evlist.c 21 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918
  1. /*
  2. * Copyright (C) 2011, Red Hat Inc, Arnaldo Carvalho de Melo <acme@redhat.com>
  3. *
  4. * Parts came from builtin-{top,stat,record}.c, see those files for further
  5. * copyright notes.
  6. *
  7. * Released under the GPL v2. (and only v2, not any later version)
  8. */
  9. #include "util.h"
  10. #include <lk/debugfs.h>
  11. #include <poll.h>
  12. #include "cpumap.h"
  13. #include "thread_map.h"
  14. #include "target.h"
  15. #include "evlist.h"
  16. #include "evsel.h"
  17. #include <unistd.h>
  18. #include "parse-events.h"
  19. #include <sys/mman.h>
  20. #include <linux/bitops.h>
  21. #include <linux/hash.h>
  22. #define FD(e, x, y) (*(int *)xyarray__entry(e->fd, x, y))
  23. #define SID(e, x, y) xyarray__entry(e->sample_id, x, y)
  24. void perf_evlist__init(struct perf_evlist *evlist, struct cpu_map *cpus,
  25. struct thread_map *threads)
  26. {
  27. int i;
  28. for (i = 0; i < PERF_EVLIST__HLIST_SIZE; ++i)
  29. INIT_HLIST_HEAD(&evlist->heads[i]);
  30. INIT_LIST_HEAD(&evlist->entries);
  31. perf_evlist__set_maps(evlist, cpus, threads);
  32. evlist->workload.pid = -1;
  33. }
  34. struct perf_evlist *perf_evlist__new(void)
  35. {
  36. struct perf_evlist *evlist = zalloc(sizeof(*evlist));
  37. if (evlist != NULL)
  38. perf_evlist__init(evlist, NULL, NULL);
  39. return evlist;
  40. }
  41. void perf_evlist__config(struct perf_evlist *evlist,
  42. struct perf_record_opts *opts)
  43. {
  44. struct perf_evsel *evsel;
  45. /*
  46. * Set the evsel leader links before we configure attributes,
  47. * since some might depend on this info.
  48. */
  49. if (opts->group)
  50. perf_evlist__set_leader(evlist);
  51. if (evlist->cpus->map[0] < 0)
  52. opts->no_inherit = true;
  53. list_for_each_entry(evsel, &evlist->entries, node) {
  54. perf_evsel__config(evsel, opts);
  55. if (evlist->nr_entries > 1)
  56. perf_evsel__set_sample_id(evsel);
  57. }
  58. }
  59. static void perf_evlist__purge(struct perf_evlist *evlist)
  60. {
  61. struct perf_evsel *pos, *n;
  62. list_for_each_entry_safe(pos, n, &evlist->entries, node) {
  63. list_del_init(&pos->node);
  64. perf_evsel__delete(pos);
  65. }
  66. evlist->nr_entries = 0;
  67. }
  68. void perf_evlist__exit(struct perf_evlist *evlist)
  69. {
  70. free(evlist->mmap);
  71. free(evlist->pollfd);
  72. evlist->mmap = NULL;
  73. evlist->pollfd = NULL;
  74. }
  75. void perf_evlist__delete(struct perf_evlist *evlist)
  76. {
  77. perf_evlist__purge(evlist);
  78. perf_evlist__exit(evlist);
  79. free(evlist);
  80. }
  81. void perf_evlist__add(struct perf_evlist *evlist, struct perf_evsel *entry)
  82. {
  83. list_add_tail(&entry->node, &evlist->entries);
  84. ++evlist->nr_entries;
  85. }
  86. void perf_evlist__splice_list_tail(struct perf_evlist *evlist,
  87. struct list_head *list,
  88. int nr_entries)
  89. {
  90. list_splice_tail(list, &evlist->entries);
