1596. goto _exit;
  1597. }
  1598. status = (status & D40_EVENTLINE_MASK(event)) >>
  1599. D40_EVENTLINE_POS(event);
  1600. if (status != D40_DMA_RUN)
  1601. is_paused = true;
  1602. _exit:
  1603. spin_unlock_irqrestore(&d40c->lock, flags);
  1604. return is_paused;
  1605. }
  1606. static u32 stedma40_residue(struct dma_chan *chan)
  1607. {
  1608. struct d40_chan *d40c =
  1609. container_of(chan, struct d40_chan, chan);
  1610. u32 bytes_left;
  1611. unsigned long flags;
  1612. spin_lock_irqsave(&d40c->lock, flags);
  1613. bytes_left = d40_residue(d40c);
  1614. spin_unlock_irqrestore(&d40c->lock, flags);
  1615. return bytes_left;
  1616. }
  1617. static int
  1618. d40_prep_sg_log(struct d40_chan *chan, struct d40_desc *desc,
  1619. struct scatterlist *sg_src, struct scatterlist *sg_dst,
  1620. unsigned int sg_len, dma_addr_t src_dev_addr,
  1621. dma_addr_t dst_dev_addr)
  1622. {
  1623. struct stedma40_chan_cfg *cfg = &chan->dma_cfg;
  1624. struct stedma40_half_channel_info *src_info = &cfg->src_info;
  1625. struct stedma40_half_channel_info *dst_info = &cfg->dst_info;
  1626. int ret;
  1627. ret = d40_log_sg_to_lli(sg_src, sg_len,
  1628. src_dev_addr,
  1629. desc->lli_log.src,
  1630. chan->log_def.lcsp1,
  1631. src_info->data_width,
  1632. dst_info->data_width);
  1633. ret = d40_log_sg_to_lli(sg_dst, sg_len,
  1634. dst_dev_addr,
  1635. desc->lli_log.dst,
  1636. chan->log_def.lcsp3,
  1637. dst_info->data_width,
  1638. src_info->data_width);
  1639. return ret < 0 ? ret : 0;
  1640. }
  1641. static int
  1642. d40_prep_sg_phy(struct d40_chan *chan, struct d40_desc *desc,
  1643. struct scatterlist *sg_src, struct scatterlist *sg_dst,
  1644. unsigned int sg_len, dma_addr_t src_dev_addr,
  1645. dma_addr_t dst_dev_addr)
  1646. {
  1647. struct stedma40_chan_cfg *cfg = &chan->dma_cfg;
  1648. struct stedma40_half_channel_info *src_info = &cfg->src_info;
  1649. struct stedma40_half_channel_info *dst_info = &cfg->dst_info;
  1650. unsigned long flags = 0;
  1651. int ret;
  1652. if (desc->cyclic)
  1653. flags |= LLI_CYCLIC | LLI_TERM_INT;
  1654. ret = d40_phy_sg_to_lli(sg_src, sg_len, src_dev_addr,
  1655. desc->lli_phy.src,
  1656. virt_to_phys(desc->lli_phy.src),
  1657. chan->src_def_cfg,
  1658. src_info, dst_info, flags);
  1659. ret = d40_phy_sg_to_lli(sg_dst, sg_len, dst_dev_addr,
  1660. desc->lli_phy.dst,
  1661. virt_to_phys(desc->lli_phy.dst),
  1662. chan->dst_def_cfg,
  1663. dst_info, src_info, flags);
  1664. dma_sync_single_for_device(chan->base->dev, desc->lli_pool.dma_addr,
  1665. desc->lli_pool.size, DMA_TO_DEVICE);
  1666. return ret < 0 ? ret : 0;
  1667. }
  1668. static struct d40_desc *
  1669. d40_prep_desc(struct d40_chan *chan, struct scatterlist *sg,
  1670. unsigned int sg_len, unsigned long dma_flags)
  1671. {
  1672. struct stedma40_chan_cfg *cfg = &chan->dma_cfg;
  1673. struct d40_desc *desc;
  1674. int ret;
  1675. desc = d40_desc_get(chan);
  1676. if (!desc)
  1677. return NULL;
  1678. desc->lli_len = d40_sg_2_dmalen(sg, sg_len, cfg->src_info.data_width,
  1679. cfg->dst_info.data_width);
  1680. if (desc->lli_len < 0) {
  1681. chan_err(chan, "Unaligned size\n");
  1682. goto err;
  1683. }
  1684. ret = d40_pool_lli_alloc(chan, desc, desc->lli_len);
  1685. if (ret < 0) {
  1686. chan_err(chan, "Could not allocate lli\n");
  1687. goto err;
  1688. }
  1689. desc->lli_current = 0;
  1690. desc->txd.flags = dma_flags;
  1691. desc->txd.tx_submit = d40_tx_submit;
  1692. dma_async_tx_descriptor_init(&desc->txd, &chan->chan);
  1693. return desc;
  1694. err:
  1695. d40_desc_free(chan, desc);
  1696. return NULL;
  1697. }
  1698. static dma_addr_t
  1699. d40_get_dev_addr(struct d40_chan *chan, enum dma_transfer_direction direction)
  1700. {
  1701. struct stedma40_platform_data *plat = chan->base->plat_data;
  1702. struct stedma40_chan_cfg *cfg = &chan->dma_cfg;
  1703. dma_addr_t addr = 0;
  1704. if (chan->runtime_addr)
  1705. return chan->runtime_addr;
  1706. if (direction == DMA_DEV_TO_MEM)
  1707. addr = plat->dev_rx[cfg->src_dev_type];
  1708. else if (direction == DMA_MEM_TO_DEV)
  1709. addr = plat->dev_tx[cfg->dst_dev_type];
  1710. return addr;
  1711. }
  1712. static struct dma_async_tx_descriptor *
  1713. d40_prep_sg(struct dma_chan *dchan, struct scatterlist *sg_src,
  1714. struct scatterlist *sg_dst, unsigned int sg_len,
  1715. enum dma_transfer_direction direction, unsigned long dma_flags)
  1716. {
  1717. struct d40_chan *chan = container_of(dchan, struct d40_chan, chan);
  1718. dma_addr_t src_dev_addr = 0;
  1719. dma_addr_t dst_dev_addr = 0;
  1720. struct d40_desc *desc;
  1721. unsigned long flags;
  1722. int ret;
  1723. if (!chan->phy_chan) {
  1724. chan_err(chan, "Cannot prepare unallocated channel\n");
  1725. return NULL;
  1726. }
  1727. spin_lock_irqsave(&chan->lock, flags);
  1728. desc = d40_prep_desc(chan, sg_src, sg_len, dma_flags);
