smp.c 17 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747
  1. /*
  2. * linux/arch/arm/kernel/smp.c
  3. *
  4. * Copyright (C) 2002 ARM Limited, All Rights Reserved.
  5. *
  6. * This program is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License version 2 as
  8. * published by the Free Software Foundation.
  9. */
  10. #include <linux/module.h>
  11. #include <linux/delay.h>
  12. #include <linux/init.h>
  13. #include <linux/spinlock.h>
  14. #include <linux/sched.h>
  15. #include <linux/interrupt.h>
  16. #include <linux/cache.h>
  17. #include <linux/profile.h>
  18. #include <linux/errno.h>
  19. #include <linux/mm.h>
  20. #include <linux/err.h>
  21. #include <linux/cpu.h>
  22. #include <linux/seq_file.h>
  23. #include <linux/irq.h>
  24. #include <linux/percpu.h>
  25. #include <linux/clockchips.h>
  26. #include <linux/completion.h>
  27. #include <linux/cpufreq.h>
  28. #include <linux/atomic.h>
  29. #include <asm/smp.h>
  30. #include <asm/cacheflush.h>
  31. #include <asm/cpu.h>
  32. #include <asm/cputype.h>
  33. #include <asm/exception.h>
  34. #include <asm/idmap.h>
  35. #include <asm/topology.h>
  36. #include <asm/mmu_context.h>
  37. #include <asm/pgtable.h>
  38. #include <asm/pgalloc.h>
  39. #include <asm/processor.h>
  40. #include <asm/sections.h>
  41. #include <asm/tlbflush.h>
  42. #include <asm/ptrace.h>
  43. #include <asm/localtimer.h>
  44. #include <asm/smp_plat.h>
  45. #include <asm/virt.h>
  46. #include <asm/mach/arch.h>
  47. /*
  48. * as from 2.5, kernels no longer have an init_tasks structure
  49. * so we need some other way of telling a new secondary core
  50. * where to place its SVC stack
  51. */
  52. struct secondary_data secondary_data;
  53. /*
  54. * control for which core is the next to come out of the secondary
  55. * boot "holding pen"
  56. */
  57. volatile int __cpuinitdata pen_release = -1;
  58. enum ipi_msg_type {
  59. IPI_WAKEUP,
  60. IPI_TIMER,
  61. IPI_RESCHEDULE,
  62. IPI_CALL_FUNC,
  63. IPI_CALL_FUNC_SINGLE,
  64. IPI_CPU_STOP,
  65. };
  66. static DECLARE_COMPLETION(cpu_running);
  67. static struct smp_operations smp_ops;
  68. void __init smp_set_ops(struct smp_operations *ops)
  69. {
  70. if (ops)
  71. smp_ops = *ops;
  72. };
  73. int __cpuinit __cpu_up(unsigned int cpu, struct task_struct *idle)
  74. {
  75. int ret;
  76. /*
  77. * We need to tell the secondary core where to find
  78. * its stack and the page tables.
  79. */
  80. secondary_data.stack = task_stack_page(idle) + THREAD_START_SP;
  81. #ifdef CONFIG_MMU
  82. secondary_data.pgdir = virt_to_phys(idmap_pgd);
  83. secondary_data.swapper_pg_dir = virt_to_phys(swapper_pg_dir);
  84. #endif
  85. __cpuc_flush_dcache_area(&secondary_data, sizeof(secondary_data));
  86. outer_clean_range(__pa(&secondary_data), __pa(&secondary_data + 1));
  87. /*
  88. * Now bring the CPU into our world.
  89. */
  90. ret = boot_secondary(cpu, idle);
  91. if (ret == 0) {
  92. /*
  93. * CPU was successfully started, wait for it
  94. * to come online or time out.
