nouveau_mem.c 20 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796
  1. /*
  2. * Copyright (C) The Weather Channel, Inc. 2002. All Rights Reserved.
  3. * Copyright 2005 Stephane Marchesin
  4. *
  5. * The Weather Channel (TM) funded Tungsten Graphics to develop the
  6. * initial release of the Radeon 8500 driver under the XFree86 license.
  7. * This notice must be preserved.
  8. *
  9. * Permission is hereby granted, free of charge, to any person obtaining a
  10. * copy of this software and associated documentation files (the "Software"),
  11. * to deal in the Software without restriction, including without limitation
  12. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  13. * and/or sell copies of the Software, and to permit persons to whom the
  14. * Software is furnished to do so, subject to the following conditions:
  15. *
  16. * The above copyright notice and this permission notice (including the next
  17. * paragraph) shall be included in all copies or substantial portions of the
  18. * Software.
  19. *
  20. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  21. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  22. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  23. * THE AUTHORS AND/OR THEIR SUPPLIERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
  24. * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
  25. * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
  26. * DEALINGS IN THE SOFTWARE.
  27. *
  28. * Authors:
  29. * Keith Whitwell <keith@tungstengraphics.com>
  30. */
  31. #include "drmP.h"
  32. #include "drm.h"
  33. #include "drm_sarea.h"
  34. #include "nouveau_drv.h"
  35. #define MIN(a,b) a < b ? a : b
  36. /*
  37. * NV10-NV40 tiling helpers
  38. */
  39. static void
  40. nv10_mem_set_region_tiling(struct drm_device *dev, int i, uint32_t addr,
  41. uint32_t size, uint32_t pitch)
  42. {
  43. struct drm_nouveau_private *dev_priv = dev->dev_private;
  44. struct nouveau_fifo_engine *pfifo = &dev_priv->engine.fifo;
  45. struct nouveau_fb_engine *pfb = &dev_priv->engine.fb;
  46. struct nouveau_pgraph_engine *pgraph = &dev_priv->engine.graph;
  47. struct nouveau_tile_reg *tile = &dev_priv->tile[i];
  48. tile->addr = addr;
  49. tile->size = size;
  50. tile->used = !!pitch;
  51. nouveau_fence_unref((void **)&tile->fence);
  52. pfifo->reassign(dev, false);
  53. pfifo->cache_pull(dev, false);
  54. nouveau_wait_for_idle(dev);
  55. pgraph->set_region_tiling(dev, i, addr, size, pitch);
  56. pfb->set_region_tiling(dev, i, addr, size, pitch);
  57. pfifo->cache_pull(dev, true);
  58. pfifo->reassign(dev, true);
  59. }
  60. struct nouveau_tile_reg *
  61. nv10_mem_set_tiling(struct drm_device *dev, uint32_t addr, uint32_t size,
  62. uint32_t pitch)
  63. {
  64. struct drm_nouveau_private *dev_priv = dev->dev_private;
  65. struct nouveau_fb_engine *pfb = &dev_priv->engine.fb;
  66. struct nouveau_tile_reg *found = NULL;
  67. unsigned long i, flags;
  68. spin_lock_irqsave(&dev_priv->context_switch_lock, flags);
  69. for (i = 0; i < pfb->num_tiles; i++) {
  70. struct nouveau_tile_reg *tile = &dev_priv->tile[i];