  1729. if (desc == NULL)
  1730. goto err;
  1731. if (sg_next(&sg_src[sg_len - 1]) == sg_src)
  1732. desc->cyclic = true;
  1733. if (direction != DMA_NONE) {
  1734. dma_addr_t dev_addr = d40_get_dev_addr(chan, direction);
  1735. if (direction == DMA_DEV_TO_MEM)
  1736. src_dev_addr = dev_addr;
  1737. else if (direction == DMA_MEM_TO_DEV)
  1738. dst_dev_addr = dev_addr;
  1739. }
  1740. if (chan_is_logical(chan))
  1741. ret = d40_prep_sg_log(chan, desc, sg_src, sg_dst,
  1742. sg_len, src_dev_addr, dst_dev_addr);
  1743. else
  1744. ret = d40_prep_sg_phy(chan, desc, sg_src, sg_dst,
  1745. sg_len, src_dev_addr, dst_dev_addr);
  1746. if (ret) {
  1747. chan_err(chan, "Failed to prepare %s sg job: %d\n",
  1748. chan_is_logical(chan) ? "log" : "phy", ret);
  1749. goto err;
  1750. }
  1751. /*
  1752. * add descriptor to the prepare queue in order to be able
  1753. * to free them later in terminate_all
  1754. */
  1755. list_add_tail(&desc->node, &chan->prepare_queue);
  1756. spin_unlock_irqrestore(&chan->lock, flags);
  1757. return &desc->txd;
  1758. err:
  1759. if (desc)
  1760. d40_desc_free(chan, desc);
  1761. spin_unlock_irqrestore(&chan->lock, flags);
  1762. return NULL;
  1763. }
  1764. bool stedma40_filter(struct dma_chan *chan, void *data)
  1765. {
  1766. struct stedma40_chan_cfg *info = data;
  1767. struct d40_chan *d40c =
  1768. container_of(chan, struct d40_chan, chan);
  1769. int err;
  1770. if (data) {
  1771. err = d40_validate_conf(d40c, info);
  1772. if (!err)
  1773. d40c->dma_cfg = *info;
  1774. } else
  1775. err = d40_config_memcpy(d40c);
  1776. if (!err)
  1777. d40c->configured = true;
  1778. return err == 0;
  1779. }
  1780. EXPORT_SYMBOL(stedma40_filter);
  1781. static void __d40_set_prio_rt(struct d40_chan *d40c, int dev_type, bool src)
  1782. {
  1783. bool realtime = d40c->dma_cfg.realtime;
  1784. bool highprio = d40c->dma_cfg.high_priority;
  1785. u32 prioreg = highprio ? D40_DREG_PSEG1 : D40_DREG_PCEG1;
  1786. u32 rtreg = realtime ? D40_DREG_RSEG1 : D40_DREG_RCEG1;
  1787. u32 event = D40_TYPE_TO_EVENT(dev_type);
  1788. u32 group = D40_TYPE_TO_GROUP(dev_type);
  1789. u32 bit = 1 << event;
  1790. /* Destination event lines are stored in the upper halfword */
  1791. if (!src)
  1792. bit <<= 16;
  1793. writel(bit, d40c->base->virtbase + prioreg + group * 4);
  1794. writel(bit, d40c->base->virtbase + rtreg + group * 4);
  1795. }
  1796. static void d40_set_prio_realtime(struct d40_chan *d40c)
  1797. {
  1798. if (d40c->base->rev < 3)
  1799. return;
  1800. if ((d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) ||
  1801. (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_PERIPH))
  1802. __d40_set_prio_rt(d40c, d40c->dma_cfg.src_dev_type, true);
  1803. if ((d40c->dma_cfg.dir == STEDMA40_MEM_TO_PERIPH) ||
  1804. (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_PERIPH))
  1805. __d40_set_prio_rt(d40c, d40c->dma_cfg.dst_dev_type, false);
  1806. }
  1807. /* DMA ENGINE functions */
  1808. static int d40_alloc_chan_resources(struct dma_chan *chan)
  1809. {
  1810. int err;
  1811. unsigned long flags;
  1812. struct d40_chan *d40c =
  1813. container_of(chan, struct d40_chan, chan);
  1814. bool is_free_phy;
  1815. spin_lock_irqsave(&d40c->lock, flags);
  1816. d40c->completed = chan->cookie = 1;
  1817. /* If no dma configuration is set use default configuration (memcpy) */
  1818. if (!d40c->configured) {
  1819. err = d40_config_memcpy(d40c);
  1820. if (err) {
  1821. chan_err(d40c, "Failed to configure memcpy channel\n");
  1822. goto fail;
  1823. }
  1824. }
  1825. err = d40_allocate_channel(d40c, &is_free_phy);
  1826. if (err) {
  1827. chan_err(d40c, "Failed to allocate channel\n");
  1828. d40c->configured = false;
  1829. goto fail;
  1830. }
  1831. pm_runtime_get_sync(d40c->base->dev);
  1832. /* Fill in basic CFG register values */
  1833. d40_phy_cfg(&d40c->dma_cfg, &d40c->src_def_cfg,
  1834. &d40c->dst_def_cfg, chan_is_logical(d40c));
  1835. d40_set_prio_realtime(d40c);
  1836. if (chan_is_logical(d40c)) {
  1837. d40_log_cfg(&d40c->dma_cfg,
  1838. &d40c->log_def.lcsp1, &d40c->log_def.lcsp3);
  1839. if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM)
  1840. d40c->lcpa = d40c->base->lcpa_base +
  1841. d40c->dma_cfg.src_dev_type * D40_LCPA_CHAN_SIZE;
  1842. else
  1843. d40c->lcpa = d40c->base->lcpa_base +
  1844. d40c->dma_cfg.dst_dev_type *
  1845. D40_LCPA_CHAN_SIZE + D40_LCPA_CHAN_DST_DELTA;
  1846. }
  1847. dev_dbg(chan2dev(d40c), "allocated %s channel (phy %d%s)\n",
  1848. chan_is_logical(d40c) ? "logical" : "physical",
  1849. d40c->phy_chan->num,
  1850. d40c->dma_cfg.use_fixed_channel ? ", fixed" : "");
  1851. /*
  1852. * Only write channel configuration to the DMA if the physical
  1853. * resource is free. In case of multiple logical channels
  1854. * on the same physical resource, only the first write is necessary.