  95. */
  96. wait_for_completion_timeout(&cpu_running,
  97. msecs_to_jiffies(1000));
  98. if (!cpu_online(cpu)) {
  99. pr_crit("CPU%u: failed to come online\n", cpu);
  100. ret = -EIO;
  101. }
  102. } else {
  103. pr_err("CPU%u: failed to boot: %d\n", cpu, ret);
  104. }
  105. secondary_data.stack = NULL;
  106. secondary_data.pgdir = 0;
  107. return ret;
  108. }
  109. /* platform specific SMP operations */
  110. void __init smp_init_cpus(void)
  111. {
  112. if (smp_ops.smp_init_cpus)
  113. smp_ops.smp_init_cpus();
  114. }
  115. int __cpuinit boot_secondary(unsigned int cpu, struct task_struct *idle)
  116. {
  117. if (smp_ops.smp_boot_secondary)
  118. return smp_ops.smp_boot_secondary(cpu, idle);
  119. return -ENOSYS;
  120. }
  121. #ifdef CONFIG_HOTPLUG_CPU
  122. static void percpu_timer_stop(void);
  123. static int platform_cpu_kill(unsigned int cpu)
  124. {
  125. if (smp_ops.cpu_kill)
  126. return smp_ops.cpu_kill(cpu);
  127. return 1;
  128. }
  129. static int platform_cpu_disable(unsigned int cpu)
  130. {
  131. if (smp_ops.cpu_disable)
  132. return smp_ops.cpu_disable(cpu);
  133. /*
  134. * By default, allow disabling all CPUs except the first one,
  135. * since this is special on a lot of platforms, e.g. because
  136. * of clock tick interrupts.
  137. */
  138. return cpu == 0 ? -EPERM : 0;
  139. }
  140. /*
  141. * __cpu_disable runs on the processor to be shutdown.
  142. */
  143. int __cpuinit __cpu_disable(void)
  144. {
  145. unsigned int cpu = smp_processor_id();
  146. int ret;
  147. ret = platform_cpu_disable(cpu);
  148. if (ret)
  149. return ret;
  150. /*
  151. * Take this CPU offline. Once we clear this, we can't return,
  152. * and we must not schedule until we're ready to give up the cpu.
  153. */
  154. set_cpu_online(cpu, false);
  155. /*
  156. * OK - migrate IRQs away from this CPU
  157. */
  158. migrate_irqs();
  159. /*
  160. * Stop the local timer for this CPU.
  161. */
  162. percpu_timer_stop();
  163. /*
  164. * Flush user cache and TLB mappings, and then remove this CPU
  165. * from the vm mask set of all processes.
  166. *
  167. * Caches are flushed to the Level of Unification Inner Shareable
  168. * to write-back dirty lines to unified caches shared by all CPUs.
  169. */
  170. flush_cache_louis();
  171. local_flush_tlb_all();
  172. clear_tasks_mm_cpumask(cpu);
  173. return 0;
  174. }
  175. static DECLARE_COMPLETION(cpu_died);
  176. /*
  177. * called on the thread which is asking for a CPU to be shutdown -
  178. * waits until shutdown has completed, or it is timed out.
  179. */
  180. void __cpuinit __cpu_die(unsigned int cpu)
  181. {
  182. if (!wait_for_completion_timeout(&cpu_died, msecs_to_jiffies(5000))) {
  183. pr_err("CPU%u: cpu didn't die\n", cpu);
  184. return;
  185. }
  186. printk(KERN_NOTICE "CPU%u: shutdown\n", cpu);
  187. /*
  188. * platform_cpu_kill() is generally expected to do the powering off
  189. * and/or cutting of clocks to the dying CPU. Optionally, this may
  190. * be done by the CPU which is dying in preference to supporting
  191. * this call, but that means there is _no_ synchronisation between
  192. * the requesting CPU and the dying CPU actually losing power.
  193. */
  194. if (!platform_cpu_kill(cpu))
  195. printk("CPU%u: unable to kill\n", cpu);
  196. }
  197. /*
  198. * Called from the idle thread for the CPU which has been shutdown.
  199. *
  200. * Note that we disable IRQs here, but do not re-enable them
  201. * before returning to the caller. This is also the behaviour
  202. * of the other hotplug-cpu capable cores, so presumably coming
  203. * out of idle fixes this.
  204. */
  205. void __ref cpu_die(void)
  206. {
  207. unsigned int cpu = smp_processor_id();
  208. idle_task_exit();
  209. local_irq_disable();
  210. /*
  211. * Flush the data out of the L1 cache for this CPU. This must be
  212. * before the completion to ensure that data is safely written out
  213. * before platform_cpu_kill() gets called - which may disable
  214. * *this* CPU and power down its cache.