  71. if (tile->used)
  72. /* Tile region in use. */
  73. continue;
  74. if (tile->fence &&
  75. !nouveau_fence_signalled(tile->fence, NULL))
  76. /* Pending tile region. */
  77. continue;
  78. if (max(tile->addr, addr) <
  79. min(tile->addr + tile->size, addr + size))
  80. /* Kill an intersecting tile region. */
  81. nv10_mem_set_region_tiling(dev, i, 0, 0, 0);
  82. if (pitch && !found) {
  83. /* Free tile region. */
  84. nv10_mem_set_region_tiling(dev, i, addr, size, pitch);
  85. found = tile;
  86. }
  87. }
  88. spin_unlock_irqrestore(&dev_priv->context_switch_lock, flags);
  89. return found;
  90. }
  91. void
  92. nv10_mem_expire_tiling(struct drm_device *dev, struct nouveau_tile_reg *tile,
  93. struct nouveau_fence *fence)
  94. {
  95. if (fence) {
  96. /* Mark it as pending. */
  97. tile->fence = fence;
  98. nouveau_fence_ref(fence);
  99. }
  100. tile->used = false;
  101. }
  102. /*
  103. * NV50 VM helpers
  104. */
  105. int
  106. nv50_mem_vm_bind_linear(struct drm_device *dev, uint64_t virt, uint32_t size,
  107. uint32_t flags, uint64_t phys)
  108. {
  109. struct drm_nouveau_private *dev_priv = dev->dev_private;
  110. struct nouveau_gpuobj *pgt;
  111. unsigned block;
  112. int i;
  113. virt = ((virt - dev_priv->vm_vram_base) >> 16) << 1;
  114. size = (size >> 16) << 1;
  115. phys |= ((uint64_t)flags << 32);
  116. phys |= 1;
  117. if (dev_priv->vram_sys_base) {
  118. phys += dev_priv->vram_sys_base;
  119. phys |= 0x30;
  120. }
  121. while (size) {
  122. unsigned offset_h = upper_32_bits(phys);
  123. unsigned offset_l = lower_32_bits(phys);
  124. unsigned pte, end;
  125. for (i = 7; i >= 0; i--) {
  126. block = 1 << (i + 1);
  127. if (size >= block && !(virt & (block - 1)))
  128. break;
  129. }
  130. offset_l |= (i << 7);
  131. phys += block << 15;
  132. size -= block;
  133. while (block) {
  134. pgt = dev_priv->vm_vram_pt[virt >> 14];
  135. pte = virt & 0x3ffe;
  136. end = pte + block;
  137. if (end > 16384)
  138. end = 16384;
  139. block -= (end - pte);
  140. virt += (end - pte);
  141. while (pte < end) {
  142. nv_wo32(pgt, (pte * 4) + 0, offset_l);
  143. nv_wo32(pgt, (pte * 4) + 4, offset_h);
  144. pte += 2;
  145. }
  146. }
  147. }
  148. dev_priv->engine.instmem.flush(dev);
  149. nv50_vm_flush(dev, 5);
  150. nv50_vm_flush(dev, 0);
  151. nv50_vm_flush(dev, 4);
  152. nv50_vm_flush(dev, 6);
  153. return 0;
  154. }
  155. void
  156. nv50_mem_vm_unbind(struct drm_device *dev, uint64_t virt, uint32_t size)
  157. {
  158. struct drm_nouveau_private *dev_priv = dev->dev_private;
  159. struct nouveau_gpuobj *pgt;
  160. unsigned pages, pte, end;
  161. virt -= dev_priv->vm_vram_base;
  162. pages = (size >> 16) << 1;
  163. while (pages) {
  164. pgt = dev_priv->vm_vram_pt[virt >> 29];
  165. pte = (virt & 0x1ffe0000ULL) >> 15;
  166. end = pte + pages;
  167. if (end > 16384)
  168. end = 16384;
  169. pages -= (end - pte);
  170. virt += (end - pte) << 15;
  171. while (pte < end) {
  172. nv_wo32(pgt, (pte * 4), 0);
  173. pte++;
  174. }
  175. }
  176. dev_priv->engine.instmem.flush(dev);