  91. evlist->nr_entries += nr_entries;
  92. }
  93. void __perf_evlist__set_leader(struct list_head *list)
  94. {
  95. struct perf_evsel *evsel, *leader;
  96. leader = list_entry(list->next, struct perf_evsel, node);
  97. evsel = list_entry(list->prev, struct perf_evsel, node);
  98. leader->nr_members = evsel->idx - leader->idx + 1;
  99. list_for_each_entry(evsel, list, node) {
  100. evsel->leader = leader;
  101. }
  102. }
  103. void perf_evlist__set_leader(struct perf_evlist *evlist)
  104. {
  105. if (evlist->nr_entries) {
  106. evlist->nr_groups = evlist->nr_entries > 1 ? 1 : 0;
  107. __perf_evlist__set_leader(&evlist->entries);
  108. }
  109. }
  110. int perf_evlist__add_default(struct perf_evlist *evlist)
  111. {
  112. struct perf_event_attr attr = {
  113. .type = PERF_TYPE_HARDWARE,
  114. .config = PERF_COUNT_HW_CPU_CYCLES,
  115. };
  116. struct perf_evsel *evsel;
  117. event_attr_init(&attr);
  118. evsel = perf_evsel__new(&attr, 0);
  119. if (evsel == NULL)
  120. goto error;
  121. /* use strdup() because free(evsel) assumes name is allocated */
  122. evsel->name = strdup("cycles");
  123. if (!evsel->name)
  124. goto error_free;
  125. perf_evlist__add(evlist, evsel);
  126. return 0;
  127. error_free:
  128. perf_evsel__delete(evsel);
  129. error:
  130. return -ENOMEM;
  131. }
  132. static int perf_evlist__add_attrs(struct perf_evlist *evlist,
  133. struct perf_event_attr *attrs, size_t nr_attrs)
  134. {
  135. struct perf_evsel *evsel, *n;
  136. LIST_HEAD(head);
  137. size_t i;
  138. for (i = 0; i < nr_attrs; i++) {
  139. evsel = perf_evsel__new(attrs + i, evlist->nr_entries + i);
  140. if (evsel == NULL)
  141. goto out_delete_partial_list;
  142. list_add_tail(&evsel->node, &head);
  143. }
  144. perf_evlist__splice_list_tail(evlist, &head, nr_attrs);
  145. return 0;
  146. out_delete_partial_list:
  147. list_for_each_entry_safe(evsel, n, &head, node)
  148. perf_evsel__delete(evsel);
  149. return -1;
  150. }
  151. int __perf_evlist__add_default_attrs(struct perf_evlist *evlist,
  152. struct perf_event_attr *attrs, size_t nr_attrs)
  153. {
  154. size_t i;
  155. for (i = 0; i < nr_attrs; i++)
  156. event_attr_init(attrs + i);
  157. return perf_evlist__add_attrs(evlist, attrs, nr_attrs);
  158. }
  159. struct perf_evsel *
  160. perf_evlist__find_tracepoint_by_id(struct perf_evlist *evlist, int id)
  161. {
  162. struct perf_evsel *evsel;
  163. list_for_each_entry(evsel, &evlist->entries, node) {
  164. if (evsel->attr.type == PERF_TYPE_TRACEPOINT &&
  165. (int)evsel->attr.config == id)
  166. return evsel;
  167. }
  168. return NULL;
  169. }
  170. int perf_evlist__add_newtp(struct perf_evlist *evlist,
  171. const char *sys, const char *name, void *handler)
  172. {
  173. struct perf_evsel *evsel;
  174. evsel = perf_evsel__newtp(sys, name, evlist->nr_entries);
  175. if (evsel == NULL)
  176. return -1;
  177. evsel->handler.func = handler;