  215. */
  216. flush_cache_louis();
  217. /*
  218. * Tell __cpu_die() that this CPU is now safe to dispose of. Once
  219. * this returns, power and/or clocks can be removed at any point
  220. * from this CPU and its cache by platform_cpu_kill().
  221. */
  222. complete(&cpu_died);
  223. /*
  224. * Ensure that the cache lines associated with that completion are
  225. * written out. This covers the case where _this_ CPU is doing the
  226. * powering down, to ensure that the completion is visible to the
  227. * CPU waiting for this one.
  228. */
  229. flush_cache_louis();
  230. /*
  231. * The actual CPU shutdown procedure is at least platform (if not
  232. * CPU) specific. This may remove power, or it may simply spin.
  233. *
  234. * Platforms are generally expected *NOT* to return from this call,
  235. * although there are some which do because they have no way to
  236. * power down the CPU. These platforms are the _only_ reason we
  237. * have a return path which uses the fragment of assembly below.
  238. *
  239. * The return path should not be used for platforms which can
  240. * power off the CPU.
  241. */
  242. if (smp_ops.cpu_die)
  243. smp_ops.cpu_die(cpu);
  244. /*
  245. * Do not return to the idle loop - jump back to the secondary
  246. * cpu initialisation. There's some initialisation which needs
  247. * to be repeated to undo the effects of taking the CPU offline.
  248. */
  249. __asm__("mov sp, %0\n"
  250. " mov fp, #0\n"
  251. " b secondary_start_kernel"
  252. :
  253. : "r" (task_stack_page(current) + THREAD_SIZE - 8));
  254. }
  255. #endif /* CONFIG_HOTPLUG_CPU */
  256. /*
  257. * Called by both boot and secondaries to move global data into
  258. * per-processor storage.
  259. */
  260. static void __cpuinit smp_store_cpu_info(unsigned int cpuid)
  261. {
  262. struct cpuinfo_arm *cpu_info = &per_cpu(cpu_data, cpuid);
  263. cpu_info->loops_per_jiffy = loops_per_jiffy;
  264. cpu_info->cpuid = read_cpuid_id();
  265. store_cpu_topology(cpuid);
  266. }
  267. static void percpu_timer_setup(void);
  268. /*
  269. * This is the secondary CPU boot entry. We're using this CPUs
  270. * idle thread stack, but a set of temporary page tables.
  271. */
  272. asmlinkage void __cpuinit secondary_start_kernel(void)
  273. {
  274. struct mm_struct *mm = &init_mm;
  275. unsigned int cpu;
  276. /*
  277. * The identity mapping is uncached (strongly ordered), so
  278. * switch away from it before attempting any exclusive accesses.
  279. */
  280. cpu_switch_mm(mm->pgd, mm);
  281. local_flush_bp_all();
  282. enter_lazy_tlb(mm, current);
  283. local_flush_tlb_all();
  284. /*
  285. * All kernel threads share the same mm context; grab a
  286. * reference and switch to it.
  287. */
  288. cpu = smp_processor_id();
  289. atomic_inc(&mm->mm_count);
  290. current->active_mm = mm;
  291. cpumask_set_cpu(cpu, mm_cpumask(mm));
  292. cpu_init();
  293. printk("CPU%u: Booted secondary processor\n", cpu);
  294. preempt_disable();
  295. trace_hardirqs_off();
  296. /*
  297. * Give the platform a chance to do its own initialisation.
  298. */
  299. if (smp_ops.smp_secondary_init)
  300. smp_ops.smp_secondary_init(cpu);
  301. notify_cpu_starting(cpu);
  302. calibrate_delay();
  303. smp_store_cpu_info(cpu);
  304. /*
  305. * OK, now it's safe to let the boot CPU continue. Wait for
  306. * the CPU migration code to notice that the CPU is online
  307. * before we continue - which happens after __cpu_up returns.
  308. */
  309. set_cpu_online(cpu, true);
  310. complete(&cpu_running);
  311. /*
  312. * Setup the percpu timer for this CPU.