  177. nv50_vm_flush(dev, 5);
  178. nv50_vm_flush(dev, 0);
  179. nv50_vm_flush(dev, 4);
  180. nv50_vm_flush(dev, 6);
  181. }
  182. /*
  183. * Cleanup everything
  184. */
  185. void
  186. nouveau_mem_vram_fini(struct drm_device *dev)
  187. {
  188. struct drm_nouveau_private *dev_priv = dev->dev_private;
  189. nouveau_bo_unpin(dev_priv->vga_ram);
  190. nouveau_bo_ref(NULL, &dev_priv->vga_ram);
  191. ttm_bo_device_release(&dev_priv->ttm.bdev);
  192. nouveau_ttm_global_release(dev_priv);
  193. if (dev_priv->fb_mtrr >= 0) {
  194. drm_mtrr_del(dev_priv->fb_mtrr,
  195. pci_resource_start(dev->pdev, 1),
  196. pci_resource_len(dev->pdev, 1), DRM_MTRR_WC);
  197. dev_priv->fb_mtrr = -1;
  198. }
  199. }
  200. void
  201. nouveau_mem_gart_fini(struct drm_device *dev)
  202. {
  203. nouveau_sgdma_takedown(dev);
  204. if (drm_core_has_AGP(dev) && dev->agp) {
  205. struct drm_agp_mem *entry, *tempe;
  206. /* Remove AGP resources, but leave dev->agp
  207. intact until drv_cleanup is called. */
  208. list_for_each_entry_safe(entry, tempe, &dev->agp->memory, head) {
  209. if (entry->bound)
  210. drm_unbind_agp(entry->memory);
  211. drm_free_agp(entry->memory, entry->pages);
  212. kfree(entry);
  213. }
  214. INIT_LIST_HEAD(&dev->agp->memory);
  215. if (dev->agp->acquired)
  216. drm_agp_release(dev);
  217. dev->agp->acquired = 0;
  218. dev->agp->enabled = 0;
  219. }
  220. }
  221. static uint32_t
  222. nouveau_mem_detect_nv04(struct drm_device *dev)
  223. {
  224. uint32_t boot0 = nv_rd32(dev, NV04_PFB_BOOT_0);
  225. if (boot0 & 0x00000100)
  226. return (((boot0 >> 12) & 0xf) * 2 + 2) * 1024 * 1024;
  227. switch (boot0 & NV04_PFB_BOOT_0_RAM_AMOUNT) {
  228. case NV04_PFB_BOOT_0_RAM_AMOUNT_32MB:
  229. return 32 * 1024 * 1024;
  230. case NV04_PFB_BOOT_0_RAM_AMOUNT_16MB:
  231. return 16 * 1024 * 1024;
  232. case NV04_PFB_BOOT_0_RAM_AMOUNT_8MB:
  233. return 8 * 1024 * 1024;
  234. case NV04_PFB_BOOT_0_RAM_AMOUNT_4MB:
  235. return 4 * 1024 * 1024;
  236. }
  237. return 0;
  238. }
  239. static uint32_t
  240. nouveau_mem_detect_nforce(struct drm_device *dev)
  241. {
  242. struct drm_nouveau_private *dev_priv = dev->dev_private;
  243. struct pci_dev *bridge;
  244. uint32_t mem;
  245. bridge = pci_get_bus_and_slot(0, PCI_DEVFN(0, 1));
  246. if (!bridge) {
  247. NV_ERROR(dev, "no bridge device\n");
  248. return 0;
  249. }
  250. if (dev_priv->flags & NV_NFORCE) {
  251. pci_read_config_dword(bridge, 0x7C, &mem);
  252. return (uint64_t)(((mem >> 6) & 31) + 1)*1024*1024;
  253. } else
  254. if (dev_priv->flags & NV_NFORCE2) {
  255. pci_read_config_dword(bridge, 0x84, &mem);
  256. return (uint64_t)(((mem >> 4) & 127) + 1)*1024*1024;
  257. }
  258. NV_ERROR(dev, "impossible!\n");
  259. return 0;
  260. }
  261. static void
  262. nv50_vram_preinit(struct drm_device *dev)
  263. {
  264. struct drm_nouveau_private *dev_priv = dev->dev_private;
  265. int i, parts, colbits, rowbitsa, rowbitsb, banks;
  266. u64 rowsize, predicted;
  267. u32 r0, r4, rt, ru;
  268. r0 = nv_rd32(dev, 0x100200);
  269. r4 = nv_rd32(dev, 0x100204);
  270. rt = nv_rd32(dev, 0x100250);
