skbuff.h 72 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625
  1. /*
  2. * Definitions for the 'struct sk_buff' memory handlers.
  3. *
  4. * Authors:
  5. * Alan Cox, <gw4pts@gw4pts.ampr.org>
  6. * Florian La Roche, <rzsfl@rz.uni-sb.de>
  7. *
  8. * This program is free software; you can redistribute it and/or
  9. * modify it under the terms of the GNU General Public License
  10. * as published by the Free Software Foundation; either version
  11. * 2 of the License, or (at your option) any later version.
  12. */
  13. #ifndef _LINUX_SKBUFF_H
  14. #define _LINUX_SKBUFF_H
  15. #include <linux/kernel.h>
  16. #include <linux/kmemcheck.h>
  17. #include <linux/compiler.h>
  18. #include <linux/time.h>
  19. #include <linux/bug.h>
  20. #include <linux/cache.h>
  21. #include <linux/atomic.h>
  22. #include <asm/types.h>
  23. #include <linux/spinlock.h>
  24. #include <linux/net.h>
  25. #include <linux/textsearch.h>
  26. #include <net/checksum.h>
  27. #include <linux/rcupdate.h>
  28. #include <linux/dmaengine.h>
  29. #include <linux/hrtimer.h>
  30. #include <linux/dma-mapping.h>
  31. #include <linux/netdev_features.h>
  32. /* Don't change this without changing skb_csum_unnecessary! */
  33. #define CHECKSUM_NONE 0
  34. #define CHECKSUM_UNNECESSARY 1
  35. #define CHECKSUM_COMPLETE 2
  36. #define CHECKSUM_PARTIAL 3
  37. #define SKB_DATA_ALIGN(X) (((X) + (SMP_CACHE_BYTES - 1)) & \
  38. ~(SMP_CACHE_BYTES - 1))
  39. #define SKB_WITH_OVERHEAD(X) \
  40. ((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
  41. #define SKB_MAX_ORDER(X, ORDER) \
  42. SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
  43. #define SKB_MAX_HEAD(X) (SKB_MAX_ORDER((X), 0))
  44. #define SKB_MAX_ALLOC (SKB_MAX_ORDER(0, 2))
  45. /* return minimum truesize of one skb containing X bytes of data */
  46. #define SKB_TRUESIZE(X) ((X) + \
  47. SKB_DATA_ALIGN(sizeof(struct sk_buff)) + \
  48. SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
  49. /* A. Checksumming of received packets by device.
  50. *
  51. * NONE: device failed to checksum this packet.
  52. * skb->csum is undefined.
  53. *
  54. * UNNECESSARY: device parsed packet and wouldbe verified checksum.
  55. * skb->csum is undefined.
  56. * It is bad option, but, unfortunately, many of vendors do this.
  57. * Apparently with secret goal to sell you new device, when you
  58. * will add new protocol to your host. F.e. IPv6. 8)
  59. *
  60. * COMPLETE: the most generic way. Device supplied checksum of _all_
  61. * the packet as seen by netif_rx in skb->csum.
  62. * NOTE: Even if device supports only some protocols, but
  63. * is able to produce some skb->csum, it MUST use COMPLETE,
  64. * not UNNECESSARY.
  65. *
  66. * PARTIAL: identical to the case for output below. This may occur
  67. * on a packet received directly from another Linux OS, e.g.,
  68. * a virtualised Linux kernel on the same host. The packet can
  69. * be treated in the same way as UNNECESSARY except that on
  70. * output (i.e., forwarding) the checksum must be filled in
  71. * by the OS or the hardware.
  72. *
  73. * B. Checksumming on output.
  74. *
  75. * NONE: skb is checksummed by protocol or csum is not required.
  76. *
  77. * PARTIAL: device is required to csum packet as seen by hard_start_xmit
  78. * from skb->csum_start to the end and to record the checksum
  79. * at skb->csum_start + skb->csum_offset.
  80. *
  81. * Device must show its capabilities in dev->features, set
  82. * at device setup time.
  83. * NETIF_F_HW_CSUM - it is clever device, it is able to checksum
  84. * everything.
  85. * NETIF_F_IP_CSUM - device is dumb. It is able to csum only
  86. * TCP/UDP over IPv4. Sigh. Vendors like this
  87. * way by an unknown reason. Though, see comment above
  88. * about CHECKSUM_UNNECESSARY. 8)
  89. * NETIF_F_IPV6_CSUM about as dumb as the last one but does IPv6 instead.
  90. *
  91. * UNNECESSARY: device will do per protocol specific csum. Protocol drivers
  92. * that do not want net to perform the checksum calculation should use
  93. * this flag in their outgoing skbs.
  94. * NETIF_F_FCOE_CRC this indicates the device can do FCoE FC CRC
  95. * offload. Correspondingly, the FCoE protocol driver
  96. * stack should use CHECKSUM_UNNECESSARY.
  97. *
  98. * Any questions? No questions, good. --ANK
  99. */
  100. struct net_device;
  101. struct scatterlist;
  102. struct pipe_inode_info;
  103. #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
  104. struct nf_conntrack {
  105. atomic_t use;
  106. };
  107. #endif
  108. #ifdef CONFIG_BRIDGE_NETFILTER
  109. struct nf_bridge_info {
  110. atomic_t use;
  111. unsigned int mask;
  112. struct net_device *physindev;
  113. struct net_device *physoutdev;
  114. unsigned long data[32 / sizeof(unsigned long)];
  115. };
  116. #endif
  117. struct sk_buff_head {
  118. /* These two members must be first. */
  119. struct sk_buff *next;
  120. struct sk_buff *prev;
  121. __u32 qlen;
  122. spinlock_t lock;
  123. };
  124. struct sk_buff;
  125. /* To allow 64K frame to be packed as single skb without frag_list we
  126. * require 64K/PAGE_SIZE pages plus 1 additional page to allow for
  127. * buffers which do not start on a page boundary.
  128. *
  129. * Since GRO uses frags we allocate at least 16 regardless of page
  130. * size.
  131. */
  132. #if (65536/PAGE_SIZE + 1) < 16
  133. #define MAX_SKB_FRAGS 16UL
  134. #else
  135. #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 1)
  136. #endif
  137. typedef struct skb_frag_struct skb_frag_t;
  138. struct skb_frag_struct {
  139. struct {
  140. struct page *p;
  141. } page;
  142. #if (BITS_PER_LONG > 32) || (PAGE_SIZE >= 65536)
  143. __u32 page_offset;
  144. __u32 size;
  145. #else
  146. __u16 page_offset;
  147. __u16 size;
  148. #endif
  149. };
  150. static inline unsigned int skb_frag_size(const skb_frag_t *frag)
  151. {
  152. return frag->size;
  153. }
  154. static inline void skb_frag_size_set(skb_frag_t *frag, unsigned int size)
  155. {
  156. frag->size = size;
  157. }
  158. static inline void skb_frag_size_add(skb_frag_t *frag, int delta)
  159. {
  160. frag->size += delta;
  161. }
  162. static inline void skb_frag_size_sub(skb_frag_t *frag, int delta)
  163. {
  164. frag->size -= delta;
  165. }
  166. #define HAVE_HW_TIME_STAMP
  167. /**
  168. * struct skb_shared_hwtstamps - hardware time stamps
  169. * @hwtstamp: hardware time stamp transformed into duration
  170. * since arbitrary point in time
  171. * @syststamp: hwtstamp transformed to system time base
  172. *
  173. * Software time stamps generated by ktime_get_real() are stored in
  174. * skb->tstamp. The relation between the different kinds of time
  175. * stamps is as follows:
  176. *
  177. * syststamp and tstamp can be compared against each other in
  178. * arbitrary combinations. The accuracy of a
  179. * syststamp/tstamp/"syststamp from other device" comparison is
  180. * limited by the accuracy of the transformation into system time
  181. * base. This depends on the device driver and its underlying
  182. * hardware.
  183. *
  184. * hwtstamps can only be compared against other hwtstamps from
  185. * the same device.
  186. *
  187. * This structure is attached to packets as part of the
  188. * &skb_shared_info. Use skb_hwtstamps() to get a pointer.
  189. */
  190. struct skb_shared_hwtstamps {
  191. ktime_t hwtstamp;
  192. ktime_t syststamp;
  193. };
  194. /* Definitions for tx_flags in struct skb_shared_info */
  195. enum {
  196. /* generate hardware time stamp */
  197. SKBTX_HW_TSTAMP = 1 << 0,
  198. /* generate software time stamp */
  199. SKBTX_SW_TSTAMP = 1 << 1,
  200. /* device driver is going to provide hardware time stamp */
  201. SKBTX_IN_PROGRESS = 1 << 2,
  202. /* device driver supports TX zero-copy buffers */
  203. SKBTX_DEV_ZEROCOPY = 1 << 3,
  204. /* generate wifi status information (where possible) */
  205. SKBTX_WIFI_STATUS = 1 << 4,
  206. };
  207. /*
  208. * The callback notifies userspace to release buffers when skb DMA is done in
  209. * lower device, the skb last reference should be 0 when calling this.
  210. * The ctx field is used to track device context.
  211. * The desc field is used to track userspace buffer index.
  212. */
  213. struct ubuf_info {
  214. void (*callback)(struct ubuf_info *);
  215. void *ctx;
  216. unsigned long desc;
  217. };
  218. /* This data is invariant across clones and lives at
  219. * the end of the header data, ie. at skb->end.
  220. */
  221. struct skb_shared_info {
  222. unsigned char nr_frags;
  223. __u8 tx_flags;
  224. unsigned short gso_size;
  225. /* Warning: this field is not always filled in (UFO)! */
  226. unsigned short gso_segs;
  227. unsigned short gso_type;
  228. struct sk_buff *frag_list;
  229. struct skb_shared_hwtstamps hwtstamps;
  230. __be32 ip6_frag_id;
  231. /*
  232. * Warning : all fields before dataref are cleared in __alloc_skb()
  233. */
  234. atomic_t dataref;
  235. /* Intermediate layers must ensure that destructor_arg
  236. * remains valid until skb destructor */
  237. void * destructor_arg;
  238. /* must be last field, see pskb_expand_head() */
  239. skb_frag_t frags[MAX_SKB_FRAGS];
  240. };
  241. /* We divide dataref into two halves. The higher 16 bits hold references
  242. * to the payload part of skb->data. The lower 16 bits hold references to
  243. * the entire skb->data. A clone of a headerless skb holds the length of
  244. * the header in skb->hdr_len.
  245. *
  246. * All users must obey the rule that the skb->data reference count must be
  247. * greater than or equal to the payload reference count.
  248. *
  249. * Holding a reference to the payload part means that the user does not
  250. * care about modifications to the header part of skb->data.
