vmx.c 220 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668766976707671767276737674767576767677767876797680768176827683768476857686768776887689769076917692769376947695769676977698769977007701770277037704770577067707770877097710771177127713771477157716771777187719772077217722772377247725772677277728772977307731773277337734773577367737773877397740774177427743774477457746774777487749775077517752775377547755775677577758775977607761776277637764776577667767776877697770777177727773777477757776777777787779778077817782778377847785778677877788778977907791779277937794779577967797779877997800780178027803780478057806780778087809
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * Copyright (C) 2006 Qumranet, Inc.
  8. * Copyright 2010 Red Hat, Inc. and/or its affiliates.
  9. *
  10. * Authors:
  11. * Avi Kivity <avi@qumranet.com>
  12. * Yaniv Kamay <yaniv@qumranet.com>
  13. *
  14. * This work is licensed under the terms of the GNU GPL, version 2. See
  15. * the COPYING file in the top-level directory.
  16. *
  17. */
  18. #include "irq.h"
  19. #include "mmu.h"
  20. #include "cpuid.h"
  21. #include <linux/kvm_host.h>
  22. #include <linux/module.h>
  23. #include <linux/kernel.h>
  24. #include <linux/mm.h>
  25. #include <linux/highmem.h>
  26. #include <linux/sched.h>
  27. #include <linux/moduleparam.h>
  28. #include <linux/mod_devicetable.h>
  29. #include <linux/ftrace_event.h>
  30. #include <linux/slab.h>
  31. #include <linux/tboot.h>
  32. #include "kvm_cache_regs.h"
  33. #include "x86.h"
  34. #include <asm/io.h>
  35. #include <asm/desc.h>
  36. #include <asm/vmx.h>
  37. #include <asm/virtext.h>
  38. #include <asm/mce.h>
  39. #include <asm/i387.h>
  40. #include <asm/xcr.h>
  41. #include <asm/perf_event.h>
  42. #include <asm/kexec.h>
  43. #include "trace.h"
  44. #define __ex(x) __kvm_handle_fault_on_reboot(x)
  45. #define __ex_clear(x, reg) \
  46. ____kvm_handle_fault_on_reboot(x, "xor " reg " , " reg)
  47. MODULE_AUTHOR("Qumranet");
  48. MODULE_LICENSE("GPL");
  49. static const struct x86_cpu_id vmx_cpu_id[] = {
  50. X86_FEATURE_MATCH(X86_FEATURE_VMX),
  51. {}
  52. };
  53. MODULE_DEVICE_TABLE(x86cpu, vmx_cpu_id);
  54. static bool __read_mostly enable_vpid = 1;
  55. module_param_named(vpid, enable_vpid, bool, 0444);
  56. static bool __read_mostly flexpriority_enabled = 1;
  57. module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO);
  58. static bool __read_mostly enable_ept = 1;
  59. module_param_named(ept, enable_ept, bool, S_IRUGO);
  60. static bool __read_mostly enable_unrestricted_guest = 1;
  61. module_param_named(unrestricted_guest,
  62. enable_unrestricted_guest, bool, S_IRUGO);
  63. static bool __read_mostly enable_ept_ad_bits = 1;
  64. module_param_named(eptad, enable_ept_ad_bits, bool, S_IRUGO);
  65. static bool __read_mostly emulate_invalid_guest_state = true;
  66. module_param(emulate_invalid_guest_state, bool, S_IRUGO);
  67. static bool __read_mostly vmm_exclusive = 1;
  68. module_param(vmm_exclusive, bool, S_IRUGO);
  69. static bool __read_mostly fasteoi = 1;
  70. module_param(fasteoi, bool, S_IRUGO);
  71. static bool __read_mostly enable_apicv_reg_vid;
  72. /*
  73. * If nested=1, nested virtualization is supported, i.e., guests may use
  74. * VMX and be a hypervisor for its own guests. If nested=0, guests may not
  75. * use VMX instructions.
  76. */
  77. static bool __read_mostly nested = 0;
  78. module_param(nested, bool, S_IRUGO);
  79. #define KVM_GUEST_CR0_MASK (X86_CR0_NW | X86_CR0_CD)
  80. #define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST (X86_CR0_WP | X86_CR0_NE)
  81. #define KVM_VM_CR0_ALWAYS_ON \
  82. (KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
  83. #define KVM_CR4_GUEST_OWNED_BITS \
  84. (X86_CR4_PVI | X86_CR4_DE | X86_CR4_PCE | X86_CR4_OSFXSR \
  85. | X86_CR4_OSXMMEXCPT)
  86. #define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE)
  87. #define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE)
  88. #define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM))
  89. /*
  90. * These 2 parameters are used to config the controls for Pause-Loop Exiting:
  91. * ple_gap: upper bound on the amount of time between two successive
  92. * executions of PAUSE in a loop. Also indicate if ple enabled.
  93. * According to test, this time is usually smaller than 128 cycles.
  94. * ple_window: upper bound on the amount of time a guest is allowed to execute
  95. * in a PAUSE loop. Tests indicate that most spinlocks are held for
  96. * less than 2^12 cycles
  97. * Time is measured based on a counter that runs at the same rate as the TSC,
  98. * refer SDM volume 3b section 21.6.13 & 22.1.3.
  99. */
  100. #define KVM_VMX_DEFAULT_PLE_GAP 128
  101. #define KVM_VMX_DEFAULT_PLE_WINDOW 4096
  102. static int ple_gap = KVM_VMX_DEFAULT_PLE_GAP;
  103. module_param(ple_gap, int, S_IRUGO);
  104. static int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW;
  105. module_param(ple_window, int, S_IRUGO);
  106. extern const ulong vmx_return;
  107. #define NR_AUTOLOAD_MSRS 8
  108. #define VMCS02_POOL_SIZE 1
  109. struct vmcs {
  110. u32 revision_id;
  111. u32 abort;
  112. char data[0];
  113. };
  114. /*
  115. * Track a VMCS that may be loaded on a certain CPU. If it is (cpu!=-1), also
  116. * remember whether it was VMLAUNCHed, and maintain a linked list of all VMCSs
  117. * loaded on this CPU (so we can clear them if the CPU goes down).
  118. */
  119. struct loaded_vmcs {
  120. struct vmcs *vmcs;
  121. int cpu;
  122. int launched;
  123. struct list_head loaded_vmcss_on_cpu_link;
  124. };
  125. struct shared_msr_entry {
  126. unsigned index;
  127. u64 data;
  128. u64 mask;
  129. };
  130. /*
  131. * struct vmcs12 describes the state that our guest hypervisor (L1) keeps for a
  132. * single nested guest (L2), hence the name vmcs12. Any VMX implementation has
  133. * a VMCS structure, and vmcs12 is our emulated VMX's VMCS. This structure is
  134. * stored in guest memory specified by VMPTRLD, but is opaque to the guest,
  135. * which must access it using VMREAD/VMWRITE/VMCLEAR instructions.
  136. * More than one of these structures may exist, if L1 runs multiple L2 guests.
  137. * nested_vmx_run() will use the data here to build a vmcs02: a VMCS for the
  138. * underlying hardware which will be used to run L2.
  139. * This structure is packed to ensure that its layout is identical across
  140. * machines (necessary for live migration).
  141. * If there are changes in this struct, VMCS12_REVISION must be changed.
  142. */
  143. typedef u64 natural_width;
  144. struct __packed vmcs12 {
  145. /* According to the Intel spec, a VMCS region must start with the
  146. * following two fields. Then follow implementation-specific data.
  147. */
  148. u32 revision_id;
  149. u32 abort;
  150. u32 launch_state; /* set to 0 by VMCLEAR, to 1 by VMLAUNCH */
  151. u32 padding[7]; /* room for future expansion */
  152. u64 io_bitmap_a;
  153. u64 io_bitmap_b;
  154. u64 msr_bitmap;
  155. u64 vm_exit_msr_store_addr;
  156. u64 vm_exit_msr_load_addr;
  157. u64 vm_entry_msr_load_addr;
  158. u64 tsc_offset;
  159. u64 virtual_apic_page_addr;
  160. u64 apic_access_addr;
  161. u64 ept_pointer;
  162. u64 guest_physical_address;
  163. u64 vmcs_link_pointer;
  164. u64 guest_ia32_debugctl;
  165. u64 guest_ia32_pat;
  166. u64 guest_ia32_efer;
  167. u64 guest_ia32_perf_global_ctrl;
  168. u64 guest_pdptr0;
  169. u64 guest_pdptr1;
  170. u64 guest_pdptr2;
  171. u64 guest_pdptr3;
  172. u64 host_ia32_pat;
  173. u64 host_ia32_efer;
  174. u64 host_ia32_perf_global_ctrl;
  175. u64 padding64[8]; /* room for future expansion */
  176. /*
  177. * To allow migration of L1 (complete with its L2 guests) between
  178. * machines of different natural widths (32 or 64 bit), we cannot have
  179. * unsigned long fields with no explict size. We use u64 (aliased
  180. * natural_width) instead. Luckily, x86 is little-endian.
  181. */
  182. natural_width cr0_guest_host_mask;
  183. natural_width cr4_guest_host_mask;
  184. natural_width cr0_read_shadow;
  185. natural_width cr4_read_shadow;
  186. natural_width cr3_target_value0;
  187. natural_width cr3_target_value1;
  188. natural_width cr3_target_value2;
  189. natural_width cr3_target_value3;
  190. natural_width exit_qualification;
  191. natural_width guest_linear_address;
  192. natural_width guest_cr0;
  193. natural_width guest_cr3;
  194. natural_width guest_cr4;
  195. natural_width guest_es_base;
  196. natural_width guest_cs_base;
  197. natural_width guest_ss_base;
  198. natural_width guest_ds_base;
  199. natural_width guest_fs_base;
  200. natural_width guest_gs_base;
  201. natural_width guest_ldtr_base;
  202. natural_width guest_tr_base;
  203. natural_width guest_gdtr_base;
  204. natural_width guest_idtr_base;
  205. natural_width guest_dr7;
  206. natural_width guest_rsp;
  207. natural_width guest_rip;
  208. natural_width guest_rflags;
  209. natural_width guest_pending_dbg_exceptions;
  210. natural_width guest_sysenter_esp;
  211. natural_width guest_sysenter_eip;
  212. natural_width host_cr0;
  213. natural_width host_cr3;
  214. natural_width host_cr4;
  215. natural_width host_fs_base;
  216. natural_width host_gs_base;
  217. natural_width host_tr_base;
  218. natural_width host_gdtr_base;
  219. natural_width host_idtr_base;
  220. natural_width host_ia32_sysenter_esp;
  221. natural_width host_ia32_sysenter_eip;
  222. natural_width host_rsp;
  223. natural_width host_rip;
  224. natural_width paddingl[8]; /* room for future expansion */
  225. u32 pin_based_vm_exec_control;
  226. u32 cpu_based_vm_exec_control;
  227. u32 exception_bitmap;
  228. u32 page_fault_error_code_mask;
  229. u32 page_fault_error_code_match;
  230. u32 cr3_target_count;
  231. u32 vm_exit_controls;
  232. u32 vm_exit_msr_store_count;
  233. u32 vm_exit_msr_load_count;
  234. u32 vm_entry_controls;
  235. u32 vm_entry_msr_load_count;
  236. u32 vm_entry_intr_info_field;
  237. u32 vm_entry_exception_error_code;
  238. u32 vm_entry_instruction_len;
  239. u32 tpr_threshold;
  240. u32 secondary_vm_exec_control;
  241. u32 vm_instruction_error;
  242. u32 vm_exit_reason;
  243. u32 vm_exit_intr_info;
  244. u32 vm_exit_intr_error_code;
  245. u32 idt_vectoring_info_field;
  246. u32 idt_vectoring_error_code;
  247. u32 vm_exit_instruction_len;
  248. u32 vmx_instruction_info;
  249. u32 guest_es_limit;
  250. u32 guest_cs_limit;
  251. u32 guest_ss_limit;
  252. u32 guest_ds_limit;
  253. u32 guest_fs_limit;
  254. u32 guest_gs_limit;
  255. u32 guest_ldtr_limit;
  256. u32 guest_tr_limit;
  257. u32 guest_gdtr_limit;
  258. u32 guest_idtr_limit;
  259. u32 guest_es_ar_bytes;
  260. u32 guest_cs_ar_bytes;
  261. u32 guest_ss_ar_bytes;
  262. u32 guest_ds_ar_bytes;
  263. u32 guest_fs_ar_bytes;
  264. u32 guest_gs_ar_bytes;
  265. u32 guest_ldtr_ar_bytes;
  266. u32 guest_tr_ar_bytes;
  267. u32 guest_interruptibility_info;
  268. u32 guest_activity_state;
  269. u32 guest_sysenter_cs;
  270. u32 host_ia32_sysenter_cs;
  271. u32 padding32[8]; /* room for future expansion */
  272. u16 virtual_processor_id;
  273. u16 guest_es_selector;
  274. u16 guest_cs_selector;
  275. u16 guest_ss_selector;
  276. u16 guest_ds_selector;
  277. u16 guest_fs_selector;
  278. u16 guest_gs_selector;
  279. u16 guest_ldtr_selector;
  280. u16 guest_tr_selector;
  281. u16 host_es_selector;
  282. u16 host_cs_selector;
  283. u16 host_ss_selector;
  284. u16 host_ds_selector;
  285. u16 host_fs_selector;
  286. u16 host_gs_selector;
  287. u16 host_tr_selector;
  288. };
  289. /*
  290. * VMCS12_REVISION is an arbitrary id that should be changed if the content or
  291. * layout of struct vmcs12 is changed. MSR_IA32_VMX_BASIC returns this id, and
  292. * VMPTRLD verifies that the VMCS region that L1 is loading contains this id.
  293. */
  294. #define VMCS12_REVISION 0x11e57ed0
  295. /*
  296. * VMCS12_SIZE is the number of bytes L1 should allocate for the VMXON region
  297. * and any VMCS region. Although only sizeof(struct vmcs12) are used by the
  298. * current implementation, 4K are reserved to avoid future complications.
  299. */
  300. #define VMCS12_SIZE 0x1000
  301. /* Used to remember the last vmcs02 used for some recently used vmcs12s */
  302. struct vmcs02_list {
  303. struct list_head list;
  304. gpa_t vmptr;
  305. struct loaded_vmcs vmcs02;
  306. };
  307. /*
  308. * The nested_vmx structure is part of vcpu_vmx, and holds information we need
  309. * for correct emulation of VMX (i.e., nested VMX) on this vcpu.
  310. */
  311. struct nested_vmx {
  312. /* Has the level1 guest done vmxon? */
  313. bool vmxon;
  314. /* The guest-physical address of the current VMCS L1 keeps for L2 */
  315. gpa_t current_vmptr;
  316. /* The host-usable pointer to the above */
  317. struct page *current_vmcs12_page;
  318. struct vmcs12 *current_vmcs12;
  319. /* vmcs02_list cache of VMCSs recently used to run L2 guests */
  320. struct list_head vmcs02_pool;
  321. int vmcs02_num;
  322. u64 vmcs01_tsc_offset;
  323. /* L2 must run next, and mustn't decide to exit to L1. */
  324. bool nested_run_pending;
  325. /*
  326. * Guest pages referred to in vmcs02 with host-physical pointers, so
  327. * we must keep them pinned while L2 runs.
  328. */
  329. struct page *apic_access_page;
  330. };
  331. struct vcpu_vmx {
  332. struct kvm_vcpu vcpu;
  333. unsigned long host_rsp;
  334. u8 fail;
  335. u8 cpl;
  336. bool nmi_known_unmasked;
  337. u32 exit_intr_info;
  338. u32 idt_vectoring_info;
  339. ulong rflags;
  340. struct shared_msr_entry *guest_msrs;
  341. int nmsrs;
  342. int save_nmsrs;
  343. #ifdef CONFIG_X86_64
  344. u64 msr_host_kernel_gs_base;
  345. u64 msr_guest_kernel_gs_base;
  346. #endif
  347. /*
  348. * loaded_vmcs points to the VMCS currently used in this vcpu. For a
  349. * non-nested (L1) guest, it always points to vmcs01. For a nested
  350. * guest (L2), it points to a different VMCS.
  351. */
  352. struct loaded_vmcs vmcs01;
  353. struct loaded_vmcs *loaded_vmcs;
  354. bool __launched; /* temporary, used in vmx_vcpu_run */
  355. struct msr_autoload {
  356. unsigned nr;
  357. struct vmx_msr_entry guest[NR_AUTOLOAD_MSRS];
  358. struct vmx_msr_entry host[NR_AUTOLOAD_MSRS];
  359. } msr_autoload;
  360. struct {
  361. int loaded;
  362. u16 fs_sel, gs_sel, ldt_sel;
  363. #ifdef CONFIG_X86_64
  364. u16 ds_sel, es_sel;
  365. #endif
  366. int gs_ldt_reload_needed;
  367. int fs_reload_needed;
  368. } host_state;
  369. struct {
  370. int vm86_active;
  371. ulong save_rflags;
  372. struct kvm_segment segs[8];
  373. } rmode;
  374. struct {
  375. u32 bitmask; /* 4 bits per segment (1 bit per field) */
  376. struct kvm_save_segment {
  377. u16 selector;
  378. unsigned long base;
  379. u32 limit;
  380. u32 ar;
  381. } seg[8];
  382. } segment_cache;
  383. int vpid;
  384. bool emulation_required;
  385. /* Support for vnmi-less CPUs */
  386. int soft_vnmi_blocked;
  387. ktime_t entry_time;
  388. s64 vnmi_blocked_time;
  389. u32 exit_reason;
  390. bool rdtscp_enabled;
  391. /* Support for a guest hypervisor (nested VMX) */
  392. struct nested_vmx nested;
  393. };
  394. enum segment_cache_field {
  395. SEG_FIELD_SEL = 0,
  396. SEG_FIELD_BASE = 1,
  397. SEG_FIELD_LIMIT = 2,
  398. SEG_FIELD_AR = 3,
  399. SEG_FIELD_NR = 4
  400. };
  401. static inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu)
  402. {
  403. return container_of(vcpu, struct vcpu_vmx, vcpu);
  404. }
  405. #define VMCS12_OFFSET(x) offsetof(struct vmcs12, x)
  406. #define FIELD(number, name) [number] = VMCS12_OFFSET(name)
  407. #define FIELD64(number, name) [number] = VMCS12_OFFSET(name), \
  408. [number##_HIGH] = VMCS12_OFFSET(name)+4
  409. static const unsigned short vmcs_field_to_offset_table[] = {
  410. FIELD(VIRTUAL_PROCESSOR_ID, virtual_processor_id),
  411. FIELD(GUEST_ES_SELECTOR, guest_es_selector),
  412. FIELD(GUEST_CS_SELECTOR, guest_cs_selector),
  413. FIELD(GUEST_SS_SELECTOR, guest_ss_selector),
  414. FIELD(GUEST_DS_SELECTOR, guest_ds_selector),
  415. FIELD(GUEST_FS_SELECTOR, guest_fs_selector),
  416. FIELD(GUEST_GS_SELECTOR, guest_gs_selector),
  417. FIELD(GUEST_LDTR_SELECTOR, guest_ldtr_selector),
  418. FIELD(GUEST_TR_SELECTOR, guest_tr_selector),
  419. FIELD(HOST_ES_SELECTOR, host_es_selector),
  420. FIELD(HOST_CS_SELECTOR, host_cs_selector),
  421. FIELD(HOST_SS_SELECTOR, host_ss_selector),
  422. FIELD(HOST_DS_SELECTOR, host_ds_selector),
  423. FIELD(HOST_FS_SELECTOR, host_fs_selector),
  424. FIELD(HOST_GS_SELECTOR, host_gs_selector),
  425. FIELD(HOST_TR_SELECTOR, host_tr_selector),
  426. FIELD64(IO_BITMAP_A, io_bitmap_a),
  427. FIELD64(IO_BITMAP_B, io_bitmap_b),
  428. FIELD64(MSR_BITMAP, msr_bitmap),
  429. FIELD64(VM_EXIT_MSR_STORE_ADDR, vm_exit_msr_store_addr),
  430. FIELD64(VM_EXIT_MSR_LOAD_ADDR, vm_exit_msr_load_addr),
  431. FIELD64(VM_ENTRY_MSR_LOAD_ADDR, vm_entry_msr_load_addr),
  432. FIELD64(TSC_OFFSET, tsc_offset),
  433. FIELD64(VIRTUAL_APIC_PAGE_ADDR, virtual_apic_page_addr),
  434. FIELD64(APIC_ACCESS_ADDR, apic_access_addr),
  435. FIELD64(EPT_POINTER, ept_pointer),
  436. FIELD64(GUEST_PHYSICAL_ADDRESS, guest_physical_address),
  437. FIELD64(VMCS_LINK_POINTER, vmcs_link_pointer),
  438. FIELD64(GUEST_IA32_DEBUGCTL, guest_ia32_debugctl),
  439. FIELD64(GUEST_IA32_PAT, guest_ia32_pat),
  440. FIELD64(GUEST_IA32_EFER, guest_ia32_efer),
  441. FIELD64(GUEST_IA32_PERF_GLOBAL_CTRL, guest_ia32_perf_global_ctrl),
  442. FIELD64(GUEST_PDPTR0, guest_pdptr0),
  443. FIELD64(GUEST_PDPTR1, guest_pdptr1),
  444. FIELD64(GUEST_PDPTR2, guest_pdptr2),
  445. FIELD64(GUEST_PDPTR3, guest_pdptr3),
  446. FIELD64(HOST_IA32_PAT, host_ia32_pat),
  447. FIELD64(HOST_IA32_EFER, host_ia32_efer),
  448. FIELD64(HOST_IA32_PERF_GLOBAL_CTRL, host_ia32_perf_global_ctrl),
  449. FIELD(PIN_BASED_VM_EXEC_CONTROL, pin_based_vm_exec_control),
  450. FIELD(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control),
  451. FIELD(EXCEPTION_BITMAP, exception_bitmap),
  452. FIELD(PAGE_FAULT_ERROR_CODE_MASK, page_fault_error_code_mask),
  453. FIELD(PAGE_FAULT_ERROR_CODE_MATCH, page_fault_error_code_match),
  454. FIELD(CR3_TARGET_COUNT, cr3_target_count),
  455. FIELD(VM_EXIT_CONTROLS, vm_exit_controls),
  456. FIELD(VM_EXIT_MSR_STORE_COUNT, vm_exit_msr_store_count),
  457. FIELD(VM_EXIT_MSR_LOAD_COUNT, vm_exit_msr_load_count),
  458. FIELD(VM_ENTRY_CONTROLS, vm_entry_controls),
  459. FIELD(VM_ENTRY_MSR_LOAD_COUNT, vm_entry_msr_load_count),
  460. FIELD(VM_ENTRY_INTR_INFO_FIELD, vm_entry_intr_info_field),
  461. FIELD(VM_ENTRY_EXCEPTION_ERROR_CODE, vm_entry_exception_error_code),
  462. FIELD(VM_ENTRY_INSTRUCTION_LEN, vm_entry_instruction_len),
  463. FIELD(TPR_THRESHOLD, tpr_threshold),
  464. FIELD(SECONDARY_VM_EXEC_CONTROL, secondary_vm_exec_control),
  465. FIELD(VM_INSTRUCTION_ERROR, vm_instruction_error),
  466. FIELD(VM_EXIT_REASON, vm_exit_reason),
  467. FIELD(VM_EXIT_INTR_INFO, vm_exit_intr_info),
  468. FIELD(VM_EXIT_INTR_ERROR_CODE, vm_exit_intr_error_code),
  469. FIELD(IDT_VECTORING_INFO_FIELD, idt_vectoring_info_field),
  470. FIELD(IDT_VECTORING_ERROR_CODE, idt_vectoring_error_code),
  471. FIELD(VM_EXIT_INSTRUCTION_LEN, vm_exit_instruction_len),
  472. FIELD(VMX_INSTRUCTION_INFO, vmx_instruction_info),
  473. FIELD(GUEST_ES_LIMIT, guest_es_limit),
  474. FIELD(GUEST_CS_LIMIT, guest_cs_limit),
  475. FIELD(GUEST_SS_LIMIT, guest_ss_limit),
  476. FIELD(GUEST_DS_LIMIT, guest_ds_limit),
  477. FIELD(GUEST_FS_LIMIT, guest_fs_limit),
  478. FIELD(GUEST_GS_LIMIT, guest_gs_limit),
  479. FIELD(GUEST_LDTR_LIMIT, guest_ldtr_limit),
  480. FIELD(GUEST_TR_LIMIT, guest_tr_limit),
  481. FIELD(GUEST_GDTR_LIMIT, guest_gdtr_limit),
  482. FIELD(GUEST_IDTR_LIMIT, guest_idtr_limit),
  483. FIELD(GUEST_ES_AR_BYTES, guest_es_ar_bytes),
  484. FIELD(GUEST_CS_AR_BYTES, guest_cs_ar_bytes),
  485. FIELD(GUEST_SS_AR_BYTES, guest_ss_ar_bytes),
  486. FIELD(GUEST_DS_AR_BYTES, guest_ds_ar_bytes),
  487. FIELD(GUEST_FS_AR_BYTES, guest_fs_ar_bytes),
  488. FIELD(GUEST_GS_AR_BYTES, guest_gs_ar_bytes),
  489. FIELD(GUEST_LDTR_AR_BYTES, guest_ldtr_ar_bytes),
  490. FIELD(GUEST_TR_AR_BYTES, guest_tr_ar_bytes),
  491. FIELD(GUEST_INTERRUPTIBILITY_INFO, guest_interruptibility_info),
  492. FIELD(GUEST_ACTIVITY_STATE, guest_activity_state),
  493. FIELD(GUEST_SYSENTER_CS, guest_sysenter_cs),
  494. FIELD(HOST_IA32_SYSENTER_CS, host_ia32_sysenter_cs),
  495. FIELD(CR0_GUEST_HOST_MASK, cr0_guest_host_mask),
  496. FIELD(CR4_GUEST_HOST_MASK, cr4_guest_host_mask),
  497. FIELD(CR0_READ_SHADOW, cr0_read_shadow),
  498. FIELD(CR4_READ_SHADOW, cr4_read_shadow),
  499. FIELD(CR3_TARGET_VALUE0, cr3_target_value0),
  500. FIELD(CR3_TARGET_VALUE1, cr3_target_value1),
  501. FIELD(CR3_TARGET_VALUE2, cr3_target_value2),
  502. FIELD(CR3_TARGET_VALUE3, cr3_target_value3),
  503. FIELD(EXIT_QUALIFICATION, exit_qualification),
  504. FIELD(GUEST_LINEAR_ADDRESS, guest_linear_address),
  505. FIELD(GUEST_CR0, guest_cr0),
  506. FIELD(GUEST_CR3, guest_cr3),
  507. FIELD(GUEST_CR4, guest_cr4),
  508. FIELD(GUEST_ES_BASE, guest_es_base),
  509. FIELD(GUEST_CS_BASE, guest_cs_base),
  510. FIELD(GUEST_SS_BASE, guest_ss_base),
  511. FIELD(GUEST_DS_BASE, guest_ds_base),
  512. FIELD(GUEST_FS_BASE, guest_fs_base),
  513. FIELD(GUEST_GS_BASE, guest_gs_base),
  514. FIELD(GUEST_LDTR_BASE, guest_ldtr_base),
  515. FIELD(GUEST_TR_BASE, guest_tr_base),
  516. FIELD(GUEST_GDTR_BASE, guest_gdtr_base),
  517. FIELD(GUEST_IDTR_BASE, guest_idtr_base),
  518. FIELD(GUEST_DR7, guest_dr7),
  519. FIELD(GUEST_RSP, guest_rsp),
  520. FIELD(GUEST_RIP, guest_rip),
  521. FIELD(GUEST_RFLAGS, guest_rflags),
  522. FIELD(GUEST_PENDING_DBG_EXCEPTIONS, guest_pending_dbg_exceptions),
  523. FIELD(GUEST_SYSENTER_ESP, guest_sysenter_esp),
  524. FIELD(GUEST_SYSENTER_EIP, guest_sysenter_eip),
  525. FIELD(HOST_CR0, host_cr0),
  526. FIELD(HOST_CR3, host_cr3),
  527. FIELD(HOST_CR4, host_cr4),
  528. FIELD(HOST_FS_BASE, host_fs_base),
  529. FIELD(HOST_GS_BASE, host_gs_base),
  530. FIELD(HOST_TR_BASE, host_tr_base),
  531. FIELD(HOST_GDTR_BASE, host_gdtr_base),
  532. FIELD(HOST_IDTR_BASE, host_idtr_base),
  533. FIELD(HOST_IA32_SYSENTER_ESP, host_ia32_sysenter_esp),
  534. FIELD(HOST_IA32_SYSENTER_EIP, host_ia32_sysenter_eip),
  535. FIELD(HOST_RSP, host_rsp),
  536. FIELD(HOST_RIP, host_rip),
  537. };
  538. static const int max_vmcs_field = ARRAY_SIZE(vmcs_field_to_offset_table);
  539. static inline short vmcs_field_to_offset(unsigned long field)
  540. {
  541. if (field >= max_vmcs_field || vmcs_field_to_offset_table[field] == 0)
  542. return -1;
  543. return vmcs_field_to_offset_table[field];
  544. }
  545. static inline struct vmcs12 *get_vmcs12(struct kvm_vcpu *vcpu)
  546. {
  547. return to_vmx(vcpu)->nested.current_vmcs12;
  548. }
  549. static struct page *nested_get_page(struct kvm_vcpu *vcpu, gpa_t addr)
  550. {
  551. struct page *page = gfn_to_page(vcpu->kvm, addr >> PAGE_SHIFT);
  552. if (is_error_page(page))
  553. return NULL;
  554. return page;
  555. }
  556. static void nested_release_page(struct page *page)
  557. {
  558. kvm_release_page_dirty(page);
  559. }
  560. static void nested_release_page_clean(struct page *page)
  561. {
  562. kvm_release_page_clean(page);
  563. }
  564. static u64 construct_eptp(unsigned long root_hpa);
  565. static void kvm_cpu_vmxon(u64 addr);
  566. static void kvm_cpu_vmxoff(void);
  567. static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3);
  568. static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr);
  569. static void vmx_set_segment(struct kvm_vcpu *vcpu,
  570. struct kvm_segment *var, int seg);
  571. static void vmx_get_segment(struct kvm_vcpu *vcpu,
  572. struct kvm_segment *var, int seg);
  573. static bool guest_state_valid(struct kvm_vcpu *vcpu);
  574. static u32 vmx_segment_access_rights(struct kvm_segment *var);
  575. static DEFINE_PER_CPU(struct vmcs *, vmxarea);
  576. static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
  577. /*
  578. * We maintain a per-CPU linked-list of VMCS loaded on that CPU. This is needed
  579. * when a CPU is brought down, and we need to VMCLEAR all VMCSs loaded on it.
  580. */
  581. static DEFINE_PER_CPU(struct list_head, loaded_vmcss_on_cpu);
  582. static DEFINE_PER_CPU(struct desc_ptr, host_gdt);
  583. static unsigned long *vmx_io_bitmap_a;
  584. static unsigned long *vmx_io_bitmap_b;
  585. static unsigned long *vmx_msr_bitmap_legacy;
  586. static unsigned long *vmx_msr_bitmap_longmode;
  587. static unsigned long *vmx_msr_bitmap_legacy_x2apic;
  588. static unsigned long *vmx_msr_bitmap_longmode_x2apic;
  589. static bool cpu_has_load_ia32_efer;
  590. static bool cpu_has_load_perf_global_ctrl;
  591. static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
  592. static DEFINE_SPINLOCK(vmx_vpid_lock);
  593. static struct vmcs_config {
  594. int size;
  595. int order;
  596. u32 revision_id;
  597. u32 pin_based_exec_ctrl;
  598. u32 cpu_based_exec_ctrl;
  599. u32 cpu_based_2nd_exec_ctrl;
  600. u32 vmexit_ctrl;
  601. u32 vmentry_ctrl;
  602. } vmcs_config;
  603. static struct vmx_capability {
  604. u32 ept;
  605. u32 vpid;
  606. } vmx_capability;
  607. #define VMX_SEGMENT_FIELD(seg) \
  608. [VCPU_SREG_##seg] = { \
  609. .selector = GUEST_##seg##_SELECTOR, \
  610. .base = GUEST_##seg##_BASE, \
  611. .limit = GUEST_##seg##_LIMIT, \
  612. .ar_bytes = GUEST_##seg##_AR_BYTES, \
  613. }
  614. static const struct kvm_vmx_segment_field {
  615. unsigned selector;
  616. unsigned base;
  617. unsigned limit;
  618. unsigned ar_bytes;
  619. } kvm_vmx_segment_fields[] = {
  620. VMX_SEGMENT_FIELD(CS),
  621. VMX_SEGMENT_FIELD(DS),
  622. VMX_SEGMENT_FIELD(ES),
  623. VMX_SEGMENT_FIELD(FS),
  624. VMX_SEGMENT_FIELD(GS),
  625. VMX_SEGMENT_FIELD(SS),
  626. VMX_SEGMENT_FIELD(TR),
  627. VMX_SEGMENT_FIELD(LDTR),
  628. };
  629. static u64 host_efer;
  630. static void ept_save_pdptrs(struct kvm_vcpu *vcpu);
  631. /*
  632. * Keep MSR_STAR at the end, as setup_msrs() will try to optimize it
  633. * away by decrementing the array size.
