init.c 58 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377
  1. /* $Id: init.c,v 1.209 2002/02/09 19:49:31 davem Exp $
  2. * arch/sparc64/mm/init.c
  3. *
  4. * Copyright (C) 1996-1999 David S. Miller (davem@caip.rutgers.edu)
  5. * Copyright (C) 1997-1999 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
  6. */
  7. #include <linux/module.h>
  8. #include <linux/kernel.h>
  9. #include <linux/sched.h>
  10. #include <linux/string.h>
  11. #include <linux/init.h>
  12. #include <linux/bootmem.h>
  13. #include <linux/mm.h>
  14. #include <linux/hugetlb.h>
  15. #include <linux/slab.h>
  16. #include <linux/initrd.h>
  17. #include <linux/swap.h>
  18. #include <linux/pagemap.h>
  19. #include <linux/poison.h>
  20. #include <linux/fs.h>
  21. #include <linux/seq_file.h>
  22. #include <linux/kprobes.h>
  23. #include <linux/cache.h>
  24. #include <linux/sort.h>
  25. #include <linux/percpu.h>
  26. #include <linux/lmb.h>
  27. #include <linux/mmzone.h>
  28. #include <asm/head.h>
  29. #include <asm/system.h>
  30. #include <asm/page.h>
  31. #include <asm/pgalloc.h>
  32. #include <asm/pgtable.h>
  33. #include <asm/oplib.h>
  34. #include <asm/iommu.h>
  35. #include <asm/io.h>
  36. #include <asm/uaccess.h>
  37. #include <asm/mmu_context.h>
  38. #include <asm/tlbflush.h>
  39. #include <asm/dma.h>
  40. #include <asm/starfire.h>
  41. #include <asm/tlb.h>
  42. #include <asm/spitfire.h>
  43. #include <asm/sections.h>
  44. #include <asm/tsb.h>
  45. #include <asm/hypervisor.h>
  46. #include <asm/prom.h>
  47. #include <asm/sstate.h>
  48. #include <asm/mdesc.h>
  49. #include <asm/cpudata.h>
  50. #define MAX_PHYS_ADDRESS (1UL << 42UL)
  51. #define KPTE_BITMAP_CHUNK_SZ (256UL * 1024UL * 1024UL)
  52. #define KPTE_BITMAP_BYTES \
  53. ((MAX_PHYS_ADDRESS / KPTE_BITMAP_CHUNK_SZ) / 8)
  54. unsigned long kern_linear_pte_xor[2] __read_mostly;
  55. /* A bitmap, one bit for every 256MB of physical memory. If the bit
  56. * is clear, we should use a 4MB page (via kern_linear_pte_xor[0]) else
  57. * if set we should use a 256MB page (via kern_linear_pte_xor[1]).
  58. */
  59. unsigned long kpte_linear_bitmap[KPTE_BITMAP_BYTES / sizeof(unsigned long)];
  60. #ifndef CONFIG_DEBUG_PAGEALLOC
  61. /* A special kernel TSB for 4MB and 256MB linear mappings.
  62. * Space is allocated for this right after the trap table
  63. * in arch/sparc64/kernel/head.S
  64. */
  65. extern struct tsb swapper_4m_tsb[KERNEL_TSB4M_NENTRIES];
  66. #endif
  67. #define MAX_BANKS 32
  68. static struct linux_prom64_registers pavail[MAX_BANKS] __initdata;
  69. static int pavail_ents __initdata;
  70. static int cmp_p64(const void *a, const void *b)
  71. {
  72. const struct linux_prom64_registers *x = a, *y = b;
  73. if (x->phys_addr > y->phys_addr)
  74. return 1;
  75. if (x->phys_addr < y->phys_addr)
  76. return -1;
  77. return 0;
  78. }
  79. static void __init read_obp_memory(const char *property,
  80. struct linux_prom64_registers *regs,
  81. int *num_ents)
  82. {
  83. int node = prom_finddevice("/memory");
  84. int prop_size = prom_getproplen(node, property);
  85. int ents, ret, i;
  86. ents = prop_size / sizeof(struct linux_prom64_registers);
  87. if (ents > MAX_BANKS) {
  88. prom_printf("The machine has more %s property entries than "
  89. "this kernel can support (%d).\n",
  90. property, MAX_BANKS);
  91. prom_halt();
  92. }
  93. ret = prom_getproperty(node, property, (char *) regs, prop_size);
  94. if (ret == -1) {
  95. prom_printf("Couldn't get %s property from /memory.\n");
  96. prom_halt();
  97. }
  98. /* Sanitize what we got from the firmware, by page aligning
  99. * everything.
  100. */
  101. for (i = 0; i < ents; i++) {
  102. unsigned long base, size;
  103. base = regs[i].phys_addr;
  104. size = regs[i].reg_size;
  105. size &= PAGE_MASK;
  106. if (base & ~PAGE_MASK) {
  107. unsigned long new_base = PAGE_ALIGN(base);
  108. size -= new_base - base;
  109. if ((long) size < 0L)
  110. size = 0UL;
  111. base = new_base;
  112. }
  113. if (size == 0UL) {
  114. /* If it is empty, simply get rid of it.
  115. * This simplifies the logic of the other
  116. * functions that process these arrays.
  117. */
  118. memmove(&regs[i], &regs[i + 1],
  119. (ents - i - 1) * sizeof(regs[0]));
  120. i--;
  121. ents--;
  122. continue;
  123. }
  124. regs[i].phys_addr = base;
  125. regs[i].reg_size = size;
  126. }
  127. *num_ents = ents;
  128. sort(regs, ents, sizeof(struct linux_prom64_registers),
  129. cmp_p64, NULL);
  130. }
  131. unsigned long *sparc64_valid_addr_bitmap __read_mostly;
  132. /* Kernel physical address base and size in bytes. */
  133. unsigned long kern_base __read_mostly;
  134. unsigned long kern_size __read_mostly;
  135. /* Initial ramdisk setup */
  136. extern unsigned long sparc_ramdisk_image64;
  137. extern unsigned int sparc_ramdisk_image;
  138. extern unsigned int sparc_ramdisk_size;
  139. struct page *mem_map_zero __read_mostly;
  140. EXPORT_SYMBOL(mem_map_zero);
  141. unsigned int sparc64_highest_unlocked_tlb_ent __read_mostly;
  142. unsigned long sparc64_kern_pri_context __read_mostly;
  143. unsigned long sparc64_kern_pri_nuc_bits __read_mostly;
  144. unsigned long sparc64_kern_sec_context __read_mostly;
  145. int num_kernel_image_mappings;
  146. #ifdef CONFIG_DEBUG_DCFLUSH
  147. atomic_t dcpage_flushes = ATOMIC_INIT(0);
  148. #ifdef CONFIG_SMP
  149. atomic_t dcpage_flushes_xcall = ATOMIC_INIT(0);
  150. #endif
  151. #endif
  152. inline void flush_dcache_page_impl(struct page *page)
  153. {
  154. BUG_ON(tlb_type == hypervisor);
  155. #ifdef CONFIG_DEBUG_DCFLUSH
  156. atomic_inc(&dcpage_flushes);
  157. #endif
  158. #ifdef DCACHE_ALIASING_POSSIBLE
  159. __flush_dcache_page(page_address(page),
  160. ((tlb_type == spitfire) &&
  161. page_mapping(page) != NULL));
  162. #else
  163. if (page_mapping(page) != NULL &&
  164. tlb_type == spitfire)
  165. __flush_icache_page(__pa(page_address(page)));
  166. #endif
  167. }
  168. #define PG_dcache_dirty PG_arch_1
  169. #define PG_dcache_cpu_shift 32UL
  170. #define PG_dcache_cpu_mask \
  171. ((1UL<<ilog2(roundup_pow_of_two(NR_CPUS)))-1UL)
  172. #define dcache_dirty_cpu(page) \
  173. (((page)->flags >> PG_dcache_cpu_shift) & PG_dcache_cpu_mask)
  174. static inline void set_dcache_dirty(struct page *page, int this_cpu)
  175. {
  176. unsigned long mask = this_cpu;
  177. unsigned long non_cpu_bits;
  178. non_cpu_bits = ~(PG_dcache_cpu_mask << PG_dcache_cpu_shift);
  179. mask = (mask << PG_dcache_cpu_shift) | (1UL << PG_dcache_dirty);
  180. __asm__ __volatile__("1:\n\t"
  181. "ldx [%2], %%g7\n\t"
  182. "and %%g7, %1, %%g1\n\t"
  183. "or %%g1, %0, %%g1\n\t"
  184. "casx [%2], %%g7, %%g1\n\t"
  185. "cmp %%g7, %%g1\n\t"
  186. "membar #StoreLoad | #StoreStore\n\t"
  187. "bne,pn %%xcc, 1b\n\t"
  188. " nop"
  189. : /* no outputs */
  190. : "r" (mask), "r" (non_cpu_bits), "r" (&page->flags)
  191. : "g1", "g7");
  192. }
  193. static inline void clear_dcache_dirty_cpu(struct page *page, unsigned long cpu)
  194. {
  195. unsigned long mask = (1UL << PG_dcache_dirty);
  196. __asm__ __volatile__("! test_and_clear_dcache_dirty\n"
  197. "1:\n\t"
  198. "ldx [%2], %%g7\n\t"
  199. "srlx %%g7, %4, %%g1\n\t"
  200. "and %%g1, %3, %%g1\n\t"
  201. "cmp %%g1, %0\n\t"
  202. "bne,pn %%icc, 2f\n\t"
  203. " andn %%g7, %1, %%g1\n\t"
  204. "casx [%2], %%g7, %%g1\n\t"
  205. "cmp %%g7, %%g1\n\t"
  206. "membar #StoreLoad | #StoreStore\n\t"
  207. "bne,pn %%xcc, 1b\n\t"
  208. " nop\n"
  209. "2:"
  210. : /* no outputs */
  211. : "r" (cpu), "r" (mask), "r" (&page->flags),
  212. "i" (PG_dcache_cpu_mask),
  213. "i" (PG_dcache_cpu_shift)
  214. : "g1", "g7");
  215. }
  216. static inline void tsb_insert(struct tsb *ent, unsigned long tag, unsigned long pte)
  217. {
  218. unsigned long tsb_addr = (unsigned long) ent;
  219. if (tlb_type == cheetah_plus || tlb_type == hypervisor)
  220. tsb_addr = __pa(tsb_addr);
  221. __tsb_insert(tsb_addr, tag, pte);
  222. }
  223. unsigned long _PAGE_ALL_SZ_BITS __read_mostly;
  224. unsigned long _PAGE_SZBITS __read_mostly;
  225. void update_mmu_cache(struct vm_area_struct *vma, unsigned long address, pte_t pte)
  226. {
  227. struct mm_struct *mm;
  228. struct tsb *tsb;
  229. unsigned long tag, flags;
  230. unsigned long tsb_index, tsb_hash_shift;
  231. if (tlb_type != hypervisor) {
  232. unsigned long pfn = pte_pfn(pte);
  233. unsigned long pg_flags;
  234. struct page *page;
  235. if (pfn_valid(pfn) &&
  236. (page = pfn_to_page(pfn), page_mapping(page)) &&
  237. ((pg_flags = page->flags) & (1UL << PG_dcache_dirty))) {
  238. int cpu = ((pg_flags >> PG_dcache_cpu_shift) &
  239. PG_dcache_cpu_mask);
  240. int this_cpu = get_cpu();
  241. /* This is just to optimize away some function calls
  242. * in the SMP case.