  251. */
  252. #define SKB_DATAREF_SHIFT 16
  253. #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
  254. enum {
  255. SKB_FCLONE_UNAVAILABLE,
  256. SKB_FCLONE_ORIG,
  257. SKB_FCLONE_CLONE,
  258. };
  259. enum {
  260. SKB_GSO_TCPV4 = 1 << 0,
  261. SKB_GSO_UDP = 1 << 1,
  262. /* This indicates the skb is from an untrusted source. */
  263. SKB_GSO_DODGY = 1 << 2,
  264. /* This indicates the tcp segment has CWR set. */
  265. SKB_GSO_TCP_ECN = 1 << 3,
  266. SKB_GSO_TCPV6 = 1 << 4,
  267. SKB_GSO_FCOE = 1 << 5,
  268. };
  269. #if BITS_PER_LONG > 32
  270. #define NET_SKBUFF_DATA_USES_OFFSET 1
  271. #endif
  272. #ifdef NET_SKBUFF_DATA_USES_OFFSET
  273. typedef unsigned int sk_buff_data_t;
  274. #else
  275. typedef unsigned char *sk_buff_data_t;
  276. #endif
  277. #if defined(CONFIG_NF_DEFRAG_IPV4) || defined(CONFIG_NF_DEFRAG_IPV4_MODULE) || \
  278. defined(CONFIG_NF_DEFRAG_IPV6) || defined(CONFIG_NF_DEFRAG_IPV6_MODULE)
  279. #define NET_SKBUFF_NF_DEFRAG_NEEDED 1
  280. #endif
  281. /**
  282. * struct sk_buff - socket buffer
  283. * @next: Next buffer in list
  284. * @prev: Previous buffer in list
  285. * @tstamp: Time we arrived
  286. * @sk: Socket we are owned by
  287. * @dev: Device we arrived on/are leaving by
  288. * @cb: Control buffer. Free for use by every layer. Put private vars here
  289. * @_skb_refdst: destination entry (with norefcount bit)
  290. * @sp: the security path, used for xfrm
  291. * @len: Length of actual data
  292. * @data_len: Data length
  293. * @mac_len: Length of link layer header
  294. * @hdr_len: writable header length of cloned skb
  295. * @csum: Checksum (must include start/offset pair)
  296. * @csum_start: Offset from skb->head where checksumming should start
  297. * @csum_offset: Offset from csum_start where checksum should be stored
  298. * @priority: Packet queueing priority
  299. * @local_df: allow local fragmentation
  300. * @cloned: Head may be cloned (check refcnt to be sure)
  301. * @ip_summed: Driver fed us an IP checksum
  302. * @nohdr: Payload reference only, must not modify header
  303. * @nfctinfo: Relationship of this skb to the connection
  304. * @pkt_type: Packet class
  305. * @fclone: skbuff clone status
  306. * @ipvs_property: skbuff is owned by ipvs
  307. * @peeked: this packet has been seen already, so stats have been
  308. * done for it, don't do them again
  309. * @nf_trace: netfilter packet trace flag
  310. * @protocol: Packet protocol from driver
  311. * @destructor: Destruct function
  312. * @nfct: Associated connection, if any
  313. * @nfct_reasm: netfilter conntrack re-assembly pointer
  314. * @nf_bridge: Saved data about a bridged frame - see br_netfilter.c
  315. * @skb_iif: ifindex of device we arrived on
  316. * @tc_index: Traffic control index
  317. * @tc_verd: traffic control verdict
  318. * @rxhash: the packet hash computed on receive
  319. * @queue_mapping: Queue mapping for multiqueue devices
  320. * @ndisc_nodetype: router type (from link layer)
  321. * @ooo_okay: allow the mapping of a socket to a queue to be changed
  322. * @l4_rxhash: indicate rxhash is a canonical 4-tuple hash over transport
  323. * ports.
  324. * @wifi_acked_valid: wifi_acked was set
  325. * @wifi_acked: whether frame was acked on wifi or not
  326. * @no_fcs: Request NIC to treat last 4 bytes as Ethernet FCS
  327. * @dma_cookie: a cookie to one of several possible DMA operations
  328. * done by skb DMA functions
  329. * @secmark: security marking
  330. * @mark: Generic packet mark
  331. * @dropcount: total number of sk_receive_queue overflows
  332. * @vlan_tci: vlan tag control information
  333. * @transport_header: Transport layer header
  334. * @network_header: Network layer header
  335. * @mac_header: Link layer header
  336. * @tail: Tail pointer
  337. * @end: End pointer
  338. * @head: Head of buffer
  339. * @data: Data head pointer
  340. * @truesize: Buffer size
  341. * @users: User count - see {datagram,tcp}.c
  342. */
  343. struct sk_buff {
  344. /* These two members must be first. */
  345. struct sk_buff *next;
  346. struct sk_buff *prev;
  347. ktime_t tstamp;
  348. struct sock *sk;
  349. struct net_device *dev;
  350. /*
  351. * This is the control buffer. It is free to use for every
  352. * layer. Please put your private variables there. If you
  353. * want to keep them across layers you have to do a skb_clone()
  354. * first. This is owned by whoever has the skb queued ATM.
  355. */
  356. char cb[48] __aligned(8);
  357. unsigned long _skb_refdst;
  358. #ifdef CONFIG_XFRM
  359. struct sec_path *sp;
  360. #endif
  361. unsigned int len,
  362. data_len;
  363. __u16 mac_len,
  364. hdr_len;
  365. union {
  366. __wsum csum;
  367. struct {
  368. __u16 csum_start;
  369. __u16 csum_offset;
  370. };
  371. };
  372. __u32 priority;
  373. kmemcheck_bitfield_begin(flags1);
  374. __u8 local_df:1,
  375. cloned:1,
  376. ip_summed:2,
  377. nohdr:1,
  378. nfctinfo:3;
  379. __u8 pkt_type:3,
  380. fclone:2,
  381. ipvs_property:1,
  382. peeked:1,
  383. nf_trace:1;
  384. kmemcheck_bitfield_end(flags1);
  385. __be16 protocol;
  386. void (*destructor)(struct sk_buff *skb);
  387. #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
  388. struct nf_conntrack *nfct;
  389. #endif
  390. #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
  391. struct sk_buff *nfct_reasm;
  392. #endif
  393. #ifdef CONFIG_BRIDGE_NETFILTER
  394. struct nf_bridge_info *nf_bridge;
  395. #endif
  396. int skb_iif;
  397. __u32 rxhash;
  398. __u16 vlan_tci;
  399. #ifdef CONFIG_NET_SCHED
  400. __u16 tc_index; /* traffic control index */
  401. #ifdef CONFIG_NET_CLS_ACT
  402. __u16 tc_verd; /* traffic control verdict */
  403. #endif
  404. #endif
  405. __u16 queue_mapping;
  406. kmemcheck_bitfield_begin(flags2);
  407. #ifdef CONFIG_IPV6_NDISC_NODETYPE
  408. __u8 ndisc_nodetype:2;
  409. #endif
  410. __u8 pfmemalloc:1;
  411. __u8 ooo_okay:1;
  412. __u8 l4_rxhash:1;
  413. __u8 wifi_acked_valid:1;
  414. __u8 wifi_acked:1;
  415. __u8 no_fcs:1;
  416. __u8 head_frag:1;
  417. /* 8/10 bit hole (depending on ndisc_nodetype presence) */
  418. kmemcheck_bitfield_end(flags2);
  419. #ifdef CONFIG_NET_DMA
  420. dma_cookie_t dma_cookie;
  421. #endif
  422. #ifdef CONFIG_NETWORK_SECMARK
  423. __u32 secmark;
  424. #endif
  425. union {
  426. __u32 mark;
  427. __u32 dropcount;
  428. __u32 avail_size;
  429. };
  430. sk_buff_data_t transport_header;
  431. sk_buff_data_t network_header;
  432. sk_buff_data_t mac_header;
  433. /* These elements must be at the end, see alloc_skb() for details. */
  434. sk_buff_data_t tail;
  435. sk_buff_data_t end;
  436. unsigned char *head,
  437. *data;
  438. unsigned int truesize;
  439. atomic_t users;
  440. };
  441. #ifdef __KERNEL__
  442. /*
  443. * Handling routines are only of interest to the kernel
  444. */
  445. #include <linux/slab.h>
  446. #define SKB_ALLOC_FCLONE 0x01
  447. #define SKB_ALLOC_RX 0x02
  448. /* Returns true if the skb was allocated from PFMEMALLOC reserves */
  449. static inline bool skb_pfmemalloc(const struct sk_buff *skb)
  450. {
  451. return unlikely(skb->pfmemalloc);
  452. }
  453. /*
  454. * skb might have a dst pointer attached, refcounted or not.
  455. * _skb_refdst low order bit is set if refcount was _not_ taken
  456. */
  457. #define SKB_DST_NOREF 1UL
  458. #define SKB_DST_PTRMASK ~(SKB_DST_NOREF)
  459. /**
  460. * skb_dst - returns skb dst_entry
  461. * @skb: buffer
  462. *
  463. * Returns skb dst_entry, regardless of reference taken or not.
  464. */
  465. static inline struct dst_entry *skb_dst(const struct sk_buff *skb)
  466. {
  467. /* If refdst was not refcounted, check we still are in a
  468. * rcu_read_lock section
  469. */
  470. WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) &&
  471. !rcu_read_lock_held() &&
  472. !rcu_read_lock_bh_held());
  473. return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK);
  474. }
  475. /**
  476. * skb_dst_set - sets skb dst
  477. * @skb: buffer
  478. * @dst: dst entry
  479. *
  480. * Sets skb dst, assuming a reference was taken on dst and should
  481. * be released by skb_dst_drop()
  482. */
  483. static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst)
  484. {
  485. skb->_skb_refdst = (unsigned long)dst;
  486. }
  487. extern void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst);
  488. /**
  489. * skb_dst_is_noref - Test if skb dst isn't refcounted
  490. * @skb: buffer
  491. */
  492. static inline bool skb_dst_is_noref(const struct sk_buff *skb)
  493. {
  494. return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb);
  495. }
  496. static inline struct rtable *skb_rtable(const struct sk_buff *skb)
  497. {
  498. return (struct rtable *)skb_dst(skb);
  499. }
  500. extern void kfree_skb(struct sk_buff *skb);
  501. extern void consume_skb(struct sk_buff *skb);
  502. extern void __kfree_skb(struct sk_buff *skb);
  503. extern struct kmem_cache *skbuff_head_cache;
  504. extern void kfree_skb_partial(struct sk_buff *skb, bool head_stolen);
  505. extern bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
  506. bool *fragstolen, int *delta_truesize);
  507. extern struct sk_buff *__alloc_skb(unsigned int size,
  508. gfp_t priority, int flags, int node);
  509. extern struct sk_buff *build_skb(void *data, unsigned int frag_size);
  510. static inline struct sk_buff *alloc_skb(unsigned int size,
  511. gfp_t priority)
  512. {
  513. return __alloc_skb(size, priority, 0, NUMA_NO_NODE);
  514. }
  515. static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
  516. gfp_t priority)
  517. {
  518. return __alloc_skb(size, priority, SKB_ALLOC_FCLONE, NUMA_NO_NODE);
  519. }
  520. extern void skb_recycle(struct sk_buff *skb);
  521. extern bool skb_recycle_check(struct sk_buff *skb, int skb_size);
  522. extern struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src);
  523. extern int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask);
  524. extern struct sk_buff *skb_clone(struct sk_buff *skb,
  525. gfp_t priority);
  526. extern struct sk_buff *skb_copy(const struct sk_buff *skb,
  527. gfp_t priority);
  528. extern struct sk_buff *__pskb_copy(struct sk_buff *skb,
  529. int headroom, gfp_t gfp_mask);
  530. extern int pskb_expand_head(struct sk_buff *skb,
  531. int nhead, int ntail,
  532. gfp_t gfp_mask);
  533. extern struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
  534. unsigned int headroom);
  535. extern struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
  536. int newheadroom, int newtailroom,
  537. gfp_t priority);
  538. extern int skb_to_sgvec(struct sk_buff *skb,
  539. struct scatterlist *sg, int offset,
  540. int len);
  541. extern int skb_cow_data(struct sk_buff *skb, int tailbits,
  542. struct sk_buff **trailer);
  543. extern int skb_pad(struct sk_buff *skb, int pad);
  544. #define dev_kfree_skb(a) consume_skb(a)
  545. extern int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
  546. int getfrag(void *from, char *to, int offset,
  547. int len,int odd, struct sk_buff *skb),
  548. void *from, int length);
  549. struct skb_seq_state {
  550. __u32 lower_offset;
  551. __u32 upper_offset;
  552. __u32 frag_idx;
  553. __u32 stepped_offset;
  554. struct sk_buff *root_skb;
  555. struct sk_buff *cur_skb;
  556. __u8 *frag_data;
  557. };
  558. extern void skb_prepare_seq_read(struct sk_buff *skb,
  559. unsigned int from, unsigned int to,
  560. struct skb_seq_state *st);
  561. extern unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
  562. struct skb_seq_state *st);
  563. extern void skb_abort_seq_read(struct skb_seq_state *st);
  564. extern unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
  565. unsigned int to, struct ts_config *config,
  566. struct ts_state *state);
  567. extern void __skb_get_rxhash(struct sk_buff *skb);
  568. static inline __u32 skb_get_rxhash(struct sk_buff *skb)
  569. {
  570. if (!skb->rxhash)
  571. __skb_get_rxhash(skb);
  572. return skb->rxhash;
  573. }
  574. #ifdef NET_SKBUFF_DATA_USES_OFFSET
  575. static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
  576. {
  577. return skb->head + skb->end;
  578. }
  579. static inline unsigned int skb_end_offset(const struct sk_buff *skb)
  580. {
  581. return skb->end;
  582. }
  583. #else
  584. static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
  585. {
  586. return skb->end;
  587. }
  588. static inline unsigned int skb_end_offset(const struct sk_buff *skb)
  589. {
  590. return skb->end - skb->head;
  591. }
  592. #endif
  593. /* Internal */
  594. #define skb_shinfo(SKB) ((struct skb_shared_info *)(skb_end_pointer(SKB)))
  595. static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb)
  596. {
  597. return &skb_shinfo(skb)->hwtstamps;
  598. }
  599. /**
  600. * skb_queue_empty - check if a queue is empty
  601. * @list: queue head
  602. *
  603. * Returns true if the queue is empty, false otherwise.
