blk-settings.c 25 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799
  1. /*
  2. * Functions related to setting various queue properties from drivers
  3. */
  4. #include <linux/kernel.h>
  5. #include <linux/module.h>
  6. #include <linux/init.h>
  7. #include <linux/bio.h>
  8. #include <linux/blkdev.h>
  9. #include <linux/bootmem.h> /* for max_pfn/max_low_pfn */
  10. #include <linux/gcd.h>
  11. #include <linux/lcm.h>
  12. #include <linux/jiffies.h>
  13. #include <linux/gfp.h>
  14. #include "blk.h"
  15. unsigned long blk_max_low_pfn;
  16. EXPORT_SYMBOL(blk_max_low_pfn);
  17. unsigned long blk_max_pfn;
  18. /**
  19. * blk_queue_prep_rq - set a prepare_request function for queue
  20. * @q: queue
  21. * @pfn: prepare_request function
  22. *
  23. * It's possible for a queue to register a prepare_request callback which
  24. * is invoked before the request is handed to the request_fn. The goal of
  25. * the function is to prepare a request for I/O, it can be used to build a
  26. * cdb from the request data for instance.
  27. *
  28. */
  29. void blk_queue_prep_rq(struct request_queue *q, prep_rq_fn *pfn)
  30. {
  31. q->prep_rq_fn = pfn;
  32. }
  33. EXPORT_SYMBOL(blk_queue_prep_rq);
  34. /**
  35. * blk_queue_unprep_rq - set an unprepare_request function for queue
  36. * @q: queue
  37. * @ufn: unprepare_request function
  38. *
  39. * It's possible for a queue to register an unprepare_request callback
  40. * which is invoked before the request is finally completed. The goal
  41. * of the function is to deallocate any data that was allocated in the
  42. * prepare_request callback.
  43. *
  44. */
  45. void blk_queue_unprep_rq(struct request_queue *q, unprep_rq_fn *ufn)
  46. {
  47. q->unprep_rq_fn = ufn;
  48. }
  49. EXPORT_SYMBOL(blk_queue_unprep_rq);
  50. /**
  51. * blk_queue_merge_bvec - set a merge_bvec function for queue
  52. * @q: queue
  53. * @mbfn: merge_bvec_fn
  54. *
  55. * Usually queues have static limitations on the max sectors or segments that
  56. * we can put in a request. Stacking drivers may have some settings that
  57. * are dynamic, and thus we have to query the queue whether it is ok to
  58. * add a new bio_vec to a bio at a given offset or not. If the block device
  59. * has such limitations, it needs to register a merge_bvec_fn to control
  60. * the size of bio's sent to it. Note that a block device *must* allow a
  61. * single page to be added to an empty bio. The block device driver may want
  62. * to use the bio_split() function to deal with these bio's. By default
  63. * no merge_bvec_fn is defined for a queue, and only the fixed limits are
  64. * honored.
  65. */
  66. void blk_queue_merge_bvec(struct request_queue *q, merge_bvec_fn *mbfn)
  67. {
  68. q->merge_bvec_fn = mbfn;
  69. }
  70. EXPORT_SYMBOL(blk_queue_merge_bvec);
  71. void blk_queue_softirq_done(struct request_queue *q, softirq_done_fn *fn)
  72. {
  73. q->softirq_done_fn = fn;
  74. }
  75. EXPORT_SYMBOL(blk_queue_softirq_done);
  76. void blk_queue_rq_timeout(struct request_queue *q, unsigned int timeout)
  77. {
  78. q->rq_timeout = timeout;
  79. }
  80. EXPORT_SYMBOL_GPL(blk_queue_rq_timeout);
  81. void blk_queue_rq_timed_out(struct request_queue *q, rq_timed_out_fn *fn)
  82. {
  83. q->rq_timed_out_fn = fn;
  84. }
  85. EXPORT_SYMBOL_GPL(blk_queue_rq_timed_out);
  86. void blk_queue_lld_busy(struct request_queue *q, lld_busy_fn *fn)
  87. {
  88. q->lld_busy_fn = fn;
  89. }
  90. EXPORT_SYMBOL_GPL(blk_queue_lld_busy);
  91. /**
  92. * blk_set_default_limits - reset limits to default values
  93. * @lim: the queue_limits structure to reset
  94. *
  95. * Description:
  96. * Returns a queue_limit struct to its default state. Can be used by
  97. * stacking drivers like DM that stage table swaps and reuse an
  98. * existing device queue.
