phy.c 10 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401
  1. /*
  2. * Copyright (c) 2008-2009 Atheros Communications Inc.
  3. *
  4. * Permission to use, copy, modify, and/or distribute this software for any
  5. * purpose with or without fee is hereby granted, provided that the above
  6. * copyright notice and this permission notice appear in all copies.
  7. *
  8. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
  9. * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
  10. * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
  11. * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
  12. * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  13. * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  14. * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  15. */
  16. #include "ath9k.h"
  17. void
  18. ath9k_hw_write_regs(struct ath_hw *ah, u32 modesIndex, u32 freqIndex,
  19. int regWrites)
  20. {
  21. REG_WRITE_ARRAY(&ah->iniBB_RfGain, freqIndex, regWrites);
  22. }
  23. bool
  24. ath9k_hw_set_channel(struct ath_hw *ah, struct ath9k_channel *chan)
  25. {
  26. struct ath_common *common = ath9k_hw_common(ah);
  27. u32 channelSel = 0;
  28. u32 bModeSynth = 0;
  29. u32 aModeRefSel = 0;
  30. u32 reg32 = 0;
  31. u16 freq;
  32. struct chan_centers centers;
  33. ath9k_hw_get_channel_centers(ah, chan, &centers);
  34. freq = centers.synth_center;
  35. if (freq < 4800) {
  36. u32 txctl;
  37. if (((freq - 2192) % 5) == 0) {
  38. channelSel = ((freq - 672) * 2 - 3040) / 10;
  39. bModeSynth = 0;
  40. } else if (((freq - 2224) % 5) == 0) {
  41. channelSel = ((freq - 704) * 2 - 3040) / 10;
  42. bModeSynth = 1;
  43. } else {
  44. ath_print(common, ATH_DBG_FATAL,
  45. "Invalid channel %u MHz\n", freq);
  46. return false;
  47. }
  48. channelSel = (channelSel << 2) & 0xff;
  49. channelSel = ath9k_hw_reverse_bits(channelSel, 8);
  50. txctl = REG_READ(ah, AR_PHY_CCK_TX_CTRL);
  51. if (freq == 2484) {
  52. REG_WRITE(ah, AR_PHY_CCK_TX_CTRL,
  53. txctl | AR_PHY_CCK_TX_CTRL_JAPAN);
  54. } else {
  55. REG_WRITE(ah, AR_PHY_CCK_TX_CTRL,
  56. txctl & ~AR_PHY_CCK_TX_CTRL_JAPAN);
  57. }
  58. } else if ((freq % 20) == 0 && freq >= 5120) {
  59. channelSel =
  60. ath9k_hw_reverse_bits(((freq - 4800) / 20 << 2), 8);
  61. aModeRefSel = ath9k_hw_reverse_bits(1, 2);
  62. } else if ((freq % 10) == 0) {
  63. channelSel =
  64. ath9k_hw_reverse_bits(((freq - 4800) / 10 << 1), 8);
  65. if (AR_SREV_9100(ah) || AR_SREV_9160_10_OR_LATER(ah))
  66. aModeRefSel = ath9k_hw_reverse_bits(2, 2);
  67. else
  68. aModeRefSel = ath9k_hw_reverse_bits(1, 2);
  69. } else if ((freq % 5) == 0) {
  70. channelSel = ath9k_hw_reverse_bits((freq - 4800) / 5, 8);
  71. aModeRefSel = ath9k_hw_reverse_bits(1, 2);
  72. } else {
  73. ath_print(common, ATH_DBG_FATAL,
  74. "Invalid channel %u MHz\n", freq);
  75. return false;
  76. }
  77. reg32 =
  78. (channelSel << 8) | (aModeRefSel << 2) | (bModeSynth << 1) |
  79. (1 << 5) | 0x1;