  313. */
  314. percpu_timer_setup();
  315. local_irq_enable();
  316. local_fiq_enable();
  317. /*
  318. * OK, it's off to the idle thread for us
  319. */
  320. cpu_startup_entry(CPUHP_ONLINE);
  321. }
  322. void __init smp_cpus_done(unsigned int max_cpus)
  323. {
  324. int cpu;
  325. unsigned long bogosum = 0;
  326. for_each_online_cpu(cpu)
  327. bogosum += per_cpu(cpu_data, cpu).loops_per_jiffy;
  328. printk(KERN_INFO "SMP: Total of %d processors activated "
  329. "(%lu.%02lu BogoMIPS).\n",
  330. num_online_cpus(),
  331. bogosum / (500000/HZ),
  332. (bogosum / (5000/HZ)) % 100);
  333. hyp_mode_check();
  334. }
  335. void __init smp_prepare_boot_cpu(void)
  336. {
  337. set_my_cpu_offset(per_cpu_offset(smp_processor_id()));
  338. }
  339. void __init smp_prepare_cpus(unsigned int max_cpus)
  340. {
  341. unsigned int ncores = num_possible_cpus();
  342. init_cpu_topology();
  343. smp_store_cpu_info(smp_processor_id());
  344. /*
  345. * are we trying to boot more cores than exist?
  346. */
  347. if (max_cpus > ncores)
  348. max_cpus = ncores;
  349. if (ncores > 1 && max_cpus) {
  350. /*
  351. * Enable the local timer or broadcast device for the
  352. * boot CPU, but only if we have more than one CPU.
  353. */
  354. percpu_timer_setup();
  355. /*
  356. * Initialise the present map, which describes the set of CPUs
  357. * actually populated at the present time. A platform should
  358. * re-initialize the map in the platforms smp_prepare_cpus()
  359. * if present != possible (e.g. physical hotplug).
  360. */
  361. init_cpu_present(cpu_possible_mask);
  362. /*
  363. * Initialise the SCU if there are more than one CPU
  364. * and let them know where to start.
  365. */
  366. if (smp_ops.smp_prepare_cpus)
  367. smp_ops.smp_prepare_cpus(max_cpus);
  368. }
  369. }
  370. static void (*smp_cross_call)(const struct cpumask *, unsigned int);
  371. void __init set_smp_cross_call(void (*fn)(const struct cpumask *, unsigned int))
  372. {
  373. if (!smp_cross_call)
  374. smp_cross_call = fn;
  375. }
  376. void arch_send_call_function_ipi_mask(const struct cpumask *mask)
  377. {
  378. smp_cross_call(mask, IPI_CALL_FUNC);
  379. }
  380. void arch_send_wakeup_ipi_mask(const struct cpumask *mask)
  381. {
  382. smp_cross_call(mask, IPI_WAKEUP);
  383. }
  384. void arch_send_call_function_single_ipi(int cpu)
  385. {
  386. smp_cross_call(cpumask_of(cpu), IPI_CALL_FUNC_SINGLE);
  387. }
  388. static const char *ipi_types[NR_IPI] = {
  389. #define S(x,s) [x] = s
  390. S(IPI_WAKEUP, "CPU wakeup interrupts"),
  391. S(IPI_TIMER, "Timer broadcast interrupts"),
  392. S(IPI_RESCHEDULE, "Rescheduling interrupts"),
  393. S(IPI_CALL_FUNC, "Function call interrupts"),
  394. S(IPI_CALL_FUNC_SINGLE, "Single function call interrupts"),
  395. S(IPI_CPU_STOP, "CPU stop interrupts"),
  396. };
  397. void show_ipi_list(struct seq_file *p, int prec)
  398. {
  399. unsigned int cpu, i;
  400. for (i = 0; i < NR_IPI; i++) {
  401. seq_printf(p, "%*s%u: ", prec - 1, "IPI", i);
  402. for_each_online_cpu(cpu)
  403. seq_printf(p, "%10u ",
  404. __get_irq_stat(cpu, ipi_irqs[i]));
  405. seq_printf(p, " %s\n", ipi_types[i]);
  406. }
  407. }
  408. u64 smp_irq_stat_cpu(unsigned int cpu)
  409. {
  410. u64 sum = 0;
  411. int i;
