elevator.c 24 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051
  1. /*
  2. * Block device elevator/IO-scheduler.
  3. *
  4. * Copyright (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
  5. *
  6. * 30042000 Jens Axboe <axboe@kernel.dk> :
  7. *
  8. * Split the elevator a bit so that it is possible to choose a different
  9. * one or even write a new "plug in". There are three pieces:
  10. * - elevator_fn, inserts a new request in the queue list
  11. * - elevator_merge_fn, decides whether a new buffer can be merged with
  12. * an existing request
  13. * - elevator_dequeue_fn, called when a request is taken off the active list
  14. *
  15. * 20082000 Dave Jones <davej@suse.de> :
  16. * Removed tests for max-bomb-segments, which was breaking elvtune
  17. * when run without -bN
  18. *
  19. * Jens:
  20. * - Rework again to work with bio instead of buffer_heads
  21. * - loose bi_dev comparisons, partition handling is right now
  22. * - completely modularize elevator setup and teardown
  23. *
  24. */
  25. #include <linux/kernel.h>
  26. #include <linux/fs.h>
  27. #include <linux/blkdev.h>
  28. #include <linux/elevator.h>
  29. #include <linux/bio.h>
  30. #include <linux/module.h>
  31. #include <linux/slab.h>
  32. #include <linux/init.h>
  33. #include <linux/compiler.h>
  34. #include <linux/blktrace_api.h>
  35. #include <linux/hash.h>
  36. #include <linux/uaccess.h>
  37. #include <trace/events/block.h>
  38. #include "blk.h"
  39. static DEFINE_SPINLOCK(elv_list_lock);
  40. static LIST_HEAD(elv_list);
  41. /*
  42. * Merge hash stuff.
  43. */
  44. static const int elv_hash_shift = 6;
  45. #define ELV_HASH_BLOCK(sec) ((sec) >> 3)
  46. #define ELV_HASH_FN(sec) \
  47. (hash_long(ELV_HASH_BLOCK((sec)), elv_hash_shift))
  48. #define ELV_HASH_ENTRIES (1 << elv_hash_shift)
  49. #define rq_hash_key(rq) (blk_rq_pos(rq) + blk_rq_sectors(rq))
  50. /*
  51. * Query io scheduler to see if the current process issuing bio may be
  52. * merged with rq.
  53. */
  54. static int elv_iosched_allow_merge(struct request *rq, struct bio *bio)
  55. {
  56. struct request_queue *q = rq->q;
  57. struct elevator_queue *e = q->elevator;
  58. if (e->type->ops.elevator_allow_merge_fn)
  59. return e->type->ops.elevator_allow_merge_fn(q, rq, bio);
  60. return 1;
  61. }
  62. /*
  63. * can we safely merge with this request?
  64. */
  65. bool elv_rq_merge_ok(struct request *rq, struct bio *bio)
  66. {
  67. if (!blk_rq_merge_ok(rq, bio))
  68. return 0;
  69. if (!elv_iosched_allow_merge(rq, bio))
  70. return 0;
  71. return 1;
  72. }
  73. EXPORT_SYMBOL(elv_rq_merge_ok);
  74. static struct elevator_type *elevator_find(const char *name)
  75. {
  76. struct elevator_type *e;
  77. list_for_each_entry(e, &elv_list, list) {
  78. if (!strcmp(e->elevator_name, name))
  79. return e;
  80. }
  81. return NULL;
  82. }
  83. static void elevator_put(struct elevator_type *e)
  84. {
  85. module_put(e->elevator_owner);
  86. }
  87. static struct elevator_type *elevator_get(const char *name)
  88. {
  89. struct elevator_type *e;
  90. spin_lock(&elv_list_lock);
  91. e = elevator_find(name);
  92. if (!e) {
  93. spin_unlock(&elv_list_lock);
  94. request_module("%s-iosched", name);
  95. spin_lock(&elv_list_lock);
  96. e = elevator_find(name);
  97. }
  98. if (e && !try_module_get(e->elevator_owner))
  99. e = NULL;
  100. spin_unlock(&elv_list_lock);
  101. return e;
  102. }
  103. static int elevator_init_queue(struct request_queue *q,
  104. struct elevator_queue *eq)
  105. {
  106. eq->elevator_data = eq->type->ops.elevator_init_fn(q);
  107. if (eq->elevator_data)
  108. return 0;
  109. return -ENOMEM;
  110. }
  111. static char chosen_elevator[ELV_NAME_MAX];
  112. static int __init elevator_setup(char *str)
  113. {
  114. /*
  115. * Be backwards-compatible with previous kernels, so users
  116. * won't get the wrong elevator.