  1855. */
  1856. if (is_free_phy)
  1857. d40_config_write(d40c);
  1858. fail:
  1859. pm_runtime_mark_last_busy(d40c->base->dev);
  1860. pm_runtime_put_autosuspend(d40c->base->dev);
  1861. spin_unlock_irqrestore(&d40c->lock, flags);
  1862. return err;
  1863. }
  1864. static void d40_free_chan_resources(struct dma_chan *chan)
  1865. {
  1866. struct d40_chan *d40c =
  1867. container_of(chan, struct d40_chan, chan);
  1868. int err;
  1869. unsigned long flags;
  1870. if (d40c->phy_chan == NULL) {
  1871. chan_err(d40c, "Cannot free unallocated channel\n");
  1872. return;
  1873. }
  1874. spin_lock_irqsave(&d40c->lock, flags);
  1875. err = d40_free_dma(d40c);
  1876. if (err)
  1877. chan_err(d40c, "Failed to free channel\n");
  1878. spin_unlock_irqrestore(&d40c->lock, flags);
  1879. }
  1880. static struct dma_async_tx_descriptor *d40_prep_memcpy(struct dma_chan *chan,
  1881. dma_addr_t dst,
  1882. dma_addr_t src,
  1883. size_t size,
  1884. unsigned long dma_flags)
  1885. {
  1886. struct scatterlist dst_sg;
  1887. struct scatterlist src_sg;
  1888. sg_init_table(&dst_sg, 1);
  1889. sg_init_table(&src_sg, 1);
  1890. sg_dma_address(&dst_sg) = dst;
  1891. sg_dma_address(&src_sg) = src;
  1892. sg_dma_len(&dst_sg) = size;
  1893. sg_dma_len(&src_sg) = size;
  1894. return d40_prep_sg(chan, &src_sg, &dst_sg, 1, DMA_NONE, dma_flags);
  1895. }
  1896. static struct dma_async_tx_descriptor *
  1897. d40_prep_memcpy_sg(struct dma_chan *chan,
  1898. struct scatterlist *dst_sg, unsigned int dst_nents,
  1899. struct scatterlist *src_sg, unsigned int src_nents,
  1900. unsigned long dma_flags)
  1901. {
  1902. if (dst_nents != src_nents)
  1903. return NULL;
  1904. return d40_prep_sg(chan, src_sg, dst_sg, src_nents, DMA_NONE, dma_flags);
  1905. }
  1906. static struct dma_async_tx_descriptor *d40_prep_slave_sg(struct dma_chan *chan,
  1907. struct scatterlist *sgl,
  1908. unsigned int sg_len,
  1909. enum dma_transfer_direction direction,
  1910. unsigned long dma_flags)
  1911. {
  1912. if (direction != DMA_DEV_TO_MEM && direction != DMA_MEM_TO_DEV)
  1913. return NULL;
  1914. return d40_prep_sg(chan, sgl, sgl, sg_len, direction, dma_flags);
  1915. }
  1916. static struct dma_async_tx_descriptor *
  1917. dma40_prep_dma_cyclic(struct dma_chan *chan, dma_addr_t dma_addr,
  1918. size_t buf_len, size_t period_len,
  1919. enum dma_transfer_direction direction)
  1920. {
  1921. unsigned int periods = buf_len / period_len;
  1922. struct dma_async_tx_descriptor *txd;
  1923. struct scatterlist *sg;
  1924. int i;
  1925. sg = kcalloc(periods + 1, sizeof(struct scatterlist), GFP_NOWAIT);
  1926. for (i = 0; i < periods; i++) {
  1927. sg_dma_address(&sg[i]) = dma_addr;
  1928. sg_dma_len(&sg[i]) = period_len;
  1929. dma_addr += period_len;
  1930. }
  1931. sg[periods].offset = 0;
  1932. sg[periods].length = 0;
  1933. sg[periods].page_link =
  1934. ((unsigned long)sg | 0x01) & ~0x02;
  1935. txd = d40_prep_sg(chan, sg, sg, periods, direction,
  1936. DMA_PREP_INTERRUPT);
  1937. kfree(sg);
  1938. return txd;
  1939. }
  1940. static enum dma_status d40_tx_status(struct dma_chan *chan,
  1941. dma_cookie_t cookie,
  1942. struct dma_tx_state *txstate)
  1943. {
  1944. struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
  1945. dma_cookie_t last_used;
  1946. dma_cookie_t last_complete;
  1947. int ret;
  1948. if (d40c->phy_chan == NULL) {
  1949. chan_err(d40c, "Cannot read status of unallocated channel\n");
  1950. return -EINVAL;
  1951. }
  1952. last_complete = d40c->completed;
  1953. last_used = chan->cookie;
  1954. if (d40_is_paused(d40c))
  1955. ret = DMA_PAUSED;
  1956. else
  1957. ret = dma_async_is_complete(cookie, last_complete, last_used);
  1958. dma_set_tx_state(txstate, last_complete, last_used,
  1959. stedma40_residue(chan));
  1960. return ret;
  1961. }
  1962. static void d40_issue_pending(struct dma_chan *chan)
  1963. {
  1964. struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
  1965. unsigned long flags;
  1966. if (d40c->phy_chan == NULL) {
  1967. chan_err(d40c, "Channel is not allocated!\n");
  1968. return;
  1969. }
  1970. spin_lock_irqsave(&d40c->lock, flags);
  1971. list_splice_tail_init(&d40c->pending_queue, &d40c->queue);
  1972. /* Busy means that queued jobs are already being processed */
  1973. if (!d40c->busy)
  1974. (void) d40_queue_start(d40c);
  1975. spin_unlock_irqrestore(&d40c->lock, flags);
  1976. }
  1977. static int
  1978. dma40_config_to_halfchannel(struct d40_chan *d40c,
  1979. struct stedma40_half_channel_info *info,
  1980. enum dma_slave_buswidth width,
  1981. u32 maxburst)
  1982. {
  1983. enum stedma40_periph_data_width addr_width;
  1984. int psize;
  1985. switch (width) {
  1986. case DMA_SLAVE_BUSWIDTH_1_BYTE:
  1987. addr_width = STEDMA40_BYTE_WIDTH;
  1988. break;
  1989. case DMA_SLAVE_BUSWIDTH_2_BYTES:
  1990. addr_width = STEDMA40_HALFWORD_WIDTH;
  1991. break;
  1992. case DMA_SLAVE_BUSWIDTH_4_BYTES:
  1993. addr_width = STEDMA40_WORD_WIDTH;
  1994. break;
  1995. case DMA_SLAVE_BUSWIDTH_8_BYTES:
  1996. addr_width = STEDMA40_DOUBLEWORD_WIDTH;
  1997. break;
  1998. default:
  1999. dev_err(d40c->base->dev,
  2000. "illegal peripheral address width "
  2001. "requested (%d)\n",
  2002. width);
  2003. return -EINVAL;
  2004. }
  2005. if (chan_is_logical(d40c)) {
  2006. if (maxburst >= 16)
  2007. psize = STEDMA40_PSIZE_LOG_16;
  2008. else if (maxburst >= 8)
  2009. psize = STEDMA40_PSIZE_LOG_8;
  2010. else if (maxburst >= 4)
  2011. psize = STEDMA40_PSIZE_LOG_4;
  2012. else
  2013. psize = STEDMA40_PSIZE_LOG_1;
  2014. } else {
  2015. if (maxburst >= 16)
  2016. psize = STEDMA40_PSIZE_PHY_16;
  2017. else if (maxburst >= 8)
  2018. psize = STEDMA40_PSIZE_PHY_8;
  2019. else if (maxburst >= 4)
  2020. psize = STEDMA40_PSIZE_PHY_4;
  2021. else
  2022. psize = STEDMA40_PSIZE_PHY_1;
  2023. }
  2024. info->data_width = addr_width;
  2025. info->psize = psize;
  2026. info->flow_ctrl = STEDMA40_NO_FLOW_CTRL;
  2027. return 0;
  2028. }
  2029. /* Runtime reconfiguration extension */
  2030. static int d40_set_runtime_config(struct dma_chan *chan,
  2031. struct dma_slave_config *config)
  2032. {
  2033. struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