  271. ru = nv_rd32(dev, 0x001540);
  272. NV_DEBUG(dev, "memcfg 0x%08x 0x%08x 0x%08x 0x%08x\n", r0, r4, rt, ru);
  273. for (i = 0, parts = 0; i < 8; i++) {
  274. if (ru & (0x00010000 << i))
  275. parts++;
  276. }
  277. colbits = (r4 & 0x0000f000) >> 12;
  278. rowbitsa = ((r4 & 0x000f0000) >> 16) + 8;
  279. rowbitsb = ((r4 & 0x00f00000) >> 20) + 8;
  280. banks = ((r4 & 0x01000000) ? 8 : 4);
  281. rowsize = parts * banks * (1 << colbits) * 8;
  282. predicted = rowsize << rowbitsa;
  283. if (r0 & 0x00000004)
  284. predicted += rowsize << rowbitsb;
  285. if (predicted != dev_priv->vram_size) {
  286. NV_WARN(dev, "memory controller reports %dMiB VRAM\n",
  287. (u32)(dev_priv->vram_size >> 20));
  288. NV_WARN(dev, "we calculated %dMiB VRAM\n",
  289. (u32)(predicted >> 20));
  290. }
  291. dev_priv->vram_rblock_size = rowsize >> 12;
  292. if (rt & 1)
  293. dev_priv->vram_rblock_size *= 3;
  294. NV_DEBUG(dev, "rblock %lld bytes\n",
  295. (u64)dev_priv->vram_rblock_size << 12);
  296. }
  297. static void
  298. nvaa_vram_preinit(struct drm_device *dev)
  299. {
  300. struct drm_nouveau_private *dev_priv = dev->dev_private;
  301. /* To our knowledge, there's no large scale reordering of pages
  302. * that occurs on IGP chipsets.
  303. */
  304. dev_priv->vram_rblock_size = 1;
  305. }
  306. static int
  307. nouveau_mem_detect(struct drm_device *dev)
  308. {
  309. struct drm_nouveau_private *dev_priv = dev->dev_private;
  310. if (dev_priv->card_type == NV_04) {
  311. dev_priv->vram_size = nouveau_mem_detect_nv04(dev);
  312. } else
  313. if (dev_priv->flags & (NV_NFORCE | NV_NFORCE2)) {
  314. dev_priv->vram_size = nouveau_mem_detect_nforce(dev);
  315. } else
  316. if (dev_priv->card_type < NV_50) {
  317. dev_priv->vram_size = nv_rd32(dev, NV04_PFB_FIFO_DATA);
  318. dev_priv->vram_size &= NV10_PFB_FIFO_DATA_RAM_AMOUNT_MB_MASK;
  319. } else
  320. if (dev_priv->card_type < NV_C0) {
  321. dev_priv->vram_size = nv_rd32(dev, NV04_PFB_FIFO_DATA);
  322. dev_priv->vram_size |= (dev_priv->vram_size & 0xff) << 32;
  323. dev_priv->vram_size &= 0xffffffff00ll;
  324. switch (dev_priv->chipset) {
  325. case 0xaa:
  326. case 0xac:
  327. case 0xaf:
  328. dev_priv->vram_sys_base = nv_rd32(dev, 0x100e10);
  329. dev_priv->vram_sys_base <<= 12;
  330. nvaa_vram_preinit(dev);
  331. break;
  332. default:
  333. nv50_vram_preinit(dev);
  334. break;
  335. }
  336. } else {
  337. dev_priv->vram_size = nv_rd32(dev, 0x10f20c) << 20;
  338. dev_priv->vram_size *= nv_rd32(dev, 0x121c74);
  339. }
  340. NV_INFO(dev, "Detected %dMiB VRAM\n", (int)(dev_priv->vram_size >> 20));
  341. if (dev_priv->vram_sys_base) {
  342. NV_INFO(dev, "Stolen system memory at: 0x%010llx\n",
  343. dev_priv->vram_sys_base);
  344. }
  345. if (dev_priv->vram_size)
  346. return 0;
  347. return -ENOMEM;
  348. }
  349. #if __OS_HAS_AGP
  350. static unsigned long
  351. get_agp_mode(struct drm_device *dev, unsigned long mode)
  352. {
  353. struct drm_nouveau_private *dev_priv = dev->dev_private;
  354. /*
  355. * FW seems to be broken on nv18, it makes the card lock up
  356. * randomly.