  634. */
  635. static const u32 vmx_msr_index[] = {
  636. #ifdef CONFIG_X86_64
  637. MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR,
  638. #endif
  639. MSR_EFER, MSR_TSC_AUX, MSR_STAR,
  640. };
  641. #define NR_VMX_MSR ARRAY_SIZE(vmx_msr_index)
  642. static inline bool is_page_fault(u32 intr_info)
  643. {
  644. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
  645. INTR_INFO_VALID_MASK)) ==
  646. (INTR_TYPE_HARD_EXCEPTION | PF_VECTOR | INTR_INFO_VALID_MASK);
  647. }
  648. static inline bool is_no_device(u32 intr_info)
  649. {
  650. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
  651. INTR_INFO_VALID_MASK)) ==
  652. (INTR_TYPE_HARD_EXCEPTION | NM_VECTOR | INTR_INFO_VALID_MASK);
  653. }
  654. static inline bool is_invalid_opcode(u32 intr_info)
  655. {
  656. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
  657. INTR_INFO_VALID_MASK)) ==
  658. (INTR_TYPE_HARD_EXCEPTION | UD_VECTOR | INTR_INFO_VALID_MASK);
  659. }
  660. static inline bool is_external_interrupt(u32 intr_info)
  661. {
  662. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
  663. == (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
  664. }
  665. static inline bool is_machine_check(u32 intr_info)
  666. {
  667. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
  668. INTR_INFO_VALID_MASK)) ==
  669. (INTR_TYPE_HARD_EXCEPTION | MC_VECTOR | INTR_INFO_VALID_MASK);
  670. }
  671. static inline bool cpu_has_vmx_msr_bitmap(void)
  672. {
  673. return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_USE_MSR_BITMAPS;
  674. }
  675. static inline bool cpu_has_vmx_tpr_shadow(void)
  676. {
  677. return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW;
  678. }
  679. static inline bool vm_need_tpr_shadow(struct kvm *kvm)
  680. {
  681. return (cpu_has_vmx_tpr_shadow()) && (irqchip_in_kernel(kvm));
  682. }
  683. static inline bool cpu_has_secondary_exec_ctrls(void)
  684. {
  685. return vmcs_config.cpu_based_exec_ctrl &
  686. CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
  687. }
  688. static inline bool cpu_has_vmx_virtualize_apic_accesses(void)
  689. {
  690. return vmcs_config.cpu_based_2nd_exec_ctrl &
  691. SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
  692. }
  693. static inline bool cpu_has_vmx_virtualize_x2apic_mode(void)
  694. {
  695. return vmcs_config.cpu_based_2nd_exec_ctrl &
  696. SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
  697. }
  698. static inline bool cpu_has_vmx_apic_register_virt(void)
  699. {
  700. return vmcs_config.cpu_based_2nd_exec_ctrl &
  701. SECONDARY_EXEC_APIC_REGISTER_VIRT;
  702. }
  703. static inline bool cpu_has_vmx_virtual_intr_delivery(void)
  704. {
  705. return vmcs_config.cpu_based_2nd_exec_ctrl &
  706. SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY;
  707. }
  708. static inline bool cpu_has_vmx_flexpriority(void)
  709. {
  710. return cpu_has_vmx_tpr_shadow() &&
  711. cpu_has_vmx_virtualize_apic_accesses();
  712. }
  713. static inline bool cpu_has_vmx_ept_execute_only(void)
  714. {
  715. return vmx_capability.ept & VMX_EPT_EXECUTE_ONLY_BIT;
  716. }
  717. static inline bool cpu_has_vmx_eptp_uncacheable(void)
  718. {
  719. return vmx_capability.ept & VMX_EPTP_UC_BIT;
  720. }
  721. static inline bool cpu_has_vmx_eptp_writeback(void)
  722. {
  723. return vmx_capability.ept & VMX_EPTP_WB_BIT;
  724. }
  725. static inline bool cpu_has_vmx_ept_2m_page(void)
  726. {
  727. return vmx_capability.ept & VMX_EPT_2MB_PAGE_BIT;
  728. }
  729. static inline bool cpu_has_vmx_ept_1g_page(void)
  730. {
  731. return vmx_capability.ept & VMX_EPT_1GB_PAGE_BIT;
  732. }
  733. static inline bool cpu_has_vmx_ept_4levels(void)
  734. {
  735. return vmx_capability.ept & VMX_EPT_PAGE_WALK_4_BIT;
  736. }
  737. static inline bool cpu_has_vmx_ept_ad_bits(void)
  738. {
  739. return vmx_capability.ept & VMX_EPT_AD_BIT;
  740. }
  741. static inline bool cpu_has_vmx_invept_context(void)
  742. {
  743. return vmx_capability.ept & VMX_EPT_EXTENT_CONTEXT_BIT;
  744. }
  745. static inline bool cpu_has_vmx_invept_global(void)
  746. {
  747. return vmx_capability.ept & VMX_EPT_EXTENT_GLOBAL_BIT;
  748. }
  749. static inline bool cpu_has_vmx_invvpid_single(void)
  750. {
  751. return vmx_capability.vpid & VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT;
  752. }
  753. static inline bool cpu_has_vmx_invvpid_global(void)
  754. {
  755. return vmx_capability.vpid & VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT;
  756. }
  757. static inline bool cpu_has_vmx_ept(void)
  758. {
  759. return vmcs_config.cpu_based_2nd_exec_ctrl &
  760. SECONDARY_EXEC_ENABLE_EPT;
  761. }
  762. static inline bool cpu_has_vmx_unrestricted_guest(void)
  763. {
  764. return vmcs_config.cpu_based_2nd_exec_ctrl &
  765. SECONDARY_EXEC_UNRESTRICTED_GUEST;
  766. }
  767. static inline bool cpu_has_vmx_ple(void)
  768. {
  769. return vmcs_config.cpu_based_2nd_exec_ctrl &
  770. SECONDARY_EXEC_PAUSE_LOOP_EXITING;
  771. }
  772. static inline bool vm_need_virtualize_apic_accesses(struct kvm *kvm)
  773. {
  774. return flexpriority_enabled && irqchip_in_kernel(kvm);
  775. }
  776. static inline bool cpu_has_vmx_vpid(void)
  777. {
  778. return vmcs_config.cpu_based_2nd_exec_ctrl &
  779. SECONDARY_EXEC_ENABLE_VPID;
  780. }
  781. static inline bool cpu_has_vmx_rdtscp(void)
  782. {
  783. return vmcs_config.cpu_based_2nd_exec_ctrl &
  784. SECONDARY_EXEC_RDTSCP;
  785. }
  786. static inline bool cpu_has_vmx_invpcid(void)
  787. {
  788. return vmcs_config.cpu_based_2nd_exec_ctrl &
  789. SECONDARY_EXEC_ENABLE_INVPCID;
  790. }
  791. static inline bool cpu_has_virtual_nmis(void)
  792. {
  793. return vmcs_config.pin_based_exec_ctrl & PIN_BASED_VIRTUAL_NMIS;
  794. }
  795. static inline bool cpu_has_vmx_wbinvd_exit(void)
  796. {
  797. return vmcs_config.cpu_based_2nd_exec_ctrl &
  798. SECONDARY_EXEC_WBINVD_EXITING;
  799. }
  800. static inline bool report_flexpriority(void)
  801. {
  802. return flexpriority_enabled;
  803. }
  804. static inline bool nested_cpu_has(struct vmcs12 *vmcs12, u32 bit)
  805. {
  806. return vmcs12->cpu_based_vm_exec_control & bit;
  807. }
  808. static inline bool nested_cpu_has2(struct vmcs12 *vmcs12, u32 bit)
  809. {
  810. return (vmcs12->cpu_based_vm_exec_control &
  811. CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) &&
  812. (vmcs12->secondary_vm_exec_control & bit);
  813. }
  814. static inline bool nested_cpu_has_virtual_nmis(struct vmcs12 *vmcs12,
  815. struct kvm_vcpu *vcpu)
  816. {
  817. return vmcs12->pin_based_vm_exec_control & PIN_BASED_VIRTUAL_NMIS;
  818. }
  819. static inline bool is_exception(u32 intr_info)
  820. {
  821. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
  822. == (INTR_TYPE_HARD_EXCEPTION | INTR_INFO_VALID_MASK);
  823. }
  824. static void nested_vmx_vmexit(struct kvm_vcpu *vcpu);
  825. static void nested_vmx_entry_failure(struct kvm_vcpu *vcpu,
  826. struct vmcs12 *vmcs12,
  827. u32 reason, unsigned long qualification);
  828. static int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
  829. {
  830. int i;
  831. for (i = 0; i < vmx->nmsrs; ++i)
  832. if (vmx_msr_index[vmx->guest_msrs[i].index] == msr)
  833. return i;
  834. return -1;
  835. }
  836. static inline void __invvpid(int ext, u16 vpid, gva_t gva)
  837. {
  838. struct {
  839. u64 vpid : 16;
  840. u64 rsvd : 48;
  841. u64 gva;
  842. } operand = { vpid, 0, gva };
  843. asm volatile (__ex(ASM_VMX_INVVPID)
  844. /* CF==1 or ZF==1 --> rc = -1 */
  845. "; ja 1f ; ud2 ; 1:"
  846. : : "a"(&operand), "c"(ext) : "cc", "memory");
  847. }
  848. static inline void __invept(int ext, u64 eptp, gpa_t gpa)
  849. {
  850. struct {
  851. u64 eptp, gpa;
  852. } operand = {eptp, gpa};
  853. asm volatile (__ex(ASM_VMX_INVEPT)
  854. /* CF==1 or ZF==1 --> rc = -1 */
  855. "; ja 1f ; ud2 ; 1:\n"
  856. : : "a" (&operand), "c" (ext) : "cc", "memory");
  857. }
  858. static struct shared_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
  859. {
  860. int i;
  861. i = __find_msr_index(vmx, msr);
  862. if (i >= 0)
  863. return &vmx->guest_msrs[i];
  864. return NULL;
  865. }
  866. static void vmcs_clear(struct vmcs *vmcs)
  867. {
  868. u64 phys_addr = __pa(vmcs);
  869. u8 error;
  870. asm volatile (__ex(ASM_VMX_VMCLEAR_RAX) "; setna %0"
  871. : "=qm"(error) : "a"(&phys_addr), "m"(phys_addr)
  872. : "cc", "memory");
  873. if (error)
  874. printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
  875. vmcs, phys_addr);
  876. }
  877. static inline void loaded_vmcs_init(struct loaded_vmcs *loaded_vmcs)
  878. {
  879. vmcs_clear(loaded_vmcs->vmcs);
  880. loaded_vmcs->cpu = -1;
  881. loaded_vmcs->launched = 0;
  882. }
  883. static void vmcs_load(struct vmcs *vmcs)
  884. {
  885. u64 phys_addr = __pa(vmcs);
  886. u8 error;
  887. asm volatile (__ex(ASM_VMX_VMPTRLD_RAX) "; setna %0"
  888. : "=qm"(error) : "a"(&phys_addr), "m"(phys_addr)
  889. : "cc", "memory");
  890. if (error)
  891. printk(KERN_ERR "kvm: vmptrld %p/%llx failed\n",
  892. vmcs, phys_addr);
  893. }
  894. #ifdef CONFIG_KEXEC
  895. /*
  896. * This bitmap is used to indicate whether the vmclear
  897. * operation is enabled on all cpus. All disabled by
  898. * default.
  899. */
  900. static cpumask_t crash_vmclear_enabled_bitmap = CPU_MASK_NONE;
  901. static inline void crash_enable_local_vmclear(int cpu)
  902. {
  903. cpumask_set_cpu(cpu, &crash_vmclear_enabled_bitmap);
  904. }
  905. static inline void crash_disable_local_vmclear(int cpu)
  906. {
  907. cpumask_clear_cpu(cpu, &crash_vmclear_enabled_bitmap);
  908. }
  909. static inline int crash_local_vmclear_enabled(int cpu)
  910. {
  911. return cpumask_test_cpu(cpu, &crash_vmclear_enabled_bitmap);
  912. }
  913. static void crash_vmclear_local_loaded_vmcss(void)
  914. {
  915. int cpu = raw_smp_processor_id();
  916. struct loaded_vmcs *v;
  917. if (!crash_local_vmclear_enabled(cpu))
  918. return;
  919. list_for_each_entry(v, &per_cpu(loaded_vmcss_on_cpu, cpu),
  920. loaded_vmcss_on_cpu_link)
  921. vmcs_clear(v->vmcs);
  922. }
  923. #else
  924. static inline void crash_enable_local_vmclear(int cpu) { }
  925. static inline void crash_disable_local_vmclear(int cpu) { }
  926. #endif /* CONFIG_KEXEC */
  927. static void __loaded_vmcs_clear(void *arg)
  928. {
  929. struct loaded_vmcs *loaded_vmcs = arg;
  930. int cpu = raw_smp_processor_id();
  931. if (loaded_vmcs->cpu != cpu)
  932. return; /* vcpu migration can race with cpu offline */
  933. if (per_cpu(current_vmcs, cpu) == loaded_vmcs->vmcs)
  934. per_cpu(current_vmcs, cpu) = NULL;
  935. crash_disable_local_vmclear(cpu);
  936. list_del(&loaded_vmcs->loaded_vmcss_on_cpu_link);
  937. /*
  938. * we should ensure updating loaded_vmcs->loaded_vmcss_on_cpu_link
  939. * is before setting loaded_vmcs->vcpu to -1 which is done in
  940. * loaded_vmcs_init. Otherwise, other cpu can see vcpu = -1 fist
  941. * then adds the vmcs into percpu list before it is deleted.
  942. */
  943. smp_wmb();
  944. loaded_vmcs_init(loaded_vmcs);
  945. crash_enable_local_vmclear(cpu);
  946. }
  947. static void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs)
  948. {
  949. int cpu = loaded_vmcs->cpu;
  950. if (cpu != -1)
  951. smp_call_function_single(cpu,
  952. __loaded_vmcs_clear, loaded_vmcs, 1);
  953. }
  954. static inline void vpid_sync_vcpu_single(struct vcpu_vmx *vmx)
  955. {
  956. if (vmx->vpid == 0)
  957. return;
  958. if (cpu_has_vmx_invvpid_single())
  959. __invvpid(VMX_VPID_EXTENT_SINGLE_CONTEXT, vmx->vpid, 0);
  960. }
  961. static inline void vpid_sync_vcpu_global(void)
  962. {
  963. if (cpu_has_vmx_invvpid_global())
  964. __invvpid(VMX_VPID_EXTENT_ALL_CONTEXT, 0, 0);
  965. }
  966. static inline void vpid_sync_context(struct vcpu_vmx *vmx)
  967. {
  968. if (cpu_has_vmx_invvpid_single())
  969. vpid_sync_vcpu_single(vmx);
  970. else
  971. vpid_sync_vcpu_global();
  972. }
  973. static inline void ept_sync_global(void)
  974. {
  975. if (cpu_has_vmx_invept_global())
  976. __invept(VMX_EPT_EXTENT_GLOBAL, 0, 0);
  977. }
  978. static inline void ept_sync_context(u64 eptp)
  979. {
  980. if (enable_ept) {
  981. if (cpu_has_vmx_invept_context())
  982. __invept(VMX_EPT_EXTENT_CONTEXT, eptp, 0);
  983. else
  984. ept_sync_global();
  985. }
  986. }
  987. static __always_inline unsigned long vmcs_readl(unsigned long field)
  988. {
  989. unsigned long value;
  990. asm volatile (__ex_clear(ASM_VMX_VMREAD_RDX_RAX, "%0")
  991. : "=a"(value) : "d"(field) : "cc");
  992. return value;
  993. }
  994. static __always_inline u16 vmcs_read16(unsigned long field)
  995. {
  996. return vmcs_readl(field);
  997. }
  998. static __always_inline u32 vmcs_read32(unsigned long field)
  999. {
  1000. return vmcs_readl(field);
  1001. }
  1002. static __always_inline u64 vmcs_read64(unsigned long field)
  1003. {
  1004. #ifdef CONFIG_X86_64
  1005. return vmcs_readl(field);
  1006. #else
  1007. return vmcs_readl(field) | ((u64)vmcs_readl(field+1) << 32);
  1008. #endif
  1009. }
  1010. static noinline void vmwrite_error(unsigned long field, unsigned long value)
  1011. {
  1012. printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
  1013. field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
  1014. dump_stack();
  1015. }
  1016. static void vmcs_writel(unsigned long field, unsigned long value)
  1017. {
  1018. u8 error;
  1019. asm volatile (__ex(ASM_VMX_VMWRITE_RAX_RDX) "; setna %0"
  1020. : "=q"(error) : "a"(value), "d"(field) : "cc");
  1021. if (unlikely(error))
  1022. vmwrite_error(field, value);
  1023. }
  1024. static void vmcs_write16(unsigned long field, u16 value)
  1025. {
  1026. vmcs_writel(field, value);
  1027. }
  1028. static void vmcs_write32(unsigned long field, u32 value)
  1029. {
  1030. vmcs_writel(field, value);
  1031. }
  1032. static void vmcs_write64(unsigned long field, u64 value)
  1033. {
  1034. vmcs_writel(field, value);
  1035. #ifndef CONFIG_X86_64
  1036. asm volatile ("");
  1037. vmcs_writel(field+1, value >> 32);
  1038. #endif
  1039. }
  1040. static void vmcs_clear_bits(unsigned long field, u32 mask)
  1041. {
  1042. vmcs_writel(field, vmcs_readl(field) & ~mask);
  1043. }
  1044. static void vmcs_set_bits(unsigned long field, u32 mask)
  1045. {
  1046. vmcs_writel(field, vmcs_readl(field) | mask);
  1047. }
  1048. static void vmx_segment_cache_clear(struct vcpu_vmx *vmx)
  1049. {
  1050. vmx->segment_cache.bitmask = 0;
  1051. }
  1052. static bool vmx_segment_cache_test_set(struct vcpu_vmx *vmx, unsigned seg,
  1053. unsigned field)
  1054. {
  1055. bool ret;
  1056. u32 mask = 1 << (seg * SEG_FIELD_NR + field);
  1057. if (!(vmx->vcpu.arch.regs_avail & (1 << VCPU_EXREG_SEGMENTS))) {
  1058. vmx->vcpu.arch.regs_avail |= (1 << VCPU_EXREG_SEGMENTS);
  1059. vmx->segment_cache.bitmask = 0;
  1060. }
  1061. ret = vmx->segment_cache.bitmask & mask;
  1062. vmx->segment_cache.bitmask |= mask;
  1063. return ret;
  1064. }
  1065. static u16 vmx_read_guest_seg_selector(struct vcpu_vmx *vmx, unsigned seg)
  1066. {
  1067. u16 *p = &vmx->segment_cache.seg[seg].selector;
  1068. if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_SEL))
  1069. *p = vmcs_read16(kvm_vmx_segment_fields[seg].selector);
  1070. return *p;
  1071. }
  1072. static ulong vmx_read_guest_seg_base(struct vcpu_vmx *vmx, unsigned seg)
  1073. {
  1074. ulong *p = &vmx->segment_cache.seg[seg].base;
  1075. if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_BASE))
  1076. *p = vmcs_readl(kvm_vmx_segment_fields[seg].base);
  1077. return *p;
  1078. }
  1079. static u32 vmx_read_guest_seg_limit(struct vcpu_vmx *vmx, unsigned seg)
  1080. {
  1081. u32 *p = &vmx->segment_cache.seg[seg].limit;
  1082. if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_LIMIT))
  1083. *p = vmcs_read32(kvm_vmx_segment_fields[seg].limit);
  1084. return *p;
  1085. }
  1086. static u32 vmx_read_guest_seg_ar(struct vcpu_vmx *vmx, unsigned seg)
  1087. {
  1088. u32 *p = &vmx->segment_cache.seg[seg].ar;
  1089. if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_AR))
  1090. *p = vmcs_read32(kvm_vmx_segment_fields[seg].ar_bytes);
  1091. return *p;
  1092. }
  1093. static void update_exception_bitmap(struct kvm_vcpu *vcpu)
  1094. {
  1095. u32 eb;
  1096. eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) |
  1097. (1u << NM_VECTOR) | (1u << DB_VECTOR);
  1098. if ((vcpu->guest_debug &
  1099. (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) ==
  1100. (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP))
  1101. eb |= 1u << BP_VECTOR;
  1102. if (to_vmx(vcpu)->rmode.vm86_active)
  1103. eb = ~0;
  1104. if (enable_ept)
  1105. eb &= ~(1u << PF_VECTOR); /* bypass_guest_pf = 0 */
  1106. if (vcpu->fpu_active)
  1107. eb &= ~(1u << NM_VECTOR);
  1108. /* When we are running a nested L2 guest and L1 specified for it a
  1109. * certain exception bitmap, we must trap the same exceptions and pass
  1110. * them to L1. When running L2, we will only handle the exceptions
  1111. * specified above if L1 did not want them.
  1112. */
  1113. if (is_guest_mode(vcpu))
  1114. eb |= get_vmcs12(vcpu)->exception_bitmap;
  1115. vmcs_write32(EXCEPTION_BITMAP, eb);
  1116. }
  1117. static void clear_atomic_switch_msr_special(unsigned long entry,
  1118. unsigned long exit)
  1119. {
  1120. vmcs_clear_bits(VM_ENTRY_CONTROLS, entry);
  1121. vmcs_clear_bits(VM_EXIT_CONTROLS, exit);
  1122. }
  1123. static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr)
  1124. {
  1125. unsigned i;
  1126. struct msr_autoload *m = &vmx->msr_autoload;
  1127. switch (msr) {
  1128. case MSR_EFER:
  1129. if (cpu_has_load_ia32_efer) {
  1130. clear_atomic_switch_msr_special(VM_ENTRY_LOAD_IA32_EFER,
  1131. VM_EXIT_LOAD_IA32_EFER);
  1132. return;
  1133. }
  1134. break;
  1135. case MSR_CORE_PERF_GLOBAL_CTRL:
  1136. if (cpu_has_load_perf_global_ctrl) {
  1137. clear_atomic_switch_msr_special(
  1138. VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
  1139. VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
  1140. return;
  1141. }
  1142. break;
  1143. }
  1144. for (i = 0; i < m->nr; ++i)
  1145. if (m->guest[i].index == msr)
  1146. break;
  1147. if (i == m->nr)
  1148. return;
  1149. --m->nr;
  1150. m->guest[i] = m->guest[m->nr];
  1151. m->host[i] = m->host[m->nr];
  1152. vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
  1153. vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
  1154. }
  1155. static void add_atomic_switch_msr_special(unsigned long entry,
  1156. unsigned long exit, unsigned long guest_val_vmcs,
  1157. unsigned long host_val_vmcs, u64 guest_val, u64 host_val)
  1158. {
  1159. vmcs_write64(guest_val_vmcs, guest_val);
  1160. vmcs_write64(host_val_vmcs, host_val);
  1161. vmcs_set_bits(VM_ENTRY_CONTROLS, entry);
  1162. vmcs_set_bits(VM_EXIT_CONTROLS, exit);
  1163. }
  1164. static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr,
  1165. u64 guest_val, u64 host_val)
  1166. {
  1167. unsigned i;
  1168. struct msr_autoload *m = &vmx->msr_autoload;
  1169. switch (msr) {
  1170. case MSR_EFER:
  1171. if (cpu_has_load_ia32_efer) {
  1172. add_atomic_switch_msr_special(VM_ENTRY_LOAD_IA32_EFER,
  1173. VM_EXIT_LOAD_IA32_EFER,
  1174. GUEST_IA32_EFER,
  1175. HOST_IA32_EFER,
  1176. guest_val, host_val);
  1177. return;
  1178. }
  1179. break;
  1180. case MSR_CORE_PERF_GLOBAL_CTRL:
  1181. if (cpu_has_load_perf_global_ctrl) {
  1182. add_atomic_switch_msr_special(
  1183. VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
  1184. VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL,
  1185. GUEST_IA32_PERF_GLOBAL_CTRL,
  1186. HOST_IA32_PERF_GLOBAL_CTRL,
  1187. guest_val, host_val);
  1188. return;
  1189. }
  1190. break;
  1191. }
  1192. for (i = 0; i < m->nr; ++i)
  1193. if (m->guest[i].index == msr)
  1194. break;
  1195. if (i == NR_AUTOLOAD_MSRS) {
  1196. printk_once(KERN_WARNING"Not enough mst switch entries. "
  1197. "Can't add msr %x\n", msr);
  1198. return;
  1199. } else if (i == m->nr) {
  1200. ++m->nr;
  1201. vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
  1202. vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
  1203. }
  1204. m->guest[i].index = msr;
  1205. m->guest[i].value = guest_val;
  1206. m->host[i].index = msr;
  1207. m->host[i].value = host_val;
  1208. }
  1209. static void reload_tss(void)
  1210. {
  1211. /*
  1212. * VT restores TR but not its size. Useless.
  1213. */
  1214. struct desc_ptr *gdt = &__get_cpu_var(host_gdt);
  1215. struct desc_struct *descs;
  1216. descs = (void *)gdt->address;
  1217. descs[GDT_ENTRY_TSS].type = 9; /* available TSS */
  1218. load_TR_desc();
  1219. }
  1220. static bool update_transition_efer(struct vcpu_vmx *vmx, int efer_offset)
  1221. {
  1222. u64 guest_efer;
  1223. u64 ignore_bits;
  1224. guest_efer = vmx->vcpu.arch.efer;
  1225. /*
  1226. * NX is emulated; LMA and LME handled by hardware; SCE meaningless
  1227. * outside long mode
  1228. */
  1229. ignore_bits = EFER_NX | EFER_SCE;
  1230. #ifdef CONFIG_X86_64
  1231. ignore_bits |= EFER_LMA | EFER_LME;
  1232. /* SCE is meaningful only in long mode on Intel */
  1233. if (guest_efer & EFER_LMA)
  1234. ignore_bits &= ~(u64)EFER_SCE;
  1235. #endif
  1236. guest_efer &= ~ignore_bits;
  1237. guest_efer |= host_efer & ignore_bits;
  1238. vmx->guest_msrs[efer_offset].data = guest_efer;
  1239. vmx->guest_msrs[efer_offset].mask = ~ignore_bits;
  1240. clear_atomic_switch_msr(vmx, MSR_EFER);
  1241. /* On ept, can't emulate nx, and must switch nx atomically */
  1242. if (enable_ept && ((vmx->vcpu.arch.efer ^ host_efer) & EFER_NX)) {
  1243. guest_efer = vmx->vcpu.arch.efer;
  1244. if (!(guest_efer & EFER_LMA))
  1245. guest_efer &= ~EFER_LME;
  1246. add_atomic_switch_msr(vmx, MSR_EFER, guest_efer, host_efer);
  1247. return false;
  1248. }
  1249. return true;
  1250. }
  1251. static unsigned long segment_base(u16 selector)
  1252. {
  1253. struct desc_ptr *gdt = &__get_cpu_var(host_gdt);
  1254. struct desc_struct *d;
  1255. unsigned long table_base;
  1256. unsigned long v;
  1257. if (!(selector & ~3))
  1258. return 0;
  1259. table_base = gdt->address;
  1260. if (selector & 4) { /* from ldt */
  1261. u16 ldt_selector = kvm_read_ldt();
  1262. if (!(ldt_selector & ~3))
  1263. return 0;
  1264. table_base = segment_base(ldt_selector);
  1265. }
  1266. d = (struct desc_struct *)(table_base + (selector & ~7));
  1267. v = get_desc_base(d);
  1268. #ifdef CONFIG_X86_64
  1269. if (d->s == 0 && (d->type == 2 || d->type == 9 || d->type == 11))
  1270. v |= ((unsigned long)((struct ldttss_desc64 *)d)->base3) << 32;
  1271. #endif
  1272. return v;
  1273. }
  1274. static inline unsigned long kvm_read_tr_base(void)
  1275. {
  1276. u16 tr;
  1277. asm("str %0" : "=g"(tr));
  1278. return segment_base(tr);
  1279. }
  1280. static void vmx_save_host_state(struct kvm_vcpu *vcpu)
  1281. {
  1282. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1283. int i;
  1284. if (vmx->host_state.loaded)
  1285. return;
  1286. vmx->host_state.loaded = 1;
  1287. /*
  1288. * Set host fs and gs selectors. Unfortunately, 22.2.3 does not
  1289. * allow segment selectors with cpl > 0 or ti == 1.
  1290. */
  1291. vmx->host_state.ldt_sel = kvm_read_ldt();
  1292. vmx->host_state.gs_ldt_reload_needed = vmx->host_state.ldt_sel;
  1293. savesegment(fs, vmx->host_state.fs_sel);
  1294. if (!(vmx->host_state.fs_sel & 7)) {
  1295. vmcs_write16(HOST_FS_SELECTOR, vmx->host_state.fs_sel);
  1296. vmx->host_state.fs_reload_needed = 0;
  1297. } else {
  1298. vmcs_write16(HOST_FS_SELECTOR, 0);
  1299. vmx->host_state.fs_reload_needed = 1;
  1300. }
  1301. savesegment(gs, vmx->host_state.gs_sel);
  1302. if (!(vmx->host_state.gs_sel & 7))
  1303. vmcs_write16(HOST_GS_SELECTOR, vmx->host_state.gs_sel);
  1304. else {
  1305. vmcs_write16(HOST_GS_SELECTOR, 0);
  1306. vmx->host_state.gs_ldt_reload_needed = 1;
  1307. }
  1308. #ifdef CONFIG_X86_64
  1309. savesegment(ds, vmx->host_state.ds_sel);
  1310. savesegment(es, vmx->host_state.es_sel);
  1311. #endif
  1312. #ifdef CONFIG_X86_64
  1313. vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE));
  1314. vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE));
  1315. #else
  1316. vmcs_writel(HOST_FS_BASE, segment_base(vmx->host_state.fs_sel));
  1317. vmcs_writel(HOST_GS_BASE, segment_base(vmx->host_state.gs_sel));
  1318. #endif
  1319. #ifdef CONFIG_X86_64
  1320. rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
  1321. if (is_long_mode(&vmx->vcpu))
  1322. wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
  1323. #endif
  1324. for (i = 0; i < vmx->save_nmsrs; ++i)
  1325. kvm_set_shared_msr(vmx->guest_msrs[i].index,
  1326. vmx->guest_msrs[i].data,
  1327. vmx->guest_msrs[i].mask);
  1328. }
  1329. static void __vmx_load_host_state(struct vcpu_vmx *vmx)
  1330. {
  1331. if (!vmx->host_state.loaded)
  1332. return;
  1333. ++vmx->vcpu.stat.host_state_reload;
  1334. vmx->host_state.loaded = 0;
  1335. #ifdef CONFIG_X86_64
  1336. if (is_long_mode(&vmx->vcpu))
  1337. rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
  1338. #endif
  1339. if (vmx->host_state.gs_ldt_reload_needed) {
  1340. kvm_load_ldt(vmx->host_state.ldt_sel);
  1341. #ifdef CONFIG_X86_64
  1342. load_gs_index(vmx->host_state.gs_sel);
  1343. #else
  1344. loadsegment(gs, vmx->host_state.gs_sel);
  1345. #endif
  1346. }
  1347. if (vmx->host_state.fs_reload_needed)
  1348. loadsegment(fs, vmx->host_state.fs_sel);
  1349. #ifdef CONFIG_X86_64
  1350. if (unlikely(vmx->host_state.ds_sel | vmx->host_state.es_sel)) {
  1351. loadsegment(ds, vmx->host_state.ds_sel);
  1352. loadsegment(es, vmx->host_state.es_sel);
  1353. }
  1354. #endif
  1355. reload_tss();
  1356. #ifdef CONFIG_X86_64
  1357. wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
  1358. #endif
  1359. /*
  1360. * If the FPU is not active (through the host task or
  1361. * the guest vcpu), then restore the cr0.TS bit.
  1362. */
  1363. if (!user_has_fpu() && !vmx->vcpu.guest_fpu_loaded)
  1364. stts();
  1365. load_gdt(&__get_cpu_var(host_gdt));
  1366. }
  1367. static void vmx_load_host_state(struct vcpu_vmx *vmx)
  1368. {
  1369. preempt_disable();
  1370. __vmx_load_host_state(vmx);
  1371. preempt_enable();
  1372. }
  1373. /*
  1374. * Switches to specified vcpu, until a matching vcpu_put(), but assumes
  1375. * vcpu mutex is already taken.
  1376. */
  1377. static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
  1378. {
  1379. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1380. u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
  1381. if (!vmm_exclusive)
  1382. kvm_cpu_vmxon(phys_addr);
  1383. else if (vmx->loaded_vmcs->cpu != cpu)
  1384. loaded_vmcs_clear(vmx->loaded_vmcs);
  1385. if (per_cpu(current_vmcs, cpu) != vmx->loaded_vmcs->vmcs) {
  1386. per_cpu(current_vmcs, cpu) = vmx->loaded_vmcs->vmcs;
  1387. vmcs_load(vmx->loaded_vmcs->vmcs);
  1388. }
  1389. if (vmx->loaded_vmcs->cpu != cpu) {
  1390. struct desc_ptr *gdt = &__get_cpu_var(host_gdt);
  1391. unsigned long sysenter_esp;
  1392. kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
  1393. local_irq_disable();
  1394. crash_disable_local_vmclear(cpu);
  1395. /*
  1396. * Read loaded_vmcs->cpu should be before fetching
  1397. * loaded_vmcs->loaded_vmcss_on_cpu_link.
  1398. * See the comments in __loaded_vmcs_clear().
  1399. */
  1400. smp_rmb();
  1401. list_add(&vmx->loaded_vmcs->loaded_vmcss_on_cpu_link,
  1402. &per_cpu(loaded_vmcss_on_cpu, cpu));
  1403. crash_enable_local_vmclear(cpu);
  1404. local_irq_enable();
  1405. /*
  1406. * Linux uses per-cpu TSS and GDT, so set these when switching
  1407. * processors.
  1408. */
  1409. vmcs_writel(HOST_TR_BASE, kvm_read_tr_base()); /* 22.2.4 */
  1410. vmcs_writel(HOST_GDTR_BASE, gdt->address); /* 22.2.4 */
  1411. rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
  1412. vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
  1413. vmx->loaded_vmcs->cpu = cpu;
  1414. }
  1415. }
  1416. static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
  1417. {
  1418. __vmx_load_host_state(to_vmx(vcpu));
  1419. if (!vmm_exclusive) {
  1420. __loaded_vmcs_clear(to_vmx(vcpu)->loaded_vmcs);
  1421. vcpu->cpu = -1;
  1422. kvm_cpu_vmxoff();
  1423. }
  1424. }
  1425. static void vmx_fpu_activate(struct kvm_vcpu *vcpu)
  1426. {
  1427. ulong cr0;
  1428. if (vcpu->fpu_active)
  1429. return;
  1430. vcpu->fpu_active = 1;
  1431. cr0 = vmcs_readl(GUEST_CR0);
  1432. cr0 &= ~(X86_CR0_TS | X86_CR0_MP);
  1433. cr0 |= kvm_read_cr0_bits(vcpu, X86_CR0_TS | X86_CR0_MP);
  1434. vmcs_writel(GUEST_CR0, cr0);
  1435. update_exception_bitmap(vcpu);
  1436. vcpu->arch.cr0_guest_owned_bits = X86_CR0_TS;
  1437. if (is_guest_mode(vcpu))
  1438. vcpu->arch.cr0_guest_owned_bits &=
  1439. ~get_vmcs12(vcpu)->cr0_guest_host_mask;
  1440. vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
  1441. }
  1442. static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu);
  1443. /*
  1444. * Return the cr0 value that a nested guest would read. This is a combination
  1445. * of the real cr0 used to run the guest (guest_cr0), and the bits shadowed by
  1446. * its hypervisor (cr0_read_shadow).
  1447. */
  1448. static inline unsigned long nested_read_cr0(struct vmcs12 *fields)
  1449. {
  1450. return (fields->guest_cr0 & ~fields->cr0_guest_host_mask) |
  1451. (fields->cr0_read_shadow & fields->cr0_guest_host_mask);
  1452. }
  1453. static inline unsigned long nested_read_cr4(struct vmcs12 *fields)
  1454. {
  1455. return (fields->guest_cr4 & ~fields->cr4_guest_host_mask) |
  1456. (fields->cr4_read_shadow & fields->cr4_guest_host_mask);
  1457. }
  1458. static void vmx_fpu_deactivate(struct kvm_vcpu *vcpu)
  1459. {
  1460. /* Note that there is no vcpu->fpu_active = 0 here. The caller must
  1461. * set this *before* calling this function.
  1462. */
  1463. vmx_decache_cr0_guest_bits(vcpu);
  1464. vmcs_set_bits(GUEST_CR0, X86_CR0_TS | X86_CR0_MP);
  1465. update_exception_bitmap(vcpu);
  1466. vcpu->arch.cr0_guest_owned_bits = 0;
  1467. vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
  1468. if (is_guest_mode(vcpu)) {
  1469. /*
  1470. * L1's specified read shadow might not contain the TS bit,
  1471. * so now that we turned on shadowing of this bit, we need to
  1472. * set this bit of the shadow. Like in nested_vmx_run we need
  1473. * nested_read_cr0(vmcs12), but vmcs12->guest_cr0 is not yet
  1474. * up-to-date here because we just decached cr0.TS (and we'll
  1475. * only update vmcs12->guest_cr0 on nested exit).
  1476. */
  1477. struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
  1478. vmcs12->guest_cr0 = (vmcs12->guest_cr0 & ~X86_CR0_TS) |
  1479. (vcpu->arch.cr0 & X86_CR0_TS);
  1480. vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
  1481. } else
  1482. vmcs_writel(CR0_READ_SHADOW, vcpu->arch.cr0);
  1483. }
  1484. static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
  1485. {
  1486. unsigned long rflags, save_rflags;
  1487. if (!test_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail)) {
  1488. __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
  1489. rflags = vmcs_readl(GUEST_RFLAGS);
  1490. if (to_vmx(vcpu)->rmode.vm86_active) {
  1491. rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
  1492. save_rflags = to_vmx(vcpu)->rmode.save_rflags;
  1493. rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
  1494. }
  1495. to_vmx(vcpu)->rflags = rflags;
  1496. }
  1497. return to_vmx(vcpu)->rflags;
  1498. }
  1499. static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
  1500. {
  1501. __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
  1502. to_vmx(vcpu)->rflags = rflags;
  1503. if (to_vmx(vcpu)->rmode.vm86_active) {
  1504. to_vmx(vcpu)->rmode.save_rflags = rflags;
  1505. rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
  1506. }
  1507. vmcs_writel(GUEST_RFLAGS, rflags);
  1508. }
  1509. static u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
  1510. {
  1511. u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
  1512. int ret = 0;
  1513. if (interruptibility & GUEST_INTR_STATE_STI)
  1514. ret |= KVM_X86_SHADOW_INT_STI;
  1515. if (interruptibility & GUEST_INTR_STATE_MOV_SS)
  1516. ret |= KVM_X86_SHADOW_INT_MOV_SS;
  1517. return ret & mask;
  1518. }
  1519. static void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
  1520. {
  1521. u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
  1522. u32 interruptibility = interruptibility_old;
  1523. interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);
  1524. if (mask & KVM_X86_SHADOW_INT_MOV_SS)
  1525. interruptibility |= GUEST_INTR_STATE_MOV_SS;
  1526. else if (mask & KVM_X86_SHADOW_INT_STI)
  1527. interruptibility |= GUEST_INTR_STATE_STI;
  1528. if ((interruptibility != interruptibility_old))
  1529. vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility);
  1530. }
  1531. static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
  1532. {
  1533. unsigned long rip;
  1534. rip = kvm_rip_read(vcpu);
  1535. rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
  1536. kvm_rip_write(vcpu, rip);
  1537. /* skipping an emulated instruction also counts */
  1538. vmx_set_interrupt_shadow(vcpu, 0);
  1539. }
  1540. /*
  1541. * KVM wants to inject page-faults which it got to the guest. This function
  1542. * checks whether in a nested guest, we need to inject them to L1 or L2.
  1543. * This function assumes it is called with the exit reason in vmcs02 being
  1544. * a #PF exception (this is the only case in which KVM injects a #PF when L2
  1545. * is running).
  1546. */
  1547. static int nested_pf_handled(struct kvm_vcpu *vcpu)
  1548. {
  1549. struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
  1550. /* TODO: also check PFEC_MATCH/MASK, not just EB.PF. */
  1551. if (!(vmcs12->exception_bitmap & (1u << PF_VECTOR)))
  1552. return 0;
  1553. nested_vmx_vmexit(vcpu);
  1554. return 1;
  1555. }
  1556. static void vmx_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
  1557. bool has_error_code, u32 error_code,
  1558. bool reinject)
  1559. {
  1560. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1561. u32 intr_info = nr | INTR_INFO_VALID_MASK;
  1562. if (nr == PF_VECTOR && is_guest_mode(vcpu) &&
  1563. nested_pf_handled(vcpu))
  1564. return;
  1565. if (has_error_code) {
  1566. vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
  1567. intr_info |= INTR_INFO_DELIVER_CODE_MASK;
  1568. }
  1569. if (vmx->rmode.vm86_active) {
  1570. int inc_eip = 0;
  1571. if (kvm_exception_is_soft(nr))
  1572. inc_eip = vcpu->arch.event_exit_inst_len;
  1573. if (kvm_inject_realmode_interrupt(vcpu, nr, inc_eip) != EMULATE_DONE)
  1574. kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
  1575. return;
  1576. }
  1577. if (kvm_exception_is_soft(nr)) {
  1578. vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
  1579. vmx->vcpu.arch.event_exit_inst_len);
  1580. intr_info |= INTR_TYPE_SOFT_EXCEPTION;
  1581. } else
  1582. intr_info |= INTR_TYPE_HARD_EXCEPTION;
  1583. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
  1584. }
  1585. static bool vmx_rdtscp_supported(void)
  1586. {
  1587. return cpu_has_vmx_rdtscp();
  1588. }
  1589. static bool vmx_invpcid_supported(void)
  1590. {
  1591. return cpu_has_vmx_invpcid() && enable_ept;
  1592. }
  1593. /*
  1594. * Swap MSR entry in host/guest MSR entry array.
  1595. */
  1596. static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
  1597. {
  1598. struct shared_msr_entry tmp;
  1599. tmp = vmx->guest_msrs[to];
  1600. vmx->guest_msrs[to] = vmx->guest_msrs[from];
  1601. vmx->guest_msrs[from] = tmp;
  1602. }
  1603. static void vmx_set_msr_bitmap(struct kvm_vcpu *vcpu)
  1604. {
  1605. unsigned long *msr_bitmap;
  1606. if (irqchip_in_kernel(vcpu->kvm) && apic_x2apic_mode(vcpu->arch.apic)) {
  1607. if (is_long_mode(vcpu))
  1608. msr_bitmap = vmx_msr_bitmap_longmode_x2apic;
  1609. else
  1610. msr_bitmap = vmx_msr_bitmap_legacy_x2apic;
  1611. } else {
  1612. if (is_long_mode(vcpu))
  1613. msr_bitmap = vmx_msr_bitmap_longmode;
  1614. else
  1615. msr_bitmap = vmx_msr_bitmap_legacy;
  1616. }
  1617. vmcs_write64(MSR_BITMAP, __pa(msr_bitmap));
  1618. }
  1619. /*
  1620. * Set up the vmcs to automatically save and restore system
  1621. * msrs. Don't touch the 64-bit msrs if the guest is in legacy
  1622. * mode, as fiddling with msrs is very expensive.
