mmu.c 30 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129
  1. /*
  2. * linux/arch/arm/mm/mmu.c
  3. *
  4. * Copyright (C) 1995-2005 Russell King
  5. *
  6. * This program is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License version 2 as
  8. * published by the Free Software Foundation.
  9. */
  10. #include <linux/module.h>
  11. #include <linux/kernel.h>
  12. #include <linux/errno.h>
  13. #include <linux/init.h>
  14. #include <linux/mman.h>
  15. #include <linux/nodemask.h>
  16. #include <linux/memblock.h>
  17. #include <linux/fs.h>
  18. #include <linux/vmalloc.h>
  19. #include <asm/cputype.h>
  20. #include <asm/sections.h>
  21. #include <asm/cachetype.h>
  22. #include <asm/setup.h>
  23. #include <asm/sizes.h>
  24. #include <asm/smp_plat.h>
  25. #include <asm/tlb.h>
  26. #include <asm/highmem.h>
  27. #include <asm/traps.h>
  28. #include <asm/mach/arch.h>
  29. #include <asm/mach/map.h>
  30. #include "mm.h"
  31. /*
  32. * empty_zero_page is a special page that is used for
  33. * zero-initialized data and COW.
  34. */
  35. struct page *empty_zero_page;
  36. EXPORT_SYMBOL(empty_zero_page);
  37. /*
  38. * The pmd table for the upper-most set of pages.
  39. */
  40. pmd_t *top_pmd;
  41. #define CPOLICY_UNCACHED 0
  42. #define CPOLICY_BUFFERED 1
  43. #define CPOLICY_WRITETHROUGH 2
  44. #define CPOLICY_WRITEBACK 3
  45. #define CPOLICY_WRITEALLOC 4
  46. static unsigned int cachepolicy __initdata = CPOLICY_WRITEBACK;
  47. static unsigned int ecc_mask __initdata = 0;
  48. pgprot_t pgprot_user;
  49. pgprot_t pgprot_kernel;
  50. EXPORT_SYMBOL(pgprot_user);
  51. EXPORT_SYMBOL(pgprot_kernel);
  52. struct cachepolicy {
  53. const char policy[16];
  54. unsigned int cr_mask;
  55. pmdval_t pmd;
  56. pteval_t pte;
  57. };
  58. static struct cachepolicy cache_policies[] __initdata = {
  59. {
  60. .policy = "uncached",
  61. .cr_mask = CR_W|CR_C,
  62. .pmd = PMD_SECT_UNCACHED,
  63. .pte = L_PTE_MT_UNCACHED,
  64. }, {
  65. .policy = "buffered",
  66. .cr_mask = CR_C,
  67. .pmd = PMD_SECT_BUFFERED,
  68. .pte = L_PTE_MT_BUFFERABLE,
  69. }, {
  70. .policy = "writethrough",
  71. .cr_mask = 0,
  72. .pmd = PMD_SECT_WT,
  73. .pte = L_PTE_MT_WRITETHROUGH,
  74. }, {
  75. .policy = "writeback",
  76. .cr_mask = 0,
  77. .pmd = PMD_SECT_WB,
  78. .pte = L_PTE_MT_WRITEBACK,
  79. }, {
  80. .policy = "writealloc",
  81. .cr_mask = 0,
  82. .pmd = PMD_SECT_WBWA,
  83. .pte = L_PTE_MT_WRITEALLOC,
  84. }
  85. };
  86. /*
  87. * These are useful for identifying cache coherency
  88. * problems by allowing the cache or the cache and
  89. * writebuffer to be turned off. (Note: the write
  90. * buffer should not be on and the cache off).
  91. */
  92. static int __init early_cachepolicy(char *p)
  93. {
  94. int i;
  95. for (i = 0; i < ARRAY_SIZE(cache_policies); i++) {
  96. int len = strlen(cache_policies[i].policy);
  97. if (memcmp(p, cache_policies[i].policy, len) == 0) {
  98. cachepolicy = i;
  99. cr_alignment &= ~cache_policies[i].cr_mask;
  100. cr_no_alignment &= ~cache_policies[i].cr_mask;
  101. break;
  102. }
  103. }
  104. if (i == ARRAY_SIZE(cache_policies))
  105. printk(KERN_ERR "ERROR: unknown or unsupported cache policy\n");
  106. /*
  107. * This restriction is partly to do with the way we boot; it is
  108. * unpredictable to have memory mapped using two different sets of
  109. * memory attributes (shared, type, and cache attribs). We can not
  110. * change these attributes once the initial assembly has setup the
  111. * page tables.