  117. */
  118. strncpy(chosen_elevator, str, sizeof(chosen_elevator) - 1);
  119. return 1;
  120. }
  121. __setup("elevator=", elevator_setup);
  122. static struct kobj_type elv_ktype;
  123. static struct elevator_queue *elevator_alloc(struct request_queue *q,
  124. struct elevator_type *e)
  125. {
  126. struct elevator_queue *eq;
  127. int i;
  128. eq = kmalloc_node(sizeof(*eq), GFP_KERNEL | __GFP_ZERO, q->node);
  129. if (unlikely(!eq))
  130. goto err;
  131. eq->type = e;
  132. kobject_init(&eq->kobj, &elv_ktype);
  133. mutex_init(&eq->sysfs_lock);
  134. eq->hash = kmalloc_node(sizeof(struct hlist_head) * ELV_HASH_ENTRIES,
  135. GFP_KERNEL, q->node);
  136. if (!eq->hash)
  137. goto err;
  138. for (i = 0; i < ELV_HASH_ENTRIES; i++)
  139. INIT_HLIST_HEAD(&eq->hash[i]);
  140. return eq;
  141. err:
  142. kfree(eq);
  143. elevator_put(e);
  144. return NULL;
  145. }
  146. static void elevator_release(struct kobject *kobj)
  147. {
  148. struct elevator_queue *e;
  149. e = container_of(kobj, struct elevator_queue, kobj);
  150. elevator_put(e->type);
  151. kfree(e->hash);
  152. kfree(e);
  153. }
  154. int elevator_init(struct request_queue *q, char *name)
  155. {
  156. struct elevator_type *e = NULL;
  157. struct elevator_queue *eq;
  158. int err;
  159. if (unlikely(q->elevator))
  160. return 0;
  161. INIT_LIST_HEAD(&q->queue_head);
  162. q->last_merge = NULL;
  163. q->end_sector = 0;
  164. q->boundary_rq = NULL;
  165. if (name) {
  166. e = elevator_get(name);
  167. if (!e)
  168. return -EINVAL;
  169. }
  170. if (!e && *chosen_elevator) {
  171. e = elevator_get(chosen_elevator);
  172. if (!e)
  173. printk(KERN_ERR "I/O scheduler %s not found\n",
  174. chosen_elevator);
  175. }
  176. if (!e) {
  177. e = elevator_get(CONFIG_DEFAULT_IOSCHED);
  178. if (!e) {
  179. printk(KERN_ERR
  180. "Default I/O scheduler not found. " \
  181. "Using noop.\n");
  182. e = elevator_get("noop");
  183. }
  184. }
  185. eq = elevator_alloc(q, e);
  186. if (!eq)
  187. return -ENOMEM;
  188. err = elevator_init_queue(q, eq);
  189. if (err) {
  190. kobject_put(&eq->kobj);
  191. return err;
  192. }
  193. q->elevator = eq;
  194. return 0;
  195. }
  196. EXPORT_SYMBOL(elevator_init);
  197. void elevator_exit(struct elevator_queue *e)
  198. {
  199. mutex_lock(&e->sysfs_lock);
  200. if (e->type->ops.elevator_exit_fn)
  201. e->type->ops.elevator_exit_fn(e);
  202. mutex_unlock(&e->sysfs_lock);
  203. kobject_put(&e->kobj);
  204. }
  205. EXPORT_SYMBOL(elevator_exit);
  206. static inline void __elv_rqhash_del(struct request *rq)
  207. {
  208. hlist_del_init(&rq->hash);
  209. }
  210. static void elv_rqhash_del(struct request_queue *q, struct request *rq)
  211. {
  212. if (ELV_ON_HASH(rq))
  213. __elv_rqhash_del(rq);
  214. }
  215. static void elv_rqhash_add(struct request_queue *q, struct request *rq)
  216. {
  217. struct elevator_queue *e = q->elevator;
  218. BUG_ON(ELV_ON_HASH(rq));
  219. hlist_add_head(&rq->hash, &e->hash[ELV_HASH_FN(rq_hash_key(rq))]);
  220. }
  221. static void elv_rqhash_reposition(struct request_queue *q, struct request *rq)
  222. {
  223. __elv_rqhash_del(rq);
  224. elv_rqhash_add(q, rq);
  225. }
  226. static struct request *elv_rqhash_find(struct request_queue *q, sector_t offset)
  227. {
  228. struct elevator_queue *e = q->elevator;
  229. struct hlist_head *hash_list = &e->hash[ELV_HASH_FN(offset)];
  230. struct hlist_node *entry, *next;
  231. struct request *rq;
  232. hlist_for_each_entry_safe(rq, entry, next, hash_list, hash) {
  233. BUG_ON(!ELV_ON_HASH(rq));
  234. if (unlikely(!rq_mergeable(rq))) {
  235. __elv_rqhash_del(rq);
  236. continue;
  237. }
  238. if (rq_hash_key(rq) == offset)
  239. return rq;
  240. }
  241. return NULL;
  242. }
  243. /*
  244. * RB-tree support functions for inserting/lookup/removal of requests
  245. * in a sorted RB tree.