  1623. */
  1624. static void setup_msrs(struct vcpu_vmx *vmx)
  1625. {
  1626. int save_nmsrs, index;
  1627. save_nmsrs = 0;
  1628. #ifdef CONFIG_X86_64
  1629. if (is_long_mode(&vmx->vcpu)) {
  1630. index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
  1631. if (index >= 0)
  1632. move_msr_up(vmx, index, save_nmsrs++);
  1633. index = __find_msr_index(vmx, MSR_LSTAR);
  1634. if (index >= 0)
  1635. move_msr_up(vmx, index, save_nmsrs++);
  1636. index = __find_msr_index(vmx, MSR_CSTAR);
  1637. if (index >= 0)
  1638. move_msr_up(vmx, index, save_nmsrs++);
  1639. index = __find_msr_index(vmx, MSR_TSC_AUX);
  1640. if (index >= 0 && vmx->rdtscp_enabled)
  1641. move_msr_up(vmx, index, save_nmsrs++);
  1642. /*
  1643. * MSR_STAR is only needed on long mode guests, and only
  1644. * if efer.sce is enabled.
  1645. */
  1646. index = __find_msr_index(vmx, MSR_STAR);
  1647. if ((index >= 0) && (vmx->vcpu.arch.efer & EFER_SCE))
  1648. move_msr_up(vmx, index, save_nmsrs++);
  1649. }
  1650. #endif
  1651. index = __find_msr_index(vmx, MSR_EFER);
  1652. if (index >= 0 && update_transition_efer(vmx, index))
  1653. move_msr_up(vmx, index, save_nmsrs++);
  1654. vmx->save_nmsrs = save_nmsrs;
  1655. if (cpu_has_vmx_msr_bitmap())
  1656. vmx_set_msr_bitmap(&vmx->vcpu);
  1657. }
  1658. /*
  1659. * reads and returns guest's timestamp counter "register"
  1660. * guest_tsc = host_tsc + tsc_offset -- 21.3
  1661. */
  1662. static u64 guest_read_tsc(void)
  1663. {
  1664. u64 host_tsc, tsc_offset;
  1665. rdtscll(host_tsc);
  1666. tsc_offset = vmcs_read64(TSC_OFFSET);
  1667. return host_tsc + tsc_offset;
  1668. }
  1669. /*
  1670. * Like guest_read_tsc, but always returns L1's notion of the timestamp
  1671. * counter, even if a nested guest (L2) is currently running.
  1672. */
  1673. u64 vmx_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
  1674. {
  1675. u64 tsc_offset;
  1676. tsc_offset = is_guest_mode(vcpu) ?
  1677. to_vmx(vcpu)->nested.vmcs01_tsc_offset :
  1678. vmcs_read64(TSC_OFFSET);
  1679. return host_tsc + tsc_offset;
  1680. }
  1681. /*
  1682. * Engage any workarounds for mis-matched TSC rates. Currently limited to
  1683. * software catchup for faster rates on slower CPUs.
  1684. */
  1685. static void vmx_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
  1686. {
  1687. if (!scale)
  1688. return;
  1689. if (user_tsc_khz > tsc_khz) {
  1690. vcpu->arch.tsc_catchup = 1;
  1691. vcpu->arch.tsc_always_catchup = 1;
  1692. } else
  1693. WARN(1, "user requested TSC rate below hardware speed\n");
  1694. }
  1695. static u64 vmx_read_tsc_offset(struct kvm_vcpu *vcpu)
  1696. {
  1697. return vmcs_read64(TSC_OFFSET);
  1698. }
  1699. /*
  1700. * writes 'offset' into guest's timestamp counter offset register
  1701. */
  1702. static void vmx_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
  1703. {
  1704. if (is_guest_mode(vcpu)) {
  1705. /*
  1706. * We're here if L1 chose not to trap WRMSR to TSC. According
  1707. * to the spec, this should set L1's TSC; The offset that L1
  1708. * set for L2 remains unchanged, and still needs to be added
  1709. * to the newly set TSC to get L2's TSC.
  1710. */
  1711. struct vmcs12 *vmcs12;
  1712. to_vmx(vcpu)->nested.vmcs01_tsc_offset = offset;
  1713. /* recalculate vmcs02.TSC_OFFSET: */
  1714. vmcs12 = get_vmcs12(vcpu);
  1715. vmcs_write64(TSC_OFFSET, offset +
  1716. (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETING) ?
  1717. vmcs12->tsc_offset : 0));
  1718. } else {
  1719. vmcs_write64(TSC_OFFSET, offset);
  1720. }
  1721. }
  1722. static void vmx_adjust_tsc_offset(struct kvm_vcpu *vcpu, s64 adjustment, bool host)
  1723. {
  1724. u64 offset = vmcs_read64(TSC_OFFSET);
  1725. vmcs_write64(TSC_OFFSET, offset + adjustment);
  1726. if (is_guest_mode(vcpu)) {
  1727. /* Even when running L2, the adjustment needs to apply to L1 */
  1728. to_vmx(vcpu)->nested.vmcs01_tsc_offset += adjustment;
  1729. }
  1730. }
  1731. static u64 vmx_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
  1732. {
  1733. return target_tsc - native_read_tsc();
  1734. }
  1735. static bool guest_cpuid_has_vmx(struct kvm_vcpu *vcpu)
  1736. {
  1737. struct kvm_cpuid_entry2 *best = kvm_find_cpuid_entry(vcpu, 1, 0);
  1738. return best && (best->ecx & (1 << (X86_FEATURE_VMX & 31)));
  1739. }
  1740. /*
  1741. * nested_vmx_allowed() checks whether a guest should be allowed to use VMX
  1742. * instructions and MSRs (i.e., nested VMX). Nested VMX is disabled for
  1743. * all guests if the "nested" module option is off, and can also be disabled
  1744. * for a single guest by disabling its VMX cpuid bit.
  1745. */
  1746. static inline bool nested_vmx_allowed(struct kvm_vcpu *vcpu)
  1747. {
  1748. return nested && guest_cpuid_has_vmx(vcpu);
  1749. }
  1750. /*
  1751. * nested_vmx_setup_ctls_msrs() sets up variables containing the values to be
  1752. * returned for the various VMX controls MSRs when nested VMX is enabled.
  1753. * The same values should also be used to verify that vmcs12 control fields are
  1754. * valid during nested entry from L1 to L2.
  1755. * Each of these control msrs has a low and high 32-bit half: A low bit is on
  1756. * if the corresponding bit in the (32-bit) control field *must* be on, and a
  1757. * bit in the high half is on if the corresponding bit in the control field
  1758. * may be on. See also vmx_control_verify().
  1759. * TODO: allow these variables to be modified (downgraded) by module options
  1760. * or other means.
  1761. */
  1762. static u32 nested_vmx_procbased_ctls_low, nested_vmx_procbased_ctls_high;
  1763. static u32 nested_vmx_secondary_ctls_low, nested_vmx_secondary_ctls_high;
  1764. static u32 nested_vmx_pinbased_ctls_low, nested_vmx_pinbased_ctls_high;
  1765. static u32 nested_vmx_exit_ctls_low, nested_vmx_exit_ctls_high;
  1766. static u32 nested_vmx_entry_ctls_low, nested_vmx_entry_ctls_high;
  1767. static __init void nested_vmx_setup_ctls_msrs(void)
  1768. {
  1769. /*
  1770. * Note that as a general rule, the high half of the MSRs (bits in
  1771. * the control fields which may be 1) should be initialized by the
  1772. * intersection of the underlying hardware's MSR (i.e., features which
  1773. * can be supported) and the list of features we want to expose -
  1774. * because they are known to be properly supported in our code.
  1775. * Also, usually, the low half of the MSRs (bits which must be 1) can
  1776. * be set to 0, meaning that L1 may turn off any of these bits. The
  1777. * reason is that if one of these bits is necessary, it will appear
  1778. * in vmcs01 and prepare_vmcs02, when it bitwise-or's the control
  1779. * fields of vmcs01 and vmcs02, will turn these bits off - and
  1780. * nested_vmx_exit_handled() will not pass related exits to L1.
  1781. * These rules have exceptions below.
  1782. */
  1783. /* pin-based controls */
  1784. /*
  1785. * According to the Intel spec, if bit 55 of VMX_BASIC is off (as it is
  1786. * in our case), bits 1, 2 and 4 (i.e., 0x16) must be 1 in this MSR.
  1787. */
  1788. nested_vmx_pinbased_ctls_low = 0x16 ;
  1789. nested_vmx_pinbased_ctls_high = 0x16 |
  1790. PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING |
  1791. PIN_BASED_VIRTUAL_NMIS;
  1792. /* exit controls */
  1793. nested_vmx_exit_ctls_low = 0;
  1794. /* Note that guest use of VM_EXIT_ACK_INTR_ON_EXIT is not supported. */
  1795. #ifdef CONFIG_X86_64
  1796. nested_vmx_exit_ctls_high = VM_EXIT_HOST_ADDR_SPACE_SIZE;
  1797. #else
  1798. nested_vmx_exit_ctls_high = 0;
  1799. #endif
  1800. /* entry controls */
  1801. rdmsr(MSR_IA32_VMX_ENTRY_CTLS,
  1802. nested_vmx_entry_ctls_low, nested_vmx_entry_ctls_high);
  1803. nested_vmx_entry_ctls_low = 0;
  1804. nested_vmx_entry_ctls_high &=
  1805. VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_IA32E_MODE;
  1806. /* cpu-based controls */
  1807. rdmsr(MSR_IA32_VMX_PROCBASED_CTLS,
  1808. nested_vmx_procbased_ctls_low, nested_vmx_procbased_ctls_high);
  1809. nested_vmx_procbased_ctls_low = 0;
  1810. nested_vmx_procbased_ctls_high &=
  1811. CPU_BASED_VIRTUAL_INTR_PENDING | CPU_BASED_USE_TSC_OFFSETING |
  1812. CPU_BASED_HLT_EXITING | CPU_BASED_INVLPG_EXITING |
  1813. CPU_BASED_MWAIT_EXITING | CPU_BASED_CR3_LOAD_EXITING |
  1814. CPU_BASED_CR3_STORE_EXITING |
  1815. #ifdef CONFIG_X86_64
  1816. CPU_BASED_CR8_LOAD_EXITING | CPU_BASED_CR8_STORE_EXITING |
  1817. #endif
  1818. CPU_BASED_MOV_DR_EXITING | CPU_BASED_UNCOND_IO_EXITING |
  1819. CPU_BASED_USE_IO_BITMAPS | CPU_BASED_MONITOR_EXITING |
  1820. CPU_BASED_RDPMC_EXITING | CPU_BASED_RDTSC_EXITING |
  1821. CPU_BASED_PAUSE_EXITING |
  1822. CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
  1823. /*
  1824. * We can allow some features even when not supported by the
  1825. * hardware. For example, L1 can specify an MSR bitmap - and we
  1826. * can use it to avoid exits to L1 - even when L0 runs L2
  1827. * without MSR bitmaps.
  1828. */
  1829. nested_vmx_procbased_ctls_high |= CPU_BASED_USE_MSR_BITMAPS;
  1830. /* secondary cpu-based controls */
  1831. rdmsr(MSR_IA32_VMX_PROCBASED_CTLS2,
  1832. nested_vmx_secondary_ctls_low, nested_vmx_secondary_ctls_high);
  1833. nested_vmx_secondary_ctls_low = 0;
  1834. nested_vmx_secondary_ctls_high &=
  1835. SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
  1836. SECONDARY_EXEC_WBINVD_EXITING;
  1837. }
  1838. static inline bool vmx_control_verify(u32 control, u32 low, u32 high)
  1839. {
  1840. /*
  1841. * Bits 0 in high must be 0, and bits 1 in low must be 1.
  1842. */
  1843. return ((control & high) | low) == control;
  1844. }
  1845. static inline u64 vmx_control_msr(u32 low, u32 high)
  1846. {
  1847. return low | ((u64)high << 32);
  1848. }
  1849. /*
  1850. * If we allow our guest to use VMX instructions (i.e., nested VMX), we should
  1851. * also let it use VMX-specific MSRs.
  1852. * vmx_get_vmx_msr() and vmx_set_vmx_msr() return 1 when we handled a
  1853. * VMX-specific MSR, or 0 when we haven't (and the caller should handle it
  1854. * like all other MSRs).
  1855. */
  1856. static int vmx_get_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
  1857. {
  1858. if (!nested_vmx_allowed(vcpu) && msr_index >= MSR_IA32_VMX_BASIC &&
  1859. msr_index <= MSR_IA32_VMX_TRUE_ENTRY_CTLS) {
  1860. /*
  1861. * According to the spec, processors which do not support VMX
  1862. * should throw a #GP(0) when VMX capability MSRs are read.
  1863. */
  1864. kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
  1865. return 1;
  1866. }
  1867. switch (msr_index) {
  1868. case MSR_IA32_FEATURE_CONTROL:
  1869. *pdata = 0;
  1870. break;
  1871. case MSR_IA32_VMX_BASIC:
  1872. /*
  1873. * This MSR reports some information about VMX support. We
  1874. * should return information about the VMX we emulate for the
  1875. * guest, and the VMCS structure we give it - not about the
  1876. * VMX support of the underlying hardware.
  1877. */
  1878. *pdata = VMCS12_REVISION |
  1879. ((u64)VMCS12_SIZE << VMX_BASIC_VMCS_SIZE_SHIFT) |
  1880. (VMX_BASIC_MEM_TYPE_WB << VMX_BASIC_MEM_TYPE_SHIFT);
  1881. break;
  1882. case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
  1883. case MSR_IA32_VMX_PINBASED_CTLS:
  1884. *pdata = vmx_control_msr(nested_vmx_pinbased_ctls_low,
  1885. nested_vmx_pinbased_ctls_high);
  1886. break;
  1887. case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
  1888. case MSR_IA32_VMX_PROCBASED_CTLS:
  1889. *pdata = vmx_control_msr(nested_vmx_procbased_ctls_low,
  1890. nested_vmx_procbased_ctls_high);
  1891. break;
  1892. case MSR_IA32_VMX_TRUE_EXIT_CTLS:
  1893. case MSR_IA32_VMX_EXIT_CTLS:
  1894. *pdata = vmx_control_msr(nested_vmx_exit_ctls_low,
  1895. nested_vmx_exit_ctls_high);
  1896. break;
  1897. case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
  1898. case MSR_IA32_VMX_ENTRY_CTLS:
  1899. *pdata = vmx_control_msr(nested_vmx_entry_ctls_low,
  1900. nested_vmx_entry_ctls_high);
  1901. break;
  1902. case MSR_IA32_VMX_MISC:
  1903. *pdata = 0;
  1904. break;
  1905. /*
  1906. * These MSRs specify bits which the guest must keep fixed (on or off)
  1907. * while L1 is in VMXON mode (in L1's root mode, or running an L2).
  1908. * We picked the standard core2 setting.
  1909. */
  1910. #define VMXON_CR0_ALWAYSON (X86_CR0_PE | X86_CR0_PG | X86_CR0_NE)
  1911. #define VMXON_CR4_ALWAYSON X86_CR4_VMXE
  1912. case MSR_IA32_VMX_CR0_FIXED0:
  1913. *pdata = VMXON_CR0_ALWAYSON;
  1914. break;
  1915. case MSR_IA32_VMX_CR0_FIXED1:
  1916. *pdata = -1ULL;
  1917. break;
  1918. case MSR_IA32_VMX_CR4_FIXED0:
  1919. *pdata = VMXON_CR4_ALWAYSON;
  1920. break;
  1921. case MSR_IA32_VMX_CR4_FIXED1:
  1922. *pdata = -1ULL;
  1923. break;
  1924. case MSR_IA32_VMX_VMCS_ENUM:
  1925. *pdata = 0x1f;
  1926. break;
  1927. case MSR_IA32_VMX_PROCBASED_CTLS2:
  1928. *pdata = vmx_control_msr(nested_vmx_secondary_ctls_low,
  1929. nested_vmx_secondary_ctls_high);
  1930. break;
  1931. case MSR_IA32_VMX_EPT_VPID_CAP:
  1932. /* Currently, no nested ept or nested vpid */
  1933. *pdata = 0;
  1934. break;
  1935. default:
  1936. return 0;
  1937. }
  1938. return 1;
  1939. }
  1940. static int vmx_set_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
  1941. {
  1942. if (!nested_vmx_allowed(vcpu))
  1943. return 0;
  1944. if (msr_index == MSR_IA32_FEATURE_CONTROL)
  1945. /* TODO: the right thing. */
  1946. return 1;
  1947. /*
  1948. * No need to treat VMX capability MSRs specially: If we don't handle
  1949. * them, handle_wrmsr will #GP(0), which is correct (they are readonly)
  1950. */
  1951. return 0;
  1952. }
  1953. /*
  1954. * Reads an msr value (of 'msr_index') into 'pdata'.
  1955. * Returns 0 on success, non-0 otherwise.
  1956. * Assumes vcpu_load() was already called.
  1957. */
  1958. static int vmx_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
  1959. {
  1960. u64 data;
  1961. struct shared_msr_entry *msr;
  1962. if (!pdata) {
  1963. printk(KERN_ERR "BUG: get_msr called with NULL pdata\n");
  1964. return -EINVAL;
  1965. }
  1966. switch (msr_index) {
  1967. #ifdef CONFIG_X86_64
  1968. case MSR_FS_BASE:
  1969. data = vmcs_readl(GUEST_FS_BASE);
  1970. break;
  1971. case MSR_GS_BASE:
  1972. data = vmcs_readl(GUEST_GS_BASE);
  1973. break;
  1974. case MSR_KERNEL_GS_BASE:
  1975. vmx_load_host_state(to_vmx(vcpu));
  1976. data = to_vmx(vcpu)->msr_guest_kernel_gs_base;
  1977. break;
  1978. #endif
  1979. case MSR_EFER:
  1980. return kvm_get_msr_common(vcpu, msr_index, pdata);
  1981. case MSR_IA32_TSC:
  1982. data = guest_read_tsc();
  1983. break;
  1984. case MSR_IA32_SYSENTER_CS:
  1985. data = vmcs_read32(GUEST_SYSENTER_CS);
  1986. break;
  1987. case MSR_IA32_SYSENTER_EIP:
  1988. data = vmcs_readl(GUEST_SYSENTER_EIP);
  1989. break;
  1990. case MSR_IA32_SYSENTER_ESP:
  1991. data = vmcs_readl(GUEST_SYSENTER_ESP);
  1992. break;
  1993. case MSR_TSC_AUX:
  1994. if (!to_vmx(vcpu)->rdtscp_enabled)
  1995. return 1;
  1996. /* Otherwise falls through */
  1997. default:
  1998. if (vmx_get_vmx_msr(vcpu, msr_index, pdata))
  1999. return 0;
  2000. msr = find_msr_entry(to_vmx(vcpu), msr_index);
  2001. if (msr) {
  2002. data = msr->data;
  2003. break;
  2004. }
  2005. return kvm_get_msr_common(vcpu, msr_index, pdata);
  2006. }
  2007. *pdata = data;
  2008. return 0;
  2009. }
  2010. /*
  2011. * Writes msr value into into the appropriate "register".
  2012. * Returns 0 on success, non-0 otherwise.
  2013. * Assumes vcpu_load() was already called.
  2014. */
  2015. static int vmx_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
  2016. {
  2017. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2018. struct shared_msr_entry *msr;
  2019. int ret = 0;
  2020. u32 msr_index = msr_info->index;
  2021. u64 data = msr_info->data;
  2022. switch (msr_index) {
  2023. case MSR_EFER:
  2024. ret = kvm_set_msr_common(vcpu, msr_info);
  2025. break;
  2026. #ifdef CONFIG_X86_64
  2027. case MSR_FS_BASE:
  2028. vmx_segment_cache_clear(vmx);
  2029. vmcs_writel(GUEST_FS_BASE, data);
  2030. break;
  2031. case MSR_GS_BASE:
  2032. vmx_segment_cache_clear(vmx);
  2033. vmcs_writel(GUEST_GS_BASE, data);
  2034. break;
  2035. case MSR_KERNEL_GS_BASE:
  2036. vmx_load_host_state(vmx);
  2037. vmx->msr_guest_kernel_gs_base = data;
  2038. break;
  2039. #endif
  2040. case MSR_IA32_SYSENTER_CS:
  2041. vmcs_write32(GUEST_SYSENTER_CS, data);
  2042. break;
  2043. case MSR_IA32_SYSENTER_EIP:
  2044. vmcs_writel(GUEST_SYSENTER_EIP, data);
  2045. break;
  2046. case MSR_IA32_SYSENTER_ESP:
  2047. vmcs_writel(GUEST_SYSENTER_ESP, data);
  2048. break;
  2049. case MSR_IA32_TSC:
  2050. kvm_write_tsc(vcpu, msr_info);
  2051. break;
  2052. case MSR_IA32_CR_PAT:
  2053. if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
  2054. vmcs_write64(GUEST_IA32_PAT, data);
  2055. vcpu->arch.pat = data;
  2056. break;
  2057. }
  2058. ret = kvm_set_msr_common(vcpu, msr_info);
  2059. break;
  2060. case MSR_IA32_TSC_ADJUST:
  2061. ret = kvm_set_msr_common(vcpu, msr_info);
  2062. break;
  2063. case MSR_TSC_AUX:
  2064. if (!vmx->rdtscp_enabled)
  2065. return 1;
  2066. /* Check reserved bit, higher 32 bits should be zero */
  2067. if ((data >> 32) != 0)
  2068. return 1;
  2069. /* Otherwise falls through */
  2070. default:
  2071. if (vmx_set_vmx_msr(vcpu, msr_index, data))
  2072. break;
  2073. msr = find_msr_entry(vmx, msr_index);
  2074. if (msr) {
  2075. msr->data = data;
  2076. if (msr - vmx->guest_msrs < vmx->save_nmsrs) {
  2077. preempt_disable();
  2078. kvm_set_shared_msr(msr->index, msr->data,
  2079. msr->mask);
  2080. preempt_enable();
  2081. }
  2082. break;
  2083. }
  2084. ret = kvm_set_msr_common(vcpu, msr_info);
  2085. }
  2086. return ret;
  2087. }
  2088. static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
  2089. {
  2090. __set_bit(reg, (unsigned long *)&vcpu->arch.regs_avail);
  2091. switch (reg) {
  2092. case VCPU_REGS_RSP:
  2093. vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
  2094. break;
  2095. case VCPU_REGS_RIP:
  2096. vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
  2097. break;
  2098. case VCPU_EXREG_PDPTR:
  2099. if (enable_ept)
  2100. ept_save_pdptrs(vcpu);
  2101. break;
  2102. default:
  2103. break;
  2104. }
  2105. }
  2106. static __init int cpu_has_kvm_support(void)
  2107. {
  2108. return cpu_has_vmx();
  2109. }
  2110. static __init int vmx_disabled_by_bios(void)
  2111. {
  2112. u64 msr;
  2113. rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
  2114. if (msr & FEATURE_CONTROL_LOCKED) {
  2115. /* launched w/ TXT and VMX disabled */
  2116. if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
  2117. && tboot_enabled())
  2118. return 1;
  2119. /* launched w/o TXT and VMX only enabled w/ TXT */
  2120. if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
  2121. && (msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
  2122. && !tboot_enabled()) {
  2123. printk(KERN_WARNING "kvm: disable TXT in the BIOS or "
  2124. "activate TXT before enabling KVM\n");
  2125. return 1;
  2126. }
  2127. /* launched w/o TXT and VMX disabled */
  2128. if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
  2129. && !tboot_enabled())
  2130. return 1;
  2131. }
  2132. return 0;
  2133. }
  2134. static void kvm_cpu_vmxon(u64 addr)
  2135. {
  2136. asm volatile (ASM_VMX_VMXON_RAX
  2137. : : "a"(&addr), "m"(addr)
  2138. : "memory", "cc");
  2139. }
  2140. static int hardware_enable(void *garbage)
  2141. {
  2142. int cpu = raw_smp_processor_id();
  2143. u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
  2144. u64 old, test_bits;
  2145. if (read_cr4() & X86_CR4_VMXE)
  2146. return -EBUSY;
  2147. INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu, cpu));
  2148. /*
  2149. * Now we can enable the vmclear operation in kdump
  2150. * since the loaded_vmcss_on_cpu list on this cpu
  2151. * has been initialized.
  2152. *
  2153. * Though the cpu is not in VMX operation now, there
  2154. * is no problem to enable the vmclear operation
  2155. * for the loaded_vmcss_on_cpu list is empty!
  2156. */
  2157. crash_enable_local_vmclear(cpu);
  2158. rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
  2159. test_bits = FEATURE_CONTROL_LOCKED;
  2160. test_bits |= FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
  2161. if (tboot_enabled())
  2162. test_bits |= FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX;
  2163. if ((old & test_bits) != test_bits) {
  2164. /* enable and lock */
  2165. wrmsrl(MSR_IA32_FEATURE_CONTROL, old | test_bits);
  2166. }
  2167. write_cr4(read_cr4() | X86_CR4_VMXE); /* FIXME: not cpu hotplug safe */
  2168. if (vmm_exclusive) {
  2169. kvm_cpu_vmxon(phys_addr);
  2170. ept_sync_global();
  2171. }
  2172. store_gdt(&__get_cpu_var(host_gdt));
  2173. return 0;
  2174. }
  2175. static void vmclear_local_loaded_vmcss(void)
  2176. {
  2177. int cpu = raw_smp_processor_id();
  2178. struct loaded_vmcs *v, *n;
  2179. list_for_each_entry_safe(v, n, &per_cpu(loaded_vmcss_on_cpu, cpu),
  2180. loaded_vmcss_on_cpu_link)
  2181. __loaded_vmcs_clear(v);
  2182. }
  2183. /* Just like cpu_vmxoff(), but with the __kvm_handle_fault_on_reboot()
  2184. * tricks.
  2185. */
  2186. static void kvm_cpu_vmxoff(void)
  2187. {
  2188. asm volatile (__ex(ASM_VMX_VMXOFF) : : : "cc");
  2189. }
  2190. static void hardware_disable(void *garbage)
  2191. {
  2192. if (vmm_exclusive) {
  2193. vmclear_local_loaded_vmcss();
  2194. kvm_cpu_vmxoff();
  2195. }
  2196. write_cr4(read_cr4() & ~X86_CR4_VMXE);
  2197. }
  2198. static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
  2199. u32 msr, u32 *result)
  2200. {
  2201. u32 vmx_msr_low, vmx_msr_high;
  2202. u32 ctl = ctl_min | ctl_opt;
  2203. rdmsr(msr, vmx_msr_low, vmx_msr_high);
  2204. ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
  2205. ctl |= vmx_msr_low; /* bit == 1 in low word ==> must be one */
  2206. /* Ensure minimum (required) set of control bits are supported. */
  2207. if (ctl_min & ~ctl)
  2208. return -EIO;
  2209. *result = ctl;
  2210. return 0;
  2211. }
  2212. static __init bool allow_1_setting(u32 msr, u32 ctl)
  2213. {
  2214. u32 vmx_msr_low, vmx_msr_high;
  2215. rdmsr(msr, vmx_msr_low, vmx_msr_high);
  2216. return vmx_msr_high & ctl;
  2217. }
  2218. static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf)
  2219. {
  2220. u32 vmx_msr_low, vmx_msr_high;
  2221. u32 min, opt, min2, opt2;
  2222. u32 _pin_based_exec_control = 0;
  2223. u32 _cpu_based_exec_control = 0;
  2224. u32 _cpu_based_2nd_exec_control = 0;
  2225. u32 _vmexit_control = 0;
  2226. u32 _vmentry_control = 0;
  2227. min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
  2228. opt = PIN_BASED_VIRTUAL_NMIS;
  2229. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
  2230. &_pin_based_exec_control) < 0)
  2231. return -EIO;
  2232. min = CPU_BASED_HLT_EXITING |
  2233. #ifdef CONFIG_X86_64
  2234. CPU_BASED_CR8_LOAD_EXITING |
  2235. CPU_BASED_CR8_STORE_EXITING |
  2236. #endif
  2237. CPU_BASED_CR3_LOAD_EXITING |
  2238. CPU_BASED_CR3_STORE_EXITING |
  2239. CPU_BASED_USE_IO_BITMAPS |
  2240. CPU_BASED_MOV_DR_EXITING |
  2241. CPU_BASED_USE_TSC_OFFSETING |
  2242. CPU_BASED_MWAIT_EXITING |
  2243. CPU_BASED_MONITOR_EXITING |
  2244. CPU_BASED_INVLPG_EXITING |
  2245. CPU_BASED_RDPMC_EXITING;
  2246. opt = CPU_BASED_TPR_SHADOW |
  2247. CPU_BASED_USE_MSR_BITMAPS |
  2248. CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
  2249. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
  2250. &_cpu_based_exec_control) < 0)
  2251. return -EIO;
  2252. #ifdef CONFIG_X86_64
  2253. if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
  2254. _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
  2255. ~CPU_BASED_CR8_STORE_EXITING;
  2256. #endif
  2257. if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
  2258. min2 = 0;
  2259. opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
  2260. SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
  2261. SECONDARY_EXEC_WBINVD_EXITING |
  2262. SECONDARY_EXEC_ENABLE_VPID |
  2263. SECONDARY_EXEC_ENABLE_EPT |
  2264. SECONDARY_EXEC_UNRESTRICTED_GUEST |
  2265. SECONDARY_EXEC_PAUSE_LOOP_EXITING |
  2266. SECONDARY_EXEC_RDTSCP |
  2267. SECONDARY_EXEC_ENABLE_INVPCID |
  2268. SECONDARY_EXEC_APIC_REGISTER_VIRT |
  2269. SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY;
  2270. if (adjust_vmx_controls(min2, opt2,
  2271. MSR_IA32_VMX_PROCBASED_CTLS2,
  2272. &_cpu_based_2nd_exec_control) < 0)
  2273. return -EIO;
  2274. }
  2275. #ifndef CONFIG_X86_64
  2276. if (!(_cpu_based_2nd_exec_control &
  2277. SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
  2278. _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
  2279. #endif
  2280. if (!(_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
  2281. _cpu_based_2nd_exec_control &= ~(
  2282. SECONDARY_EXEC_APIC_REGISTER_VIRT |
  2283. SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
  2284. SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
  2285. if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) {
  2286. /* CR3 accesses and invlpg don't need to cause VM Exits when EPT
  2287. enabled */
  2288. _cpu_based_exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING |
  2289. CPU_BASED_CR3_STORE_EXITING |
  2290. CPU_BASED_INVLPG_EXITING);
  2291. rdmsr(MSR_IA32_VMX_EPT_VPID_CAP,
  2292. vmx_capability.ept, vmx_capability.vpid);
  2293. }
  2294. min = 0;
  2295. #ifdef CONFIG_X86_64
  2296. min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
  2297. #endif
  2298. opt = VM_EXIT_SAVE_IA32_PAT | VM_EXIT_LOAD_IA32_PAT;
  2299. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
  2300. &_vmexit_control) < 0)
  2301. return -EIO;
  2302. min = 0;
  2303. opt = VM_ENTRY_LOAD_IA32_PAT;
  2304. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
  2305. &_vmentry_control) < 0)
  2306. return -EIO;
  2307. rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
  2308. /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
  2309. if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
  2310. return -EIO;
  2311. #ifdef CONFIG_X86_64
  2312. /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
  2313. if (vmx_msr_high & (1u<<16))
  2314. return -EIO;
  2315. #endif
  2316. /* Require Write-Back (WB) memory type for VMCS accesses. */
  2317. if (((vmx_msr_high >> 18) & 15) != 6)
  2318. return -EIO;
  2319. vmcs_conf->size = vmx_msr_high & 0x1fff;
  2320. vmcs_conf->order = get_order(vmcs_config.size);
  2321. vmcs_conf->revision_id = vmx_msr_low;
  2322. vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
  2323. vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
  2324. vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
  2325. vmcs_conf->vmexit_ctrl = _vmexit_control;
  2326. vmcs_conf->vmentry_ctrl = _vmentry_control;
  2327. cpu_has_load_ia32_efer =
  2328. allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS,
  2329. VM_ENTRY_LOAD_IA32_EFER)
  2330. && allow_1_setting(MSR_IA32_VMX_EXIT_CTLS,
  2331. VM_EXIT_LOAD_IA32_EFER);
  2332. cpu_has_load_perf_global_ctrl =
  2333. allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS,
  2334. VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL)
  2335. && allow_1_setting(MSR_IA32_VMX_EXIT_CTLS,
  2336. VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
  2337. /*
  2338. * Some cpus support VM_ENTRY_(LOAD|SAVE)_IA32_PERF_GLOBAL_CTRL
  2339. * but due to arrata below it can't be used. Workaround is to use
  2340. * msr load mechanism to switch IA32_PERF_GLOBAL_CTRL.
  2341. *
  2342. * VM Exit May Incorrectly Clear IA32_PERF_GLOBAL_CTRL [34:32]
  2343. *
  2344. * AAK155 (model 26)
  2345. * AAP115 (model 30)
  2346. * AAT100 (model 37)
  2347. * BC86,AAY89,BD102 (model 44)
  2348. * BA97 (model 46)
  2349. *
  2350. */
  2351. if (cpu_has_load_perf_global_ctrl && boot_cpu_data.x86 == 0x6) {
  2352. switch (boot_cpu_data.x86_model) {
  2353. case 26:
  2354. case 30:
  2355. case 37:
  2356. case 44:
  2357. case 46:
  2358. cpu_has_load_perf_global_ctrl = false;
  2359. printk_once(KERN_WARNING"kvm: VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL "
  2360. "does not work properly. Using workaround\n");
  2361. break;
  2362. default:
  2363. break;
  2364. }
  2365. }
  2366. return 0;
  2367. }
  2368. static struct vmcs *alloc_vmcs_cpu(int cpu)
  2369. {
  2370. int node = cpu_to_node(cpu);
  2371. struct page *pages;
  2372. struct vmcs *vmcs;
  2373. pages = alloc_pages_exact_node(node, GFP_KERNEL, vmcs_config.order);
  2374. if (!pages)
  2375. return NULL;
  2376. vmcs = page_address(pages);
  2377. memset(vmcs, 0, vmcs_config.size);
  2378. vmcs->revision_id = vmcs_config.revision_id; /* vmcs revision id */
  2379. return vmcs;
  2380. }
  2381. static struct vmcs *alloc_vmcs(void)
  2382. {
  2383. return alloc_vmcs_cpu(raw_smp_processor_id());
  2384. }
  2385. static void free_vmcs(struct vmcs *vmcs)
  2386. {
  2387. free_pages((unsigned long)vmcs, vmcs_config.order);
  2388. }
  2389. /*
  2390. * Free a VMCS, but before that VMCLEAR it on the CPU where it was last loaded
  2391. */
  2392. static void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
  2393. {
  2394. if (!loaded_vmcs->vmcs)
  2395. return;
  2396. loaded_vmcs_clear(loaded_vmcs);
  2397. free_vmcs(loaded_vmcs->vmcs);
  2398. loaded_vmcs->vmcs = NULL;
  2399. }
  2400. static void free_kvm_area(void)
  2401. {
  2402. int cpu;
  2403. for_each_possible_cpu(cpu) {
  2404. free_vmcs(per_cpu(vmxarea, cpu));
  2405. per_cpu(vmxarea, cpu) = NULL;
  2406. }
  2407. }
  2408. static __init int alloc_kvm_area(void)
  2409. {
  2410. int cpu;
  2411. for_each_possible_cpu(cpu) {
  2412. struct vmcs *vmcs;
  2413. vmcs = alloc_vmcs_cpu(cpu);
  2414. if (!vmcs) {
  2415. free_kvm_area();
  2416. return -ENOMEM;
  2417. }
  2418. per_cpu(vmxarea, cpu) = vmcs;
  2419. }
  2420. return 0;
  2421. }
  2422. static __init int hardware_setup(void)
  2423. {
  2424. if (setup_vmcs_config(&vmcs_config) < 0)
  2425. return -EIO;
  2426. if (boot_cpu_has(X86_FEATURE_NX))
  2427. kvm_enable_efer_bits(EFER_NX);
  2428. if (!cpu_has_vmx_vpid())
  2429. enable_vpid = 0;
  2430. if (!cpu_has_vmx_ept() ||
  2431. !cpu_has_vmx_ept_4levels()) {
  2432. enable_ept = 0;
  2433. enable_unrestricted_guest = 0;
  2434. enable_ept_ad_bits = 0;
  2435. }
  2436. if (!cpu_has_vmx_ept_ad_bits())
  2437. enable_ept_ad_bits = 0;
  2438. if (!cpu_has_vmx_unrestricted_guest())
  2439. enable_unrestricted_guest = 0;
  2440. if (!cpu_has_vmx_flexpriority())
  2441. flexpriority_enabled = 0;
  2442. if (!cpu_has_vmx_tpr_shadow())
  2443. kvm_x86_ops->update_cr8_intercept = NULL;
  2444. if (enable_ept && !cpu_has_vmx_ept_2m_page())
  2445. kvm_disable_largepages();
  2446. if (!cpu_has_vmx_ple())
  2447. ple_gap = 0;
  2448. if (!cpu_has_vmx_apic_register_virt() ||
  2449. !cpu_has_vmx_virtual_intr_delivery())
  2450. enable_apicv_reg_vid = 0;
  2451. if (enable_apicv_reg_vid)
  2452. kvm_x86_ops->update_cr8_intercept = NULL;
  2453. else
  2454. kvm_x86_ops->hwapic_irr_update = NULL;
  2455. if (nested)
  2456. nested_vmx_setup_ctls_msrs();
  2457. return alloc_kvm_area();
  2458. }
  2459. static __exit void hardware_unsetup(void)
  2460. {
  2461. free_kvm_area();
  2462. }
  2463. static bool emulation_required(struct kvm_vcpu *vcpu)
  2464. {
  2465. return emulate_invalid_guest_state && !guest_state_valid(vcpu);
  2466. }
  2467. static void fix_pmode_seg(struct kvm_vcpu *vcpu, int seg,
  2468. struct kvm_segment *save)
  2469. {
  2470. if (!emulate_invalid_guest_state) {
  2471. /*
  2472. * CS and SS RPL should be equal during guest entry according
  2473. * to VMX spec, but in reality it is not always so. Since vcpu
  2474. * is in the middle of the transition from real mode to
  2475. * protected mode it is safe to assume that RPL 0 is a good
  2476. * default value.