  112. */
  113. if (cpu_architecture() >= CPU_ARCH_ARMv6) {
  114. printk(KERN_WARNING "Only cachepolicy=writeback supported on ARMv6 and later\n");
  115. cachepolicy = CPOLICY_WRITEBACK;
  116. }
  117. flush_cache_all();
  118. set_cr(cr_alignment);
  119. return 0;
  120. }
  121. early_param("cachepolicy", early_cachepolicy);
  122. static int __init early_nocache(char *__unused)
  123. {
  124. char *p = "buffered";
  125. printk(KERN_WARNING "nocache is deprecated; use cachepolicy=%s\n", p);
  126. early_cachepolicy(p);
  127. return 0;
  128. }
  129. early_param("nocache", early_nocache);
  130. static int __init early_nowrite(char *__unused)
  131. {
  132. char *p = "uncached";
  133. printk(KERN_WARNING "nowb is deprecated; use cachepolicy=%s\n", p);
  134. early_cachepolicy(p);
  135. return 0;
  136. }
  137. early_param("nowb", early_nowrite);
  138. #ifndef CONFIG_ARM_LPAE
  139. static int __init early_ecc(char *p)
  140. {
  141. if (memcmp(p, "on", 2) == 0)
  142. ecc_mask = PMD_PROTECTION;
  143. else if (memcmp(p, "off", 3) == 0)
  144. ecc_mask = 0;
  145. return 0;
  146. }
  147. early_param("ecc", early_ecc);
  148. #endif
  149. static int __init noalign_setup(char *__unused)
  150. {
  151. cr_alignment &= ~CR_A;
  152. cr_no_alignment &= ~CR_A;
  153. set_cr(cr_alignment);
  154. return 1;
  155. }
  156. __setup("noalign", noalign_setup);
  157. #ifndef CONFIG_SMP
  158. void adjust_cr(unsigned long mask, unsigned long set)
  159. {
  160. unsigned long flags;
  161. mask &= ~CR_A;
  162. set &= mask;
  163. local_irq_save(flags);
  164. cr_no_alignment = (cr_no_alignment & ~mask) | set;
  165. cr_alignment = (cr_alignment & ~mask) | set;
  166. set_cr((get_cr() & ~mask) | set);
  167. local_irq_restore(flags);
  168. }
  169. #endif
  170. #define PROT_PTE_DEVICE L_PTE_PRESENT|L_PTE_YOUNG|L_PTE_DIRTY|L_PTE_XN
  171. #define PROT_SECT_DEVICE PMD_TYPE_SECT|PMD_SECT_AP_WRITE
  172. static struct mem_type mem_types[] = {
  173. [MT_DEVICE] = { /* Strongly ordered / ARMv6 shared device */
  174. .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_SHARED |
  175. L_PTE_SHARED,
  176. .prot_l1 = PMD_TYPE_TABLE,
  177. .prot_sect = PROT_SECT_DEVICE | PMD_SECT_S,
  178. .domain = DOMAIN_IO,
  179. },
  180. [MT_DEVICE_NONSHARED] = { /* ARMv6 non-shared device */
  181. .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_NONSHARED,
  182. .prot_l1 = PMD_TYPE_TABLE,
  183. .prot_sect = PROT_SECT_DEVICE,
  184. .domain = DOMAIN_IO,
  185. },
  186. [MT_DEVICE_CACHED] = { /* ioremap_cached */
  187. .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_CACHED,
  188. .prot_l1 = PMD_TYPE_TABLE,
  189. .prot_sect = PROT_SECT_DEVICE | PMD_SECT_WB,
  190. .domain = DOMAIN_IO,
  191. },
  192. [MT_DEVICE_WC] = { /* ioremap_wc */
  193. .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_WC,
  194. .prot_l1 = PMD_TYPE_TABLE,
  195. .prot_sect = PROT_SECT_DEVICE,
  196. .domain = DOMAIN_IO,
  197. },
  198. [MT_UNCACHED] = {
  199. .prot_pte = PROT_PTE_DEVICE,
  200. .prot_l1 = PMD_TYPE_TABLE,
  201. .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
  202. .domain = DOMAIN_IO,
  203. },
  204. [MT_CACHECLEAN] = {
  205. .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
  206. .domain = DOMAIN_KERNEL,
  207. },
  208. #ifndef CONFIG_ARM_LPAE
  209. [MT_MINICLEAN] = {
  210. .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN | PMD_SECT_MINICACHE,
  211. .domain = DOMAIN_KERNEL,
  212. },
  213. #endif
  214. [MT_LOW_VECTORS] = {
  215. .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
  216. L_PTE_RDONLY,
  217. .prot_l1 = PMD_TYPE_TABLE,
  218. .domain = DOMAIN_USER,
  219. },
  220. [MT_HIGH_VECTORS] = {
  221. .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
  222. L_PTE_USER | L_PTE_RDONLY,
  223. .prot_l1 = PMD_TYPE_TABLE,
  224. .domain = DOMAIN_USER,
  225. },
  226. [MT_MEMORY] = {
  227. .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY,
  228. .prot_l1 = PMD_TYPE_TABLE,
  229. .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
  230. .domain = DOMAIN_KERNEL,
  231. },
  232. [MT_ROM] = {
  233. .prot_sect = PMD_TYPE_SECT,
  234. .domain = DOMAIN_KERNEL,
  235. },
  236. [MT_MEMORY_NONCACHED] = {
  237. .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
  238. L_PTE_MT_BUFFERABLE,
  239. .prot_l1 = PMD_TYPE_TABLE,
  240. .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
  241. .domain = DOMAIN_KERNEL,
  242. },
  243. [MT_MEMORY_DTCM] = {
  244. .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
  245. L_PTE_XN,
  246. .prot_l1 = PMD_TYPE_TABLE,
  247. .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
  248. .domain = DOMAIN_KERNEL,
  249. },
  250. [MT_MEMORY_ITCM] = {
  251. .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY,
  252. .prot_l1 = PMD_TYPE_TABLE,
  253. .domain = DOMAIN_KERNEL,
  254. },
  255. [MT_MEMORY_SO] = {
  256. .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
  257. L_PTE_MT_UNCACHED,
  258. .prot_l1 = PMD_TYPE_TABLE,
  259. .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE | PMD_SECT_S |
  260. PMD_SECT_UNCACHED | PMD_SECT_XN,
  261. .domain = DOMAIN_KERNEL,
  262. },
  263. };
  264. const struct mem_type *get_mem_type(unsigned int type)
  265. {
  266. return type < ARRAY_SIZE(mem_types) ? &mem_types[type] : NULL;
  267. }
  268. EXPORT_SYMBOL(get_mem_type);
  269. /*
  270. * Adjust the PMD section entries according to the CPU in use.