  357. */
  358. if (dev_priv->chipset == 0x18)
  359. mode &= ~PCI_AGP_COMMAND_FW;
  360. /*
  361. * AGP mode set in the command line.
  362. */
  363. if (nouveau_agpmode > 0) {
  364. bool agpv3 = mode & 0x8;
  365. int rate = agpv3 ? nouveau_agpmode / 4 : nouveau_agpmode;
  366. mode = (mode & ~0x7) | (rate & 0x7);
  367. }
  368. return mode;
  369. }
  370. #endif
  371. int
  372. nouveau_mem_reset_agp(struct drm_device *dev)
  373. {
  374. #if __OS_HAS_AGP
  375. uint32_t saved_pci_nv_1, pmc_enable;
  376. int ret;
  377. /* First of all, disable fast writes, otherwise if it's
  378. * already enabled in the AGP bridge and we disable the card's
  379. * AGP controller we might be locking ourselves out of it. */
  380. if ((nv_rd32(dev, NV04_PBUS_PCI_NV_19) |
  381. dev->agp->mode) & PCI_AGP_COMMAND_FW) {
  382. struct drm_agp_info info;
  383. struct drm_agp_mode mode;
  384. ret = drm_agp_info(dev, &info);
  385. if (ret)
  386. return ret;
  387. mode.mode = get_agp_mode(dev, info.mode) & ~PCI_AGP_COMMAND_FW;
  388. ret = drm_agp_enable(dev, mode);
  389. if (ret)
  390. return ret;
  391. }
  392. saved_pci_nv_1 = nv_rd32(dev, NV04_PBUS_PCI_NV_1);
  393. /* clear busmaster bit */
  394. nv_wr32(dev, NV04_PBUS_PCI_NV_1, saved_pci_nv_1 & ~0x4);
  395. /* disable AGP */
  396. nv_wr32(dev, NV04_PBUS_PCI_NV_19, 0);
  397. /* power cycle pgraph, if enabled */
  398. pmc_enable = nv_rd32(dev, NV03_PMC_ENABLE);
  399. if (pmc_enable & NV_PMC_ENABLE_PGRAPH) {
  400. nv_wr32(dev, NV03_PMC_ENABLE,
  401. pmc_enable & ~NV_PMC_ENABLE_PGRAPH);
  402. nv_wr32(dev, NV03_PMC_ENABLE, nv_rd32(dev, NV03_PMC_ENABLE) |
  403. NV_PMC_ENABLE_PGRAPH);
  404. }
  405. /* and restore (gives effect of resetting AGP) */
  406. nv_wr32(dev, NV04_PBUS_PCI_NV_1, saved_pci_nv_1);
  407. #endif
  408. return 0;
  409. }
  410. int
  411. nouveau_mem_init_agp(struct drm_device *dev)
  412. {
  413. #if __OS_HAS_AGP
  414. struct drm_nouveau_private *dev_priv = dev->dev_private;
  415. struct drm_agp_info info;
  416. struct drm_agp_mode mode;
  417. int ret;
  418. if (!dev->agp->acquired) {
  419. ret = drm_agp_acquire(dev);
  420. if (ret) {
  421. NV_ERROR(dev, "Unable to acquire AGP: %d\n", ret);
  422. return ret;
  423. }
  424. }
  425. nouveau_mem_reset_agp(dev);
  426. ret = drm_agp_info(dev, &info);
  427. if (ret) {
  428. NV_ERROR(dev, "Unable to get AGP info: %d\n", ret);
  429. return ret;
  430. }
  431. /* see agp.h for the AGPSTAT_* modes available */
  432. mode.mode = get_agp_mode(dev, info.mode);
  433. ret = drm_agp_enable(dev, mode);
  434. if (ret) {
  435. NV_ERROR(dev, "Unable to enable AGP: %d\n", ret);
  436. return ret;
  437. }