  99. */
  100. void blk_set_default_limits(struct queue_limits *lim)
  101. {
  102. lim->max_segments = BLK_MAX_SEGMENTS;
  103. lim->max_integrity_segments = 0;
  104. lim->seg_boundary_mask = BLK_SEG_BOUNDARY_MASK;
  105. lim->max_segment_size = BLK_MAX_SEGMENT_SIZE;
  106. lim->max_sectors = BLK_DEF_MAX_SECTORS;
  107. lim->max_hw_sectors = INT_MAX;
  108. lim->max_discard_sectors = 0;
  109. lim->discard_granularity = 0;
  110. lim->discard_alignment = 0;
  111. lim->discard_misaligned = 0;
  112. lim->discard_zeroes_data = -1;
  113. lim->logical_block_size = lim->physical_block_size = lim->io_min = 512;
  114. lim->bounce_pfn = (unsigned long)(BLK_BOUNCE_ANY >> PAGE_SHIFT);
  115. lim->alignment_offset = 0;
  116. lim->io_opt = 0;
  117. lim->misaligned = 0;
  118. lim->no_cluster = 0;
  119. }
  120. EXPORT_SYMBOL(blk_set_default_limits);
  121. /**
  122. * blk_queue_make_request - define an alternate make_request function for a device
  123. * @q: the request queue for the device to be affected
  124. * @mfn: the alternate make_request function
  125. *
  126. * Description:
  127. * The normal way for &struct bios to be passed to a device
  128. * driver is for them to be collected into requests on a request
  129. * queue, and then to allow the device driver to select requests
  130. * off that queue when it is ready. This works well for many block
  131. * devices. However some block devices (typically virtual devices
  132. * such as md or lvm) do not benefit from the processing on the
  133. * request queue, and are served best by having the requests passed
  134. * directly to them. This can be achieved by providing a function
  135. * to blk_queue_make_request().
  136. *
  137. * Caveat:
  138. * The driver that does this *must* be able to deal appropriately
  139. * with buffers in "highmemory". This can be accomplished by either calling
  140. * __bio_kmap_atomic() to get a temporary kernel mapping, or by calling
  141. * blk_queue_bounce() to create a buffer in normal memory.
  142. **/
  143. void blk_queue_make_request(struct request_queue *q, make_request_fn *mfn)
  144. {
  145. /*
  146. * set defaults
  147. */
  148. q->nr_requests = BLKDEV_MAX_RQ;
  149. q->make_request_fn = mfn;
  150. blk_queue_dma_alignment(q, 511);
  151. blk_queue_congestion_threshold(q);
  152. q->nr_batching = BLK_BATCH_REQ;
  153. q->unplug_thresh = 4; /* hmm */
  154. q->unplug_delay = msecs_to_jiffies(3); /* 3 milliseconds */
  155. if (q->unplug_delay == 0)
  156. q->unplug_delay = 1;
  157. q->unplug_timer.function = blk_unplug_timeout;
  158. q->unplug_timer.data = (unsigned long)q;
  159. blk_set_default_limits(&q->limits);
  160. blk_queue_max_hw_sectors(q, BLK_SAFE_MAX_SECTORS);
  161. /*
  162. * If the caller didn't supply a lock, fall back to our embedded
  163. * per-queue locks
  164. */
  165. if (!q->queue_lock)
  166. q->queue_lock = &q->__queue_lock;
  167. /*
  168. * by default assume old behaviour and bounce for any highmem page
  169. */
  170. blk_queue_bounce_limit(q, BLK_BOUNCE_HIGH);
  171. }
  172. EXPORT_SYMBOL(blk_queue_make_request);
  173. /**
  174. * blk_queue_bounce_limit - set bounce buffer limit for queue
  175. * @q: the request queue for the device
  176. * @dma_mask: the maximum address the device can handle
  177. *
  178. * Description:
  179. * Different hardware can have different requirements as to what pages
  180. * it can do I/O directly to. A low level driver can call
  181. * blk_queue_bounce_limit to have lower memory pages allocated as bounce
  182. * buffers for doing I/O to pages residing above @dma_mask.