  243. */
  244. if (cpu == this_cpu)
  245. flush_dcache_page_impl(page);
  246. else
  247. smp_flush_dcache_page_impl(page, cpu);
  248. clear_dcache_dirty_cpu(page, cpu);
  249. put_cpu();
  250. }
  251. }
  252. mm = vma->vm_mm;
  253. tsb_index = MM_TSB_BASE;
  254. tsb_hash_shift = PAGE_SHIFT;
  255. spin_lock_irqsave(&mm->context.lock, flags);
  256. #ifdef CONFIG_HUGETLB_PAGE
  257. if (mm->context.tsb_block[MM_TSB_HUGE].tsb != NULL) {
  258. if ((tlb_type == hypervisor &&
  259. (pte_val(pte) & _PAGE_SZALL_4V) == _PAGE_SZHUGE_4V) ||
  260. (tlb_type != hypervisor &&
  261. (pte_val(pte) & _PAGE_SZALL_4U) == _PAGE_SZHUGE_4U)) {
  262. tsb_index = MM_TSB_HUGE;
  263. tsb_hash_shift = HPAGE_SHIFT;
  264. }
  265. }
  266. #endif
  267. tsb = mm->context.tsb_block[tsb_index].tsb;
  268. tsb += ((address >> tsb_hash_shift) &
  269. (mm->context.tsb_block[tsb_index].tsb_nentries - 1UL));
  270. tag = (address >> 22UL);
  271. tsb_insert(tsb, tag, pte_val(pte));
  272. spin_unlock_irqrestore(&mm->context.lock, flags);
  273. }
  274. void flush_dcache_page(struct page *page)
  275. {
  276. struct address_space *mapping;
  277. int this_cpu;
  278. if (tlb_type == hypervisor)
  279. return;
  280. /* Do not bother with the expensive D-cache flush if it
  281. * is merely the zero page. The 'bigcore' testcase in GDB
  282. * causes this case to run millions of times.
  283. */
  284. if (page == ZERO_PAGE(0))
  285. return;
  286. this_cpu = get_cpu();
  287. mapping = page_mapping(page);
  288. if (mapping && !mapping_mapped(mapping)) {
  289. int dirty = test_bit(PG_dcache_dirty, &page->flags);
  290. if (dirty) {
  291. int dirty_cpu = dcache_dirty_cpu(page);
  292. if (dirty_cpu == this_cpu)
  293. goto out;
  294. smp_flush_dcache_page_impl(page, dirty_cpu);
  295. }
  296. set_dcache_dirty(page, this_cpu);
  297. } else {
  298. /* We could delay the flush for the !page_mapping
  299. * case too. But that case is for exec env/arg
  300. * pages and those are %99 certainly going to get
  301. * faulted into the tlb (and thus flushed) anyways.
  302. */
  303. flush_dcache_page_impl(page);
  304. }
  305. out:
  306. put_cpu();
  307. }
  308. void __kprobes flush_icache_range(unsigned long start, unsigned long end)
  309. {
  310. /* Cheetah and Hypervisor platform cpus have coherent I-cache. */
  311. if (tlb_type == spitfire) {
  312. unsigned long kaddr;
  313. /* This code only runs on Spitfire cpus so this is
  314. * why we can assume _PAGE_PADDR_4U.
  315. */
  316. for (kaddr = start; kaddr < end; kaddr += PAGE_SIZE) {
  317. unsigned long paddr, mask = _PAGE_PADDR_4U;
  318. if (kaddr >= PAGE_OFFSET)
  319. paddr = kaddr & mask;
  320. else {
  321. pgd_t *pgdp = pgd_offset_k(kaddr);
  322. pud_t *pudp = pud_offset(pgdp, kaddr);
  323. pmd_t *pmdp = pmd_offset(pudp, kaddr);
  324. pte_t *ptep = pte_offset_kernel(pmdp, kaddr);
  325. paddr = pte_val(*ptep) & mask;
  326. }
  327. __flush_icache_page(paddr);
  328. }
  329. }
  330. }
  331. void show_mem(void)
  332. {
  333. unsigned long total = 0, reserved = 0;
  334. unsigned long shared = 0, cached = 0;
  335. pg_data_t *pgdat;
  336. printk(KERN_INFO "Mem-info:\n");
  337. show_free_areas();
  338. printk(KERN_INFO "Free swap: %6ldkB\n",
  339. nr_swap_pages << (PAGE_SHIFT-10));
  340. for_each_online_pgdat(pgdat) {
  341. unsigned long i, flags;
  342. pgdat_resize_lock(pgdat, &flags);
  343. for (i = 0; i < pgdat->node_spanned_pages; i++) {
  344. struct page *page = pgdat_page_nr(pgdat, i);
  345. total++;
  346. if (PageReserved(page))
  347. reserved++;
  348. else if (PageSwapCache(page))
  349. cached++;
  350. else if (page_count(page))
  351. shared += page_count(page) - 1;
  352. }
  353. pgdat_resize_unlock(pgdat, &flags);
  354. }
  355. printk(KERN_INFO "%lu pages of RAM\n", total);
  356. printk(KERN_INFO "%lu reserved pages\n", reserved);
  357. printk(KERN_INFO "%lu pages shared\n", shared);
  358. printk(KERN_INFO "%lu pages swap cached\n", cached);
  359. printk(KERN_INFO "%lu pages dirty\n",
  360. global_page_state(NR_FILE_DIRTY));
  361. printk(KERN_INFO "%lu pages writeback\n",
  362. global_page_state(NR_WRITEBACK));
  363. printk(KERN_INFO "%lu pages mapped\n",
  364. global_page_state(NR_FILE_MAPPED));
  365. printk(KERN_INFO "%lu pages slab\n",
  366. global_page_state(NR_SLAB_RECLAIMABLE) +
  367. global_page_state(NR_SLAB_UNRECLAIMABLE));
  368. printk(KERN_INFO "%lu pages pagetables\n",
  369. global_page_state(NR_PAGETABLE));
  370. }
  371. void mmu_info(struct seq_file *m)
  372. {
  373. if (tlb_type == cheetah)
  374. seq_printf(m, "MMU Type\t: Cheetah\n");
  375. else if (tlb_type == cheetah_plus)
  376. seq_printf(m, "MMU Type\t: Cheetah+\n");
  377. else if (tlb_type == spitfire)
  378. seq_printf(m, "MMU Type\t: Spitfire\n");
  379. else if (tlb_type == hypervisor)
  380. seq_printf(m, "MMU Type\t: Hypervisor (sun4v)\n");
  381. else
  382. seq_printf(m, "MMU Type\t: ???\n");
  383. #ifdef CONFIG_DEBUG_DCFLUSH
  384. seq_printf(m, "DCPageFlushes\t: %d\n",
  385. atomic_read(&dcpage_flushes));
  386. #ifdef CONFIG_SMP
  387. seq_printf(m, "DCPageFlushesXC\t: %d\n",
  388. atomic_read(&dcpage_flushes_xcall));
  389. #endif /* CONFIG_SMP */
  390. #endif /* CONFIG_DEBUG_DCFLUSH */
  391. }
  392. struct linux_prom_translation {
  393. unsigned long virt;
  394. unsigned long size;
  395. unsigned long data;
  396. };
  397. /* Exported for kernel TLB miss handling in ktlb.S */
  398. struct linux_prom_translation prom_trans[512] __read_mostly;
  399. unsigned int prom_trans_ents __read_mostly;
  400. /* Exported for SMP bootup purposes. */
  401. unsigned long kern_locked_tte_data;
  402. /* The obp translations are saved based on 8k pagesize, since obp can
  403. * use a mixture of pagesizes. Misses to the LOW_OBP_ADDRESS ->
  404. * HI_OBP_ADDRESS range are handled in ktlb.S.
  405. */
  406. static inline int in_obp_range(unsigned long vaddr)
  407. {
  408. return (vaddr >= LOW_OBP_ADDRESS &&
  409. vaddr < HI_OBP_ADDRESS);
  410. }
  411. static int cmp_ptrans(const void *a, const void *b)
  412. {
  413. const struct linux_prom_translation *x = a, *y = b;
  414. if (x->virt > y->virt)
  415. return 1;
  416. if (x->virt < y->virt)
  417. return -1;
  418. return 0;
  419. }
  420. /* Read OBP translations property into 'prom_trans[]'. */
  421. static void __init read_obp_translations(void)
  422. {
  423. int n, node, ents, first, last, i;
  424. node = prom_finddevice("/virtual-memory");
  425. n = prom_getproplen(node, "translations");
  426. if (unlikely(n == 0 || n == -1)) {
  427. prom_printf("prom_mappings: Couldn't get size.\n");
  428. prom_halt();
  429. }
  430. if (unlikely(n > sizeof(prom_trans))) {
  431. prom_printf("prom_mappings: Size %Zd is too big.\n", n);
  432. prom_halt();
  433. }
  434. if ((n = prom_getproperty(node, "translations",
  435. (char *)&prom_trans[0],
  436. sizeof(prom_trans))) == -1) {
  437. prom_printf("prom_mappings: Couldn't get property.\n");
  438. prom_halt();
  439. }
  440. n = n / sizeof(struct linux_prom_translation);
  441. ents = n;
  442. sort(prom_trans, ents, sizeof(struct linux_prom_translation),
  443. cmp_ptrans, NULL);
  444. /* Now kick out all the non-OBP entries. */
  445. for (i = 0; i < ents; i++) {
  446. if (in_obp_range(prom_trans[i].virt))
  447. break;
  448. }
  449. first = i;
  450. for (; i < ents; i++) {
  451. if (!in_obp_range(prom_trans[i].virt))
  452. break;
  453. }
  454. last = i;
  455. for (i = 0; i < (last - first); i++) {
  456. struct linux_prom_translation *src = &prom_trans[i + first];
  457. struct linux_prom_translation *dest = &prom_trans[i];
  458. *dest = *src;
  459. }
  460. for (; i < ents; i++) {
  461. struct linux_prom_translation *dest = &prom_trans[i];
  462. dest->virt = dest->size = dest->data = 0x0UL;
  463. }
  464. prom_trans_ents = last - first;
  465. if (tlb_type == spitfire) {
  466. /* Clear diag TTE bits. */
  467. for (i = 0; i < prom_trans_ents; i++)
  468. prom_trans[i].data &= ~0x0003fe0000000000UL;
  469. }
  470. }
  471. static void __init hypervisor_tlb_lock(unsigned long vaddr,
  472. unsigned long pte,
  473. unsigned long mmu)
  474. {
  475. unsigned long ret = sun4v_mmu_map_perm_addr(vaddr, 0, pte, mmu);
  476. if (ret != 0) {
  477. prom_printf("hypervisor_tlb_lock[%lx:%lx:%lx:%lx]: "
  478. "errors with %lx\n", vaddr, 0, pte, mmu, ret);
  479. prom_halt();
  480. }
  481. }
  482. static unsigned long kern_large_tte(unsigned long paddr);
  483. static void __init remap_kernel(void)
  484. {
  485. unsigned long phys_page, tte_vaddr, tte_data;
  486. int i, tlb_ent = sparc64_highest_locked_tlbent();
  487. tte_vaddr = (unsigned long) KERNBASE;
  488. phys_page = (prom_boot_mapping_phys_low >> 22UL) << 22UL;
  489. tte_data = kern_large_tte(phys_page);
  490. kern_locked_tte_data = tte_data;
  491. /* Now lock us into the TLBs via Hypervisor or OBP. */
  492. if (tlb_type == hypervisor) {
  493. for (i = 0; i < num_kernel_image_mappings; i++) {
  494. hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_DMMU);
  495. hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_IMMU);
  496. tte_vaddr += 0x400000;
  497. tte_data += 0x400000;
  498. }
  499. } else {
  500. for (i = 0; i < num_kernel_image_mappings; i++) {
  501. prom_dtlb_load(tlb_ent - i, tte_data, tte_vaddr);
  502. prom_itlb_load(tlb_ent - i, tte_data, tte_vaddr);
  503. tte_vaddr += 0x400000;
  504. tte_data += 0x400000;
  505. }
  506. sparc64_highest_unlocked_tlb_ent = tlb_ent - i;
  507. }
  508. if (tlb_type == cheetah_plus) {
  509. sparc64_kern_pri_context = (CTX_CHEETAH_PLUS_CTX0 |
  510. CTX_CHEETAH_PLUS_NUC);
  511. sparc64_kern_pri_nuc_bits = CTX_CHEETAH_PLUS_NUC;
  512. sparc64_kern_sec_context = CTX_CHEETAH_PLUS_CTX0;
  513. }
  514. }
  515. static void __init inherit_prom_mappings(void)
  516. {
  517. read_obp_translations();
  518. /* Now fixup OBP's idea about where we really are mapped. */
  519. printk("Remapping the kernel... ");
  520. remap_kernel();
  521. printk("done.\n");
  522. }
  523. void prom_world(int enter)
  524. {
  525. if (!enter)
  526. set_fs((mm_segment_t) { get_thread_current_ds() });
  527. __asm__ __volatile__("flushw");
  528. }
  529. void __flush_dcache_range(unsigned long start, unsigned long end)
  530. {
  531. unsigned long va;
  532. if (tlb_type == spitfire) {
  533. int n = 0;
  534. for (va = start; va < end; va += 32) {
  535. spitfire_put_dcache_tag(va & 0x3fe0, 0x0);
  536. if (++n >= 512)
  537. break;
  538. }
  539. } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
  540. start = __pa(start);
  541. end = __pa(end);
  542. for (va = start; va < end; va += 32)
  543. __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
  544. "membar #Sync"
  545. : /* no outputs */
  546. : "r" (va),
  547. "i" (ASI_DCACHE_INVALIDATE));
  548. }
  549. }
  550. /* get_new_mmu_context() uses "cache + 1". */
  551. DEFINE_SPINLOCK(ctx_alloc_lock);
  552. unsigned long tlb_context_cache = CTX_FIRST_VERSION - 1;
  553. #define MAX_CTX_NR (1UL << CTX_NR_BITS)
  554. #define CTX_BMAP_SLOTS BITS_TO_LONGS(MAX_CTX_NR)
  555. DECLARE_BITMAP(mmu_context_bmap, MAX_CTX_NR);
  556. /* Caller does TLB context flushing on local CPU if necessary.