  2034. struct stedma40_chan_cfg *cfg = &d40c->dma_cfg;
  2035. enum dma_slave_buswidth src_addr_width, dst_addr_width;
  2036. dma_addr_t config_addr;
  2037. u32 src_maxburst, dst_maxburst;
  2038. int ret;
  2039. src_addr_width = config->src_addr_width;
  2040. src_maxburst = config->src_maxburst;
  2041. dst_addr_width = config->dst_addr_width;
  2042. dst_maxburst = config->dst_maxburst;
  2043. if (config->direction == DMA_DEV_TO_MEM) {
  2044. dma_addr_t dev_addr_rx =
  2045. d40c->base->plat_data->dev_rx[cfg->src_dev_type];
  2046. config_addr = config->src_addr;
  2047. if (dev_addr_rx)
  2048. dev_dbg(d40c->base->dev,
  2049. "channel has a pre-wired RX address %08x "
  2050. "overriding with %08x\n",
  2051. dev_addr_rx, config_addr);
  2052. if (cfg->dir != STEDMA40_PERIPH_TO_MEM)
  2053. dev_dbg(d40c->base->dev,
  2054. "channel was not configured for peripheral "
  2055. "to memory transfer (%d) overriding\n",
  2056. cfg->dir);
  2057. cfg->dir = STEDMA40_PERIPH_TO_MEM;
  2058. /* Configure the memory side */
  2059. if (dst_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED)
  2060. dst_addr_width = src_addr_width;
  2061. if (dst_maxburst == 0)
  2062. dst_maxburst = src_maxburst;
  2063. } else if (config->direction == DMA_MEM_TO_DEV) {
  2064. dma_addr_t dev_addr_tx =
  2065. d40c->base->plat_data->dev_tx[cfg->dst_dev_type];
  2066. config_addr = config->dst_addr;
  2067. if (dev_addr_tx)
  2068. dev_dbg(d40c->base->dev,
  2069. "channel has a pre-wired TX address %08x "
  2070. "overriding with %08x\n",
  2071. dev_addr_tx, config_addr);
  2072. if (cfg->dir != STEDMA40_MEM_TO_PERIPH)
  2073. dev_dbg(d40c->base->dev,
  2074. "channel was not configured for memory "
  2075. "to peripheral transfer (%d) overriding\n",
  2076. cfg->dir);
  2077. cfg->dir = STEDMA40_MEM_TO_PERIPH;
  2078. /* Configure the memory side */
  2079. if (src_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED)
  2080. src_addr_width = dst_addr_width;
  2081. if (src_maxburst == 0)
  2082. src_maxburst = dst_maxburst;
  2083. } else {
  2084. dev_err(d40c->base->dev,
  2085. "unrecognized channel direction %d\n",
  2086. config->direction);
  2087. return -EINVAL;
  2088. }
  2089. if (src_maxburst * src_addr_width != dst_maxburst * dst_addr_width) {
  2090. dev_err(d40c->base->dev,
  2091. "src/dst width/maxburst mismatch: %d*%d != %d*%d\n",
  2092. src_maxburst,
  2093. src_addr_width,
  2094. dst_maxburst,
  2095. dst_addr_width);
  2096. return -EINVAL;
  2097. }
  2098. ret = dma40_config_to_halfchannel(d40c, &cfg->src_info,
  2099. src_addr_width,
  2100. src_maxburst);
  2101. if (ret)
  2102. return ret;
  2103. ret = dma40_config_to_halfchannel(d40c, &cfg->dst_info,
  2104. dst_addr_width,
  2105. dst_maxburst);
  2106. if (ret)
  2107. return ret;
  2108. /* Fill in register values */
  2109. if (chan_is_logical(d40c))
  2110. d40_log_cfg(cfg, &d40c->log_def.lcsp1, &d40c->log_def.lcsp3);
  2111. else
  2112. d40_phy_cfg(cfg, &d40c->src_def_cfg,
  2113. &d40c->dst_def_cfg, false);
  2114. /* These settings will take precedence later */
  2115. d40c->runtime_addr = config_addr;
  2116. d40c->runtime_direction = config->direction;
  2117. dev_dbg(d40c->base->dev,
  2118. "configured channel %s for %s, data width %d/%d, "
  2119. "maxburst %d/%d elements, LE, no flow control\n",
  2120. dma_chan_name(chan),
  2121. (config->direction == DMA_DEV_TO_MEM) ? "RX" : "TX",
  2122. src_addr_width, dst_addr_width,
  2123. src_maxburst, dst_maxburst);
  2124. return 0;
  2125. }
  2126. static int d40_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd,
  2127. unsigned long arg)
  2128. {
  2129. struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
  2130. if (d40c->phy_chan == NULL) {
  2131. chan_err(d40c, "Channel is not allocated!\n");
  2132. return -EINVAL;
  2133. }
  2134. switch (cmd) {
  2135. case DMA_TERMINATE_ALL:
  2136. return d40_terminate_all(d40c);
  2137. case DMA_PAUSE:
  2138. return d40_pause(d40c);
  2139. case DMA_RESUME:
  2140. return d40_resume(d40c);
  2141. case DMA_SLAVE_CONFIG:
  2142. return d40_set_runtime_config(chan,
  2143. (struct dma_slave_config *) arg);
  2144. default:
  2145. break;
  2146. }
  2147. /* Other commands are unimplemented */
  2148. return -ENXIO;
  2149. }
  2150. /* Initialization functions */
  2151. static void __init d40_chan_init(struct d40_base *base, struct dma_device *dma,
  2152. struct d40_chan *chans, int offset,
  2153. int num_chans)
  2154. {
  2155. int i = 0;
  2156. struct d40_chan *d40c;
  2157. INIT_LIST_HEAD(&dma->channels);
  2158. for (i = offset; i < offset + num_chans; i++) {
  2159. d40c = &chans[i];
  2160. d40c->base = base;
  2161. d40c->chan.device = dma;
  2162. spin_lock_init(&d40c->lock);
  2163. d40c->log_num = D40_PHY_CHAN;
  2164. INIT_LIST_HEAD(&d40c->active);
  2165. INIT_LIST_HEAD(&d40c->queue);
  2166. INIT_LIST_HEAD(&d40c->pending_queue);
  2167. INIT_LIST_HEAD(&d40c->client);
  2168. INIT_LIST_HEAD(&d40c->prepare_queue);
  2169. tasklet_init(&d40c->tasklet, dma_tasklet,
  2170. (unsigned long) d40c);
  2171. list_add_tail(&d40c->chan.device_node,
  2172. &dma->channels);
  2173. }
  2174. }
  2175. static void d40_ops_init(struct d40_base *base, struct dma_device *dev)
  2176. {
  2177. if (dma_has_cap(DMA_SLAVE, dev->cap_mask))
  2178. dev->device_prep_slave_sg = d40_prep_slave_sg;
  2179. if (dma_has_cap(DMA_MEMCPY, dev->cap_mask)) {
  2180. dev->device_prep_dma_memcpy = d40_prep_memcpy;
  2181. /*
  2182. * This controller can only access address at even
  2183. * 32bit boundaries, i.e. 2^2
  2184. */
  2185. dev->copy_align = 2;
  2186. }
  2187. if (dma_has_cap(DMA_SG, dev->cap_mask))
  2188. dev->device_prep_dma_sg = d40_prep_memcpy_sg;
  2189. if (dma_has_cap(DMA_CYCLIC, dev->cap_mask))
  2190. dev->device_prep_dma_cyclic = dma40_prep_dma_cyclic;
  2191. dev->device_alloc_chan_resources = d40_alloc_chan_resources;
  2192. dev->device_free_chan_resources = d40_free_chan_resources;
  2193. dev->device_issue_pending = d40_issue_pending;
  2194. dev->device_tx_status = d40_tx_status;
  2195. dev->device_control = d40_control;
  2196. dev->dev = base->dev;
  2197. }
  2198. static int __init d40_dmaengine_init(struct d40_base *base,