  80. REG_WRITE(ah, AR_PHY(0x37), reg32);
  81. ah->curchan = chan;
  82. ah->curchan_rad_index = -1;
  83. return true;
  84. }
  85. void ath9k_hw_ar9280_set_channel(struct ath_hw *ah,
  86. struct ath9k_channel *chan)
  87. {
  88. u16 bMode, fracMode, aModeRefSel = 0;
  89. u32 freq, ndiv, channelSel = 0, channelFrac = 0, reg32 = 0;
  90. struct chan_centers centers;
  91. u32 refDivA = 24;
  92. ath9k_hw_get_channel_centers(ah, chan, &centers);
  93. freq = centers.synth_center;
  94. reg32 = REG_READ(ah, AR_PHY_SYNTH_CONTROL);
  95. reg32 &= 0xc0000000;
  96. if (freq < 4800) {
  97. u32 txctl;
  98. bMode = 1;
  99. fracMode = 1;
  100. aModeRefSel = 0;
  101. channelSel = (freq * 0x10000) / 15;
  102. txctl = REG_READ(ah, AR_PHY_CCK_TX_CTRL);
  103. if (freq == 2484) {
  104. REG_WRITE(ah, AR_PHY_CCK_TX_CTRL,
  105. txctl | AR_PHY_CCK_TX_CTRL_JAPAN);
  106. } else {
  107. REG_WRITE(ah, AR_PHY_CCK_TX_CTRL,
  108. txctl & ~AR_PHY_CCK_TX_CTRL_JAPAN);
  109. }
  110. } else {
  111. bMode = 0;
  112. fracMode = 0;
  113. switch(ah->eep_ops->get_eeprom(ah, EEP_FRAC_N_5G)) {
  114. case 0:
  115. if ((freq % 20) == 0) {
  116. aModeRefSel = 3;
  117. } else if ((freq % 10) == 0) {
  118. aModeRefSel = 2;
  119. }
  120. if (aModeRefSel)
  121. break;
  122. case 1:
  123. default:
  124. aModeRefSel = 0;
  125. fracMode = 1;
  126. refDivA = 1;
  127. channelSel = (freq * 0x8000) / 15;
  128. REG_RMW_FIELD(ah, AR_AN_SYNTH9,
  129. AR_AN_SYNTH9_REFDIVA, refDivA);
  130. }
  131. if (!fracMode) {
  132. ndiv = (freq * (refDivA >> aModeRefSel)) / 60;
  133. channelSel = ndiv & 0x1ff;
  134. channelFrac = (ndiv & 0xfffffe00) * 2;
  135. channelSel = (channelSel << 17) | channelFrac;
  136. }
  137. }
  138. reg32 = reg32 |
  139. (bMode << 29) |
  140. (fracMode << 28) | (aModeRefSel << 26) | (channelSel);
  141. REG_WRITE(ah, AR_PHY_SYNTH_CONTROL, reg32);
  142. ah->curchan = chan;
  143. ah->curchan_rad_index = -1;
  144. }
  145. static void
  146. ath9k_phy_modify_rx_buffer(u32 *rfBuf, u32 reg32,
  147. u32 numBits, u32 firstBit,
  148. u32 column)
  149. {
  150. u32 tmp32, mask, arrayEntry, lastBit;
  151. int32_t bitPosition, bitsLeft;
  152. tmp32 = ath9k_hw_reverse_bits(reg32, numBits);
  153. arrayEntry = (firstBit - 1) / 8;
  154. bitPosition = (firstBit - 1) % 8;
  155. bitsLeft = numBits;
  156. while (bitsLeft > 0) {
  157. lastBit = (bitPosition + bitsLeft > 8) ?
  158. 8 : bitPosition + bitsLeft;
  159. mask = (((1 << lastBit) - 1) ^ ((1 << bitPosition) - 1)) <<
  160. (column * 8);
  161. rfBuf[arrayEntry] &= ~mask;
  162. rfBuf[arrayEntry] |= ((tmp32 << bitPosition) <<
  163. (column * 8)) & mask;
  164. bitsLeft -= 8 - bitPosition;
  165. tmp32 = tmp32 >> (8 - bitPosition);
  166. bitPosition = 0;
  167. arrayEntry++;
  168. }
  169. }
  170. bool
  171. ath9k_hw_set_rf_regs(struct ath_hw *ah, struct ath9k_channel *chan,
  172. u16 modesIndex)
  173. {
  174. u32 eepMinorRev;
  175. u32 ob5GHz = 0, db5GHz = 0;
  176. u32 ob2GHz = 0, db2GHz = 0;