  271. */
  272. static void __init build_mem_type_table(void)
  273. {
  274. struct cachepolicy *cp;
  275. unsigned int cr = get_cr();
  276. pteval_t user_pgprot, kern_pgprot, vecs_pgprot;
  277. int cpu_arch = cpu_architecture();
  278. int i;
  279. if (cpu_arch < CPU_ARCH_ARMv6) {
  280. #if defined(CONFIG_CPU_DCACHE_DISABLE)
  281. if (cachepolicy > CPOLICY_BUFFERED)
  282. cachepolicy = CPOLICY_BUFFERED;
  283. #elif defined(CONFIG_CPU_DCACHE_WRITETHROUGH)
  284. if (cachepolicy > CPOLICY_WRITETHROUGH)
  285. cachepolicy = CPOLICY_WRITETHROUGH;
  286. #endif
  287. }
  288. if (cpu_arch < CPU_ARCH_ARMv5) {
  289. if (cachepolicy >= CPOLICY_WRITEALLOC)
  290. cachepolicy = CPOLICY_WRITEBACK;
  291. ecc_mask = 0;
  292. }
  293. if (is_smp())
  294. cachepolicy = CPOLICY_WRITEALLOC;
  295. /*
  296. * Strip out features not present on earlier architectures.
  297. * Pre-ARMv5 CPUs don't have TEX bits. Pre-ARMv6 CPUs or those
  298. * without extended page tables don't have the 'Shared' bit.
  299. */
  300. if (cpu_arch < CPU_ARCH_ARMv5)
  301. for (i = 0; i < ARRAY_SIZE(mem_types); i++)
  302. mem_types[i].prot_sect &= ~PMD_SECT_TEX(7);
  303. if ((cpu_arch < CPU_ARCH_ARMv6 || !(cr & CR_XP)) && !cpu_is_xsc3())
  304. for (i = 0; i < ARRAY_SIZE(mem_types); i++)
  305. mem_types[i].prot_sect &= ~PMD_SECT_S;
  306. /*
  307. * ARMv5 and lower, bit 4 must be set for page tables (was: cache
  308. * "update-able on write" bit on ARM610). However, Xscale and
  309. * Xscale3 require this bit to be cleared.
  310. */
  311. if (cpu_is_xscale() || cpu_is_xsc3()) {
  312. for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
  313. mem_types[i].prot_sect &= ~PMD_BIT4;
  314. mem_types[i].prot_l1 &= ~PMD_BIT4;
  315. }
  316. } else if (cpu_arch < CPU_ARCH_ARMv6) {
  317. for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
  318. if (mem_types[i].prot_l1)
  319. mem_types[i].prot_l1 |= PMD_BIT4;
  320. if (mem_types[i].prot_sect)
  321. mem_types[i].prot_sect |= PMD_BIT4;
  322. }
  323. }
  324. /*
  325. * Mark the device areas according to the CPU/architecture.
  326. */
  327. if (cpu_is_xsc3() || (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP))) {
  328. if (!cpu_is_xsc3()) {
  329. /*
  330. * Mark device regions on ARMv6+ as execute-never
  331. * to prevent speculative instruction fetches.
  332. */
  333. mem_types[MT_DEVICE].prot_sect |= PMD_SECT_XN;
  334. mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_XN;
  335. mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_XN;
  336. mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_XN;
  337. }
  338. if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
  339. /*
  340. * For ARMv7 with TEX remapping,
  341. * - shared device is SXCB=1100
  342. * - nonshared device is SXCB=0100
  343. * - write combine device mem is SXCB=0001
  344. * (Uncached Normal memory)
  345. */
  346. mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1);
  347. mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(1);
  348. mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
  349. } else if (cpu_is_xsc3()) {
  350. /*
  351. * For Xscale3,
  352. * - shared device is TEXCB=00101
  353. * - nonshared device is TEXCB=01000
  354. * - write combine device mem is TEXCB=00100
  355. * (Inner/Outer Uncacheable in xsc3 parlance)
  356. */
  357. mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1) | PMD_SECT_BUFFERED;
  358. mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
  359. mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
  360. } else {
  361. /*
  362. * For ARMv6 and ARMv7 without TEX remapping,
  363. * - shared device is TEXCB=00001
  364. * - nonshared device is TEXCB=01000
  365. * - write combine device mem is TEXCB=00100
  366. * (Uncached Normal in ARMv6 parlance).
  367. */
  368. mem_types[MT_DEVICE].prot_sect |= PMD_SECT_BUFFERED;
  369. mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
  370. mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
  371. }
  372. } else {
  373. /*
  374. * On others, write combining is "Uncached/Buffered"
  375. */
  376. mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
  377. }
  378. /*
  379. * Now deal with the memory-type mappings
  380. */
  381. cp = &cache_policies[cachepolicy];
  382. vecs_pgprot = kern_pgprot = user_pgprot = cp->pte;
  383. /*
  384. * Only use write-through for non-SMP systems
  385. */
  386. if (!is_smp() && cpu_arch >= CPU_ARCH_ARMv5 && cachepolicy > CPOLICY_WRITETHROUGH)
  387. vecs_pgprot = cache_policies[CPOLICY_WRITETHROUGH].pte;
  388. /*
  389. * Enable CPU-specific coherency if supported.