  246. */
  247. void elv_rb_add(struct rb_root *root, struct request *rq)
  248. {
  249. struct rb_node **p = &root->rb_node;
  250. struct rb_node *parent = NULL;
  251. struct request *__rq;
  252. while (*p) {
  253. parent = *p;
  254. __rq = rb_entry(parent, struct request, rb_node);
  255. if (blk_rq_pos(rq) < blk_rq_pos(__rq))
  256. p = &(*p)->rb_left;
  257. else if (blk_rq_pos(rq) >= blk_rq_pos(__rq))
  258. p = &(*p)->rb_right;
  259. }
  260. rb_link_node(&rq->rb_node, parent, p);
  261. rb_insert_color(&rq->rb_node, root);
  262. }
  263. EXPORT_SYMBOL(elv_rb_add);
  264. void elv_rb_del(struct rb_root *root, struct request *rq)
  265. {
  266. BUG_ON(RB_EMPTY_NODE(&rq->rb_node));
  267. rb_erase(&rq->rb_node, root);
  268. RB_CLEAR_NODE(&rq->rb_node);
  269. }
  270. EXPORT_SYMBOL(elv_rb_del);
  271. struct request *elv_rb_find(struct rb_root *root, sector_t sector)
  272. {
  273. struct rb_node *n = root->rb_node;
  274. struct request *rq;
  275. while (n) {
  276. rq = rb_entry(n, struct request, rb_node);
  277. if (sector < blk_rq_pos(rq))
  278. n = n->rb_left;
  279. else if (sector > blk_rq_pos(rq))
  280. n = n->rb_right;
  281. else
  282. return rq;
  283. }
  284. return NULL;
  285. }
  286. EXPORT_SYMBOL(elv_rb_find);
  287. /*
  288. * Insert rq into dispatch queue of q. Queue lock must be held on
  289. * entry. rq is sort instead into the dispatch queue. To be used by
  290. * specific elevators.
  291. */
  292. void elv_dispatch_sort(struct request_queue *q, struct request *rq)
  293. {
  294. sector_t boundary;
  295. struct list_head *entry;
  296. int stop_flags;
  297. if (q->last_merge == rq)
  298. q->last_merge = NULL;
  299. elv_rqhash_del(q, rq);
  300. q->nr_sorted--;
  301. boundary = q->end_sector;
  302. stop_flags = REQ_SOFTBARRIER | REQ_STARTED;
  303. list_for_each_prev(entry, &q->queue_head) {
  304. struct request *pos = list_entry_rq(entry);
  305. if ((rq->cmd_flags & REQ_DISCARD) !=
  306. (pos->cmd_flags & REQ_DISCARD))
  307. break;
  308. if (rq_data_dir(rq) != rq_data_dir(pos))
  309. break;
  310. if (pos->cmd_flags & stop_flags)
  311. break;
  312. if (blk_rq_pos(rq) >= boundary) {
  313. if (blk_rq_pos(pos) < boundary)
  314. continue;
  315. } else {
  316. if (blk_rq_pos(pos) >= boundary)
  317. break;
  318. }
  319. if (blk_rq_pos(rq) >= blk_rq_pos(pos))
  320. break;
  321. }
  322. list_add(&rq->queuelist, entry);
  323. }
  324. EXPORT_SYMBOL(elv_dispatch_sort);
  325. /*
  326. * Insert rq into dispatch queue of q. Queue lock must be held on
  327. * entry. rq is added to the back of the dispatch queue. To be used by
  328. * specific elevators.