  604. */
  605. static inline int skb_queue_empty(const struct sk_buff_head *list)
  606. {
  607. return list->next == (struct sk_buff *)list;
  608. }
  609. /**
  610. * skb_queue_is_last - check if skb is the last entry in the queue
  611. * @list: queue head
  612. * @skb: buffer
  613. *
  614. * Returns true if @skb is the last buffer on the list.
  615. */
  616. static inline bool skb_queue_is_last(const struct sk_buff_head *list,
  617. const struct sk_buff *skb)
  618. {
  619. return skb->next == (struct sk_buff *)list;
  620. }
  621. /**
  622. * skb_queue_is_first - check if skb is the first entry in the queue
  623. * @list: queue head
  624. * @skb: buffer
  625. *
  626. * Returns true if @skb is the first buffer on the list.
  627. */
  628. static inline bool skb_queue_is_first(const struct sk_buff_head *list,
  629. const struct sk_buff *skb)
  630. {
  631. return skb->prev == (struct sk_buff *)list;
  632. }
  633. /**
  634. * skb_queue_next - return the next packet in the queue
  635. * @list: queue head
  636. * @skb: current buffer
  637. *
  638. * Return the next packet in @list after @skb. It is only valid to
  639. * call this if skb_queue_is_last() evaluates to false.
  640. */
  641. static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list,
  642. const struct sk_buff *skb)
  643. {
  644. /* This BUG_ON may seem severe, but if we just return then we
  645. * are going to dereference garbage.
  646. */
  647. BUG_ON(skb_queue_is_last(list, skb));
  648. return skb->next;
  649. }
  650. /**
  651. * skb_queue_prev - return the prev packet in the queue
  652. * @list: queue head
  653. * @skb: current buffer
  654. *
  655. * Return the prev packet in @list before @skb. It is only valid to
  656. * call this if skb_queue_is_first() evaluates to false.
  657. */
  658. static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list,
  659. const struct sk_buff *skb)
  660. {
  661. /* This BUG_ON may seem severe, but if we just return then we
  662. * are going to dereference garbage.
  663. */
  664. BUG_ON(skb_queue_is_first(list, skb));
  665. return skb->prev;
  666. }
  667. /**
  668. * skb_get - reference buffer
  669. * @skb: buffer to reference
  670. *
  671. * Makes another reference to a socket buffer and returns a pointer
  672. * to the buffer.
  673. */
  674. static inline struct sk_buff *skb_get(struct sk_buff *skb)
  675. {
  676. atomic_inc(&skb->users);
  677. return skb;
  678. }
  679. /*
  680. * If users == 1, we are the only owner and are can avoid redundant
  681. * atomic change.
  682. */
  683. /**
  684. * skb_cloned - is the buffer a clone
  685. * @skb: buffer to check
  686. *
  687. * Returns true if the buffer was generated with skb_clone() and is
  688. * one of multiple shared copies of the buffer. Cloned buffers are
  689. * shared data so must not be written to under normal circumstances.
  690. */
  691. static inline int skb_cloned(const struct sk_buff *skb)
  692. {
  693. return skb->cloned &&
  694. (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
  695. }
  696. /**
  697. * skb_header_cloned - is the header a clone
  698. * @skb: buffer to check
  699. *
  700. * Returns true if modifying the header part of the buffer requires
  701. * the data to be copied.
  702. */
  703. static inline int skb_header_cloned(const struct sk_buff *skb)
  704. {
  705. int dataref;
  706. if (!skb->cloned)
  707. return 0;
  708. dataref = atomic_read(&skb_shinfo(skb)->dataref);
  709. dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
  710. return dataref != 1;
  711. }
  712. /**
  713. * skb_header_release - release reference to header
  714. * @skb: buffer to operate on
  715. *
  716. * Drop a reference to the header part of the buffer. This is done
  717. * by acquiring a payload reference. You must not read from the header
  718. * part of skb->data after this.
  719. */
  720. static inline void skb_header_release(struct sk_buff *skb)
  721. {
  722. BUG_ON(skb->nohdr);
  723. skb->nohdr = 1;
  724. atomic_add(1 << SKB_DATAREF_SHIFT, &skb_shinfo(skb)->dataref);
  725. }
  726. /**
  727. * skb_shared - is the buffer shared
  728. * @skb: buffer to check
  729. *
  730. * Returns true if more than one person has a reference to this
  731. * buffer.
  732. */
  733. static inline int skb_shared(const struct sk_buff *skb)
  734. {
  735. return atomic_read(&skb->users) != 1;
  736. }
  737. /**
  738. * skb_share_check - check if buffer is shared and if so clone it
  739. * @skb: buffer to check
  740. * @pri: priority for memory allocation
  741. *
  742. * If the buffer is shared the buffer is cloned and the old copy
  743. * drops a reference. A new clone with a single reference is returned.
  744. * If the buffer is not shared the original buffer is returned. When
  745. * being called from interrupt status or with spinlocks held pri must
  746. * be GFP_ATOMIC.
  747. *
  748. * NULL is returned on a memory allocation failure.
  749. */
  750. static inline struct sk_buff *skb_share_check(struct sk_buff *skb,
  751. gfp_t pri)
  752. {
  753. might_sleep_if(pri & __GFP_WAIT);
  754. if (skb_shared(skb)) {
  755. struct sk_buff *nskb = skb_clone(skb, pri);
  756. kfree_skb(skb);
  757. skb = nskb;
  758. }
  759. return skb;
  760. }
  761. /*
  762. * Copy shared buffers into a new sk_buff. We effectively do COW on
  763. * packets to handle cases where we have a local reader and forward
  764. * and a couple of other messy ones. The normal one is tcpdumping
  765. * a packet thats being forwarded.
  766. */
  767. /**
  768. * skb_unshare - make a copy of a shared buffer
  769. * @skb: buffer to check
  770. * @pri: priority for memory allocation
  771. *
  772. * If the socket buffer is a clone then this function creates a new
  773. * copy of the data, drops a reference count on the old copy and returns
  774. * the new copy with the reference count at 1. If the buffer is not a clone
  775. * the original buffer is returned. When called with a spinlock held or
  776. * from interrupt state @pri must be %GFP_ATOMIC
  777. *
  778. * %NULL is returned on a memory allocation failure.
  779. */
  780. static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
  781. gfp_t pri)
  782. {
  783. might_sleep_if(pri & __GFP_WAIT);
  784. if (skb_cloned(skb)) {
  785. struct sk_buff *nskb = skb_copy(skb, pri);
  786. kfree_skb(skb); /* Free our shared copy */
  787. skb = nskb;
  788. }
  789. return skb;
  790. }
  791. /**
  792. * skb_peek - peek at the head of an &sk_buff_head
  793. * @list_: list to peek at
  794. *
  795. * Peek an &sk_buff. Unlike most other operations you _MUST_
  796. * be careful with this one. A peek leaves the buffer on the
  797. * list and someone else may run off with it. You must hold
  798. * the appropriate locks or have a private queue to do this.
  799. *
  800. * Returns %NULL for an empty list or a pointer to the head element.
  801. * The reference count is not incremented and the reference is therefore
  802. * volatile. Use with caution.
  803. */
  804. static inline struct sk_buff *skb_peek(const struct sk_buff_head *list_)
  805. {
  806. struct sk_buff *skb = list_->next;
  807. if (skb == (struct sk_buff *)list_)
  808. skb = NULL;
  809. return skb;
  810. }
  811. /**
  812. * skb_peek_next - peek skb following the given one from a queue
  813. * @skb: skb to start from
  814. * @list_: list to peek at
  815. *
  816. * Returns %NULL when the end of the list is met or a pointer to the
  817. * next element. The reference count is not incremented and the
  818. * reference is therefore volatile. Use with caution.
  819. */
  820. static inline struct sk_buff *skb_peek_next(struct sk_buff *skb,
  821. const struct sk_buff_head *list_)
  822. {
  823. struct sk_buff *next = skb->next;
  824. if (next == (struct sk_buff *)list_)
  825. next = NULL;
  826. return next;
  827. }
  828. /**
  829. * skb_peek_tail - peek at the tail of an &sk_buff_head
  830. * @list_: list to peek at
  831. *
  832. * Peek an &sk_buff. Unlike most other operations you _MUST_
  833. * be careful with this one. A peek leaves the buffer on the
  834. * list and someone else may run off with it. You must hold
  835. * the appropriate locks or have a private queue to do this.
  836. *
  837. * Returns %NULL for an empty list or a pointer to the tail element.
  838. * The reference count is not incremented and the reference is therefore
  839. * volatile. Use with caution.
  840. */
  841. static inline struct sk_buff *skb_peek_tail(const struct sk_buff_head *list_)
  842. {
  843. struct sk_buff *skb = list_->prev;
  844. if (skb == (struct sk_buff *)list_)
  845. skb = NULL;
  846. return skb;
  847. }
  848. /**
  849. * skb_queue_len - get queue length
  850. * @list_: list to measure
  851. *
  852. * Return the length of an &sk_buff queue.
  853. */
  854. static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
  855. {
  856. return list_->qlen;
  857. }
  858. /**
  859. * __skb_queue_head_init - initialize non-spinlock portions of sk_buff_head
  860. * @list: queue to initialize
  861. *
  862. * This initializes only the list and queue length aspects of
  863. * an sk_buff_head object. This allows to initialize the list
  864. * aspects of an sk_buff_head without reinitializing things like
  865. * the spinlock. It can also be used for on-stack sk_buff_head
  866. * objects where the spinlock is known to not be used.