  178. perf_evlist__add(evlist, evsel);
  179. return 0;
  180. }
  181. void perf_evlist__disable(struct perf_evlist *evlist)
  182. {
  183. int cpu, thread;
  184. struct perf_evsel *pos;
  185. int nr_cpus = cpu_map__nr(evlist->cpus);
  186. int nr_threads = thread_map__nr(evlist->threads);
  187. for (cpu = 0; cpu < nr_cpus; cpu++) {
  188. list_for_each_entry(pos, &evlist->entries, node) {
  189. if (!perf_evsel__is_group_leader(pos))
  190. continue;
  191. for (thread = 0; thread < nr_threads; thread++)
  192. ioctl(FD(pos, cpu, thread),
  193. PERF_EVENT_IOC_DISABLE, 0);
  194. }
  195. }
  196. }
  197. void perf_evlist__enable(struct perf_evlist *evlist)
  198. {
  199. int cpu, thread;
  200. struct perf_evsel *pos;
  201. int nr_cpus = cpu_map__nr(evlist->cpus);
  202. int nr_threads = thread_map__nr(evlist->threads);
  203. for (cpu = 0; cpu < nr_cpus; cpu++) {
  204. list_for_each_entry(pos, &evlist->entries, node) {
  205. if (!perf_evsel__is_group_leader(pos))
  206. continue;
  207. for (thread = 0; thread < nr_threads; thread++)
  208. ioctl(FD(pos, cpu, thread),
  209. PERF_EVENT_IOC_ENABLE, 0);
  210. }
  211. }
  212. }
  213. static int perf_evlist__alloc_pollfd(struct perf_evlist *evlist)
  214. {
  215. int nr_cpus = cpu_map__nr(evlist->cpus);
  216. int nr_threads = thread_map__nr(evlist->threads);
  217. int nfds = nr_cpus * nr_threads * evlist->nr_entries;
  218. evlist->pollfd = malloc(sizeof(struct pollfd) * nfds);
  219. return evlist->pollfd != NULL ? 0 : -ENOMEM;
  220. }
  221. void perf_evlist__add_pollfd(struct perf_evlist *evlist, int fd)
  222. {
  223. fcntl(fd, F_SETFL, O_NONBLOCK);
  224. evlist->pollfd[evlist->nr_fds].fd = fd;
  225. evlist->pollfd[evlist->nr_fds].events = POLLIN;
  226. evlist->nr_fds++;
  227. }
  228. static void perf_evlist__id_hash(struct perf_evlist *evlist,
  229. struct perf_evsel *evsel,
  230. int cpu, int thread, u64 id)
  231. {
  232. int hash;
  233. struct perf_sample_id *sid = SID(evsel, cpu, thread);
  234. sid->id = id;
  235. sid->evsel = evsel;
  236. hash = hash_64(sid->id, PERF_EVLIST__HLIST_BITS);
  237. hlist_add_head(&sid->node, &evlist->heads[hash]);
  238. }
  239. void perf_evlist__id_add(struct perf_evlist *evlist, struct perf_evsel *evsel,
  240. int cpu, int thread, u64 id)
  241. {
  242. perf_evlist__id_hash(evlist, evsel, cpu, thread, id);
  243. evsel->id[evsel->ids++] = id;
  244. }
  245. static int perf_evlist__id_add_fd(struct perf_evlist *evlist,
  246. struct perf_evsel *evsel,
  247. int cpu, int thread, int fd)
  248. {
  249. u64 read_data[4] = { 0, };
  250. int id_idx = 1; /* The first entry is the counter value */
  251. u64 id;
  252. int ret;
  253. ret = ioctl(fd, PERF_EVENT_IOC_ID, &id);
  254. if (!ret)
  255. goto add;
  256. if (errno != ENOTTY)
  257. return -1;
  258. /* Legacy way to get event id.. All hail to old kernels! */
  259. /*
  260. * This way does not work with group format read, so bail
  261. * out in that case.