  329. */
  330. void elv_dispatch_add_tail(struct request_queue *q, struct request *rq)
  331. {
  332. if (q->last_merge == rq)
  333. q->last_merge = NULL;
  334. elv_rqhash_del(q, rq);
  335. q->nr_sorted--;
  336. q->end_sector = rq_end_sector(rq);
  337. q->boundary_rq = rq;
  338. list_add_tail(&rq->queuelist, &q->queue_head);
  339. }
  340. EXPORT_SYMBOL(elv_dispatch_add_tail);
  341. int elv_merge(struct request_queue *q, struct request **req, struct bio *bio)
  342. {
  343. struct elevator_queue *e = q->elevator;
  344. struct request *__rq;
  345. int ret;
  346. /*
  347. * Levels of merges:
  348. * nomerges: No merges at all attempted
  349. * noxmerges: Only simple one-hit cache try
  350. * merges: All merge tries attempted
  351. */
  352. if (blk_queue_nomerges(q))
  353. return ELEVATOR_NO_MERGE;
  354. /*
  355. * First try one-hit cache.
  356. */
  357. if (q->last_merge && elv_rq_merge_ok(q->last_merge, bio)) {
  358. ret = blk_try_merge(q->last_merge, bio);
  359. if (ret != ELEVATOR_NO_MERGE) {
  360. *req = q->last_merge;
  361. return ret;
  362. }
  363. }
  364. if (blk_queue_noxmerges(q))
  365. return ELEVATOR_NO_MERGE;
  366. /*
  367. * See if our hash lookup can find a potential backmerge.
  368. */
  369. __rq = elv_rqhash_find(q, bio->bi_sector);
  370. if (__rq && elv_rq_merge_ok(__rq, bio)) {
  371. *req = __rq;
  372. return ELEVATOR_BACK_MERGE;
  373. }
  374. if (e->type->ops.elevator_merge_fn)
  375. return e->type->ops.elevator_merge_fn(q, req, bio);
  376. return ELEVATOR_NO_MERGE;
  377. }
  378. /*
  379. * Attempt to do an insertion back merge. Only check for the case where
  380. * we can append 'rq' to an existing request, so we can throw 'rq' away
  381. * afterwards.
  382. *
  383. * Returns true if we merged, false otherwise
  384. */
  385. static bool elv_attempt_insert_merge(struct request_queue *q,
  386. struct request *rq)
  387. {
  388. struct request *__rq;
  389. if (blk_queue_nomerges(q))
  390. return false;
  391. /*
  392. * First try one-hit cache.
  393. */
  394. if (q->last_merge && blk_attempt_req_merge(q, q->last_merge, rq))
  395. return true;
  396. if (blk_queue_noxmerges(q))
  397. return false;
  398. /*
  399. * See if our hash lookup can find a potential backmerge.
  400. */
  401. __rq = elv_rqhash_find(q, blk_rq_pos(rq));
  402. if (__rq && blk_attempt_req_merge(q, __rq, rq))
  403. return true;
  404. return false;
  405. }
  406. void elv_merged_request(struct request_queue *q, struct request *rq, int type)
  407. {
  408. struct elevator_queue *e = q->elevator;
  409. if (e->type->ops.elevator_merged_fn)
  410. e->type->ops.elevator_merged_fn(q, rq, type);
  411. if (type == ELEVATOR_BACK_MERGE)
  412. elv_rqhash_reposition(q, rq);
  413. q->last_merge = rq;
  414. }
  415. void elv_merge_requests(struct request_queue *q, struct request *rq,
  416. struct request *next)
  417. {
  418. struct elevator_queue *e = q->elevator;
  419. const int next_sorted = next->cmd_flags & REQ_SORTED;
  420. if (next_sorted && e->type->ops.elevator_merge_req_fn)
  421. e->type->ops.elevator_merge_req_fn(q, rq, next);
  422. elv_rqhash_reposition(q, rq);
  423. if (next_sorted) {
  424. elv_rqhash_del(q, next);
  425. q->nr_sorted--;
  426. }
  427. q->last_merge = rq;
  428. }
  429. void elv_bio_merged(struct request_queue *q, struct request *rq,
  430. struct bio *bio)
  431. {
  432. struct elevator_queue *e = q->elevator;
  433. if (e->type->ops.elevator_bio_merged_fn)
  434. e->type->ops.elevator_bio_merged_fn(q, rq, bio);