  557. * The caller also ensures that CTX_VALID(mm->context) is false.
  558. *
  559. * We must be careful about boundary cases so that we never
  560. * let the user have CTX 0 (nucleus) or we ever use a CTX
  561. * version of zero (and thus NO_CONTEXT would not be caught
  562. * by version mis-match tests in mmu_context.h).
  563. *
  564. * Always invoked with interrupts disabled.
  565. */
  566. void get_new_mmu_context(struct mm_struct *mm)
  567. {
  568. unsigned long ctx, new_ctx;
  569. unsigned long orig_pgsz_bits;
  570. unsigned long flags;
  571. int new_version;
  572. spin_lock_irqsave(&ctx_alloc_lock, flags);
  573. orig_pgsz_bits = (mm->context.sparc64_ctx_val & CTX_PGSZ_MASK);
  574. ctx = (tlb_context_cache + 1) & CTX_NR_MASK;
  575. new_ctx = find_next_zero_bit(mmu_context_bmap, 1 << CTX_NR_BITS, ctx);
  576. new_version = 0;
  577. if (new_ctx >= (1 << CTX_NR_BITS)) {
  578. new_ctx = find_next_zero_bit(mmu_context_bmap, ctx, 1);
  579. if (new_ctx >= ctx) {
  580. int i;
  581. new_ctx = (tlb_context_cache & CTX_VERSION_MASK) +
  582. CTX_FIRST_VERSION;
  583. if (new_ctx == 1)
  584. new_ctx = CTX_FIRST_VERSION;
  585. /* Don't call memset, for 16 entries that's just
  586. * plain silly...
  587. */
  588. mmu_context_bmap[0] = 3;
  589. mmu_context_bmap[1] = 0;
  590. mmu_context_bmap[2] = 0;
  591. mmu_context_bmap[3] = 0;
  592. for (i = 4; i < CTX_BMAP_SLOTS; i += 4) {
  593. mmu_context_bmap[i + 0] = 0;
  594. mmu_context_bmap[i + 1] = 0;
  595. mmu_context_bmap[i + 2] = 0;
  596. mmu_context_bmap[i + 3] = 0;
  597. }
  598. new_version = 1;
  599. goto out;
  600. }
  601. }
  602. mmu_context_bmap[new_ctx>>6] |= (1UL << (new_ctx & 63));
  603. new_ctx |= (tlb_context_cache & CTX_VERSION_MASK);
  604. out:
  605. tlb_context_cache = new_ctx;
  606. mm->context.sparc64_ctx_val = new_ctx | orig_pgsz_bits;
  607. spin_unlock_irqrestore(&ctx_alloc_lock, flags);
  608. if (unlikely(new_version))
  609. smp_new_mmu_context_version();
  610. }
  611. static int numa_enabled = 1;
  612. static int numa_debug;
  613. static int __init early_numa(char *p)
  614. {
  615. if (!p)
  616. return 0;
  617. if (strstr(p, "off"))
  618. numa_enabled = 0;
  619. if (strstr(p, "debug"))
  620. numa_debug = 1;
  621. return 0;
  622. }
  623. early_param("numa", early_numa);
  624. #define numadbg(f, a...) \
  625. do { if (numa_debug) \
  626. printk(KERN_INFO f, ## a); \
  627. } while (0)
  628. static void __init find_ramdisk(unsigned long phys_base)
  629. {
  630. #ifdef CONFIG_BLK_DEV_INITRD
  631. if (sparc_ramdisk_image || sparc_ramdisk_image64) {
  632. unsigned long ramdisk_image;
  633. /* Older versions of the bootloader only supported a
  634. * 32-bit physical address for the ramdisk image
  635. * location, stored at sparc_ramdisk_image. Newer
  636. * SILO versions set sparc_ramdisk_image to zero and
  637. * provide a full 64-bit physical address at
  638. * sparc_ramdisk_image64.
  639. */
  640. ramdisk_image = sparc_ramdisk_image;
  641. if (!ramdisk_image)
  642. ramdisk_image = sparc_ramdisk_image64;
  643. /* Another bootloader quirk. The bootloader normalizes
  644. * the physical address to KERNBASE, so we have to
  645. * factor that back out and add in the lowest valid
  646. * physical page address to get the true physical address.
  647. */
  648. ramdisk_image -= KERNBASE;
  649. ramdisk_image += phys_base;
  650. numadbg("Found ramdisk at physical address 0x%lx, size %u\n",
  651. ramdisk_image, sparc_ramdisk_size);
  652. initrd_start = ramdisk_image;
  653. initrd_end = ramdisk_image + sparc_ramdisk_size;
  654. lmb_reserve(initrd_start, initrd_end);
  655. }
  656. #endif
  657. }
  658. struct node_mem_mask {
  659. unsigned long mask;
  660. unsigned long val;
  661. unsigned long bootmem_paddr;
  662. };
  663. static struct node_mem_mask node_masks[MAX_NUMNODES];
  664. static int num_node_masks;
  665. int numa_cpu_lookup_table[NR_CPUS];
  666. cpumask_t numa_cpumask_lookup_table[MAX_NUMNODES];
  667. #ifdef CONFIG_NEED_MULTIPLE_NODES
  668. static bootmem_data_t plat_node_bdata[MAX_NUMNODES];
  669. struct mdesc_mblock {
  670. u64 base;
  671. u64 size;
  672. u64 offset; /* RA-to-PA */
  673. };
  674. static struct mdesc_mblock *mblocks;
  675. static int num_mblocks;
  676. static unsigned long ra_to_pa(unsigned long addr)
  677. {
  678. int i;
  679. for (i = 0; i < num_mblocks; i++) {
  680. struct mdesc_mblock *m = &mblocks[i];
  681. if (addr >= m->base &&
  682. addr < (m->base + m->size)) {
  683. addr += m->offset;
  684. break;
  685. }
  686. }
  687. return addr;
  688. }
  689. static int find_node(unsigned long addr)
  690. {
  691. int i;
  692. addr = ra_to_pa(addr);
  693. for (i = 0; i < num_node_masks; i++) {
  694. struct node_mem_mask *p = &node_masks[i];
  695. if ((addr & p->mask) == p->val)
  696. return i;
  697. }
  698. return -1;
  699. }
  700. static unsigned long nid_range(unsigned long start, unsigned long end,
  701. int *nid)
  702. {
  703. *nid = find_node(start);
  704. start += PAGE_SIZE;
  705. while (start < end) {
  706. int n = find_node(start);
  707. if (n != *nid)
  708. break;
  709. start += PAGE_SIZE;
  710. }
  711. return start;
  712. }
  713. #else
  714. static unsigned long nid_range(unsigned long start, unsigned long end,
  715. int *nid)
  716. {
  717. *nid = 0;
  718. return end;
  719. }
  720. #endif
  721. /* This must be invoked after performing all of the necessary
  722. * add_active_range() calls for 'nid'. We need to be able to get
  723. * correct data from get_pfn_range_for_nid().
