common.c 31 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326
  1. #include <linux/bootmem.h>
  2. #include <linux/linkage.h>
  3. #include <linux/bitops.h>
  4. #include <linux/kernel.h>
  5. #include <linux/module.h>
  6. #include <linux/percpu.h>
  7. #include <linux/string.h>
  8. #include <linux/delay.h>
  9. #include <linux/sched.h>
  10. #include <linux/init.h>
  11. #include <linux/kgdb.h>
  12. #include <linux/smp.h>
  13. #include <linux/io.h>
  14. #include <asm/stackprotector.h>
  15. #include <asm/perf_event.h>
  16. #include <asm/mmu_context.h>
  17. #include <asm/archrandom.h>
  18. #include <asm/hypervisor.h>
  19. #include <asm/processor.h>
  20. #include <asm/sections.h>
  21. #include <linux/topology.h>
  22. #include <linux/cpumask.h>
  23. #include <asm/pgtable.h>
  24. #include <linux/atomic.h>
  25. #include <asm/proto.h>
  26. #include <asm/setup.h>
  27. #include <asm/apic.h>
  28. #include <asm/desc.h>
  29. #include <asm/i387.h>
  30. #include <asm/fpu-internal.h>
  31. #include <asm/mtrr.h>
  32. #include <linux/numa.h>
  33. #include <asm/asm.h>
  34. #include <asm/cpu.h>
  35. #include <asm/mce.h>
  36. #include <asm/msr.h>
  37. #include <asm/pat.h>
  38. #ifdef CONFIG_X86_LOCAL_APIC
  39. #include <asm/uv/uv.h>
  40. #endif
  41. #include "cpu.h"
  42. /* all of these masks are initialized in setup_cpu_local_masks() */
  43. cpumask_var_t cpu_initialized_mask;
  44. cpumask_var_t cpu_callout_mask;
  45. cpumask_var_t cpu_callin_mask;
  46. /* representing cpus for which sibling maps can be computed */
  47. cpumask_var_t cpu_sibling_setup_mask;
  48. /* correctly size the local cpu masks */
  49. void __init setup_cpu_local_masks(void)
  50. {
  51. alloc_bootmem_cpumask_var(&cpu_initialized_mask);
  52. alloc_bootmem_cpumask_var(&cpu_callin_mask);
  53. alloc_bootmem_cpumask_var(&cpu_callout_mask);
  54. alloc_bootmem_cpumask_var(&cpu_sibling_setup_mask);
  55. }
  56. static void __cpuinit default_init(struct cpuinfo_x86 *c)
  57. {
  58. #ifdef CONFIG_X86_64
  59. cpu_detect_cache_sizes(c);
  60. #else
  61. /* Not much we can do here... */
  62. /* Check if at least it has cpuid */
  63. if (c->cpuid_level == -1) {
  64. /* No cpuid. It must be an ancient CPU */
  65. if (c->x86 == 4)
  66. strcpy(c->x86_model_id, "486");
  67. else if (c->x86 == 3)
  68. strcpy(c->x86_model_id, "386");
  69. }
  70. #endif
  71. }
  72. static const struct cpu_dev __cpuinitconst default_cpu = {
  73. .c_init = default_init,
  74. .c_vendor = "Unknown",
  75. .c_x86_vendor = X86_VENDOR_UNKNOWN,
  76. };
  77. static const struct cpu_dev *this_cpu __cpuinitdata = &default_cpu;
  78. DEFINE_PER_CPU_PAGE_ALIGNED(struct gdt_page, gdt_page) = { .gdt = {
  79. #ifdef CONFIG_X86_64
  80. /*
  81. * We need valid kernel segments for data and code in long mode too
  82. * IRET will check the segment types kkeil 2000/10/28
  83. * Also sysret mandates a special GDT layout
  84. *
  85. * TLS descriptors are currently at a different place compared to i386.
  86. * Hopefully nobody expects them at a fixed place (Wine?)
  87. */
  88. [GDT_ENTRY_KERNEL32_CS] = GDT_ENTRY_INIT(0xc09b, 0, 0xfffff),
  89. [GDT_ENTRY_KERNEL_CS] = GDT_ENTRY_INIT(0xa09b, 0, 0xfffff),
  90. [GDT_ENTRY_KERNEL_DS] = GDT_ENTRY_INIT(0xc093, 0, 0xfffff),
  91. [GDT_ENTRY_DEFAULT_USER32_CS] = GDT_ENTRY_INIT(0xc0fb, 0, 0xfffff),
  92. [GDT_ENTRY_DEFAULT_USER_DS] = GDT_ENTRY_INIT(0xc0f3, 0, 0xfffff),
  93. [GDT_ENTRY_DEFAULT_USER_CS] = GDT_ENTRY_INIT(0xa0fb, 0, 0xfffff),
  94. #else
  95. [GDT_ENTRY_KERNEL_CS] = GDT_ENTRY_INIT(0xc09a, 0, 0xfffff),
  96. [GDT_ENTRY_KERNEL_DS] = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
  97. [GDT_ENTRY_DEFAULT_USER_CS] = GDT_ENTRY_INIT(0xc0fa, 0, 0xfffff),
  98. [GDT_ENTRY_DEFAULT_USER_DS] = GDT_ENTRY_INIT(0xc0f2, 0, 0xfffff),
  99. /*
  100. * Segments used for calling PnP BIOS have byte granularity.
  101. * They code segments and data segments have fixed 64k limits,
  102. * the transfer segment sizes are set at run time.
  103. */
  104. /* 32-bit code */
  105. [GDT_ENTRY_PNPBIOS_CS32] = GDT_ENTRY_INIT(0x409a, 0, 0xffff),
  106. /* 16-bit code */
  107. [GDT_ENTRY_PNPBIOS_CS16] = GDT_ENTRY_INIT(0x009a, 0, 0xffff),
  108. /* 16-bit data */
  109. [GDT_ENTRY_PNPBIOS_DS] = GDT_ENTRY_INIT(0x0092, 0, 0xffff),
  110. /* 16-bit data */
  111. [GDT_ENTRY_PNPBIOS_TS1] = GDT_ENTRY_INIT(0x0092, 0, 0),
  112. /* 16-bit data */
  113. [GDT_ENTRY_PNPBIOS_TS2] = GDT_ENTRY_INIT(0x0092, 0, 0),
  114. /*
  115. * The APM segments have byte granularity and their bases
  116. * are set at run time. All have 64k limits.