  183. **/
  184. void blk_queue_bounce_limit(struct request_queue *q, u64 dma_mask)
  185. {
  186. unsigned long b_pfn = dma_mask >> PAGE_SHIFT;
  187. int dma = 0;
  188. q->bounce_gfp = GFP_NOIO;
  189. #if BITS_PER_LONG == 64
  190. /*
  191. * Assume anything <= 4GB can be handled by IOMMU. Actually
  192. * some IOMMUs can handle everything, but I don't know of a
  193. * way to test this here.
  194. */
  195. if (b_pfn < (min_t(u64, 0xffffffffUL, BLK_BOUNCE_HIGH) >> PAGE_SHIFT))
  196. dma = 1;
  197. #else
  198. if (b_pfn < blk_max_low_pfn)
  199. dma = 1;
  200. #endif
  201. q->limits.bounce_pfn = b_pfn;
  202. if (dma) {
  203. init_emergency_isa_pool();
  204. q->bounce_gfp = GFP_NOIO | GFP_DMA;
  205. }
  206. }
  207. EXPORT_SYMBOL(blk_queue_bounce_limit);
  208. /**
  209. * blk_queue_max_hw_sectors - set max sectors for a request for this queue
  210. * @q: the request queue for the device
  211. * @max_hw_sectors: max hardware sectors in the usual 512b unit
  212. *
  213. * Description:
  214. * Enables a low level driver to set a hard upper limit,
  215. * max_hw_sectors, on the size of requests. max_hw_sectors is set by
  216. * the device driver based upon the combined capabilities of I/O
  217. * controller and storage device.
  218. *
  219. * max_sectors is a soft limit imposed by the block layer for
  220. * filesystem type requests. This value can be overridden on a
  221. * per-device basis in /sys/block/<device>/queue/max_sectors_kb.
  222. * The soft limit can not exceed max_hw_sectors.
  223. **/
  224. void blk_queue_max_hw_sectors(struct request_queue *q, unsigned int max_hw_sectors)
  225. {
  226. if ((max_hw_sectors << 9) < PAGE_CACHE_SIZE) {
  227. max_hw_sectors = 1 << (PAGE_CACHE_SHIFT - 9);
  228. printk(KERN_INFO "%s: set to minimum %d\n",
  229. __func__, max_hw_sectors);
  230. }
  231. q->limits.max_hw_sectors = max_hw_sectors;
  232. q->limits.max_sectors = min_t(unsigned int, max_hw_sectors,
  233. BLK_DEF_MAX_SECTORS);
  234. }
  235. EXPORT_SYMBOL(blk_queue_max_hw_sectors);
  236. /**
  237. * blk_queue_max_discard_sectors - set max sectors for a single discard
  238. * @q: the request queue for the device
  239. * @max_discard_sectors: maximum number of sectors to discard
  240. **/
  241. void blk_queue_max_discard_sectors(struct request_queue *q,
  242. unsigned int max_discard_sectors)
  243. {
  244. q->limits.max_discard_sectors = max_discard_sectors;
  245. }
  246. EXPORT_SYMBOL(blk_queue_max_discard_sectors);
  247. /**
  248. * blk_queue_max_segments - set max hw segments for a request for this queue
  249. * @q: the request queue for the device
  250. * @max_segments: max number of segments
  251. *
  252. * Description:
  253. * Enables a low level driver to set an upper limit on the number of
  254. * hw data segments in a request.