  867. */
  868. static inline void __skb_queue_head_init(struct sk_buff_head *list)
  869. {
  870. list->prev = list->next = (struct sk_buff *)list;
  871. list->qlen = 0;
  872. }
  873. /*
  874. * This function creates a split out lock class for each invocation;
  875. * this is needed for now since a whole lot of users of the skb-queue
  876. * infrastructure in drivers have different locking usage (in hardirq)
  877. * than the networking core (in softirq only). In the long run either the
  878. * network layer or drivers should need annotation to consolidate the
  879. * main types of usage into 3 classes.
  880. */
  881. static inline void skb_queue_head_init(struct sk_buff_head *list)
  882. {
  883. spin_lock_init(&list->lock);
  884. __skb_queue_head_init(list);
  885. }
  886. static inline void skb_queue_head_init_class(struct sk_buff_head *list,
  887. struct lock_class_key *class)
  888. {
  889. skb_queue_head_init(list);
  890. lockdep_set_class(&list->lock, class);
  891. }
  892. /*
  893. * Insert an sk_buff on a list.
  894. *
  895. * The "__skb_xxxx()" functions are the non-atomic ones that
  896. * can only be called with interrupts disabled.
  897. */
  898. extern void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list);
  899. static inline void __skb_insert(struct sk_buff *newsk,
  900. struct sk_buff *prev, struct sk_buff *next,
  901. struct sk_buff_head *list)
  902. {
  903. newsk->next = next;
  904. newsk->prev = prev;
  905. next->prev = prev->next = newsk;
  906. list->qlen++;
  907. }
  908. static inline void __skb_queue_splice(const struct sk_buff_head *list,
  909. struct sk_buff *prev,
  910. struct sk_buff *next)
  911. {
  912. struct sk_buff *first = list->next;
  913. struct sk_buff *last = list->prev;
  914. first->prev = prev;
  915. prev->next = first;
  916. last->next = next;
  917. next->prev = last;
  918. }
  919. /**
  920. * skb_queue_splice - join two skb lists, this is designed for stacks
  921. * @list: the new list to add
  922. * @head: the place to add it in the first list
  923. */
  924. static inline void skb_queue_splice(const struct sk_buff_head *list,
  925. struct sk_buff_head *head)
  926. {
  927. if (!skb_queue_empty(list)) {
  928. __skb_queue_splice(list, (struct sk_buff *) head, head->next);
  929. head->qlen += list->qlen;
  930. }
  931. }
  932. /**
  933. * skb_queue_splice_init - join two skb lists and reinitialise the emptied list
  934. * @list: the new list to add
  935. * @head: the place to add it in the first list
  936. *
  937. * The list at @list is reinitialised
  938. */
  939. static inline void skb_queue_splice_init(struct sk_buff_head *list,
  940. struct sk_buff_head *head)
  941. {
  942. if (!skb_queue_empty(list)) {
  943. __skb_queue_splice(list, (struct sk_buff *) head, head->next);
  944. head->qlen += list->qlen;
  945. __skb_queue_head_init(list);
  946. }
  947. }
  948. /**
  949. * skb_queue_splice_tail - join two skb lists, each list being a queue
  950. * @list: the new list to add
  951. * @head: the place to add it in the first list
  952. */
  953. static inline void skb_queue_splice_tail(const struct sk_buff_head *list,
  954. struct sk_buff_head *head)
  955. {
  956. if (!skb_queue_empty(list)) {
  957. __skb_queue_splice(list, head->prev, (struct sk_buff *) head);
  958. head->qlen += list->qlen;
  959. }
  960. }
  961. /**
  962. * skb_queue_splice_tail_init - join two skb lists and reinitialise the emptied list
  963. * @list: the new list to add
  964. * @head: the place to add it in the first list
  965. *
  966. * Each of the lists is a queue.
  967. * The list at @list is reinitialised
  968. */
  969. static inline void skb_queue_splice_tail_init(struct sk_buff_head *list,
  970. struct sk_buff_head *head)
  971. {
  972. if (!skb_queue_empty(list)) {
  973. __skb_queue_splice(list, head->prev, (struct sk_buff *) head);
  974. head->qlen += list->qlen;
  975. __skb_queue_head_init(list);
  976. }
  977. }
  978. /**
  979. * __skb_queue_after - queue a buffer at the list head
  980. * @list: list to use
  981. * @prev: place after this buffer
  982. * @newsk: buffer to queue
  983. *
  984. * Queue a buffer int the middle of a list. This function takes no locks
  985. * and you must therefore hold required locks before calling it.
  986. *
  987. * A buffer cannot be placed on two lists at the same time.
  988. */
  989. static inline void __skb_queue_after(struct sk_buff_head *list,
  990. struct sk_buff *prev,
  991. struct sk_buff *newsk)
  992. {
  993. __skb_insert(newsk, prev, prev->next, list);
  994. }
  995. extern void skb_append(struct sk_buff *old, struct sk_buff *newsk,
  996. struct sk_buff_head *list);
  997. static inline void __skb_queue_before(struct sk_buff_head *list,
  998. struct sk_buff *next,
  999. struct sk_buff *newsk)
  1000. {
  1001. __skb_insert(newsk, next->prev, next, list);
  1002. }
  1003. /**
  1004. * __skb_queue_head - queue a buffer at the list head
  1005. * @list: list to use
  1006. * @newsk: buffer to queue
  1007. *
  1008. * Queue a buffer at the start of a list. This function takes no locks
  1009. * and you must therefore hold required locks before calling it.
  1010. *
  1011. * A buffer cannot be placed on two lists at the same time.
  1012. */
  1013. extern void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
  1014. static inline void __skb_queue_head(struct sk_buff_head *list,
  1015. struct sk_buff *newsk)
  1016. {
  1017. __skb_queue_after(list, (struct sk_buff *)list, newsk);
  1018. }
  1019. /**
  1020. * __skb_queue_tail - queue a buffer at the list tail
  1021. * @list: list to use
  1022. * @newsk: buffer to queue
  1023. *
  1024. * Queue a buffer at the end of a list. This function takes no locks
  1025. * and you must therefore hold required locks before calling it.
  1026. *
  1027. * A buffer cannot be placed on two lists at the same time.
  1028. */
  1029. extern void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
  1030. static inline void __skb_queue_tail(struct sk_buff_head *list,
  1031. struct sk_buff *newsk)
  1032. {
  1033. __skb_queue_before(list, (struct sk_buff *)list, newsk);
  1034. }
  1035. /*
  1036. * remove sk_buff from list. _Must_ be called atomically, and with
  1037. * the list known..
  1038. */
  1039. extern void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
  1040. static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
  1041. {
  1042. struct sk_buff *next, *prev;
  1043. list->qlen--;
  1044. next = skb->next;
  1045. prev = skb->prev;
  1046. skb->next = skb->prev = NULL;
  1047. next->prev = prev;
  1048. prev->next = next;
  1049. }
  1050. /**
  1051. * __skb_dequeue - remove from the head of the queue
  1052. * @list: list to dequeue from
  1053. *
  1054. * Remove the head of the list. This function does not take any locks
  1055. * so must be used with appropriate locks held only. The head item is
  1056. * returned or %NULL if the list is empty.
  1057. */
  1058. extern struct sk_buff *skb_dequeue(struct sk_buff_head *list);
  1059. static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
  1060. {
  1061. struct sk_buff *skb = skb_peek(list);
  1062. if (skb)
  1063. __skb_unlink(skb, list);
  1064. return skb;
  1065. }
  1066. /**
  1067. * __skb_dequeue_tail - remove from the tail of the queue
  1068. * @list: list to dequeue from
  1069. *
  1070. * Remove the tail of the list. This function does not take any locks
  1071. * so must be used with appropriate locks held only. The tail item is
  1072. * returned or %NULL if the list is empty.
  1073. */
  1074. extern struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
  1075. static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
  1076. {
  1077. struct sk_buff *skb = skb_peek_tail(list);
  1078. if (skb)
  1079. __skb_unlink(skb, list);
  1080. return skb;
  1081. }
  1082. static inline bool skb_is_nonlinear(const struct sk_buff *skb)
  1083. {
  1084. return skb->data_len;
  1085. }
  1086. static inline unsigned int skb_headlen(const struct sk_buff *skb)
  1087. {
  1088. return skb->len - skb->data_len;
  1089. }
  1090. static inline int skb_pagelen(const struct sk_buff *skb)
  1091. {
  1092. int i, len = 0;
  1093. for (i = (int)skb_shinfo(skb)->nr_frags - 1; i >= 0; i--)
  1094. len += skb_frag_size(&skb_shinfo(skb)->frags[i]);
  1095. return len + skb_headlen(skb);
  1096. }
  1097. /**
  1098. * __skb_fill_page_desc - initialise a paged fragment in an skb
  1099. * @skb: buffer containing fragment to be initialised
  1100. * @i: paged fragment index to initialise
  1101. * @page: the page to use for this fragment
  1102. * @off: the offset to the data with @page
  1103. * @size: the length of the data
  1104. *
  1105. * Initialises the @i'th fragment of @skb to point to &size bytes at
  1106. * offset @off within @page.
  1107. *
  1108. * Does not take any additional reference on the fragment.
  1109. */
  1110. static inline void __skb_fill_page_desc(struct sk_buff *skb, int i,
  1111. struct page *page, int off, int size)
  1112. {
  1113. skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
  1114. /*
  1115. * Propagate page->pfmemalloc to the skb if we can. The problem is
  1116. * that not all callers have unique ownership of the page. If
  1117. * pfmemalloc is set, we check the mapping as a mapping implies
  1118. * page->index is set (index and pfmemalloc share space).
  1119. * If it's a valid mapping, we cannot use page->pfmemalloc but we
  1120. * do not lose pfmemalloc information as the pages would not be
  1121. * allocated using __GFP_MEMALLOC.
  1122. */
  1123. if (page->pfmemalloc && !page->mapping)
  1124. skb->pfmemalloc = true;
  1125. frag->page.p = page;
  1126. frag->page_offset = off;
  1127. skb_frag_size_set(frag, size);
  1128. }
  1129. /**
  1130. * skb_fill_page_desc - initialise a paged fragment in an skb
  1131. * @skb: buffer containing fragment to be initialised
  1132. * @i: paged fragment index to initialise
  1133. * @page: the page to use for this fragment
  1134. * @off: the offset to the data with @page
  1135. * @size: the length of the data
  1136. *
  1137. * As per __skb_fill_page_desc() -- initialises the @i'th fragment of
  1138. * @skb to point to &size bytes at offset @off within @page. In
  1139. * addition updates @skb such that @i is the last fragment.
  1140. *
  1141. * Does not take any additional reference on the fragment.