  117. */
  118. /* 32-bit code */
  119. [GDT_ENTRY_APMBIOS_BASE] = GDT_ENTRY_INIT(0x409a, 0, 0xffff),
  120. /* 16-bit code */
  121. [GDT_ENTRY_APMBIOS_BASE+1] = GDT_ENTRY_INIT(0x009a, 0, 0xffff),
  122. /* data */
  123. [GDT_ENTRY_APMBIOS_BASE+2] = GDT_ENTRY_INIT(0x4092, 0, 0xffff),
  124. [GDT_ENTRY_ESPFIX_SS] = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
  125. [GDT_ENTRY_PERCPU] = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
  126. GDT_STACK_CANARY_INIT
  127. #endif
  128. } };
  129. EXPORT_PER_CPU_SYMBOL_GPL(gdt_page);
  130. static int __init x86_xsave_setup(char *s)
  131. {
  132. setup_clear_cpu_cap(X86_FEATURE_XSAVE);
  133. setup_clear_cpu_cap(X86_FEATURE_XSAVEOPT);
  134. return 1;
  135. }
  136. __setup("noxsave", x86_xsave_setup);
  137. static int __init x86_xsaveopt_setup(char *s)
  138. {
  139. setup_clear_cpu_cap(X86_FEATURE_XSAVEOPT);
  140. return 1;
  141. }
  142. __setup("noxsaveopt", x86_xsaveopt_setup);
  143. #ifdef CONFIG_X86_32
  144. static int cachesize_override __cpuinitdata = -1;
  145. static int disable_x86_serial_nr __cpuinitdata = 1;
  146. static int __init cachesize_setup(char *str)
  147. {
  148. get_option(&str, &cachesize_override);
  149. return 1;
  150. }
  151. __setup("cachesize=", cachesize_setup);
  152. static int __init x86_fxsr_setup(char *s)
  153. {
  154. setup_clear_cpu_cap(X86_FEATURE_FXSR);
  155. setup_clear_cpu_cap(X86_FEATURE_XMM);
  156. return 1;
  157. }
  158. __setup("nofxsr", x86_fxsr_setup);
  159. static int __init x86_sep_setup(char *s)
  160. {
  161. setup_clear_cpu_cap(X86_FEATURE_SEP);
  162. return 1;
  163. }
  164. __setup("nosep", x86_sep_setup);
  165. /* Standard macro to see if a specific flag is changeable */
  166. static inline int flag_is_changeable_p(u32 flag)
  167. {
  168. u32 f1, f2;
  169. /*
  170. * Cyrix and IDT cpus allow disabling of CPUID
  171. * so the code below may return different results
  172. * when it is executed before and after enabling
  173. * the CPUID. Add "volatile" to not allow gcc to
  174. * optimize the subsequent calls to this function.
  175. */
  176. asm volatile ("pushfl \n\t"
  177. "pushfl \n\t"
  178. "popl %0 \n\t"
  179. "movl %0, %1 \n\t"
  180. "xorl %2, %0 \n\t"
  181. "pushl %0 \n\t"
  182. "popfl \n\t"
  183. "pushfl \n\t"
  184. "popl %0 \n\t"
  185. "popfl \n\t"
  186. : "=&r" (f1), "=&r" (f2)
  187. : "ir" (flag));
  188. return ((f1^f2) & flag) != 0;
  189. }
  190. /* Probe for the CPUID instruction */
  191. static int __cpuinit have_cpuid_p(void)
  192. {
  193. return flag_is_changeable_p(X86_EFLAGS_ID);
  194. }
  195. static void __cpuinit squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
  196. {
  197. unsigned long lo, hi;
  198. if (!cpu_has(c, X86_FEATURE_PN) || !disable_x86_serial_nr)
  199. return;
  200. /* Disable processor serial number: */
  201. rdmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
  202. lo |= 0x200000;
  203. wrmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
  204. printk(KERN_NOTICE "CPU serial number disabled.\n");
  205. clear_cpu_cap(c, X86_FEATURE_PN);
  206. /* Disabling the serial number may affect the cpuid level */
  207. c->cpuid_level = cpuid_eax(0);
  208. }
  209. static int __init x86_serial_nr_setup(char *s)
  210. {
  211. disable_x86_serial_nr = 0;
  212. return 1;
  213. }
  214. __setup("serialnumber", x86_serial_nr_setup);
  215. #else
  216. static inline int flag_is_changeable_p(u32 flag)
  217. {
  218. return 1;
  219. }
  220. /* Probe for the CPUID instruction */
  221. static inline int have_cpuid_p(void)
  222. {
  223. return 1;
  224. }
  225. static inline void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
  226. {
  227. }
  228. #endif
  229. static int disable_smep __cpuinitdata;
  230. static __init int setup_disable_smep(char *arg)
  231. {
  232. disable_smep = 1;
  233. return 1;
  234. }
  235. __setup("nosmep", setup_disable_smep);
  236. static __cpuinit void setup_smep(struct cpuinfo_x86 *c)
  237. {
  238. if (cpu_has(c, X86_FEATURE_SMEP)) {
  239. if (unlikely(disable_smep)) {
  240. setup_clear_cpu_cap(X86_FEATURE_SMEP);
  241. clear_in_cr4(X86_CR4_SMEP);
  242. } else
  243. set_in_cr4(X86_CR4_SMEP);
  244. }
  245. }
  246. /*
  247. * Some CPU features depend on higher CPUID levels, which may not always
  248. * be available due to CPUID level capping or broken virtualization
  249. * software. Add those features to this table to auto-disable them.