  2477. */
  2478. if (seg == VCPU_SREG_CS || seg == VCPU_SREG_SS)
  2479. save->selector &= ~SELECTOR_RPL_MASK;
  2480. save->dpl = save->selector & SELECTOR_RPL_MASK;
  2481. save->s = 1;
  2482. }
  2483. vmx_set_segment(vcpu, save, seg);
  2484. }
  2485. static void enter_pmode(struct kvm_vcpu *vcpu)
  2486. {
  2487. unsigned long flags;
  2488. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2489. /*
  2490. * Update real mode segment cache. It may be not up-to-date if sement
  2491. * register was written while vcpu was in a guest mode.
  2492. */
  2493. vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
  2494. vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
  2495. vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
  2496. vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
  2497. vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
  2498. vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
  2499. vmx->rmode.vm86_active = 0;
  2500. vmx_segment_cache_clear(vmx);
  2501. vmx_set_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
  2502. flags = vmcs_readl(GUEST_RFLAGS);
  2503. flags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
  2504. flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
  2505. vmcs_writel(GUEST_RFLAGS, flags);
  2506. vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
  2507. (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
  2508. update_exception_bitmap(vcpu);
  2509. fix_pmode_seg(vcpu, VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
  2510. fix_pmode_seg(vcpu, VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
  2511. fix_pmode_seg(vcpu, VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
  2512. fix_pmode_seg(vcpu, VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
  2513. fix_pmode_seg(vcpu, VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
  2514. fix_pmode_seg(vcpu, VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
  2515. /* CPL is always 0 when CPU enters protected mode */
  2516. __set_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail);
  2517. vmx->cpl = 0;
  2518. }
  2519. static gva_t rmode_tss_base(struct kvm *kvm)
  2520. {
  2521. if (!kvm->arch.tss_addr) {
  2522. struct kvm_memslots *slots;
  2523. struct kvm_memory_slot *slot;
  2524. gfn_t base_gfn;
  2525. slots = kvm_memslots(kvm);
  2526. slot = id_to_memslot(slots, 0);
  2527. base_gfn = slot->base_gfn + slot->npages - 3;
  2528. return base_gfn << PAGE_SHIFT;
  2529. }
  2530. return kvm->arch.tss_addr;
  2531. }
  2532. static void fix_rmode_seg(int seg, struct kvm_segment *save)
  2533. {
  2534. const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  2535. struct kvm_segment var = *save;
  2536. var.dpl = 0x3;
  2537. if (seg == VCPU_SREG_CS)
  2538. var.type = 0x3;
  2539. if (!emulate_invalid_guest_state) {
  2540. var.selector = var.base >> 4;
  2541. var.base = var.base & 0xffff0;
  2542. var.limit = 0xffff;
  2543. var.g = 0;
  2544. var.db = 0;
  2545. var.present = 1;
  2546. var.s = 1;
  2547. var.l = 0;
  2548. var.unusable = 0;
  2549. var.type = 0x3;
  2550. var.avl = 0;
  2551. if (save->base & 0xf)
  2552. printk_once(KERN_WARNING "kvm: segment base is not "
  2553. "paragraph aligned when entering "
  2554. "protected mode (seg=%d)", seg);
  2555. }
  2556. vmcs_write16(sf->selector, var.selector);
  2557. vmcs_write32(sf->base, var.base);
  2558. vmcs_write32(sf->limit, var.limit);
  2559. vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(&var));
  2560. }
  2561. static void enter_rmode(struct kvm_vcpu *vcpu)
  2562. {
  2563. unsigned long flags;
  2564. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2565. vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
  2566. vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
  2567. vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
  2568. vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
  2569. vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
  2570. vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
  2571. vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
  2572. vmx->rmode.vm86_active = 1;
  2573. /*
  2574. * Very old userspace does not call KVM_SET_TSS_ADDR before entering
  2575. * vcpu. Call it here with phys address pointing 16M below 4G.
  2576. */
  2577. if (!vcpu->kvm->arch.tss_addr) {
  2578. printk_once(KERN_WARNING "kvm: KVM_SET_TSS_ADDR need to be "
  2579. "called before entering vcpu\n");
  2580. srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
  2581. vmx_set_tss_addr(vcpu->kvm, 0xfeffd000);
  2582. vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
  2583. }
  2584. vmx_segment_cache_clear(vmx);
  2585. vmcs_writel(GUEST_TR_BASE, rmode_tss_base(vcpu->kvm));
  2586. vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
  2587. vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
  2588. flags = vmcs_readl(GUEST_RFLAGS);
  2589. vmx->rmode.save_rflags = flags;
  2590. flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
  2591. vmcs_writel(GUEST_RFLAGS, flags);
  2592. vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
  2593. update_exception_bitmap(vcpu);
  2594. fix_rmode_seg(VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
  2595. fix_rmode_seg(VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
  2596. fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
  2597. fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
  2598. fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
  2599. fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
  2600. kvm_mmu_reset_context(vcpu);
  2601. }
  2602. static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
  2603. {
  2604. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2605. struct shared_msr_entry *msr = find_msr_entry(vmx, MSR_EFER);
  2606. if (!msr)
  2607. return;
  2608. /*
  2609. * Force kernel_gs_base reloading before EFER changes, as control
  2610. * of this msr depends on is_long_mode().
  2611. */
  2612. vmx_load_host_state(to_vmx(vcpu));
  2613. vcpu->arch.efer = efer;
  2614. if (efer & EFER_LMA) {
  2615. vmcs_write32(VM_ENTRY_CONTROLS,
  2616. vmcs_read32(VM_ENTRY_CONTROLS) |
  2617. VM_ENTRY_IA32E_MODE);
  2618. msr->data = efer;
  2619. } else {
  2620. vmcs_write32(VM_ENTRY_CONTROLS,
  2621. vmcs_read32(VM_ENTRY_CONTROLS) &
  2622. ~VM_ENTRY_IA32E_MODE);
  2623. msr->data = efer & ~EFER_LME;
  2624. }
  2625. setup_msrs(vmx);
  2626. }
  2627. #ifdef CONFIG_X86_64
  2628. static void enter_lmode(struct kvm_vcpu *vcpu)
  2629. {
  2630. u32 guest_tr_ar;
  2631. vmx_segment_cache_clear(to_vmx(vcpu));
  2632. guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
  2633. if ((guest_tr_ar & AR_TYPE_MASK) != AR_TYPE_BUSY_64_TSS) {
  2634. pr_debug_ratelimited("%s: tss fixup for long mode. \n",
  2635. __func__);
  2636. vmcs_write32(GUEST_TR_AR_BYTES,
  2637. (guest_tr_ar & ~AR_TYPE_MASK)
  2638. | AR_TYPE_BUSY_64_TSS);
  2639. }
  2640. vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA);
  2641. }
  2642. static void exit_lmode(struct kvm_vcpu *vcpu)
  2643. {
  2644. vmcs_write32(VM_ENTRY_CONTROLS,
  2645. vmcs_read32(VM_ENTRY_CONTROLS)
  2646. & ~VM_ENTRY_IA32E_MODE);
  2647. vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA);
  2648. }
  2649. #endif
  2650. static void vmx_flush_tlb(struct kvm_vcpu *vcpu)
  2651. {
  2652. vpid_sync_context(to_vmx(vcpu));
  2653. if (enable_ept) {
  2654. if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
  2655. return;
  2656. ept_sync_context(construct_eptp(vcpu->arch.mmu.root_hpa));
  2657. }
  2658. }
  2659. static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
  2660. {
  2661. ulong cr0_guest_owned_bits = vcpu->arch.cr0_guest_owned_bits;
  2662. vcpu->arch.cr0 &= ~cr0_guest_owned_bits;
  2663. vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & cr0_guest_owned_bits;
  2664. }
  2665. static void vmx_decache_cr3(struct kvm_vcpu *vcpu)
  2666. {
  2667. if (enable_ept && is_paging(vcpu))
  2668. vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
  2669. __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
  2670. }
  2671. static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
  2672. {
  2673. ulong cr4_guest_owned_bits = vcpu->arch.cr4_guest_owned_bits;
  2674. vcpu->arch.cr4 &= ~cr4_guest_owned_bits;
  2675. vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & cr4_guest_owned_bits;
  2676. }
  2677. static void ept_load_pdptrs(struct kvm_vcpu *vcpu)
  2678. {
  2679. if (!test_bit(VCPU_EXREG_PDPTR,
  2680. (unsigned long *)&vcpu->arch.regs_dirty))
  2681. return;
  2682. if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
  2683. vmcs_write64(GUEST_PDPTR0, vcpu->arch.mmu.pdptrs[0]);
  2684. vmcs_write64(GUEST_PDPTR1, vcpu->arch.mmu.pdptrs[1]);
  2685. vmcs_write64(GUEST_PDPTR2, vcpu->arch.mmu.pdptrs[2]);
  2686. vmcs_write64(GUEST_PDPTR3, vcpu->arch.mmu.pdptrs[3]);
  2687. }
  2688. }
  2689. static void ept_save_pdptrs(struct kvm_vcpu *vcpu)
  2690. {
  2691. if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
  2692. vcpu->arch.mmu.pdptrs[0] = vmcs_read64(GUEST_PDPTR0);
  2693. vcpu->arch.mmu.pdptrs[1] = vmcs_read64(GUEST_PDPTR1);
  2694. vcpu->arch.mmu.pdptrs[2] = vmcs_read64(GUEST_PDPTR2);
  2695. vcpu->arch.mmu.pdptrs[3] = vmcs_read64(GUEST_PDPTR3);
  2696. }
  2697. __set_bit(VCPU_EXREG_PDPTR,
  2698. (unsigned long *)&vcpu->arch.regs_avail);
  2699. __set_bit(VCPU_EXREG_PDPTR,
  2700. (unsigned long *)&vcpu->arch.regs_dirty);
  2701. }
  2702. static int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
  2703. static void ept_update_paging_mode_cr0(unsigned long *hw_cr0,
  2704. unsigned long cr0,
  2705. struct kvm_vcpu *vcpu)
  2706. {
  2707. if (!test_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail))
  2708. vmx_decache_cr3(vcpu);
  2709. if (!(cr0 & X86_CR0_PG)) {
  2710. /* From paging/starting to nonpaging */
  2711. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
  2712. vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) |
  2713. (CPU_BASED_CR3_LOAD_EXITING |
  2714. CPU_BASED_CR3_STORE_EXITING));
  2715. vcpu->arch.cr0 = cr0;
  2716. vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
  2717. } else if (!is_paging(vcpu)) {
  2718. /* From nonpaging to paging */
  2719. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
  2720. vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) &
  2721. ~(CPU_BASED_CR3_LOAD_EXITING |
  2722. CPU_BASED_CR3_STORE_EXITING));
  2723. vcpu->arch.cr0 = cr0;
  2724. vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
  2725. }
  2726. if (!(cr0 & X86_CR0_WP))
  2727. *hw_cr0 &= ~X86_CR0_WP;
  2728. }
  2729. static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
  2730. {
  2731. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2732. unsigned long hw_cr0;
  2733. hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK);
  2734. if (enable_unrestricted_guest)
  2735. hw_cr0 |= KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST;
  2736. else {
  2737. hw_cr0 |= KVM_VM_CR0_ALWAYS_ON;
  2738. if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE))
  2739. enter_pmode(vcpu);
  2740. if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE))
  2741. enter_rmode(vcpu);
  2742. }
  2743. #ifdef CONFIG_X86_64
  2744. if (vcpu->arch.efer & EFER_LME) {
  2745. if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
  2746. enter_lmode(vcpu);
  2747. if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
  2748. exit_lmode(vcpu);
  2749. }
  2750. #endif
  2751. if (enable_ept)
  2752. ept_update_paging_mode_cr0(&hw_cr0, cr0, vcpu);
  2753. if (!vcpu->fpu_active)
  2754. hw_cr0 |= X86_CR0_TS | X86_CR0_MP;
  2755. vmcs_writel(CR0_READ_SHADOW, cr0);
  2756. vmcs_writel(GUEST_CR0, hw_cr0);
  2757. vcpu->arch.cr0 = cr0;
  2758. /* depends on vcpu->arch.cr0 to be set to a new value */
  2759. vmx->emulation_required = emulation_required(vcpu);
  2760. }
  2761. static u64 construct_eptp(unsigned long root_hpa)
  2762. {
  2763. u64 eptp;
  2764. /* TODO write the value reading from MSR */
  2765. eptp = VMX_EPT_DEFAULT_MT |
  2766. VMX_EPT_DEFAULT_GAW << VMX_EPT_GAW_EPTP_SHIFT;
  2767. if (enable_ept_ad_bits)
  2768. eptp |= VMX_EPT_AD_ENABLE_BIT;
  2769. eptp |= (root_hpa & PAGE_MASK);
  2770. return eptp;
  2771. }
  2772. static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
  2773. {
  2774. unsigned long guest_cr3;
  2775. u64 eptp;
  2776. guest_cr3 = cr3;
  2777. if (enable_ept) {
  2778. eptp = construct_eptp(cr3);
  2779. vmcs_write64(EPT_POINTER, eptp);
  2780. guest_cr3 = is_paging(vcpu) ? kvm_read_cr3(vcpu) :
  2781. vcpu->kvm->arch.ept_identity_map_addr;
  2782. ept_load_pdptrs(vcpu);
  2783. }
  2784. vmx_flush_tlb(vcpu);
  2785. vmcs_writel(GUEST_CR3, guest_cr3);
  2786. }
  2787. static int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
  2788. {
  2789. unsigned long hw_cr4 = cr4 | (to_vmx(vcpu)->rmode.vm86_active ?
  2790. KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON);
  2791. if (cr4 & X86_CR4_VMXE) {
  2792. /*
  2793. * To use VMXON (and later other VMX instructions), a guest
  2794. * must first be able to turn on cr4.VMXE (see handle_vmon()).
  2795. * So basically the check on whether to allow nested VMX
  2796. * is here.
  2797. */
  2798. if (!nested_vmx_allowed(vcpu))
  2799. return 1;
  2800. } else if (to_vmx(vcpu)->nested.vmxon)
  2801. return 1;
  2802. vcpu->arch.cr4 = cr4;
  2803. if (enable_ept) {
  2804. if (!is_paging(vcpu)) {
  2805. hw_cr4 &= ~X86_CR4_PAE;
  2806. hw_cr4 |= X86_CR4_PSE;
  2807. /*
  2808. * SMEP is disabled if CPU is in non-paging mode in
  2809. * hardware. However KVM always uses paging mode to
  2810. * emulate guest non-paging mode with TDP.
  2811. * To emulate this behavior, SMEP needs to be manually
  2812. * disabled when guest switches to non-paging mode.
  2813. */
  2814. hw_cr4 &= ~X86_CR4_SMEP;
  2815. } else if (!(cr4 & X86_CR4_PAE)) {
  2816. hw_cr4 &= ~X86_CR4_PAE;
  2817. }
  2818. }
  2819. vmcs_writel(CR4_READ_SHADOW, cr4);
  2820. vmcs_writel(GUEST_CR4, hw_cr4);
  2821. return 0;
  2822. }
  2823. static void vmx_get_segment(struct kvm_vcpu *vcpu,
  2824. struct kvm_segment *var, int seg)
  2825. {
  2826. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2827. u32 ar;
  2828. if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
  2829. *var = vmx->rmode.segs[seg];
  2830. if (seg == VCPU_SREG_TR
  2831. || var->selector == vmx_read_guest_seg_selector(vmx, seg))
  2832. return;
  2833. var->base = vmx_read_guest_seg_base(vmx, seg);
  2834. var->selector = vmx_read_guest_seg_selector(vmx, seg);
  2835. return;
  2836. }
  2837. var->base = vmx_read_guest_seg_base(vmx, seg);
  2838. var->limit = vmx_read_guest_seg_limit(vmx, seg);
  2839. var->selector = vmx_read_guest_seg_selector(vmx, seg);
  2840. ar = vmx_read_guest_seg_ar(vmx, seg);
  2841. var->type = ar & 15;
  2842. var->s = (ar >> 4) & 1;
  2843. var->dpl = (ar >> 5) & 3;
  2844. var->present = (ar >> 7) & 1;
  2845. var->avl = (ar >> 12) & 1;
  2846. var->l = (ar >> 13) & 1;
  2847. var->db = (ar >> 14) & 1;
  2848. var->g = (ar >> 15) & 1;
  2849. var->unusable = (ar >> 16) & 1;
  2850. }
  2851. static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
  2852. {
  2853. struct kvm_segment s;
  2854. if (to_vmx(vcpu)->rmode.vm86_active) {
  2855. vmx_get_segment(vcpu, &s, seg);
  2856. return s.base;
  2857. }
  2858. return vmx_read_guest_seg_base(to_vmx(vcpu), seg);
  2859. }
  2860. static int vmx_get_cpl(struct kvm_vcpu *vcpu)
  2861. {
  2862. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2863. if (!is_protmode(vcpu))
  2864. return 0;
  2865. if (!is_long_mode(vcpu)
  2866. && (kvm_get_rflags(vcpu) & X86_EFLAGS_VM)) /* if virtual 8086 */
  2867. return 3;
  2868. if (!test_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail)) {
  2869. __set_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail);
  2870. vmx->cpl = vmx_read_guest_seg_selector(vmx, VCPU_SREG_CS) & 3;
  2871. }
  2872. return vmx->cpl;
  2873. }
  2874. static u32 vmx_segment_access_rights(struct kvm_segment *var)
  2875. {
  2876. u32 ar;
  2877. if (var->unusable || !var->present)
  2878. ar = 1 << 16;
  2879. else {
  2880. ar = var->type & 15;
  2881. ar |= (var->s & 1) << 4;
  2882. ar |= (var->dpl & 3) << 5;
  2883. ar |= (var->present & 1) << 7;
  2884. ar |= (var->avl & 1) << 12;
  2885. ar |= (var->l & 1) << 13;
  2886. ar |= (var->db & 1) << 14;
  2887. ar |= (var->g & 1) << 15;
  2888. }
  2889. return ar;
  2890. }
  2891. static void vmx_set_segment(struct kvm_vcpu *vcpu,
  2892. struct kvm_segment *var, int seg)
  2893. {
  2894. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2895. const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  2896. vmx_segment_cache_clear(vmx);
  2897. if (seg == VCPU_SREG_CS)
  2898. __clear_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail);
  2899. if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
  2900. vmx->rmode.segs[seg] = *var;
  2901. if (seg == VCPU_SREG_TR)
  2902. vmcs_write16(sf->selector, var->selector);
  2903. else if (var->s)
  2904. fix_rmode_seg(seg, &vmx->rmode.segs[seg]);
  2905. goto out;
  2906. }
  2907. vmcs_writel(sf->base, var->base);
  2908. vmcs_write32(sf->limit, var->limit);
  2909. vmcs_write16(sf->selector, var->selector);
  2910. /*
  2911. * Fix the "Accessed" bit in AR field of segment registers for older
  2912. * qemu binaries.
  2913. * IA32 arch specifies that at the time of processor reset the
  2914. * "Accessed" bit in the AR field of segment registers is 1. And qemu
  2915. * is setting it to 0 in the userland code. This causes invalid guest
  2916. * state vmexit when "unrestricted guest" mode is turned on.
  2917. * Fix for this setup issue in cpu_reset is being pushed in the qemu
  2918. * tree. Newer qemu binaries with that qemu fix would not need this
  2919. * kvm hack.
  2920. */
  2921. if (enable_unrestricted_guest && (seg != VCPU_SREG_LDTR))
  2922. var->type |= 0x1; /* Accessed */
  2923. vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(var));
  2924. out:
  2925. vmx->emulation_required |= emulation_required(vcpu);
  2926. }
  2927. static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
  2928. {
  2929. u32 ar = vmx_read_guest_seg_ar(to_vmx(vcpu), VCPU_SREG_CS);
  2930. *db = (ar >> 14) & 1;
  2931. *l = (ar >> 13) & 1;
  2932. }
  2933. static void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
  2934. {
  2935. dt->size = vmcs_read32(GUEST_IDTR_LIMIT);
  2936. dt->address = vmcs_readl(GUEST_IDTR_BASE);
  2937. }
  2938. static void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
  2939. {
  2940. vmcs_write32(GUEST_IDTR_LIMIT, dt->size);
  2941. vmcs_writel(GUEST_IDTR_BASE, dt->address);
  2942. }
  2943. static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
  2944. {
  2945. dt->size = vmcs_read32(GUEST_GDTR_LIMIT);
  2946. dt->address = vmcs_readl(GUEST_GDTR_BASE);
  2947. }
  2948. static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
  2949. {
  2950. vmcs_write32(GUEST_GDTR_LIMIT, dt->size);
  2951. vmcs_writel(GUEST_GDTR_BASE, dt->address);
  2952. }
  2953. static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
  2954. {
  2955. struct kvm_segment var;
  2956. u32 ar;
  2957. vmx_get_segment(vcpu, &var, seg);
  2958. var.dpl = 0x3;
  2959. if (seg == VCPU_SREG_CS)
  2960. var.type = 0x3;
  2961. ar = vmx_segment_access_rights(&var);
  2962. if (var.base != (var.selector << 4))
  2963. return false;
  2964. if (var.limit != 0xffff)
  2965. return false;
  2966. if (ar != 0xf3)
  2967. return false;
  2968. return true;
  2969. }
  2970. static bool code_segment_valid(struct kvm_vcpu *vcpu)
  2971. {
  2972. struct kvm_segment cs;
  2973. unsigned int cs_rpl;
  2974. vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
  2975. cs_rpl = cs.selector & SELECTOR_RPL_MASK;
  2976. if (cs.unusable)
  2977. return false;
  2978. if (~cs.type & (AR_TYPE_CODE_MASK|AR_TYPE_ACCESSES_MASK))
  2979. return false;
  2980. if (!cs.s)
  2981. return false;
  2982. if (cs.type & AR_TYPE_WRITEABLE_MASK) {
  2983. if (cs.dpl > cs_rpl)
  2984. return false;
  2985. } else {
  2986. if (cs.dpl != cs_rpl)
  2987. return false;
  2988. }
  2989. if (!cs.present)
  2990. return false;
  2991. /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
  2992. return true;
  2993. }
  2994. static bool stack_segment_valid(struct kvm_vcpu *vcpu)
  2995. {
  2996. struct kvm_segment ss;
  2997. unsigned int ss_rpl;
  2998. vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
  2999. ss_rpl = ss.selector & SELECTOR_RPL_MASK;
  3000. if (ss.unusable)
  3001. return true;
  3002. if (ss.type != 3 && ss.type != 7)
  3003. return false;
  3004. if (!ss.s)
  3005. return false;
  3006. if (ss.dpl != ss_rpl) /* DPL != RPL */
  3007. return false;
  3008. if (!ss.present)
  3009. return false;
  3010. return true;
  3011. }
  3012. static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
  3013. {
  3014. struct kvm_segment var;
  3015. unsigned int rpl;
  3016. vmx_get_segment(vcpu, &var, seg);
  3017. rpl = var.selector & SELECTOR_RPL_MASK;
  3018. if (var.unusable)
  3019. return true;
  3020. if (!var.s)
  3021. return false;
  3022. if (!var.present)
  3023. return false;
  3024. if (~var.type & (AR_TYPE_CODE_MASK|AR_TYPE_WRITEABLE_MASK)) {
  3025. if (var.dpl < rpl) /* DPL < RPL */
  3026. return false;
  3027. }
  3028. /* TODO: Add other members to kvm_segment_field to allow checking for other access
  3029. * rights flags
  3030. */
  3031. return true;
  3032. }
  3033. static bool tr_valid(struct kvm_vcpu *vcpu)
  3034. {
  3035. struct kvm_segment tr;
  3036. vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
  3037. if (tr.unusable)
  3038. return false;
  3039. if (tr.selector & SELECTOR_TI_MASK) /* TI = 1 */
  3040. return false;
  3041. if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
  3042. return false;
  3043. if (!tr.present)
  3044. return false;
  3045. return true;
  3046. }
  3047. static bool ldtr_valid(struct kvm_vcpu *vcpu)
  3048. {
  3049. struct kvm_segment ldtr;
  3050. vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
  3051. if (ldtr.unusable)
  3052. return true;
  3053. if (ldtr.selector & SELECTOR_TI_MASK) /* TI = 1 */
  3054. return false;
  3055. if (ldtr.type != 2)
  3056. return false;
  3057. if (!ldtr.present)
  3058. return false;
  3059. return true;
  3060. }
  3061. static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
  3062. {
  3063. struct kvm_segment cs, ss;
  3064. vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
  3065. vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
  3066. return ((cs.selector & SELECTOR_RPL_MASK) ==
  3067. (ss.selector & SELECTOR_RPL_MASK));
  3068. }
  3069. /*
  3070. * Check if guest state is valid. Returns true if valid, false if
  3071. * not.
  3072. * We assume that registers are always usable
  3073. */
  3074. static bool guest_state_valid(struct kvm_vcpu *vcpu)
  3075. {
  3076. if (enable_unrestricted_guest)
  3077. return true;
  3078. /* real mode guest state checks */
  3079. if (!is_protmode(vcpu)) {
  3080. if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
  3081. return false;
  3082. if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
  3083. return false;
  3084. if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
  3085. return false;
  3086. if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
  3087. return false;
  3088. if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
  3089. return false;
  3090. if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
  3091. return false;
  3092. } else {
  3093. /* protected mode guest state checks */
  3094. if (!cs_ss_rpl_check(vcpu))
  3095. return false;
  3096. if (!code_segment_valid(vcpu))
  3097. return false;
  3098. if (!stack_segment_valid(vcpu))
  3099. return false;
  3100. if (!data_segment_valid(vcpu, VCPU_SREG_DS))
  3101. return false;
  3102. if (!data_segment_valid(vcpu, VCPU_SREG_ES))
  3103. return false;
  3104. if (!data_segment_valid(vcpu, VCPU_SREG_FS))
  3105. return false;
  3106. if (!data_segment_valid(vcpu, VCPU_SREG_GS))
  3107. return false;
  3108. if (!tr_valid(vcpu))
  3109. return false;
  3110. if (!ldtr_valid(vcpu))
  3111. return false;
  3112. }
  3113. /* TODO:
  3114. * - Add checks on RIP
  3115. * - Add checks on RFLAGS
  3116. */
  3117. return true;
  3118. }
  3119. static int init_rmode_tss(struct kvm *kvm)
  3120. {
  3121. gfn_t fn;
  3122. u16 data = 0;
  3123. int r, idx, ret = 0;
  3124. idx = srcu_read_lock(&kvm->srcu);
  3125. fn = rmode_tss_base(kvm) >> PAGE_SHIFT;
  3126. r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
  3127. if (r < 0)
  3128. goto out;
  3129. data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
  3130. r = kvm_write_guest_page(kvm, fn++, &data,
  3131. TSS_IOPB_BASE_OFFSET, sizeof(u16));
  3132. if (r < 0)
  3133. goto out;
  3134. r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE);
  3135. if (r < 0)
  3136. goto out;
  3137. r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
  3138. if (r < 0)
  3139. goto out;
  3140. data = ~0;
  3141. r = kvm_write_guest_page(kvm, fn, &data,
  3142. RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1,
  3143. sizeof(u8));
  3144. if (r < 0)
  3145. goto out;
  3146. ret = 1;
  3147. out:
  3148. srcu_read_unlock(&kvm->srcu, idx);
  3149. return ret;
  3150. }
  3151. static int init_rmode_identity_map(struct kvm *kvm)
  3152. {
  3153. int i, idx, r, ret;
  3154. pfn_t identity_map_pfn;
  3155. u32 tmp;
  3156. if (!enable_ept)
  3157. return 1;
  3158. if (unlikely(!kvm->arch.ept_identity_pagetable)) {
  3159. printk(KERN_ERR "EPT: identity-mapping pagetable "
  3160. "haven't been allocated!\n");
  3161. return 0;
  3162. }
  3163. if (likely(kvm->arch.ept_identity_pagetable_done))
  3164. return 1;
  3165. ret = 0;
  3166. identity_map_pfn = kvm->arch.ept_identity_map_addr >> PAGE_SHIFT;
  3167. idx = srcu_read_lock(&kvm->srcu);
  3168. r = kvm_clear_guest_page(kvm, identity_map_pfn, 0, PAGE_SIZE);
  3169. if (r < 0)
  3170. goto out;
  3171. /* Set up identity-mapping pagetable for EPT in real mode */
  3172. for (i = 0; i < PT32_ENT_PER_PAGE; i++) {
  3173. tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
  3174. _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
  3175. r = kvm_write_guest_page(kvm, identity_map_pfn,
  3176. &tmp, i * sizeof(tmp), sizeof(tmp));
  3177. if (r < 0)
  3178. goto out;
  3179. }
  3180. kvm->arch.ept_identity_pagetable_done = true;
  3181. ret = 1;
  3182. out:
  3183. srcu_read_unlock(&kvm->srcu, idx);
  3184. return ret;
  3185. }
  3186. static void seg_setup(int seg)
  3187. {
  3188. const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  3189. unsigned int ar;
  3190. vmcs_write16(sf->selector, 0);
  3191. vmcs_writel(sf->base, 0);
  3192. vmcs_write32(sf->limit, 0xffff);
  3193. ar = 0x93;
  3194. if (seg == VCPU_SREG_CS)
  3195. ar |= 0x08; /* code segment */
  3196. vmcs_write32(sf->ar_bytes, ar);
  3197. }
  3198. static int alloc_apic_access_page(struct kvm *kvm)
  3199. {
  3200. struct page *page;
  3201. struct kvm_userspace_memory_region kvm_userspace_mem;
  3202. int r = 0;
  3203. mutex_lock(&kvm->slots_lock);
  3204. if (kvm->arch.apic_access_page)
  3205. goto out;
  3206. kvm_userspace_mem.slot = APIC_ACCESS_PAGE_PRIVATE_MEMSLOT;
  3207. kvm_userspace_mem.flags = 0;
  3208. kvm_userspace_mem.guest_phys_addr = 0xfee00000ULL;
  3209. kvm_userspace_mem.memory_size = PAGE_SIZE;
  3210. r = __kvm_set_memory_region(kvm, &kvm_userspace_mem);
  3211. if (r)
  3212. goto out;
  3213. page = gfn_to_page(kvm, 0xfee00);
  3214. if (is_error_page(page)) {
  3215. r = -EFAULT;
  3216. goto out;
  3217. }
  3218. kvm->arch.apic_access_page = page;
  3219. out:
  3220. mutex_unlock(&kvm->slots_lock);
  3221. return r;
  3222. }
  3223. static int alloc_identity_pagetable(struct kvm *kvm)
  3224. {
  3225. struct page *page;
  3226. struct kvm_userspace_memory_region kvm_userspace_mem;
  3227. int r = 0;
  3228. mutex_lock(&kvm->slots_lock);
  3229. if (kvm->arch.ept_identity_pagetable)
  3230. goto out;
  3231. kvm_userspace_mem.slot = IDENTITY_PAGETABLE_PRIVATE_MEMSLOT;
  3232. kvm_userspace_mem.flags = 0;
  3233. kvm_userspace_mem.guest_phys_addr =
  3234. kvm->arch.ept_identity_map_addr;
  3235. kvm_userspace_mem.memory_size = PAGE_SIZE;
  3236. r = __kvm_set_memory_region(kvm, &kvm_userspace_mem);
  3237. if (r)
  3238. goto out;
  3239. page = gfn_to_page(kvm, kvm->arch.ept_identity_map_addr >> PAGE_SHIFT);
  3240. if (is_error_page(page)) {
  3241. r = -EFAULT;
  3242. goto out;
  3243. }
  3244. kvm->arch.ept_identity_pagetable = page;
  3245. out:
  3246. mutex_unlock(&kvm->slots_lock);
  3247. return r;
  3248. }
  3249. static void allocate_vpid(struct vcpu_vmx *vmx)
  3250. {
  3251. int vpid;
  3252. vmx->vpid = 0;
  3253. if (!enable_vpid)
  3254. return;
  3255. spin_lock(&vmx_vpid_lock);
  3256. vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
  3257. if (vpid < VMX_NR_VPIDS) {
  3258. vmx->vpid = vpid;
  3259. __set_bit(vpid, vmx_vpid_bitmap);
  3260. }
  3261. spin_unlock(&vmx_vpid_lock);
  3262. }
  3263. static void free_vpid(struct vcpu_vmx *vmx)
  3264. {
  3265. if (!enable_vpid)
  3266. return;
  3267. spin_lock(&vmx_vpid_lock);
  3268. if (vmx->vpid != 0)
  3269. __clear_bit(vmx->vpid, vmx_vpid_bitmap);
  3270. spin_unlock(&vmx_vpid_lock);
  3271. }
  3272. #define MSR_TYPE_R 1
  3273. #define MSR_TYPE_W 2
  3274. static void __vmx_disable_intercept_for_msr(unsigned long *msr_bitmap,
  3275. u32 msr, int type)
  3276. {
  3277. int f = sizeof(unsigned long);
  3278. if (!cpu_has_vmx_msr_bitmap())
  3279. return;
  3280. /*
  3281. * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
  3282. * have the write-low and read-high bitmap offsets the wrong way round.
  3283. * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
  3284. */
  3285. if (msr <= 0x1fff) {
  3286. if (type & MSR_TYPE_R)
  3287. /* read-low */
  3288. __clear_bit(msr, msr_bitmap + 0x000 / f);
  3289. if (type & MSR_TYPE_W)
  3290. /* write-low */
  3291. __clear_bit(msr, msr_bitmap + 0x800 / f);
  3292. } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
  3293. msr &= 0x1fff;
  3294. if (type & MSR_TYPE_R)
  3295. /* read-high */
  3296. __clear_bit(msr, msr_bitmap + 0x400 / f);
  3297. if (type & MSR_TYPE_W)
  3298. /* write-high */
  3299. __clear_bit(msr, msr_bitmap + 0xc00 / f);
  3300. }
  3301. }
  3302. static void __vmx_enable_intercept_for_msr(unsigned long *msr_bitmap,
  3303. u32 msr, int type)
  3304. {
  3305. int f = sizeof(unsigned long);
  3306. if (!cpu_has_vmx_msr_bitmap())
  3307. return;
  3308. /*
  3309. * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
  3310. * have the write-low and read-high bitmap offsets the wrong way round.
  3311. * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
  3312. */
  3313. if (msr <= 0x1fff) {
  3314. if (type & MSR_TYPE_R)
  3315. /* read-low */
  3316. __set_bit(msr, msr_bitmap + 0x000 / f);
  3317. if (type & MSR_TYPE_W)
  3318. /* write-low */
  3319. __set_bit(msr, msr_bitmap + 0x800 / f);
  3320. } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
  3321. msr &= 0x1fff;
  3322. if (type & MSR_TYPE_R)
  3323. /* read-high */
  3324. __set_bit(msr, msr_bitmap + 0x400 / f);
  3325. if (type & MSR_TYPE_W)
  3326. /* write-high */
  3327. __set_bit(msr, msr_bitmap + 0xc00 / f);
  3328. }
  3329. }
  3330. static void vmx_disable_intercept_for_msr(u32 msr, bool longmode_only)
  3331. {
  3332. if (!longmode_only)
  3333. __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy,
  3334. msr, MSR_TYPE_R | MSR_TYPE_W);
  3335. __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode,
  3336. msr, MSR_TYPE_R | MSR_TYPE_W);
  3337. }
  3338. static void vmx_enable_intercept_msr_read_x2apic(u32 msr)
  3339. {
  3340. __vmx_enable_intercept_for_msr(vmx_msr_bitmap_legacy_x2apic,
  3341. msr, MSR_TYPE_R);
  3342. __vmx_enable_intercept_for_msr(vmx_msr_bitmap_longmode_x2apic,
  3343. msr, MSR_TYPE_R);
  3344. }
  3345. static void vmx_disable_intercept_msr_read_x2apic(u32 msr)
  3346. {
  3347. __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy_x2apic,
  3348. msr, MSR_TYPE_R);
  3349. __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode_x2apic,
  3350. msr, MSR_TYPE_R);
  3351. }
  3352. static void vmx_disable_intercept_msr_write_x2apic(u32 msr)
  3353. {
  3354. __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy_x2apic,
  3355. msr, MSR_TYPE_W);
  3356. __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode_x2apic,
  3357. msr, MSR_TYPE_W);
  3358. }
  3359. /*
  3360. * Set up the vmcs's constant host-state fields, i.e., host-state fields that
  3361. * will not change in the lifetime of the guest.
  3362. * Note that host-state that does change is set elsewhere. E.g., host-state
  3363. * that is set differently for each CPU is set in vmx_vcpu_load(), not here.
  3364. */
  3365. static void vmx_set_constant_host_state(void)
  3366. {
  3367. u32 low32, high32;
  3368. unsigned long tmpl;
  3369. struct desc_ptr dt;
  3370. vmcs_writel(HOST_CR0, read_cr0() & ~X86_CR0_TS); /* 22.2.3 */
  3371. vmcs_writel(HOST_CR4, read_cr4()); /* 22.2.3, 22.2.5 */
  3372. vmcs_writel(HOST_CR3, read_cr3()); /* 22.2.3 FIXME: shadow tables */
  3373. vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS); /* 22.2.4 */
  3374. #ifdef CONFIG_X86_64
  3375. /*
  3376. * Load null selectors, so we can avoid reloading them in
  3377. * __vmx_load_host_state(), in case userspace uses the null selectors
  3378. * too (the expected case).