  1142. */
  1143. static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
  1144. struct page *page, int off, int size)
  1145. {
  1146. __skb_fill_page_desc(skb, i, page, off, size);
  1147. skb_shinfo(skb)->nr_frags = i + 1;
  1148. }
  1149. extern void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page,
  1150. int off, int size, unsigned int truesize);
  1151. #define SKB_PAGE_ASSERT(skb) BUG_ON(skb_shinfo(skb)->nr_frags)
  1152. #define SKB_FRAG_ASSERT(skb) BUG_ON(skb_has_frag_list(skb))
  1153. #define SKB_LINEAR_ASSERT(skb) BUG_ON(skb_is_nonlinear(skb))
  1154. #ifdef NET_SKBUFF_DATA_USES_OFFSET
  1155. static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
  1156. {
  1157. return skb->head + skb->tail;
  1158. }
  1159. static inline void skb_reset_tail_pointer(struct sk_buff *skb)
  1160. {
  1161. skb->tail = skb->data - skb->head;
  1162. }
  1163. static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
  1164. {
  1165. skb_reset_tail_pointer(skb);
  1166. skb->tail += offset;
  1167. }
  1168. #else /* NET_SKBUFF_DATA_USES_OFFSET */
  1169. static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
  1170. {
  1171. return skb->tail;
  1172. }
  1173. static inline void skb_reset_tail_pointer(struct sk_buff *skb)
  1174. {
  1175. skb->tail = skb->data;
  1176. }
  1177. static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
  1178. {
  1179. skb->tail = skb->data + offset;
  1180. }
  1181. #endif /* NET_SKBUFF_DATA_USES_OFFSET */
  1182. /*
  1183. * Add data to an sk_buff
  1184. */
  1185. extern unsigned char *skb_put(struct sk_buff *skb, unsigned int len);
  1186. static inline unsigned char *__skb_put(struct sk_buff *skb, unsigned int len)
  1187. {
  1188. unsigned char *tmp = skb_tail_pointer(skb);
  1189. SKB_LINEAR_ASSERT(skb);
  1190. skb->tail += len;
  1191. skb->len += len;
  1192. return tmp;
  1193. }
  1194. extern unsigned char *skb_push(struct sk_buff *skb, unsigned int len);
  1195. static inline unsigned char *__skb_push(struct sk_buff *skb, unsigned int len)
  1196. {
  1197. skb->data -= len;
  1198. skb->len += len;
  1199. return skb->data;
  1200. }
  1201. extern unsigned char *skb_pull(struct sk_buff *skb, unsigned int len);
  1202. static inline unsigned char *__skb_pull(struct sk_buff *skb, unsigned int len)
  1203. {
  1204. skb->len -= len;
  1205. BUG_ON(skb->len < skb->data_len);
  1206. return skb->data += len;
  1207. }
  1208. static inline unsigned char *skb_pull_inline(struct sk_buff *skb, unsigned int len)
  1209. {
  1210. return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
  1211. }
  1212. extern unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta);
  1213. static inline unsigned char *__pskb_pull(struct sk_buff *skb, unsigned int len)
  1214. {
  1215. if (len > skb_headlen(skb) &&
  1216. !__pskb_pull_tail(skb, len - skb_headlen(skb)))
  1217. return NULL;
  1218. skb->len -= len;
  1219. return skb->data += len;
  1220. }
  1221. static inline unsigned char *pskb_pull(struct sk_buff *skb, unsigned int len)
  1222. {
  1223. return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len);
  1224. }
  1225. static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len)
  1226. {
  1227. if (likely(len <= skb_headlen(skb)))
  1228. return 1;
  1229. if (unlikely(len > skb->len))
  1230. return 0;
  1231. return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL;
  1232. }
  1233. /**
  1234. * skb_headroom - bytes at buffer head
  1235. * @skb: buffer to check
  1236. *
  1237. * Return the number of bytes of free space at the head of an &sk_buff.
  1238. */
  1239. static inline unsigned int skb_headroom(const struct sk_buff *skb)
  1240. {
  1241. return skb->data - skb->head;
  1242. }
  1243. /**
  1244. * skb_tailroom - bytes at buffer end
  1245. * @skb: buffer to check
  1246. *
  1247. * Return the number of bytes of free space at the tail of an sk_buff
  1248. */
  1249. static inline int skb_tailroom(const struct sk_buff *skb)
  1250. {
  1251. return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
  1252. }
  1253. /**
  1254. * skb_availroom - bytes at buffer end
  1255. * @skb: buffer to check
  1256. *
  1257. * Return the number of bytes of free space at the tail of an sk_buff
  1258. * allocated by sk_stream_alloc()
  1259. */
  1260. static inline int skb_availroom(const struct sk_buff *skb)
  1261. {
  1262. return skb_is_nonlinear(skb) ? 0 : skb->avail_size - skb->len;
  1263. }
  1264. /**
  1265. * skb_reserve - adjust headroom
  1266. * @skb: buffer to alter
  1267. * @len: bytes to move
  1268. *
  1269. * Increase the headroom of an empty &sk_buff by reducing the tail
  1270. * room. This is only allowed for an empty buffer.
  1271. */
  1272. static inline void skb_reserve(struct sk_buff *skb, int len)
  1273. {
  1274. skb->data += len;
  1275. skb->tail += len;
  1276. }
  1277. static inline void skb_reset_mac_len(struct sk_buff *skb)
  1278. {
  1279. skb->mac_len = skb->network_header - skb->mac_header;
  1280. }
  1281. #ifdef NET_SKBUFF_DATA_USES_OFFSET
  1282. static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
  1283. {
  1284. return skb->head + skb->transport_header;
  1285. }
  1286. static inline void skb_reset_transport_header(struct sk_buff *skb)
  1287. {
  1288. skb->transport_header = skb->data - skb->head;
  1289. }
  1290. static inline void skb_set_transport_header(struct sk_buff *skb,
  1291. const int offset)
  1292. {
  1293. skb_reset_transport_header(skb);
  1294. skb->transport_header += offset;
  1295. }
  1296. static inline unsigned char *skb_network_header(const struct sk_buff *skb)
  1297. {
  1298. return skb->head + skb->network_header;
  1299. }
  1300. static inline void skb_reset_network_header(struct sk_buff *skb)
  1301. {
  1302. skb->network_header = skb->data - skb->head;
  1303. }
  1304. static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
  1305. {
  1306. skb_reset_network_header(skb);
  1307. skb->network_header += offset;
  1308. }
  1309. static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
  1310. {
  1311. return skb->head + skb->mac_header;
  1312. }
  1313. static inline int skb_mac_header_was_set(const struct sk_buff *skb)
  1314. {
  1315. return skb->mac_header != ~0U;
  1316. }
  1317. static inline void skb_reset_mac_header(struct sk_buff *skb)
  1318. {
  1319. skb->mac_header = skb->data - skb->head;
  1320. }
  1321. static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
  1322. {
  1323. skb_reset_mac_header(skb);
  1324. skb->mac_header += offset;
  1325. }
  1326. #else /* NET_SKBUFF_DATA_USES_OFFSET */
  1327. static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
  1328. {
  1329. return skb->transport_header;
  1330. }
  1331. static inline void skb_reset_transport_header(struct sk_buff *skb)
  1332. {
  1333. skb->transport_header = skb->data;
  1334. }
  1335. static inline void skb_set_transport_header(struct sk_buff *skb,
  1336. const int offset)
  1337. {
  1338. skb->transport_header = skb->data + offset;
  1339. }
  1340. static inline unsigned char *skb_network_header(const struct sk_buff *skb)
  1341. {
  1342. return skb->network_header;
  1343. }
  1344. static inline void skb_reset_network_header(struct sk_buff *skb)
  1345. {
  1346. skb->network_header = skb->data;
  1347. }
  1348. static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
  1349. {
  1350. skb->network_header = skb->data + offset;
  1351. }
  1352. static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
  1353. {
  1354. return skb->mac_header;
  1355. }
  1356. static inline int skb_mac_header_was_set(const struct sk_buff *skb)
  1357. {
  1358. return skb->mac_header != NULL;
  1359. }
  1360. static inline void skb_reset_mac_header(struct sk_buff *skb)
  1361. {
  1362. skb->mac_header = skb->data;
  1363. }
  1364. static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
  1365. {
  1366. skb->mac_header = skb->data + offset;
  1367. }
  1368. #endif /* NET_SKBUFF_DATA_USES_OFFSET */
  1369. static inline void skb_mac_header_rebuild(struct sk_buff *skb)
  1370. {
  1371. if (skb_mac_header_was_set(skb)) {
  1372. const unsigned char *old_mac = skb_mac_header(skb);
  1373. skb_set_mac_header(skb, -skb->mac_len);
  1374. memmove(skb_mac_header(skb), old_mac, skb->mac_len);
  1375. }
  1376. }
  1377. static inline int skb_checksum_start_offset(const struct sk_buff *skb)
  1378. {
  1379. return skb->csum_start - skb_headroom(skb);
  1380. }
  1381. static inline int skb_transport_offset(const struct sk_buff *skb)
  1382. {
  1383. return skb_transport_header(skb) - skb->data;
  1384. }
  1385. static inline u32 skb_network_header_len(const struct sk_buff *skb)
  1386. {
  1387. return skb->transport_header - skb->network_header;
  1388. }
  1389. static inline int skb_network_offset(const struct sk_buff *skb)
  1390. {
  1391. return skb_network_header(skb) - skb->data;
  1392. }
  1393. static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len)
  1394. {
  1395. return pskb_may_pull(skb, skb_network_offset(skb) + len);
  1396. }
  1397. /*
  1398. * CPUs often take a performance hit when accessing unaligned memory
  1399. * locations. The actual performance hit varies, it can be small if the
  1400. * hardware handles it or large if we have to take an exception and fix it
  1401. * in software.
  1402. *
  1403. * Since an ethernet header is 14 bytes network drivers often end up with
  1404. * the IP header at an unaligned offset. The IP header can be aligned by
  1405. * shifting the start of the packet by 2 bytes. Drivers should do this
  1406. * with:
  1407. *
  1408. * skb_reserve(skb, NET_IP_ALIGN);
  1409. *
  1410. * The downside to this alignment of the IP header is that the DMA is now
  1411. * unaligned. On some architectures the cost of an unaligned DMA is high
  1412. * and this cost outweighs the gains made by aligning the IP header.
  1413. *
  1414. * Since this trade off varies between architectures, we allow NET_IP_ALIGN
  1415. * to be overridden.
  1416. */
  1417. #ifndef NET_IP_ALIGN
  1418. #define NET_IP_ALIGN 2
  1419. #endif
  1420. /*
  1421. * The networking layer reserves some headroom in skb data (via
  1422. * dev_alloc_skb). This is used to avoid having to reallocate skb data when
  1423. * the header has to grow. In the default case, if the header has to grow
  1424. * 32 bytes or less we avoid the reallocation.
  1425. *
  1426. * Unfortunately this headroom changes the DMA alignment of the resulting
  1427. * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
  1428. * on some architectures. An architecture can override this value,
  1429. * perhaps setting it to a cacheline in size (since that will maintain
  1430. * cacheline alignment of the DMA). It must be a power of 2.
  1431. *
  1432. * Various parts of the networking layer expect at least 32 bytes of
  1433. * headroom, you should not reduce this.
  1434. *
  1435. * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS)
  1436. * to reduce average number of cache lines per packet.
  1437. * get_rps_cpus() for example only access one 64 bytes aligned block :
  1438. * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8)
  1439. */
  1440. #ifndef NET_SKB_PAD
  1441. #define NET_SKB_PAD max(32, L1_CACHE_BYTES)
  1442. #endif
  1443. extern int ___pskb_trim(struct sk_buff *skb, unsigned int len);
  1444. static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
  1445. {
  1446. if (unlikely(skb_is_nonlinear(skb))) {
  1447. WARN_ON(1);
  1448. return;
  1449. }
  1450. skb->len = len;
  1451. skb_set_tail_pointer(skb, len);
  1452. }
  1453. extern void skb_trim(struct sk_buff *skb, unsigned int len);
  1454. static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
  1455. {
  1456. if (skb->data_len)
  1457. return ___pskb_trim(skb, len);
  1458. __skb_trim(skb, len);
  1459. return 0;
  1460. }
  1461. static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
  1462. {
  1463. return (len < skb->len) ? __pskb_trim(skb, len) : 0;
  1464. }
  1465. /**
  1466. * pskb_trim_unique - remove end from a paged unique (not cloned) buffer
  1467. * @skb: buffer to alter
  1468. * @len: new length
  1469. *
  1470. * This is identical to pskb_trim except that the caller knows that
  1471. * the skb is not cloned so we should never get an error due to out-
  1472. * of-memory.