  250. */
  251. struct cpuid_dependent_feature {
  252. u32 feature;
  253. u32 level;
  254. };
  255. static const struct cpuid_dependent_feature __cpuinitconst
  256. cpuid_dependent_features[] = {
  257. { X86_FEATURE_MWAIT, 0x00000005 },
  258. { X86_FEATURE_DCA, 0x00000009 },
  259. { X86_FEATURE_XSAVE, 0x0000000d },
  260. { 0, 0 }
  261. };
  262. static void __cpuinit filter_cpuid_features(struct cpuinfo_x86 *c, bool warn)
  263. {
  264. const struct cpuid_dependent_feature *df;
  265. for (df = cpuid_dependent_features; df->feature; df++) {
  266. if (!cpu_has(c, df->feature))
  267. continue;
  268. /*
  269. * Note: cpuid_level is set to -1 if unavailable, but
  270. * extended_extended_level is set to 0 if unavailable
  271. * and the legitimate extended levels are all negative
  272. * when signed; hence the weird messing around with
  273. * signs here...
  274. */
  275. if (!((s32)df->level < 0 ?
  276. (u32)df->level > (u32)c->extended_cpuid_level :
  277. (s32)df->level > (s32)c->cpuid_level))
  278. continue;
  279. clear_cpu_cap(c, df->feature);
  280. if (!warn)
  281. continue;
  282. printk(KERN_WARNING
  283. "CPU: CPU feature %s disabled, no CPUID level 0x%x\n",
  284. x86_cap_flags[df->feature], df->level);
  285. }
  286. }
  287. /*
  288. * Naming convention should be: <Name> [(<Codename>)]
  289. * This table only is used unless init_<vendor>() below doesn't set it;
  290. * in particular, if CPUID levels 0x80000002..4 are supported, this
  291. * isn't used
  292. */
  293. /* Look up CPU names by table lookup. */
  294. static const char *__cpuinit table_lookup_model(struct cpuinfo_x86 *c)
  295. {
  296. const struct cpu_model_info *info;
  297. if (c->x86_model >= 16)
  298. return NULL; /* Range check */
  299. if (!this_cpu)
  300. return NULL;
  301. info = this_cpu->c_models;
  302. while (info && info->family) {
  303. if (info->family == c->x86)
  304. return info->model_names[c->x86_model];
  305. info++;
  306. }
  307. return NULL; /* Not found */
  308. }
  309. __u32 cpu_caps_cleared[NCAPINTS] __cpuinitdata;
  310. __u32 cpu_caps_set[NCAPINTS] __cpuinitdata;
  311. void load_percpu_segment(int cpu)
  312. {
  313. #ifdef CONFIG_X86_32
  314. loadsegment(fs, __KERNEL_PERCPU);
  315. #else
  316. loadsegment(gs, 0);
  317. wrmsrl(MSR_GS_BASE, (unsigned long)per_cpu(irq_stack_union.gs_base, cpu));
  318. #endif
  319. load_stack_canary_segment();
  320. }
  321. /*
  322. * Current gdt points %fs at the "master" per-cpu area: after this,
  323. * it's on the real one.
  324. */
  325. void switch_to_new_gdt(int cpu)
  326. {
  327. struct desc_ptr gdt_descr;
  328. gdt_descr.address = (long)get_cpu_gdt_table(cpu);
  329. gdt_descr.size = GDT_SIZE - 1;
  330. load_gdt(&gdt_descr);
  331. /* Reload the per-cpu base */
  332. load_percpu_segment(cpu);
  333. }
  334. static const struct cpu_dev *__cpuinitdata cpu_devs[X86_VENDOR_NUM] = {};
  335. static void __cpuinit get_model_name(struct cpuinfo_x86 *c)
  336. {
  337. unsigned int *v;
  338. char *p, *q;
  339. if (c->extended_cpuid_level < 0x80000004)
  340. return;
  341. v = (unsigned int *)c->x86_model_id;
  342. cpuid(0x80000002, &v[0], &v[1], &v[2], &v[3]);
  343. cpuid(0x80000003, &v[4], &v[5], &v[6], &v[7]);
  344. cpuid(0x80000004, &v[8], &v[9], &v[10], &v[11]);
  345. c->x86_model_id[48] = 0;
  346. /*
  347. * Intel chips right-justify this string for some dumb reason;
  348. * undo that brain damage:
  349. */
  350. p = q = &c->x86_model_id[0];
  351. while (*p == ' ')
  352. p++;
  353. if (p != q) {
  354. while (*p)
  355. *q++ = *p++;
  356. while (q <= &c->x86_model_id[48])
  357. *q++ = '\0'; /* Zero-pad the rest */
  358. }
  359. }
  360. void __cpuinit cpu_detect_cache_sizes(struct cpuinfo_x86 *c)
  361. {
  362. unsigned int n, dummy, ebx, ecx, edx, l2size;
  363. n = c->extended_cpuid_level;
  364. if (n >= 0x80000005) {
  365. cpuid(0x80000005, &dummy, &ebx, &ecx, &edx);
  366. c->x86_cache_size = (ecx>>24) + (edx>>24);
  367. #ifdef CONFIG_X86_64
  368. /* On K8 L1 TLB is inclusive, so don't count it */
  369. c->x86_tlbsize = 0;
  370. #endif
  371. }
  372. if (n < 0x80000006) /* Some chips just has a large L1. */
  373. return;
  374. cpuid(0x80000006, &dummy, &ebx, &ecx, &edx);
  375. l2size = ecx >> 16;
  376. #ifdef CONFIG_X86_64
  377. c->x86_tlbsize += ((ebx >> 16) & 0xfff) + (ebx & 0xfff);
  378. #else
  379. /* do processor-specific cache resizing */
  380. if (this_cpu->c_size_cache)
  381. l2size = this_cpu->c_size_cache(c, l2size);
  382. /* Allow user to override all this if necessary. */
  383. if (cachesize_override != -1)
  384. l2size = cachesize_override;
  385. if (l2size == 0)
  386. return; /* Again, no L2 cache is possible */
  387. #endif
  388. c->x86_cache_size = l2size;
  389. }
  390. void __cpuinit detect_ht(struct cpuinfo_x86 *c)
  391. {
  392. #ifdef CONFIG_X86_HT