  435. }
  436. void elv_requeue_request(struct request_queue *q, struct request *rq)
  437. {
  438. /*
  439. * it already went through dequeue, we need to decrement the
  440. * in_flight count again
  441. */
  442. if (blk_account_rq(rq)) {
  443. q->in_flight[rq_is_sync(rq)]--;
  444. if (rq->cmd_flags & REQ_SORTED)
  445. elv_deactivate_rq(q, rq);
  446. }
  447. rq->cmd_flags &= ~REQ_STARTED;
  448. __elv_add_request(q, rq, ELEVATOR_INSERT_REQUEUE);
  449. }
  450. void elv_drain_elevator(struct request_queue *q)
  451. {
  452. static int printed;
  453. lockdep_assert_held(q->queue_lock);
  454. while (q->elevator->type->ops.elevator_dispatch_fn(q, 1))
  455. ;
  456. if (q->nr_sorted && printed++ < 10) {
  457. printk(KERN_ERR "%s: forced dispatching is broken "
  458. "(nr_sorted=%u), please report this\n",
  459. q->elevator->type->elevator_name, q->nr_sorted);
  460. }
  461. }
  462. void elv_quiesce_start(struct request_queue *q)
  463. {
  464. if (!q->elevator)
  465. return;
  466. spin_lock_irq(q->queue_lock);
  467. queue_flag_set(QUEUE_FLAG_ELVSWITCH, q);
  468. spin_unlock_irq(q->queue_lock);
  469. blk_drain_queue(q, false);
  470. }
  471. void elv_quiesce_end(struct request_queue *q)
  472. {
  473. spin_lock_irq(q->queue_lock);
  474. queue_flag_clear(QUEUE_FLAG_ELVSWITCH, q);
  475. spin_unlock_irq(q->queue_lock);
  476. }
  477. void __elv_add_request(struct request_queue *q, struct request *rq, int where)
  478. {
  479. trace_block_rq_insert(q, rq);
  480. rq->q = q;
  481. if (rq->cmd_flags & REQ_SOFTBARRIER) {
  482. /* barriers are scheduling boundary, update end_sector */
  483. if (rq->cmd_type == REQ_TYPE_FS ||
  484. (rq->cmd_flags & REQ_DISCARD)) {
  485. q->end_sector = rq_end_sector(rq);
  486. q->boundary_rq = rq;
  487. }
  488. } else if (!(rq->cmd_flags & REQ_ELVPRIV) &&
  489. (where == ELEVATOR_INSERT_SORT ||
  490. where == ELEVATOR_INSERT_SORT_MERGE))
  491. where = ELEVATOR_INSERT_BACK;
  492. switch (where) {
  493. case ELEVATOR_INSERT_REQUEUE:
  494. case ELEVATOR_INSERT_FRONT:
  495. rq->cmd_flags |= REQ_SOFTBARRIER;
  496. list_add(&rq->queuelist, &q->queue_head);
  497. break;
  498. case ELEVATOR_INSERT_BACK:
  499. rq->cmd_flags |= REQ_SOFTBARRIER;
  500. elv_drain_elevator(q);
  501. list_add_tail(&rq->queuelist, &q->queue_head);
  502. /*
  503. * We kick the queue here for the following reasons.
  504. * - The elevator might have returned NULL previously
  505. * to delay requests and returned them now. As the
  506. * queue wasn't empty before this request, ll_rw_blk
  507. * won't run the queue on return, resulting in hang.
  508. * - Usually, back inserted requests won't be merged
  509. * with anything. There's no point in delaying queue
  510. * processing.
  511. */
  512. __blk_run_queue(q);
  513. break;
  514. case ELEVATOR_INSERT_SORT_MERGE:
  515. /*
  516. * If we succeed in merging this request with one in the
  517. * queue already, we are done - rq has now been freed,
  518. * so no need to do anything further.
  519. */
  520. if (elv_attempt_insert_merge(q, rq))
  521. break;
  522. case ELEVATOR_INSERT_SORT:
  523. BUG_ON(rq->cmd_type != REQ_TYPE_FS &&
  524. !(rq->cmd_flags & REQ_DISCARD));
  525. rq->cmd_flags |= REQ_SORTED;
  526. q->nr_sorted++;
  527. if (rq_mergeable(rq)) {
  528. elv_rqhash_add(q, rq);
  529. if (!q->last_merge)
  530. q->last_merge = rq;
  531. }
  532. /*
  533. * Some ioscheds (cfq) run q->request_fn directly, so
  534. * rq cannot be accessed after calling
  535. * elevator_add_req_fn.