  1473. */
  1474. static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
  1475. {
  1476. int err = pskb_trim(skb, len);
  1477. BUG_ON(err);
  1478. }
  1479. /**
  1480. * skb_orphan - orphan a buffer
  1481. * @skb: buffer to orphan
  1482. *
  1483. * If a buffer currently has an owner then we call the owner's
  1484. * destructor function and make the @skb unowned. The buffer continues
  1485. * to exist but is no longer charged to its former owner.
  1486. */
  1487. static inline void skb_orphan(struct sk_buff *skb)
  1488. {
  1489. if (skb->destructor)
  1490. skb->destructor(skb);
  1491. skb->destructor = NULL;
  1492. skb->sk = NULL;
  1493. }
  1494. /**
  1495. * skb_orphan_frags - orphan the frags contained in a buffer
  1496. * @skb: buffer to orphan frags from
  1497. * @gfp_mask: allocation mask for replacement pages
  1498. *
  1499. * For each frag in the SKB which needs a destructor (i.e. has an
  1500. * owner) create a copy of that frag and release the original
  1501. * page by calling the destructor.
  1502. */
  1503. static inline int skb_orphan_frags(struct sk_buff *skb, gfp_t gfp_mask)
  1504. {
  1505. if (likely(!(skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY)))
  1506. return 0;
  1507. return skb_copy_ubufs(skb, gfp_mask);
  1508. }
  1509. /**
  1510. * __skb_queue_purge - empty a list
  1511. * @list: list to empty
  1512. *
  1513. * Delete all buffers on an &sk_buff list. Each buffer is removed from
  1514. * the list and one reference dropped. This function does not take the
  1515. * list lock and the caller must hold the relevant locks to use it.
  1516. */
  1517. extern void skb_queue_purge(struct sk_buff_head *list);
  1518. static inline void __skb_queue_purge(struct sk_buff_head *list)
  1519. {
  1520. struct sk_buff *skb;
  1521. while ((skb = __skb_dequeue(list)) != NULL)
  1522. kfree_skb(skb);
  1523. }
  1524. extern void *netdev_alloc_frag(unsigned int fragsz);
  1525. extern struct sk_buff *__netdev_alloc_skb(struct net_device *dev,
  1526. unsigned int length,
  1527. gfp_t gfp_mask);
  1528. /**
  1529. * netdev_alloc_skb - allocate an skbuff for rx on a specific device
  1530. * @dev: network device to receive on
  1531. * @length: length to allocate
  1532. *
  1533. * Allocate a new &sk_buff and assign it a usage count of one. The
  1534. * buffer has unspecified headroom built in. Users should allocate
  1535. * the headroom they think they need without accounting for the
  1536. * built in space. The built in space is used for optimisations.
  1537. *
  1538. * %NULL is returned if there is no free memory. Although this function
  1539. * allocates memory it can be called from an interrupt.
  1540. */
  1541. static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
  1542. unsigned int length)
  1543. {
  1544. return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
  1545. }
  1546. /* legacy helper around __netdev_alloc_skb() */
  1547. static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
  1548. gfp_t gfp_mask)
  1549. {
  1550. return __netdev_alloc_skb(NULL, length, gfp_mask);
  1551. }
  1552. /* legacy helper around netdev_alloc_skb() */
  1553. static inline struct sk_buff *dev_alloc_skb(unsigned int length)
  1554. {
  1555. return netdev_alloc_skb(NULL, length);
  1556. }
  1557. static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev,
  1558. unsigned int length, gfp_t gfp)
  1559. {
  1560. struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp);
  1561. if (NET_IP_ALIGN && skb)
  1562. skb_reserve(skb, NET_IP_ALIGN);
  1563. return skb;
  1564. }
  1565. static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev,
  1566. unsigned int length)
  1567. {
  1568. return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC);
  1569. }
  1570. /**
  1571. * skb_frag_page - retrieve the page refered to by a paged fragment
  1572. * @frag: the paged fragment
  1573. *
  1574. * Returns the &struct page associated with @frag.
  1575. */
  1576. static inline struct page *skb_frag_page(const skb_frag_t *frag)
  1577. {
  1578. return frag->page.p;
  1579. }
  1580. /**
  1581. * __skb_frag_ref - take an addition reference on a paged fragment.
  1582. * @frag: the paged fragment
  1583. *
  1584. * Takes an additional reference on the paged fragment @frag.
  1585. */
  1586. static inline void __skb_frag_ref(skb_frag_t *frag)
  1587. {
  1588. get_page(skb_frag_page(frag));
  1589. }
  1590. /**
  1591. * skb_frag_ref - take an addition reference on a paged fragment of an skb.
  1592. * @skb: the buffer
  1593. * @f: the fragment offset.
  1594. *
  1595. * Takes an additional reference on the @f'th paged fragment of @skb.
  1596. */
  1597. static inline void skb_frag_ref(struct sk_buff *skb, int f)
  1598. {
  1599. __skb_frag_ref(&skb_shinfo(skb)->frags[f]);
  1600. }
  1601. /**
  1602. * __skb_frag_unref - release a reference on a paged fragment.
  1603. * @frag: the paged fragment
  1604. *
  1605. * Releases a reference on the paged fragment @frag.
  1606. */
  1607. static inline void __skb_frag_unref(skb_frag_t *frag)
  1608. {
  1609. put_page(skb_frag_page(frag));
  1610. }
  1611. /**
  1612. * skb_frag_unref - release a reference on a paged fragment of an skb.
  1613. * @skb: the buffer
  1614. * @f: the fragment offset
  1615. *
  1616. * Releases a reference on the @f'th paged fragment of @skb.
  1617. */
  1618. static inline void skb_frag_unref(struct sk_buff *skb, int f)
  1619. {
  1620. __skb_frag_unref(&skb_shinfo(skb)->frags[f]);
  1621. }
  1622. /**
  1623. * skb_frag_address - gets the address of the data contained in a paged fragment
  1624. * @frag: the paged fragment buffer
  1625. *
  1626. * Returns the address of the data within @frag. The page must already
  1627. * be mapped.
  1628. */
  1629. static inline void *skb_frag_address(const skb_frag_t *frag)
  1630. {
  1631. return page_address(skb_frag_page(frag)) + frag->page_offset;
  1632. }
  1633. /**
  1634. * skb_frag_address_safe - gets the address of the data contained in a paged fragment
  1635. * @frag: the paged fragment buffer
  1636. *
  1637. * Returns the address of the data within @frag. Checks that the page
  1638. * is mapped and returns %NULL otherwise.
  1639. */
  1640. static inline void *skb_frag_address_safe(const skb_frag_t *frag)
  1641. {
  1642. void *ptr = page_address(skb_frag_page(frag));
  1643. if (unlikely(!ptr))
  1644. return NULL;
  1645. return ptr + frag->page_offset;
  1646. }
  1647. /**
  1648. * __skb_frag_set_page - sets the page contained in a paged fragment
  1649. * @frag: the paged fragment
  1650. * @page: the page to set
  1651. *
  1652. * Sets the fragment @frag to contain @page.
  1653. */
  1654. static inline void __skb_frag_set_page(skb_frag_t *frag, struct page *page)
  1655. {
  1656. frag->page.p = page;
  1657. }
  1658. /**
  1659. * skb_frag_set_page - sets the page contained in a paged fragment of an skb
  1660. * @skb: the buffer
  1661. * @f: the fragment offset
  1662. * @page: the page to set
  1663. *
  1664. * Sets the @f'th fragment of @skb to contain @page.
  1665. */
  1666. static inline void skb_frag_set_page(struct sk_buff *skb, int f,
  1667. struct page *page)
  1668. {
  1669. __skb_frag_set_page(&skb_shinfo(skb)->frags[f], page);
  1670. }
  1671. /**
  1672. * skb_frag_dma_map - maps a paged fragment via the DMA API
  1673. * @dev: the device to map the fragment to
  1674. * @frag: the paged fragment to map
  1675. * @offset: the offset within the fragment (starting at the
  1676. * fragment's own offset)
  1677. * @size: the number of bytes to map
  1678. * @dir: the direction of the mapping (%PCI_DMA_*)
  1679. *
  1680. * Maps the page associated with @frag to @device.
  1681. */
  1682. static inline dma_addr_t skb_frag_dma_map(struct device *dev,
  1683. const skb_frag_t *frag,
  1684. size_t offset, size_t size,
  1685. enum dma_data_direction dir)
  1686. {
  1687. return dma_map_page(dev, skb_frag_page(frag),
  1688. frag->page_offset + offset, size, dir);
  1689. }
  1690. static inline struct sk_buff *pskb_copy(struct sk_buff *skb,
  1691. gfp_t gfp_mask)
  1692. {
  1693. return __pskb_copy(skb, skb_headroom(skb), gfp_mask);
  1694. }
  1695. /**
  1696. * skb_clone_writable - is the header of a clone writable
  1697. * @skb: buffer to check
  1698. * @len: length up to which to write
  1699. *
  1700. * Returns true if modifying the header part of the cloned buffer
  1701. * does not requires the data to be copied.
  1702. */
  1703. static inline int skb_clone_writable(const struct sk_buff *skb, unsigned int len)
  1704. {
  1705. return !skb_header_cloned(skb) &&
  1706. skb_headroom(skb) + len <= skb->hdr_len;
  1707. }
  1708. static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom,
  1709. int cloned)
  1710. {
  1711. int delta = 0;
  1712. if (headroom > skb_headroom(skb))
  1713. delta = headroom - skb_headroom(skb);
  1714. if (delta || cloned)
  1715. return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0,
  1716. GFP_ATOMIC);
  1717. return 0;
  1718. }
  1719. /**
  1720. * skb_cow - copy header of skb when it is required
  1721. * @skb: buffer to cow
  1722. * @headroom: needed headroom
  1723. *
  1724. * If the skb passed lacks sufficient headroom or its data part
  1725. * is shared, data is reallocated. If reallocation fails, an error
  1726. * is returned and original skb is not changed.
  1727. *
  1728. * The result is skb with writable area skb->head...skb->tail
  1729. * and at least @headroom of space at head.
  1730. */
  1731. static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
  1732. {
  1733. return __skb_cow(skb, headroom, skb_cloned(skb));
  1734. }
  1735. /**
  1736. * skb_cow_head - skb_cow but only making the head writable
  1737. * @skb: buffer to cow
  1738. * @headroom: needed headroom
  1739. *
  1740. * This function is identical to skb_cow except that we replace the
  1741. * skb_cloned check by skb_header_cloned. It should be used when
  1742. * you only need to push on some header and do not need to modify
  1743. * the data.
  1744. */
  1745. static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom)
  1746. {
  1747. return __skb_cow(skb, headroom, skb_header_cloned(skb));
  1748. }
  1749. /**
  1750. * skb_padto - pad an skbuff up to a minimal size
  1751. * @skb: buffer to pad
  1752. * @len: minimal length
  1753. *
  1754. * Pads up a buffer to ensure the trailing bytes exist and are
  1755. * blanked. If the buffer already contains sufficient data it
  1756. * is untouched. Otherwise it is extended. Returns zero on
  1757. * success. The skb is freed on error.