  255. **/
  256. void blk_queue_max_segments(struct request_queue *q, unsigned short max_segments)
  257. {
  258. if (!max_segments) {
  259. max_segments = 1;
  260. printk(KERN_INFO "%s: set to minimum %d\n",
  261. __func__, max_segments);
  262. }
  263. q->limits.max_segments = max_segments;
  264. }
  265. EXPORT_SYMBOL(blk_queue_max_segments);
  266. /**
  267. * blk_queue_max_segment_size - set max segment size for blk_rq_map_sg
  268. * @q: the request queue for the device
  269. * @max_size: max size of segment in bytes
  270. *
  271. * Description:
  272. * Enables a low level driver to set an upper limit on the size of a
  273. * coalesced segment
  274. **/
  275. void blk_queue_max_segment_size(struct request_queue *q, unsigned int max_size)
  276. {
  277. if (max_size < PAGE_CACHE_SIZE) {
  278. max_size = PAGE_CACHE_SIZE;
  279. printk(KERN_INFO "%s: set to minimum %d\n",
  280. __func__, max_size);
  281. }
  282. q->limits.max_segment_size = max_size;
  283. }
  284. EXPORT_SYMBOL(blk_queue_max_segment_size);
  285. /**
  286. * blk_queue_logical_block_size - set logical block size for the queue
  287. * @q: the request queue for the device
  288. * @size: the logical block size, in bytes
  289. *
  290. * Description:
  291. * This should be set to the lowest possible block size that the
  292. * storage device can address. The default of 512 covers most
  293. * hardware.
  294. **/
  295. void blk_queue_logical_block_size(struct request_queue *q, unsigned short size)
  296. {
  297. q->limits.logical_block_size = size;
  298. if (q->limits.physical_block_size < size)
  299. q->limits.physical_block_size = size;
  300. if (q->limits.io_min < q->limits.physical_block_size)
  301. q->limits.io_min = q->limits.physical_block_size;
  302. }
  303. EXPORT_SYMBOL(blk_queue_logical_block_size);
  304. /**
  305. * blk_queue_physical_block_size - set physical block size for the queue
  306. * @q: the request queue for the device
  307. * @size: the physical block size, in bytes
  308. *
  309. * Description:
  310. * This should be set to the lowest possible sector size that the
  311. * hardware can operate on without reverting to read-modify-write
  312. * operations.
  313. */
  314. void blk_queue_physical_block_size(struct request_queue *q, unsigned short size)
  315. {
  316. q->limits.physical_block_size = size;
  317. if (q->limits.physical_block_size < q->limits.logical_block_size)
  318. q->limits.physical_block_size = q->limits.logical_block_size;
  319. if (q->limits.io_min < q->limits.physical_block_size)
  320. q->limits.io_min = q->limits.physical_block_size;
  321. }
  322. EXPORT_SYMBOL(blk_queue_physical_block_size);
  323. /**
  324. * blk_queue_alignment_offset - set physical block alignment offset
  325. * @q: the request queue for the device
  326. * @offset: alignment offset in bytes
  327. *
  328. * Description:
  329. * Some devices are naturally misaligned to compensate for things like
  330. * the legacy DOS partition table 63-sector offset. Low-level drivers
  331. * should call this function for devices whose first sector is not
  332. * naturally aligned.
  333. */
  334. void blk_queue_alignment_offset(struct request_queue *q, unsigned int offset)
  335. {
  336. q->limits.alignment_offset =
  337. offset & (q->limits.physical_block_size - 1);
  338. q->limits.misaligned = 0;
  339. }
  340. EXPORT_SYMBOL(blk_queue_alignment_offset);
  341. /**
  342. * blk_limits_io_min - set minimum request size for a device
  343. * @limits: the queue limits
  344. * @min: smallest I/O size in bytes
  345. *
  346. * Description:
  347. * Some devices have an internal block size bigger than the reported
  348. * hardware sector size. This function can be used to signal the
  349. * smallest I/O the device can perform without incurring a performance
  350. * penalty.