  724. */
  725. static void __init allocate_node_data(int nid)
  726. {
  727. unsigned long paddr, num_pages, start_pfn, end_pfn;
  728. struct pglist_data *p;
  729. #ifdef CONFIG_NEED_MULTIPLE_NODES
  730. paddr = lmb_alloc_nid(sizeof(struct pglist_data),
  731. SMP_CACHE_BYTES, nid, nid_range);
  732. if (!paddr) {
  733. prom_printf("Cannot allocate pglist_data for nid[%d]\n", nid);
  734. prom_halt();
  735. }
  736. NODE_DATA(nid) = __va(paddr);
  737. memset(NODE_DATA(nid), 0, sizeof(struct pglist_data));
  738. NODE_DATA(nid)->bdata = &plat_node_bdata[nid];
  739. #endif
  740. p = NODE_DATA(nid);
  741. get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
  742. p->node_start_pfn = start_pfn;
  743. p->node_spanned_pages = end_pfn - start_pfn;
  744. if (p->node_spanned_pages) {
  745. num_pages = bootmem_bootmap_pages(p->node_spanned_pages);
  746. paddr = lmb_alloc_nid(num_pages << PAGE_SHIFT, PAGE_SIZE, nid,
  747. nid_range);
  748. if (!paddr) {
  749. prom_printf("Cannot allocate bootmap for nid[%d]\n",
  750. nid);
  751. prom_halt();
  752. }
  753. node_masks[nid].bootmem_paddr = paddr;
  754. }
  755. }
  756. static void init_node_masks_nonnuma(void)
  757. {
  758. int i;
  759. numadbg("Initializing tables for non-numa.\n");
  760. node_masks[0].mask = node_masks[0].val = 0;
  761. num_node_masks = 1;
  762. for (i = 0; i < NR_CPUS; i++)
  763. numa_cpu_lookup_table[i] = 0;
  764. numa_cpumask_lookup_table[0] = CPU_MASK_ALL;
  765. }
  766. #ifdef CONFIG_NEED_MULTIPLE_NODES
  767. struct pglist_data *node_data[MAX_NUMNODES];
  768. EXPORT_SYMBOL(numa_cpu_lookup_table);
  769. EXPORT_SYMBOL(numa_cpumask_lookup_table);
  770. EXPORT_SYMBOL(node_data);
  771. struct mdesc_mlgroup {
  772. u64 node;
  773. u64 latency;
  774. u64 match;
  775. u64 mask;
  776. };
  777. static struct mdesc_mlgroup *mlgroups;
  778. static int num_mlgroups;
  779. static int scan_pio_for_cfg_handle(struct mdesc_handle *md, u64 pio,
  780. u32 cfg_handle)
  781. {
  782. u64 arc;
  783. mdesc_for_each_arc(arc, md, pio, MDESC_ARC_TYPE_FWD) {
  784. u64 target = mdesc_arc_target(md, arc);
  785. const u64 *val;
  786. val = mdesc_get_property(md, target,
  787. "cfg-handle", NULL);
  788. if (val && *val == cfg_handle)
  789. return 0;
  790. }
  791. return -ENODEV;
  792. }
  793. static int scan_arcs_for_cfg_handle(struct mdesc_handle *md, u64 grp,
  794. u32 cfg_handle)
  795. {
  796. u64 arc, candidate, best_latency = ~(u64)0;
  797. candidate = MDESC_NODE_NULL;
  798. mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_FWD) {
  799. u64 target = mdesc_arc_target(md, arc);
  800. const char *name = mdesc_node_name(md, target);
  801. const u64 *val;
  802. if (strcmp(name, "pio-latency-group"))
  803. continue;
  804. val = mdesc_get_property(md, target, "latency", NULL);
  805. if (!val)
  806. continue;
  807. if (*val < best_latency) {
  808. candidate = target;
  809. best_latency = *val;
  810. }
  811. }
  812. if (candidate == MDESC_NODE_NULL)
  813. return -ENODEV;
  814. return scan_pio_for_cfg_handle(md, candidate, cfg_handle);
  815. }
  816. int of_node_to_nid(struct device_node *dp)
  817. {
  818. const struct linux_prom64_registers *regs;
  819. struct mdesc_handle *md;
  820. u32 cfg_handle;
  821. int count, nid;
  822. u64 grp;
  823. if (!mlgroups)
  824. return -1;
  825. regs = of_get_property(dp, "reg", NULL);
  826. if (!regs)
  827. return -1;
  828. cfg_handle = (regs->phys_addr >> 32UL) & 0x0fffffff;
  829. md = mdesc_grab();
  830. count = 0;
  831. nid = -1;
  832. mdesc_for_each_node_by_name(md, grp, "group") {
  833. if (!scan_arcs_for_cfg_handle(md, grp, cfg_handle)) {
  834. nid = count;
  835. break;
  836. }
  837. count++;
  838. }
  839. mdesc_release(md);
  840. return nid;
  841. }
  842. static void add_node_ranges(void)
  843. {
  844. int i;
  845. for (i = 0; i < lmb.memory.cnt; i++) {
  846. unsigned long size = lmb_size_bytes(&lmb.memory, i);
  847. unsigned long start, end;
  848. start = lmb.memory.region[i].base;
  849. end = start + size;
  850. while (start < end) {
  851. unsigned long this_end;
  852. int nid;
  853. this_end = nid_range(start, end, &nid);
  854. numadbg("Adding active range nid[%d] "
  855. "start[%lx] end[%lx]\n",
  856. nid, start, this_end);
  857. add_active_range(nid,
  858. start >> PAGE_SHIFT,
  859. this_end >> PAGE_SHIFT);
  860. start = this_end;
  861. }
  862. }
  863. }
  864. static int __init grab_mlgroups(struct mdesc_handle *md)
  865. {
  866. unsigned long paddr;
  867. int count = 0;
  868. u64 node;
  869. mdesc_for_each_node_by_name(md, node, "memory-latency-group")
  870. count++;
  871. if (!count)
  872. return -ENOENT;
  873. paddr = lmb_alloc(count * sizeof(struct mdesc_mlgroup),
  874. SMP_CACHE_BYTES);
  875. if (!paddr)
  876. return -ENOMEM;
  877. mlgroups = __va(paddr);
  878. num_mlgroups = count;
  879. count = 0;
  880. mdesc_for_each_node_by_name(md, node, "memory-latency-group") {
  881. struct mdesc_mlgroup *m = &mlgroups[count++];
  882. const u64 *val;
  883. m->node = node;
  884. val = mdesc_get_property(md, node, "latency", NULL);
  885. m->latency = *val;
  886. val = mdesc_get_property(md, node, "address-match", NULL);
  887. m->match = *val;
  888. val = mdesc_get_property(md, node, "address-mask", NULL);
  889. m->mask = *val;
  890. numadbg("MLGROUP[%d]: node[%lx] latency[%lx] "
  891. "match[%lx] mask[%lx]\n",
  892. count - 1, m->node, m->latency, m->match, m->mask);
  893. }
  894. return 0;
  895. }
  896. static int __init grab_mblocks(struct mdesc_handle *md)
  897. {
  898. unsigned long paddr;
  899. int count = 0;
  900. u64 node;
  901. mdesc_for_each_node_by_name(md, node, "mblock")
  902. count++;
  903. if (!count)
  904. return -ENOENT;
  905. paddr = lmb_alloc(count * sizeof(struct mdesc_mblock),
  906. SMP_CACHE_BYTES);
  907. if (!paddr)
  908. return -ENOMEM;
  909. mblocks = __va(paddr);
  910. num_mblocks = count;
  911. count = 0;
  912. mdesc_for_each_node_by_name(md, node, "mblock") {
  913. struct mdesc_mblock *m = &mblocks[count++];
  914. const u64 *val;
  915. val = mdesc_get_property(md, node, "base", NULL);
  916. m->base = *val;
  917. val = mdesc_get_property(md, node, "size", NULL);
  918. m->size = *val;
  919. val = mdesc_get_property(md, node,
  920. "address-congruence-offset", NULL);
  921. m->offset = *val;
  922. numadbg("MBLOCK[%d]: base[%lx] size[%lx] offset[%lx]\n",
  923. count - 1, m->base, m->size, m->offset);
  924. }
  925. return 0;
  926. }
  927. static void __init numa_parse_mdesc_group_cpus(struct mdesc_handle *md,
  928. u64 grp, cpumask_t *mask)
  929. {
  930. u64 arc;
  931. cpus_clear(*mask);
  932. mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_BACK) {
  933. u64 target = mdesc_arc_target(md, arc);
  934. const char *name = mdesc_node_name(md, target);
  935. const u64 *id;
  936. if (strcmp(name, "cpu"))
  937. continue;
  938. id = mdesc_get_property(md, target, "id", NULL);
  939. if (*id < NR_CPUS)
  940. cpu_set(*id, *mask);
  941. }
  942. }
  943. static struct mdesc_mlgroup * __init find_mlgroup(u64 node)
  944. {
  945. int i;
  946. for (i = 0; i < num_mlgroups; i++) {
  947. struct mdesc_mlgroup *m = &mlgroups[i];
  948. if (m->node == node)
  949. return m;
  950. }
  951. return NULL;
  952. }
  953. static int __init numa_attach_mlgroup(struct mdesc_handle *md, u64 grp,
  954. int index)
  955. {
  956. struct mdesc_mlgroup *candidate = NULL;
  957. u64 arc, best_latency = ~(u64)0;
  958. struct node_mem_mask *n;
  959. mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_FWD) {
  960. u64 target = mdesc_arc_target(md, arc);
  961. struct mdesc_mlgroup *m = find_mlgroup(target);
  962. if (!m)
  963. continue;
  964. if (m->latency < best_latency) {
  965. candidate = m;
  966. best_latency = m->latency;
  967. }
  968. }
  969. if (!candidate)
  970. return -ENOENT;
  971. if (num_node_masks != index) {
  972. printk(KERN_ERR "Inconsistent NUMA state, "
  973. "index[%d] != num_node_masks[%d]\n",
  974. index, num_node_masks);
  975. return -EINVAL;
  976. }
  977. n = &node_masks[num_node_masks++];
  978. n->mask = candidate->mask;
  979. n->val = candidate->match;
  980. numadbg("NUMA NODE[%d]: mask[%lx] val[%lx] (latency[%lx])\n",
  981. index, n->mask, n->val, candidate->latency);
  982. return 0;
  983. }
  984. static int __init numa_parse_mdesc_group(struct mdesc_handle *md, u64 grp,
  985. int index)
  986. {
  987. cpumask_t mask;
  988. int cpu;
  989. numa_parse_mdesc_group_cpus(md, grp, &mask);
  990. for_each_cpu_mask(cpu, mask)
  991. numa_cpu_lookup_table[cpu] = index;
  992. numa_cpumask_lookup_table[index] = mask;
  993. if (numa_debug) {
  994. printk(KERN_INFO "NUMA GROUP[%d]: cpus [ ", index);
  995. for_each_cpu_mask(cpu, mask)
  996. printk("%d ", cpu);
  997. printk("]\n");
  998. }