  393. u32 eax, ebx, ecx, edx;
  394. int index_msb, core_bits;
  395. static bool printed;
  396. if (!cpu_has(c, X86_FEATURE_HT))
  397. return;
  398. if (cpu_has(c, X86_FEATURE_CMP_LEGACY))
  399. goto out;
  400. if (cpu_has(c, X86_FEATURE_XTOPOLOGY))
  401. return;
  402. cpuid(1, &eax, &ebx, &ecx, &edx);
  403. smp_num_siblings = (ebx & 0xff0000) >> 16;
  404. if (smp_num_siblings == 1) {
  405. printk_once(KERN_INFO "CPU0: Hyper-Threading is disabled\n");
  406. goto out;
  407. }
  408. if (smp_num_siblings <= 1)
  409. goto out;
  410. index_msb = get_count_order(smp_num_siblings);
  411. c->phys_proc_id = apic->phys_pkg_id(c->initial_apicid, index_msb);
  412. smp_num_siblings = smp_num_siblings / c->x86_max_cores;
  413. index_msb = get_count_order(smp_num_siblings);
  414. core_bits = get_count_order(c->x86_max_cores);
  415. c->cpu_core_id = apic->phys_pkg_id(c->initial_apicid, index_msb) &
  416. ((1 << core_bits) - 1);
  417. out:
  418. if (!printed && (c->x86_max_cores * smp_num_siblings) > 1) {
  419. printk(KERN_INFO "CPU: Physical Processor ID: %d\n",
  420. c->phys_proc_id);
  421. printk(KERN_INFO "CPU: Processor Core ID: %d\n",
  422. c->cpu_core_id);
  423. printed = 1;
  424. }
  425. #endif
  426. }
  427. static void __cpuinit get_cpu_vendor(struct cpuinfo_x86 *c)
  428. {
  429. char *v = c->x86_vendor_id;
  430. int i;
  431. for (i = 0; i < X86_VENDOR_NUM; i++) {
  432. if (!cpu_devs[i])
  433. break;
  434. if (!strcmp(v, cpu_devs[i]->c_ident[0]) ||
  435. (cpu_devs[i]->c_ident[1] &&
  436. !strcmp(v, cpu_devs[i]->c_ident[1]))) {
  437. this_cpu = cpu_devs[i];
  438. c->x86_vendor = this_cpu->c_x86_vendor;
  439. return;
  440. }
  441. }
  442. printk_once(KERN_ERR
  443. "CPU: vendor_id '%s' unknown, using generic init.\n" \
  444. "CPU: Your system may be unstable.\n", v);
  445. c->x86_vendor = X86_VENDOR_UNKNOWN;
  446. this_cpu = &default_cpu;
  447. }
  448. void __cpuinit cpu_detect(struct cpuinfo_x86 *c)
  449. {
  450. /* Get vendor name */
  451. cpuid(0x00000000, (unsigned int *)&c->cpuid_level,
  452. (unsigned int *)&c->x86_vendor_id[0],
  453. (unsigned int *)&c->x86_vendor_id[8],
  454. (unsigned int *)&c->x86_vendor_id[4]);
  455. c->x86 = 4;
  456. /* Intel-defined flags: level 0x00000001 */
  457. if (c->cpuid_level >= 0x00000001) {
  458. u32 junk, tfms, cap0, misc;
  459. cpuid(0x00000001, &tfms, &misc, &junk, &cap0);
  460. c->x86 = (tfms >> 8) & 0xf;
  461. c->x86_model = (tfms >> 4) & 0xf;
  462. c->x86_mask = tfms & 0xf;
  463. if (c->x86 == 0xf)
  464. c->x86 += (tfms >> 20) & 0xff;
  465. if (c->x86 >= 0x6)
  466. c->x86_model += ((tfms >> 16) & 0xf) << 4;
  467. if (cap0 & (1<<19)) {
  468. c->x86_clflush_size = ((misc >> 8) & 0xff) * 8;
  469. c->x86_cache_alignment = c->x86_clflush_size;
  470. }
  471. }
  472. }
  473. void __cpuinit get_cpu_cap(struct cpuinfo_x86 *c)
  474. {
  475. u32 tfms, xlvl;
  476. u32 ebx;
  477. /* Intel-defined flags: level 0x00000001 */
  478. if (c->cpuid_level >= 0x00000001) {
  479. u32 capability, excap;
  480. cpuid(0x00000001, &tfms, &ebx, &excap, &capability);
  481. c->x86_capability[0] = capability;
  482. c->x86_capability[4] = excap;
  483. }
  484. /* Additional Intel-defined flags: level 0x00000007 */
  485. if (c->cpuid_level >= 0x00000007) {
  486. u32 eax, ebx, ecx, edx;
  487. cpuid_count(0x00000007, 0, &eax, &ebx, &ecx, &edx);
  488. c->x86_capability[9] = ebx;
  489. }
  490. /* AMD-defined flags: level 0x80000001 */
  491. xlvl = cpuid_eax(0x80000000);
  492. c->extended_cpuid_level = xlvl;
  493. if ((xlvl & 0xffff0000) == 0x80000000) {
  494. if (xlvl >= 0x80000001) {
  495. c->x86_capability[1] = cpuid_edx(0x80000001);
  496. c->x86_capability[6] = cpuid_ecx(0x80000001);
  497. }
  498. }
  499. if (c->extended_cpuid_level >= 0x80000008) {
  500. u32 eax = cpuid_eax(0x80000008);
  501. c->x86_virt_bits = (eax >> 8) & 0xff;
  502. c->x86_phys_bits = eax & 0xff;
  503. }
  504. #ifdef CONFIG_X86_32
  505. else if (cpu_has(c, X86_FEATURE_PAE) || cpu_has(c, X86_FEATURE_PSE36))
  506. c->x86_phys_bits = 36;
  507. #endif
  508. if (c->extended_cpuid_level >= 0x80000007)
  509. c->x86_power = cpuid_edx(0x80000007);
  510. init_scattered_cpuid_features(c);
  511. }
  512. static void __cpuinit identify_cpu_without_cpuid(struct cpuinfo_x86 *c)
  513. {
  514. #ifdef CONFIG_X86_32
  515. int i;
  516. /*
  517. * First of all, decide if this is a 486 or higher
  518. * It's a 486 if we can modify the AC flag
  519. */
  520. if (flag_is_changeable_p(X86_EFLAGS_AC))
  521. c->x86 = 4;
  522. else
  523. c->x86 = 3;
  524. for (i = 0; i < X86_VENDOR_NUM; i++)
  525. if (cpu_devs[i] && cpu_devs[i]->c_identify) {
  526. c->x86_vendor_id[0] = 0;
  527. cpu_devs[i]->c_identify(c);
  528. if (c->x86_vendor_id[0]) {
  529. get_cpu_vendor(c);
  530. break;
  531. }
  532. }
  533. #endif
  534. }
  535. /*
  536. * Do minimum CPU detection early.