  438. dev_priv->gart_info.type = NOUVEAU_GART_AGP;
  439. dev_priv->gart_info.aper_base = info.aperture_base;
  440. dev_priv->gart_info.aper_size = info.aperture_size;
  441. #endif
  442. return 0;
  443. }
  444. int
  445. nouveau_mem_vram_init(struct drm_device *dev)
  446. {
  447. struct drm_nouveau_private *dev_priv = dev->dev_private;
  448. struct ttm_bo_device *bdev = &dev_priv->ttm.bdev;
  449. int ret, dma_bits;
  450. if (dev_priv->card_type >= NV_50 &&
  451. pci_dma_supported(dev->pdev, DMA_BIT_MASK(40)))
  452. dma_bits = 40;
  453. else
  454. dma_bits = 32;
  455. ret = pci_set_dma_mask(dev->pdev, DMA_BIT_MASK(dma_bits));
  456. if (ret)
  457. return ret;
  458. ret = nouveau_mem_detect(dev);
  459. if (ret)
  460. return ret;
  461. dev_priv->fb_phys = pci_resource_start(dev->pdev, 1);
  462. ret = nouveau_ttm_global_init(dev_priv);
  463. if (ret)
  464. return ret;
  465. ret = ttm_bo_device_init(&dev_priv->ttm.bdev,
  466. dev_priv->ttm.bo_global_ref.ref.object,
  467. &nouveau_bo_driver, DRM_FILE_PAGE_OFFSET,
  468. dma_bits <= 32 ? true : false);
  469. if (ret) {
  470. NV_ERROR(dev, "Error initialising bo driver: %d\n", ret);
  471. return ret;
  472. }
  473. dev_priv->fb_available_size = dev_priv->vram_size;
  474. dev_priv->fb_mappable_pages = dev_priv->fb_available_size;
  475. if (dev_priv->fb_mappable_pages > pci_resource_len(dev->pdev, 1))
  476. dev_priv->fb_mappable_pages =
  477. pci_resource_len(dev->pdev, 1);
  478. dev_priv->fb_mappable_pages >>= PAGE_SHIFT;
  479. /* reserve space at end of VRAM for PRAMIN */
  480. if (dev_priv->chipset == 0x40 || dev_priv->chipset == 0x47 ||
  481. dev_priv->chipset == 0x49 || dev_priv->chipset == 0x4b)
  482. dev_priv->ramin_rsvd_vram = (2 * 1024 * 1024);
  483. else
  484. if (dev_priv->card_type >= NV_40)
  485. dev_priv->ramin_rsvd_vram = (1 * 1024 * 1024);
  486. else
  487. dev_priv->ramin_rsvd_vram = (512 * 1024);
  488. dev_priv->fb_available_size -= dev_priv->ramin_rsvd_vram;
  489. dev_priv->fb_aper_free = dev_priv->fb_available_size;
  490. /* mappable vram */
  491. ret = ttm_bo_init_mm(bdev, TTM_PL_VRAM,
  492. dev_priv->fb_available_size >> PAGE_SHIFT);
  493. if (ret) {
  494. NV_ERROR(dev, "Failed VRAM mm init: %d\n", ret);
  495. return ret;
  496. }
  497. ret = nouveau_bo_new(dev, NULL, 256*1024, 0, TTM_PL_FLAG_VRAM,
  498. 0, 0, true, true, &dev_priv->vga_ram);
  499. if (ret == 0)
  500. ret = nouveau_bo_pin(dev_priv->vga_ram, TTM_PL_FLAG_VRAM);
  501. if (ret) {
  502. NV_WARN(dev, "failed to reserve VGA memory\n");
  503. nouveau_bo_ref(NULL, &dev_priv->vga_ram);
  504. }
  505. dev_priv->fb_mtrr = drm_mtrr_add(pci_resource_start(dev->pdev, 1),