  390. * (Only available on XSC3 at the moment.)
  391. */
  392. if (arch_is_coherent() && cpu_is_xsc3()) {
  393. mem_types[MT_MEMORY].prot_sect |= PMD_SECT_S;
  394. mem_types[MT_MEMORY].prot_pte |= L_PTE_SHARED;
  395. mem_types[MT_MEMORY_NONCACHED].prot_sect |= PMD_SECT_S;
  396. mem_types[MT_MEMORY_NONCACHED].prot_pte |= L_PTE_SHARED;
  397. }
  398. /*
  399. * ARMv6 and above have extended page tables.
  400. */
  401. if (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP)) {
  402. #ifndef CONFIG_ARM_LPAE
  403. /*
  404. * Mark cache clean areas and XIP ROM read only
  405. * from SVC mode and no access from userspace.
  406. */
  407. mem_types[MT_ROM].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
  408. mem_types[MT_MINICLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
  409. mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
  410. #endif
  411. if (is_smp()) {
  412. /*
  413. * Mark memory with the "shared" attribute
  414. * for SMP systems
  415. */
  416. user_pgprot |= L_PTE_SHARED;
  417. kern_pgprot |= L_PTE_SHARED;
  418. vecs_pgprot |= L_PTE_SHARED;
  419. mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_S;
  420. mem_types[MT_DEVICE_WC].prot_pte |= L_PTE_SHARED;
  421. mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_S;
  422. mem_types[MT_DEVICE_CACHED].prot_pte |= L_PTE_SHARED;
  423. mem_types[MT_MEMORY].prot_sect |= PMD_SECT_S;
  424. mem_types[MT_MEMORY].prot_pte |= L_PTE_SHARED;
  425. mem_types[MT_MEMORY_NONCACHED].prot_sect |= PMD_SECT_S;
  426. mem_types[MT_MEMORY_NONCACHED].prot_pte |= L_PTE_SHARED;
  427. }
  428. }
  429. /*
  430. * Non-cacheable Normal - intended for memory areas that must
  431. * not cause dirty cache line writebacks when used
  432. */
  433. if (cpu_arch >= CPU_ARCH_ARMv6) {
  434. if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
  435. /* Non-cacheable Normal is XCB = 001 */
  436. mem_types[MT_MEMORY_NONCACHED].prot_sect |=
  437. PMD_SECT_BUFFERED;
  438. } else {
  439. /* For both ARMv6 and non-TEX-remapping ARMv7 */
  440. mem_types[MT_MEMORY_NONCACHED].prot_sect |=
  441. PMD_SECT_TEX(1);
  442. }
  443. } else {
  444. mem_types[MT_MEMORY_NONCACHED].prot_sect |= PMD_SECT_BUFFERABLE;
  445. }
  446. #ifdef CONFIG_ARM_LPAE
  447. /*
  448. * Do not generate access flag faults for the kernel mappings.
  449. */
  450. for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
  451. mem_types[i].prot_pte |= PTE_EXT_AF;
  452. mem_types[i].prot_sect |= PMD_SECT_AF;
  453. }
  454. kern_pgprot |= PTE_EXT_AF;
  455. vecs_pgprot |= PTE_EXT_AF;
  456. #endif
  457. for (i = 0; i < 16; i++) {
  458. unsigned long v = pgprot_val(protection_map[i]);
  459. protection_map[i] = __pgprot(v | user_pgprot);
  460. }
  461. mem_types[MT_LOW_VECTORS].prot_pte |= vecs_pgprot;
  462. mem_types[MT_HIGH_VECTORS].prot_pte |= vecs_pgprot;
  463. pgprot_user = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | user_pgprot);
  464. pgprot_kernel = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG |
  465. L_PTE_DIRTY | kern_pgprot);
  466. mem_types[MT_LOW_VECTORS].prot_l1 |= ecc_mask;
  467. mem_types[MT_HIGH_VECTORS].prot_l1 |= ecc_mask;
  468. mem_types[MT_MEMORY].prot_sect |= ecc_mask | cp->pmd;
  469. mem_types[MT_MEMORY].prot_pte |= kern_pgprot;
  470. mem_types[MT_MEMORY_NONCACHED].prot_sect |= ecc_mask;
  471. mem_types[MT_ROM].prot_sect |= cp->pmd;
  472. switch (cp->pmd) {
  473. case PMD_SECT_WT:
  474. mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WT;
  475. break;
  476. case PMD_SECT_WB:
  477. case PMD_SECT_WBWA:
  478. mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WB;
  479. break;
  480. }
  481. printk("Memory policy: ECC %sabled, Data cache %s\n",
  482. ecc_mask ? "en" : "dis", cp->policy);
  483. for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
  484. struct mem_type *t = &mem_types[i];
  485. if (t->prot_l1)
  486. t->prot_l1 |= PMD_DOMAIN(t->domain);
  487. if (t->prot_sect)
  488. t->prot_sect |= PMD_DOMAIN(t->domain);
  489. }
  490. }
  491. #ifdef CONFIG_ARM_DMA_MEM_BUFFERABLE
  492. pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
  493. unsigned long size, pgprot_t vma_prot)
  494. {
  495. if (!pfn_valid(pfn))
  496. return pgprot_noncached(vma_prot);