  351. */
  352. void blk_limits_io_min(struct queue_limits *limits, unsigned int min)
  353. {
  354. limits->io_min = min;
  355. if (limits->io_min < limits->logical_block_size)
  356. limits->io_min = limits->logical_block_size;
  357. if (limits->io_min < limits->physical_block_size)
  358. limits->io_min = limits->physical_block_size;
  359. }
  360. EXPORT_SYMBOL(blk_limits_io_min);
  361. /**
  362. * blk_queue_io_min - set minimum request size for the queue
  363. * @q: the request queue for the device
  364. * @min: smallest I/O size in bytes
  365. *
  366. * Description:
  367. * Storage devices may report a granularity or preferred minimum I/O
  368. * size which is the smallest request the device can perform without
  369. * incurring a performance penalty. For disk drives this is often the
  370. * physical block size. For RAID arrays it is often the stripe chunk
  371. * size. A properly aligned multiple of minimum_io_size is the
  372. * preferred request size for workloads where a high number of I/O
  373. * operations is desired.
  374. */
  375. void blk_queue_io_min(struct request_queue *q, unsigned int min)
  376. {
  377. blk_limits_io_min(&q->limits, min);
  378. }
  379. EXPORT_SYMBOL(blk_queue_io_min);
  380. /**
  381. * blk_limits_io_opt - set optimal request size for a device
  382. * @limits: the queue limits
  383. * @opt: smallest I/O size in bytes
  384. *
  385. * Description:
  386. * Storage devices may report an optimal I/O size, which is the
  387. * device's preferred unit for sustained I/O. This is rarely reported
  388. * for disk drives. For RAID arrays it is usually the stripe width or
  389. * the internal track size. A properly aligned multiple of
  390. * optimal_io_size is the preferred request size for workloads where
  391. * sustained throughput is desired.
  392. */
  393. void blk_limits_io_opt(struct queue_limits *limits, unsigned int opt)
  394. {
  395. limits->io_opt = opt;
  396. }
  397. EXPORT_SYMBOL(blk_limits_io_opt);
  398. /**
  399. * blk_queue_io_opt - set optimal request size for the queue
  400. * @q: the request queue for the device
  401. * @opt: optimal request size in bytes
  402. *
  403. * Description:
  404. * Storage devices may report an optimal I/O size, which is the
  405. * device's preferred unit for sustained I/O. This is rarely reported
  406. * for disk drives. For RAID arrays it is usually the stripe width or
  407. * the internal track size. A properly aligned multiple of
  408. * optimal_io_size is the preferred request size for workloads where
  409. * sustained throughput is desired.
  410. */
  411. void blk_queue_io_opt(struct request_queue *q, unsigned int opt)
  412. {
  413. blk_limits_io_opt(&q->limits, opt);
  414. }
  415. EXPORT_SYMBOL(blk_queue_io_opt);
  416. /**
  417. * blk_queue_stack_limits - inherit underlying queue limits for stacked drivers
  418. * @t: the stacking driver (top)
  419. * @b: the underlying device (bottom)
  420. **/
  421. void blk_queue_stack_limits(struct request_queue *t, struct request_queue *b)
  422. {
  423. blk_stack_limits(&t->limits, &b->limits, 0);
  424. if (!t->queue_lock)
  425. WARN_ON_ONCE(1);
  426. else if (!test_bit(QUEUE_FLAG_CLUSTER, &b->queue_flags)) {
  427. unsigned long flags;
  428. spin_lock_irqsave(t->queue_lock, flags);
  429. queue_flag_clear(QUEUE_FLAG_CLUSTER, t);
  430. spin_unlock_irqrestore(t->queue_lock, flags);
  431. }
  432. }
  433. EXPORT_SYMBOL(blk_queue_stack_limits);
  434. /**
  435. * blk_stack_limits - adjust queue_limits for stacked devices
  436. * @t: the stacking driver limits (top device)
  437. * @b: the underlying queue limits (bottom, component device)
  438. * @start: first data sector within component device
  439. *
  440. * Description:
  441. * This function is used by stacking drivers like MD and DM to ensure
  442. * that all component devices have compatible block sizes and
  443. * alignments. The stacking driver must provide a queue_limits
  444. * struct (top) and then iteratively call the stacking function for
  445. * all component (bottom) devices. The stacking function will
  446. * attempt to combine the values and ensure proper alignment.