  999. return numa_attach_mlgroup(md, grp, index);
  1000. }
  1001. static int __init numa_parse_mdesc(void)
  1002. {
  1003. struct mdesc_handle *md = mdesc_grab();
  1004. int i, err, count;
  1005. u64 node;
  1006. node = mdesc_node_by_name(md, MDESC_NODE_NULL, "latency-groups");
  1007. if (node == MDESC_NODE_NULL) {
  1008. mdesc_release(md);
  1009. return -ENOENT;
  1010. }
  1011. err = grab_mblocks(md);
  1012. if (err < 0)
  1013. goto out;
  1014. err = grab_mlgroups(md);
  1015. if (err < 0)
  1016. goto out;
  1017. count = 0;
  1018. mdesc_for_each_node_by_name(md, node, "group") {
  1019. err = numa_parse_mdesc_group(md, node, count);
  1020. if (err < 0)
  1021. break;
  1022. count++;
  1023. }
  1024. add_node_ranges();
  1025. for (i = 0; i < num_node_masks; i++) {
  1026. allocate_node_data(i);
  1027. node_set_online(i);
  1028. }
  1029. err = 0;
  1030. out:
  1031. mdesc_release(md);
  1032. return err;
  1033. }
  1034. static int __init numa_parse_sun4u(void)
  1035. {
  1036. return -1;
  1037. }
  1038. static int __init bootmem_init_numa(void)
  1039. {
  1040. int err = -1;
  1041. numadbg("bootmem_init_numa()\n");
  1042. if (numa_enabled) {
  1043. if (tlb_type == hypervisor)
  1044. err = numa_parse_mdesc();
  1045. else
  1046. err = numa_parse_sun4u();
  1047. }
  1048. return err;
  1049. }
  1050. #else
  1051. static int bootmem_init_numa(void)
  1052. {
  1053. return -1;
  1054. }
  1055. #endif
  1056. static void __init bootmem_init_nonnuma(void)
  1057. {
  1058. unsigned long top_of_ram = lmb_end_of_DRAM();
  1059. unsigned long total_ram = lmb_phys_mem_size();
  1060. unsigned int i;
  1061. numadbg("bootmem_init_nonnuma()\n");
  1062. printk(KERN_INFO "Top of RAM: 0x%lx, Total RAM: 0x%lx\n",
  1063. top_of_ram, total_ram);
  1064. printk(KERN_INFO "Memory hole size: %ldMB\n",
  1065. (top_of_ram - total_ram) >> 20);
  1066. init_node_masks_nonnuma();
  1067. for (i = 0; i < lmb.memory.cnt; i++) {
  1068. unsigned long size = lmb_size_bytes(&lmb.memory, i);
  1069. unsigned long start_pfn, end_pfn;
  1070. if (!size)
  1071. continue;
  1072. start_pfn = lmb.memory.region[i].base >> PAGE_SHIFT;
  1073. end_pfn = start_pfn + lmb_size_pages(&lmb.memory, i);
  1074. add_active_range(0, start_pfn, end_pfn);
  1075. }
  1076. allocate_node_data(0);
  1077. node_set_online(0);
  1078. }
  1079. static void __init reserve_range_in_node(int nid, unsigned long start,
  1080. unsigned long end)
  1081. {
  1082. numadbg(" reserve_range_in_node(nid[%d],start[%lx],end[%lx]\n",
  1083. nid, start, end);
  1084. while (start < end) {
  1085. unsigned long this_end;
  1086. int n;
  1087. this_end = nid_range(start, end, &n);
  1088. if (n == nid) {
  1089. numadbg(" MATCH reserving range [%lx:%lx]\n",
  1090. start, this_end);
  1091. reserve_bootmem_node(NODE_DATA(nid), start,
  1092. (this_end - start), BOOTMEM_DEFAULT);
  1093. } else
  1094. numadbg(" NO MATCH, advancing start to %lx\n",
  1095. this_end);
  1096. start = this_end;
  1097. }
  1098. }
  1099. static void __init trim_reserved_in_node(int nid)
  1100. {
  1101. int i;
  1102. numadbg(" trim_reserved_in_node(%d)\n", nid);
  1103. for (i = 0; i < lmb.reserved.cnt; i++) {
  1104. unsigned long start = lmb.reserved.region[i].base;
  1105. unsigned long size = lmb_size_bytes(&lmb.reserved, i);
  1106. unsigned long end = start + size;
  1107. reserve_range_in_node(nid, start, end);
  1108. }
  1109. }
  1110. static void __init bootmem_init_one_node(int nid)
  1111. {
  1112. struct pglist_data *p;
  1113. numadbg("bootmem_init_one_node(%d)\n", nid);
  1114. p = NODE_DATA(nid);
  1115. if (p->node_spanned_pages) {
  1116. unsigned long paddr = node_masks[nid].bootmem_paddr;
  1117. unsigned long end_pfn;
  1118. end_pfn = p->node_start_pfn + p->node_spanned_pages;
  1119. numadbg(" init_bootmem_node(%d, %lx, %lx, %lx)\n",
  1120. nid, paddr >> PAGE_SHIFT, p->node_start_pfn, end_pfn);
  1121. init_bootmem_node(p, paddr >> PAGE_SHIFT,
  1122. p->node_start_pfn, end_pfn);
  1123. numadbg(" free_bootmem_with_active_regions(%d, %lx)\n",
  1124. nid, end_pfn);
  1125. free_bootmem_with_active_regions(nid, end_pfn);
  1126. trim_reserved_in_node(nid);
  1127. numadbg(" sparse_memory_present_with_active_regions(%d)\n",
  1128. nid);
  1129. sparse_memory_present_with_active_regions(nid);
  1130. }
  1131. }
  1132. static unsigned long __init bootmem_init(unsigned long phys_base)
  1133. {
  1134. unsigned long end_pfn;
  1135. int nid;
  1136. end_pfn = lmb_end_of_DRAM() >> PAGE_SHIFT;
  1137. max_pfn = max_low_pfn = end_pfn;
  1138. min_low_pfn = (phys_base >> PAGE_SHIFT);
  1139. if (bootmem_init_numa() < 0)
  1140. bootmem_init_nonnuma();
  1141. /* XXX cpu notifier XXX */
  1142. for_each_online_node(nid)
  1143. bootmem_init_one_node(nid);
  1144. sparse_init();
  1145. return end_pfn;
  1146. }
  1147. static struct linux_prom64_registers pall[MAX_BANKS] __initdata;
  1148. static int pall_ents __initdata;
  1149. #ifdef CONFIG_DEBUG_PAGEALLOC
  1150. static unsigned long __ref kernel_map_range(unsigned long pstart,
  1151. unsigned long pend, pgprot_t prot)
  1152. {
  1153. unsigned long vstart = PAGE_OFFSET + pstart;
  1154. unsigned long vend = PAGE_OFFSET + pend;
  1155. unsigned long alloc_bytes = 0UL;
  1156. if ((vstart & ~PAGE_MASK) || (vend & ~PAGE_MASK)) {
  1157. prom_printf("kernel_map: Unaligned physmem[%lx:%lx]\n",
  1158. vstart, vend);
  1159. prom_halt();
  1160. }
  1161. while (vstart < vend) {
  1162. unsigned long this_end, paddr = __pa(vstart);
  1163. pgd_t *pgd = pgd_offset_k(vstart);
  1164. pud_t *pud;
  1165. pmd_t *pmd;
  1166. pte_t *pte;
  1167. pud = pud_offset(pgd, vstart);
  1168. if (pud_none(*pud)) {
  1169. pmd_t *new;
  1170. new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
  1171. alloc_bytes += PAGE_SIZE;
  1172. pud_populate(&init_mm, pud, new);
  1173. }
  1174. pmd = pmd_offset(pud, vstart);
  1175. if (!pmd_present(*pmd)) {
  1176. pte_t *new;
  1177. new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
  1178. alloc_bytes += PAGE_SIZE;
  1179. pmd_populate_kernel(&init_mm, pmd, new);
  1180. }
  1181. pte = pte_offset_kernel(pmd, vstart);
  1182. this_end = (vstart + PMD_SIZE) & PMD_MASK;
  1183. if (this_end > vend)
  1184. this_end = vend;
  1185. while (vstart < this_end) {
  1186. pte_val(*pte) = (paddr | pgprot_val(prot));
  1187. vstart += PAGE_SIZE;
  1188. paddr += PAGE_SIZE;
  1189. pte++;
  1190. }
  1191. }
  1192. return alloc_bytes;
  1193. }
  1194. extern unsigned int kvmap_linear_patch[1];
  1195. #endif /* CONFIG_DEBUG_PAGEALLOC */
  1196. static void __init mark_kpte_bitmap(unsigned long start, unsigned long end)
  1197. {
  1198. const unsigned long shift_256MB = 28;
  1199. const unsigned long mask_256MB = ((1UL << shift_256MB) - 1UL);
  1200. const unsigned long size_256MB = (1UL << shift_256MB);
  1201. while (start < end) {
  1202. long remains;
  1203. remains = end - start;
  1204. if (remains < size_256MB)
  1205. break;
  1206. if (start & mask_256MB) {
  1207. start = (start + size_256MB) & ~mask_256MB;
  1208. continue;
  1209. }
  1210. while (remains >= size_256MB) {
  1211. unsigned long index = start >> shift_256MB;
  1212. __set_bit(index, kpte_linear_bitmap);
  1213. start += size_256MB;
  1214. remains -= size_256MB;
  1215. }
  1216. }
  1217. }
  1218. static void __init init_kpte_bitmap(void)
  1219. {
  1220. unsigned long i;
  1221. for (i = 0; i < pall_ents; i++) {
  1222. unsigned long phys_start, phys_end;
  1223. phys_start = pall[i].phys_addr;
  1224. phys_end = phys_start + pall[i].reg_size;
  1225. mark_kpte_bitmap(phys_start, phys_end);
  1226. }
  1227. }
  1228. static void __init kernel_physical_mapping_init(void)
  1229. {
  1230. #ifdef CONFIG_DEBUG_PAGEALLOC
  1231. unsigned long i, mem_alloced = 0UL;
  1232. for (i = 0; i < pall_ents; i++) {
  1233. unsigned long phys_start, phys_end;
  1234. phys_start = pall[i].phys_addr;
  1235. phys_end = phys_start + pall[i].reg_size;
  1236. mem_alloced += kernel_map_range(phys_start, phys_end,
  1237. PAGE_KERNEL);
  1238. }
  1239. printk("Allocated %ld bytes for kernel page tables.\n",
  1240. mem_alloced);
  1241. kvmap_linear_patch[0] = 0x01000000; /* nop */
  1242. flushi(&kvmap_linear_patch[0]);
  1243. __flush_tlb_all();
  1244. #endif
  1245. }
  1246. #ifdef CONFIG_DEBUG_PAGEALLOC
  1247. void kernel_map_pages(struct page *page, int numpages, int enable)
  1248. {
  1249. unsigned long phys_start = page_to_pfn(page) << PAGE_SHIFT;
  1250. unsigned long phys_end = phys_start + (numpages * PAGE_SIZE);
  1251. kernel_map_range(phys_start, phys_end,
  1252. (enable ? PAGE_KERNEL : __pgprot(0)));
  1253. flush_tsb_kernel_range(PAGE_OFFSET + phys_start,
  1254. PAGE_OFFSET + phys_end);
  1255. /* we should perform an IPI and flush all tlbs,
  1256. * but that can deadlock->flush only current cpu.