  3379. */
  3380. vmcs_write16(HOST_DS_SELECTOR, 0);
  3381. vmcs_write16(HOST_ES_SELECTOR, 0);
  3382. #else
  3383. vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
  3384. vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS); /* 22.2.4 */
  3385. #endif
  3386. vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
  3387. vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8); /* 22.2.4 */
  3388. native_store_idt(&dt);
  3389. vmcs_writel(HOST_IDTR_BASE, dt.address); /* 22.2.4 */
  3390. vmcs_writel(HOST_RIP, vmx_return); /* 22.2.5 */
  3391. rdmsr(MSR_IA32_SYSENTER_CS, low32, high32);
  3392. vmcs_write32(HOST_IA32_SYSENTER_CS, low32);
  3393. rdmsrl(MSR_IA32_SYSENTER_EIP, tmpl);
  3394. vmcs_writel(HOST_IA32_SYSENTER_EIP, tmpl); /* 22.2.3 */
  3395. if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
  3396. rdmsr(MSR_IA32_CR_PAT, low32, high32);
  3397. vmcs_write64(HOST_IA32_PAT, low32 | ((u64) high32 << 32));
  3398. }
  3399. }
  3400. static void set_cr4_guest_host_mask(struct vcpu_vmx *vmx)
  3401. {
  3402. vmx->vcpu.arch.cr4_guest_owned_bits = KVM_CR4_GUEST_OWNED_BITS;
  3403. if (enable_ept)
  3404. vmx->vcpu.arch.cr4_guest_owned_bits |= X86_CR4_PGE;
  3405. if (is_guest_mode(&vmx->vcpu))
  3406. vmx->vcpu.arch.cr4_guest_owned_bits &=
  3407. ~get_vmcs12(&vmx->vcpu)->cr4_guest_host_mask;
  3408. vmcs_writel(CR4_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr4_guest_owned_bits);
  3409. }
  3410. static u32 vmx_exec_control(struct vcpu_vmx *vmx)
  3411. {
  3412. u32 exec_control = vmcs_config.cpu_based_exec_ctrl;
  3413. if (!vm_need_tpr_shadow(vmx->vcpu.kvm)) {
  3414. exec_control &= ~CPU_BASED_TPR_SHADOW;
  3415. #ifdef CONFIG_X86_64
  3416. exec_control |= CPU_BASED_CR8_STORE_EXITING |
  3417. CPU_BASED_CR8_LOAD_EXITING;
  3418. #endif
  3419. }
  3420. if (!enable_ept)
  3421. exec_control |= CPU_BASED_CR3_STORE_EXITING |
  3422. CPU_BASED_CR3_LOAD_EXITING |
  3423. CPU_BASED_INVLPG_EXITING;
  3424. return exec_control;
  3425. }
  3426. static int vmx_vm_has_apicv(struct kvm *kvm)
  3427. {
  3428. return enable_apicv_reg_vid && irqchip_in_kernel(kvm);
  3429. }
  3430. static u32 vmx_secondary_exec_control(struct vcpu_vmx *vmx)
  3431. {
  3432. u32 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
  3433. if (!vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
  3434. exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
  3435. if (vmx->vpid == 0)
  3436. exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
  3437. if (!enable_ept) {
  3438. exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
  3439. enable_unrestricted_guest = 0;
  3440. /* Enable INVPCID for non-ept guests may cause performance regression. */
  3441. exec_control &= ~SECONDARY_EXEC_ENABLE_INVPCID;
  3442. }
  3443. if (!enable_unrestricted_guest)
  3444. exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
  3445. if (!ple_gap)
  3446. exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING;
  3447. if (!vmx_vm_has_apicv(vmx->vcpu.kvm))
  3448. exec_control &= ~(SECONDARY_EXEC_APIC_REGISTER_VIRT |
  3449. SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
  3450. exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
  3451. return exec_control;
  3452. }
  3453. static void ept_set_mmio_spte_mask(void)
  3454. {
  3455. /*
  3456. * EPT Misconfigurations can be generated if the value of bits 2:0
  3457. * of an EPT paging-structure entry is 110b (write/execute).
  3458. * Also, magic bits (0xffull << 49) is set to quickly identify mmio
  3459. * spte.
  3460. */
  3461. kvm_mmu_set_mmio_spte_mask(0xffull << 49 | 0x6ull);
  3462. }
  3463. /*
  3464. * Sets up the vmcs for emulated real mode.
  3465. */
  3466. static int vmx_vcpu_setup(struct vcpu_vmx *vmx)
  3467. {
  3468. #ifdef CONFIG_X86_64
  3469. unsigned long a;
  3470. #endif
  3471. int i;
  3472. /* I/O */
  3473. vmcs_write64(IO_BITMAP_A, __pa(vmx_io_bitmap_a));
  3474. vmcs_write64(IO_BITMAP_B, __pa(vmx_io_bitmap_b));
  3475. if (cpu_has_vmx_msr_bitmap())
  3476. vmcs_write64(MSR_BITMAP, __pa(vmx_msr_bitmap_legacy));
  3477. vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
  3478. /* Control */
  3479. vmcs_write32(PIN_BASED_VM_EXEC_CONTROL,
  3480. vmcs_config.pin_based_exec_ctrl);
  3481. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, vmx_exec_control(vmx));
  3482. if (cpu_has_secondary_exec_ctrls()) {
  3483. vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
  3484. vmx_secondary_exec_control(vmx));
  3485. }
  3486. if (enable_apicv_reg_vid) {
  3487. vmcs_write64(EOI_EXIT_BITMAP0, 0);
  3488. vmcs_write64(EOI_EXIT_BITMAP1, 0);
  3489. vmcs_write64(EOI_EXIT_BITMAP2, 0);
  3490. vmcs_write64(EOI_EXIT_BITMAP3, 0);
  3491. vmcs_write16(GUEST_INTR_STATUS, 0);
  3492. }
  3493. if (ple_gap) {
  3494. vmcs_write32(PLE_GAP, ple_gap);
  3495. vmcs_write32(PLE_WINDOW, ple_window);
  3496. }
  3497. vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
  3498. vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
  3499. vmcs_write32(CR3_TARGET_COUNT, 0); /* 22.2.1 */
  3500. vmcs_write16(HOST_FS_SELECTOR, 0); /* 22.2.4 */
  3501. vmcs_write16(HOST_GS_SELECTOR, 0); /* 22.2.4 */
  3502. vmx_set_constant_host_state();
  3503. #ifdef CONFIG_X86_64
  3504. rdmsrl(MSR_FS_BASE, a);
  3505. vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
  3506. rdmsrl(MSR_GS_BASE, a);
  3507. vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */
  3508. #else
  3509. vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
  3510. vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
  3511. #endif
  3512. vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
  3513. vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
  3514. vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host));
  3515. vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
  3516. vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest));
  3517. if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
  3518. u32 msr_low, msr_high;
  3519. u64 host_pat;
  3520. rdmsr(MSR_IA32_CR_PAT, msr_low, msr_high);
  3521. host_pat = msr_low | ((u64) msr_high << 32);
  3522. /* Write the default value follow host pat */
  3523. vmcs_write64(GUEST_IA32_PAT, host_pat);
  3524. /* Keep arch.pat sync with GUEST_IA32_PAT */
  3525. vmx->vcpu.arch.pat = host_pat;
  3526. }
  3527. for (i = 0; i < NR_VMX_MSR; ++i) {
  3528. u32 index = vmx_msr_index[i];
  3529. u32 data_low, data_high;
  3530. int j = vmx->nmsrs;
  3531. if (rdmsr_safe(index, &data_low, &data_high) < 0)
  3532. continue;
  3533. if (wrmsr_safe(index, data_low, data_high) < 0)
  3534. continue;
  3535. vmx->guest_msrs[j].index = i;
  3536. vmx->guest_msrs[j].data = 0;
  3537. vmx->guest_msrs[j].mask = -1ull;
  3538. ++vmx->nmsrs;
  3539. }
  3540. vmcs_write32(VM_EXIT_CONTROLS, vmcs_config.vmexit_ctrl);
  3541. /* 22.2.1, 20.8.1 */
  3542. vmcs_write32(VM_ENTRY_CONTROLS, vmcs_config.vmentry_ctrl);
  3543. vmcs_writel(CR0_GUEST_HOST_MASK, ~0UL);
  3544. set_cr4_guest_host_mask(vmx);
  3545. return 0;
  3546. }
  3547. static int vmx_vcpu_reset(struct kvm_vcpu *vcpu)
  3548. {
  3549. struct vcpu_vmx *vmx = to_vmx(vcpu);
  3550. u64 msr;
  3551. int ret;
  3552. vmx->rmode.vm86_active = 0;
  3553. vmx->soft_vnmi_blocked = 0;
  3554. vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val();
  3555. kvm_set_cr8(&vmx->vcpu, 0);
  3556. msr = 0xfee00000 | MSR_IA32_APICBASE_ENABLE;
  3557. if (kvm_vcpu_is_bsp(&vmx->vcpu))
  3558. msr |= MSR_IA32_APICBASE_BSP;
  3559. kvm_set_apic_base(&vmx->vcpu, msr);
  3560. vmx_segment_cache_clear(vmx);
  3561. seg_setup(VCPU_SREG_CS);
  3562. if (kvm_vcpu_is_bsp(&vmx->vcpu))
  3563. vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
  3564. else {
  3565. vmcs_write16(GUEST_CS_SELECTOR, vmx->vcpu.arch.sipi_vector << 8);
  3566. vmcs_writel(GUEST_CS_BASE, vmx->vcpu.arch.sipi_vector << 12);
  3567. }
  3568. seg_setup(VCPU_SREG_DS);
  3569. seg_setup(VCPU_SREG_ES);
  3570. seg_setup(VCPU_SREG_FS);
  3571. seg_setup(VCPU_SREG_GS);
  3572. seg_setup(VCPU_SREG_SS);
  3573. vmcs_write16(GUEST_TR_SELECTOR, 0);
  3574. vmcs_writel(GUEST_TR_BASE, 0);
  3575. vmcs_write32(GUEST_TR_LIMIT, 0xffff);
  3576. vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
  3577. vmcs_write16(GUEST_LDTR_SELECTOR, 0);
  3578. vmcs_writel(GUEST_LDTR_BASE, 0);
  3579. vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
  3580. vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
  3581. vmcs_write32(GUEST_SYSENTER_CS, 0);
  3582. vmcs_writel(GUEST_SYSENTER_ESP, 0);
  3583. vmcs_writel(GUEST_SYSENTER_EIP, 0);
  3584. vmcs_writel(GUEST_RFLAGS, 0x02);
  3585. if (kvm_vcpu_is_bsp(&vmx->vcpu))
  3586. kvm_rip_write(vcpu, 0xfff0);
  3587. else
  3588. kvm_rip_write(vcpu, 0);
  3589. vmcs_writel(GUEST_GDTR_BASE, 0);
  3590. vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
  3591. vmcs_writel(GUEST_IDTR_BASE, 0);
  3592. vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
  3593. vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
  3594. vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
  3595. vmcs_write32(GUEST_PENDING_DBG_EXCEPTIONS, 0);
  3596. /* Special registers */
  3597. vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
  3598. setup_msrs(vmx);
  3599. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); /* 22.2.1 */
  3600. if (cpu_has_vmx_tpr_shadow()) {
  3601. vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
  3602. if (vm_need_tpr_shadow(vmx->vcpu.kvm))
  3603. vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
  3604. __pa(vmx->vcpu.arch.apic->regs));
  3605. vmcs_write32(TPR_THRESHOLD, 0);
  3606. }
  3607. if (vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
  3608. vmcs_write64(APIC_ACCESS_ADDR,
  3609. page_to_phys(vmx->vcpu.kvm->arch.apic_access_page));
  3610. if (vmx->vpid != 0)
  3611. vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
  3612. vmx->vcpu.arch.cr0 = X86_CR0_NW | X86_CR0_CD | X86_CR0_ET;
  3613. vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
  3614. vmx_set_cr0(&vmx->vcpu, kvm_read_cr0(vcpu)); /* enter rmode */
  3615. srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
  3616. vmx_set_cr4(&vmx->vcpu, 0);
  3617. vmx_set_efer(&vmx->vcpu, 0);
  3618. vmx_fpu_activate(&vmx->vcpu);
  3619. update_exception_bitmap(&vmx->vcpu);
  3620. vpid_sync_context(vmx);
  3621. ret = 0;
  3622. return ret;
  3623. }
  3624. /*
  3625. * In nested virtualization, check if L1 asked to exit on external interrupts.
  3626. * For most existing hypervisors, this will always return true.
  3627. */
  3628. static bool nested_exit_on_intr(struct kvm_vcpu *vcpu)
  3629. {
  3630. return get_vmcs12(vcpu)->pin_based_vm_exec_control &
  3631. PIN_BASED_EXT_INTR_MASK;
  3632. }
  3633. static void enable_irq_window(struct kvm_vcpu *vcpu)
  3634. {
  3635. u32 cpu_based_vm_exec_control;
  3636. if (is_guest_mode(vcpu) && nested_exit_on_intr(vcpu)) {
  3637. /*
  3638. * We get here if vmx_interrupt_allowed() said we can't
  3639. * inject to L1 now because L2 must run. Ask L2 to exit
  3640. * right after entry, so we can inject to L1 more promptly.
  3641. */
  3642. kvm_make_request(KVM_REQ_IMMEDIATE_EXIT, vcpu);
  3643. return;
  3644. }
  3645. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  3646. cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
  3647. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  3648. }
  3649. static void enable_nmi_window(struct kvm_vcpu *vcpu)
  3650. {
  3651. u32 cpu_based_vm_exec_control;
  3652. if (!cpu_has_virtual_nmis()) {
  3653. enable_irq_window(vcpu);
  3654. return;
  3655. }
  3656. if (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_STI) {
  3657. enable_irq_window(vcpu);
  3658. return;
  3659. }
  3660. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  3661. cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_NMI_PENDING;
  3662. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  3663. }
  3664. static void vmx_inject_irq(struct kvm_vcpu *vcpu)
  3665. {
  3666. struct vcpu_vmx *vmx = to_vmx(vcpu);
  3667. uint32_t intr;
  3668. int irq = vcpu->arch.interrupt.nr;
  3669. trace_kvm_inj_virq(irq);
  3670. ++vcpu->stat.irq_injections;
  3671. if (vmx->rmode.vm86_active) {
  3672. int inc_eip = 0;
  3673. if (vcpu->arch.interrupt.soft)
  3674. inc_eip = vcpu->arch.event_exit_inst_len;
  3675. if (kvm_inject_realmode_interrupt(vcpu, irq, inc_eip) != EMULATE_DONE)
  3676. kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
  3677. return;
  3678. }
  3679. intr = irq | INTR_INFO_VALID_MASK;
  3680. if (vcpu->arch.interrupt.soft) {
  3681. intr |= INTR_TYPE_SOFT_INTR;
  3682. vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
  3683. vmx->vcpu.arch.event_exit_inst_len);
  3684. } else
  3685. intr |= INTR_TYPE_EXT_INTR;
  3686. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr);
  3687. }
  3688. static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
  3689. {
  3690. struct vcpu_vmx *vmx = to_vmx(vcpu);
  3691. if (is_guest_mode(vcpu))
  3692. return;
  3693. if (!cpu_has_virtual_nmis()) {
  3694. /*
  3695. * Tracking the NMI-blocked state in software is built upon
  3696. * finding the next open IRQ window. This, in turn, depends on
  3697. * well-behaving guests: They have to keep IRQs disabled at
  3698. * least as long as the NMI handler runs. Otherwise we may
  3699. * cause NMI nesting, maybe breaking the guest. But as this is
  3700. * highly unlikely, we can live with the residual risk.
  3701. */
  3702. vmx->soft_vnmi_blocked = 1;
  3703. vmx->vnmi_blocked_time = 0;
  3704. }
  3705. ++vcpu->stat.nmi_injections;
  3706. vmx->nmi_known_unmasked = false;
  3707. if (vmx->rmode.vm86_active) {
  3708. if (kvm_inject_realmode_interrupt(vcpu, NMI_VECTOR, 0) != EMULATE_DONE)
  3709. kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
  3710. return;
  3711. }
  3712. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  3713. INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
  3714. }
  3715. static int vmx_nmi_allowed(struct kvm_vcpu *vcpu)
  3716. {
  3717. if (!cpu_has_virtual_nmis() && to_vmx(vcpu)->soft_vnmi_blocked)
  3718. return 0;
  3719. return !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
  3720. (GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_STI
  3721. | GUEST_INTR_STATE_NMI));
  3722. }
  3723. static bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu)
  3724. {
  3725. if (!cpu_has_virtual_nmis())
  3726. return to_vmx(vcpu)->soft_vnmi_blocked;
  3727. if (to_vmx(vcpu)->nmi_known_unmasked)
  3728. return false;
  3729. return vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_NMI;
  3730. }
  3731. static void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
  3732. {
  3733. struct vcpu_vmx *vmx = to_vmx(vcpu);
  3734. if (!cpu_has_virtual_nmis()) {
  3735. if (vmx->soft_vnmi_blocked != masked) {
  3736. vmx->soft_vnmi_blocked = masked;
  3737. vmx->vnmi_blocked_time = 0;
  3738. }
  3739. } else {
  3740. vmx->nmi_known_unmasked = !masked;
  3741. if (masked)
  3742. vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
  3743. GUEST_INTR_STATE_NMI);
  3744. else
  3745. vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
  3746. GUEST_INTR_STATE_NMI);
  3747. }
  3748. }
  3749. static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu)
  3750. {
  3751. if (is_guest_mode(vcpu) && nested_exit_on_intr(vcpu)) {
  3752. struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
  3753. if (to_vmx(vcpu)->nested.nested_run_pending ||
  3754. (vmcs12->idt_vectoring_info_field &
  3755. VECTORING_INFO_VALID_MASK))
  3756. return 0;
  3757. nested_vmx_vmexit(vcpu);
  3758. vmcs12->vm_exit_reason = EXIT_REASON_EXTERNAL_INTERRUPT;
  3759. vmcs12->vm_exit_intr_info = 0;
  3760. /* fall through to normal code, but now in L1, not L2 */
  3761. }
  3762. return (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
  3763. !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
  3764. (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS));
  3765. }
  3766. static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
  3767. {
  3768. int ret;
  3769. struct kvm_userspace_memory_region tss_mem = {
  3770. .slot = TSS_PRIVATE_MEMSLOT,
  3771. .guest_phys_addr = addr,
  3772. .memory_size = PAGE_SIZE * 3,
  3773. .flags = 0,
  3774. };
  3775. ret = kvm_set_memory_region(kvm, &tss_mem);
  3776. if (ret)
  3777. return ret;
  3778. kvm->arch.tss_addr = addr;
  3779. if (!init_rmode_tss(kvm))
  3780. return -ENOMEM;
  3781. return 0;
  3782. }
  3783. static bool rmode_exception(struct kvm_vcpu *vcpu, int vec)
  3784. {
  3785. switch (vec) {
  3786. case BP_VECTOR:
  3787. /*
  3788. * Update instruction length as we may reinject the exception
  3789. * from user space while in guest debugging mode.
  3790. */
  3791. to_vmx(vcpu)->vcpu.arch.event_exit_inst_len =
  3792. vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
  3793. if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
  3794. return false;
  3795. /* fall through */
  3796. case DB_VECTOR:
  3797. if (vcpu->guest_debug &
  3798. (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
  3799. return false;
  3800. /* fall through */
  3801. case DE_VECTOR:
  3802. case OF_VECTOR:
  3803. case BR_VECTOR:
  3804. case UD_VECTOR:
  3805. case DF_VECTOR:
  3806. case SS_VECTOR:
  3807. case GP_VECTOR:
  3808. case MF_VECTOR:
  3809. return true;
  3810. break;
  3811. }
  3812. return false;
  3813. }
  3814. static int handle_rmode_exception(struct kvm_vcpu *vcpu,
  3815. int vec, u32 err_code)
  3816. {
  3817. /*
  3818. * Instruction with address size override prefix opcode 0x67
  3819. * Cause the #SS fault with 0 error code in VM86 mode.
  3820. */
  3821. if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0) {
  3822. if (emulate_instruction(vcpu, 0) == EMULATE_DONE) {
  3823. if (vcpu->arch.halt_request) {
  3824. vcpu->arch.halt_request = 0;
  3825. return kvm_emulate_halt(vcpu);
  3826. }
  3827. return 1;
  3828. }
  3829. return 0;
  3830. }
  3831. /*
  3832. * Forward all other exceptions that are valid in real mode.
  3833. * FIXME: Breaks guest debugging in real mode, needs to be fixed with
  3834. * the required debugging infrastructure rework.
  3835. */
  3836. kvm_queue_exception(vcpu, vec);
  3837. return 1;
  3838. }
  3839. /*
  3840. * Trigger machine check on the host. We assume all the MSRs are already set up
  3841. * by the CPU and that we still run on the same CPU as the MCE occurred on.
  3842. * We pass a fake environment to the machine check handler because we want
  3843. * the guest to be always treated like user space, no matter what context
  3844. * it used internally.
  3845. */
  3846. static void kvm_machine_check(void)
  3847. {
  3848. #if defined(CONFIG_X86_MCE) && defined(CONFIG_X86_64)
  3849. struct pt_regs regs = {
  3850. .cs = 3, /* Fake ring 3 no matter what the guest ran on */
  3851. .flags = X86_EFLAGS_IF,
  3852. };
  3853. do_machine_check(&regs, 0);
  3854. #endif
  3855. }
  3856. static int handle_machine_check(struct kvm_vcpu *vcpu)
  3857. {
  3858. /* already handled by vcpu_run */
  3859. return 1;
  3860. }
  3861. static int handle_exception(struct kvm_vcpu *vcpu)
  3862. {
  3863. struct vcpu_vmx *vmx = to_vmx(vcpu);
  3864. struct kvm_run *kvm_run = vcpu->run;
  3865. u32 intr_info, ex_no, error_code;
  3866. unsigned long cr2, rip, dr6;
  3867. u32 vect_info;
  3868. enum emulation_result er;
  3869. vect_info = vmx->idt_vectoring_info;
  3870. intr_info = vmx->exit_intr_info;
  3871. if (is_machine_check(intr_info))
  3872. return handle_machine_check(vcpu);
  3873. if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR)
  3874. return 1; /* already handled by vmx_vcpu_run() */
  3875. if (is_no_device(intr_info)) {
  3876. vmx_fpu_activate(vcpu);
  3877. return 1;
  3878. }
  3879. if (is_invalid_opcode(intr_info)) {
  3880. er = emulate_instruction(vcpu, EMULTYPE_TRAP_UD);
  3881. if (er != EMULATE_DONE)
  3882. kvm_queue_exception(vcpu, UD_VECTOR);
  3883. return 1;
  3884. }
  3885. error_code = 0;
  3886. if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
  3887. error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
  3888. /*
  3889. * The #PF with PFEC.RSVD = 1 indicates the guest is accessing
  3890. * MMIO, it is better to report an internal error.
  3891. * See the comments in vmx_handle_exit.
  3892. */
  3893. if ((vect_info & VECTORING_INFO_VALID_MASK) &&
  3894. !(is_page_fault(intr_info) && !(error_code & PFERR_RSVD_MASK))) {
  3895. vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
  3896. vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX;
  3897. vcpu->run->internal.ndata = 2;
  3898. vcpu->run->internal.data[0] = vect_info;
  3899. vcpu->run->internal.data[1] = intr_info;
  3900. return 0;
  3901. }
  3902. if (is_page_fault(intr_info)) {
  3903. /* EPT won't cause page fault directly */
  3904. BUG_ON(enable_ept);
  3905. cr2 = vmcs_readl(EXIT_QUALIFICATION);
  3906. trace_kvm_page_fault(cr2, error_code);
  3907. if (kvm_event_needs_reinjection(vcpu))
  3908. kvm_mmu_unprotect_page_virt(vcpu, cr2);
  3909. return kvm_mmu_page_fault(vcpu, cr2, error_code, NULL, 0);
  3910. }
  3911. ex_no = intr_info & INTR_INFO_VECTOR_MASK;
  3912. if (vmx->rmode.vm86_active && rmode_exception(vcpu, ex_no))
  3913. return handle_rmode_exception(vcpu, ex_no, error_code);
  3914. switch (ex_no) {
  3915. case DB_VECTOR:
  3916. dr6 = vmcs_readl(EXIT_QUALIFICATION);
  3917. if (!(vcpu->guest_debug &
  3918. (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
  3919. vcpu->arch.dr6 = dr6 | DR6_FIXED_1;
  3920. kvm_queue_exception(vcpu, DB_VECTOR);
  3921. return 1;
  3922. }
  3923. kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1;
  3924. kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
  3925. /* fall through */
  3926. case BP_VECTOR:
  3927. /*
  3928. * Update instruction length as we may reinject #BP from
  3929. * user space while in guest debugging mode. Reading it for
  3930. * #DB as well causes no harm, it is not used in that case.
  3931. */
  3932. vmx->vcpu.arch.event_exit_inst_len =
  3933. vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
  3934. kvm_run->exit_reason = KVM_EXIT_DEBUG;
  3935. rip = kvm_rip_read(vcpu);
  3936. kvm_run->debug.arch.pc = vmcs_readl(GUEST_CS_BASE) + rip;
  3937. kvm_run->debug.arch.exception = ex_no;
  3938. break;
  3939. default:
  3940. kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
  3941. kvm_run->ex.exception = ex_no;
  3942. kvm_run->ex.error_code = error_code;
  3943. break;
  3944. }
  3945. return 0;
  3946. }
  3947. static int handle_external_interrupt(struct kvm_vcpu *vcpu)
  3948. {
  3949. ++vcpu->stat.irq_exits;
  3950. return 1;
  3951. }
  3952. static int handle_triple_fault(struct kvm_vcpu *vcpu)
  3953. {
  3954. vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
  3955. return 0;
  3956. }
  3957. static int handle_io(struct kvm_vcpu *vcpu)
  3958. {
  3959. unsigned long exit_qualification;
  3960. int size, in, string;
  3961. unsigned port;
  3962. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  3963. string = (exit_qualification & 16) != 0;
  3964. in = (exit_qualification & 8) != 0;
  3965. ++vcpu->stat.io_exits;
  3966. if (string || in)
  3967. return emulate_instruction(vcpu, 0) == EMULATE_DONE;
  3968. port = exit_qualification >> 16;
  3969. size = (exit_qualification & 7) + 1;
  3970. skip_emulated_instruction(vcpu);
  3971. return kvm_fast_pio_out(vcpu, size, port);
  3972. }
  3973. static void
  3974. vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
  3975. {
  3976. /*
  3977. * Patch in the VMCALL instruction:
  3978. */
  3979. hypercall[0] = 0x0f;
  3980. hypercall[1] = 0x01;
  3981. hypercall[2] = 0xc1;
  3982. }
  3983. /* called to set cr0 as appropriate for a mov-to-cr0 exit. */
  3984. static int handle_set_cr0(struct kvm_vcpu *vcpu, unsigned long val)
  3985. {
  3986. if (to_vmx(vcpu)->nested.vmxon &&
  3987. ((val & VMXON_CR0_ALWAYSON) != VMXON_CR0_ALWAYSON))
  3988. return 1;
  3989. if (is_guest_mode(vcpu)) {
  3990. /*
  3991. * We get here when L2 changed cr0 in a way that did not change
  3992. * any of L1's shadowed bits (see nested_vmx_exit_handled_cr),
  3993. * but did change L0 shadowed bits. This can currently happen
  3994. * with the TS bit: L0 may want to leave TS on (for lazy fpu
  3995. * loading) while pretending to allow the guest to change it.
  3996. */
  3997. if (kvm_set_cr0(vcpu, (val & vcpu->arch.cr0_guest_owned_bits) |
  3998. (vcpu->arch.cr0 & ~vcpu->arch.cr0_guest_owned_bits)))
  3999. return 1;
  4000. vmcs_writel(CR0_READ_SHADOW, val);
  4001. return 0;
  4002. } else
  4003. return kvm_set_cr0(vcpu, val);
  4004. }
  4005. static int handle_set_cr4(struct kvm_vcpu *vcpu, unsigned long val)
  4006. {
  4007. if (is_guest_mode(vcpu)) {
  4008. if (kvm_set_cr4(vcpu, (val & vcpu->arch.cr4_guest_owned_bits) |
  4009. (vcpu->arch.cr4 & ~vcpu->arch.cr4_guest_owned_bits)))
  4010. return 1;
  4011. vmcs_writel(CR4_READ_SHADOW, val);
  4012. return 0;
  4013. } else
  4014. return kvm_set_cr4(vcpu, val);
  4015. }
  4016. /* called to set cr0 as approriate for clts instruction exit. */
  4017. static void handle_clts(struct kvm_vcpu *vcpu)
  4018. {
  4019. if (is_guest_mode(vcpu)) {
  4020. /*
  4021. * We get here when L2 did CLTS, and L1 didn't shadow CR0.TS
  4022. * but we did (!fpu_active). We need to keep GUEST_CR0.TS on,
  4023. * just pretend it's off (also in arch.cr0 for fpu_activate).
  4024. */
  4025. vmcs_writel(CR0_READ_SHADOW,
  4026. vmcs_readl(CR0_READ_SHADOW) & ~X86_CR0_TS);
  4027. vcpu->arch.cr0 &= ~X86_CR0_TS;
  4028. } else
  4029. vmx_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS));
  4030. }
  4031. static int handle_cr(struct kvm_vcpu *vcpu)
  4032. {
  4033. unsigned long exit_qualification, val;
  4034. int cr;
  4035. int reg;
  4036. int err;
  4037. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  4038. cr = exit_qualification & 15;
  4039. reg = (exit_qualification >> 8) & 15;
  4040. switch ((exit_qualification >> 4) & 3) {
  4041. case 0: /* mov to cr */
  4042. val = kvm_register_read(vcpu, reg);
  4043. trace_kvm_cr_write(cr, val);
  4044. switch (cr) {
  4045. case 0:
  4046. err = handle_set_cr0(vcpu, val);
  4047. kvm_complete_insn_gp(vcpu, err);
  4048. return 1;
  4049. case 3:
  4050. err = kvm_set_cr3(vcpu, val);
  4051. kvm_complete_insn_gp(vcpu, err);
  4052. return 1;
  4053. case 4:
  4054. err = handle_set_cr4(vcpu, val);
  4055. kvm_complete_insn_gp(vcpu, err);
  4056. return 1;
  4057. case 8: {
  4058. u8 cr8_prev = kvm_get_cr8(vcpu);
  4059. u8 cr8 = kvm_register_read(vcpu, reg);
  4060. err = kvm_set_cr8(vcpu, cr8);
  4061. kvm_complete_insn_gp(vcpu, err);
  4062. if (irqchip_in_kernel(vcpu->kvm))
  4063. return 1;
  4064. if (cr8_prev <= cr8)
  4065. return 1;
  4066. vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
  4067. return 0;
  4068. }
  4069. }
  4070. break;
  4071. case 2: /* clts */
  4072. handle_clts(vcpu);
  4073. trace_kvm_cr_write(0, kvm_read_cr0(vcpu));
  4074. skip_emulated_instruction(vcpu);
  4075. vmx_fpu_activate(vcpu);
  4076. return 1;
  4077. case 1: /*mov from cr*/
  4078. switch (cr) {
  4079. case 3:
  4080. val = kvm_read_cr3(vcpu);
  4081. kvm_register_write(vcpu, reg, val);
  4082. trace_kvm_cr_read(cr, val);
  4083. skip_emulated_instruction(vcpu);
  4084. return 1;
  4085. case 8:
  4086. val = kvm_get_cr8(vcpu);
  4087. kvm_register_write(vcpu, reg, val);
  4088. trace_kvm_cr_read(cr, val);
  4089. skip_emulated_instruction(vcpu);
  4090. return 1;
  4091. }
  4092. break;
  4093. case 3: /* lmsw */
  4094. val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
  4095. trace_kvm_cr_write(0, (kvm_read_cr0(vcpu) & ~0xful) | val);
  4096. kvm_lmsw(vcpu, val);
  4097. skip_emulated_instruction(vcpu);
  4098. return 1;
  4099. default:
  4100. break;
  4101. }
  4102. vcpu->run->exit_reason = 0;
  4103. vcpu_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
  4104. (int)(exit_qualification >> 4) & 3, cr);
  4105. return 0;
  4106. }
  4107. static int handle_dr(struct kvm_vcpu *vcpu)
  4108. {
  4109. unsigned long exit_qualification;
  4110. int dr, reg;
  4111. /* Do not handle if the CPL > 0, will trigger GP on re-entry */
  4112. if (!kvm_require_cpl(vcpu, 0))
  4113. return 1;
  4114. dr = vmcs_readl(GUEST_DR7);
  4115. if (dr & DR7_GD) {
  4116. /*
  4117. * As the vm-exit takes precedence over the debug trap, we
  4118. * need to emulate the latter, either for the host or the
  4119. * guest debugging itself.
  4120. */
  4121. if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
  4122. vcpu->run->debug.arch.dr6 = vcpu->arch.dr6;
  4123. vcpu->run->debug.arch.dr7 = dr;
  4124. vcpu->run->debug.arch.pc =
  4125. vmcs_readl(GUEST_CS_BASE) +
  4126. vmcs_readl(GUEST_RIP);
  4127. vcpu->run->debug.arch.exception = DB_VECTOR;
  4128. vcpu->run->exit_reason = KVM_EXIT_DEBUG;
  4129. return 0;
  4130. } else {
  4131. vcpu->arch.dr7 &= ~DR7_GD;
  4132. vcpu->arch.dr6 |= DR6_BD;
  4133. vmcs_writel(GUEST_DR7, vcpu->arch.dr7);
  4134. kvm_queue_exception(vcpu, DB_VECTOR);
  4135. return 1;
  4136. }
  4137. }
  4138. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  4139. dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
  4140. reg = DEBUG_REG_ACCESS_REG(exit_qualification);
  4141. if (exit_qualification & TYPE_MOV_FROM_DR) {
  4142. unsigned long val;
  4143. if (!kvm_get_dr(vcpu, dr, &val))
  4144. kvm_register_write(vcpu, reg, val);
  4145. } else
  4146. kvm_set_dr(vcpu, dr, vcpu->arch.regs[reg]);
  4147. skip_emulated_instruction(vcpu);
  4148. return 1;
  4149. }
  4150. static void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val)
  4151. {
  4152. vmcs_writel(GUEST_DR7, val);
  4153. }
  4154. static int handle_cpuid(struct kvm_vcpu *vcpu)
  4155. {
  4156. kvm_emulate_cpuid(vcpu);
  4157. return 1;
  4158. }
  4159. static int handle_rdmsr(struct kvm_vcpu *vcpu)
  4160. {
  4161. u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
  4162. u64 data;
  4163. if (vmx_get_msr(vcpu, ecx, &data)) {
  4164. trace_kvm_msr_read_ex(ecx);
  4165. kvm_inject_gp(vcpu, 0);
  4166. return 1;
  4167. }
  4168. trace_kvm_msr_read(ecx, data);
  4169. /* FIXME: handling of bits 32:63 of rax, rdx */
  4170. vcpu->arch.regs[VCPU_REGS_RAX] = data & -1u;
  4171. vcpu->arch.regs[VCPU_REGS_RDX] = (data >> 32) & -1u;
  4172. skip_emulated_instruction(vcpu);
  4173. return 1;
  4174. }
  4175. static int handle_wrmsr(struct kvm_vcpu *vcpu)
  4176. {
  4177. struct msr_data msr;
  4178. u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
  4179. u64 data = (vcpu->arch.regs[VCPU_REGS_RAX] & -1u)
  4180. | ((u64)(vcpu->arch.regs[VCPU_REGS_RDX] & -1u) << 32);
  4181. msr.data = data;
  4182. msr.index = ecx;
  4183. msr.host_initiated = false;
  4184. if (vmx_set_msr(vcpu, &msr) != 0) {
  4185. trace_kvm_msr_write_ex(ecx, data);
  4186. kvm_inject_gp(vcpu, 0);
  4187. return 1;
  4188. }
  4189. trace_kvm_msr_write(ecx, data);
  4190. skip_emulated_instruction(vcpu);
  4191. return 1;
  4192. }
  4193. static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu)
  4194. {
  4195. kvm_make_request(KVM_REQ_EVENT, vcpu);
  4196. return 1;
  4197. }
  4198. static int handle_interrupt_window(struct kvm_vcpu *vcpu)
  4199. {
  4200. u32 cpu_based_vm_exec_control;
  4201. /* clear pending irq */
  4202. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  4203. cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
  4204. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  4205. kvm_make_request(KVM_REQ_EVENT, vcpu);
  4206. ++vcpu->stat.irq_window_exits;
  4207. /*
  4208. * If the user space waits to inject interrupts, exit as soon as
  4209. * possible
  4210. */
  4211. if (!irqchip_in_kernel(vcpu->kvm) &&
  4212. vcpu->run->request_interrupt_window &&
  4213. !kvm_cpu_has_interrupt(vcpu)) {
  4214. vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
  4215. return 0;
  4216. }
  4217. return 1;
  4218. }
  4219. static int handle_halt(struct kvm_vcpu *vcpu)
  4220. {
  4221. skip_emulated_instruction(vcpu);
  4222. return kvm_emulate_halt(vcpu);
  4223. }
  4224. static int handle_vmcall(struct kvm_vcpu *vcpu)
  4225. {
  4226. skip_emulated_instruction(vcpu);
  4227. kvm_emulate_hypercall(vcpu);
  4228. return 1;
  4229. }
  4230. static int handle_invd(struct kvm_vcpu *vcpu)
  4231. {
  4232. return emulate_instruction(vcpu, 0) == EMULATE_DONE;
  4233. }
  4234. static int handle_invlpg(struct kvm_vcpu *vcpu)
  4235. {
  4236. unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  4237. kvm_mmu_invlpg(vcpu, exit_qualification);
  4238. skip_emulated_instruction(vcpu);
  4239. return 1;
  4240. }
  4241. static int handle_rdpmc(struct kvm_vcpu *vcpu)
  4242. {
  4243. int err;
  4244. err = kvm_rdpmc(vcpu);
  4245. kvm_complete_insn_gp(vcpu, err);
  4246. return 1;
  4247. }
  4248. static int handle_wbinvd(struct kvm_vcpu *vcpu)
  4249. {
  4250. skip_emulated_instruction(vcpu);
  4251. kvm_emulate_wbinvd(vcpu);
  4252. return 1;
  4253. }
  4254. static int handle_xsetbv(struct kvm_vcpu *vcpu)
  4255. {
  4256. u64 new_bv = kvm_read_edx_eax(vcpu);
  4257. u32 index = kvm_register_read(vcpu, VCPU_REGS_RCX);
  4258. if (kvm_set_xcr(vcpu, index, new_bv) == 0)
  4259. skip_emulated_instruction(vcpu);
  4260. return 1;
  4261. }
  4262. static int handle_apic_access(struct kvm_vcpu *vcpu)
  4263. {
  4264. if (likely(fasteoi)) {
  4265. unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  4266. int access_type, offset;
  4267. access_type = exit_qualification & APIC_ACCESS_TYPE;
  4268. offset = exit_qualification & APIC_ACCESS_OFFSET;
  4269. /*
  4270. * Sane guest uses MOV to write EOI, with written value
  4271. * not cared. So make a short-circuit here by avoiding
  4272. * heavy instruction emulation.