  497. else if (file->f_flags & O_SYNC)
  498. return pgprot_writecombine(vma_prot);
  499. return vma_prot;
  500. }
  501. EXPORT_SYMBOL(phys_mem_access_prot);
  502. #endif
  503. #define vectors_base() (vectors_high() ? 0xffff0000 : 0)
  504. static void __init *early_alloc_aligned(unsigned long sz, unsigned long align)
  505. {
  506. void *ptr = __va(memblock_alloc(sz, align));
  507. memset(ptr, 0, sz);
  508. return ptr;
  509. }
  510. static void __init *early_alloc(unsigned long sz)
  511. {
  512. return early_alloc_aligned(sz, sz);
  513. }
  514. static pte_t * __init early_pte_alloc(pmd_t *pmd, unsigned long addr, unsigned long prot)
  515. {
  516. if (pmd_none(*pmd)) {
  517. pte_t *pte = early_alloc(PTE_HWTABLE_OFF + PTE_HWTABLE_SIZE);
  518. __pmd_populate(pmd, __pa(pte), prot);
  519. }
  520. BUG_ON(pmd_bad(*pmd));
  521. return pte_offset_kernel(pmd, addr);
  522. }
  523. static void __init alloc_init_pte(pmd_t *pmd, unsigned long addr,
  524. unsigned long end, unsigned long pfn,
  525. const struct mem_type *type)
  526. {
  527. pte_t *pte = early_pte_alloc(pmd, addr, type->prot_l1);
  528. do {
  529. set_pte_ext(pte, pfn_pte(pfn, __pgprot(type->prot_pte)), 0);
  530. pfn++;
  531. } while (pte++, addr += PAGE_SIZE, addr != end);
  532. }
  533. static void __init alloc_init_section(pud_t *pud, unsigned long addr,
  534. unsigned long end, phys_addr_t phys,
  535. const struct mem_type *type)
  536. {
  537. pmd_t *pmd = pmd_offset(pud, addr);
  538. /*
  539. * Try a section mapping - end, addr and phys must all be aligned
  540. * to a section boundary. Note that PMDs refer to the individual
  541. * L1 entries, whereas PGDs refer to a group of L1 entries making
  542. * up one logical pointer to an L2 table.
  543. */
  544. if (((addr | end | phys) & ~SECTION_MASK) == 0) {
  545. pmd_t *p = pmd;
  546. #ifndef CONFIG_ARM_LPAE
  547. if (addr & SECTION_SIZE)
  548. pmd++;
  549. #endif
  550. do {
  551. *pmd = __pmd(phys | type->prot_sect);
  552. phys += SECTION_SIZE;
  553. } while (pmd++, addr += SECTION_SIZE, addr != end);
  554. flush_pmd_entry(p);
  555. } else {
  556. /*
  557. * No need to loop; pte's aren't interested in the
  558. * individual L1 entries.
  559. */
  560. alloc_init_pte(pmd, addr, end, __phys_to_pfn(phys), type);
  561. }
  562. }
  563. static void alloc_init_pud(pgd_t *pgd, unsigned long addr, unsigned long end,
  564. unsigned long phys, const struct mem_type *type)
  565. {
  566. pud_t *pud = pud_offset(pgd, addr);
  567. unsigned long next;
  568. do {
  569. next = pud_addr_end(addr, end);
  570. alloc_init_section(pud, addr, next, phys, type);
  571. phys += next - addr;
  572. } while (pud++, addr = next, addr != end);
  573. }
  574. #ifndef CONFIG_ARM_LPAE
  575. static void __init create_36bit_mapping(struct map_desc *md,
  576. const struct mem_type *type)
  577. {
  578. unsigned long addr, length, end;
  579. phys_addr_t phys;
  580. pgd_t *pgd;
  581. addr = md->virtual;
  582. phys = __pfn_to_phys(md->pfn);
  583. length = PAGE_ALIGN(md->length);
  584. if (!(cpu_architecture() >= CPU_ARCH_ARMv6 || cpu_is_xsc3())) {
  585. printk(KERN_ERR "MM: CPU does not support supersection "
  586. "mapping for 0x%08llx at 0x%08lx\n",
  587. (long long)__pfn_to_phys((u64)md->pfn), addr);
  588. return;
  589. }
  590. /* N.B. ARMv6 supersections are only defined to work with domain 0.
  591. * Since domain assignments can in fact be arbitrary, the
  592. * 'domain == 0' check below is required to insure that ARMv6
  593. * supersections are only allocated for domain 0 regardless
  594. * of the actual domain assignments in use.
  595. */
  596. if (type->domain) {
  597. printk(KERN_ERR "MM: invalid domain in supersection "
  598. "mapping for 0x%08llx at 0x%08lx\n",
  599. (long long)__pfn_to_phys((u64)md->pfn), addr);
  600. return;
  601. }
  602. if ((addr | length | __pfn_to_phys(md->pfn)) & ~SUPERSECTION_MASK) {
  603. printk(KERN_ERR "MM: cannot create mapping for 0x%08llx"
  604. " at 0x%08lx invalid alignment\n",
  605. (long long)__pfn_to_phys((u64)md->pfn), addr);
  606. return;
  607. }
  608. /*
  609. * Shift bits [35:32] of address into bits [23:20] of PMD
  610. * (See ARMv6 spec).