  1257. */
  1258. __flush_tlb_kernel_range(PAGE_OFFSET + phys_start,
  1259. PAGE_OFFSET + phys_end);
  1260. }
  1261. #endif
  1262. unsigned long __init find_ecache_flush_span(unsigned long size)
  1263. {
  1264. int i;
  1265. for (i = 0; i < pavail_ents; i++) {
  1266. if (pavail[i].reg_size >= size)
  1267. return pavail[i].phys_addr;
  1268. }
  1269. return ~0UL;
  1270. }
  1271. static void __init tsb_phys_patch(void)
  1272. {
  1273. struct tsb_ldquad_phys_patch_entry *pquad;
  1274. struct tsb_phys_patch_entry *p;
  1275. pquad = &__tsb_ldquad_phys_patch;
  1276. while (pquad < &__tsb_ldquad_phys_patch_end) {
  1277. unsigned long addr = pquad->addr;
  1278. if (tlb_type == hypervisor)
  1279. *(unsigned int *) addr = pquad->sun4v_insn;
  1280. else
  1281. *(unsigned int *) addr = pquad->sun4u_insn;
  1282. wmb();
  1283. __asm__ __volatile__("flush %0"
  1284. : /* no outputs */
  1285. : "r" (addr));
  1286. pquad++;
  1287. }
  1288. p = &__tsb_phys_patch;
  1289. while (p < &__tsb_phys_patch_end) {
  1290. unsigned long addr = p->addr;
  1291. *(unsigned int *) addr = p->insn;
  1292. wmb();
  1293. __asm__ __volatile__("flush %0"
  1294. : /* no outputs */
  1295. : "r" (addr));
  1296. p++;
  1297. }
  1298. }
  1299. /* Don't mark as init, we give this to the Hypervisor. */
  1300. #ifndef CONFIG_DEBUG_PAGEALLOC
  1301. #define NUM_KTSB_DESCR 2
  1302. #else
  1303. #define NUM_KTSB_DESCR 1
  1304. #endif
  1305. static struct hv_tsb_descr ktsb_descr[NUM_KTSB_DESCR];
  1306. extern struct tsb swapper_tsb[KERNEL_TSB_NENTRIES];
  1307. static void __init sun4v_ktsb_init(void)
  1308. {
  1309. unsigned long ktsb_pa;
  1310. /* First KTSB for PAGE_SIZE mappings. */
  1311. ktsb_pa = kern_base + ((unsigned long)&swapper_tsb[0] - KERNBASE);
  1312. switch (PAGE_SIZE) {
  1313. case 8 * 1024:
  1314. default:
  1315. ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_8K;
  1316. ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_8K;
  1317. break;
  1318. case 64 * 1024:
  1319. ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_64K;
  1320. ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_64K;
  1321. break;
  1322. case 512 * 1024:
  1323. ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_512K;
  1324. ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_512K;
  1325. break;
  1326. case 4 * 1024 * 1024:
  1327. ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_4MB;
  1328. ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_4MB;
  1329. break;
  1330. };
  1331. ktsb_descr[0].assoc = 1;
  1332. ktsb_descr[0].num_ttes = KERNEL_TSB_NENTRIES;
  1333. ktsb_descr[0].ctx_idx = 0;
  1334. ktsb_descr[0].tsb_base = ktsb_pa;
  1335. ktsb_descr[0].resv = 0;
  1336. #ifndef CONFIG_DEBUG_PAGEALLOC
  1337. /* Second KTSB for 4MB/256MB mappings. */
  1338. ktsb_pa = (kern_base +
  1339. ((unsigned long)&swapper_4m_tsb[0] - KERNBASE));
  1340. ktsb_descr[1].pgsz_idx = HV_PGSZ_IDX_4MB;
  1341. ktsb_descr[1].pgsz_mask = (HV_PGSZ_MASK_4MB |
  1342. HV_PGSZ_MASK_256MB);
  1343. ktsb_descr[1].assoc = 1;
  1344. ktsb_descr[1].num_ttes = KERNEL_TSB4M_NENTRIES;
  1345. ktsb_descr[1].ctx_idx = 0;
  1346. ktsb_descr[1].tsb_base = ktsb_pa;
  1347. ktsb_descr[1].resv = 0;
  1348. #endif
  1349. }
  1350. void __cpuinit sun4v_ktsb_register(void)
  1351. {
  1352. unsigned long pa, ret;
  1353. pa = kern_base + ((unsigned long)&ktsb_descr[0] - KERNBASE);
  1354. ret = sun4v_mmu_tsb_ctx0(NUM_KTSB_DESCR, pa);
  1355. if (ret != 0) {
  1356. prom_printf("hypervisor_mmu_tsb_ctx0[%lx]: "
  1357. "errors with %lx\n", pa, ret);
  1358. prom_halt();
  1359. }
  1360. }
  1361. /* paging_init() sets up the page tables */
  1362. extern void central_probe(void);
  1363. static unsigned long last_valid_pfn;
  1364. pgd_t swapper_pg_dir[2048];
  1365. static void sun4u_pgprot_init(void);
  1366. static void sun4v_pgprot_init(void);
  1367. /* Dummy function */
  1368. void __init setup_per_cpu_areas(void)
  1369. {
  1370. }
  1371. void __init paging_init(void)
  1372. {
  1373. unsigned long end_pfn, shift, phys_base;
  1374. unsigned long real_end, i;
  1375. /* These build time checkes make sure that the dcache_dirty_cpu()
  1376. * page->flags usage will work.
  1377. *
  1378. * When a page gets marked as dcache-dirty, we store the
  1379. * cpu number starting at bit 32 in the page->flags. Also,
  1380. * functions like clear_dcache_dirty_cpu use the cpu mask
  1381. * in 13-bit signed-immediate instruction fields.
  1382. */
  1383. /*
  1384. * Page flags must not reach into upper 32 bits that are used
  1385. * for the cpu number
  1386. */
  1387. BUILD_BUG_ON(NR_PAGEFLAGS > 32);
  1388. /*
  1389. * The bit fields placed in the high range must not reach below
  1390. * the 32 bit boundary. Otherwise we cannot place the cpu field
  1391. * at the 32 bit boundary.
  1392. */
  1393. BUILD_BUG_ON(SECTIONS_WIDTH + NODES_WIDTH + ZONES_WIDTH +
  1394. ilog2(roundup_pow_of_two(NR_CPUS)) > 32);
  1395. BUILD_BUG_ON(NR_CPUS > 4096);
  1396. kern_base = (prom_boot_mapping_phys_low >> 22UL) << 22UL;
  1397. kern_size = (unsigned long)&_end - (unsigned long)KERNBASE;
  1398. sstate_booting();
  1399. /* Invalidate both kernel TSBs. */
  1400. memset(swapper_tsb, 0x40, sizeof(swapper_tsb));
  1401. #ifndef CONFIG_DEBUG_PAGEALLOC
  1402. memset(swapper_4m_tsb, 0x40, sizeof(swapper_4m_tsb));
  1403. #endif
  1404. if (tlb_type == hypervisor)
  1405. sun4v_pgprot_init();
  1406. else
  1407. sun4u_pgprot_init();
  1408. if (tlb_type == cheetah_plus ||
  1409. tlb_type == hypervisor)
  1410. tsb_phys_patch();
  1411. if (tlb_type == hypervisor) {
  1412. sun4v_patch_tlb_handlers();
  1413. sun4v_ktsb_init();
  1414. }
  1415. lmb_init();
  1416. /* Find available physical memory... */
  1417. read_obp_memory("available", &pavail[0], &pavail_ents);
  1418. phys_base = 0xffffffffffffffffUL;
  1419. for (i = 0; i < pavail_ents; i++) {
  1420. phys_base = min(phys_base, pavail[i].phys_addr);
  1421. lmb_add(pavail[i].phys_addr, pavail[i].reg_size);
  1422. }
  1423. lmb_reserve(kern_base, kern_size);
  1424. find_ramdisk(phys_base);
  1425. if (cmdline_memory_size)
  1426. lmb_enforce_memory_limit(phys_base + cmdline_memory_size);
  1427. lmb_analyze();
  1428. lmb_dump_all();
  1429. set_bit(0, mmu_context_bmap);
  1430. shift = kern_base + PAGE_OFFSET - ((unsigned long)KERNBASE);
  1431. real_end = (unsigned long)_end;
  1432. num_kernel_image_mappings = DIV_ROUND_UP(real_end - KERNBASE, 1 << 22);
  1433. printk("Kernel: Using %d locked TLB entries for main kernel image.\n",
  1434. num_kernel_image_mappings);
  1435. /* Set kernel pgd to upper alias so physical page computations
  1436. * work.
  1437. */
  1438. init_mm.pgd += ((shift) / (sizeof(pgd_t)));
  1439. memset(swapper_low_pmd_dir, 0, sizeof(swapper_low_pmd_dir));
  1440. /* Now can init the kernel/bad page tables. */
  1441. pud_set(pud_offset(&swapper_pg_dir[0], 0),
  1442. swapper_low_pmd_dir + (shift / sizeof(pgd_t)));
  1443. inherit_prom_mappings();
  1444. read_obp_memory("reg", &pall[0], &pall_ents);
  1445. init_kpte_bitmap();
  1446. /* Ok, we can use our TLB miss and window trap handlers safely. */
  1447. setup_tba();
  1448. __flush_tlb_all();
  1449. if (tlb_type == hypervisor)
  1450. sun4v_ktsb_register();
  1451. /* We must setup the per-cpu areas before we pull in the
  1452. * PROM and the MDESC. The code there fills in cpu and
  1453. * other information into per-cpu data structures.
  1454. */
  1455. real_setup_per_cpu_areas();
  1456. prom_build_devicetree();
  1457. if (tlb_type == hypervisor)
  1458. sun4v_mdesc_init();
  1459. /* Setup bootmem... */
  1460. last_valid_pfn = end_pfn = bootmem_init(phys_base);
  1461. #ifndef CONFIG_NEED_MULTIPLE_NODES
  1462. max_mapnr = last_valid_pfn;
  1463. #endif
  1464. kernel_physical_mapping_init();
  1465. {
  1466. unsigned long max_zone_pfns[MAX_NR_ZONES];
  1467. memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
  1468. max_zone_pfns[ZONE_NORMAL] = end_pfn;
  1469. free_area_init_nodes(max_zone_pfns);
  1470. }
  1471. printk("Booting Linux...\n");
  1472. central_probe();
  1473. cpu_probe();
  1474. }
  1475. int __init page_in_phys_avail(unsigned long paddr)
  1476. {
  1477. int i;
  1478. paddr &= PAGE_MASK;
  1479. for (i = 0; i < pavail_ents; i++) {
  1480. unsigned long start, end;
  1481. start = pavail[i].phys_addr;
  1482. end = start + pavail[i].reg_size;
  1483. if (paddr >= start && paddr < end)
  1484. return 1;
  1485. }
  1486. if (paddr >= kern_base && paddr < (kern_base + kern_size))
  1487. return 1;
  1488. #ifdef CONFIG_BLK_DEV_INITRD
  1489. if (paddr >= __pa(initrd_start) &&
  1490. paddr < __pa(PAGE_ALIGN(initrd_end)))
  1491. return 1;
  1492. #endif
  1493. return 0;
  1494. }
  1495. static struct linux_prom64_registers pavail_rescan[MAX_BANKS] __initdata;
  1496. static int pavail_rescan_ents __initdata;
  1497. /* Certain OBP calls, such as fetching "available" properties, can
  1498. * claim physical memory. So, along with initializing the valid
  1499. * address bitmap, what we do here is refetch the physical available
  1500. * memory list again, and make sure it provides at least as much
  1501. * memory as 'pavail' does.