  177. int regWrites = 0;
  178. if (AR_SREV_9280_10_OR_LATER(ah))
  179. return true;
  180. eepMinorRev = ah->eep_ops->get_eeprom(ah, EEP_MINOR_REV);
  181. RF_BANK_SETUP(ah->analogBank0Data, &ah->iniBank0, 1);
  182. RF_BANK_SETUP(ah->analogBank1Data, &ah->iniBank1, 1);
  183. RF_BANK_SETUP(ah->analogBank2Data, &ah->iniBank2, 1);
  184. RF_BANK_SETUP(ah->analogBank3Data, &ah->iniBank3,
  185. modesIndex);
  186. {
  187. int i;
  188. for (i = 0; i < ah->iniBank6TPC.ia_rows; i++) {
  189. ah->analogBank6Data[i] =
  190. INI_RA(&ah->iniBank6TPC, i, modesIndex);
  191. }
  192. }
  193. if (eepMinorRev >= 2) {
  194. if (IS_CHAN_2GHZ(chan)) {
  195. ob2GHz = ah->eep_ops->get_eeprom(ah, EEP_OB_2);
  196. db2GHz = ah->eep_ops->get_eeprom(ah, EEP_DB_2);
  197. ath9k_phy_modify_rx_buffer(ah->analogBank6Data,
  198. ob2GHz, 3, 197, 0);
  199. ath9k_phy_modify_rx_buffer(ah->analogBank6Data,
  200. db2GHz, 3, 194, 0);
  201. } else {
  202. ob5GHz = ah->eep_ops->get_eeprom(ah, EEP_OB_5);
  203. db5GHz = ah->eep_ops->get_eeprom(ah, EEP_DB_5);
  204. ath9k_phy_modify_rx_buffer(ah->analogBank6Data,
  205. ob5GHz, 3, 203, 0);
  206. ath9k_phy_modify_rx_buffer(ah->analogBank6Data,
  207. db5GHz, 3, 200, 0);
  208. }
  209. }
  210. RF_BANK_SETUP(ah->analogBank7Data, &ah->iniBank7, 1);
  211. REG_WRITE_RF_ARRAY(&ah->iniBank0, ah->analogBank0Data,
  212. regWrites);
  213. REG_WRITE_RF_ARRAY(&ah->iniBank1, ah->analogBank1Data,
  214. regWrites);
  215. REG_WRITE_RF_ARRAY(&ah->iniBank2, ah->analogBank2Data,
  216. regWrites);
  217. REG_WRITE_RF_ARRAY(&ah->iniBank3, ah->analogBank3Data,
  218. regWrites);
  219. REG_WRITE_RF_ARRAY(&ah->iniBank6TPC, ah->analogBank6Data,
  220. regWrites);
  221. REG_WRITE_RF_ARRAY(&ah->iniBank7, ah->analogBank7Data,
  222. regWrites);
  223. return true;
  224. }
  225. void
  226. ath9k_hw_rf_free(struct ath_hw *ah)
  227. {
  228. #define ATH_FREE_BANK(bank) do { \
  229. kfree(bank); \
  230. bank = NULL; \
  231. } while (0);
  232. ATH_FREE_BANK(ah->analogBank0Data);
  233. ATH_FREE_BANK(ah->analogBank1Data);
  234. ATH_FREE_BANK(ah->analogBank2Data);
  235. ATH_FREE_BANK(ah->analogBank3Data);
  236. ATH_FREE_BANK(ah->analogBank6Data);
  237. ATH_FREE_BANK(ah->analogBank6TPCData);
  238. ATH_FREE_BANK(ah->analogBank7Data);
  239. ATH_FREE_BANK(ah->addac5416_21);
  240. ATH_FREE_BANK(ah->bank6Temp);
  241. #undef ATH_FREE_BANK
  242. }
  243. bool ath9k_hw_init_rf(struct ath_hw *ah, int *status)
  244. {
  245. struct ath_common *common = ath9k_hw_common(ah);
  246. if (!AR_SREV_9280_10_OR_LATER(ah)) {
  247. ah->analogBank0Data =
  248. kzalloc((sizeof(u32) *
  249. ah->iniBank0.ia_rows), GFP_KERNEL);
  250. ah->analogBank1Data =
  251. kzalloc((sizeof(u32) *
  252. ah->iniBank1.ia_rows), GFP_KERNEL);
  253. ah->analogBank2Data =
  254. kzalloc((sizeof(u32) *
  255. ah->iniBank2.ia_rows), GFP_KERNEL);
  256. ah->analogBank3Data =
  257. kzalloc((sizeof(u32) *
  258. ah->iniBank3.ia_rows), GFP_KERNEL);
  259. ah->analogBank6Data =