  611. */
  612. phys |= (((md->pfn >> (32 - PAGE_SHIFT)) & 0xF) << 20);
  613. pgd = pgd_offset_k(addr);
  614. end = addr + length;
  615. do {
  616. pud_t *pud = pud_offset(pgd, addr);
  617. pmd_t *pmd = pmd_offset(pud, addr);
  618. int i;
  619. for (i = 0; i < 16; i++)
  620. *pmd++ = __pmd(phys | type->prot_sect | PMD_SECT_SUPER);
  621. addr += SUPERSECTION_SIZE;
  622. phys += SUPERSECTION_SIZE;
  623. pgd += SUPERSECTION_SIZE >> PGDIR_SHIFT;
  624. } while (addr != end);
  625. }
  626. #endif /* !CONFIG_ARM_LPAE */
  627. /*
  628. * Create the page directory entries and any necessary
  629. * page tables for the mapping specified by `md'. We
  630. * are able to cope here with varying sizes and address
  631. * offsets, and we take full advantage of sections and
  632. * supersections.
  633. */
  634. static void __init create_mapping(struct map_desc *md)
  635. {
  636. unsigned long addr, length, end;
  637. phys_addr_t phys;
  638. const struct mem_type *type;
  639. pgd_t *pgd;
  640. if (md->virtual != vectors_base() && md->virtual < TASK_SIZE) {
  641. printk(KERN_WARNING "BUG: not creating mapping for 0x%08llx"
  642. " at 0x%08lx in user region\n",
  643. (long long)__pfn_to_phys((u64)md->pfn), md->virtual);
  644. return;
  645. }
  646. if ((md->type == MT_DEVICE || md->type == MT_ROM) &&
  647. md->virtual >= PAGE_OFFSET &&
  648. (md->virtual < VMALLOC_START || md->virtual >= VMALLOC_END)) {
  649. printk(KERN_WARNING "BUG: mapping for 0x%08llx"
  650. " at 0x%08lx out of vmalloc space\n",
  651. (long long)__pfn_to_phys((u64)md->pfn), md->virtual);
  652. }
  653. type = &mem_types[md->type];
  654. #ifndef CONFIG_ARM_LPAE
  655. /*
  656. * Catch 36-bit addresses
  657. */
  658. if (md->pfn >= 0x100000) {
  659. create_36bit_mapping(md, type);
  660. return;
  661. }
  662. #endif
  663. addr = md->virtual & PAGE_MASK;
  664. phys = __pfn_to_phys(md->pfn);
  665. length = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
  666. if (type->prot_l1 == 0 && ((addr | phys | length) & ~SECTION_MASK)) {
  667. printk(KERN_WARNING "BUG: map for 0x%08llx at 0x%08lx can not "
  668. "be mapped using pages, ignoring.\n",
  669. (long long)__pfn_to_phys(md->pfn), addr);
  670. return;
  671. }
  672. pgd = pgd_offset_k(addr);
  673. end = addr + length;
  674. do {
  675. unsigned long next = pgd_addr_end(addr, end);
  676. alloc_init_pud(pgd, addr, next, phys, type);
  677. phys += next - addr;
  678. addr = next;
  679. } while (pgd++, addr != end);
  680. }
  681. /*
  682. * Create the architecture specific mappings
  683. */
  684. void __init iotable_init(struct map_desc *io_desc, int nr)
  685. {
  686. struct map_desc *md;
  687. struct vm_struct *vm;
  688. if (!nr)
  689. return;
  690. vm = early_alloc_aligned(sizeof(*vm) * nr, __alignof__(*vm));
  691. for (md = io_desc; nr; md++, nr--) {
  692. create_mapping(md);
  693. vm->addr = (void *)(md->virtual & PAGE_MASK);
  694. vm->size = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
  695. vm->phys_addr = __pfn_to_phys(md->pfn);
  696. vm->flags = VM_IOREMAP | VM_ARM_STATIC_MAPPING;
  697. vm->flags |= VM_ARM_MTYPE(md->type);
  698. vm->caller = iotable_init;
  699. vm_area_add_early(vm++);
  700. }
  701. }
  702. static void * __initdata vmalloc_min =
  703. (void *)(VMALLOC_END - (240 << 20) - VMALLOC_OFFSET);
  704. /*
  705. * vmalloc=size forces the vmalloc area to be exactly 'size'
  706. * bytes. This can be used to increase (or decrease) the vmalloc
  707. * area - the default is 240m.
  708. */
  709. static int __init early_vmalloc(char *arg)
  710. {
  711. unsigned long vmalloc_reserve = memparse(arg, NULL);
  712. if (vmalloc_reserve < SZ_16M) {
  713. vmalloc_reserve = SZ_16M;
  714. printk(KERN_WARNING
  715. "vmalloc area too small, limiting to %luMB\n",
  716. vmalloc_reserve >> 20);
  717. }
  718. if (vmalloc_reserve > VMALLOC_END - (PAGE_OFFSET + SZ_32M)) {
  719. vmalloc_reserve = VMALLOC_END - (PAGE_OFFSET + SZ_32M);
  720. printk(KERN_WARNING
  721. "vmalloc area is too big, limiting to %luMB\n",
  722. vmalloc_reserve >> 20);
  723. }
  724. vmalloc_min = (void *)(VMALLOC_END - vmalloc_reserve);
  725. return 0;
  726. }
  727. early_param("vmalloc", early_vmalloc);
  728. static phys_addr_t lowmem_limit __initdata = 0;
  729. void __init sanity_check_meminfo(void)
  730. {
  731. int i, j, highmem = 0;
  732. for (i = 0, j = 0; i < meminfo.nr_banks; i++) {
  733. struct membank *bank = &meminfo.bank[j];
  734. *bank = meminfo.bank[i];
  735. if (bank->start > ULONG_MAX)
  736. highmem = 1;
  737. #ifdef CONFIG_HIGHMEM
  738. if (__va(bank->start) >= vmalloc_min ||
  739. __va(bank->start) < (void *)PAGE_OFFSET)
  740. highmem = 1;
  741. bank->highmem = highmem;
  742. /*
  743. * Split those memory banks which are partially overlapping
  744. * the vmalloc area greatly simplifying things later.