  2199. int num_reserved_chans)
  2200. {
  2201. int err ;
  2202. d40_chan_init(base, &base->dma_slave, base->log_chans,
  2203. 0, base->num_log_chans);
  2204. dma_cap_zero(base->dma_slave.cap_mask);
  2205. dma_cap_set(DMA_SLAVE, base->dma_slave.cap_mask);
  2206. dma_cap_set(DMA_CYCLIC, base->dma_slave.cap_mask);
  2207. d40_ops_init(base, &base->dma_slave);
  2208. err = dma_async_device_register(&base->dma_slave);
  2209. if (err) {
  2210. d40_err(base->dev, "Failed to register slave channels\n");
  2211. goto failure1;
  2212. }
  2213. d40_chan_init(base, &base->dma_memcpy, base->log_chans,
  2214. base->num_log_chans, base->plat_data->memcpy_len);
  2215. dma_cap_zero(base->dma_memcpy.cap_mask);
  2216. dma_cap_set(DMA_MEMCPY, base->dma_memcpy.cap_mask);
  2217. dma_cap_set(DMA_SG, base->dma_memcpy.cap_mask);
  2218. d40_ops_init(base, &base->dma_memcpy);
  2219. err = dma_async_device_register(&base->dma_memcpy);
  2220. if (err) {
  2221. d40_err(base->dev,
  2222. "Failed to regsiter memcpy only channels\n");
  2223. goto failure2;
  2224. }
  2225. d40_chan_init(base, &base->dma_both, base->phy_chans,
  2226. 0, num_reserved_chans);
  2227. dma_cap_zero(base->dma_both.cap_mask);
  2228. dma_cap_set(DMA_SLAVE, base->dma_both.cap_mask);
  2229. dma_cap_set(DMA_MEMCPY, base->dma_both.cap_mask);
  2230. dma_cap_set(DMA_SG, base->dma_both.cap_mask);
  2231. dma_cap_set(DMA_CYCLIC, base->dma_slave.cap_mask);
  2232. d40_ops_init(base, &base->dma_both);
  2233. err = dma_async_device_register(&base->dma_both);
  2234. if (err) {
  2235. d40_err(base->dev,
  2236. "Failed to register logical and physical capable channels\n");
  2237. goto failure3;
  2238. }
  2239. return 0;
  2240. failure3:
  2241. dma_async_device_unregister(&base->dma_memcpy);
  2242. failure2:
  2243. dma_async_device_unregister(&base->dma_slave);
  2244. failure1:
  2245. return err;
  2246. }
  2247. /* Suspend resume functionality */
  2248. #ifdef CONFIG_PM
  2249. static int dma40_pm_suspend(struct device *dev)
  2250. {
  2251. struct platform_device *pdev = to_platform_device(dev);
  2252. struct d40_base *base = platform_get_drvdata(pdev);
  2253. int ret = 0;
  2254. if (!pm_runtime_suspended(dev))
  2255. return -EBUSY;
  2256. if (base->lcpa_regulator)
  2257. ret = regulator_disable(base->lcpa_regulator);
  2258. return ret;
  2259. }
  2260. static int dma40_runtime_suspend(struct device *dev)
  2261. {
  2262. struct platform_device *pdev = to_platform_device(dev);
  2263. struct d40_base *base = platform_get_drvdata(pdev);
  2264. d40_save_restore_registers(base, true);
  2265. /* Don't disable/enable clocks for v1 due to HW bugs */
  2266. if (base->rev != 1)
  2267. writel_relaxed(base->gcc_pwr_off_mask,
  2268. base->virtbase + D40_DREG_GCC);
  2269. return 0;
  2270. }
  2271. static int dma40_runtime_resume(struct device *dev)
  2272. {
  2273. struct platform_device *pdev = to_platform_device(dev);
  2274. struct d40_base *base = platform_get_drvdata(pdev);
  2275. if (base->initialized)
  2276. d40_save_restore_registers(base, false);
  2277. writel_relaxed(D40_DREG_GCC_ENABLE_ALL,
  2278. base->virtbase + D40_DREG_GCC);
  2279. return 0;
  2280. }
  2281. static int dma40_resume(struct device *dev)
  2282. {
  2283. struct platform_device *pdev = to_platform_device(dev);
  2284. struct d40_base *base = platform_get_drvdata(pdev);
  2285. int ret = 0;
  2286. if (base->lcpa_regulator)
  2287. ret = regulator_enable(base->lcpa_regulator);
  2288. return ret;
  2289. }
  2290. static const struct dev_pm_ops dma40_pm_ops = {
  2291. .suspend = dma40_pm_suspend,
  2292. .runtime_suspend = dma40_runtime_suspend,
  2293. .runtime_resume = dma40_runtime_resume,
  2294. .resume = dma40_resume,
  2295. };
  2296. #define DMA40_PM_OPS (&dma40_pm_ops)
  2297. #else
  2298. #define DMA40_PM_OPS NULL
  2299. #endif
  2300. /* Initialization functions. */
  2301. static int __init d40_phy_res_init(struct d40_base *base)
  2302. {
  2303. int i;
  2304. int num_phy_chans_avail = 0;
  2305. u32 val[2];
  2306. int odd_even_bit = -2;
  2307. int gcc = D40_DREG_GCC_ENA;
  2308. val[0] = readl(base->virtbase + D40_DREG_PRSME);
  2309. val[1] = readl(base->virtbase + D40_DREG_PRSMO);
  2310. for (i = 0; i < base->num_phy_chans; i++) {
  2311. base->phy_res[i].num = i;
  2312. odd_even_bit += 2 * ((i % 2) == 0);
  2313. if (((val[i % 2] >> odd_even_bit) & 3) == 1) {
  2314. /* Mark security only channels as occupied */
  2315. base->phy_res[i].allocated_src = D40_ALLOC_PHY;
  2316. base->phy_res[i].allocated_dst = D40_ALLOC_PHY;
  2317. base->phy_res[i].reserved = true;
  2318. gcc |= D40_DREG_GCC_EVTGRP_ENA(D40_PHYS_TO_GROUP(i),
  2319. D40_DREG_GCC_SRC);
  2320. gcc |= D40_DREG_GCC_EVTGRP_ENA(D40_PHYS_TO_GROUP(i),
  2321. D40_DREG_GCC_DST);
  2322. } else {
  2323. base->phy_res[i].allocated_src = D40_ALLOC_FREE;
  2324. base->phy_res[i].allocated_dst = D40_ALLOC_FREE;
  2325. base->phy_res[i].reserved = false;
  2326. num_phy_chans_avail++;
  2327. }
  2328. spin_lock_init(&base->phy_res[i].lock);
  2329. }
  2330. /* Mark disabled channels as occupied */
  2331. for (i = 0; base->plat_data->disabled_channels[i] != -1; i++) {
  2332. int chan = base->plat_data->disabled_channels[i];
  2333. base->phy_res[chan].allocated_src = D40_ALLOC_PHY;
  2334. base->phy_res[chan].allocated_dst = D40_ALLOC_PHY;
  2335. base->phy_res[chan].reserved = true;
  2336. gcc |= D40_DREG_GCC_EVTGRP_ENA(D40_PHYS_TO_GROUP(chan),
  2337. D40_DREG_GCC_SRC);
  2338. gcc |= D40_DREG_GCC_EVTGRP_ENA(D40_PHYS_TO_GROUP(chan),
  2339. D40_DREG_GCC_DST);
  2340. num_phy_chans_avail--;
  2341. }
  2342. dev_info(base->dev, "%d of %d physical DMA channels available\n",
  2343. num_phy_chans_avail, base->num_phy_chans);
  2344. /* Verify settings extended vs standard */
  2345. val[0] = readl(base->virtbase + D40_DREG_PRTYP);
  2346. for (i = 0; i < base->num_phy_chans; i++) {
  2347. if (base->phy_res[i].allocated_src == D40_ALLOC_FREE &&
  2348. (val[0] & 0x3) != 1)
  2349. dev_info(base->dev,
  2350. "[%s] INFO: channel %d is misconfigured (%d)\n",
  2351. __func__, i, val[0] & 0x3);
  2352. val[0] = val[0] >> 2;
  2353. }
  2354. /*
  2355. * To keep things simple, Enable all clocks initially.