  537. * Fields really needed: vendor, cpuid_level, family, model, mask,
  538. * cache alignment.
  539. * The others are not touched to avoid unwanted side effects.
  540. *
  541. * WARNING: this function is only called on the BP. Don't add code here
  542. * that is supposed to run on all CPUs.
  543. */
  544. static void __init early_identify_cpu(struct cpuinfo_x86 *c)
  545. {
  546. #ifdef CONFIG_X86_64
  547. c->x86_clflush_size = 64;
  548. c->x86_phys_bits = 36;
  549. c->x86_virt_bits = 48;
  550. #else
  551. c->x86_clflush_size = 32;
  552. c->x86_phys_bits = 32;
  553. c->x86_virt_bits = 32;
  554. #endif
  555. c->x86_cache_alignment = c->x86_clflush_size;
  556. memset(&c->x86_capability, 0, sizeof c->x86_capability);
  557. c->extended_cpuid_level = 0;
  558. if (!have_cpuid_p())
  559. identify_cpu_without_cpuid(c);
  560. /* cyrix could have cpuid enabled via c_identify()*/
  561. if (!have_cpuid_p())
  562. return;
  563. cpu_detect(c);
  564. get_cpu_vendor(c);
  565. get_cpu_cap(c);
  566. if (this_cpu->c_early_init)
  567. this_cpu->c_early_init(c);
  568. c->cpu_index = 0;
  569. filter_cpuid_features(c, false);
  570. setup_smep(c);
  571. if (this_cpu->c_bsp_init)
  572. this_cpu->c_bsp_init(c);
  573. }
  574. void __init early_cpu_init(void)
  575. {
  576. const struct cpu_dev *const *cdev;
  577. int count = 0;
  578. #ifdef CONFIG_PROCESSOR_SELECT
  579. printk(KERN_INFO "KERNEL supported cpus:\n");
  580. #endif
  581. for (cdev = __x86_cpu_dev_start; cdev < __x86_cpu_dev_end; cdev++) {
  582. const struct cpu_dev *cpudev = *cdev;
  583. if (count >= X86_VENDOR_NUM)
  584. break;
  585. cpu_devs[count] = cpudev;
  586. count++;
  587. #ifdef CONFIG_PROCESSOR_SELECT
  588. {
  589. unsigned int j;
  590. for (j = 0; j < 2; j++) {
  591. if (!cpudev->c_ident[j])
  592. continue;
  593. printk(KERN_INFO " %s %s\n", cpudev->c_vendor,
  594. cpudev->c_ident[j]);
  595. }
  596. }
  597. #endif
  598. }
  599. early_identify_cpu(&boot_cpu_data);
  600. }
  601. /*
  602. * The NOPL instruction is supposed to exist on all CPUs of family >= 6;
  603. * unfortunately, that's not true in practice because of early VIA
  604. * chips and (more importantly) broken virtualizers that are not easy
  605. * to detect. In the latter case it doesn't even *fail* reliably, so
  606. * probing for it doesn't even work. Disable it completely on 32-bit
  607. * unless we can find a reliable way to detect all the broken cases.
  608. * Enable it explicitly on 64-bit for non-constant inputs of cpu_has().
  609. */
  610. static void __cpuinit detect_nopl(struct cpuinfo_x86 *c)
  611. {
  612. #ifdef CONFIG_X86_32
  613. clear_cpu_cap(c, X86_FEATURE_NOPL);
  614. #else
  615. set_cpu_cap(c, X86_FEATURE_NOPL);
  616. #endif
  617. }
  618. static void __cpuinit generic_identify(struct cpuinfo_x86 *c)
  619. {
  620. c->extended_cpuid_level = 0;
  621. if (!have_cpuid_p())
  622. identify_cpu_without_cpuid(c);
  623. /* cyrix could have cpuid enabled via c_identify()*/
  624. if (!have_cpuid_p())
  625. return;
  626. cpu_detect(c);
  627. get_cpu_vendor(c);
  628. get_cpu_cap(c);
  629. if (c->cpuid_level >= 0x00000001) {
  630. c->initial_apicid = (cpuid_ebx(1) >> 24) & 0xFF;
  631. #ifdef CONFIG_X86_32
  632. # ifdef CONFIG_X86_HT
  633. c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
  634. # else
  635. c->apicid = c->initial_apicid;
  636. # endif
  637. #endif
  638. c->phys_proc_id = c->initial_apicid;
  639. }
  640. setup_smep(c);
  641. get_model_name(c); /* Default name */
  642. detect_nopl(c);
  643. }
  644. /*
  645. * This does the hard work of actually picking apart the CPU stuff...
  646. */
  647. static void __cpuinit identify_cpu(struct cpuinfo_x86 *c)
  648. {
  649. int i;
  650. c->loops_per_jiffy = loops_per_jiffy;
  651. c->x86_cache_size = -1;
  652. c->x86_vendor = X86_VENDOR_UNKNOWN;
  653. c->x86_model = c->x86_mask = 0; /* So far unknown... */
  654. c->x86_vendor_id[0] = '\0'; /* Unset */
  655. c->x86_model_id[0] = '\0'; /* Unset */
  656. c->x86_max_cores = 1;
  657. c->x86_coreid_bits = 0;
  658. #ifdef CONFIG_X86_64
  659. c->x86_clflush_size = 64;
  660. c->x86_phys_bits = 36;
  661. c->x86_virt_bits = 48;
  662. #else
  663. c->cpuid_level = -1; /* CPUID not detected */
  664. c->x86_clflush_size = 32;
  665. c->x86_phys_bits = 32;
  666. c->x86_virt_bits = 32;
  667. #endif
  668. c->x86_cache_alignment = c->x86_clflush_size;
  669. memset(&c->x86_capability, 0, sizeof c->x86_capability);
  670. generic_identify(c);
  671. if (this_cpu->c_identify)
  672. this_cpu->c_identify(c);
  673. /* Clear/Set all flags overriden by options, after probe */
  674. for (i = 0; i < NCAPINTS; i++) {
  675. c->x86_capability[i] &= ~cpu_caps_cleared[i];
  676. c->x86_capability[i] |= cpu_caps_set[i];
  677. }
  678. #ifdef CONFIG_X86_64
  679. c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
  680. #endif
  681. /*
  682. * Vendor-specific initialization. In this section we
  683. * canonicalize the feature flags, meaning if there are
  684. * features a certain CPU supports which CPUID doesn't
  685. * tell us, CPUID claiming incorrect flags, or other bugs,
  686. * we handle them here.