  745. */
  746. if (!highmem && __va(bank->start) < vmalloc_min &&
  747. bank->size > vmalloc_min - __va(bank->start)) {
  748. if (meminfo.nr_banks >= NR_BANKS) {
  749. printk(KERN_CRIT "NR_BANKS too low, "
  750. "ignoring high memory\n");
  751. } else {
  752. memmove(bank + 1, bank,
  753. (meminfo.nr_banks - i) * sizeof(*bank));
  754. meminfo.nr_banks++;
  755. i++;
  756. bank[1].size -= vmalloc_min - __va(bank->start);
  757. bank[1].start = __pa(vmalloc_min - 1) + 1;
  758. bank[1].highmem = highmem = 1;
  759. j++;
  760. }
  761. bank->size = vmalloc_min - __va(bank->start);
  762. }
  763. #else
  764. bank->highmem = highmem;
  765. /*
  766. * Highmem banks not allowed with !CONFIG_HIGHMEM.
  767. */
  768. if (highmem) {
  769. printk(KERN_NOTICE "Ignoring RAM at %.8llx-%.8llx "
  770. "(!CONFIG_HIGHMEM).\n",
  771. (unsigned long long)bank->start,
  772. (unsigned long long)bank->start + bank->size - 1);
  773. continue;
  774. }
  775. /*
  776. * Check whether this memory bank would entirely overlap
  777. * the vmalloc area.
  778. */
  779. if (__va(bank->start) >= vmalloc_min ||
  780. __va(bank->start) < (void *)PAGE_OFFSET) {
  781. printk(KERN_NOTICE "Ignoring RAM at %.8llx-%.8llx "
  782. "(vmalloc region overlap).\n",
  783. (unsigned long long)bank->start,
  784. (unsigned long long)bank->start + bank->size - 1);
  785. continue;
  786. }
  787. /*
  788. * Check whether this memory bank would partially overlap
  789. * the vmalloc area.
  790. */
  791. if (__va(bank->start + bank->size) > vmalloc_min ||
  792. __va(bank->start + bank->size) < __va(bank->start)) {
  793. unsigned long newsize = vmalloc_min - __va(bank->start);
  794. printk(KERN_NOTICE "Truncating RAM at %.8llx-%.8llx "
  795. "to -%.8llx (vmalloc region overlap).\n",
  796. (unsigned long long)bank->start,
  797. (unsigned long long)bank->start + bank->size - 1,
  798. (unsigned long long)bank->start + newsize - 1);
  799. bank->size = newsize;
  800. }
  801. #endif
  802. if (!bank->highmem && bank->start + bank->size > lowmem_limit)
  803. lowmem_limit = bank->start + bank->size;
  804. j++;
  805. }
  806. #ifdef CONFIG_HIGHMEM
  807. if (highmem) {
  808. const char *reason = NULL;
  809. if (cache_is_vipt_aliasing()) {
  810. /*
  811. * Interactions between kmap and other mappings
  812. * make highmem support with aliasing VIPT caches
  813. * rather difficult.
  814. */
  815. reason = "with VIPT aliasing cache";
  816. }
  817. if (reason) {
  818. printk(KERN_CRIT "HIGHMEM is not supported %s, ignoring high memory\n",
  819. reason);
  820. while (j > 0 && meminfo.bank[j - 1].highmem)
  821. j--;
  822. }
  823. }
  824. #endif
  825. meminfo.nr_banks = j;
  826. high_memory = __va(lowmem_limit - 1) + 1;
  827. memblock_set_current_limit(lowmem_limit);
  828. }
  829. static inline void prepare_page_table(void)
  830. {
  831. unsigned long addr;
  832. phys_addr_t end;
  833. /*
  834. * Clear out all the mappings below the kernel image.
  835. */
  836. for (addr = 0; addr < MODULES_VADDR; addr += PMD_SIZE)
  837. pmd_clear(pmd_off_k(addr));
  838. #ifdef CONFIG_XIP_KERNEL
  839. /* The XIP kernel is mapped in the module area -- skip over it */
  840. addr = ((unsigned long)_etext + PMD_SIZE - 1) & PMD_MASK;
  841. #endif
  842. for ( ; addr < PAGE_OFFSET; addr += PMD_SIZE)
  843. pmd_clear(pmd_off_k(addr));
  844. /*
  845. * Find the end of the first block of lowmem.
  846. */
  847. end = memblock.memory.regions[0].base + memblock.memory.regions[0].size;
  848. if (end >= lowmem_limit)
  849. end = lowmem_limit;
  850. /*
  851. * Clear out all the kernel space mappings, except for the first
  852. * memory bank, up to the vmalloc region.
  853. */
  854. for (addr = __phys_to_virt(end);
  855. addr < VMALLOC_START; addr += PMD_SIZE)
  856. pmd_clear(pmd_off_k(addr));
  857. }
  858. #ifdef CONFIG_ARM_LPAE
  859. /* the first page is reserved for pgd */
  860. #define SWAPPER_PG_DIR_SIZE (PAGE_SIZE + \
  861. PTRS_PER_PGD * PTRS_PER_PMD * sizeof(pmd_t))
  862. #else
  863. #define SWAPPER_PG_DIR_SIZE (PTRS_PER_PGD * sizeof(pgd_t))
  864. #endif
  865. /*
  866. * Reserve the special regions of memory
  867. */
  868. void __init arm_mm_memblock_reserve(void)
  869. {
  870. /*
  871. * Reserve the page tables. These are already in use,
  872. * and can only be in node 0.