  2356. * The clocks will get managed later post channel allocation.
  2357. * The clocks for the event lines on which reserved channels exists
  2358. * are not managed here.
  2359. */
  2360. writel(D40_DREG_GCC_ENABLE_ALL, base->virtbase + D40_DREG_GCC);
  2361. base->gcc_pwr_off_mask = gcc;
  2362. return num_phy_chans_avail;
  2363. }
  2364. static struct d40_base * __init d40_hw_detect_init(struct platform_device *pdev)
  2365. {
  2366. struct stedma40_platform_data *plat_data;
  2367. struct clk *clk = NULL;
  2368. void __iomem *virtbase = NULL;
  2369. struct resource *res = NULL;
  2370. struct d40_base *base = NULL;
  2371. int num_log_chans = 0;
  2372. int num_phy_chans;
  2373. int i;
  2374. u32 pid;
  2375. u32 cid;
  2376. u8 rev;
  2377. clk = clk_get(&pdev->dev, NULL);
  2378. if (IS_ERR(clk)) {
  2379. d40_err(&pdev->dev, "No matching clock found\n");
  2380. goto failure;
  2381. }
  2382. clk_enable(clk);
  2383. /* Get IO for DMAC base address */
  2384. res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "base");
  2385. if (!res)
  2386. goto failure;
  2387. if (request_mem_region(res->start, resource_size(res),
  2388. D40_NAME " I/O base") == NULL)
  2389. goto failure;
  2390. virtbase = ioremap(res->start, resource_size(res));
  2391. if (!virtbase)
  2392. goto failure;
  2393. /* This is just a regular AMBA PrimeCell ID actually */
  2394. for (pid = 0, i = 0; i < 4; i++)
  2395. pid |= (readl(virtbase + resource_size(res) - 0x20 + 4 * i)
  2396. & 255) << (i * 8);
  2397. for (cid = 0, i = 0; i < 4; i++)
  2398. cid |= (readl(virtbase + resource_size(res) - 0x10 + 4 * i)
  2399. & 255) << (i * 8);
  2400. if (cid != AMBA_CID) {
  2401. d40_err(&pdev->dev, "Unknown hardware! No PrimeCell ID\n");
  2402. goto failure;
  2403. }
  2404. if (AMBA_MANF_BITS(pid) != AMBA_VENDOR_ST) {
  2405. d40_err(&pdev->dev, "Unknown designer! Got %x wanted %x\n",
  2406. AMBA_MANF_BITS(pid),
  2407. AMBA_VENDOR_ST);
  2408. goto failure;
  2409. }
  2410. /*
  2411. * HW revision:
  2412. * DB8500ed has revision 0
  2413. * ? has revision 1
  2414. * DB8500v1 has revision 2
  2415. * DB8500v2 has revision 3
  2416. */
  2417. rev = AMBA_REV_BITS(pid);
  2418. /* The number of physical channels on this HW */
  2419. num_phy_chans = 4 * (readl(virtbase + D40_DREG_ICFG) & 0x7) + 4;
  2420. dev_info(&pdev->dev, "hardware revision: %d @ 0x%x\n",
  2421. rev, res->start);
  2422. plat_data = pdev->dev.platform_data;
  2423. /* Count the number of logical channels in use */
  2424. for (i = 0; i < plat_data->dev_len; i++)
  2425. if (plat_data->dev_rx[i] != 0)
  2426. num_log_chans++;
  2427. for (i = 0; i < plat_data->dev_len; i++)
  2428. if (plat_data->dev_tx[i] != 0)
  2429. num_log_chans++;
  2430. base = kzalloc(ALIGN(sizeof(struct d40_base), 4) +
  2431. (num_phy_chans + num_log_chans + plat_data->memcpy_len) *
  2432. sizeof(struct d40_chan), GFP_KERNEL);
  2433. if (base == NULL) {
  2434. d40_err(&pdev->dev, "Out of memory\n");
  2435. goto failure;
  2436. }
  2437. base->rev = rev;
  2438. base->clk = clk;
  2439. base->num_phy_chans = num_phy_chans;
  2440. base->num_log_chans = num_log_chans;
  2441. base->phy_start = res->start;
  2442. base->phy_size = resource_size(res);
  2443. base->virtbase = virtbase;
  2444. base->plat_data = plat_data;
  2445. base->dev = &pdev->dev;
  2446. base->phy_chans = ((void *)base) + ALIGN(sizeof(struct d40_base), 4);
  2447. base->log_chans = &base->phy_chans[num_phy_chans];
  2448. base->phy_res = kzalloc(num_phy_chans * sizeof(struct d40_phy_res),
  2449. GFP_KERNEL);
  2450. if (!base->phy_res)
  2451. goto failure;
  2452. base->lookup_phy_chans = kzalloc(num_phy_chans *
  2453. sizeof(struct d40_chan *),
  2454. GFP_KERNEL);
  2455. if (!base->lookup_phy_chans)
  2456. goto failure;
  2457. if (num_log_chans + plat_data->memcpy_len) {
  2458. /*
  2459. * The max number of logical channels are event lines for all
  2460. * src devices and dst devices
  2461. */
  2462. base->lookup_log_chans = kzalloc(plat_data->dev_len * 2 *
  2463. sizeof(struct d40_chan *),
  2464. GFP_KERNEL);
  2465. if (!base->lookup_log_chans)
  2466. goto failure;
  2467. }
  2468. base->reg_val_backup_chan = kmalloc(base->num_phy_chans *
  2469. sizeof(d40_backup_regs_chan),
  2470. GFP_KERNEL);
  2471. if (!base->reg_val_backup_chan)
  2472. goto failure;
  2473. base->lcla_pool.alloc_map =
  2474. kzalloc(num_phy_chans * sizeof(struct d40_desc *)
  2475. * D40_LCLA_LINK_PER_EVENT_GRP, GFP_KERNEL);
  2476. if (!base->lcla_pool.alloc_map)
  2477. goto failure;