  4273. */
  4274. if ((access_type == TYPE_LINEAR_APIC_INST_WRITE) &&
  4275. (offset == APIC_EOI)) {
  4276. kvm_lapic_set_eoi(vcpu);
  4277. skip_emulated_instruction(vcpu);
  4278. return 1;
  4279. }
  4280. }
  4281. return emulate_instruction(vcpu, 0) == EMULATE_DONE;
  4282. }
  4283. static int handle_apic_eoi_induced(struct kvm_vcpu *vcpu)
  4284. {
  4285. unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  4286. int vector = exit_qualification & 0xff;
  4287. /* EOI-induced VM exit is trap-like and thus no need to adjust IP */
  4288. kvm_apic_set_eoi_accelerated(vcpu, vector);
  4289. return 1;
  4290. }
  4291. static int handle_apic_write(struct kvm_vcpu *vcpu)
  4292. {
  4293. unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  4294. u32 offset = exit_qualification & 0xfff;
  4295. /* APIC-write VM exit is trap-like and thus no need to adjust IP */
  4296. kvm_apic_write_nodecode(vcpu, offset);
  4297. return 1;
  4298. }
  4299. static int handle_task_switch(struct kvm_vcpu *vcpu)
  4300. {
  4301. struct vcpu_vmx *vmx = to_vmx(vcpu);
  4302. unsigned long exit_qualification;
  4303. bool has_error_code = false;
  4304. u32 error_code = 0;
  4305. u16 tss_selector;
  4306. int reason, type, idt_v, idt_index;
  4307. idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
  4308. idt_index = (vmx->idt_vectoring_info & VECTORING_INFO_VECTOR_MASK);
  4309. type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK);
  4310. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  4311. reason = (u32)exit_qualification >> 30;
  4312. if (reason == TASK_SWITCH_GATE && idt_v) {
  4313. switch (type) {
  4314. case INTR_TYPE_NMI_INTR:
  4315. vcpu->arch.nmi_injected = false;
  4316. vmx_set_nmi_mask(vcpu, true);
  4317. break;
  4318. case INTR_TYPE_EXT_INTR:
  4319. case INTR_TYPE_SOFT_INTR:
  4320. kvm_clear_interrupt_queue(vcpu);
  4321. break;
  4322. case INTR_TYPE_HARD_EXCEPTION:
  4323. if (vmx->idt_vectoring_info &
  4324. VECTORING_INFO_DELIVER_CODE_MASK) {
  4325. has_error_code = true;
  4326. error_code =
  4327. vmcs_read32(IDT_VECTORING_ERROR_CODE);
  4328. }
  4329. /* fall through */
  4330. case INTR_TYPE_SOFT_EXCEPTION:
  4331. kvm_clear_exception_queue(vcpu);
  4332. break;
  4333. default:
  4334. break;
  4335. }
  4336. }
  4337. tss_selector = exit_qualification;
  4338. if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION &&
  4339. type != INTR_TYPE_EXT_INTR &&
  4340. type != INTR_TYPE_NMI_INTR))
  4341. skip_emulated_instruction(vcpu);
  4342. if (kvm_task_switch(vcpu, tss_selector,
  4343. type == INTR_TYPE_SOFT_INTR ? idt_index : -1, reason,
  4344. has_error_code, error_code) == EMULATE_FAIL) {
  4345. vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
  4346. vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
  4347. vcpu->run->internal.ndata = 0;
  4348. return 0;
  4349. }
  4350. /* clear all local breakpoint enable flags */
  4351. vmcs_writel(GUEST_DR7, vmcs_readl(GUEST_DR7) & ~55);
  4352. /*
  4353. * TODO: What about debug traps on tss switch?
  4354. * Are we supposed to inject them and update dr6?
  4355. */
  4356. return 1;
  4357. }
  4358. static int handle_ept_violation(struct kvm_vcpu *vcpu)
  4359. {
  4360. unsigned long exit_qualification;
  4361. gpa_t gpa;
  4362. u32 error_code;
  4363. int gla_validity;
  4364. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  4365. gla_validity = (exit_qualification >> 7) & 0x3;
  4366. if (gla_validity != 0x3 && gla_validity != 0x1 && gla_validity != 0) {
  4367. printk(KERN_ERR "EPT: Handling EPT violation failed!\n");
  4368. printk(KERN_ERR "EPT: GPA: 0x%lx, GVA: 0x%lx\n",
  4369. (long unsigned int)vmcs_read64(GUEST_PHYSICAL_ADDRESS),
  4370. vmcs_readl(GUEST_LINEAR_ADDRESS));
  4371. printk(KERN_ERR "EPT: Exit qualification is 0x%lx\n",
  4372. (long unsigned int)exit_qualification);
  4373. vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
  4374. vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_VIOLATION;
  4375. return 0;
  4376. }
  4377. gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
  4378. trace_kvm_page_fault(gpa, exit_qualification);
  4379. /* It is a write fault? */
  4380. error_code = exit_qualification & (1U << 1);
  4381. /* ept page table is present? */
  4382. error_code |= (exit_qualification >> 3) & 0x1;
  4383. return kvm_mmu_page_fault(vcpu, gpa, error_code, NULL, 0);
  4384. }
  4385. static u64 ept_rsvd_mask(u64 spte, int level)
  4386. {
  4387. int i;
  4388. u64 mask = 0;
  4389. for (i = 51; i > boot_cpu_data.x86_phys_bits; i--)
  4390. mask |= (1ULL << i);
  4391. if (level > 2)
  4392. /* bits 7:3 reserved */
  4393. mask |= 0xf8;
  4394. else if (level == 2) {
  4395. if (spte & (1ULL << 7))
  4396. /* 2MB ref, bits 20:12 reserved */
  4397. mask |= 0x1ff000;
  4398. else
  4399. /* bits 6:3 reserved */
  4400. mask |= 0x78;
  4401. }
  4402. return mask;
  4403. }
  4404. static void ept_misconfig_inspect_spte(struct kvm_vcpu *vcpu, u64 spte,
  4405. int level)
  4406. {
  4407. printk(KERN_ERR "%s: spte 0x%llx level %d\n", __func__, spte, level);
  4408. /* 010b (write-only) */
  4409. WARN_ON((spte & 0x7) == 0x2);
  4410. /* 110b (write/execute) */
  4411. WARN_ON((spte & 0x7) == 0x6);
  4412. /* 100b (execute-only) and value not supported by logical processor */
  4413. if (!cpu_has_vmx_ept_execute_only())
  4414. WARN_ON((spte & 0x7) == 0x4);
  4415. /* not 000b */
  4416. if ((spte & 0x7)) {
  4417. u64 rsvd_bits = spte & ept_rsvd_mask(spte, level);
  4418. if (rsvd_bits != 0) {
  4419. printk(KERN_ERR "%s: rsvd_bits = 0x%llx\n",
  4420. __func__, rsvd_bits);
  4421. WARN_ON(1);
  4422. }
  4423. if (level == 1 || (level == 2 && (spte & (1ULL << 7)))) {
  4424. u64 ept_mem_type = (spte & 0x38) >> 3;
  4425. if (ept_mem_type == 2 || ept_mem_type == 3 ||
  4426. ept_mem_type == 7) {
  4427. printk(KERN_ERR "%s: ept_mem_type=0x%llx\n",
  4428. __func__, ept_mem_type);
  4429. WARN_ON(1);
  4430. }
  4431. }
  4432. }
  4433. }
  4434. static int handle_ept_misconfig(struct kvm_vcpu *vcpu)
  4435. {
  4436. u64 sptes[4];
  4437. int nr_sptes, i, ret;
  4438. gpa_t gpa;
  4439. gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
  4440. ret = handle_mmio_page_fault_common(vcpu, gpa, true);
  4441. if (likely(ret == 1))
  4442. return x86_emulate_instruction(vcpu, gpa, 0, NULL, 0) ==
  4443. EMULATE_DONE;
  4444. if (unlikely(!ret))
  4445. return 1;
  4446. /* It is the real ept misconfig */
  4447. printk(KERN_ERR "EPT: Misconfiguration.\n");
  4448. printk(KERN_ERR "EPT: GPA: 0x%llx\n", gpa);
  4449. nr_sptes = kvm_mmu_get_spte_hierarchy(vcpu, gpa, sptes);
  4450. for (i = PT64_ROOT_LEVEL; i > PT64_ROOT_LEVEL - nr_sptes; --i)
  4451. ept_misconfig_inspect_spte(vcpu, sptes[i-1], i);
  4452. vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
  4453. vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_MISCONFIG;
  4454. return 0;
  4455. }
  4456. static int handle_nmi_window(struct kvm_vcpu *vcpu)
  4457. {
  4458. u32 cpu_based_vm_exec_control;
  4459. /* clear pending NMI */
  4460. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  4461. cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
  4462. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  4463. ++vcpu->stat.nmi_window_exits;
  4464. kvm_make_request(KVM_REQ_EVENT, vcpu);
  4465. return 1;
  4466. }
  4467. static int handle_invalid_guest_state(struct kvm_vcpu *vcpu)
  4468. {
  4469. struct vcpu_vmx *vmx = to_vmx(vcpu);
  4470. enum emulation_result err = EMULATE_DONE;
  4471. int ret = 1;
  4472. u32 cpu_exec_ctrl;
  4473. bool intr_window_requested;
  4474. unsigned count = 130;
  4475. cpu_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  4476. intr_window_requested = cpu_exec_ctrl & CPU_BASED_VIRTUAL_INTR_PENDING;
  4477. while (!guest_state_valid(vcpu) && count-- != 0) {
  4478. if (intr_window_requested && vmx_interrupt_allowed(vcpu))
  4479. return handle_interrupt_window(&vmx->vcpu);
  4480. if (test_bit(KVM_REQ_EVENT, &vcpu->requests))
  4481. return 1;
  4482. err = emulate_instruction(vcpu, 0);
  4483. if (err == EMULATE_DO_MMIO) {
  4484. ret = 0;
  4485. goto out;
  4486. }
  4487. if (err != EMULATE_DONE) {
  4488. vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
  4489. vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
  4490. vcpu->run->internal.ndata = 0;
  4491. return 0;
  4492. }
  4493. if (signal_pending(current))
  4494. goto out;
  4495. if (need_resched())
  4496. schedule();
  4497. }
  4498. vmx->emulation_required = emulation_required(vcpu);
  4499. out:
  4500. return ret;
  4501. }
  4502. /*
  4503. * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE
  4504. * exiting, so only get here on cpu with PAUSE-Loop-Exiting.
  4505. */
  4506. static int handle_pause(struct kvm_vcpu *vcpu)
  4507. {
  4508. skip_emulated_instruction(vcpu);
  4509. kvm_vcpu_on_spin(vcpu);
  4510. return 1;
  4511. }
  4512. static int handle_invalid_op(struct kvm_vcpu *vcpu)
  4513. {
  4514. kvm_queue_exception(vcpu, UD_VECTOR);
  4515. return 1;
  4516. }
  4517. /*
  4518. * To run an L2 guest, we need a vmcs02 based on the L1-specified vmcs12.
  4519. * We could reuse a single VMCS for all the L2 guests, but we also want the
  4520. * option to allocate a separate vmcs02 for each separate loaded vmcs12 - this
  4521. * allows keeping them loaded on the processor, and in the future will allow
  4522. * optimizations where prepare_vmcs02 doesn't need to set all the fields on
  4523. * every entry if they never change.
  4524. * So we keep, in vmx->nested.vmcs02_pool, a cache of size VMCS02_POOL_SIZE
  4525. * (>=0) with a vmcs02 for each recently loaded vmcs12s, most recent first.
  4526. *
  4527. * The following functions allocate and free a vmcs02 in this pool.
  4528. */
  4529. /* Get a VMCS from the pool to use as vmcs02 for the current vmcs12. */
  4530. static struct loaded_vmcs *nested_get_current_vmcs02(struct vcpu_vmx *vmx)
  4531. {
  4532. struct vmcs02_list *item;
  4533. list_for_each_entry(item, &vmx->nested.vmcs02_pool, list)
  4534. if (item->vmptr == vmx->nested.current_vmptr) {
  4535. list_move(&item->list, &vmx->nested.vmcs02_pool);
  4536. return &item->vmcs02;
  4537. }
  4538. if (vmx->nested.vmcs02_num >= max(VMCS02_POOL_SIZE, 1)) {
  4539. /* Recycle the least recently used VMCS. */
  4540. item = list_entry(vmx->nested.vmcs02_pool.prev,
  4541. struct vmcs02_list, list);
  4542. item->vmptr = vmx->nested.current_vmptr;
  4543. list_move(&item->list, &vmx->nested.vmcs02_pool);
  4544. return &item->vmcs02;
  4545. }
  4546. /* Create a new VMCS */
  4547. item = (struct vmcs02_list *)
  4548. kmalloc(sizeof(struct vmcs02_list), GFP_KERNEL);
  4549. if (!item)
  4550. return NULL;
  4551. item->vmcs02.vmcs = alloc_vmcs();
  4552. if (!item->vmcs02.vmcs) {
  4553. kfree(item);
  4554. return NULL;
  4555. }
  4556. loaded_vmcs_init(&item->vmcs02);
  4557. item->vmptr = vmx->nested.current_vmptr;
  4558. list_add(&(item->list), &(vmx->nested.vmcs02_pool));
  4559. vmx->nested.vmcs02_num++;
  4560. return &item->vmcs02;
  4561. }
  4562. /* Free and remove from pool a vmcs02 saved for a vmcs12 (if there is one) */
  4563. static void nested_free_vmcs02(struct vcpu_vmx *vmx, gpa_t vmptr)
  4564. {
  4565. struct vmcs02_list *item;
  4566. list_for_each_entry(item, &vmx->nested.vmcs02_pool, list)
  4567. if (item->vmptr == vmptr) {
  4568. free_loaded_vmcs(&item->vmcs02);
  4569. list_del(&item->list);
  4570. kfree(item);
  4571. vmx->nested.vmcs02_num--;
  4572. return;
  4573. }
  4574. }
  4575. /*
  4576. * Free all VMCSs saved for this vcpu, except the one pointed by
  4577. * vmx->loaded_vmcs. These include the VMCSs in vmcs02_pool (except the one
  4578. * currently used, if running L2), and vmcs01 when running L2.
  4579. */
  4580. static void nested_free_all_saved_vmcss(struct vcpu_vmx *vmx)
  4581. {
  4582. struct vmcs02_list *item, *n;
  4583. list_for_each_entry_safe(item, n, &vmx->nested.vmcs02_pool, list) {
  4584. if (vmx->loaded_vmcs != &item->vmcs02)
  4585. free_loaded_vmcs(&item->vmcs02);
  4586. list_del(&item->list);
  4587. kfree(item);
  4588. }
  4589. vmx->nested.vmcs02_num = 0;
  4590. if (vmx->loaded_vmcs != &vmx->vmcs01)
  4591. free_loaded_vmcs(&vmx->vmcs01);
  4592. }
  4593. /*
  4594. * Emulate the VMXON instruction.
  4595. * Currently, we just remember that VMX is active, and do not save or even
  4596. * inspect the argument to VMXON (the so-called "VMXON pointer") because we
  4597. * do not currently need to store anything in that guest-allocated memory
  4598. * region. Consequently, VMCLEAR and VMPTRLD also do not verify that the their
  4599. * argument is different from the VMXON pointer (which the spec says they do).
  4600. */
  4601. static int handle_vmon(struct kvm_vcpu *vcpu)
  4602. {
  4603. struct kvm_segment cs;
  4604. struct vcpu_vmx *vmx = to_vmx(vcpu);
  4605. /* The Intel VMX Instruction Reference lists a bunch of bits that
  4606. * are prerequisite to running VMXON, most notably cr4.VMXE must be
  4607. * set to 1 (see vmx_set_cr4() for when we allow the guest to set this).
  4608. * Otherwise, we should fail with #UD. We test these now:
  4609. */
  4610. if (!kvm_read_cr4_bits(vcpu, X86_CR4_VMXE) ||
  4611. !kvm_read_cr0_bits(vcpu, X86_CR0_PE) ||
  4612. (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
  4613. kvm_queue_exception(vcpu, UD_VECTOR);
  4614. return 1;
  4615. }
  4616. vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
  4617. if (is_long_mode(vcpu) && !cs.l) {
  4618. kvm_queue_exception(vcpu, UD_VECTOR);
  4619. return 1;
  4620. }
  4621. if (vmx_get_cpl(vcpu)) {
  4622. kvm_inject_gp(vcpu, 0);
  4623. return 1;
  4624. }
  4625. INIT_LIST_HEAD(&(vmx->nested.vmcs02_pool));
  4626. vmx->nested.vmcs02_num = 0;
  4627. vmx->nested.vmxon = true;
  4628. skip_emulated_instruction(vcpu);
  4629. return 1;
  4630. }
  4631. /*
  4632. * Intel's VMX Instruction Reference specifies a common set of prerequisites
  4633. * for running VMX instructions (except VMXON, whose prerequisites are
  4634. * slightly different). It also specifies what exception to inject otherwise.
  4635. */
  4636. static int nested_vmx_check_permission(struct kvm_vcpu *vcpu)
  4637. {
  4638. struct kvm_segment cs;
  4639. struct vcpu_vmx *vmx = to_vmx(vcpu);
  4640. if (!vmx->nested.vmxon) {
  4641. kvm_queue_exception(vcpu, UD_VECTOR);
  4642. return 0;
  4643. }
  4644. vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
  4645. if ((vmx_get_rflags(vcpu) & X86_EFLAGS_VM) ||
  4646. (is_long_mode(vcpu) && !cs.l)) {
  4647. kvm_queue_exception(vcpu, UD_VECTOR);
  4648. return 0;
  4649. }
  4650. if (vmx_get_cpl(vcpu)) {
  4651. kvm_inject_gp(vcpu, 0);
  4652. return 0;
  4653. }
  4654. return 1;
  4655. }
  4656. /*
  4657. * Free whatever needs to be freed from vmx->nested when L1 goes down, or
  4658. * just stops using VMX.
  4659. */
  4660. static void free_nested(struct vcpu_vmx *vmx)
  4661. {
  4662. if (!vmx->nested.vmxon)
  4663. return;
  4664. vmx->nested.vmxon = false;
  4665. if (vmx->nested.current_vmptr != -1ull) {
  4666. kunmap(vmx->nested.current_vmcs12_page);
  4667. nested_release_page(vmx->nested.current_vmcs12_page);
  4668. vmx->nested.current_vmptr = -1ull;
  4669. vmx->nested.current_vmcs12 = NULL;
  4670. }
  4671. /* Unpin physical memory we referred to in current vmcs02 */
  4672. if (vmx->nested.apic_access_page) {
  4673. nested_release_page(vmx->nested.apic_access_page);
  4674. vmx->nested.apic_access_page = 0;
  4675. }
  4676. nested_free_all_saved_vmcss(vmx);
  4677. }
  4678. /* Emulate the VMXOFF instruction */
  4679. static int handle_vmoff(struct kvm_vcpu *vcpu)
  4680. {
  4681. if (!nested_vmx_check_permission(vcpu))
  4682. return 1;
  4683. free_nested(to_vmx(vcpu));
  4684. skip_emulated_instruction(vcpu);
  4685. return 1;
  4686. }
  4687. /*
  4688. * Decode the memory-address operand of a vmx instruction, as recorded on an
  4689. * exit caused by such an instruction (run by a guest hypervisor).
  4690. * On success, returns 0. When the operand is invalid, returns 1 and throws
  4691. * #UD or #GP.
  4692. */
  4693. static int get_vmx_mem_address(struct kvm_vcpu *vcpu,
  4694. unsigned long exit_qualification,
  4695. u32 vmx_instruction_info, gva_t *ret)
  4696. {
  4697. /*
  4698. * According to Vol. 3B, "Information for VM Exits Due to Instruction
  4699. * Execution", on an exit, vmx_instruction_info holds most of the
  4700. * addressing components of the operand. Only the displacement part
  4701. * is put in exit_qualification (see 3B, "Basic VM-Exit Information").
  4702. * For how an actual address is calculated from all these components,
  4703. * refer to Vol. 1, "Operand Addressing".
  4704. */
  4705. int scaling = vmx_instruction_info & 3;
  4706. int addr_size = (vmx_instruction_info >> 7) & 7;
  4707. bool is_reg = vmx_instruction_info & (1u << 10);
  4708. int seg_reg = (vmx_instruction_info >> 15) & 7;
  4709. int index_reg = (vmx_instruction_info >> 18) & 0xf;
  4710. bool index_is_valid = !(vmx_instruction_info & (1u << 22));
  4711. int base_reg = (vmx_instruction_info >> 23) & 0xf;
  4712. bool base_is_valid = !(vmx_instruction_info & (1u << 27));
  4713. if (is_reg) {
  4714. kvm_queue_exception(vcpu, UD_VECTOR);
  4715. return 1;
  4716. }
  4717. /* Addr = segment_base + offset */
  4718. /* offset = base + [index * scale] + displacement */
  4719. *ret = vmx_get_segment_base(vcpu, seg_reg);
  4720. if (base_is_valid)
  4721. *ret += kvm_register_read(vcpu, base_reg);
  4722. if (index_is_valid)
  4723. *ret += kvm_register_read(vcpu, index_reg)<<scaling;
  4724. *ret += exit_qualification; /* holds the displacement */
  4725. if (addr_size == 1) /* 32 bit */
  4726. *ret &= 0xffffffff;
  4727. /*
  4728. * TODO: throw #GP (and return 1) in various cases that the VM*
  4729. * instructions require it - e.g., offset beyond segment limit,
  4730. * unusable or unreadable/unwritable segment, non-canonical 64-bit
  4731. * address, and so on. Currently these are not checked.
  4732. */
  4733. return 0;
  4734. }
  4735. /*
  4736. * The following 3 functions, nested_vmx_succeed()/failValid()/failInvalid(),
  4737. * set the success or error code of an emulated VMX instruction, as specified
  4738. * by Vol 2B, VMX Instruction Reference, "Conventions".
  4739. */
  4740. static void nested_vmx_succeed(struct kvm_vcpu *vcpu)
  4741. {
  4742. vmx_set_rflags(vcpu, vmx_get_rflags(vcpu)
  4743. & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
  4744. X86_EFLAGS_ZF | X86_EFLAGS_SF | X86_EFLAGS_OF));
  4745. }
  4746. static void nested_vmx_failInvalid(struct kvm_vcpu *vcpu)
  4747. {
  4748. vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
  4749. & ~(X86_EFLAGS_PF | X86_EFLAGS_AF | X86_EFLAGS_ZF |
  4750. X86_EFLAGS_SF | X86_EFLAGS_OF))
  4751. | X86_EFLAGS_CF);
  4752. }
  4753. static void nested_vmx_failValid(struct kvm_vcpu *vcpu,
  4754. u32 vm_instruction_error)
  4755. {
  4756. if (to_vmx(vcpu)->nested.current_vmptr == -1ull) {
  4757. /*
  4758. * failValid writes the error number to the current VMCS, which
  4759. * can't be done there isn't a current VMCS.
  4760. */
  4761. nested_vmx_failInvalid(vcpu);
  4762. return;
  4763. }
  4764. vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
  4765. & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
  4766. X86_EFLAGS_SF | X86_EFLAGS_OF))
  4767. | X86_EFLAGS_ZF);
  4768. get_vmcs12(vcpu)->vm_instruction_error = vm_instruction_error;
  4769. }
  4770. /* Emulate the VMCLEAR instruction */
  4771. static int handle_vmclear(struct kvm_vcpu *vcpu)
  4772. {
  4773. struct vcpu_vmx *vmx = to_vmx(vcpu);
  4774. gva_t gva;
  4775. gpa_t vmptr;
  4776. struct vmcs12 *vmcs12;
  4777. struct page *page;
  4778. struct x86_exception e;
  4779. if (!nested_vmx_check_permission(vcpu))
  4780. return 1;
  4781. if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
  4782. vmcs_read32(VMX_INSTRUCTION_INFO), &gva))
  4783. return 1;
  4784. if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, &vmptr,
  4785. sizeof(vmptr), &e)) {
  4786. kvm_inject_page_fault(vcpu, &e);
  4787. return 1;
  4788. }
  4789. if (!IS_ALIGNED(vmptr, PAGE_SIZE)) {
  4790. nested_vmx_failValid(vcpu, VMXERR_VMCLEAR_INVALID_ADDRESS);
  4791. skip_emulated_instruction(vcpu);
  4792. return 1;
  4793. }
  4794. if (vmptr == vmx->nested.current_vmptr) {
  4795. kunmap(vmx->nested.current_vmcs12_page);
  4796. nested_release_page(vmx->nested.current_vmcs12_page);
  4797. vmx->nested.current_vmptr = -1ull;
  4798. vmx->nested.current_vmcs12 = NULL;
  4799. }
  4800. page = nested_get_page(vcpu, vmptr);
  4801. if (page == NULL) {
  4802. /*
  4803. * For accurate processor emulation, VMCLEAR beyond available
  4804. * physical memory should do nothing at all. However, it is
  4805. * possible that a nested vmx bug, not a guest hypervisor bug,
  4806. * resulted in this case, so let's shut down before doing any
  4807. * more damage:
  4808. */
  4809. kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
  4810. return 1;
  4811. }
  4812. vmcs12 = kmap(page);
  4813. vmcs12->launch_state = 0;
  4814. kunmap(page);
  4815. nested_release_page(page);
  4816. nested_free_vmcs02(vmx, vmptr);
  4817. skip_emulated_instruction(vcpu);
  4818. nested_vmx_succeed(vcpu);
  4819. return 1;
  4820. }
  4821. static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch);
  4822. /* Emulate the VMLAUNCH instruction */
  4823. static int handle_vmlaunch(struct kvm_vcpu *vcpu)
  4824. {
  4825. return nested_vmx_run(vcpu, true);
  4826. }
  4827. /* Emulate the VMRESUME instruction */
  4828. static int handle_vmresume(struct kvm_vcpu *vcpu)
  4829. {
  4830. return nested_vmx_run(vcpu, false);
  4831. }
  4832. enum vmcs_field_type {
  4833. VMCS_FIELD_TYPE_U16 = 0,
  4834. VMCS_FIELD_TYPE_U64 = 1,
  4835. VMCS_FIELD_TYPE_U32 = 2,
  4836. VMCS_FIELD_TYPE_NATURAL_WIDTH = 3
  4837. };
  4838. static inline int vmcs_field_type(unsigned long field)
  4839. {
  4840. if (0x1 & field) /* the *_HIGH fields are all 32 bit */
  4841. return VMCS_FIELD_TYPE_U32;
  4842. return (field >> 13) & 0x3 ;
  4843. }
  4844. static inline int vmcs_field_readonly(unsigned long field)
  4845. {
  4846. return (((field >> 10) & 0x3) == 1);
  4847. }
  4848. /*
  4849. * Read a vmcs12 field. Since these can have varying lengths and we return
  4850. * one type, we chose the biggest type (u64) and zero-extend the return value
  4851. * to that size. Note that the caller, handle_vmread, might need to use only
  4852. * some of the bits we return here (e.g., on 32-bit guests, only 32 bits of
  4853. * 64-bit fields are to be returned).
  4854. */
  4855. static inline bool vmcs12_read_any(struct kvm_vcpu *vcpu,
  4856. unsigned long field, u64 *ret)
  4857. {
  4858. short offset = vmcs_field_to_offset(field);
  4859. char *p;
  4860. if (offset < 0)
  4861. return 0;
  4862. p = ((char *)(get_vmcs12(vcpu))) + offset;
  4863. switch (vmcs_field_type(field)) {
  4864. case VMCS_FIELD_TYPE_NATURAL_WIDTH:
  4865. *ret = *((natural_width *)p);
  4866. return 1;
  4867. case VMCS_FIELD_TYPE_U16:
  4868. *ret = *((u16 *)p);
  4869. return 1;
  4870. case VMCS_FIELD_TYPE_U32:
  4871. *ret = *((u32 *)p);
  4872. return 1;
  4873. case VMCS_FIELD_TYPE_U64:
  4874. *ret = *((u64 *)p);
  4875. return 1;
  4876. default:
  4877. return 0; /* can never happen. */
  4878. }
  4879. }
  4880. /*
  4881. * VMX instructions which assume a current vmcs12 (i.e., that VMPTRLD was
  4882. * used before) all generate the same failure when it is missing.
  4883. */
  4884. static int nested_vmx_check_vmcs12(struct kvm_vcpu *vcpu)
  4885. {
  4886. struct vcpu_vmx *vmx = to_vmx(vcpu);
  4887. if (vmx->nested.current_vmptr == -1ull) {
  4888. nested_vmx_failInvalid(vcpu);
  4889. skip_emulated_instruction(vcpu);
  4890. return 0;
  4891. }
  4892. return 1;
  4893. }
  4894. static int handle_vmread(struct kvm_vcpu *vcpu)
  4895. {
  4896. unsigned long field;
  4897. u64 field_value;
  4898. unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  4899. u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
  4900. gva_t gva = 0;
  4901. if (!nested_vmx_check_permission(vcpu) ||
  4902. !nested_vmx_check_vmcs12(vcpu))
  4903. return 1;
  4904. /* Decode instruction info and find the field to read */
  4905. field = kvm_register_read(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
  4906. /* Read the field, zero-extended to a u64 field_value */
  4907. if (!vmcs12_read_any(vcpu, field, &field_value)) {
  4908. nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
  4909. skip_emulated_instruction(vcpu);
  4910. return 1;
  4911. }
  4912. /*
  4913. * Now copy part of this value to register or memory, as requested.
  4914. * Note that the number of bits actually copied is 32 or 64 depending
  4915. * on the guest's mode (32 or 64 bit), not on the given field's length.
  4916. */
  4917. if (vmx_instruction_info & (1u << 10)) {
  4918. kvm_register_write(vcpu, (((vmx_instruction_info) >> 3) & 0xf),
  4919. field_value);
  4920. } else {
  4921. if (get_vmx_mem_address(vcpu, exit_qualification,
  4922. vmx_instruction_info, &gva))
  4923. return 1;
  4924. /* _system ok, as nested_vmx_check_permission verified cpl=0 */
  4925. kvm_write_guest_virt_system(&vcpu->arch.emulate_ctxt, gva,
  4926. &field_value, (is_long_mode(vcpu) ? 8 : 4), NULL);
  4927. }
  4928. nested_vmx_succeed(vcpu);
  4929. skip_emulated_instruction(vcpu);
  4930. return 1;
  4931. }
  4932. static int handle_vmwrite(struct kvm_vcpu *vcpu)
  4933. {
  4934. unsigned long field;
  4935. gva_t gva;
  4936. unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  4937. u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
  4938. char *p;
  4939. short offset;
  4940. /* The value to write might be 32 or 64 bits, depending on L1's long
  4941. * mode, and eventually we need to write that into a field of several
  4942. * possible lengths. The code below first zero-extends the value to 64
  4943. * bit (field_value), and then copies only the approriate number of
  4944. * bits into the vmcs12 field.
  4945. */
  4946. u64 field_value = 0;
  4947. struct x86_exception e;
  4948. if (!nested_vmx_check_permission(vcpu) ||
  4949. !nested_vmx_check_vmcs12(vcpu))
  4950. return 1;
  4951. if (vmx_instruction_info & (1u << 10))
  4952. field_value = kvm_register_read(vcpu,
  4953. (((vmx_instruction_info) >> 3) & 0xf));
  4954. else {
  4955. if (get_vmx_mem_address(vcpu, exit_qualification,
  4956. vmx_instruction_info, &gva))
  4957. return 1;
  4958. if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva,
  4959. &field_value, (is_long_mode(vcpu) ? 8 : 4), &e)) {
  4960. kvm_inject_page_fault(vcpu, &e);
  4961. return 1;
  4962. }
  4963. }
  4964. field = kvm_register_read(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
  4965. if (vmcs_field_readonly(field)) {
  4966. nested_vmx_failValid(vcpu,
  4967. VMXERR_VMWRITE_READ_ONLY_VMCS_COMPONENT);
  4968. skip_emulated_instruction(vcpu);
  4969. return 1;
  4970. }
  4971. offset = vmcs_field_to_offset(field);
  4972. if (offset < 0) {
  4973. nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
  4974. skip_emulated_instruction(vcpu);
  4975. return 1;
  4976. }
  4977. p = ((char *) get_vmcs12(vcpu)) + offset;
  4978. switch (vmcs_field_type(field)) {
  4979. case VMCS_FIELD_TYPE_U16:
  4980. *(u16 *)p = field_value;
  4981. break;
  4982. case VMCS_FIELD_TYPE_U32:
  4983. *(u32 *)p = field_value;
  4984. break;
  4985. case VMCS_FIELD_TYPE_U64:
  4986. *(u64 *)p = field_value;
  4987. break;
  4988. case VMCS_FIELD_TYPE_NATURAL_WIDTH:
  4989. *(natural_width *)p = field_value;
  4990. break;
  4991. default:
  4992. nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
  4993. skip_emulated_instruction(vcpu);
  4994. return 1;
  4995. }
  4996. nested_vmx_succeed(vcpu);
  4997. skip_emulated_instruction(vcpu);
  4998. return 1;
  4999. }
  5000. /* Emulate the VMPTRLD instruction */
  5001. static int handle_vmptrld(struct kvm_vcpu *vcpu)
  5002. {
  5003. struct vcpu_vmx *vmx = to_vmx(vcpu);
  5004. gva_t gva;
  5005. gpa_t vmptr;
  5006. struct x86_exception e;
  5007. if (!nested_vmx_check_permission(vcpu))
  5008. return 1;
  5009. if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
  5010. vmcs_read32(VMX_INSTRUCTION_INFO), &gva))
  5011. return 1;
  5012. if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, &vmptr,
  5013. sizeof(vmptr), &e)) {
  5014. kvm_inject_page_fault(vcpu, &e);
  5015. return 1;
  5016. }
  5017. if (!IS_ALIGNED(vmptr, PAGE_SIZE)) {
  5018. nested_vmx_failValid(vcpu, VMXERR_VMPTRLD_INVALID_ADDRESS);
  5019. skip_emulated_instruction(vcpu);
  5020. return 1;
  5021. }
  5022. if (vmx->nested.current_vmptr != vmptr) {
  5023. struct vmcs12 *new_vmcs12;
  5024. struct page *page;
  5025. page = nested_get_page(vcpu, vmptr);
  5026. if (page == NULL) {
  5027. nested_vmx_failInvalid(vcpu);
  5028. skip_emulated_instruction(vcpu);
  5029. return 1;
  5030. }
  5031. new_vmcs12 = kmap(page);
  5032. if (new_vmcs12->revision_id != VMCS12_REVISION) {
  5033. kunmap(page);
  5034. nested_release_page_clean(page);
  5035. nested_vmx_failValid(vcpu,
  5036. VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
  5037. skip_emulated_instruction(vcpu);
  5038. return 1;
  5039. }
  5040. if (vmx->nested.current_vmptr != -1ull) {
  5041. kunmap(vmx->nested.current_vmcs12_page);
  5042. nested_release_page(vmx->nested.current_vmcs12_page);
  5043. }
  5044. vmx->nested.current_vmptr = vmptr;
  5045. vmx->nested.current_vmcs12 = new_vmcs12;
  5046. vmx->nested.current_vmcs12_page = page;
  5047. }
  5048. nested_vmx_succeed(vcpu);
  5049. skip_emulated_instruction(vcpu);
  5050. return 1;
  5051. }
  5052. /* Emulate the VMPTRST instruction */
  5053. static int handle_vmptrst(struct kvm_vcpu *vcpu)
  5054. {
  5055. unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  5056. u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
  5057. gva_t vmcs_gva;
  5058. struct x86_exception e;
  5059. if (!nested_vmx_check_permission(vcpu))
  5060. return 1;
  5061. if (get_vmx_mem_address(vcpu, exit_qualification,
  5062. vmx_instruction_info, &vmcs_gva))
  5063. return 1;
  5064. /* ok to use *_system, as nested_vmx_check_permission verified cpl=0 */
  5065. if (kvm_write_guest_virt_system(&vcpu->arch.emulate_ctxt, vmcs_gva,
  5066. (void *)&to_vmx(vcpu)->nested.current_vmptr,
  5067. sizeof(u64), &e)) {
  5068. kvm_inject_page_fault(vcpu, &e);
  5069. return 1;
  5070. }
  5071. nested_vmx_succeed(vcpu);
  5072. skip_emulated_instruction(vcpu);
  5073. return 1;
  5074. }
  5075. /*
  5076. * The exit handlers return 1 if the exit was handled fully and guest execution
  5077. * may resume. Otherwise they set the kvm_run parameter to indicate what needs
  5078. * to be done to userspace and return 0.