  262. */
  263. if (perf_evlist__read_format(evlist) & PERF_FORMAT_GROUP)
  264. return -1;
  265. if (!(evsel->attr.read_format & PERF_FORMAT_ID) ||
  266. read(fd, &read_data, sizeof(read_data)) == -1)
  267. return -1;
  268. if (evsel->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
  269. ++id_idx;
  270. if (evsel->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
  271. ++id_idx;
  272. id = read_data[id_idx];
  273. add:
  274. perf_evlist__id_add(evlist, evsel, cpu, thread, id);
  275. return 0;
  276. }
  277. struct perf_evsel *perf_evlist__id2evsel(struct perf_evlist *evlist, u64 id)
  278. {
  279. struct hlist_head *head;
  280. struct perf_sample_id *sid;
  281. int hash;
  282. if (evlist->nr_entries == 1)
  283. return perf_evlist__first(evlist);
  284. hash = hash_64(id, PERF_EVLIST__HLIST_BITS);
  285. head = &evlist->heads[hash];
  286. hlist_for_each_entry(sid, head, node)
  287. if (sid->id == id)
  288. return sid->evsel;
  289. if (!perf_evlist__sample_id_all(evlist))
  290. return perf_evlist__first(evlist);
  291. return NULL;
  292. }
  293. union perf_event *perf_evlist__mmap_read(struct perf_evlist *evlist, int idx)
  294. {
  295. struct perf_mmap *md = &evlist->mmap[idx];
  296. unsigned int head = perf_mmap__read_head(md);
  297. unsigned int old = md->prev;
  298. unsigned char *data = md->base + page_size;
  299. union perf_event *event = NULL;
  300. if (evlist->overwrite) {
  301. /*
  302. * If we're further behind than half the buffer, there's a chance
  303. * the writer will bite our tail and mess up the samples under us.
  304. *
  305. * If we somehow ended up ahead of the head, we got messed up.
  306. *
  307. * In either case, truncate and restart at head.
  308. */
  309. int diff = head - old;
  310. if (diff > md->mask / 2 || diff < 0) {
  311. fprintf(stderr, "WARNING: failed to keep up with mmap data.\n");
  312. /*
  313. * head points to a known good entry, start there.
  314. */
  315. old = head;
  316. }
  317. }
  318. if (old != head) {
  319. size_t size;
  320. event = (union perf_event *)&data[old & md->mask];
  321. size = event->header.size;
  322. /*
  323. * Event straddles the mmap boundary -- header should always
  324. * be inside due to u64 alignment of output.
  325. */
  326. if ((old & md->mask) + size != ((old + size) & md->mask)) {
  327. unsigned int offset = old;
  328. unsigned int len = min(sizeof(*event), size), cpy;
  329. void *dst = &md->event_copy;
  330. do {
  331. cpy = min(md->mask + 1 - (offset & md->mask), len);
  332. memcpy(dst, &data[offset & md->mask], cpy);
  333. offset += cpy;
  334. dst += cpy;
  335. len -= cpy;
  336. } while (len);
  337. event = &md->event_copy;
  338. }
  339. old += size;
  340. }
  341. md->prev = old;
  342. if (!evlist->overwrite)
  343. perf_mmap__write_tail(md, old);
  344. return event;
  345. }
  346. static void __perf_evlist__munmap(struct perf_evlist *evlist, int idx)
  347. {
  348. if (evlist->mmap[idx].base != NULL) {
  349. munmap(evlist->mmap[idx].base, evlist->mmap_len);
  350. evlist->mmap[idx].base = NULL;
  351. }
  352. }
  353. void perf_evlist__munmap(struct perf_evlist *evlist)
  354. {
  355. int i;
  356. for (i = 0; i < evlist->nr_mmaps; i++)
  357. __perf_evlist__munmap(evlist, i);
  358. free(evlist->mmap);
  359. evlist->mmap = NULL;
  360. }