  2478. base->desc_slab = kmem_cache_create(D40_NAME, sizeof(struct d40_desc),
  2479. 0, SLAB_HWCACHE_ALIGN,
  2480. NULL);
  2481. if (base->desc_slab == NULL)
  2482. goto failure;
  2483. return base;
  2484. failure:
  2485. if (!IS_ERR(clk)) {
  2486. clk_disable(clk);
  2487. clk_put(clk);
  2488. }
  2489. if (virtbase)
  2490. iounmap(virtbase);
  2491. if (res)
  2492. release_mem_region(res->start,
  2493. resource_size(res));
  2494. if (virtbase)
  2495. iounmap(virtbase);
  2496. if (base) {
  2497. kfree(base->lcla_pool.alloc_map);
  2498. kfree(base->lookup_log_chans);
  2499. kfree(base->lookup_phy_chans);
  2500. kfree(base->phy_res);
  2501. kfree(base);
  2502. }
  2503. return NULL;
  2504. }
  2505. static void __init d40_hw_init(struct d40_base *base)
  2506. {
  2507. static struct d40_reg_val dma_init_reg[] = {
  2508. /* Clock every part of the DMA block from start */
  2509. { .reg = D40_DREG_GCC, .val = D40_DREG_GCC_ENABLE_ALL},
  2510. /* Interrupts on all logical channels */
  2511. { .reg = D40_DREG_LCMIS0, .val = 0xFFFFFFFF},
  2512. { .reg = D40_DREG_LCMIS1, .val = 0xFFFFFFFF},
  2513. { .reg = D40_DREG_LCMIS2, .val = 0xFFFFFFFF},
  2514. { .reg = D40_DREG_LCMIS3, .val = 0xFFFFFFFF},
  2515. { .reg = D40_DREG_LCICR0, .val = 0xFFFFFFFF},
  2516. { .reg = D40_DREG_LCICR1, .val = 0xFFFFFFFF},
  2517. { .reg = D40_DREG_LCICR2, .val = 0xFFFFFFFF},
  2518. { .reg = D40_DREG_LCICR3, .val = 0xFFFFFFFF},
  2519. { .reg = D40_DREG_LCTIS0, .val = 0xFFFFFFFF},
  2520. { .reg = D40_DREG_LCTIS1, .val = 0xFFFFFFFF},
  2521. { .reg = D40_DREG_LCTIS2, .val = 0xFFFFFFFF},
  2522. { .reg = D40_DREG_LCTIS3, .val = 0xFFFFFFFF}
  2523. };
  2524. int i;
  2525. u32 prmseo[2] = {0, 0};
  2526. u32 activeo[2] = {0xFFFFFFFF, 0xFFFFFFFF};
  2527. u32 pcmis = 0;
  2528. u32 pcicr = 0;
  2529. for (i = 0; i < ARRAY_SIZE(dma_init_reg); i++)
  2530. writel(dma_init_reg[i].val,
  2531. base->virtbase + dma_init_reg[i].reg);
  2532. /* Configure all our dma channels to default settings */
  2533. for (i = 0; i < base->num_phy_chans; i++) {
  2534. activeo[i % 2] = activeo[i % 2] << 2;
  2535. if (base->phy_res[base->num_phy_chans - i - 1].allocated_src
  2536. == D40_ALLOC_PHY) {
  2537. activeo[i % 2] |= 3;
  2538. continue;
  2539. }
  2540. /* Enable interrupt # */
  2541. pcmis = (pcmis << 1) | 1;
  2542. /* Clear interrupt # */
  2543. pcicr = (pcicr << 1) | 1;
  2544. /* Set channel to physical mode */
  2545. prmseo[i % 2] = prmseo[i % 2] << 2;
  2546. prmseo[i % 2] |= 1;
  2547. }
  2548. writel(prmseo[1], base->virtbase + D40_DREG_PRMSE);
  2549. writel(prmseo[0], base->virtbase + D40_DREG_PRMSO);
  2550. writel(activeo[1], base->virtbase + D40_DREG_ACTIVE);
  2551. writel(activeo[0], base->virtbase + D40_DREG_ACTIVO);
  2552. /* Write which interrupt to enable */
  2553. writel(pcmis, base->virtbase + D40_DREG_PCMIS);
  2554. /* Write which interrupt to clear */
  2555. writel(pcicr, base->virtbase + D40_DREG_PCICR);
  2556. }
  2557. static int __init d40_lcla_allocate(struct d40_base *base)
  2558. {
  2559. struct d40_lcla_pool *pool = &base->lcla_pool;
  2560. unsigned long *page_list;
  2561. int i, j;
  2562. int ret = 0;
  2563. /*
  2564. * This is somewhat ugly. We need 8192 bytes that are 18 bit aligned,
  2565. * To full fill this hardware requirement without wasting 256 kb
  2566. * we allocate pages until we get an aligned one.
  2567. */
  2568. page_list = kmalloc(sizeof(unsigned long) * MAX_LCLA_ALLOC_ATTEMPTS,
  2569. GFP_KERNEL);
  2570. if (!page_list) {
  2571. ret = -ENOMEM;
  2572. goto failure;
  2573. }
  2574. /* Calculating how many pages that are required */
  2575. base->lcla_pool.pages = SZ_1K * base->num_phy_chans / PAGE_SIZE;
  2576. for (i = 0; i < MAX_LCLA_ALLOC_ATTEMPTS; i++) {
  2577. page_list[i] = __get_free_pages(GFP_KERNEL,
  2578. base->lcla_pool.pages);
  2579. if (!page_list[i]) {
  2580. d40_err(base->dev, "Failed to allocate %d pages.\n",
  2581. base->lcla_pool.pages);
  2582. for (j = 0; j < i; j++)
  2583. free_pages(page_list[j], base->lcla_pool.pages);
  2584. goto failure;
  2585. }
  2586. if ((virt_to_phys((void *)page_list[i]) &
  2587. (LCLA_ALIGNMENT - 1)) == 0)
  2588. break;
  2589. }
  2590. for (j = 0; j < i; j++)
  2591. free_pages(page_list[j], base->lcla_pool.pages);
  2592. if (i < MAX_LCLA_ALLOC_ATTEMPTS) {
  2593. base->lcla_pool.base = (void *)page_list[i];
  2594. } else {
  2595. /*
  2596. * After many attempts and no succees with finding the correct
  2597. * alignment, try with allocating a big buffer.