  447. *
  448. * Returns 0 if the top and bottom queue_limits are compatible. The
  449. * top device's block sizes and alignment offsets may be adjusted to
  450. * ensure alignment with the bottom device. If no compatible sizes
  451. * and alignments exist, -1 is returned and the resulting top
  452. * queue_limits will have the misaligned flag set to indicate that
  453. * the alignment_offset is undefined.
  454. */
  455. int blk_stack_limits(struct queue_limits *t, struct queue_limits *b,
  456. sector_t start)
  457. {
  458. unsigned int top, bottom, alignment, ret = 0;
  459. t->max_sectors = min_not_zero(t->max_sectors, b->max_sectors);
  460. t->max_hw_sectors = min_not_zero(t->max_hw_sectors, b->max_hw_sectors);
  461. t->bounce_pfn = min_not_zero(t->bounce_pfn, b->bounce_pfn);
  462. t->seg_boundary_mask = min_not_zero(t->seg_boundary_mask,
  463. b->seg_boundary_mask);
  464. t->max_segments = min_not_zero(t->max_segments, b->max_segments);
  465. t->max_integrity_segments = min_not_zero(t->max_integrity_segments,
  466. b->max_integrity_segments);
  467. t->max_segment_size = min_not_zero(t->max_segment_size,
  468. b->max_segment_size);
  469. t->misaligned |= b->misaligned;
  470. alignment = queue_limit_alignment_offset(b, start);
  471. /* Bottom device has different alignment. Check that it is
  472. * compatible with the current top alignment.
  473. */
  474. if (t->alignment_offset != alignment) {
  475. top = max(t->physical_block_size, t->io_min)
  476. + t->alignment_offset;
  477. bottom = max(b->physical_block_size, b->io_min) + alignment;
  478. /* Verify that top and bottom intervals line up */
  479. if (max(top, bottom) & (min(top, bottom) - 1)) {
  480. t->misaligned = 1;
  481. ret = -1;
  482. }
  483. }
  484. t->logical_block_size = max(t->logical_block_size,
  485. b->logical_block_size);
  486. t->physical_block_size = max(t->physical_block_size,
  487. b->physical_block_size);
  488. t->io_min = max(t->io_min, b->io_min);
  489. t->io_opt = lcm(t->io_opt, b->io_opt);
  490. t->no_cluster |= b->no_cluster;
  491. t->discard_zeroes_data &= b->discard_zeroes_data;
  492. /* Physical block size a multiple of the logical block size? */
  493. if (t->physical_block_size & (t->logical_block_size - 1)) {
  494. t->physical_block_size = t->logical_block_size;
  495. t->misaligned = 1;
  496. ret = -1;
  497. }
  498. /* Minimum I/O a multiple of the physical block size? */
  499. if (t->io_min & (t->physical_block_size - 1)) {
  500. t->io_min = t->physical_block_size;
  501. t->misaligned = 1;
  502. ret = -1;
  503. }
  504. /* Optimal I/O a multiple of the physical block size? */
  505. if (t->io_opt & (t->physical_block_size - 1)) {
  506. t->io_opt = 0;
  507. t->misaligned = 1;
  508. ret = -1;
  509. }
  510. /* Find lowest common alignment_offset */
  511. t->alignment_offset = lcm(t->alignment_offset, alignment)
  512. & (max(t->physical_block_size, t->io_min) - 1);
  513. /* Verify that new alignment_offset is on a logical block boundary */
  514. if (t->alignment_offset & (t->logical_block_size - 1)) {
  515. t->misaligned = 1;
  516. ret = -1;
  517. }
  518. /* Discard alignment and granularity */
  519. if (b->discard_granularity) {
  520. alignment = queue_limit_discard_alignment(b, start);
  521. if (t->discard_granularity != 0 &&
  522. t->discard_alignment != alignment) {
  523. top = t->discard_granularity + t->discard_alignment;
  524. bottom = b->discard_granularity + alignment;
  525. /* Verify that top and bottom intervals line up */
  526. if (max(top, bottom) & (min(top, bottom) - 1))
  527. t->discard_misaligned = 1;
  528. }
  529. t->max_discard_sectors = min_not_zero(t->max_discard_sectors,
  530. b->max_discard_sectors);
  531. t->discard_granularity = max(t->discard_granularity,
  532. b->discard_granularity);
  533. t->discard_alignment = lcm(t->discard_alignment, alignment) &
  534. (t->discard_granularity - 1);
  535. }
  536. return ret;
  537. }
  538. EXPORT_SYMBOL(blk_stack_limits);
  539. /**
  540. * bdev_stack_limits - adjust queue limits for stacked drivers
  541. * @t: the stacking driver limits (top device)
  542. * @bdev: the component block_device (bottom)
  543. * @start: first data sector within component device
  544. *
  545. * Description:
  546. * Merges queue limits for a top device and a block_device. Returns
  547. * 0 if alignment didn't change. Returns -1 if adding the bottom
  548. * device caused misalignment.