  1758. */
  1759. static inline int skb_padto(struct sk_buff *skb, unsigned int len)
  1760. {
  1761. unsigned int size = skb->len;
  1762. if (likely(size >= len))
  1763. return 0;
  1764. return skb_pad(skb, len - size);
  1765. }
  1766. static inline int skb_add_data(struct sk_buff *skb,
  1767. char __user *from, int copy)
  1768. {
  1769. const int off = skb->len;
  1770. if (skb->ip_summed == CHECKSUM_NONE) {
  1771. int err = 0;
  1772. __wsum csum = csum_and_copy_from_user(from, skb_put(skb, copy),
  1773. copy, 0, &err);
  1774. if (!err) {
  1775. skb->csum = csum_block_add(skb->csum, csum, off);
  1776. return 0;
  1777. }
  1778. } else if (!copy_from_user(skb_put(skb, copy), from, copy))
  1779. return 0;
  1780. __skb_trim(skb, off);
  1781. return -EFAULT;
  1782. }
  1783. static inline bool skb_can_coalesce(struct sk_buff *skb, int i,
  1784. const struct page *page, int off)
  1785. {
  1786. if (i) {
  1787. const struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1];
  1788. return page == skb_frag_page(frag) &&
  1789. off == frag->page_offset + skb_frag_size(frag);
  1790. }
  1791. return false;
  1792. }
  1793. static inline int __skb_linearize(struct sk_buff *skb)
  1794. {
  1795. return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
  1796. }
  1797. /**
  1798. * skb_linearize - convert paged skb to linear one
  1799. * @skb: buffer to linarize
  1800. *
  1801. * If there is no free memory -ENOMEM is returned, otherwise zero
  1802. * is returned and the old skb data released.
  1803. */
  1804. static inline int skb_linearize(struct sk_buff *skb)
  1805. {
  1806. return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
  1807. }
  1808. /**
  1809. * skb_linearize_cow - make sure skb is linear and writable
  1810. * @skb: buffer to process
  1811. *
  1812. * If there is no free memory -ENOMEM is returned, otherwise zero
  1813. * is returned and the old skb data released.
  1814. */
  1815. static inline int skb_linearize_cow(struct sk_buff *skb)
  1816. {
  1817. return skb_is_nonlinear(skb) || skb_cloned(skb) ?
  1818. __skb_linearize(skb) : 0;
  1819. }
  1820. /**
  1821. * skb_postpull_rcsum - update checksum for received skb after pull
  1822. * @skb: buffer to update
  1823. * @start: start of data before pull
  1824. * @len: length of data pulled
  1825. *
  1826. * After doing a pull on a received packet, you need to call this to
  1827. * update the CHECKSUM_COMPLETE checksum, or set ip_summed to
  1828. * CHECKSUM_NONE so that it can be recomputed from scratch.
  1829. */
  1830. static inline void skb_postpull_rcsum(struct sk_buff *skb,
  1831. const void *start, unsigned int len)
  1832. {
  1833. if (skb->ip_summed == CHECKSUM_COMPLETE)
  1834. skb->csum = csum_sub(skb->csum, csum_partial(start, len, 0));
  1835. }
  1836. unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
  1837. /**
  1838. * pskb_trim_rcsum - trim received skb and update checksum
  1839. * @skb: buffer to trim
  1840. * @len: new length
  1841. *
  1842. * This is exactly the same as pskb_trim except that it ensures the
  1843. * checksum of received packets are still valid after the operation.
  1844. */
  1845. static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
  1846. {
  1847. if (likely(len >= skb->len))
  1848. return 0;
  1849. if (skb->ip_summed == CHECKSUM_COMPLETE)
  1850. skb->ip_summed = CHECKSUM_NONE;
  1851. return __pskb_trim(skb, len);
  1852. }
  1853. #define skb_queue_walk(queue, skb) \
  1854. for (skb = (queue)->next; \
  1855. skb != (struct sk_buff *)(queue); \
  1856. skb = skb->next)
  1857. #define skb_queue_walk_safe(queue, skb, tmp) \
  1858. for (skb = (queue)->next, tmp = skb->next; \
  1859. skb != (struct sk_buff *)(queue); \
  1860. skb = tmp, tmp = skb->next)
  1861. #define skb_queue_walk_from(queue, skb) \
  1862. for (; skb != (struct sk_buff *)(queue); \
  1863. skb = skb->next)
  1864. #define skb_queue_walk_from_safe(queue, skb, tmp) \
  1865. for (tmp = skb->next; \
  1866. skb != (struct sk_buff *)(queue); \
  1867. skb = tmp, tmp = skb->next)
  1868. #define skb_queue_reverse_walk(queue, skb) \
  1869. for (skb = (queue)->prev; \
  1870. skb != (struct sk_buff *)(queue); \
  1871. skb = skb->prev)
  1872. #define skb_queue_reverse_walk_safe(queue, skb, tmp) \
  1873. for (skb = (queue)->prev, tmp = skb->prev; \
  1874. skb != (struct sk_buff *)(queue); \
  1875. skb = tmp, tmp = skb->prev)
  1876. #define skb_queue_reverse_walk_from_safe(queue, skb, tmp) \
  1877. for (tmp = skb->prev; \
  1878. skb != (struct sk_buff *)(queue); \
  1879. skb = tmp, tmp = skb->prev)
  1880. static inline bool skb_has_frag_list(const struct sk_buff *skb)
  1881. {
  1882. return skb_shinfo(skb)->frag_list != NULL;
  1883. }
  1884. static inline void skb_frag_list_init(struct sk_buff *skb)
  1885. {
  1886. skb_shinfo(skb)->frag_list = NULL;
  1887. }
  1888. static inline void skb_frag_add_head(struct sk_buff *skb, struct sk_buff *frag)
  1889. {
  1890. frag->next = skb_shinfo(skb)->frag_list;
  1891. skb_shinfo(skb)->frag_list = frag;
  1892. }
  1893. #define skb_walk_frags(skb, iter) \
  1894. for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next)
  1895. extern struct sk_buff *__skb_recv_datagram(struct sock *sk, unsigned flags,
  1896. int *peeked, int *off, int *err);
  1897. extern struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags,
  1898. int noblock, int *err);
  1899. extern unsigned int datagram_poll(struct file *file, struct socket *sock,
  1900. struct poll_table_struct *wait);
  1901. extern int skb_copy_datagram_iovec(const struct sk_buff *from,
  1902. int offset, struct iovec *to,
  1903. int size);
  1904. extern int skb_copy_and_csum_datagram_iovec(struct sk_buff *skb,
  1905. int hlen,
  1906. struct iovec *iov);
  1907. extern int skb_copy_datagram_from_iovec(struct sk_buff *skb,
  1908. int offset,
  1909. const struct iovec *from,
  1910. int from_offset,
  1911. int len);
  1912. extern int skb_copy_datagram_const_iovec(const struct sk_buff *from,
  1913. int offset,
  1914. const struct iovec *to,
  1915. int to_offset,
  1916. int size);
  1917. extern void skb_free_datagram(struct sock *sk, struct sk_buff *skb);
  1918. extern void skb_free_datagram_locked(struct sock *sk,
  1919. struct sk_buff *skb);
  1920. extern int skb_kill_datagram(struct sock *sk, struct sk_buff *skb,
  1921. unsigned int flags);
  1922. extern __wsum skb_checksum(const struct sk_buff *skb, int offset,
  1923. int len, __wsum csum);
  1924. extern int skb_copy_bits(const struct sk_buff *skb, int offset,
  1925. void *to, int len);
  1926. extern int skb_store_bits(struct sk_buff *skb, int offset,
  1927. const void *from, int len);
  1928. extern __wsum skb_copy_and_csum_bits(const struct sk_buff *skb,
  1929. int offset, u8 *to, int len,
  1930. __wsum csum);
  1931. extern int skb_splice_bits(struct sk_buff *skb,
  1932. unsigned int offset,
  1933. struct pipe_inode_info *pipe,
  1934. unsigned int len,
  1935. unsigned int flags);
  1936. extern void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
  1937. extern void skb_split(struct sk_buff *skb,
  1938. struct sk_buff *skb1, const u32 len);
  1939. extern int skb_shift(struct sk_buff *tgt, struct sk_buff *skb,
  1940. int shiftlen);
  1941. extern struct sk_buff *skb_segment(struct sk_buff *skb,
  1942. netdev_features_t features);
  1943. static inline void *skb_header_pointer(const struct sk_buff *skb, int offset,
  1944. int len, void *buffer)
  1945. {
  1946. int hlen = skb_headlen(skb);
  1947. if (hlen - offset >= len)
  1948. return skb->data + offset;
  1949. if (skb_copy_bits(skb, offset, buffer, len) < 0)
  1950. return NULL;
  1951. return buffer;
  1952. }
  1953. static inline void skb_copy_from_linear_data(const struct sk_buff *skb,
  1954. void *to,
  1955. const unsigned int len)
  1956. {
  1957. memcpy(to, skb->data, len);
  1958. }
  1959. static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb,
  1960. const int offset, void *to,
  1961. const unsigned int len)
  1962. {
  1963. memcpy(to, skb->data + offset, len);
  1964. }
  1965. static inline void skb_copy_to_linear_data(struct sk_buff *skb,
  1966. const void *from,
  1967. const unsigned int len)
  1968. {
  1969. memcpy(skb->data, from, len);
  1970. }
  1971. static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb,
  1972. const int offset,
  1973. const void *from,
  1974. const unsigned int len)
  1975. {
  1976. memcpy(skb->data + offset, from, len);
  1977. }
  1978. extern void skb_init(void);
  1979. static inline ktime_t skb_get_ktime(const struct sk_buff *skb)
  1980. {
  1981. return skb->tstamp;
  1982. }
  1983. /**
  1984. * skb_get_timestamp - get timestamp from a skb
  1985. * @skb: skb to get stamp from
  1986. * @stamp: pointer to struct timeval to store stamp in
  1987. *
  1988. * Timestamps are stored in the skb as offsets to a base timestamp.
  1989. * This function converts the offset back to a struct timeval and stores
  1990. * it in stamp.
  1991. */
  1992. static inline void skb_get_timestamp(const struct sk_buff *skb,
  1993. struct timeval *stamp)
  1994. {
  1995. *stamp = ktime_to_timeval(skb->tstamp);
  1996. }
  1997. static inline void skb_get_timestampns(const struct sk_buff *skb,
  1998. struct timespec *stamp)
  1999. {
  2000. *stamp = ktime_to_timespec(skb->tstamp);
  2001. }
  2002. static inline void __net_timestamp(struct sk_buff *skb)
  2003. {
  2004. skb->tstamp = ktime_get_real();
  2005. }
  2006. static inline ktime_t net_timedelta(ktime_t t)
  2007. {
  2008. return ktime_sub(ktime_get_real(), t);
  2009. }
  2010. static inline ktime_t net_invalid_timestamp(void)
  2011. {
  2012. return ktime_set(0, 0);
  2013. }
  2014. extern void skb_timestamping_init(void);
  2015. #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING
  2016. extern void skb_clone_tx_timestamp(struct sk_buff *skb);
  2017. extern bool skb_defer_rx_timestamp(struct sk_buff *skb);
  2018. #else /* CONFIG_NETWORK_PHY_TIMESTAMPING */
  2019. static inline void skb_clone_tx_timestamp(struct sk_buff *skb)
  2020. {
  2021. }
  2022. static inline bool skb_defer_rx_timestamp(struct sk_buff *skb)
  2023. {
  2024. return false;
  2025. }
  2026. #endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */
  2027. /**
  2028. * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps
  2029. *
  2030. * PHY drivers may accept clones of transmitted packets for
  2031. * timestamping via their phy_driver.txtstamp method. These drivers
  2032. * must call this function to return the skb back to the stack, with
  2033. * or without a timestamp.