  361. static int perf_evlist__alloc_mmap(struct perf_evlist *evlist)
  362. {
  363. evlist->nr_mmaps = cpu_map__nr(evlist->cpus);
  364. if (cpu_map__empty(evlist->cpus))
  365. evlist->nr_mmaps = thread_map__nr(evlist->threads);
  366. evlist->mmap = zalloc(evlist->nr_mmaps * sizeof(struct perf_mmap));
  367. return evlist->mmap != NULL ? 0 : -ENOMEM;
  368. }
  369. static int __perf_evlist__mmap(struct perf_evlist *evlist,
  370. int idx, int prot, int mask, int fd)
  371. {
  372. evlist->mmap[idx].prev = 0;
  373. evlist->mmap[idx].mask = mask;
  374. evlist->mmap[idx].base = mmap(NULL, evlist->mmap_len, prot,
  375. MAP_SHARED, fd, 0);
  376. if (evlist->mmap[idx].base == MAP_FAILED) {
  377. evlist->mmap[idx].base = NULL;
  378. return -1;
  379. }
  380. perf_evlist__add_pollfd(evlist, fd);
  381. return 0;
  382. }
  383. static int perf_evlist__mmap_per_cpu(struct perf_evlist *evlist, int prot, int mask)
  384. {
  385. struct perf_evsel *evsel;
  386. int cpu, thread;
  387. int nr_cpus = cpu_map__nr(evlist->cpus);
  388. int nr_threads = thread_map__nr(evlist->threads);
  389. for (cpu = 0; cpu < nr_cpus; cpu++) {
  390. int output = -1;
  391. for (thread = 0; thread < nr_threads; thread++) {
  392. list_for_each_entry(evsel, &evlist->entries, node) {
  393. int fd = FD(evsel, cpu, thread);
  394. if (output == -1) {
  395. output = fd;
  396. if (__perf_evlist__mmap(evlist, cpu,
  397. prot, mask, output) < 0)
  398. goto out_unmap;
  399. } else {
  400. if (ioctl(fd, PERF_EVENT_IOC_SET_OUTPUT, output) != 0)
  401. goto out_unmap;
  402. }
  403. if ((evsel->attr.read_format & PERF_FORMAT_ID) &&
  404. perf_evlist__id_add_fd(evlist, evsel, cpu, thread, fd) < 0)
  405. goto out_unmap;
  406. }
  407. }
  408. }
  409. return 0;
  410. out_unmap:
  411. for (cpu = 0; cpu < nr_cpus; cpu++)
  412. __perf_evlist__munmap(evlist, cpu);
  413. return -1;
  414. }
  415. static int perf_evlist__mmap_per_thread(struct perf_evlist *evlist, int prot, int mask)
  416. {
  417. struct perf_evsel *evsel;
  418. int thread;
  419. int nr_threads = thread_map__nr(evlist->threads);
  420. for (thread = 0; thread < nr_threads; thread++) {
  421. int output = -1;
  422. list_for_each_entry(evsel, &evlist->entries, node) {
  423. int fd = FD(evsel, 0, thread);
  424. if (output == -1) {
  425. output = fd;
  426. if (__perf_evlist__mmap(evlist, thread,
  427. prot, mask, output) < 0)
  428. goto out_unmap;
  429. } else {
  430. if (ioctl(fd, PERF_EVENT_IOC_SET_OUTPUT, output) != 0)
  431. goto out_unmap;
  432. }
  433. if ((evsel->attr.read_format & PERF_FORMAT_ID) &&
  434. perf_evlist__id_add_fd(evlist, evsel, 0, thread, fd) < 0)
  435. goto out_unmap;
  436. }
  437. }
  438. return 0;
  439. out_unmap:
  440. for (thread = 0; thread < nr_threads; thread++)
  441. __perf_evlist__munmap(evlist, thread);
  442. return -1;
  443. }
  444. /** perf_evlist__mmap - Create per cpu maps to receive events
  445. *
  446. * @evlist - list of events
  447. * @pages - map length in pages
  448. * @overwrite - overwrite older events?
  449. *
  450. * If overwrite is false the user needs to signal event consuption using:
  451. *
  452. * struct perf_mmap *m = &evlist->mmap[cpu];
  453. * unsigned int head = perf_mmap__read_head(m);
  454. *
  455. * perf_mmap__write_tail(m, head)
  456. *
  457. * Using perf_evlist__read_on_cpu does this automatically.