  549. */
  550. int bdev_stack_limits(struct queue_limits *t, struct block_device *bdev,
  551. sector_t start)
  552. {
  553. struct request_queue *bq = bdev_get_queue(bdev);
  554. start += get_start_sect(bdev);
  555. return blk_stack_limits(t, &bq->limits, start);
  556. }
  557. EXPORT_SYMBOL(bdev_stack_limits);
  558. /**
  559. * disk_stack_limits - adjust queue limits for stacked drivers
  560. * @disk: MD/DM gendisk (top)
  561. * @bdev: the underlying block device (bottom)
  562. * @offset: offset to beginning of data within component device
  563. *
  564. * Description:
  565. * Merges the limits for a top level gendisk and a bottom level
  566. * block_device.
  567. */
  568. void disk_stack_limits(struct gendisk *disk, struct block_device *bdev,
  569. sector_t offset)
  570. {
  571. struct request_queue *t = disk->queue;
  572. struct request_queue *b = bdev_get_queue(bdev);
  573. if (bdev_stack_limits(&t->limits, bdev, offset >> 9) < 0) {
  574. char top[BDEVNAME_SIZE], bottom[BDEVNAME_SIZE];
  575. disk_name(disk, 0, top);
  576. bdevname(bdev, bottom);
  577. printk(KERN_NOTICE "%s: Warning: Device %s is misaligned\n",
  578. top, bottom);
  579. }
  580. if (!t->queue_lock)
  581. WARN_ON_ONCE(1);
  582. else if (!test_bit(QUEUE_FLAG_CLUSTER, &b->queue_flags)) {
  583. unsigned long flags;
  584. spin_lock_irqsave(t->queue_lock, flags);
  585. if (!test_bit(QUEUE_FLAG_CLUSTER, &b->queue_flags))
  586. queue_flag_clear(QUEUE_FLAG_CLUSTER, t);
  587. spin_unlock_irqrestore(t->queue_lock, flags);
  588. }
  589. }
  590. EXPORT_SYMBOL(disk_stack_limits);
  591. /**
  592. * blk_queue_dma_pad - set pad mask
  593. * @q: the request queue for the device
  594. * @mask: pad mask
  595. *
  596. * Set dma pad mask.
  597. *
  598. * Appending pad buffer to a request modifies the last entry of a
  599. * scatter list such that it includes the pad buffer.
  600. **/
  601. void blk_queue_dma_pad(struct request_queue *q, unsigned int mask)
  602. {
  603. q->dma_pad_mask = mask;
  604. }
  605. EXPORT_SYMBOL(blk_queue_dma_pad);
  606. /**
  607. * blk_queue_update_dma_pad - update pad mask
  608. * @q: the request queue for the device
  609. * @mask: pad mask
  610. *
  611. * Update dma pad mask.
  612. *
  613. * Appending pad buffer to a request modifies the last entry of a
  614. * scatter list such that it includes the pad buffer.
  615. **/
  616. void blk_queue_update_dma_pad(struct request_queue *q, unsigned int mask)
  617. {
  618. if (mask > q->dma_pad_mask)
  619. q->dma_pad_mask = mask;
  620. }
  621. EXPORT_SYMBOL(blk_queue_update_dma_pad);
  622. /**
  623. * blk_queue_dma_drain - Set up a drain buffer for excess dma.