  5079. */
  5080. static int (*const kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = {
  5081. [EXIT_REASON_EXCEPTION_NMI] = handle_exception,
  5082. [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt,
  5083. [EXIT_REASON_TRIPLE_FAULT] = handle_triple_fault,
  5084. [EXIT_REASON_NMI_WINDOW] = handle_nmi_window,
  5085. [EXIT_REASON_IO_INSTRUCTION] = handle_io,
  5086. [EXIT_REASON_CR_ACCESS] = handle_cr,
  5087. [EXIT_REASON_DR_ACCESS] = handle_dr,
  5088. [EXIT_REASON_CPUID] = handle_cpuid,
  5089. [EXIT_REASON_MSR_READ] = handle_rdmsr,
  5090. [EXIT_REASON_MSR_WRITE] = handle_wrmsr,
  5091. [EXIT_REASON_PENDING_INTERRUPT] = handle_interrupt_window,
  5092. [EXIT_REASON_HLT] = handle_halt,
  5093. [EXIT_REASON_INVD] = handle_invd,
  5094. [EXIT_REASON_INVLPG] = handle_invlpg,
  5095. [EXIT_REASON_RDPMC] = handle_rdpmc,
  5096. [EXIT_REASON_VMCALL] = handle_vmcall,
  5097. [EXIT_REASON_VMCLEAR] = handle_vmclear,
  5098. [EXIT_REASON_VMLAUNCH] = handle_vmlaunch,
  5099. [EXIT_REASON_VMPTRLD] = handle_vmptrld,
  5100. [EXIT_REASON_VMPTRST] = handle_vmptrst,
  5101. [EXIT_REASON_VMREAD] = handle_vmread,
  5102. [EXIT_REASON_VMRESUME] = handle_vmresume,
  5103. [EXIT_REASON_VMWRITE] = handle_vmwrite,
  5104. [EXIT_REASON_VMOFF] = handle_vmoff,
  5105. [EXIT_REASON_VMON] = handle_vmon,
  5106. [EXIT_REASON_TPR_BELOW_THRESHOLD] = handle_tpr_below_threshold,
  5107. [EXIT_REASON_APIC_ACCESS] = handle_apic_access,
  5108. [EXIT_REASON_APIC_WRITE] = handle_apic_write,
  5109. [EXIT_REASON_EOI_INDUCED] = handle_apic_eoi_induced,
  5110. [EXIT_REASON_WBINVD] = handle_wbinvd,
  5111. [EXIT_REASON_XSETBV] = handle_xsetbv,
  5112. [EXIT_REASON_TASK_SWITCH] = handle_task_switch,
  5113. [EXIT_REASON_MCE_DURING_VMENTRY] = handle_machine_check,
  5114. [EXIT_REASON_EPT_VIOLATION] = handle_ept_violation,
  5115. [EXIT_REASON_EPT_MISCONFIG] = handle_ept_misconfig,
  5116. [EXIT_REASON_PAUSE_INSTRUCTION] = handle_pause,
  5117. [EXIT_REASON_MWAIT_INSTRUCTION] = handle_invalid_op,
  5118. [EXIT_REASON_MONITOR_INSTRUCTION] = handle_invalid_op,
  5119. };
  5120. static const int kvm_vmx_max_exit_handlers =
  5121. ARRAY_SIZE(kvm_vmx_exit_handlers);
  5122. static bool nested_vmx_exit_handled_io(struct kvm_vcpu *vcpu,
  5123. struct vmcs12 *vmcs12)
  5124. {
  5125. unsigned long exit_qualification;
  5126. gpa_t bitmap, last_bitmap;
  5127. unsigned int port;
  5128. int size;
  5129. u8 b;
  5130. if (nested_cpu_has(vmcs12, CPU_BASED_UNCOND_IO_EXITING))
  5131. return 1;
  5132. if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
  5133. return 0;
  5134. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  5135. port = exit_qualification >> 16;
  5136. size = (exit_qualification & 7) + 1;
  5137. last_bitmap = (gpa_t)-1;
  5138. b = -1;
  5139. while (size > 0) {
  5140. if (port < 0x8000)
  5141. bitmap = vmcs12->io_bitmap_a;
  5142. else if (port < 0x10000)
  5143. bitmap = vmcs12->io_bitmap_b;
  5144. else
  5145. return 1;
  5146. bitmap += (port & 0x7fff) / 8;
  5147. if (last_bitmap != bitmap)
  5148. if (kvm_read_guest(vcpu->kvm, bitmap, &b, 1))
  5149. return 1;
  5150. if (b & (1 << (port & 7)))
  5151. return 1;
  5152. port++;
  5153. size--;
  5154. last_bitmap = bitmap;
  5155. }
  5156. return 0;
  5157. }
  5158. /*
  5159. * Return 1 if we should exit from L2 to L1 to handle an MSR access access,
  5160. * rather than handle it ourselves in L0. I.e., check whether L1 expressed
  5161. * disinterest in the current event (read or write a specific MSR) by using an
  5162. * MSR bitmap. This may be the case even when L0 doesn't use MSR bitmaps.
  5163. */
  5164. static bool nested_vmx_exit_handled_msr(struct kvm_vcpu *vcpu,
  5165. struct vmcs12 *vmcs12, u32 exit_reason)
  5166. {
  5167. u32 msr_index = vcpu->arch.regs[VCPU_REGS_RCX];
  5168. gpa_t bitmap;
  5169. if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
  5170. return 1;
  5171. /*
  5172. * The MSR_BITMAP page is divided into four 1024-byte bitmaps,
  5173. * for the four combinations of read/write and low/high MSR numbers.
  5174. * First we need to figure out which of the four to use:
  5175. */
  5176. bitmap = vmcs12->msr_bitmap;
  5177. if (exit_reason == EXIT_REASON_MSR_WRITE)
  5178. bitmap += 2048;
  5179. if (msr_index >= 0xc0000000) {
  5180. msr_index -= 0xc0000000;
  5181. bitmap += 1024;
  5182. }
  5183. /* Then read the msr_index'th bit from this bitmap: */
  5184. if (msr_index < 1024*8) {
  5185. unsigned char b;
  5186. if (kvm_read_guest(vcpu->kvm, bitmap + msr_index/8, &b, 1))
  5187. return 1;
  5188. return 1 & (b >> (msr_index & 7));
  5189. } else
  5190. return 1; /* let L1 handle the wrong parameter */
  5191. }
  5192. /*
  5193. * Return 1 if we should exit from L2 to L1 to handle a CR access exit,
  5194. * rather than handle it ourselves in L0. I.e., check if L1 wanted to
  5195. * intercept (via guest_host_mask etc.) the current event.
  5196. */
  5197. static bool nested_vmx_exit_handled_cr(struct kvm_vcpu *vcpu,
  5198. struct vmcs12 *vmcs12)
  5199. {
  5200. unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  5201. int cr = exit_qualification & 15;
  5202. int reg = (exit_qualification >> 8) & 15;
  5203. unsigned long val = kvm_register_read(vcpu, reg);
  5204. switch ((exit_qualification >> 4) & 3) {
  5205. case 0: /* mov to cr */
  5206. switch (cr) {
  5207. case 0:
  5208. if (vmcs12->cr0_guest_host_mask &
  5209. (val ^ vmcs12->cr0_read_shadow))
  5210. return 1;
  5211. break;
  5212. case 3:
  5213. if ((vmcs12->cr3_target_count >= 1 &&
  5214. vmcs12->cr3_target_value0 == val) ||
  5215. (vmcs12->cr3_target_count >= 2 &&
  5216. vmcs12->cr3_target_value1 == val) ||
  5217. (vmcs12->cr3_target_count >= 3 &&
  5218. vmcs12->cr3_target_value2 == val) ||
  5219. (vmcs12->cr3_target_count >= 4 &&
  5220. vmcs12->cr3_target_value3 == val))
  5221. return 0;
  5222. if (nested_cpu_has(vmcs12, CPU_BASED_CR3_LOAD_EXITING))
  5223. return 1;
  5224. break;
  5225. case 4:
  5226. if (vmcs12->cr4_guest_host_mask &
  5227. (vmcs12->cr4_read_shadow ^ val))
  5228. return 1;
  5229. break;
  5230. case 8:
  5231. if (nested_cpu_has(vmcs12, CPU_BASED_CR8_LOAD_EXITING))
  5232. return 1;
  5233. break;
  5234. }
  5235. break;
  5236. case 2: /* clts */
  5237. if ((vmcs12->cr0_guest_host_mask & X86_CR0_TS) &&
  5238. (vmcs12->cr0_read_shadow & X86_CR0_TS))
  5239. return 1;
  5240. break;
  5241. case 1: /* mov from cr */
  5242. switch (cr) {
  5243. case 3:
  5244. if (vmcs12->cpu_based_vm_exec_control &
  5245. CPU_BASED_CR3_STORE_EXITING)
  5246. return 1;
  5247. break;
  5248. case 8:
  5249. if (vmcs12->cpu_based_vm_exec_control &
  5250. CPU_BASED_CR8_STORE_EXITING)
  5251. return 1;
  5252. break;
  5253. }
  5254. break;
  5255. case 3: /* lmsw */
  5256. /*
  5257. * lmsw can change bits 1..3 of cr0, and only set bit 0 of
  5258. * cr0. Other attempted changes are ignored, with no exit.
  5259. */
  5260. if (vmcs12->cr0_guest_host_mask & 0xe &
  5261. (val ^ vmcs12->cr0_read_shadow))
  5262. return 1;
  5263. if ((vmcs12->cr0_guest_host_mask & 0x1) &&
  5264. !(vmcs12->cr0_read_shadow & 0x1) &&
  5265. (val & 0x1))
  5266. return 1;
  5267. break;
  5268. }
  5269. return 0;
  5270. }
  5271. /*
  5272. * Return 1 if we should exit from L2 to L1 to handle an exit, or 0 if we
  5273. * should handle it ourselves in L0 (and then continue L2). Only call this
  5274. * when in is_guest_mode (L2).
  5275. */
  5276. static bool nested_vmx_exit_handled(struct kvm_vcpu *vcpu)
  5277. {
  5278. u32 intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
  5279. struct vcpu_vmx *vmx = to_vmx(vcpu);
  5280. struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
  5281. u32 exit_reason = vmx->exit_reason;
  5282. if (vmx->nested.nested_run_pending)
  5283. return 0;
  5284. if (unlikely(vmx->fail)) {
  5285. pr_info_ratelimited("%s failed vm entry %x\n", __func__,
  5286. vmcs_read32(VM_INSTRUCTION_ERROR));
  5287. return 1;
  5288. }
  5289. switch (exit_reason) {
  5290. case EXIT_REASON_EXCEPTION_NMI:
  5291. if (!is_exception(intr_info))
  5292. return 0;
  5293. else if (is_page_fault(intr_info))
  5294. return enable_ept;
  5295. return vmcs12->exception_bitmap &
  5296. (1u << (intr_info & INTR_INFO_VECTOR_MASK));
  5297. case EXIT_REASON_EXTERNAL_INTERRUPT:
  5298. return 0;
  5299. case EXIT_REASON_TRIPLE_FAULT:
  5300. return 1;
  5301. case EXIT_REASON_PENDING_INTERRUPT:
  5302. case EXIT_REASON_NMI_WINDOW:
  5303. /*
  5304. * prepare_vmcs02() set the CPU_BASED_VIRTUAL_INTR_PENDING bit
  5305. * (aka Interrupt Window Exiting) only when L1 turned it on,
  5306. * so if we got a PENDING_INTERRUPT exit, this must be for L1.
  5307. * Same for NMI Window Exiting.
  5308. */
  5309. return 1;
  5310. case EXIT_REASON_TASK_SWITCH:
  5311. return 1;
  5312. case EXIT_REASON_CPUID:
  5313. return 1;
  5314. case EXIT_REASON_HLT:
  5315. return nested_cpu_has(vmcs12, CPU_BASED_HLT_EXITING);
  5316. case EXIT_REASON_INVD:
  5317. return 1;
  5318. case EXIT_REASON_INVLPG:
  5319. return nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
  5320. case EXIT_REASON_RDPMC:
  5321. return nested_cpu_has(vmcs12, CPU_BASED_RDPMC_EXITING);
  5322. case EXIT_REASON_RDTSC:
  5323. return nested_cpu_has(vmcs12, CPU_BASED_RDTSC_EXITING);
  5324. case EXIT_REASON_VMCALL: case EXIT_REASON_VMCLEAR:
  5325. case EXIT_REASON_VMLAUNCH: case EXIT_REASON_VMPTRLD:
  5326. case EXIT_REASON_VMPTRST: case EXIT_REASON_VMREAD:
  5327. case EXIT_REASON_VMRESUME: case EXIT_REASON_VMWRITE:
  5328. case EXIT_REASON_VMOFF: case EXIT_REASON_VMON:
  5329. /*
  5330. * VMX instructions trap unconditionally. This allows L1 to
  5331. * emulate them for its L2 guest, i.e., allows 3-level nesting!
  5332. */
  5333. return 1;
  5334. case EXIT_REASON_CR_ACCESS:
  5335. return nested_vmx_exit_handled_cr(vcpu, vmcs12);
  5336. case EXIT_REASON_DR_ACCESS:
  5337. return nested_cpu_has(vmcs12, CPU_BASED_MOV_DR_EXITING);
  5338. case EXIT_REASON_IO_INSTRUCTION:
  5339. return nested_vmx_exit_handled_io(vcpu, vmcs12);
  5340. case EXIT_REASON_MSR_READ:
  5341. case EXIT_REASON_MSR_WRITE:
  5342. return nested_vmx_exit_handled_msr(vcpu, vmcs12, exit_reason);
  5343. case EXIT_REASON_INVALID_STATE:
  5344. return 1;
  5345. case EXIT_REASON_MWAIT_INSTRUCTION:
  5346. return nested_cpu_has(vmcs12, CPU_BASED_MWAIT_EXITING);
  5347. case EXIT_REASON_MONITOR_INSTRUCTION:
  5348. return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_EXITING);
  5349. case EXIT_REASON_PAUSE_INSTRUCTION:
  5350. return nested_cpu_has(vmcs12, CPU_BASED_PAUSE_EXITING) ||
  5351. nested_cpu_has2(vmcs12,
  5352. SECONDARY_EXEC_PAUSE_LOOP_EXITING);
  5353. case EXIT_REASON_MCE_DURING_VMENTRY:
  5354. return 0;
  5355. case EXIT_REASON_TPR_BELOW_THRESHOLD:
  5356. return 1;
  5357. case EXIT_REASON_APIC_ACCESS:
  5358. return nested_cpu_has2(vmcs12,
  5359. SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES);
  5360. case EXIT_REASON_EPT_VIOLATION:
  5361. case EXIT_REASON_EPT_MISCONFIG:
  5362. return 0;
  5363. case EXIT_REASON_WBINVD:
  5364. return nested_cpu_has2(vmcs12, SECONDARY_EXEC_WBINVD_EXITING);
  5365. case EXIT_REASON_XSETBV:
  5366. return 1;
  5367. default:
  5368. return 1;
  5369. }
  5370. }
  5371. static void vmx_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2)
  5372. {
  5373. *info1 = vmcs_readl(EXIT_QUALIFICATION);
  5374. *info2 = vmcs_read32(VM_EXIT_INTR_INFO);
  5375. }
  5376. /*
  5377. * The guest has exited. See if we can fix it or if we need userspace
  5378. * assistance.
  5379. */
  5380. static int vmx_handle_exit(struct kvm_vcpu *vcpu)
  5381. {
  5382. struct vcpu_vmx *vmx = to_vmx(vcpu);
  5383. u32 exit_reason = vmx->exit_reason;
  5384. u32 vectoring_info = vmx->idt_vectoring_info;
  5385. /* If guest state is invalid, start emulating */
  5386. if (vmx->emulation_required)
  5387. return handle_invalid_guest_state(vcpu);
  5388. /*
  5389. * the KVM_REQ_EVENT optimization bit is only on for one entry, and if
  5390. * we did not inject a still-pending event to L1 now because of
  5391. * nested_run_pending, we need to re-enable this bit.
  5392. */
  5393. if (vmx->nested.nested_run_pending)
  5394. kvm_make_request(KVM_REQ_EVENT, vcpu);
  5395. if (!is_guest_mode(vcpu) && (exit_reason == EXIT_REASON_VMLAUNCH ||
  5396. exit_reason == EXIT_REASON_VMRESUME))
  5397. vmx->nested.nested_run_pending = 1;
  5398. else
  5399. vmx->nested.nested_run_pending = 0;
  5400. if (is_guest_mode(vcpu) && nested_vmx_exit_handled(vcpu)) {
  5401. nested_vmx_vmexit(vcpu);
  5402. return 1;
  5403. }
  5404. if (exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY) {
  5405. vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
  5406. vcpu->run->fail_entry.hardware_entry_failure_reason
  5407. = exit_reason;
  5408. return 0;
  5409. }
  5410. if (unlikely(vmx->fail)) {
  5411. vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
  5412. vcpu->run->fail_entry.hardware_entry_failure_reason
  5413. = vmcs_read32(VM_INSTRUCTION_ERROR);
  5414. return 0;
  5415. }
  5416. /*
  5417. * Note:
  5418. * Do not try to fix EXIT_REASON_EPT_MISCONFIG if it caused by
  5419. * delivery event since it indicates guest is accessing MMIO.
  5420. * The vm-exit can be triggered again after return to guest that
  5421. * will cause infinite loop.
  5422. */
  5423. if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
  5424. (exit_reason != EXIT_REASON_EXCEPTION_NMI &&
  5425. exit_reason != EXIT_REASON_EPT_VIOLATION &&
  5426. exit_reason != EXIT_REASON_TASK_SWITCH)) {
  5427. vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
  5428. vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_DELIVERY_EV;
  5429. vcpu->run->internal.ndata = 2;
  5430. vcpu->run->internal.data[0] = vectoring_info;
  5431. vcpu->run->internal.data[1] = exit_reason;
  5432. return 0;
  5433. }
  5434. if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked &&
  5435. !(is_guest_mode(vcpu) && nested_cpu_has_virtual_nmis(
  5436. get_vmcs12(vcpu), vcpu)))) {
  5437. if (vmx_interrupt_allowed(vcpu)) {
  5438. vmx->soft_vnmi_blocked = 0;
  5439. } else if (vmx->vnmi_blocked_time > 1000000000LL &&
  5440. vcpu->arch.nmi_pending) {
  5441. /*
  5442. * This CPU don't support us in finding the end of an
  5443. * NMI-blocked window if the guest runs with IRQs
  5444. * disabled. So we pull the trigger after 1 s of
  5445. * futile waiting, but inform the user about this.
  5446. */
  5447. printk(KERN_WARNING "%s: Breaking out of NMI-blocked "
  5448. "state on VCPU %d after 1 s timeout\n",
  5449. __func__, vcpu->vcpu_id);
  5450. vmx->soft_vnmi_blocked = 0;
  5451. }
  5452. }
  5453. if (exit_reason < kvm_vmx_max_exit_handlers
  5454. && kvm_vmx_exit_handlers[exit_reason])
  5455. return kvm_vmx_exit_handlers[exit_reason](vcpu);
  5456. else {
  5457. vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
  5458. vcpu->run->hw.hardware_exit_reason = exit_reason;
  5459. }
  5460. return 0;
  5461. }
  5462. static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
  5463. {
  5464. if (irr == -1 || tpr < irr) {
  5465. vmcs_write32(TPR_THRESHOLD, 0);
  5466. return;
  5467. }
  5468. vmcs_write32(TPR_THRESHOLD, irr);
  5469. }
  5470. static void vmx_set_virtual_x2apic_mode(struct kvm_vcpu *vcpu, bool set)
  5471. {
  5472. u32 sec_exec_control;
  5473. /*
  5474. * There is not point to enable virtualize x2apic without enable
  5475. * apicv
  5476. */
  5477. if (!cpu_has_vmx_virtualize_x2apic_mode() ||
  5478. !vmx_vm_has_apicv(vcpu->kvm))
  5479. return;
  5480. if (!vm_need_tpr_shadow(vcpu->kvm))
  5481. return;
  5482. sec_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
  5483. if (set) {
  5484. sec_exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
  5485. sec_exec_control |= SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
  5486. } else {
  5487. sec_exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
  5488. sec_exec_control |= SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
  5489. }
  5490. vmcs_write32(SECONDARY_VM_EXEC_CONTROL, sec_exec_control);
  5491. vmx_set_msr_bitmap(vcpu);
  5492. }
  5493. static void vmx_hwapic_isr_update(struct kvm *kvm, int isr)
  5494. {
  5495. u16 status;
  5496. u8 old;
  5497. if (!vmx_vm_has_apicv(kvm))
  5498. return;
  5499. if (isr == -1)
  5500. isr = 0;
  5501. status = vmcs_read16(GUEST_INTR_STATUS);
  5502. old = status >> 8;
  5503. if (isr != old) {
  5504. status &= 0xff;
  5505. status |= isr << 8;
  5506. vmcs_write16(GUEST_INTR_STATUS, status);
  5507. }
  5508. }
  5509. static void vmx_set_rvi(int vector)
  5510. {
  5511. u16 status;
  5512. u8 old;
  5513. status = vmcs_read16(GUEST_INTR_STATUS);
  5514. old = (u8)status & 0xff;
  5515. if ((u8)vector != old) {
  5516. status &= ~0xff;
  5517. status |= (u8)vector;
  5518. vmcs_write16(GUEST_INTR_STATUS, status);
  5519. }
  5520. }
  5521. static void vmx_hwapic_irr_update(struct kvm_vcpu *vcpu, int max_irr)
  5522. {
  5523. if (max_irr == -1)
  5524. return;
  5525. vmx_set_rvi(max_irr);
  5526. }
  5527. static void vmx_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap)
  5528. {
  5529. vmcs_write64(EOI_EXIT_BITMAP0, eoi_exit_bitmap[0]);
  5530. vmcs_write64(EOI_EXIT_BITMAP1, eoi_exit_bitmap[1]);
  5531. vmcs_write64(EOI_EXIT_BITMAP2, eoi_exit_bitmap[2]);
  5532. vmcs_write64(EOI_EXIT_BITMAP3, eoi_exit_bitmap[3]);
  5533. }
  5534. static void vmx_complete_atomic_exit(struct vcpu_vmx *vmx)
  5535. {
  5536. u32 exit_intr_info;
  5537. if (!(vmx->exit_reason == EXIT_REASON_MCE_DURING_VMENTRY
  5538. || vmx->exit_reason == EXIT_REASON_EXCEPTION_NMI))
  5539. return;
  5540. vmx->exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
  5541. exit_intr_info = vmx->exit_intr_info;
  5542. /* Handle machine checks before interrupts are enabled */
  5543. if (is_machine_check(exit_intr_info))
  5544. kvm_machine_check();
  5545. /* We need to handle NMIs before interrupts are enabled */
  5546. if ((exit_intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR &&
  5547. (exit_intr_info & INTR_INFO_VALID_MASK)) {
  5548. kvm_before_handle_nmi(&vmx->vcpu);
  5549. asm("int $2");
  5550. kvm_after_handle_nmi(&vmx->vcpu);
  5551. }
  5552. }
  5553. static void vmx_recover_nmi_blocking(struct vcpu_vmx *vmx)
  5554. {
  5555. u32 exit_intr_info;
  5556. bool unblock_nmi;
  5557. u8 vector;
  5558. bool idtv_info_valid;
  5559. idtv_info_valid = vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK;
  5560. if (cpu_has_virtual_nmis()) {
  5561. if (vmx->nmi_known_unmasked)
  5562. return;
  5563. /*
  5564. * Can't use vmx->exit_intr_info since we're not sure what
  5565. * the exit reason is.
  5566. */
  5567. exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
  5568. unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
  5569. vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
  5570. /*
  5571. * SDM 3: 27.7.1.2 (September 2008)
  5572. * Re-set bit "block by NMI" before VM entry if vmexit caused by
  5573. * a guest IRET fault.
  5574. * SDM 3: 23.2.2 (September 2008)
  5575. * Bit 12 is undefined in any of the following cases:
  5576. * If the VM exit sets the valid bit in the IDT-vectoring
  5577. * information field.
  5578. * If the VM exit is due to a double fault.
  5579. */
  5580. if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi &&
  5581. vector != DF_VECTOR && !idtv_info_valid)
  5582. vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
  5583. GUEST_INTR_STATE_NMI);
  5584. else
  5585. vmx->nmi_known_unmasked =
  5586. !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO)
  5587. & GUEST_INTR_STATE_NMI);
  5588. } else if (unlikely(vmx->soft_vnmi_blocked))
  5589. vmx->vnmi_blocked_time +=
  5590. ktime_to_ns(ktime_sub(ktime_get(), vmx->entry_time));
  5591. }
  5592. static void __vmx_complete_interrupts(struct kvm_vcpu *vcpu,
  5593. u32 idt_vectoring_info,
  5594. int instr_len_field,
  5595. int error_code_field)
  5596. {
  5597. u8 vector;
  5598. int type;
  5599. bool idtv_info_valid;
  5600. idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
  5601. vcpu->arch.nmi_injected = false;
  5602. kvm_clear_exception_queue(vcpu);
  5603. kvm_clear_interrupt_queue(vcpu);
  5604. if (!idtv_info_valid)
  5605. return;
  5606. kvm_make_request(KVM_REQ_EVENT, vcpu);
  5607. vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
  5608. type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
  5609. switch (type) {
  5610. case INTR_TYPE_NMI_INTR:
  5611. vcpu->arch.nmi_injected = true;
  5612. /*
  5613. * SDM 3: 27.7.1.2 (September 2008)
  5614. * Clear bit "block by NMI" before VM entry if a NMI
  5615. * delivery faulted.
  5616. */
  5617. vmx_set_nmi_mask(vcpu, false);
  5618. break;
  5619. case INTR_TYPE_SOFT_EXCEPTION:
  5620. vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
  5621. /* fall through */
  5622. case INTR_TYPE_HARD_EXCEPTION:
  5623. if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
  5624. u32 err = vmcs_read32(error_code_field);
  5625. kvm_queue_exception_e(vcpu, vector, err);
  5626. } else
  5627. kvm_queue_exception(vcpu, vector);
  5628. break;
  5629. case INTR_TYPE_SOFT_INTR:
  5630. vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
  5631. /* fall through */
  5632. case INTR_TYPE_EXT_INTR:
  5633. kvm_queue_interrupt(vcpu, vector, type == INTR_TYPE_SOFT_INTR);
  5634. break;
  5635. default:
  5636. break;
  5637. }
  5638. }
  5639. static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
  5640. {
  5641. if (is_guest_mode(&vmx->vcpu))
  5642. return;
  5643. __vmx_complete_interrupts(&vmx->vcpu, vmx->idt_vectoring_info,
  5644. VM_EXIT_INSTRUCTION_LEN,
  5645. IDT_VECTORING_ERROR_CODE);
  5646. }
  5647. static void vmx_cancel_injection(struct kvm_vcpu *vcpu)
  5648. {
  5649. if (is_guest_mode(vcpu))
  5650. return;
  5651. __vmx_complete_interrupts(vcpu,
  5652. vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
  5653. VM_ENTRY_INSTRUCTION_LEN,
  5654. VM_ENTRY_EXCEPTION_ERROR_CODE);
  5655. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
  5656. }
  5657. static void atomic_switch_perf_msrs(struct vcpu_vmx *vmx)
  5658. {
  5659. int i, nr_msrs;
  5660. struct perf_guest_switch_msr *msrs;
  5661. msrs = perf_guest_get_msrs(&nr_msrs);
  5662. if (!msrs)
  5663. return;
  5664. for (i = 0; i < nr_msrs; i++)
  5665. if (msrs[i].host == msrs[i].guest)
  5666. clear_atomic_switch_msr(vmx, msrs[i].msr);
  5667. else
  5668. add_atomic_switch_msr(vmx, msrs[i].msr, msrs[i].guest,
  5669. msrs[i].host);
  5670. }
  5671. static void __noclone vmx_vcpu_run(struct kvm_vcpu *vcpu)
  5672. {
  5673. struct vcpu_vmx *vmx = to_vmx(vcpu);
  5674. unsigned long debugctlmsr;
  5675. if (is_guest_mode(vcpu) && !vmx->nested.nested_run_pending) {
  5676. struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
  5677. if (vmcs12->idt_vectoring_info_field &
  5678. VECTORING_INFO_VALID_MASK) {
  5679. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  5680. vmcs12->idt_vectoring_info_field);
  5681. vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
  5682. vmcs12->vm_exit_instruction_len);
  5683. if (vmcs12->idt_vectoring_info_field &
  5684. VECTORING_INFO_DELIVER_CODE_MASK)
  5685. vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE,
  5686. vmcs12->idt_vectoring_error_code);
  5687. }
  5688. }
  5689. /* Record the guest's net vcpu time for enforced NMI injections. */
  5690. if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked))
  5691. vmx->entry_time = ktime_get();
  5692. /* Don't enter VMX if guest state is invalid, let the exit handler
  5693. start emulation until we arrive back to a valid state */
  5694. if (vmx->emulation_required)
  5695. return;
  5696. if (test_bit(VCPU_REGS_RSP, (unsigned long *)&vcpu->arch.regs_dirty))
  5697. vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
  5698. if (test_bit(VCPU_REGS_RIP, (unsigned long *)&vcpu->arch.regs_dirty))
  5699. vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
  5700. /* When single-stepping over STI and MOV SS, we must clear the
  5701. * corresponding interruptibility bits in the guest state. Otherwise
  5702. * vmentry fails as it then expects bit 14 (BS) in pending debug
  5703. * exceptions being set, but that's not correct for the guest debugging
  5704. * case. */
  5705. if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
  5706. vmx_set_interrupt_shadow(vcpu, 0);
  5707. atomic_switch_perf_msrs(vmx);
  5708. debugctlmsr = get_debugctlmsr();
  5709. vmx->__launched = vmx->loaded_vmcs->launched;
  5710. asm(
  5711. /* Store host registers */
  5712. "push %%" _ASM_DX "; push %%" _ASM_BP ";"
  5713. "push %%" _ASM_CX " \n\t" /* placeholder for guest rcx */
  5714. "push %%" _ASM_CX " \n\t"
  5715. "cmp %%" _ASM_SP ", %c[host_rsp](%0) \n\t"
  5716. "je 1f \n\t"
  5717. "mov %%" _ASM_SP ", %c[host_rsp](%0) \n\t"
  5718. __ex(ASM_VMX_VMWRITE_RSP_RDX) "\n\t"
  5719. "1: \n\t"
  5720. /* Reload cr2 if changed */
  5721. "mov %c[cr2](%0), %%" _ASM_AX " \n\t"
  5722. "mov %%cr2, %%" _ASM_DX " \n\t"
  5723. "cmp %%" _ASM_AX ", %%" _ASM_DX " \n\t"
  5724. "je 2f \n\t"
  5725. "mov %%" _ASM_AX", %%cr2 \n\t"
  5726. "2: \n\t"
  5727. /* Check if vmlaunch of vmresume is needed */
  5728. "cmpl $0, %c[launched](%0) \n\t"
  5729. /* Load guest registers. Don't clobber flags. */
  5730. "mov %c[rax](%0), %%" _ASM_AX " \n\t"
  5731. "mov %c[rbx](%0), %%" _ASM_BX " \n\t"
  5732. "mov %c[rdx](%0), %%" _ASM_DX " \n\t"
  5733. "mov %c[rsi](%0), %%" _ASM_SI " \n\t"
  5734. "mov %c[rdi](%0), %%" _ASM_DI " \n\t"
  5735. "mov %c[rbp](%0), %%" _ASM_BP " \n\t"
  5736. #ifdef CONFIG_X86_64
  5737. "mov %c[r8](%0), %%r8 \n\t"
  5738. "mov %c[r9](%0), %%r9 \n\t"
  5739. "mov %c[r10](%0), %%r10 \n\t"
  5740. "mov %c[r11](%0), %%r11 \n\t"
  5741. "mov %c[r12](%0), %%r12 \n\t"
  5742. "mov %c[r13](%0), %%r13 \n\t"
  5743. "mov %c[r14](%0), %%r14 \n\t"
  5744. "mov %c[r15](%0), %%r15 \n\t"
  5745. #endif
  5746. "mov %c[rcx](%0), %%" _ASM_CX " \n\t" /* kills %0 (ecx) */
  5747. /* Enter guest mode */
  5748. "jne 1f \n\t"
  5749. __ex(ASM_VMX_VMLAUNCH) "\n\t"
  5750. "jmp 2f \n\t"
  5751. "1: " __ex(ASM_VMX_VMRESUME) "\n\t"
  5752. "2: "
  5753. /* Save guest registers, load host registers, keep flags */
  5754. "mov %0, %c[wordsize](%%" _ASM_SP ") \n\t"
  5755. "pop %0 \n\t"
  5756. "mov %%" _ASM_AX ", %c[rax](%0) \n\t"
  5757. "mov %%" _ASM_BX ", %c[rbx](%0) \n\t"
  5758. __ASM_SIZE(pop) " %c[rcx](%0) \n\t"
  5759. "mov %%" _ASM_DX ", %c[rdx](%0) \n\t"
  5760. "mov %%" _ASM_SI ", %c[rsi](%0) \n\t"
  5761. "mov %%" _ASM_DI ", %c[rdi](%0) \n\t"
  5762. "mov %%" _ASM_BP ", %c[rbp](%0) \n\t"
  5763. #ifdef CONFIG_X86_64
  5764. "mov %%r8, %c[r8](%0) \n\t"
  5765. "mov %%r9, %c[r9](%0) \n\t"
  5766. "mov %%r10, %c[r10](%0) \n\t"
  5767. "mov %%r11, %c[r11](%0) \n\t"
  5768. "mov %%r12, %c[r12](%0) \n\t"
  5769. "mov %%r13, %c[r13](%0) \n\t"
  5770. "mov %%r14, %c[r14](%0) \n\t"
  5771. "mov %%r15, %c[r15](%0) \n\t"
  5772. #endif
  5773. "mov %%cr2, %%" _ASM_AX " \n\t"
  5774. "mov %%" _ASM_AX ", %c[cr2](%0) \n\t"
  5775. "pop %%" _ASM_BP "; pop %%" _ASM_DX " \n\t"
  5776. "setbe %c[fail](%0) \n\t"
  5777. ".pushsection .rodata \n\t"
  5778. ".global vmx_return \n\t"
  5779. "vmx_return: " _ASM_PTR " 2b \n\t"
  5780. ".popsection"
  5781. : : "c"(vmx), "d"((unsigned long)HOST_RSP),
  5782. [launched]"i"(offsetof(struct vcpu_vmx, __launched)),
  5783. [fail]"i"(offsetof(struct vcpu_vmx, fail)),
  5784. [host_rsp]"i"(offsetof(struct vcpu_vmx, host_rsp)),
  5785. [rax]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RAX])),
  5786. [rbx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBX])),
  5787. [rcx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RCX])),
  5788. [rdx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDX])),
  5789. [rsi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RSI])),
  5790. [rdi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDI])),
  5791. [rbp]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBP])),
  5792. #ifdef CONFIG_X86_64
  5793. [r8]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R8])),
  5794. [r9]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R9])),
  5795. [r10]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R10])),
  5796. [r11]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R11])),
  5797. [r12]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R12])),
  5798. [r13]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R13])),
  5799. [r14]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R14])),
  5800. [r15]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R15])),
  5801. #endif
  5802. [cr2]"i"(offsetof(struct vcpu_vmx, vcpu.arch.cr2)),
  5803. [wordsize]"i"(sizeof(ulong))
  5804. : "cc", "memory"
  5805. #ifdef CONFIG_X86_64
  5806. , "rax", "rbx", "rdi", "rsi"
  5807. , "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
  5808. #else
  5809. , "eax", "ebx", "edi", "esi"
  5810. #endif
  5811. );
  5812. /* MSR_IA32_DEBUGCTLMSR is zeroed on vmexit. Restore it if needed */
  5813. if (debugctlmsr)
  5814. update_debugctlmsr(debugctlmsr);
  5815. #ifndef CONFIG_X86_64
  5816. /*
  5817. * The sysexit path does not restore ds/es, so we must set them to
  5818. * a reasonable value ourselves.
  5819. *
  5820. * We can't defer this to vmx_load_host_state() since that function
  5821. * may be executed in interrupt context, which saves and restore segments
  5822. * around it, nullifying its effect.
  5823. */
  5824. loadsegment(ds, __USER_DS);
  5825. loadsegment(es, __USER_DS);
  5826. #endif
  5827. vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP)
  5828. | (1 << VCPU_EXREG_RFLAGS)
  5829. | (1 << VCPU_EXREG_CPL)
  5830. | (1 << VCPU_EXREG_PDPTR)
  5831. | (1 << VCPU_EXREG_SEGMENTS)
  5832. | (1 << VCPU_EXREG_CR3));
  5833. vcpu->arch.regs_dirty = 0;
  5834. vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
  5835. if (is_guest_mode(vcpu)) {
  5836. struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
  5837. vmcs12->idt_vectoring_info_field = vmx->idt_vectoring_info;
  5838. if (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK) {
  5839. vmcs12->idt_vectoring_error_code =
  5840. vmcs_read32(IDT_VECTORING_ERROR_CODE);
  5841. vmcs12->vm_exit_instruction_len =
  5842. vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
  5843. }
  5844. }
  5845. vmx->loaded_vmcs->launched = 1;
  5846. vmx->exit_reason = vmcs_read32(VM_EXIT_REASON);
  5847. trace_kvm_exit(vmx->exit_reason, vcpu, KVM_ISA_VMX);
  5848. vmx_complete_atomic_exit(vmx);
  5849. vmx_recover_nmi_blocking(vmx);
  5850. vmx_complete_interrupts(vmx);
  5851. }
  5852. static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
  5853. {
  5854. struct vcpu_vmx *vmx = to_vmx(vcpu);
  5855. free_vpid(vmx);
  5856. free_nested(vmx);
  5857. free_loaded_vmcs(vmx->loaded_vmcs);
  5858. kfree(vmx->guest_msrs);
  5859. kvm_vcpu_uninit(vcpu);
  5860. kmem_cache_free(kvm_vcpu_cache, vmx);
  5861. }
  5862. static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id)
  5863. {
  5864. int err;
  5865. struct vcpu_vmx *vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
  5866. int cpu;
  5867. if (!vmx)
  5868. return ERR_PTR(-ENOMEM);
  5869. allocate_vpid(vmx);
  5870. err = kvm_vcpu_init(&vmx->vcpu, kvm, id);
  5871. if (err)
  5872. goto free_vcpu;
  5873. vmx->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
  5874. err = -ENOMEM;
  5875. if (!vmx->guest_msrs) {
  5876. goto uninit_vcpu;
  5877. }
  5878. vmx->loaded_vmcs = &vmx->vmcs01;
  5879. vmx->loaded_vmcs->vmcs = alloc_vmcs();
  5880. if (!vmx->loaded_vmcs->vmcs)
  5881. goto free_msrs;
  5882. if (!vmm_exclusive)
  5883. kvm_cpu_vmxon(__pa(per_cpu(vmxarea, raw_smp_processor_id())));
  5884. loaded_vmcs_init(vmx->loaded_vmcs);
  5885. if (!vmm_exclusive)
  5886. kvm_cpu_vmxoff();
  5887. cpu = get_cpu();
  5888. vmx_vcpu_load(&vmx->vcpu, cpu);
  5889. vmx->vcpu.cpu = cpu;
  5890. err = vmx_vcpu_setup(vmx);
  5891. vmx_vcpu_put(&vmx->vcpu);
  5892. put_cpu();
  5893. if (err)
  5894. goto free_vmcs;
  5895. if (vm_need_virtualize_apic_accesses(kvm))
  5896. err = alloc_apic_access_page(kvm);
  5897. if (err)
  5898. goto free_vmcs;
  5899. if (enable_ept) {
  5900. if (!kvm->arch.ept_identity_map_addr)
  5901. kvm->arch.ept_identity_map_addr =
  5902. VMX_EPT_IDENTITY_PAGETABLE_ADDR;
  5903. err = -ENOMEM;
  5904. if (alloc_identity_pagetable(kvm) != 0)
  5905. goto free_vmcs;
  5906. if (!init_rmode_identity_map(kvm))
  5907. goto free_vmcs;
  5908. }
  5909. vmx->nested.current_vmptr = -1ull;
  5910. vmx->nested.current_vmcs12 = NULL;
  5911. return &vmx->vcpu;
  5912. free_vmcs:
  5913. free_loaded_vmcs(vmx->loaded_vmcs);
  5914. free_msrs:
  5915. kfree(vmx->guest_msrs);
  5916. uninit_vcpu:
  5917. kvm_vcpu_uninit(&vmx->vcpu);
  5918. free_vcpu:
  5919. free_vpid(vmx);
  5920. kmem_cache_free(kvm_vcpu_cache, vmx);
  5921. return ERR_PTR(err);
  5922. }
  5923. static void __init vmx_check_processor_compat(void *rtn)
  5924. {
  5925. struct vmcs_config vmcs_conf;
  5926. *(int *)rtn = 0;
  5927. if (setup_vmcs_config(&vmcs_conf) < 0)
  5928. *(int *)rtn = -EIO;
  5929. if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
  5930. printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
  5931. smp_processor_id());
  5932. *(int *)rtn = -EIO;
  5933. }
  5934. }
  5935. static int get_ept_level(void)
  5936. {
  5937. return VMX_EPT_DEFAULT_GAW + 1;
  5938. }
  5939. static u64 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
  5940. {
  5941. u64 ret;
  5942. /* For VT-d and EPT combination
  5943. * 1. MMIO: always map as UC
  5944. * 2. EPT with VT-d:
  5945. * a. VT-d without snooping control feature: can't guarantee the
  5946. * result, try to trust guest.