  536. */
  537. q->elevator->type->ops.elevator_add_req_fn(q, rq);
  538. break;
  539. case ELEVATOR_INSERT_FLUSH:
  540. rq->cmd_flags |= REQ_SOFTBARRIER;
  541. blk_insert_flush(rq);
  542. break;
  543. default:
  544. printk(KERN_ERR "%s: bad insertion point %d\n",
  545. __func__, where);
  546. BUG();
  547. }
  548. }
  549. EXPORT_SYMBOL(__elv_add_request);
  550. void elv_add_request(struct request_queue *q, struct request *rq, int where)
  551. {
  552. unsigned long flags;
  553. spin_lock_irqsave(q->queue_lock, flags);
  554. __elv_add_request(q, rq, where);
  555. spin_unlock_irqrestore(q->queue_lock, flags);
  556. }
  557. EXPORT_SYMBOL(elv_add_request);
  558. struct request *elv_latter_request(struct request_queue *q, struct request *rq)
  559. {
  560. struct elevator_queue *e = q->elevator;
  561. if (e->type->ops.elevator_latter_req_fn)
  562. return e->type->ops.elevator_latter_req_fn(q, rq);
  563. return NULL;
  564. }
  565. struct request *elv_former_request(struct request_queue *q, struct request *rq)
  566. {
  567. struct elevator_queue *e = q->elevator;
  568. if (e->type->ops.elevator_former_req_fn)
  569. return e->type->ops.elevator_former_req_fn(q, rq);
  570. return NULL;
  571. }
  572. int elv_set_request(struct request_queue *q, struct request *rq, gfp_t gfp_mask)
  573. {
  574. struct elevator_queue *e = q->elevator;
  575. if (e->type->ops.elevator_set_req_fn)
  576. return e->type->ops.elevator_set_req_fn(q, rq, gfp_mask);
  577. return 0;
  578. }
  579. void elv_put_request(struct request_queue *q, struct request *rq)
  580. {
  581. struct elevator_queue *e = q->elevator;
  582. if (e->type->ops.elevator_put_req_fn)
  583. e->type->ops.elevator_put_req_fn(rq);
  584. }
  585. int elv_may_queue(struct request_queue *q, int rw)
  586. {
  587. struct elevator_queue *e = q->elevator;
  588. if (e->type->ops.elevator_may_queue_fn)
  589. return e->type->ops.elevator_may_queue_fn(q, rw);
  590. return ELV_MQUEUE_MAY;
  591. }
  592. void elv_abort_queue(struct request_queue *q)
  593. {
  594. struct request *rq;
  595. blk_abort_flushes(q);
  596. while (!list_empty(&q->queue_head)) {
  597. rq = list_entry_rq(q->queue_head.next);
  598. rq->cmd_flags |= REQ_QUIET;
  599. trace_block_rq_abort(q, rq);
  600. /*
  601. * Mark this request as started so we don't trigger
  602. * any debug logic in the end I/O path.
  603. */
  604. blk_start_request(rq);
  605. __blk_end_request_all(rq, -EIO);
  606. }
  607. }
  608. EXPORT_SYMBOL(elv_abort_queue);
  609. void elv_completed_request(struct request_queue *q, struct request *rq)
  610. {
  611. struct elevator_queue *e = q->elevator;
  612. /*
  613. * request is released from the driver, io must be done
  614. */
  615. if (blk_account_rq(rq)) {
  616. q->in_flight[rq_is_sync(rq)]--;
  617. if ((rq->cmd_flags & REQ_SORTED) &&
  618. e->type->ops.elevator_completed_req_fn)
  619. e->type->ops.elevator_completed_req_fn(q, rq);
  620. }
  621. }
  622. #define to_elv(atr) container_of((atr), struct elv_fs_entry, attr)
  623. static ssize_t
  624. elv_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
  625. {
  626. struct elv_fs_entry *entry = to_elv(attr);
  627. struct elevator_queue *e;
  628. ssize_t error;
  629. if (!entry->show)
  630. return -EIO;
  631. e = container_of(kobj, struct elevator_queue, kobj);
  632. mutex_lock(&e->sysfs_lock);
  633. error = e->type ? entry->show(e, page) : -ENOENT;
  634. mutex_unlock(&e->sysfs_lock);
  635. return error;
  636. }
  637. static ssize_t
  638. elv_attr_store(struct kobject *kobj, struct attribute *attr,
  639. const char *page, size_t length)
  640. {