  260. kzalloc((sizeof(u32) *
  261. ah->iniBank6.ia_rows), GFP_KERNEL);
  262. ah->analogBank6TPCData =
  263. kzalloc((sizeof(u32) *
  264. ah->iniBank6TPC.ia_rows), GFP_KERNEL);
  265. ah->analogBank7Data =
  266. kzalloc((sizeof(u32) *
  267. ah->iniBank7.ia_rows), GFP_KERNEL);
  268. if (ah->analogBank0Data == NULL
  269. || ah->analogBank1Data == NULL
  270. || ah->analogBank2Data == NULL
  271. || ah->analogBank3Data == NULL
  272. || ah->analogBank6Data == NULL
  273. || ah->analogBank6TPCData == NULL
  274. || ah->analogBank7Data == NULL) {
  275. ath_print(common, ATH_DBG_FATAL,
  276. "Cannot allocate RF banks\n");
  277. *status = -ENOMEM;
  278. return false;
  279. }
  280. ah->addac5416_21 =
  281. kzalloc((sizeof(u32) *
  282. ah->iniAddac.ia_rows *
  283. ah->iniAddac.ia_columns), GFP_KERNEL);
  284. if (ah->addac5416_21 == NULL) {
  285. ath_print(common, ATH_DBG_FATAL,
  286. "Cannot allocate addac5416_21\n");
  287. *status = -ENOMEM;
  288. return false;
  289. }
  290. ah->bank6Temp =
  291. kzalloc((sizeof(u32) *
  292. ah->iniBank6.ia_rows), GFP_KERNEL);
  293. if (ah->bank6Temp == NULL) {
  294. ath_print(common, ATH_DBG_FATAL,
  295. "Cannot allocate bank6Temp\n");
  296. *status = -ENOMEM;
  297. return false;
  298. }
  299. }
  300. return true;
  301. }
  302. void
  303. ath9k_hw_decrease_chain_power(struct ath_hw *ah, struct ath9k_channel *chan)
  304. {
  305. int i, regWrites = 0;
  306. u32 bank6SelMask;
  307. u32 *bank6Temp = ah->bank6Temp;
  308. switch (ah->config.diversity_control) {
  309. case ATH9K_ANT_FIXED_A:
  310. bank6SelMask =
  311. (ah->config.antenna_switch_swap & ANTSWAP_AB) ?
  312. REDUCE_CHAIN_0 : REDUCE_CHAIN_1;
  313. break;
  314. case ATH9K_ANT_FIXED_B:
  315. bank6SelMask =
  316. (ah->config.antenna_switch_swap & ANTSWAP_AB) ?
  317. REDUCE_CHAIN_1 : REDUCE_CHAIN_0;
  318. break;
  319. case ATH9K_ANT_VARIABLE:
  320. return;
  321. break;
  322. default:
  323. return;
  324. break;
  325. }
  326. for (i = 0; i < ah->iniBank6.ia_rows; i++)
  327. bank6Temp[i] = ah->analogBank6Data[i];
  328. REG_WRITE(ah, AR_PHY_BASE + 0xD8, bank6SelMask);
  329. ath9k_phy_modify_rx_buffer(bank6Temp, 1, 1, 189, 0);
  330. ath9k_phy_modify_rx_buffer(bank6Temp, 1, 1, 190, 0);
  331. ath9k_phy_modify_rx_buffer(bank6Temp, 1, 1, 191, 0);
  332. ath9k_phy_modify_rx_buffer(bank6Temp, 1, 1, 192, 0);
  333. ath9k_phy_modify_rx_buffer(bank6Temp, 1, 1, 193, 0);
  334. ath9k_phy_modify_rx_buffer(bank6Temp, 1, 1, 222, 0);
  335. ath9k_phy_modify_rx_buffer(bank6Temp, 1, 1, 245, 0);
  336. ath9k_phy_modify_rx_buffer(bank6Temp, 1, 1, 246, 0);
  337. ath9k_phy_modify_rx_buffer(bank6Temp, 1, 1, 247, 0);
  338. REG_WRITE_RF_ARRAY(&ah->iniBank6, bank6Temp, regWrites);
  339. REG_WRITE(ah, AR_PHY_BASE + 0xD8, 0x00000053);
  340. #ifdef ALTER_SWITCH
  341. REG_WRITE(ah, PHY_SWITCH_CHAIN_0,
  342. (REG_READ(ah, PHY_SWITCH_CHAIN_0) & ~0x38)
  343. | ((REG_READ(ah, PHY_SWITCH_CHAIN_0) >> 3) & 0x38));
  344. #endif
  345. }