  506. pci_resource_len(dev->pdev, 1),
  507. DRM_MTRR_WC);
  508. return 0;
  509. }
  510. int
  511. nouveau_mem_gart_init(struct drm_device *dev)
  512. {
  513. struct drm_nouveau_private *dev_priv = dev->dev_private;
  514. struct ttm_bo_device *bdev = &dev_priv->ttm.bdev;
  515. int ret;
  516. dev_priv->gart_info.type = NOUVEAU_GART_NONE;
  517. #if !defined(__powerpc__) && !defined(__ia64__)
  518. if (drm_device_is_agp(dev) && dev->agp && nouveau_agpmode) {
  519. ret = nouveau_mem_init_agp(dev);
  520. if (ret)
  521. NV_ERROR(dev, "Error initialising AGP: %d\n", ret);
  522. }
  523. #endif
  524. if (dev_priv->gart_info.type == NOUVEAU_GART_NONE) {
  525. ret = nouveau_sgdma_init(dev);
  526. if (ret) {
  527. NV_ERROR(dev, "Error initialising PCI(E): %d\n", ret);
  528. return ret;
  529. }
  530. }
  531. NV_INFO(dev, "%d MiB GART (aperture)\n",
  532. (int)(dev_priv->gart_info.aper_size >> 20));
  533. dev_priv->gart_info.aper_free = dev_priv->gart_info.aper_size;
  534. ret = ttm_bo_init_mm(bdev, TTM_PL_TT,
  535. dev_priv->gart_info.aper_size >> PAGE_SHIFT);
  536. if (ret) {
  537. NV_ERROR(dev, "Failed TT mm init: %d\n", ret);
  538. return ret;
  539. }
  540. return 0;
  541. }
  542. void
  543. nouveau_mem_timing_init(struct drm_device *dev)
  544. {
  545. struct drm_nouveau_private *dev_priv = dev->dev_private;
  546. struct nouveau_pm_engine *pm = &dev_priv->engine.pm;
  547. struct nouveau_pm_memtimings *memtimings = &pm->memtimings;
  548. struct nvbios *bios = &dev_priv->vbios;
  549. struct bit_entry P;
  550. u8 tUNK_0, tUNK_1, tUNK_2;
  551. u8 tRP; /* Byte 3 */
  552. u8 tRAS; /* Byte 5 */
  553. u8 tRFC; /* Byte 7 */
  554. u8 tRC; /* Byte 9 */
  555. u8 tUNK_10, tUNK_11, tUNK_12, tUNK_13, tUNK_14;
  556. u8 tUNK_18, tUNK_19, tUNK_20, tUNK_21;
  557. u8 *mem = NULL, *entry;
  558. int i, recordlen, entries;
  559. if (bios->type == NVBIOS_BIT) {
  560. if (bit_table(dev, 'P', &P))
  561. return;
  562. if (P.version == 1)
  563. mem = ROMPTR(bios, P.data[4]);
  564. else
  565. if (P.version == 2)
  566. mem = ROMPTR(bios, P.data[8]);
  567. else {
  568. NV_WARN(dev, "unknown mem for BIT P %d\n", P.version);
  569. }
  570. } else {
  571. NV_DEBUG(dev, "BMP version too old for memory\n");
  572. return;
  573. }
  574. if (!mem) {
  575. NV_DEBUG(dev, "memory timing table pointer invalid\n");
  576. return;
  577. }
  578. if (mem[0] != 0x10) {
  579. NV_WARN(dev, "memory timing table 0x%02x unknown\n", mem[0]);
  580. return;
  581. }
  582. /* validate record length */
  583. entries = mem[2];
  584. recordlen = mem[3];
  585. if (recordlen < 15) {