  641. struct elv_fs_entry *entry = to_elv(attr);
  642. struct elevator_queue *e;
  643. ssize_t error;
  644. if (!entry->store)
  645. return -EIO;
  646. e = container_of(kobj, struct elevator_queue, kobj);
  647. mutex_lock(&e->sysfs_lock);
  648. error = e->type ? entry->store(e, page, length) : -ENOENT;
  649. mutex_unlock(&e->sysfs_lock);
  650. return error;
  651. }
  652. static const struct sysfs_ops elv_sysfs_ops = {
  653. .show = elv_attr_show,
  654. .store = elv_attr_store,
  655. };
  656. static struct kobj_type elv_ktype = {
  657. .sysfs_ops = &elv_sysfs_ops,
  658. .release = elevator_release,
  659. };
  660. int __elv_register_queue(struct request_queue *q, struct elevator_queue *e)
  661. {
  662. int error;
  663. error = kobject_add(&e->kobj, &q->kobj, "%s", "iosched");
  664. if (!error) {
  665. struct elv_fs_entry *attr = e->type->elevator_attrs;
  666. if (attr) {
  667. while (attr->attr.name) {
  668. if (sysfs_create_file(&e->kobj, &attr->attr))
  669. break;
  670. attr++;
  671. }
  672. }
  673. kobject_uevent(&e->kobj, KOBJ_ADD);
  674. e->registered = 1;
  675. }
  676. return error;
  677. }
  678. int elv_register_queue(struct request_queue *q)
  679. {
  680. return __elv_register_queue(q, q->elevator);
  681. }
  682. EXPORT_SYMBOL(elv_register_queue);
  683. void elv_unregister_queue(struct request_queue *q)
  684. {
  685. if (q) {
  686. struct elevator_queue *e = q->elevator;
  687. kobject_uevent(&e->kobj, KOBJ_REMOVE);
  688. kobject_del(&e->kobj);
  689. e->registered = 0;
  690. }
  691. }
  692. EXPORT_SYMBOL(elv_unregister_queue);
  693. int elv_register(struct elevator_type *e)
  694. {
  695. char *def = "";
  696. /* create icq_cache if requested */
  697. if (e->icq_size) {
  698. if (WARN_ON(e->icq_size < sizeof(struct io_cq)) ||
  699. WARN_ON(e->icq_align < __alignof__(struct io_cq)))
  700. return -EINVAL;
  701. snprintf(e->icq_cache_name, sizeof(e->icq_cache_name),
  702. "%s_io_cq", e->elevator_name);
  703. e->icq_cache = kmem_cache_create(e->icq_cache_name, e->icq_size,
  704. e->icq_align, 0, NULL);
  705. if (!e->icq_cache)
  706. return -ENOMEM;
  707. }
  708. /* register, don't allow duplicate names */
  709. spin_lock(&elv_list_lock);
  710. if (elevator_find(e->elevator_name)) {
  711. spin_unlock(&elv_list_lock);
  712. if (e->icq_cache)
  713. kmem_cache_destroy(e->icq_cache);
  714. return -EBUSY;
  715. }
  716. list_add_tail(&e->list, &elv_list);
  717. spin_unlock(&elv_list_lock);
  718. /* print pretty message */
  719. if (!strcmp(e->elevator_name, chosen_elevator) ||
  720. (!*chosen_elevator &&
  721. !strcmp(e->elevator_name, CONFIG_DEFAULT_IOSCHED)))
  722. def = " (default)";
  723. printk(KERN_INFO "io scheduler %s registered%s\n", e->elevator_name,
  724. def);
  725. return 0;
  726. }
  727. EXPORT_SYMBOL_GPL(elv_register);
  728. void elv_unregister(struct elevator_type *e)
  729. {
  730. /* unregister */
  731. spin_lock(&elv_list_lock);
  732. list_del_init(&e->list);
  733. spin_unlock(&elv_list_lock);
  734. /*
  735. * Destroy icq_cache if it exists. icq's are RCU managed. Make
  736. * sure all RCU operations are complete before proceeding.
  737. */
  738. if (e->icq_cache) {
  739. rcu_barrier();
  740. kmem_cache_destroy(e->icq_cache);
  741. e->icq_cache = NULL;
  742. }
  743. }
  744. EXPORT_SYMBOL_GPL(elv_unregister);
  745. /*
  746. * switch to new_e io scheduler. be careful not to introduce deadlocks -
  747. * we don't free the old io scheduler, before we have allocated what we
  748. * need for the new one. this way we have a chance of going back to the old
  749. * one, if the new one fails init for some reason.