  873. */
  874. memblock_reserve(__pa(swapper_pg_dir), SWAPPER_PG_DIR_SIZE);
  875. #ifdef CONFIG_SA1111
  876. /*
  877. * Because of the SA1111 DMA bug, we want to preserve our
  878. * precious DMA-able memory...
  879. */
  880. memblock_reserve(PHYS_OFFSET, __pa(swapper_pg_dir) - PHYS_OFFSET);
  881. #endif
  882. }
  883. /*
  884. * Set up the device mappings. Since we clear out the page tables for all
  885. * mappings above VMALLOC_START, we will remove any debug device mappings.
  886. * This means you have to be careful how you debug this function, or any
  887. * called function. This means you can't use any function or debugging
  888. * method which may touch any device, otherwise the kernel _will_ crash.
  889. */
  890. static void __init devicemaps_init(struct machine_desc *mdesc)
  891. {
  892. struct map_desc map;
  893. unsigned long addr;
  894. /*
  895. * Allocate the vector page early.
  896. */
  897. vectors_page = early_alloc(PAGE_SIZE);
  898. for (addr = VMALLOC_START; addr; addr += PMD_SIZE)
  899. pmd_clear(pmd_off_k(addr));
  900. /*
  901. * Map the kernel if it is XIP.
  902. * It is always first in the modulearea.
  903. */
  904. #ifdef CONFIG_XIP_KERNEL
  905. map.pfn = __phys_to_pfn(CONFIG_XIP_PHYS_ADDR & SECTION_MASK);
  906. map.virtual = MODULES_VADDR;
  907. map.length = ((unsigned long)_etext - map.virtual + ~SECTION_MASK) & SECTION_MASK;
  908. map.type = MT_ROM;
  909. create_mapping(&map);
  910. #endif
  911. /*
  912. * Map the cache flushing regions.
  913. */
  914. #ifdef FLUSH_BASE
  915. map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS);
  916. map.virtual = FLUSH_BASE;
  917. map.length = SZ_1M;
  918. map.type = MT_CACHECLEAN;
  919. create_mapping(&map);
  920. #endif
  921. #ifdef FLUSH_BASE_MINICACHE
  922. map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS + SZ_1M);
  923. map.virtual = FLUSH_BASE_MINICACHE;
  924. map.length = SZ_1M;
  925. map.type = MT_MINICLEAN;
  926. create_mapping(&map);
  927. #endif
  928. /*
  929. * Create a mapping for the machine vectors at the high-vectors
  930. * location (0xffff0000). If we aren't using high-vectors, also
  931. * create a mapping at the low-vectors virtual address.
  932. */
  933. map.pfn = __phys_to_pfn(virt_to_phys(vectors_page));
  934. map.virtual = 0xffff0000;
  935. map.length = PAGE_SIZE;
  936. map.type = MT_HIGH_VECTORS;
  937. create_mapping(&map);
  938. if (!vectors_high()) {
  939. map.virtual = 0;
  940. map.type = MT_LOW_VECTORS;
  941. create_mapping(&map);
  942. }
  943. /*
  944. * Ask the machine support to map in the statically mapped devices.
  945. */
  946. if (mdesc->map_io)
  947. mdesc->map_io();
  948. /*
  949. * Finally flush the caches and tlb to ensure that we're in a
  950. * consistent state wrt the writebuffer. This also ensures that
  951. * any write-allocated cache lines in the vector page are written
  952. * back. After this point, we can start to touch devices again.
  953. */
  954. local_flush_tlb_all();
  955. flush_cache_all();
  956. }
  957. static void __init kmap_init(void)
  958. {
  959. #ifdef CONFIG_HIGHMEM
  960. pkmap_page_table = early_pte_alloc(pmd_off_k(PKMAP_BASE),
  961. PKMAP_BASE, _PAGE_KERNEL_TABLE);
  962. #endif
  963. }
  964. static void __init map_lowmem(void)
  965. {
  966. struct memblock_region *reg;
  967. /* Map all the lowmem memory banks. */
  968. for_each_memblock(memory, reg) {
  969. phys_addr_t start = reg->base;
  970. phys_addr_t end = start + reg->size;
  971. struct map_desc map;
  972. if (end > lowmem_limit)
  973. end = lowmem_limit;
  974. if (start >= end)
  975. break;
  976. map.pfn = __phys_to_pfn(start);
  977. map.virtual = __phys_to_virt(start);
  978. map.length = end - start;
  979. map.type = MT_MEMORY;
  980. create_mapping(&map);
  981. }
  982. }
  983. /*
  984. * paging_init() sets up the page tables, initialises the zone memory
  985. * maps, and sets up the zero page, bad page and bad page tables.
  986. */
  987. void __init paging_init(struct machine_desc *mdesc)
  988. {
  989. void *zero_page;
  990. memblock_set_current_limit(lowmem_limit);
  991. build_mem_type_table();
  992. prepare_page_table();
  993. map_lowmem();
  994. devicemaps_init(mdesc);
  995. kmap_init();
  996. top_pmd = pmd_off_k(0xffff0000);
  997. /* allocate the zero page. */
  998. zero_page = early_alloc(PAGE_SIZE);
  999. bootmem_init();
  1000. empty_zero_page = virt_to_page(zero_page);
  1001. __flush_dcache_page(NULL, empty_zero_page);
  1002. }