  1502. */
  1503. static void setup_valid_addr_bitmap_from_pavail(void)
  1504. {
  1505. int i;
  1506. read_obp_memory("available", &pavail_rescan[0], &pavail_rescan_ents);
  1507. for (i = 0; i < pavail_ents; i++) {
  1508. unsigned long old_start, old_end;
  1509. old_start = pavail[i].phys_addr;
  1510. old_end = old_start + pavail[i].reg_size;
  1511. while (old_start < old_end) {
  1512. int n;
  1513. for (n = 0; n < pavail_rescan_ents; n++) {
  1514. unsigned long new_start, new_end;
  1515. new_start = pavail_rescan[n].phys_addr;
  1516. new_end = new_start +
  1517. pavail_rescan[n].reg_size;
  1518. if (new_start <= old_start &&
  1519. new_end >= (old_start + PAGE_SIZE)) {
  1520. set_bit(old_start >> 22,
  1521. sparc64_valid_addr_bitmap);
  1522. goto do_next_page;
  1523. }
  1524. }
  1525. prom_printf("mem_init: Lost memory in pavail\n");
  1526. prom_printf("mem_init: OLD start[%lx] size[%lx]\n",
  1527. pavail[i].phys_addr,
  1528. pavail[i].reg_size);
  1529. prom_printf("mem_init: NEW start[%lx] size[%lx]\n",
  1530. pavail_rescan[i].phys_addr,
  1531. pavail_rescan[i].reg_size);
  1532. prom_printf("mem_init: Cannot continue, aborting.\n");
  1533. prom_halt();
  1534. do_next_page:
  1535. old_start += PAGE_SIZE;
  1536. }
  1537. }
  1538. }
  1539. void __init mem_init(void)
  1540. {
  1541. unsigned long codepages, datapages, initpages;
  1542. unsigned long addr, last;
  1543. int i;
  1544. i = last_valid_pfn >> ((22 - PAGE_SHIFT) + 6);
  1545. i += 1;
  1546. sparc64_valid_addr_bitmap = (unsigned long *) alloc_bootmem(i << 3);
  1547. if (sparc64_valid_addr_bitmap == NULL) {
  1548. prom_printf("mem_init: Cannot alloc valid_addr_bitmap.\n");
  1549. prom_halt();
  1550. }
  1551. memset(sparc64_valid_addr_bitmap, 0, i << 3);
  1552. addr = PAGE_OFFSET + kern_base;
  1553. last = PAGE_ALIGN(kern_size) + addr;
  1554. while (addr < last) {
  1555. set_bit(__pa(addr) >> 22, sparc64_valid_addr_bitmap);
  1556. addr += PAGE_SIZE;
  1557. }
  1558. setup_valid_addr_bitmap_from_pavail();
  1559. high_memory = __va(last_valid_pfn << PAGE_SHIFT);
  1560. #ifdef CONFIG_NEED_MULTIPLE_NODES
  1561. for_each_online_node(i) {
  1562. if (NODE_DATA(i)->node_spanned_pages != 0) {
  1563. totalram_pages +=
  1564. free_all_bootmem_node(NODE_DATA(i));
  1565. }
  1566. }
  1567. #else
  1568. totalram_pages = free_all_bootmem();
  1569. #endif
  1570. /* We subtract one to account for the mem_map_zero page
  1571. * allocated below.
  1572. */
  1573. totalram_pages -= 1;
  1574. num_physpages = totalram_pages;
  1575. /*
  1576. * Set up the zero page, mark it reserved, so that page count
  1577. * is not manipulated when freeing the page from user ptes.
  1578. */
  1579. mem_map_zero = alloc_pages(GFP_KERNEL|__GFP_ZERO, 0);
  1580. if (mem_map_zero == NULL) {
  1581. prom_printf("paging_init: Cannot alloc zero page.\n");
  1582. prom_halt();
  1583. }
  1584. SetPageReserved(mem_map_zero);
  1585. codepages = (((unsigned long) _etext) - ((unsigned long) _start));
  1586. codepages = PAGE_ALIGN(codepages) >> PAGE_SHIFT;
  1587. datapages = (((unsigned long) _edata) - ((unsigned long) _etext));
  1588. datapages = PAGE_ALIGN(datapages) >> PAGE_SHIFT;
  1589. initpages = (((unsigned long) __init_end) - ((unsigned long) __init_begin));
  1590. initpages = PAGE_ALIGN(initpages) >> PAGE_SHIFT;
  1591. printk("Memory: %luk available (%ldk kernel code, %ldk data, %ldk init) [%016lx,%016lx]\n",
  1592. nr_free_pages() << (PAGE_SHIFT-10),
  1593. codepages << (PAGE_SHIFT-10),
  1594. datapages << (PAGE_SHIFT-10),
  1595. initpages << (PAGE_SHIFT-10),
  1596. PAGE_OFFSET, (last_valid_pfn << PAGE_SHIFT));
  1597. if (tlb_type == cheetah || tlb_type == cheetah_plus)
  1598. cheetah_ecache_flush_init();
  1599. }
  1600. void free_initmem(void)
  1601. {
  1602. unsigned long addr, initend;
  1603. /*
  1604. * The init section is aligned to 8k in vmlinux.lds. Page align for >8k pagesizes.
  1605. */
  1606. addr = PAGE_ALIGN((unsigned long)(__init_begin));
  1607. initend = (unsigned long)(__init_end) & PAGE_MASK;
  1608. for (; addr < initend; addr += PAGE_SIZE) {
  1609. unsigned long page;
  1610. struct page *p;
  1611. page = (addr +
  1612. ((unsigned long) __va(kern_base)) -
  1613. ((unsigned long) KERNBASE));
  1614. memset((void *)addr, POISON_FREE_INITMEM, PAGE_SIZE);
  1615. p = virt_to_page(page);
  1616. ClearPageReserved(p);
  1617. init_page_count(p);
  1618. __free_page(p);
  1619. num_physpages++;
  1620. totalram_pages++;
  1621. }
  1622. }
  1623. #ifdef CONFIG_BLK_DEV_INITRD
  1624. void free_initrd_mem(unsigned long start, unsigned long end)
  1625. {
  1626. if (start < end)
  1627. printk ("Freeing initrd memory: %ldk freed\n", (end - start) >> 10);
  1628. for (; start < end; start += PAGE_SIZE) {
  1629. struct page *p = virt_to_page(start);
  1630. ClearPageReserved(p);
  1631. init_page_count(p);
  1632. __free_page(p);
  1633. num_physpages++;
  1634. totalram_pages++;
  1635. }
  1636. }
  1637. #endif
  1638. #define _PAGE_CACHE_4U (_PAGE_CP_4U | _PAGE_CV_4U)
  1639. #define _PAGE_CACHE_4V (_PAGE_CP_4V | _PAGE_CV_4V)
  1640. #define __DIRTY_BITS_4U (_PAGE_MODIFIED_4U | _PAGE_WRITE_4U | _PAGE_W_4U)
  1641. #define __DIRTY_BITS_4V (_PAGE_MODIFIED_4V | _PAGE_WRITE_4V | _PAGE_W_4V)
  1642. #define __ACCESS_BITS_4U (_PAGE_ACCESSED_4U | _PAGE_READ_4U | _PAGE_R)
  1643. #define __ACCESS_BITS_4V (_PAGE_ACCESSED_4V | _PAGE_READ_4V | _PAGE_R)
  1644. pgprot_t PAGE_KERNEL __read_mostly;
  1645. EXPORT_SYMBOL(PAGE_KERNEL);
  1646. pgprot_t PAGE_KERNEL_LOCKED __read_mostly;
  1647. pgprot_t PAGE_COPY __read_mostly;
  1648. pgprot_t PAGE_SHARED __read_mostly;
  1649. EXPORT_SYMBOL(PAGE_SHARED);
  1650. pgprot_t PAGE_EXEC __read_mostly;
  1651. unsigned long pg_iobits __read_mostly;
  1652. unsigned long _PAGE_IE __read_mostly;
  1653. EXPORT_SYMBOL(_PAGE_IE);
  1654. unsigned long _PAGE_E __read_mostly;
  1655. EXPORT_SYMBOL(_PAGE_E);
  1656. unsigned long _PAGE_CACHE __read_mostly;
  1657. EXPORT_SYMBOL(_PAGE_CACHE);
  1658. #ifdef CONFIG_SPARSEMEM_VMEMMAP
  1659. #define VMEMMAP_CHUNK_SHIFT 22
  1660. #define VMEMMAP_CHUNK (1UL << VMEMMAP_CHUNK_SHIFT)
  1661. #define VMEMMAP_CHUNK_MASK ~(VMEMMAP_CHUNK - 1UL)
  1662. #define VMEMMAP_ALIGN(x) (((x)+VMEMMAP_CHUNK-1UL)&VMEMMAP_CHUNK_MASK)
  1663. #define VMEMMAP_SIZE ((((1UL << MAX_PHYSADDR_BITS) >> PAGE_SHIFT) * \
  1664. sizeof(struct page *)) >> VMEMMAP_CHUNK_SHIFT)
  1665. unsigned long vmemmap_table[VMEMMAP_SIZE];
  1666. int __meminit vmemmap_populate(struct page *start, unsigned long nr, int node)
  1667. {
  1668. unsigned long vstart = (unsigned long) start;
  1669. unsigned long vend = (unsigned long) (start + nr);
  1670. unsigned long phys_start = (vstart - VMEMMAP_BASE);
  1671. unsigned long phys_end = (vend - VMEMMAP_BASE);
  1672. unsigned long addr = phys_start & VMEMMAP_CHUNK_MASK;
  1673. unsigned long end = VMEMMAP_ALIGN(phys_end);
  1674. unsigned long pte_base;
  1675. pte_base = (_PAGE_VALID | _PAGE_SZ4MB_4U |
  1676. _PAGE_CP_4U | _PAGE_CV_4U |
  1677. _PAGE_P_4U | _PAGE_W_4U);
  1678. if (tlb_type == hypervisor)
  1679. pte_base = (_PAGE_VALID | _PAGE_SZ4MB_4V |
  1680. _PAGE_CP_4V | _PAGE_CV_4V |
  1681. _PAGE_P_4V | _PAGE_W_4V);
  1682. for (; addr < end; addr += VMEMMAP_CHUNK) {
  1683. unsigned long *vmem_pp =
  1684. vmemmap_table + (addr >> VMEMMAP_CHUNK_SHIFT);
  1685. void *block;
  1686. if (!(*vmem_pp & _PAGE_VALID)) {
  1687. block = vmemmap_alloc_block(1UL << 22, node);
  1688. if (!block)
  1689. return -ENOMEM;
  1690. *vmem_pp = pte_base | __pa(block);
  1691. printk(KERN_INFO "[%p-%p] page_structs=%lu "
  1692. "node=%d entry=%lu/%lu\n", start, block, nr,
  1693. node,
  1694. addr >> VMEMMAP_CHUNK_SHIFT,
  1695. VMEMMAP_SIZE >> VMEMMAP_CHUNK_SHIFT);
  1696. }
  1697. }
  1698. return 0;
  1699. }
  1700. #endif /* CONFIG_SPARSEMEM_VMEMMAP */
  1701. static void prot_init_common(unsigned long page_none,
  1702. unsigned long page_shared,
  1703. unsigned long page_copy,
  1704. unsigned long page_readonly,
  1705. unsigned long page_exec_bit)
  1706. {
  1707. PAGE_COPY = __pgprot(page_copy);
  1708. PAGE_SHARED = __pgprot(page_shared);
  1709. protection_map[0x0] = __pgprot(page_none);
  1710. protection_map[0x1] = __pgprot(page_readonly & ~page_exec_bit);
  1711. protection_map[0x2] = __pgprot(page_copy & ~page_exec_bit);
  1712. protection_map[0x3] = __pgprot(page_copy & ~page_exec_bit);
  1713. protection_map[0x4] = __pgprot(page_readonly);