  586. NV_ERROR(dev, "mem timing table length unknown: %d\n", mem[3]);
  587. return;
  588. }
  589. /* parse vbios entries into common format */
  590. memtimings->timing =
  591. kcalloc(entries, sizeof(*memtimings->timing), GFP_KERNEL);
  592. if (!memtimings->timing)
  593. return;
  594. entry = mem + mem[1];
  595. for (i = 0; i < entries; i++, entry += recordlen) {
  596. struct nouveau_pm_memtiming *timing = &pm->memtimings.timing[i];
  597. if (entry[0] == 0)
  598. continue;
  599. tUNK_18 = 1;
  600. tUNK_19 = 1;
  601. tUNK_20 = 0;
  602. tUNK_21 = 0;
  603. switch (MIN(recordlen,21)) {
  604. case 21:
  605. tUNK_21 = entry[21];
  606. case 20:
  607. tUNK_20 = entry[20];
  608. case 19:
  609. tUNK_19 = entry[19];
  610. case 18:
  611. tUNK_18 = entry[18];
  612. default:
  613. tUNK_0 = entry[0];
  614. tUNK_1 = entry[1];
  615. tUNK_2 = entry[2];
  616. tRP = entry[3];
  617. tRAS = entry[5];
  618. tRFC = entry[7];
  619. tRC = entry[9];
  620. tUNK_10 = entry[10];
  621. tUNK_11 = entry[11];
  622. tUNK_12 = entry[12];
  623. tUNK_13 = entry[13];
  624. tUNK_14 = entry[14];
  625. break;
  626. }
  627. timing->reg_100220 = (tRC << 24 | tRFC << 16 | tRAS << 8 | tRP);
  628. /* XXX: I don't trust the -1's and +1's... they must come
  629. * from somewhere! */
  630. timing->reg_100224 = ((tUNK_0 + tUNK_19 + 1) << 24 |
  631. tUNK_18 << 16 |
  632. (tUNK_1 + tUNK_19 + 1) << 8 |
  633. (tUNK_2 - 1));
  634. timing->reg_100228 = (tUNK_12 << 16 | tUNK_11 << 8 | tUNK_10);
  635. if(recordlen > 19) {
  636. timing->reg_100228 += (tUNK_19 - 1) << 24;
  637. } else {
  638. timing->reg_100228 += tUNK_12 << 24;
  639. }
  640. /* XXX: reg_10022c */
  641. timing->reg_100230 = (tUNK_20 << 24 | tUNK_21 << 16 |
  642. tUNK_13 << 8 | tUNK_13);
  643. /* XXX: +6? */
  644. timing->reg_100234 = (tRAS << 24 | (tUNK_19 + 6) << 8 | tRC);
  645. if(tUNK_10 > tUNK_11) {
  646. timing->reg_100234 += tUNK_10 << 16;
  647. } else {
  648. timing->reg_100234 += tUNK_11 << 16;
  649. }
  650. /* XXX; reg_100238, reg_10023c */
  651. NV_DEBUG(dev, "Entry %d: 220: %08x %08x %08x %08x\n", i,
  652. timing->reg_100220, timing->reg_100224,
  653. timing->reg_100228, timing->reg_10022c);
  654. NV_DEBUG(dev, " 230: %08x %08x %08x %08x\n",
  655. timing->reg_100230, timing->reg_100234,
  656. timing->reg_100238, timing->reg_10023c);
  657. }
  658. memtimings->nr_timing = entries;
  659. memtimings->supported = true;
  660. }
  661. void
  662. nouveau_mem_timing_fini(struct drm_device *dev)
  663. {
  664. struct drm_nouveau_private *dev_priv = dev->dev_private;
  665. struct nouveau_pm_memtimings *mem = &dev_priv->engine.pm.memtimings;
  666. kfree(mem->timing);
  667. }