  687. *
  688. * At the end of this section, c->x86_capability better
  689. * indicate the features this CPU genuinely supports!
  690. */
  691. if (this_cpu->c_init)
  692. this_cpu->c_init(c);
  693. /* Disable the PN if appropriate */
  694. squash_the_stupid_serial_number(c);
  695. /*
  696. * The vendor-specific functions might have changed features.
  697. * Now we do "generic changes."
  698. */
  699. /* Filter out anything that depends on CPUID levels we don't have */
  700. filter_cpuid_features(c, true);
  701. /* If the model name is still unset, do table lookup. */
  702. if (!c->x86_model_id[0]) {
  703. const char *p;
  704. p = table_lookup_model(c);
  705. if (p)
  706. strcpy(c->x86_model_id, p);
  707. else
  708. /* Last resort... */
  709. sprintf(c->x86_model_id, "%02x/%02x",
  710. c->x86, c->x86_model);
  711. }
  712. #ifdef CONFIG_X86_64
  713. detect_ht(c);
  714. #endif
  715. init_hypervisor(c);
  716. x86_init_rdrand(c);
  717. /*
  718. * Clear/Set all flags overriden by options, need do it
  719. * before following smp all cpus cap AND.
  720. */
  721. for (i = 0; i < NCAPINTS; i++) {
  722. c->x86_capability[i] &= ~cpu_caps_cleared[i];
  723. c->x86_capability[i] |= cpu_caps_set[i];
  724. }
  725. /*
  726. * On SMP, boot_cpu_data holds the common feature set between
  727. * all CPUs; so make sure that we indicate which features are
  728. * common between the CPUs. The first time this routine gets
  729. * executed, c == &boot_cpu_data.
  730. */
  731. if (c != &boot_cpu_data) {
  732. /* AND the already accumulated flags with these */
  733. for (i = 0; i < NCAPINTS; i++)
  734. boot_cpu_data.x86_capability[i] &= c->x86_capability[i];
  735. }
  736. /* Init Machine Check Exception if available. */
  737. mcheck_cpu_init(c);
  738. select_idle_routine(c);
  739. #ifdef CONFIG_NUMA
  740. numa_add_cpu(smp_processor_id());
  741. #endif
  742. }
  743. #ifdef CONFIG_X86_64
  744. static void vgetcpu_set_mode(void)
  745. {
  746. if (cpu_has(&boot_cpu_data, X86_FEATURE_RDTSCP))
  747. vgetcpu_mode = VGETCPU_RDTSCP;
  748. else
  749. vgetcpu_mode = VGETCPU_LSL;
  750. }
  751. #endif
  752. void __init identify_boot_cpu(void)
  753. {
  754. identify_cpu(&boot_cpu_data);
  755. init_amd_e400_c1e_mask();
  756. #ifdef CONFIG_X86_32
  757. sysenter_setup();
  758. enable_sep_cpu();
  759. #else
  760. vgetcpu_set_mode();
  761. #endif
  762. }
  763. void __cpuinit identify_secondary_cpu(struct cpuinfo_x86 *c)
  764. {
  765. BUG_ON(c == &boot_cpu_data);
  766. identify_cpu(c);
  767. #ifdef CONFIG_X86_32
  768. enable_sep_cpu();
  769. #endif
  770. mtrr_ap_init();
  771. }
  772. struct msr_range {
  773. unsigned min;
  774. unsigned max;
  775. };
  776. static const struct msr_range msr_range_array[] __cpuinitconst = {
  777. { 0x00000000, 0x00000418},
  778. { 0xc0000000, 0xc000040b},
  779. { 0xc0010000, 0xc0010142},
  780. { 0xc0011000, 0xc001103b},
  781. };
  782. static void __cpuinit __print_cpu_msr(void)
  783. {
  784. unsigned index_min, index_max;
  785. unsigned index;
  786. u64 val;
  787. int i;
  788. for (i = 0; i < ARRAY_SIZE(msr_range_array); i++) {
  789. index_min = msr_range_array[i].min;
  790. index_max = msr_range_array[i].max;
  791. for (index = index_min; index < index_max; index++) {
  792. if (rdmsrl_amd_safe(index, &val))
  793. continue;
  794. printk(KERN_INFO " MSR%08x: %016llx\n", index, val);
  795. }
  796. }
  797. }
  798. static int show_msr __cpuinitdata;
  799. static __init int setup_show_msr(char *arg)
  800. {
  801. int num;
  802. get_option(&arg, &num);
  803. if (num > 0)
  804. show_msr = num;
  805. return 1;
  806. }
  807. __setup("show_msr=", setup_show_msr);
  808. static __init int setup_noclflush(char *arg)
  809. {
  810. setup_clear_cpu_cap(X86_FEATURE_CLFLSH);
  811. return 1;
  812. }
  813. __setup("noclflush", setup_noclflush);
  814. void __cpuinit print_cpu_info(struct cpuinfo_x86 *c)
  815. {
  816. const char *vendor = NULL;
  817. if (c->x86_vendor < X86_VENDOR_NUM) {
  818. vendor = this_cpu->c_vendor;
  819. } else {
  820. if (c->cpuid_level >= 0)
  821. vendor = c->x86_vendor_id;
  822. }
  823. if (vendor && !strstr(c->x86_model_id, vendor))
  824. printk(KERN_CONT "%s ", vendor);
  825. if (c->x86_model_id[0])
  826. printk(KERN_CONT "%s", c->x86_model_id);
  827. else
  828. printk(KERN_CONT "%d86", c->x86);
  829. if (c->x86_mask || c->cpuid_level >= 0)
  830. printk(KERN_CONT " stepping %02x\n", c->x86_mask);
  831. else
  832. printk(KERN_CONT "\n");
  833. __print_cpu_msr();
  834. }
  835. void __cpuinit print_cpu_msr(struct cpuinfo_x86 *c)
  836. {
  837. if (c->cpu_index < show_msr)
  838. __print_cpu_msr();
  839. }
  840. static __init int setup_disablecpuid(char *arg)
  841. {
  842. int bit;
  843. if (get_option(&arg, &bit) && bit < NCAPINTS*32)
  844. setup_clear_cpu_cap(bit);
  845. else
  846. return 0;
  847. return 1;
  848. }
  849. __setup("clearcpuid=", setup_disablecpuid);
  850. #ifdef CONFIG_X86_64
  851. struct desc_ptr idt_descr = { NR_VECTORS * 16 - 1, (unsigned long) idt_table };
  852. struct desc_ptr nmi_idt_descr = { NR_VECTORS * 16 - 1,
  853. (unsigned long) nmi_idt_table };
  854. DEFINE_PER_CPU_FIRST(union irq_stack_union,
  855. irq_stack_union) __aligned(PAGE_SIZE);
  856. /*
  857. * The following four percpu variables are hot. Align current_task to
  858. * cacheline size such that all four fall in the same cacheline.