  1714. protection_map[0x5] = __pgprot(page_readonly);
  1715. protection_map[0x6] = __pgprot(page_copy);
  1716. protection_map[0x7] = __pgprot(page_copy);
  1717. protection_map[0x8] = __pgprot(page_none);
  1718. protection_map[0x9] = __pgprot(page_readonly & ~page_exec_bit);
  1719. protection_map[0xa] = __pgprot(page_shared & ~page_exec_bit);
  1720. protection_map[0xb] = __pgprot(page_shared & ~page_exec_bit);
  1721. protection_map[0xc] = __pgprot(page_readonly);
  1722. protection_map[0xd] = __pgprot(page_readonly);
  1723. protection_map[0xe] = __pgprot(page_shared);
  1724. protection_map[0xf] = __pgprot(page_shared);
  1725. }
  1726. static void __init sun4u_pgprot_init(void)
  1727. {
  1728. unsigned long page_none, page_shared, page_copy, page_readonly;
  1729. unsigned long page_exec_bit;
  1730. PAGE_KERNEL = __pgprot (_PAGE_PRESENT_4U | _PAGE_VALID |
  1731. _PAGE_CACHE_4U | _PAGE_P_4U |
  1732. __ACCESS_BITS_4U | __DIRTY_BITS_4U |
  1733. _PAGE_EXEC_4U);
  1734. PAGE_KERNEL_LOCKED = __pgprot (_PAGE_PRESENT_4U | _PAGE_VALID |
  1735. _PAGE_CACHE_4U | _PAGE_P_4U |
  1736. __ACCESS_BITS_4U | __DIRTY_BITS_4U |
  1737. _PAGE_EXEC_4U | _PAGE_L_4U);
  1738. PAGE_EXEC = __pgprot(_PAGE_EXEC_4U);
  1739. _PAGE_IE = _PAGE_IE_4U;
  1740. _PAGE_E = _PAGE_E_4U;
  1741. _PAGE_CACHE = _PAGE_CACHE_4U;
  1742. pg_iobits = (_PAGE_VALID | _PAGE_PRESENT_4U | __DIRTY_BITS_4U |
  1743. __ACCESS_BITS_4U | _PAGE_E_4U);
  1744. #ifdef CONFIG_DEBUG_PAGEALLOC
  1745. kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZBITS_4U) ^
  1746. 0xfffff80000000000;
  1747. #else
  1748. kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZ4MB_4U) ^
  1749. 0xfffff80000000000;
  1750. #endif
  1751. kern_linear_pte_xor[0] |= (_PAGE_CP_4U | _PAGE_CV_4U |
  1752. _PAGE_P_4U | _PAGE_W_4U);
  1753. /* XXX Should use 256MB on Panther. XXX */
  1754. kern_linear_pte_xor[1] = kern_linear_pte_xor[0];
  1755. _PAGE_SZBITS = _PAGE_SZBITS_4U;
  1756. _PAGE_ALL_SZ_BITS = (_PAGE_SZ4MB_4U | _PAGE_SZ512K_4U |
  1757. _PAGE_SZ64K_4U | _PAGE_SZ8K_4U |
  1758. _PAGE_SZ32MB_4U | _PAGE_SZ256MB_4U);
  1759. page_none = _PAGE_PRESENT_4U | _PAGE_ACCESSED_4U | _PAGE_CACHE_4U;
  1760. page_shared = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
  1761. __ACCESS_BITS_4U | _PAGE_WRITE_4U | _PAGE_EXEC_4U);
  1762. page_copy = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
  1763. __ACCESS_BITS_4U | _PAGE_EXEC_4U);
  1764. page_readonly = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
  1765. __ACCESS_BITS_4U | _PAGE_EXEC_4U);
  1766. page_exec_bit = _PAGE_EXEC_4U;
  1767. prot_init_common(page_none, page_shared, page_copy, page_readonly,
  1768. page_exec_bit);
  1769. }
  1770. static void __init sun4v_pgprot_init(void)
  1771. {
  1772. unsigned long page_none, page_shared, page_copy, page_readonly;
  1773. unsigned long page_exec_bit;
  1774. PAGE_KERNEL = __pgprot (_PAGE_PRESENT_4V | _PAGE_VALID |
  1775. _PAGE_CACHE_4V | _PAGE_P_4V |
  1776. __ACCESS_BITS_4V | __DIRTY_BITS_4V |
  1777. _PAGE_EXEC_4V);
  1778. PAGE_KERNEL_LOCKED = PAGE_KERNEL;
  1779. PAGE_EXEC = __pgprot(_PAGE_EXEC_4V);
  1780. _PAGE_IE = _PAGE_IE_4V;
  1781. _PAGE_E = _PAGE_E_4V;
  1782. _PAGE_CACHE = _PAGE_CACHE_4V;
  1783. #ifdef CONFIG_DEBUG_PAGEALLOC
  1784. kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZBITS_4V) ^
  1785. 0xfffff80000000000;
  1786. #else
  1787. kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZ4MB_4V) ^
  1788. 0xfffff80000000000;
  1789. #endif
  1790. kern_linear_pte_xor[0] |= (_PAGE_CP_4V | _PAGE_CV_4V |
  1791. _PAGE_P_4V | _PAGE_W_4V);
  1792. #ifdef CONFIG_DEBUG_PAGEALLOC
  1793. kern_linear_pte_xor[1] = (_PAGE_VALID | _PAGE_SZBITS_4V) ^
  1794. 0xfffff80000000000;
  1795. #else
  1796. kern_linear_pte_xor[1] = (_PAGE_VALID | _PAGE_SZ256MB_4V) ^
  1797. 0xfffff80000000000;
  1798. #endif
  1799. kern_linear_pte_xor[1] |= (_PAGE_CP_4V | _PAGE_CV_4V |
  1800. _PAGE_P_4V | _PAGE_W_4V);
  1801. pg_iobits = (_PAGE_VALID | _PAGE_PRESENT_4V | __DIRTY_BITS_4V |
  1802. __ACCESS_BITS_4V | _PAGE_E_4V);
  1803. _PAGE_SZBITS = _PAGE_SZBITS_4V;
  1804. _PAGE_ALL_SZ_BITS = (_PAGE_SZ16GB_4V | _PAGE_SZ2GB_4V |
  1805. _PAGE_SZ256MB_4V | _PAGE_SZ32MB_4V |
  1806. _PAGE_SZ4MB_4V | _PAGE_SZ512K_4V |
  1807. _PAGE_SZ64K_4V | _PAGE_SZ8K_4V);
  1808. page_none = _PAGE_PRESENT_4V | _PAGE_ACCESSED_4V | _PAGE_CACHE_4V;
  1809. page_shared = (_PAGE_VALID | _PAGE_PRESENT_4V | _PAGE_CACHE_4V |
  1810. __ACCESS_BITS_4V | _PAGE_WRITE_4V | _PAGE_EXEC_4V);
  1811. page_copy = (_PAGE_VALID | _PAGE_PRESENT_4V | _PAGE_CACHE_4V |
  1812. __ACCESS_BITS_4V | _PAGE_EXEC_4V);
  1813. page_readonly = (_PAGE_VALID | _PAGE_PRESENT_4V | _PAGE_CACHE_4V |
  1814. __ACCESS_BITS_4V | _PAGE_EXEC_4V);
  1815. page_exec_bit = _PAGE_EXEC_4V;
  1816. prot_init_common(page_none, page_shared, page_copy, page_readonly,
  1817. page_exec_bit);
  1818. }
  1819. unsigned long pte_sz_bits(unsigned long sz)
  1820. {
  1821. if (tlb_type == hypervisor) {
  1822. switch (sz) {
  1823. case 8 * 1024:
  1824. default:
  1825. return _PAGE_SZ8K_4V;
  1826. case 64 * 1024:
  1827. return _PAGE_SZ64K_4V;
  1828. case 512 * 1024:
  1829. return _PAGE_SZ512K_4V;
  1830. case 4 * 1024 * 1024:
  1831. return _PAGE_SZ4MB_4V;
  1832. };
  1833. } else {
  1834. switch (sz) {
  1835. case 8 * 1024:
  1836. default:
  1837. return _PAGE_SZ8K_4U;
  1838. case 64 * 1024:
  1839. return _PAGE_SZ64K_4U;
  1840. case 512 * 1024:
  1841. return _PAGE_SZ512K_4U;
  1842. case 4 * 1024 * 1024:
  1843. return _PAGE_SZ4MB_4U;
  1844. };
  1845. }
  1846. }
  1847. pte_t mk_pte_io(unsigned long page, pgprot_t prot, int space, unsigned long page_size)
  1848. {
  1849. pte_t pte;
  1850. pte_val(pte) = page | pgprot_val(pgprot_noncached(prot));
  1851. pte_val(pte) |= (((unsigned long)space) << 32);
  1852. pte_val(pte) |= pte_sz_bits(page_size);
  1853. return pte;
  1854. }
  1855. static unsigned long kern_large_tte(unsigned long paddr)
  1856. {
  1857. unsigned long val;
  1858. val = (_PAGE_VALID | _PAGE_SZ4MB_4U |
  1859. _PAGE_CP_4U | _PAGE_CV_4U | _PAGE_P_4U |
  1860. _PAGE_EXEC_4U | _PAGE_L_4U | _PAGE_W_4U);
  1861. if (tlb_type == hypervisor)
  1862. val = (_PAGE_VALID | _PAGE_SZ4MB_4V |
  1863. _PAGE_CP_4V | _PAGE_CV_4V | _PAGE_P_4V |
  1864. _PAGE_EXEC_4V | _PAGE_W_4V);
  1865. return val | paddr;
  1866. }
  1867. /* If not locked, zap it. */
  1868. void __flush_tlb_all(void)
  1869. {
  1870. unsigned long pstate;
  1871. int i;
  1872. __asm__ __volatile__("flushw\n\t"
  1873. "rdpr %%pstate, %0\n\t"
  1874. "wrpr %0, %1, %%pstate"
  1875. : "=r" (pstate)
  1876. : "i" (PSTATE_IE));
  1877. if (tlb_type == hypervisor) {
  1878. sun4v_mmu_demap_all();
  1879. } else if (tlb_type == spitfire) {
  1880. for (i = 0; i < 64; i++) {
  1881. /* Spitfire Errata #32 workaround */
  1882. /* NOTE: Always runs on spitfire, so no
  1883. * cheetah+ page size encodings.
  1884. */
  1885. __asm__ __volatile__("stxa %0, [%1] %2\n\t"
  1886. "flush %%g6"
  1887. : /* No outputs */
  1888. : "r" (0),
  1889. "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
  1890. if (!(spitfire_get_dtlb_data(i) & _PAGE_L_4U)) {
  1891. __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
  1892. "membar #Sync"
  1893. : /* no outputs */
  1894. : "r" (TLB_TAG_ACCESS), "i" (ASI_DMMU));
  1895. spitfire_put_dtlb_data(i, 0x0UL);
  1896. }
  1897. /* Spitfire Errata #32 workaround */
  1898. /* NOTE: Always runs on spitfire, so no
  1899. * cheetah+ page size encodings.
  1900. */
  1901. __asm__ __volatile__("stxa %0, [%1] %2\n\t"
  1902. "flush %%g6"
  1903. : /* No outputs */
  1904. : "r" (0),
  1905. "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
  1906. if (!(spitfire_get_itlb_data(i) & _PAGE_L_4U)) {
  1907. __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
  1908. "membar #Sync"
  1909. : /* no outputs */
  1910. : "r" (TLB_TAG_ACCESS), "i" (ASI_IMMU));
  1911. spitfire_put_itlb_data(i, 0x0UL);
  1912. }
  1913. }
  1914. } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
  1915. cheetah_flush_dtlb_all();
  1916. cheetah_flush_itlb_all();
  1917. }
  1918. __asm__ __volatile__("wrpr %0, 0, %%pstate"
  1919. : : "r" (pstate));
  1920. }
  1921. #ifdef CONFIG_MEMORY_HOTPLUG
  1922. void online_page(struct page *page)
  1923. {
  1924. ClearPageReserved(page);
  1925. init_page_count(page);
  1926. __free_page(page);
  1927. totalram_pages++;
  1928. num_physpages++;
  1929. }
  1930. #endif /* CONFIG_MEMORY_HOTPLUG */