  458. */
  459. int perf_evlist__mmap(struct perf_evlist *evlist, unsigned int pages,
  460. bool overwrite)
  461. {
  462. struct perf_evsel *evsel;
  463. const struct cpu_map *cpus = evlist->cpus;
  464. const struct thread_map *threads = evlist->threads;
  465. int prot = PROT_READ | (overwrite ? 0 : PROT_WRITE), mask;
  466. /* 512 kiB: default amount of unprivileged mlocked memory */
  467. if (pages == UINT_MAX)
  468. pages = (512 * 1024) / page_size;
  469. else if (!is_power_of_2(pages))
  470. return -EINVAL;
  471. mask = pages * page_size - 1;
  472. if (evlist->mmap == NULL && perf_evlist__alloc_mmap(evlist) < 0)
  473. return -ENOMEM;
  474. if (evlist->pollfd == NULL && perf_evlist__alloc_pollfd(evlist) < 0)
  475. return -ENOMEM;
  476. evlist->overwrite = overwrite;
  477. evlist->mmap_len = (pages + 1) * page_size;
  478. list_for_each_entry(evsel, &evlist->entries, node) {
  479. if ((evsel->attr.read_format & PERF_FORMAT_ID) &&
  480. evsel->sample_id == NULL &&
  481. perf_evsel__alloc_id(evsel, cpu_map__nr(cpus), threads->nr) < 0)
  482. return -ENOMEM;
  483. }
  484. if (cpu_map__empty(cpus))
  485. return perf_evlist__mmap_per_thread(evlist, prot, mask);
  486. return perf_evlist__mmap_per_cpu(evlist, prot, mask);
  487. }
  488. int perf_evlist__create_maps(struct perf_evlist *evlist,
  489. struct perf_target *target)
  490. {
  491. evlist->threads = thread_map__new_str(target->pid, target->tid,
  492. target->uid);
  493. if (evlist->threads == NULL)
  494. return -1;
  495. if (perf_target__has_task(target))
  496. evlist->cpus = cpu_map__dummy_new();
  497. else if (!perf_target__has_cpu(target) && !target->uses_mmap)
  498. evlist->cpus = cpu_map__dummy_new();
  499. else
  500. evlist->cpus = cpu_map__new(target->cpu_list);
  501. if (evlist->cpus == NULL)
  502. goto out_delete_threads;
  503. return 0;
  504. out_delete_threads:
  505. thread_map__delete(evlist->threads);
  506. return -1;
  507. }
  508. void perf_evlist__delete_maps(struct perf_evlist *evlist)
  509. {
  510. cpu_map__delete(evlist->cpus);
  511. thread_map__delete(evlist->threads);
  512. evlist->cpus = NULL;
  513. evlist->threads = NULL;
  514. }
  515. int perf_evlist__apply_filters(struct perf_evlist *evlist)
  516. {
  517. struct perf_evsel *evsel;
  518. int err = 0;
  519. const int ncpus = cpu_map__nr(evlist->cpus),
  520. nthreads = thread_map__nr(evlist->threads);
  521. list_for_each_entry(evsel, &evlist->entries, node) {
  522. if (evsel->filter == NULL)
  523. continue;
  524. err = perf_evsel__set_filter(evsel, ncpus, nthreads, evsel->filter);
  525. if (err)
  526. break;
  527. }
  528. return err;
  529. }
  530. int perf_evlist__set_filter(struct perf_evlist *evlist, const char *filter)
  531. {
  532. struct perf_evsel *evsel;
  533. int err = 0;
  534. const int ncpus = cpu_map__nr(evlist->cpus),
  535. nthreads = thread_map__nr(evlist->threads);
  536. list_for_each_entry(evsel, &evlist->entries, node) {
  537. err = perf_evsel__set_filter(evsel, ncpus, nthreads, filter);
  538. if (err)
  539. break;
  540. }
  541. return err;
  542. }
  543. bool perf_evlist__valid_sample_type(struct perf_evlist *evlist)
  544. {
  545. struct perf_evsel *first = perf_evlist__first(evlist), *pos = first;