  2034. *
  2035. * @skb: clone of the the original outgoing packet
  2036. * @hwtstamps: hardware time stamps, may be NULL if not available
  2037. *
  2038. */
  2039. void skb_complete_tx_timestamp(struct sk_buff *skb,
  2040. struct skb_shared_hwtstamps *hwtstamps);
  2041. /**
  2042. * skb_tstamp_tx - queue clone of skb with send time stamps
  2043. * @orig_skb: the original outgoing packet
  2044. * @hwtstamps: hardware time stamps, may be NULL if not available
  2045. *
  2046. * If the skb has a socket associated, then this function clones the
  2047. * skb (thus sharing the actual data and optional structures), stores
  2048. * the optional hardware time stamping information (if non NULL) or
  2049. * generates a software time stamp (otherwise), then queues the clone
  2050. * to the error queue of the socket. Errors are silently ignored.
  2051. */
  2052. extern void skb_tstamp_tx(struct sk_buff *orig_skb,
  2053. struct skb_shared_hwtstamps *hwtstamps);
  2054. static inline void sw_tx_timestamp(struct sk_buff *skb)
  2055. {
  2056. if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP &&
  2057. !(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS))
  2058. skb_tstamp_tx(skb, NULL);
  2059. }
  2060. /**
  2061. * skb_tx_timestamp() - Driver hook for transmit timestamping
  2062. *
  2063. * Ethernet MAC Drivers should call this function in their hard_xmit()
  2064. * function immediately before giving the sk_buff to the MAC hardware.
  2065. *
  2066. * @skb: A socket buffer.
  2067. */
  2068. static inline void skb_tx_timestamp(struct sk_buff *skb)
  2069. {
  2070. skb_clone_tx_timestamp(skb);
  2071. sw_tx_timestamp(skb);
  2072. }
  2073. /**
  2074. * skb_complete_wifi_ack - deliver skb with wifi status
  2075. *
  2076. * @skb: the original outgoing packet
  2077. * @acked: ack status
  2078. *
  2079. */
  2080. void skb_complete_wifi_ack(struct sk_buff *skb, bool acked);
  2081. extern __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
  2082. extern __sum16 __skb_checksum_complete(struct sk_buff *skb);
  2083. static inline int skb_csum_unnecessary(const struct sk_buff *skb)
  2084. {
  2085. return skb->ip_summed & CHECKSUM_UNNECESSARY;
  2086. }
  2087. /**
  2088. * skb_checksum_complete - Calculate checksum of an entire packet
  2089. * @skb: packet to process
  2090. *
  2091. * This function calculates the checksum over the entire packet plus
  2092. * the value of skb->csum. The latter can be used to supply the
  2093. * checksum of a pseudo header as used by TCP/UDP. It returns the
  2094. * checksum.
  2095. *
  2096. * For protocols that contain complete checksums such as ICMP/TCP/UDP,
  2097. * this function can be used to verify that checksum on received
  2098. * packets. In that case the function should return zero if the
  2099. * checksum is correct. In particular, this function will return zero
  2100. * if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
  2101. * hardware has already verified the correctness of the checksum.
  2102. */
  2103. static inline __sum16 skb_checksum_complete(struct sk_buff *skb)
  2104. {
  2105. return skb_csum_unnecessary(skb) ?
  2106. 0 : __skb_checksum_complete(skb);
  2107. }
  2108. #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
  2109. extern void nf_conntrack_destroy(struct nf_conntrack *nfct);
  2110. static inline void nf_conntrack_put(struct nf_conntrack *nfct)
  2111. {
  2112. if (nfct && atomic_dec_and_test(&nfct->use))
  2113. nf_conntrack_destroy(nfct);
  2114. }
  2115. static inline void nf_conntrack_get(struct nf_conntrack *nfct)
  2116. {
  2117. if (nfct)
  2118. atomic_inc(&nfct->use);
  2119. }
  2120. #endif
  2121. #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
  2122. static inline void nf_conntrack_get_reasm(struct sk_buff *skb)
  2123. {
  2124. if (skb)
  2125. atomic_inc(&skb->users);
  2126. }
  2127. static inline void nf_conntrack_put_reasm(struct sk_buff *skb)
  2128. {
  2129. if (skb)
  2130. kfree_skb(skb);
  2131. }
  2132. #endif
  2133. #ifdef CONFIG_BRIDGE_NETFILTER
  2134. static inline void nf_bridge_put(struct nf_bridge_info *nf_bridge)
  2135. {
  2136. if (nf_bridge && atomic_dec_and_test(&nf_bridge->use))
  2137. kfree(nf_bridge);
  2138. }
  2139. static inline void nf_bridge_get(struct nf_bridge_info *nf_bridge)
  2140. {
  2141. if (nf_bridge)
  2142. atomic_inc(&nf_bridge->use);
  2143. }
  2144. #endif /* CONFIG_BRIDGE_NETFILTER */
  2145. static inline void nf_reset(struct sk_buff *skb)
  2146. {
  2147. #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
  2148. nf_conntrack_put(skb->nfct);
  2149. skb->nfct = NULL;
  2150. #endif
  2151. #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
  2152. nf_conntrack_put_reasm(skb->nfct_reasm);
  2153. skb->nfct_reasm = NULL;
  2154. #endif
  2155. #ifdef CONFIG_BRIDGE_NETFILTER
  2156. nf_bridge_put(skb->nf_bridge);
  2157. skb->nf_bridge = NULL;
  2158. #endif
  2159. }
  2160. /* Note: This doesn't put any conntrack and bridge info in dst. */
  2161. static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src)
  2162. {
  2163. #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
  2164. dst->nfct = src->nfct;
  2165. nf_conntrack_get(src->nfct);
  2166. dst->nfctinfo = src->nfctinfo;
  2167. #endif
  2168. #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
  2169. dst->nfct_reasm = src->nfct_reasm;
  2170. nf_conntrack_get_reasm(src->nfct_reasm);
  2171. #endif
  2172. #ifdef CONFIG_BRIDGE_NETFILTER
  2173. dst->nf_bridge = src->nf_bridge;
  2174. nf_bridge_get(src->nf_bridge);
  2175. #endif
  2176. }
  2177. static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src)
  2178. {
  2179. #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
  2180. nf_conntrack_put(dst->nfct);
  2181. #endif
  2182. #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
  2183. nf_conntrack_put_reasm(dst->nfct_reasm);
  2184. #endif
  2185. #ifdef CONFIG_BRIDGE_NETFILTER
  2186. nf_bridge_put(dst->nf_bridge);
  2187. #endif
  2188. __nf_copy(dst, src);
  2189. }
  2190. #ifdef CONFIG_NETWORK_SECMARK
  2191. static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
  2192. {
  2193. to->secmark = from->secmark;
  2194. }
  2195. static inline void skb_init_secmark(struct sk_buff *skb)
  2196. {
  2197. skb->secmark = 0;
  2198. }
  2199. #else
  2200. static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
  2201. { }
  2202. static inline void skb_init_secmark(struct sk_buff *skb)
  2203. { }
  2204. #endif
  2205. static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping)
  2206. {
  2207. skb->queue_mapping = queue_mapping;
  2208. }
  2209. static inline u16 skb_get_queue_mapping(const struct sk_buff *skb)
  2210. {
  2211. return skb->queue_mapping;
  2212. }
  2213. static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from)
  2214. {
  2215. to->queue_mapping = from->queue_mapping;
  2216. }
  2217. static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue)
  2218. {
  2219. skb->queue_mapping = rx_queue + 1;
  2220. }
  2221. static inline u16 skb_get_rx_queue(const struct sk_buff *skb)
  2222. {
  2223. return skb->queue_mapping - 1;
  2224. }
  2225. static inline bool skb_rx_queue_recorded(const struct sk_buff *skb)
  2226. {
  2227. return skb->queue_mapping != 0;
  2228. }
  2229. extern u16 __skb_tx_hash(const struct net_device *dev,
  2230. const struct sk_buff *skb,
  2231. unsigned int num_tx_queues);
  2232. #ifdef CONFIG_XFRM
  2233. static inline struct sec_path *skb_sec_path(struct sk_buff *skb)
  2234. {
  2235. return skb->sp;
  2236. }
  2237. #else
  2238. static inline struct sec_path *skb_sec_path(struct sk_buff *skb)
  2239. {
  2240. return NULL;
  2241. }
  2242. #endif
  2243. static inline bool skb_is_gso(const struct sk_buff *skb)
  2244. {
  2245. return skb_shinfo(skb)->gso_size;
  2246. }
  2247. static inline bool skb_is_gso_v6(const struct sk_buff *skb)
  2248. {
  2249. return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6;
  2250. }
  2251. extern void __skb_warn_lro_forwarding(const struct sk_buff *skb);
  2252. static inline bool skb_warn_if_lro(const struct sk_buff *skb)
  2253. {
  2254. /* LRO sets gso_size but not gso_type, whereas if GSO is really
  2255. * wanted then gso_type will be set. */
  2256. const struct skb_shared_info *shinfo = skb_shinfo(skb);
  2257. if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 &&
  2258. unlikely(shinfo->gso_type == 0)) {
  2259. __skb_warn_lro_forwarding(skb);
  2260. return true;
  2261. }
  2262. return false;
  2263. }
  2264. static inline void skb_forward_csum(struct sk_buff *skb)
  2265. {
  2266. /* Unfortunately we don't support this one. Any brave souls? */
  2267. if (skb->ip_summed == CHECKSUM_COMPLETE)
  2268. skb->ip_summed = CHECKSUM_NONE;
  2269. }
  2270. /**
  2271. * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE
  2272. * @skb: skb to check
  2273. *
  2274. * fresh skbs have their ip_summed set to CHECKSUM_NONE.
  2275. * Instead of forcing ip_summed to CHECKSUM_NONE, we can
  2276. * use this helper, to document places where we make this assertion.
  2277. */
  2278. static inline void skb_checksum_none_assert(const struct sk_buff *skb)
  2279. {
  2280. #ifdef DEBUG
  2281. BUG_ON(skb->ip_summed != CHECKSUM_NONE);
  2282. #endif
  2283. }
  2284. bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off);
  2285. static inline bool skb_is_recycleable(const struct sk_buff *skb, int skb_size)
  2286. {
  2287. if (irqs_disabled())
  2288. return false;
  2289. if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY)
  2290. return false;
  2291. if (skb_is_nonlinear(skb) || skb->fclone != SKB_FCLONE_UNAVAILABLE)
  2292. return false;
  2293. skb_size = SKB_DATA_ALIGN(skb_size + NET_SKB_PAD);
  2294. if (skb_end_offset(skb) < skb_size)
  2295. return false;
  2296. if (skb_shared(skb) || skb_cloned(skb))
  2297. return false;
  2298. return true;
  2299. }
  2300. /**
  2301. * skb_head_is_locked - Determine if the skb->head is locked down
  2302. * @skb: skb to check
  2303. *
  2304. * The head on skbs build around a head frag can be removed if they are
  2305. * not cloned. This function returns true if the skb head is locked down
  2306. * due to either being allocated via kmalloc, or by being a clone with
  2307. * multiple references to the head.
  2308. */
  2309. static inline bool skb_head_is_locked(const struct sk_buff *skb)
  2310. {
  2311. return !skb->head_frag || skb_cloned(skb);
  2312. }
  2313. #endif /* __KERNEL__ */
  2314. #endif /* _LINUX_SKBUFF_H */