  412. for (i = 0; i < NR_IPI; i++)
  413. sum += __get_irq_stat(cpu, ipi_irqs[i]);
  414. return sum;
  415. }
  416. /*
  417. * Timer (local or broadcast) support
  418. */
  419. static DEFINE_PER_CPU(struct clock_event_device, percpu_clockevent);
  420. #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
  421. void tick_broadcast(const struct cpumask *mask)
  422. {
  423. smp_cross_call(mask, IPI_TIMER);
  424. }
  425. #endif
  426. static void broadcast_timer_set_mode(enum clock_event_mode mode,
  427. struct clock_event_device *evt)
  428. {
  429. }
  430. static void __cpuinit broadcast_timer_setup(struct clock_event_device *evt)
  431. {
  432. evt->name = "dummy_timer";
  433. evt->features = CLOCK_EVT_FEAT_ONESHOT |
  434. CLOCK_EVT_FEAT_PERIODIC |
  435. CLOCK_EVT_FEAT_DUMMY;
  436. evt->rating = 100;
  437. evt->mult = 1;
  438. evt->set_mode = broadcast_timer_set_mode;
  439. clockevents_register_device(evt);
  440. }
  441. static struct local_timer_ops *lt_ops;
  442. #ifdef CONFIG_LOCAL_TIMERS
  443. int local_timer_register(struct local_timer_ops *ops)
  444. {
  445. if (!is_smp() || !setup_max_cpus)
  446. return -ENXIO;
  447. if (lt_ops)
  448. return -EBUSY;
  449. lt_ops = ops;
  450. return 0;
  451. }
  452. #endif
  453. static void __cpuinit percpu_timer_setup(void)
  454. {
  455. unsigned int cpu = smp_processor_id();
  456. struct clock_event_device *evt = &per_cpu(percpu_clockevent, cpu);
  457. evt->cpumask = cpumask_of(cpu);
  458. if (!lt_ops || lt_ops->setup(evt))
  459. broadcast_timer_setup(evt);
  460. }
  461. #ifdef CONFIG_HOTPLUG_CPU
  462. /*
  463. * The generic clock events code purposely does not stop the local timer
  464. * on CPU_DEAD/CPU_DEAD_FROZEN hotplug events, so we have to do it
  465. * manually here.
  466. */
  467. static void percpu_timer_stop(void)
  468. {
  469. unsigned int cpu = smp_processor_id();
  470. struct clock_event_device *evt = &per_cpu(percpu_clockevent, cpu);
  471. if (lt_ops)
  472. lt_ops->stop(evt);
  473. }
  474. #endif
  475. static DEFINE_RAW_SPINLOCK(stop_lock);
  476. /*
  477. * ipi_cpu_stop - handle IPI from smp_send_stop()
  478. */
  479. static void ipi_cpu_stop(unsigned int cpu)
  480. {
  481. if (system_state == SYSTEM_BOOTING ||
  482. system_state == SYSTEM_RUNNING) {
  483. raw_spin_lock(&stop_lock);
  484. printk(KERN_CRIT "CPU%u: stopping\n", cpu);
  485. dump_stack();
  486. raw_spin_unlock(&stop_lock);
  487. }
  488. set_cpu_online(cpu, false);
  489. local_fiq_disable();
  490. local_irq_disable();
  491. while (1)
  492. cpu_relax();
  493. }
  494. /*
  495. * Main handler for inter-processor interrupts
  496. */
  497. asmlinkage void __exception_irq_entry do_IPI(int ipinr, struct pt_regs *regs)
  498. {
  499. handle_IPI(ipinr, regs);
  500. }
  501. void handle_IPI(int ipinr, struct pt_regs *regs)
  502. {
  503. unsigned int cpu = smp_processor_id();
  504. struct pt_regs *old_regs = set_irq_regs(regs);
  505. if (ipinr < NR_IPI)
  506. __inc_irq_stat(cpu, ipi_irqs[ipinr]);
  507. switch (ipinr) {
  508. case IPI_WAKEUP:
  509. break;
  510. #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
  511. case IPI_TIMER:
  512. irq_enter();
  513. tick_receive_broadcast();
  514. irq_exit();
  515. break;
  516. #endif
  517. case IPI_RESCHEDULE:
  518. scheduler_ipi();
  519. break;
  520. case IPI_CALL_FUNC:
  521. irq_enter();
  522. generic_smp_call_function_interrupt();
  523. irq_exit();
  524. break;
  525. case IPI_CALL_FUNC_SINGLE:
  526. irq_enter();
  527. generic_smp_call_function_single_interrupt();
  528. irq_exit();
  529. break;
  530. case IPI_CPU_STOP:
  531. irq_enter();
  532. ipi_cpu_stop(cpu);
  533. irq_exit();
  534. break;
  535. default:
  536. printk(KERN_CRIT "CPU%u: Unknown IPI message 0x%x\n",
  537. cpu, ipinr);
  538. break;
  539. }
  540. set_irq_regs(old_regs);
  541. }
  542. void smp_send_reschedule(int cpu)
  543. {
  544. smp_cross_call(cpumask_of(cpu), IPI_RESCHEDULE);
  545. }
  546. #ifdef CONFIG_HOTPLUG_CPU
  547. static void smp_kill_cpus(cpumask_t *mask)
  548. {
  549. unsigned int cpu;
  550. for_each_cpu(cpu, mask)
  551. platform_cpu_kill(cpu);
  552. }
  553. #else
  554. static void smp_kill_cpus(cpumask_t *mask) { }
  555. #endif
  556. void smp_send_stop(void)
  557. {
  558. unsigned long timeout;
  559. struct cpumask mask;
  560. cpumask_copy(&mask, cpu_online_mask);
  561. cpumask_clear_cpu(smp_processor_id(), &mask);
  562. if (!cpumask_empty(&mask))
  563. smp_cross_call(&mask, IPI_CPU_STOP);
  564. /* Wait up to one second for other CPUs to stop */
  565. timeout = USEC_PER_SEC;
  566. while (num_online_cpus() > 1 && timeout--)
  567. udelay(1);
  568. if (num_online_cpus() > 1)
  569. pr_warning("SMP: failed to stop secondary CPUs\n");
  570. smp_kill_cpus(&mask);
  571. }
  572. /*
  573. * not supported here
  574. */
  575. int setup_profiling_timer(unsigned int multiplier)
  576. {
  577. return -EINVAL;
  578. }
  579. #ifdef CONFIG_CPU_FREQ
  580. static DEFINE_PER_CPU(unsigned long, l_p_j_ref);
  581. static DEFINE_PER_CPU(unsigned long, l_p_j_ref_freq);
  582. static unsigned long global_l_p_j_ref;
  583. static unsigned long global_l_p_j_ref_freq;
  584. static int cpufreq_callback(struct notifier_block *nb,
  585. unsigned long val, void *data)
  586. {
  587. struct cpufreq_freqs *freq = data;
  588. int cpu = freq->cpu;
  589. if (freq->flags & CPUFREQ_CONST_LOOPS)
  590. return NOTIFY_OK;
  591. if (!per_cpu(l_p_j_ref, cpu)) {
  592. per_cpu(l_p_j_ref, cpu) =
  593. per_cpu(cpu_data, cpu).loops_per_jiffy;
  594. per_cpu(l_p_j_ref_freq, cpu) = freq->old;
  595. if (!global_l_p_j_ref) {
  596. global_l_p_j_ref = loops_per_jiffy;
  597. global_l_p_j_ref_freq = freq->old;
  598. }
  599. }
  600. if ((val == CPUFREQ_PRECHANGE && freq->old < freq->new) ||
  601. (val == CPUFREQ_POSTCHANGE && freq->old > freq->new) ||
  602. (val == CPUFREQ_RESUMECHANGE || val == CPUFREQ_SUSPENDCHANGE)) {
  603. loops_per_jiffy = cpufreq_scale(global_l_p_j_ref,
  604. global_l_p_j_ref_freq,
  605. freq->new);
  606. per_cpu(cpu_data, cpu).loops_per_jiffy =
  607. cpufreq_scale(per_cpu(l_p_j_ref, cpu),
  608. per_cpu(l_p_j_ref_freq, cpu),
  609. freq->new);
  610. }
  611. return NOTIFY_OK;
  612. }
  613. static struct notifier_block cpufreq_notifier = {
  614. .notifier_call = cpufreq_callback,
  615. };
  616. static int __init register_cpufreq_notifier(void)
  617. {
  618. return cpufreq_register_notifier(&cpufreq_notifier,
  619. CPUFREQ_TRANSITION_NOTIFIER);
  620. }
  621. core_initcall(register_cpufreq_notifier);
  622. #endif