  546. list_for_each_entry_continue(pos, &evlist->entries, node) {
  547. if (first->attr.sample_type != pos->attr.sample_type)
  548. return false;
  549. }
  550. return true;
  551. }
  552. u64 perf_evlist__sample_type(struct perf_evlist *evlist)
  553. {
  554. struct perf_evsel *first = perf_evlist__first(evlist);
  555. return first->attr.sample_type;
  556. }
  557. bool perf_evlist__valid_read_format(struct perf_evlist *evlist)
  558. {
  559. struct perf_evsel *first = perf_evlist__first(evlist), *pos = first;
  560. u64 read_format = first->attr.read_format;
  561. u64 sample_type = first->attr.sample_type;
  562. list_for_each_entry_continue(pos, &evlist->entries, node) {
  563. if (read_format != pos->attr.read_format)
  564. return false;
  565. }
  566. /* PERF_SAMPLE_READ imples PERF_FORMAT_ID. */
  567. if ((sample_type & PERF_SAMPLE_READ) &&
  568. !(read_format & PERF_FORMAT_ID)) {
  569. return false;
  570. }
  571. return true;
  572. }
  573. u64 perf_evlist__read_format(struct perf_evlist *evlist)
  574. {
  575. struct perf_evsel *first = perf_evlist__first(evlist);
  576. return first->attr.read_format;
  577. }
  578. u16 perf_evlist__id_hdr_size(struct perf_evlist *evlist)
  579. {
  580. struct perf_evsel *first = perf_evlist__first(evlist);
  581. struct perf_sample *data;
  582. u64 sample_type;
  583. u16 size = 0;
  584. if (!first->attr.sample_id_all)
  585. goto out;
  586. sample_type = first->attr.sample_type;
  587. if (sample_type & PERF_SAMPLE_TID)
  588. size += sizeof(data->tid) * 2;
  589. if (sample_type & PERF_SAMPLE_TIME)
  590. size += sizeof(data->time);
  591. if (sample_type & PERF_SAMPLE_ID)
  592. size += sizeof(data->id);
  593. if (sample_type & PERF_SAMPLE_STREAM_ID)
  594. size += sizeof(data->stream_id);
  595. if (sample_type & PERF_SAMPLE_CPU)
  596. size += sizeof(data->cpu) * 2;
  597. out:
  598. return size;
  599. }
  600. bool perf_evlist__valid_sample_id_all(struct perf_evlist *evlist)
  601. {
  602. struct perf_evsel *first = perf_evlist__first(evlist), *pos = first;
  603. list_for_each_entry_continue(pos, &evlist->entries, node) {
  604. if (first->attr.sample_id_all != pos->attr.sample_id_all)
  605. return false;
  606. }
  607. return true;
  608. }
  609. bool perf_evlist__sample_id_all(struct perf_evlist *evlist)
  610. {
  611. struct perf_evsel *first = perf_evlist__first(evlist);
  612. return first->attr.sample_id_all;
  613. }
  614. void perf_evlist__set_selected(struct perf_evlist *evlist,
  615. struct perf_evsel *evsel)
  616. {
  617. evlist->selected = evsel;
  618. }
  619. void perf_evlist__close(struct perf_evlist *evlist)
  620. {
  621. struct perf_evsel *evsel;
  622. int ncpus = cpu_map__nr(evlist->cpus);
  623. int nthreads = thread_map__nr(evlist->threads);
  624. list_for_each_entry_reverse(evsel, &evlist->entries, node)
  625. perf_evsel__close(evsel, ncpus, nthreads);
  626. }
  627. int perf_evlist__open(struct perf_evlist *evlist)
  628. {
  629. struct perf_evsel *evsel;
  630. int err;
  631. list_for_each_entry(evsel, &evlist->entries, node) {
  632. err = perf_evsel__open(evsel, evlist->cpus, evlist->threads);
  633. if (err < 0)
  634. goto out_err;
  635. }
  636. return 0;