  859. */
  860. DEFINE_PER_CPU(struct task_struct *, current_task) ____cacheline_aligned =
  861. &init_task;
  862. EXPORT_PER_CPU_SYMBOL(current_task);
  863. DEFINE_PER_CPU(unsigned long, kernel_stack) =
  864. (unsigned long)&init_thread_union - KERNEL_STACK_OFFSET + THREAD_SIZE;
  865. EXPORT_PER_CPU_SYMBOL(kernel_stack);
  866. DEFINE_PER_CPU(char *, irq_stack_ptr) =
  867. init_per_cpu_var(irq_stack_union.irq_stack) + IRQ_STACK_SIZE - 64;
  868. DEFINE_PER_CPU(unsigned int, irq_count) = -1;
  869. DEFINE_PER_CPU(struct task_struct *, fpu_owner_task);
  870. /*
  871. * Special IST stacks which the CPU switches to when it calls
  872. * an IST-marked descriptor entry. Up to 7 stacks (hardware
  873. * limit), all of them are 4K, except the debug stack which
  874. * is 8K.
  875. */
  876. static const unsigned int exception_stack_sizes[N_EXCEPTION_STACKS] = {
  877. [0 ... N_EXCEPTION_STACKS - 1] = EXCEPTION_STKSZ,
  878. [DEBUG_STACK - 1] = DEBUG_STKSZ
  879. };
  880. static DEFINE_PER_CPU_PAGE_ALIGNED(char, exception_stacks
  881. [(N_EXCEPTION_STACKS - 1) * EXCEPTION_STKSZ + DEBUG_STKSZ]);
  882. /* May not be marked __init: used by software suspend */
  883. void syscall_init(void)
  884. {
  885. /*
  886. * LSTAR and STAR live in a bit strange symbiosis.
  887. * They both write to the same internal register. STAR allows to
  888. * set CS/DS but only a 32bit target. LSTAR sets the 64bit rip.
  889. */
  890. wrmsrl(MSR_STAR, ((u64)__USER32_CS)<<48 | ((u64)__KERNEL_CS)<<32);
  891. wrmsrl(MSR_LSTAR, system_call);
  892. wrmsrl(MSR_CSTAR, ignore_sysret);
  893. #ifdef CONFIG_IA32_EMULATION
  894. syscall32_cpu_init();
  895. #endif
  896. /* Flags to clear on syscall */
  897. wrmsrl(MSR_SYSCALL_MASK,
  898. X86_EFLAGS_TF|X86_EFLAGS_DF|X86_EFLAGS_IF|X86_EFLAGS_IOPL);
  899. }
  900. unsigned long kernel_eflags;
  901. /*
  902. * Copies of the original ist values from the tss are only accessed during
  903. * debugging, no special alignment required.
  904. */
  905. DEFINE_PER_CPU(struct orig_ist, orig_ist);
  906. static DEFINE_PER_CPU(unsigned long, debug_stack_addr);
  907. DEFINE_PER_CPU(int, debug_stack_usage);
  908. int is_debug_stack(unsigned long addr)
  909. {
  910. return __get_cpu_var(debug_stack_usage) ||
  911. (addr <= __get_cpu_var(debug_stack_addr) &&
  912. addr > (__get_cpu_var(debug_stack_addr) - DEBUG_STKSZ));
  913. }
  914. void debug_stack_set_zero(void)
  915. {
  916. load_idt((const struct desc_ptr *)&nmi_idt_descr);
  917. }
  918. void debug_stack_reset(void)
  919. {
  920. load_idt((const struct desc_ptr *)&idt_descr);
  921. }
  922. #else /* CONFIG_X86_64 */
  923. DEFINE_PER_CPU(struct task_struct *, current_task) = &init_task;
  924. EXPORT_PER_CPU_SYMBOL(current_task);
  925. DEFINE_PER_CPU(struct task_struct *, fpu_owner_task);
  926. #ifdef CONFIG_CC_STACKPROTECTOR
  927. DEFINE_PER_CPU_ALIGNED(struct stack_canary, stack_canary);
  928. #endif
  929. /* Make sure %fs and %gs are initialized properly in idle threads */
  930. struct pt_regs * __cpuinit idle_regs(struct pt_regs *regs)
  931. {
  932. memset(regs, 0, sizeof(struct pt_regs));
  933. regs->fs = __KERNEL_PERCPU;
  934. regs->gs = __KERNEL_STACK_CANARY;
  935. return regs;
  936. }
  937. #endif /* CONFIG_X86_64 */
  938. /*
  939. * Clear all 6 debug registers:
  940. */
  941. static void clear_all_debug_regs(void)
  942. {
  943. int i;
  944. for (i = 0; i < 8; i++) {
  945. /* Ignore db4, db5 */
  946. if ((i == 4) || (i == 5))
  947. continue;
  948. set_debugreg(0, i);
  949. }
  950. }
  951. #ifdef CONFIG_KGDB
  952. /*
  953. * Restore debug regs if using kgdbwait and you have a kernel debugger
  954. * connection established.