  750. */
  751. static int elevator_switch(struct request_queue *q, struct elevator_type *new_e)
  752. {
  753. struct elevator_queue *old_elevator, *e;
  754. int err;
  755. /* allocate new elevator */
  756. e = elevator_alloc(q, new_e);
  757. if (!e)
  758. return -ENOMEM;
  759. err = elevator_init_queue(q, e);
  760. if (err) {
  761. kobject_put(&e->kobj);
  762. return err;
  763. }
  764. /* turn on BYPASS and drain all requests w/ elevator private data */
  765. elv_quiesce_start(q);
  766. /* unregister old queue, register new one and kill old elevator */
  767. if (q->elevator->registered) {
  768. elv_unregister_queue(q);
  769. err = __elv_register_queue(q, e);
  770. if (err)
  771. goto fail_register;
  772. }
  773. /* done, clear io_cq's, switch elevators and turn off BYPASS */
  774. spin_lock_irq(q->queue_lock);
  775. ioc_clear_queue(q);
  776. old_elevator = q->elevator;
  777. q->elevator = e;
  778. spin_unlock_irq(q->queue_lock);
  779. elevator_exit(old_elevator);
  780. elv_quiesce_end(q);
  781. blk_add_trace_msg(q, "elv switch: %s", e->type->elevator_name);
  782. return 0;
  783. fail_register:
  784. /*
  785. * switch failed, exit the new io scheduler and reattach the old
  786. * one again (along with re-adding the sysfs dir)
  787. */
  788. elevator_exit(e);
  789. elv_register_queue(q);
  790. elv_quiesce_end(q);
  791. return err;
  792. }
  793. /*
  794. * Switch this queue to the given IO scheduler.
  795. */
  796. int elevator_change(struct request_queue *q, const char *name)
  797. {
  798. char elevator_name[ELV_NAME_MAX];
  799. struct elevator_type *e;
  800. if (!q->elevator)
  801. return -ENXIO;
  802. strlcpy(elevator_name, name, sizeof(elevator_name));
  803. e = elevator_get(strstrip(elevator_name));
  804. if (!e) {
  805. printk(KERN_ERR "elevator: type %s not found\n", elevator_name);
  806. return -EINVAL;
  807. }
  808. if (!strcmp(elevator_name, q->elevator->type->elevator_name)) {
  809. elevator_put(e);
  810. return 0;
  811. }
  812. return elevator_switch(q, e);
  813. }
  814. EXPORT_SYMBOL(elevator_change);
  815. ssize_t elv_iosched_store(struct request_queue *q, const char *name,
  816. size_t count)
  817. {
  818. int ret;
  819. if (!q->elevator)
  820. return count;
  821. ret = elevator_change(q, name);
  822. if (!ret)
  823. return count;
  824. printk(KERN_ERR "elevator: switch to %s failed\n", name);
  825. return ret;
  826. }
  827. ssize_t elv_iosched_show(struct request_queue *q, char *name)
  828. {
  829. struct elevator_queue *e = q->elevator;
  830. struct elevator_type *elv;
  831. struct elevator_type *__e;
  832. int len = 0;
  833. if (!q->elevator || !blk_queue_stackable(q))
  834. return sprintf(name, "none\n");
  835. elv = e->type;
  836. spin_lock(&elv_list_lock);
  837. list_for_each_entry(__e, &elv_list, list) {
  838. if (!strcmp(elv->elevator_name, __e->elevator_name))
  839. len += sprintf(name+len, "[%s] ", elv->elevator_name);
  840. else
  841. len += sprintf(name+len, "%s ", __e->elevator_name);
  842. }
  843. spin_unlock(&elv_list_lock);
  844. len += sprintf(len+name, "\n");
  845. return len;
  846. }
  847. struct request *elv_rb_former_request(struct request_queue *q,
  848. struct request *rq)
  849. {
  850. struct rb_node *rbprev = rb_prev(&rq->rb_node);
  851. if (rbprev)
  852. return rb_entry_rq(rbprev);
  853. return NULL;
  854. }
  855. EXPORT_SYMBOL(elv_rb_former_request);
  856. struct request *elv_rb_latter_request(struct request_queue *q,
  857. struct request *rq)
  858. {
  859. struct rb_node *rbnext = rb_next(&rq->rb_node);
  860. if (rbnext)
  861. return rb_entry_rq(rbnext);
  862. return NULL;
  863. }
  864. EXPORT_SYMBOL(elv_rb_latter_request);