  2598. */
  2599. dev_warn(base->dev,
  2600. "[%s] Failed to get %d pages @ 18 bit align.\n",
  2601. __func__, base->lcla_pool.pages);
  2602. base->lcla_pool.base_unaligned = kmalloc(SZ_1K *
  2603. base->num_phy_chans +
  2604. LCLA_ALIGNMENT,
  2605. GFP_KERNEL);
  2606. if (!base->lcla_pool.base_unaligned) {
  2607. ret = -ENOMEM;
  2608. goto failure;
  2609. }
  2610. base->lcla_pool.base = PTR_ALIGN(base->lcla_pool.base_unaligned,
  2611. LCLA_ALIGNMENT);
  2612. }
  2613. pool->dma_addr = dma_map_single(base->dev, pool->base,
  2614. SZ_1K * base->num_phy_chans,
  2615. DMA_TO_DEVICE);
  2616. if (dma_mapping_error(base->dev, pool->dma_addr)) {
  2617. pool->dma_addr = 0;
  2618. ret = -ENOMEM;
  2619. goto failure;
  2620. }
  2621. writel(virt_to_phys(base->lcla_pool.base),
  2622. base->virtbase + D40_DREG_LCLA);
  2623. failure:
  2624. kfree(page_list);
  2625. return ret;
  2626. }
  2627. static int __init d40_probe(struct platform_device *pdev)
  2628. {
  2629. int err;
  2630. int ret = -ENOENT;
  2631. struct d40_base *base;
  2632. struct resource *res = NULL;
  2633. int num_reserved_chans;
  2634. u32 val;
  2635. base = d40_hw_detect_init(pdev);
  2636. if (!base)
  2637. goto failure;
  2638. num_reserved_chans = d40_phy_res_init(base);
  2639. platform_set_drvdata(pdev, base);
  2640. spin_lock_init(&base->interrupt_lock);
  2641. spin_lock_init(&base->execmd_lock);
  2642. /* Get IO for logical channel parameter address */
  2643. res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "lcpa");
  2644. if (!res) {
  2645. ret = -ENOENT;
  2646. d40_err(&pdev->dev, "No \"lcpa\" memory resource\n");
  2647. goto failure;
  2648. }
  2649. base->lcpa_size = resource_size(res);
  2650. base->phy_lcpa = res->start;
  2651. if (request_mem_region(res->start, resource_size(res),
  2652. D40_NAME " I/O lcpa") == NULL) {
  2653. ret = -EBUSY;
  2654. d40_err(&pdev->dev,
  2655. "Failed to request LCPA region 0x%x-0x%x\n",
  2656. res->start, res->end);
  2657. goto failure;
  2658. }
  2659. /* We make use of ESRAM memory for this. */
  2660. val = readl(base->virtbase + D40_DREG_LCPA);
  2661. if (res->start != val && val != 0) {
  2662. dev_warn(&pdev->dev,
  2663. "[%s] Mismatch LCPA dma 0x%x, def 0x%x\n",
  2664. __func__, val, res->start);
  2665. } else
  2666. writel(res->start, base->virtbase + D40_DREG_LCPA);
  2667. base->lcpa_base = ioremap(res->start, resource_size(res));
  2668. if (!base->lcpa_base) {
  2669. ret = -ENOMEM;
  2670. d40_err(&pdev->dev, "Failed to ioremap LCPA region\n");
  2671. goto failure;
  2672. }
  2673. /* If lcla has to be located in ESRAM we don't need to allocate */
  2674. if (base->plat_data->use_esram_lcla) {
  2675. res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
  2676. "lcla_esram");
  2677. if (!res) {
  2678. ret = -ENOENT;
  2679. d40_err(&pdev->dev,
  2680. "No \"lcla_esram\" memory resource\n");
  2681. goto failure;
  2682. }
  2683. base->lcla_pool.base = ioremap(res->start,
  2684. resource_size(res));
  2685. if (!base->lcla_pool.base) {
  2686. ret = -ENOMEM;
  2687. d40_err(&pdev->dev, "Failed to ioremap LCLA region\n");
  2688. goto failure;
  2689. }
  2690. writel(res->start, base->virtbase + D40_DREG_LCLA);
  2691. } else {
  2692. ret = d40_lcla_allocate(base);
  2693. if (ret) {
  2694. d40_err(&pdev->dev, "Failed to allocate LCLA area\n");
  2695. goto failure;
  2696. }
  2697. }
  2698. spin_lock_init(&base->lcla_pool.lock);
  2699. base->irq = platform_get_irq(pdev, 0);
  2700. ret = request_irq(base->irq, d40_handle_interrupt, 0, D40_NAME, base);
  2701. if (ret) {
  2702. d40_err(&pdev->dev, "No IRQ defined\n");
  2703. goto failure;
  2704. }
  2705. pm_runtime_irq_safe(base->dev);
  2706. pm_runtime_set_autosuspend_delay(base->dev, DMA40_AUTOSUSPEND_DELAY);
  2707. pm_runtime_use_autosuspend(base->dev);
  2708. pm_runtime_enable(base->dev);
  2709. pm_runtime_resume(base->dev);
  2710. if (base->plat_data->use_esram_lcla) {
  2711. base->lcpa_regulator = regulator_get(base->dev, "lcla_esram");
  2712. if (IS_ERR(base->lcpa_regulator)) {
  2713. d40_err(&pdev->dev, "Failed to get lcpa_regulator\n");
  2714. base->lcpa_regulator = NULL;
  2715. goto failure;
  2716. }
  2717. ret = regulator_enable(base->lcpa_regulator);
  2718. if (ret) {
  2719. d40_err(&pdev->dev,
  2720. "Failed to enable lcpa_regulator\n");
  2721. regulator_put(base->lcpa_regulator);
  2722. base->lcpa_regulator = NULL;
  2723. goto failure;
  2724. }
  2725. }
  2726. base->initialized = true;
  2727. err = d40_dmaengine_init(base, num_reserved_chans);
  2728. if (err)
  2729. goto failure;
  2730. d40_hw_init(base);
  2731. dev_info(base->dev, "initialized\n");
  2732. return 0;
  2733. failure:
  2734. if (base) {
  2735. if (base->desc_slab)
  2736. kmem_cache_destroy(base->desc_slab);
  2737. if (base->virtbase)
  2738. iounmap(base->virtbase);
  2739. if (base->lcla_pool.base && base->plat_data->use_esram_lcla) {
  2740. iounmap(base->lcla_pool.base);
  2741. base->lcla_pool.base = NULL;
  2742. }
  2743. if (base->lcla_pool.dma_addr)
  2744. dma_unmap_single(base->dev, base->lcla_pool.dma_addr,
  2745. SZ_1K * base->num_phy_chans,
  2746. DMA_TO_DEVICE);
  2747. if (!base->lcla_pool.base_unaligned && base->lcla_pool.base)
  2748. free_pages((unsigned long)base->lcla_pool.base,
  2749. base->lcla_pool.pages);
  2750. kfree(base->lcla_pool.base_unaligned);
  2751. if (base->phy_lcpa)
  2752. release_mem_region(base->phy_lcpa,
  2753. base->lcpa_size);
  2754. if (base->phy_start)
  2755. release_mem_region(base->phy_start,
  2756. base->phy_size);
  2757. if (base->clk) {
  2758. clk_disable(base->clk);
  2759. clk_put(base->clk);
  2760. }
  2761. if (base->lcpa_regulator) {
  2762. regulator_disable(base->lcpa_regulator);
  2763. regulator_put(base->lcpa_regulator);
  2764. }
  2765. kfree(base->lcla_pool.alloc_map);
  2766. kfree(base->lookup_log_chans);
  2767. kfree(base->lookup_phy_chans);
  2768. kfree(base->phy_res);
  2769. kfree(base);
  2770. }
  2771. d40_err(&pdev->dev, "probe failed\n");
  2772. return ret;
  2773. }
  2774. static struct platform_driver d40_driver = {
  2775. .driver = {
  2776. .owner = THIS_MODULE,
  2777. .name = D40_NAME,
  2778. .pm = DMA40_PM_OPS,
  2779. },
  2780. };
  2781. static int __init stedma40_init(void)
  2782. {
  2783. return platform_driver_probe(&d40_driver, d40_probe);
  2784. }
  2785. subsys_initcall(stedma40_init);