  955. */
  956. static void dbg_restore_debug_regs(void)
  957. {
  958. if (unlikely(kgdb_connected && arch_kgdb_ops.correct_hw_break))
  959. arch_kgdb_ops.correct_hw_break();
  960. }
  961. #else /* ! CONFIG_KGDB */
  962. #define dbg_restore_debug_regs()
  963. #endif /* ! CONFIG_KGDB */
  964. /*
  965. * Prints an error where the NUMA and configured core-number mismatch and the
  966. * platform didn't override this to fix it up
  967. */
  968. void __cpuinit x86_default_fixup_cpu_id(struct cpuinfo_x86 *c, int node)
  969. {
  970. pr_err("NUMA core number %d differs from configured core number %d\n", node, c->phys_proc_id);
  971. }
  972. /*
  973. * cpu_init() initializes state that is per-CPU. Some data is already
  974. * initialized (naturally) in the bootstrap process, such as the GDT
  975. * and IDT. We reload them nevertheless, this function acts as a
  976. * 'CPU state barrier', nothing should get across.
  977. * A lot of state is already set up in PDA init for 64 bit
  978. */
  979. #ifdef CONFIG_X86_64
  980. void __cpuinit cpu_init(void)
  981. {
  982. struct orig_ist *oist;
  983. struct task_struct *me;
  984. struct tss_struct *t;
  985. unsigned long v;
  986. int cpu;
  987. int i;
  988. cpu = stack_smp_processor_id();
  989. t = &per_cpu(init_tss, cpu);
  990. oist = &per_cpu(orig_ist, cpu);
  991. #ifdef CONFIG_NUMA
  992. if (cpu != 0 && percpu_read(numa_node) == 0 &&
  993. early_cpu_to_node(cpu) != NUMA_NO_NODE)
  994. set_numa_node(early_cpu_to_node(cpu));
  995. #endif
  996. me = current;
  997. if (cpumask_test_and_set_cpu(cpu, cpu_initialized_mask))
  998. panic("CPU#%d already initialized!\n", cpu);
  999. pr_debug("Initializing CPU#%d\n", cpu);
  1000. clear_in_cr4(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
  1001. /*
  1002. * Initialize the per-CPU GDT with the boot GDT,
  1003. * and set up the GDT descriptor:
  1004. */
  1005. switch_to_new_gdt(cpu);
  1006. loadsegment(fs, 0);
  1007. load_idt((const struct desc_ptr *)&idt_descr);
  1008. memset(me->thread.tls_array, 0, GDT_ENTRY_TLS_ENTRIES * 8);
  1009. syscall_init();
  1010. wrmsrl(MSR_FS_BASE, 0);
  1011. wrmsrl(MSR_KERNEL_GS_BASE, 0);
  1012. barrier();
  1013. x86_configure_nx();
  1014. if (cpu != 0)
  1015. enable_x2apic();
  1016. /*
  1017. * set up and load the per-CPU TSS
  1018. */
  1019. if (!oist->ist[0]) {
  1020. char *estacks = per_cpu(exception_stacks, cpu);
  1021. for (v = 0; v < N_EXCEPTION_STACKS; v++) {
  1022. estacks += exception_stack_sizes[v];
  1023. oist->ist[v] = t->x86_tss.ist[v] =
  1024. (unsigned long)estacks;
  1025. if (v == DEBUG_STACK-1)
  1026. per_cpu(debug_stack_addr, cpu) = (unsigned long)estacks;
  1027. }
  1028. }
  1029. t->x86_tss.io_bitmap_base = offsetof(struct tss_struct, io_bitmap);
  1030. /*
  1031. * <= is required because the CPU will access up to
  1032. * 8 bits beyond the end of the IO permission bitmap.
  1033. */
  1034. for (i = 0; i <= IO_BITMAP_LONGS; i++)
  1035. t->io_bitmap[i] = ~0UL;
  1036. atomic_inc(&init_mm.mm_count);
  1037. me->active_mm = &init_mm;
  1038. BUG_ON(me->mm);
  1039. enter_lazy_tlb(&init_mm, me);
  1040. load_sp0(t, &current->thread);
  1041. set_tss_desc(cpu, t);
  1042. load_TR_desc();
  1043. load_LDT(&init_mm.context);
  1044. clear_all_debug_regs();
  1045. dbg_restore_debug_regs();
  1046. fpu_init();
  1047. xsave_init();
  1048. raw_local_save_flags(kernel_eflags);
  1049. if (is_uv_system())
  1050. uv_cpu_init();
  1051. }
  1052. #else
  1053. void __cpuinit cpu_init(void)
  1054. {
  1055. int cpu = smp_processor_id();
  1056. struct task_struct *curr = current;
  1057. struct tss_struct *t = &per_cpu(init_tss, cpu);
  1058. struct thread_struct *thread = &curr->thread;
  1059. if (cpumask_test_and_set_cpu(cpu, cpu_initialized_mask)) {
  1060. printk(KERN_WARNING "CPU#%d already initialized!\n", cpu);
  1061. for (;;)
  1062. local_irq_enable();
  1063. }
  1064. printk(KERN_INFO "Initializing CPU#%d\n", cpu);
  1065. if (cpu_has_vme || cpu_has_tsc || cpu_has_de)
  1066. clear_in_cr4(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
  1067. load_idt(&idt_descr);
  1068. switch_to_new_gdt(cpu);
  1069. /*
  1070. * Set up and load the per-CPU TSS and LDT
  1071. */
  1072. atomic_inc(&init_mm.mm_count);
  1073. curr->active_mm = &init_mm;
  1074. BUG_ON(curr->mm);
  1075. enter_lazy_tlb(&init_mm, curr);
  1076. load_sp0(t, thread);
  1077. set_tss_desc(cpu, t);
  1078. load_TR_desc();
  1079. load_LDT(&init_mm.context);
  1080. t->x86_tss.io_bitmap_base = offsetof(struct tss_struct, io_bitmap);
  1081. #ifdef CONFIG_DOUBLEFAULT
  1082. /* Set up doublefault TSS pointer in the GDT */
  1083. __set_tss_desc(cpu, GDT_ENTRY_DOUBLEFAULT_TSS, &doublefault_tss);
  1084. #endif
  1085. clear_all_debug_regs();
  1086. dbg_restore_debug_regs();
  1087. fpu_init();
  1088. xsave_init();
  1089. }
  1090. #endif