  624. * @q: the request queue for the device
  625. * @dma_drain_needed: fn which returns non-zero if drain is necessary
  626. * @buf: physically contiguous buffer
  627. * @size: size of the buffer in bytes
  628. *
  629. * Some devices have excess DMA problems and can't simply discard (or
  630. * zero fill) the unwanted piece of the transfer. They have to have a
  631. * real area of memory to transfer it into. The use case for this is
  632. * ATAPI devices in DMA mode. If the packet command causes a transfer
  633. * bigger than the transfer size some HBAs will lock up if there
  634. * aren't DMA elements to contain the excess transfer. What this API
  635. * does is adjust the queue so that the buf is always appended
  636. * silently to the scatterlist.
  637. *
  638. * Note: This routine adjusts max_hw_segments to make room for appending
  639. * the drain buffer. If you call blk_queue_max_segments() after calling
  640. * this routine, you must set the limit to one fewer than your device
  641. * can support otherwise there won't be room for the drain buffer.
  642. */
  643. int blk_queue_dma_drain(struct request_queue *q,
  644. dma_drain_needed_fn *dma_drain_needed,
  645. void *buf, unsigned int size)
  646. {
  647. if (queue_max_segments(q) < 2)
  648. return -EINVAL;
  649. /* make room for appending the drain */
  650. blk_queue_max_segments(q, queue_max_segments(q) - 1);
  651. q->dma_drain_needed = dma_drain_needed;
  652. q->dma_drain_buffer = buf;
  653. q->dma_drain_size = size;
  654. return 0;
  655. }
  656. EXPORT_SYMBOL_GPL(blk_queue_dma_drain);
  657. /**
  658. * blk_queue_segment_boundary - set boundary rules for segment merging
  659. * @q: the request queue for the device
  660. * @mask: the memory boundary mask
  661. **/
  662. void blk_queue_segment_boundary(struct request_queue *q, unsigned long mask)
  663. {
  664. if (mask < PAGE_CACHE_SIZE - 1) {
  665. mask = PAGE_CACHE_SIZE - 1;
  666. printk(KERN_INFO "%s: set to minimum %lx\n",
  667. __func__, mask);
  668. }
  669. q->limits.seg_boundary_mask = mask;
  670. }
  671. EXPORT_SYMBOL(blk_queue_segment_boundary);
  672. /**
  673. * blk_queue_dma_alignment - set dma length and memory alignment
  674. * @q: the request queue for the device
  675. * @mask: alignment mask
  676. *
  677. * description:
  678. * set required memory and length alignment for direct dma transactions.
  679. * this is used when building direct io requests for the queue.
  680. *
  681. **/
  682. void blk_queue_dma_alignment(struct request_queue *q, int mask)
  683. {
  684. q->dma_alignment = mask;
  685. }
  686. EXPORT_SYMBOL(blk_queue_dma_alignment);
  687. /**
  688. * blk_queue_update_dma_alignment - update dma length and memory alignment
  689. * @q: the request queue for the device
  690. * @mask: alignment mask
  691. *
  692. * description:
  693. * update required memory and length alignment for direct dma transactions.
  694. * If the requested alignment is larger than the current alignment, then
  695. * the current queue alignment is updated to the new value, otherwise it
  696. * is left alone. The design of this is to allow multiple objects
  697. * (driver, device, transport etc) to set their respective
  698. * alignments without having them interfere.
  699. *
  700. **/
  701. void blk_queue_update_dma_alignment(struct request_queue *q, int mask)
  702. {
  703. BUG_ON(mask > PAGE_SIZE);
  704. if (mask > q->dma_alignment)
  705. q->dma_alignment = mask;
  706. }
  707. EXPORT_SYMBOL(blk_queue_update_dma_alignment);
  708. static int __init blk_settings_init(void)
  709. {
  710. blk_max_low_pfn = max_low_pfn - 1;
  711. blk_max_pfn = max_pfn - 1;
  712. return 0;
  713. }
  714. subsys_initcall(blk_settings_init);