  637. out_err:
  638. perf_evlist__close(evlist);
  639. errno = -err;
  640. return err;
  641. }
  642. int perf_evlist__prepare_workload(struct perf_evlist *evlist,
  643. struct perf_target *target,
  644. const char *argv[], bool pipe_output,
  645. bool want_signal)
  646. {
  647. int child_ready_pipe[2], go_pipe[2];
  648. char bf;
  649. if (pipe(child_ready_pipe) < 0) {
  650. perror("failed to create 'ready' pipe");
  651. return -1;
  652. }
  653. if (pipe(go_pipe) < 0) {
  654. perror("failed to create 'go' pipe");
  655. goto out_close_ready_pipe;
  656. }
  657. evlist->workload.pid = fork();
  658. if (evlist->workload.pid < 0) {
  659. perror("failed to fork");
  660. goto out_close_pipes;
  661. }
  662. if (!evlist->workload.pid) {
  663. if (pipe_output)
  664. dup2(2, 1);
  665. signal(SIGTERM, SIG_DFL);
  666. close(child_ready_pipe[0]);
  667. close(go_pipe[1]);
  668. fcntl(go_pipe[0], F_SETFD, FD_CLOEXEC);
  669. /*
  670. * Do a dummy execvp to get the PLT entry resolved,
  671. * so we avoid the resolver overhead on the real
  672. * execvp call.
  673. */
  674. execvp("", (char **)argv);
  675. /*
  676. * Tell the parent we're ready to go
  677. */
  678. close(child_ready_pipe[1]);
  679. /*
  680. * Wait until the parent tells us to go.
  681. */
  682. if (read(go_pipe[0], &bf, 1) == -1)
  683. perror("unable to read pipe");
  684. execvp(argv[0], (char **)argv);
  685. perror(argv[0]);
  686. if (want_signal)
  687. kill(getppid(), SIGUSR1);
  688. exit(-1);
  689. }
  690. if (perf_target__none(target))
  691. evlist->threads->map[0] = evlist->workload.pid;
  692. close(child_ready_pipe[1]);
  693. close(go_pipe[0]);
  694. /*
  695. * wait for child to settle
  696. */
  697. if (read(child_ready_pipe[0], &bf, 1) == -1) {
  698. perror("unable to read pipe");
  699. goto out_close_pipes;
  700. }
  701. fcntl(go_pipe[1], F_SETFD, FD_CLOEXEC);
  702. evlist->workload.cork_fd = go_pipe[1];
  703. close(child_ready_pipe[0]);
  704. return 0;
  705. out_close_pipes:
  706. close(go_pipe[0]);
  707. close(go_pipe[1]);
  708. out_close_ready_pipe:
  709. close(child_ready_pipe[0]);
  710. close(child_ready_pipe[1]);
  711. return -1;
  712. }
  713. int perf_evlist__start_workload(struct perf_evlist *evlist)
  714. {
  715. if (evlist->workload.cork_fd > 0) {
  716. char bf = 0;
  717. int ret;
  718. /*
  719. * Remove the cork, let it rip!
  720. */
  721. ret = write(evlist->workload.cork_fd, &bf, 1);
  722. if (ret < 0)
  723. perror("enable to write to pipe");
  724. close(evlist->workload.cork_fd);
  725. return ret;
  726. }
  727. return 0;
  728. }
  729. int perf_evlist__parse_sample(struct perf_evlist *evlist, union perf_event *event,
  730. struct perf_sample *sample)
  731. {
  732. struct perf_evsel *evsel = perf_evlist__first(evlist);
  733. return perf_evsel__parse_sample(evsel, event, sample);
  734. }
  735. size_t perf_evlist__fprintf(struct perf_evlist *evlist, FILE *fp)
  736. {
  737. struct perf_evsel *evsel;
  738. size_t printed = 0;
  739. list_for_each_entry(evsel, &evlist->entries, node) {
  740. printed += fprintf(fp, "%s%s", evsel->idx ? ", " : "",
  741. perf_evsel__name(evsel));
  742. }
  743. return printed + fprintf(fp, "\n");;
  744. }