  5947. * b. VT-d with snooping control feature: snooping control feature of
  5948. * VT-d engine can guarantee the cache correctness. Just set it
  5949. * to WB to keep consistent with host. So the same as item 3.
  5950. * 3. EPT without VT-d: always map as WB and set IPAT=1 to keep
  5951. * consistent with host MTRR
  5952. */
  5953. if (is_mmio)
  5954. ret = MTRR_TYPE_UNCACHABLE << VMX_EPT_MT_EPTE_SHIFT;
  5955. else if (vcpu->kvm->arch.iommu_domain &&
  5956. !(vcpu->kvm->arch.iommu_flags & KVM_IOMMU_CACHE_COHERENCY))
  5957. ret = kvm_get_guest_memory_type(vcpu, gfn) <<
  5958. VMX_EPT_MT_EPTE_SHIFT;
  5959. else
  5960. ret = (MTRR_TYPE_WRBACK << VMX_EPT_MT_EPTE_SHIFT)
  5961. | VMX_EPT_IPAT_BIT;
  5962. return ret;
  5963. }
  5964. static int vmx_get_lpage_level(void)
  5965. {
  5966. if (enable_ept && !cpu_has_vmx_ept_1g_page())
  5967. return PT_DIRECTORY_LEVEL;
  5968. else
  5969. /* For shadow and EPT supported 1GB page */
  5970. return PT_PDPE_LEVEL;
  5971. }
  5972. static void vmx_cpuid_update(struct kvm_vcpu *vcpu)
  5973. {
  5974. struct kvm_cpuid_entry2 *best;
  5975. struct vcpu_vmx *vmx = to_vmx(vcpu);
  5976. u32 exec_control;
  5977. vmx->rdtscp_enabled = false;
  5978. if (vmx_rdtscp_supported()) {
  5979. exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
  5980. if (exec_control & SECONDARY_EXEC_RDTSCP) {
  5981. best = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
  5982. if (best && (best->edx & bit(X86_FEATURE_RDTSCP)))
  5983. vmx->rdtscp_enabled = true;
  5984. else {
  5985. exec_control &= ~SECONDARY_EXEC_RDTSCP;
  5986. vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
  5987. exec_control);
  5988. }
  5989. }
  5990. }
  5991. /* Exposing INVPCID only when PCID is exposed */
  5992. best = kvm_find_cpuid_entry(vcpu, 0x7, 0);
  5993. if (vmx_invpcid_supported() &&
  5994. best && (best->ebx & bit(X86_FEATURE_INVPCID)) &&
  5995. guest_cpuid_has_pcid(vcpu)) {
  5996. exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
  5997. exec_control |= SECONDARY_EXEC_ENABLE_INVPCID;
  5998. vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
  5999. exec_control);
  6000. } else {
  6001. if (cpu_has_secondary_exec_ctrls()) {
  6002. exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
  6003. exec_control &= ~SECONDARY_EXEC_ENABLE_INVPCID;
  6004. vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
  6005. exec_control);
  6006. }
  6007. if (best)
  6008. best->ebx &= ~bit(X86_FEATURE_INVPCID);
  6009. }
  6010. }
  6011. static void vmx_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry)
  6012. {
  6013. if (func == 1 && nested)
  6014. entry->ecx |= bit(X86_FEATURE_VMX);
  6015. }
  6016. /*
  6017. * prepare_vmcs02 is called when the L1 guest hypervisor runs its nested
  6018. * L2 guest. L1 has a vmcs for L2 (vmcs12), and this function "merges" it
  6019. * with L0's requirements for its guest (a.k.a. vmsc01), so we can run the L2
  6020. * guest in a way that will both be appropriate to L1's requests, and our
  6021. * needs. In addition to modifying the active vmcs (which is vmcs02), this
  6022. * function also has additional necessary side-effects, like setting various
  6023. * vcpu->arch fields.
  6024. */
  6025. static void prepare_vmcs02(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
  6026. {
  6027. struct vcpu_vmx *vmx = to_vmx(vcpu);
  6028. u32 exec_control;
  6029. vmcs_write16(GUEST_ES_SELECTOR, vmcs12->guest_es_selector);
  6030. vmcs_write16(GUEST_CS_SELECTOR, vmcs12->guest_cs_selector);
  6031. vmcs_write16(GUEST_SS_SELECTOR, vmcs12->guest_ss_selector);
  6032. vmcs_write16(GUEST_DS_SELECTOR, vmcs12->guest_ds_selector);
  6033. vmcs_write16(GUEST_FS_SELECTOR, vmcs12->guest_fs_selector);
  6034. vmcs_write16(GUEST_GS_SELECTOR, vmcs12->guest_gs_selector);
  6035. vmcs_write16(GUEST_LDTR_SELECTOR, vmcs12->guest_ldtr_selector);
  6036. vmcs_write16(GUEST_TR_SELECTOR, vmcs12->guest_tr_selector);
  6037. vmcs_write32(GUEST_ES_LIMIT, vmcs12->guest_es_limit);
  6038. vmcs_write32(GUEST_CS_LIMIT, vmcs12->guest_cs_limit);
  6039. vmcs_write32(GUEST_SS_LIMIT, vmcs12->guest_ss_limit);
  6040. vmcs_write32(GUEST_DS_LIMIT, vmcs12->guest_ds_limit);
  6041. vmcs_write32(GUEST_FS_LIMIT, vmcs12->guest_fs_limit);
  6042. vmcs_write32(GUEST_GS_LIMIT, vmcs12->guest_gs_limit);
  6043. vmcs_write32(GUEST_LDTR_LIMIT, vmcs12->guest_ldtr_limit);
  6044. vmcs_write32(GUEST_TR_LIMIT, vmcs12->guest_tr_limit);
  6045. vmcs_write32(GUEST_GDTR_LIMIT, vmcs12->guest_gdtr_limit);
  6046. vmcs_write32(GUEST_IDTR_LIMIT, vmcs12->guest_idtr_limit);
  6047. vmcs_write32(GUEST_ES_AR_BYTES, vmcs12->guest_es_ar_bytes);
  6048. vmcs_write32(GUEST_CS_AR_BYTES, vmcs12->guest_cs_ar_bytes);
  6049. vmcs_write32(GUEST_SS_AR_BYTES, vmcs12->guest_ss_ar_bytes);
  6050. vmcs_write32(GUEST_DS_AR_BYTES, vmcs12->guest_ds_ar_bytes);
  6051. vmcs_write32(GUEST_FS_AR_BYTES, vmcs12->guest_fs_ar_bytes);
  6052. vmcs_write32(GUEST_GS_AR_BYTES, vmcs12->guest_gs_ar_bytes);
  6053. vmcs_write32(GUEST_LDTR_AR_BYTES, vmcs12->guest_ldtr_ar_bytes);
  6054. vmcs_write32(GUEST_TR_AR_BYTES, vmcs12->guest_tr_ar_bytes);
  6055. vmcs_writel(GUEST_ES_BASE, vmcs12->guest_es_base);
  6056. vmcs_writel(GUEST_CS_BASE, vmcs12->guest_cs_base);
  6057. vmcs_writel(GUEST_SS_BASE, vmcs12->guest_ss_base);
  6058. vmcs_writel(GUEST_DS_BASE, vmcs12->guest_ds_base);
  6059. vmcs_writel(GUEST_FS_BASE, vmcs12->guest_fs_base);
  6060. vmcs_writel(GUEST_GS_BASE, vmcs12->guest_gs_base);
  6061. vmcs_writel(GUEST_LDTR_BASE, vmcs12->guest_ldtr_base);
  6062. vmcs_writel(GUEST_TR_BASE, vmcs12->guest_tr_base);
  6063. vmcs_writel(GUEST_GDTR_BASE, vmcs12->guest_gdtr_base);
  6064. vmcs_writel(GUEST_IDTR_BASE, vmcs12->guest_idtr_base);
  6065. vmcs_write64(GUEST_IA32_DEBUGCTL, vmcs12->guest_ia32_debugctl);
  6066. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  6067. vmcs12->vm_entry_intr_info_field);
  6068. vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE,
  6069. vmcs12->vm_entry_exception_error_code);
  6070. vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
  6071. vmcs12->vm_entry_instruction_len);
  6072. vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
  6073. vmcs12->guest_interruptibility_info);
  6074. vmcs_write32(GUEST_ACTIVITY_STATE, vmcs12->guest_activity_state);
  6075. vmcs_write32(GUEST_SYSENTER_CS, vmcs12->guest_sysenter_cs);
  6076. kvm_set_dr(vcpu, 7, vmcs12->guest_dr7);
  6077. vmcs_writel(GUEST_RFLAGS, vmcs12->guest_rflags);
  6078. vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
  6079. vmcs12->guest_pending_dbg_exceptions);
  6080. vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->guest_sysenter_esp);
  6081. vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->guest_sysenter_eip);
  6082. vmcs_write64(VMCS_LINK_POINTER, -1ull);
  6083. vmcs_write32(PIN_BASED_VM_EXEC_CONTROL,
  6084. (vmcs_config.pin_based_exec_ctrl |
  6085. vmcs12->pin_based_vm_exec_control));
  6086. /*
  6087. * Whether page-faults are trapped is determined by a combination of
  6088. * 3 settings: PFEC_MASK, PFEC_MATCH and EXCEPTION_BITMAP.PF.
  6089. * If enable_ept, L0 doesn't care about page faults and we should
  6090. * set all of these to L1's desires. However, if !enable_ept, L0 does
  6091. * care about (at least some) page faults, and because it is not easy
  6092. * (if at all possible?) to merge L0 and L1's desires, we simply ask
  6093. * to exit on each and every L2 page fault. This is done by setting
  6094. * MASK=MATCH=0 and (see below) EB.PF=1.
  6095. * Note that below we don't need special code to set EB.PF beyond the
  6096. * "or"ing of the EB of vmcs01 and vmcs12, because when enable_ept,
  6097. * vmcs01's EB.PF is 0 so the "or" will take vmcs12's value, and when
  6098. * !enable_ept, EB.PF is 1, so the "or" will always be 1.
  6099. *
  6100. * A problem with this approach (when !enable_ept) is that L1 may be
  6101. * injected with more page faults than it asked for. This could have
  6102. * caused problems, but in practice existing hypervisors don't care.
  6103. * To fix this, we will need to emulate the PFEC checking (on the L1
  6104. * page tables), using walk_addr(), when injecting PFs to L1.
  6105. */
  6106. vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK,
  6107. enable_ept ? vmcs12->page_fault_error_code_mask : 0);
  6108. vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH,
  6109. enable_ept ? vmcs12->page_fault_error_code_match : 0);
  6110. if (cpu_has_secondary_exec_ctrls()) {
  6111. u32 exec_control = vmx_secondary_exec_control(vmx);
  6112. if (!vmx->rdtscp_enabled)
  6113. exec_control &= ~SECONDARY_EXEC_RDTSCP;
  6114. /* Take the following fields only from vmcs12 */
  6115. exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
  6116. if (nested_cpu_has(vmcs12,
  6117. CPU_BASED_ACTIVATE_SECONDARY_CONTROLS))
  6118. exec_control |= vmcs12->secondary_vm_exec_control;
  6119. if (exec_control & SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) {
  6120. /*
  6121. * Translate L1 physical address to host physical
  6122. * address for vmcs02. Keep the page pinned, so this
  6123. * physical address remains valid. We keep a reference
  6124. * to it so we can release it later.
  6125. */
  6126. if (vmx->nested.apic_access_page) /* shouldn't happen */
  6127. nested_release_page(vmx->nested.apic_access_page);
  6128. vmx->nested.apic_access_page =
  6129. nested_get_page(vcpu, vmcs12->apic_access_addr);
  6130. /*
  6131. * If translation failed, no matter: This feature asks
  6132. * to exit when accessing the given address, and if it
  6133. * can never be accessed, this feature won't do
  6134. * anything anyway.
  6135. */
  6136. if (!vmx->nested.apic_access_page)
  6137. exec_control &=
  6138. ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
  6139. else
  6140. vmcs_write64(APIC_ACCESS_ADDR,
  6141. page_to_phys(vmx->nested.apic_access_page));
  6142. }
  6143. vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
  6144. }
  6145. /*
  6146. * Set host-state according to L0's settings (vmcs12 is irrelevant here)
  6147. * Some constant fields are set here by vmx_set_constant_host_state().
  6148. * Other fields are different per CPU, and will be set later when
  6149. * vmx_vcpu_load() is called, and when vmx_save_host_state() is called.
  6150. */
  6151. vmx_set_constant_host_state();
  6152. /*
  6153. * HOST_RSP is normally set correctly in vmx_vcpu_run() just before
  6154. * entry, but only if the current (host) sp changed from the value
  6155. * we wrote last (vmx->host_rsp). This cache is no longer relevant
  6156. * if we switch vmcs, and rather than hold a separate cache per vmcs,
  6157. * here we just force the write to happen on entry.
  6158. */
  6159. vmx->host_rsp = 0;
  6160. exec_control = vmx_exec_control(vmx); /* L0's desires */
  6161. exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
  6162. exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
  6163. exec_control &= ~CPU_BASED_TPR_SHADOW;
  6164. exec_control |= vmcs12->cpu_based_vm_exec_control;
  6165. /*
  6166. * Merging of IO and MSR bitmaps not currently supported.
  6167. * Rather, exit every time.
  6168. */
  6169. exec_control &= ~CPU_BASED_USE_MSR_BITMAPS;
  6170. exec_control &= ~CPU_BASED_USE_IO_BITMAPS;
  6171. exec_control |= CPU_BASED_UNCOND_IO_EXITING;
  6172. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, exec_control);
  6173. /* EXCEPTION_BITMAP and CR0_GUEST_HOST_MASK should basically be the
  6174. * bitwise-or of what L1 wants to trap for L2, and what we want to
  6175. * trap. Note that CR0.TS also needs updating - we do this later.
  6176. */
  6177. update_exception_bitmap(vcpu);
  6178. vcpu->arch.cr0_guest_owned_bits &= ~vmcs12->cr0_guest_host_mask;
  6179. vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
  6180. /* Note: IA32_MODE, LOAD_IA32_EFER are modified by vmx_set_efer below */
  6181. vmcs_write32(VM_EXIT_CONTROLS,
  6182. vmcs12->vm_exit_controls | vmcs_config.vmexit_ctrl);
  6183. vmcs_write32(VM_ENTRY_CONTROLS, vmcs12->vm_entry_controls |
  6184. (vmcs_config.vmentry_ctrl & ~VM_ENTRY_IA32E_MODE));
  6185. if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT)
  6186. vmcs_write64(GUEST_IA32_PAT, vmcs12->guest_ia32_pat);
  6187. else if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT)
  6188. vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
  6189. set_cr4_guest_host_mask(vmx);
  6190. if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING)
  6191. vmcs_write64(TSC_OFFSET,
  6192. vmx->nested.vmcs01_tsc_offset + vmcs12->tsc_offset);
  6193. else
  6194. vmcs_write64(TSC_OFFSET, vmx->nested.vmcs01_tsc_offset);
  6195. if (enable_vpid) {
  6196. /*
  6197. * Trivially support vpid by letting L2s share their parent
  6198. * L1's vpid. TODO: move to a more elaborate solution, giving
  6199. * each L2 its own vpid and exposing the vpid feature to L1.
  6200. */
  6201. vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
  6202. vmx_flush_tlb(vcpu);
  6203. }
  6204. if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER)
  6205. vcpu->arch.efer = vmcs12->guest_ia32_efer;
  6206. if (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE)
  6207. vcpu->arch.efer |= (EFER_LMA | EFER_LME);
  6208. else
  6209. vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
  6210. /* Note: modifies VM_ENTRY/EXIT_CONTROLS and GUEST/HOST_IA32_EFER */
  6211. vmx_set_efer(vcpu, vcpu->arch.efer);
  6212. /*
  6213. * This sets GUEST_CR0 to vmcs12->guest_cr0, with possibly a modified
  6214. * TS bit (for lazy fpu) and bits which we consider mandatory enabled.
  6215. * The CR0_READ_SHADOW is what L2 should have expected to read given
  6216. * the specifications by L1; It's not enough to take
  6217. * vmcs12->cr0_read_shadow because on our cr0_guest_host_mask we we
  6218. * have more bits than L1 expected.
  6219. */
  6220. vmx_set_cr0(vcpu, vmcs12->guest_cr0);
  6221. vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
  6222. vmx_set_cr4(vcpu, vmcs12->guest_cr4);
  6223. vmcs_writel(CR4_READ_SHADOW, nested_read_cr4(vmcs12));
  6224. /* shadow page tables on either EPT or shadow page tables */
  6225. kvm_set_cr3(vcpu, vmcs12->guest_cr3);
  6226. kvm_mmu_reset_context(vcpu);
  6227. kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->guest_rsp);
  6228. kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->guest_rip);
  6229. }
  6230. /*
  6231. * nested_vmx_run() handles a nested entry, i.e., a VMLAUNCH or VMRESUME on L1
  6232. * for running an L2 nested guest.
  6233. */
  6234. static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch)
  6235. {
  6236. struct vmcs12 *vmcs12;
  6237. struct vcpu_vmx *vmx = to_vmx(vcpu);
  6238. int cpu;
  6239. struct loaded_vmcs *vmcs02;
  6240. if (!nested_vmx_check_permission(vcpu) ||
  6241. !nested_vmx_check_vmcs12(vcpu))
  6242. return 1;
  6243. skip_emulated_instruction(vcpu);
  6244. vmcs12 = get_vmcs12(vcpu);
  6245. /*
  6246. * The nested entry process starts with enforcing various prerequisites
  6247. * on vmcs12 as required by the Intel SDM, and act appropriately when
  6248. * they fail: As the SDM explains, some conditions should cause the
  6249. * instruction to fail, while others will cause the instruction to seem
  6250. * to succeed, but return an EXIT_REASON_INVALID_STATE.
  6251. * To speed up the normal (success) code path, we should avoid checking
  6252. * for misconfigurations which will anyway be caught by the processor
  6253. * when using the merged vmcs02.
  6254. */
  6255. if (vmcs12->launch_state == launch) {
  6256. nested_vmx_failValid(vcpu,
  6257. launch ? VMXERR_VMLAUNCH_NONCLEAR_VMCS
  6258. : VMXERR_VMRESUME_NONLAUNCHED_VMCS);
  6259. return 1;
  6260. }
  6261. if ((vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_MSR_BITMAPS) &&
  6262. !IS_ALIGNED(vmcs12->msr_bitmap, PAGE_SIZE)) {
  6263. /*TODO: Also verify bits beyond physical address width are 0*/
  6264. nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
  6265. return 1;
  6266. }
  6267. if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) &&
  6268. !IS_ALIGNED(vmcs12->apic_access_addr, PAGE_SIZE)) {
  6269. /*TODO: Also verify bits beyond physical address width are 0*/
  6270. nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
  6271. return 1;
  6272. }
  6273. if (vmcs12->vm_entry_msr_load_count > 0 ||
  6274. vmcs12->vm_exit_msr_load_count > 0 ||
  6275. vmcs12->vm_exit_msr_store_count > 0) {
  6276. pr_warn_ratelimited("%s: VMCS MSR_{LOAD,STORE} unsupported\n",
  6277. __func__);
  6278. nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
  6279. return 1;
  6280. }
  6281. if (!vmx_control_verify(vmcs12->cpu_based_vm_exec_control,
  6282. nested_vmx_procbased_ctls_low, nested_vmx_procbased_ctls_high) ||
  6283. !vmx_control_verify(vmcs12->secondary_vm_exec_control,
  6284. nested_vmx_secondary_ctls_low, nested_vmx_secondary_ctls_high) ||
  6285. !vmx_control_verify(vmcs12->pin_based_vm_exec_control,
  6286. nested_vmx_pinbased_ctls_low, nested_vmx_pinbased_ctls_high) ||
  6287. !vmx_control_verify(vmcs12->vm_exit_controls,
  6288. nested_vmx_exit_ctls_low, nested_vmx_exit_ctls_high) ||
  6289. !vmx_control_verify(vmcs12->vm_entry_controls,
  6290. nested_vmx_entry_ctls_low, nested_vmx_entry_ctls_high))
  6291. {
  6292. nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
  6293. return 1;
  6294. }
  6295. if (((vmcs12->host_cr0 & VMXON_CR0_ALWAYSON) != VMXON_CR0_ALWAYSON) ||
  6296. ((vmcs12->host_cr4 & VMXON_CR4_ALWAYSON) != VMXON_CR4_ALWAYSON)) {
  6297. nested_vmx_failValid(vcpu,
  6298. VMXERR_ENTRY_INVALID_HOST_STATE_FIELD);
  6299. return 1;
  6300. }
  6301. if (((vmcs12->guest_cr0 & VMXON_CR0_ALWAYSON) != VMXON_CR0_ALWAYSON) ||
  6302. ((vmcs12->guest_cr4 & VMXON_CR4_ALWAYSON) != VMXON_CR4_ALWAYSON)) {
  6303. nested_vmx_entry_failure(vcpu, vmcs12,
  6304. EXIT_REASON_INVALID_STATE, ENTRY_FAIL_DEFAULT);
  6305. return 1;
  6306. }
  6307. if (vmcs12->vmcs_link_pointer != -1ull) {
  6308. nested_vmx_entry_failure(vcpu, vmcs12,
  6309. EXIT_REASON_INVALID_STATE, ENTRY_FAIL_VMCS_LINK_PTR);
  6310. return 1;
  6311. }
  6312. /*
  6313. * We're finally done with prerequisite checking, and can start with
  6314. * the nested entry.
  6315. */
  6316. vmcs02 = nested_get_current_vmcs02(vmx);
  6317. if (!vmcs02)
  6318. return -ENOMEM;
  6319. enter_guest_mode(vcpu);
  6320. vmx->nested.vmcs01_tsc_offset = vmcs_read64(TSC_OFFSET);
  6321. cpu = get_cpu();
  6322. vmx->loaded_vmcs = vmcs02;
  6323. vmx_vcpu_put(vcpu);
  6324. vmx_vcpu_load(vcpu, cpu);
  6325. vcpu->cpu = cpu;
  6326. put_cpu();
  6327. vmx_segment_cache_clear(vmx);
  6328. vmcs12->launch_state = 1;
  6329. prepare_vmcs02(vcpu, vmcs12);
  6330. /*
  6331. * Note no nested_vmx_succeed or nested_vmx_fail here. At this point
  6332. * we are no longer running L1, and VMLAUNCH/VMRESUME has not yet
  6333. * returned as far as L1 is concerned. It will only return (and set
  6334. * the success flag) when L2 exits (see nested_vmx_vmexit()).
  6335. */
  6336. return 1;
  6337. }
  6338. /*
  6339. * On a nested exit from L2 to L1, vmcs12.guest_cr0 might not be up-to-date
  6340. * because L2 may have changed some cr0 bits directly (CRO_GUEST_HOST_MASK).
  6341. * This function returns the new value we should put in vmcs12.guest_cr0.
  6342. * It's not enough to just return the vmcs02 GUEST_CR0. Rather,
  6343. * 1. Bits that neither L0 nor L1 trapped, were set directly by L2 and are now
  6344. * available in vmcs02 GUEST_CR0. (Note: It's enough to check that L0
  6345. * didn't trap the bit, because if L1 did, so would L0).
  6346. * 2. Bits that L1 asked to trap (and therefore L0 also did) could not have
  6347. * been modified by L2, and L1 knows it. So just leave the old value of
  6348. * the bit from vmcs12.guest_cr0. Note that the bit from vmcs02 GUEST_CR0
  6349. * isn't relevant, because if L0 traps this bit it can set it to anything.
  6350. * 3. Bits that L1 didn't trap, but L0 did. L1 believes the guest could have
  6351. * changed these bits, and therefore they need to be updated, but L0
  6352. * didn't necessarily allow them to be changed in GUEST_CR0 - and rather
  6353. * put them in vmcs02 CR0_READ_SHADOW. So take these bits from there.
  6354. */
  6355. static inline unsigned long
  6356. vmcs12_guest_cr0(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
  6357. {
  6358. return
  6359. /*1*/ (vmcs_readl(GUEST_CR0) & vcpu->arch.cr0_guest_owned_bits) |
  6360. /*2*/ (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask) |
  6361. /*3*/ (vmcs_readl(CR0_READ_SHADOW) & ~(vmcs12->cr0_guest_host_mask |
  6362. vcpu->arch.cr0_guest_owned_bits));
  6363. }
  6364. static inline unsigned long
  6365. vmcs12_guest_cr4(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
  6366. {
  6367. return
  6368. /*1*/ (vmcs_readl(GUEST_CR4) & vcpu->arch.cr4_guest_owned_bits) |
  6369. /*2*/ (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask) |
  6370. /*3*/ (vmcs_readl(CR4_READ_SHADOW) & ~(vmcs12->cr4_guest_host_mask |
  6371. vcpu->arch.cr4_guest_owned_bits));
  6372. }
  6373. /*
  6374. * prepare_vmcs12 is part of what we need to do when the nested L2 guest exits
  6375. * and we want to prepare to run its L1 parent. L1 keeps a vmcs for L2 (vmcs12),
  6376. * and this function updates it to reflect the changes to the guest state while
  6377. * L2 was running (and perhaps made some exits which were handled directly by L0
  6378. * without going back to L1), and to reflect the exit reason.
  6379. * Note that we do not have to copy here all VMCS fields, just those that
  6380. * could have changed by the L2 guest or the exit - i.e., the guest-state and
  6381. * exit-information fields only. Other fields are modified by L1 with VMWRITE,
  6382. * which already writes to vmcs12 directly.
  6383. */
  6384. static void prepare_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
  6385. {
  6386. /* update guest state fields: */
  6387. vmcs12->guest_cr0 = vmcs12_guest_cr0(vcpu, vmcs12);
  6388. vmcs12->guest_cr4 = vmcs12_guest_cr4(vcpu, vmcs12);
  6389. kvm_get_dr(vcpu, 7, (unsigned long *)&vmcs12->guest_dr7);
  6390. vmcs12->guest_rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
  6391. vmcs12->guest_rip = kvm_register_read(vcpu, VCPU_REGS_RIP);
  6392. vmcs12->guest_rflags = vmcs_readl(GUEST_RFLAGS);
  6393. vmcs12->guest_es_selector = vmcs_read16(GUEST_ES_SELECTOR);
  6394. vmcs12->guest_cs_selector = vmcs_read16(GUEST_CS_SELECTOR);
  6395. vmcs12->guest_ss_selector = vmcs_read16(GUEST_SS_SELECTOR);
  6396. vmcs12->guest_ds_selector = vmcs_read16(GUEST_DS_SELECTOR);
  6397. vmcs12->guest_fs_selector = vmcs_read16(GUEST_FS_SELECTOR);
  6398. vmcs12->guest_gs_selector = vmcs_read16(GUEST_GS_SELECTOR);
  6399. vmcs12->guest_ldtr_selector = vmcs_read16(GUEST_LDTR_SELECTOR);
  6400. vmcs12->guest_tr_selector = vmcs_read16(GUEST_TR_SELECTOR);
  6401. vmcs12->guest_es_limit = vmcs_read32(GUEST_ES_LIMIT);
  6402. vmcs12->guest_cs_limit = vmcs_read32(GUEST_CS_LIMIT);
  6403. vmcs12->guest_ss_limit = vmcs_read32(GUEST_SS_LIMIT);
  6404. vmcs12->guest_ds_limit = vmcs_read32(GUEST_DS_LIMIT);
  6405. vmcs12->guest_fs_limit = vmcs_read32(GUEST_FS_LIMIT);
  6406. vmcs12->guest_gs_limit = vmcs_read32(GUEST_GS_LIMIT);
  6407. vmcs12->guest_ldtr_limit = vmcs_read32(GUEST_LDTR_LIMIT);
  6408. vmcs12->guest_tr_limit = vmcs_read32(GUEST_TR_LIMIT);
  6409. vmcs12->guest_gdtr_limit = vmcs_read32(GUEST_GDTR_LIMIT);
  6410. vmcs12->guest_idtr_limit = vmcs_read32(GUEST_IDTR_LIMIT);
  6411. vmcs12->guest_es_ar_bytes = vmcs_read32(GUEST_ES_AR_BYTES);
  6412. vmcs12->guest_cs_ar_bytes = vmcs_read32(GUEST_CS_AR_BYTES);
  6413. vmcs12->guest_ss_ar_bytes = vmcs_read32(GUEST_SS_AR_BYTES);
  6414. vmcs12->guest_ds_ar_bytes = vmcs_read32(GUEST_DS_AR_BYTES);
  6415. vmcs12->guest_fs_ar_bytes = vmcs_read32(GUEST_FS_AR_BYTES);
  6416. vmcs12->guest_gs_ar_bytes = vmcs_read32(GUEST_GS_AR_BYTES);
  6417. vmcs12->guest_ldtr_ar_bytes = vmcs_read32(GUEST_LDTR_AR_BYTES);
  6418. vmcs12->guest_tr_ar_bytes = vmcs_read32(GUEST_TR_AR_BYTES);
  6419. vmcs12->guest_es_base = vmcs_readl(GUEST_ES_BASE);
  6420. vmcs12->guest_cs_base = vmcs_readl(GUEST_CS_BASE);
  6421. vmcs12->guest_ss_base = vmcs_readl(GUEST_SS_BASE);
  6422. vmcs12->guest_ds_base = vmcs_readl(GUEST_DS_BASE);
  6423. vmcs12->guest_fs_base = vmcs_readl(GUEST_FS_BASE);
  6424. vmcs12->guest_gs_base = vmcs_readl(GUEST_GS_BASE);
  6425. vmcs12->guest_ldtr_base = vmcs_readl(GUEST_LDTR_BASE);
  6426. vmcs12->guest_tr_base = vmcs_readl(GUEST_TR_BASE);
  6427. vmcs12->guest_gdtr_base = vmcs_readl(GUEST_GDTR_BASE);
  6428. vmcs12->guest_idtr_base = vmcs_readl(GUEST_IDTR_BASE);
  6429. vmcs12->guest_activity_state = vmcs_read32(GUEST_ACTIVITY_STATE);
  6430. vmcs12->guest_interruptibility_info =
  6431. vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
  6432. vmcs12->guest_pending_dbg_exceptions =
  6433. vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS);
  6434. /* TODO: These cannot have changed unless we have MSR bitmaps and
  6435. * the relevant bit asks not to trap the change */
  6436. vmcs12->guest_ia32_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);
  6437. if (vmcs12->vm_entry_controls & VM_EXIT_SAVE_IA32_PAT)
  6438. vmcs12->guest_ia32_pat = vmcs_read64(GUEST_IA32_PAT);
  6439. vmcs12->guest_sysenter_cs = vmcs_read32(GUEST_SYSENTER_CS);
  6440. vmcs12->guest_sysenter_esp = vmcs_readl(GUEST_SYSENTER_ESP);
  6441. vmcs12->guest_sysenter_eip = vmcs_readl(GUEST_SYSENTER_EIP);
  6442. /* update exit information fields: */
  6443. vmcs12->vm_exit_reason = to_vmx(vcpu)->exit_reason;
  6444. vmcs12->exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  6445. vmcs12->vm_exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
  6446. vmcs12->vm_exit_intr_error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
  6447. vmcs12->idt_vectoring_info_field = to_vmx(vcpu)->idt_vectoring_info;
  6448. vmcs12->idt_vectoring_error_code =
  6449. vmcs_read32(IDT_VECTORING_ERROR_CODE);
  6450. vmcs12->vm_exit_instruction_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
  6451. vmcs12->vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
  6452. /* clear vm-entry fields which are to be cleared on exit */
  6453. if (!(vmcs12->vm_exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY))
  6454. vmcs12->vm_entry_intr_info_field &= ~INTR_INFO_VALID_MASK;
  6455. }
  6456. /*
  6457. * A part of what we need to when the nested L2 guest exits and we want to
  6458. * run its L1 parent, is to reset L1's guest state to the host state specified
  6459. * in vmcs12.
  6460. * This function is to be called not only on normal nested exit, but also on
  6461. * a nested entry failure, as explained in Intel's spec, 3B.23.7 ("VM-Entry
  6462. * Failures During or After Loading Guest State").
  6463. * This function should be called when the active VMCS is L1's (vmcs01).
  6464. */
  6465. static void load_vmcs12_host_state(struct kvm_vcpu *vcpu,
  6466. struct vmcs12 *vmcs12)
  6467. {
  6468. if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER)
  6469. vcpu->arch.efer = vmcs12->host_ia32_efer;
  6470. if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
  6471. vcpu->arch.efer |= (EFER_LMA | EFER_LME);
  6472. else
  6473. vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
  6474. vmx_set_efer(vcpu, vcpu->arch.efer);
  6475. kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->host_rsp);
  6476. kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->host_rip);
  6477. vmx_set_rflags(vcpu, X86_EFLAGS_BIT1);
  6478. /*
  6479. * Note that calling vmx_set_cr0 is important, even if cr0 hasn't
  6480. * actually changed, because it depends on the current state of
  6481. * fpu_active (which may have changed).
  6482. * Note that vmx_set_cr0 refers to efer set above.
  6483. */
  6484. kvm_set_cr0(vcpu, vmcs12->host_cr0);
  6485. /*
  6486. * If we did fpu_activate()/fpu_deactivate() during L2's run, we need
  6487. * to apply the same changes to L1's vmcs. We just set cr0 correctly,
  6488. * but we also need to update cr0_guest_host_mask and exception_bitmap.
  6489. */
  6490. update_exception_bitmap(vcpu);
  6491. vcpu->arch.cr0_guest_owned_bits = (vcpu->fpu_active ? X86_CR0_TS : 0);
  6492. vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
  6493. /*
  6494. * Note that CR4_GUEST_HOST_MASK is already set in the original vmcs01
  6495. * (KVM doesn't change it)- no reason to call set_cr4_guest_host_mask();
  6496. */
  6497. vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
  6498. kvm_set_cr4(vcpu, vmcs12->host_cr4);
  6499. /* shadow page tables on either EPT or shadow page tables */
  6500. kvm_set_cr3(vcpu, vmcs12->host_cr3);
  6501. kvm_mmu_reset_context(vcpu);
  6502. if (enable_vpid) {
  6503. /*
  6504. * Trivially support vpid by letting L2s share their parent
  6505. * L1's vpid. TODO: move to a more elaborate solution, giving
  6506. * each L2 its own vpid and exposing the vpid feature to L1.
  6507. */
  6508. vmx_flush_tlb(vcpu);
  6509. }
  6510. vmcs_write32(GUEST_SYSENTER_CS, vmcs12->host_ia32_sysenter_cs);
  6511. vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->host_ia32_sysenter_esp);
  6512. vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->host_ia32_sysenter_eip);
  6513. vmcs_writel(GUEST_IDTR_BASE, vmcs12->host_idtr_base);
  6514. vmcs_writel(GUEST_GDTR_BASE, vmcs12->host_gdtr_base);
  6515. vmcs_writel(GUEST_TR_BASE, vmcs12->host_tr_base);
  6516. vmcs_writel(GUEST_GS_BASE, vmcs12->host_gs_base);
  6517. vmcs_writel(GUEST_FS_BASE, vmcs12->host_fs_base);
  6518. vmcs_write16(GUEST_ES_SELECTOR, vmcs12->host_es_selector);
  6519. vmcs_write16(GUEST_CS_SELECTOR, vmcs12->host_cs_selector);
  6520. vmcs_write16(GUEST_SS_SELECTOR, vmcs12->host_ss_selector);
  6521. vmcs_write16(GUEST_DS_SELECTOR, vmcs12->host_ds_selector);
  6522. vmcs_write16(GUEST_FS_SELECTOR, vmcs12->host_fs_selector);
  6523. vmcs_write16(GUEST_GS_SELECTOR, vmcs12->host_gs_selector);
  6524. vmcs_write16(GUEST_TR_SELECTOR, vmcs12->host_tr_selector);
  6525. if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT)
  6526. vmcs_write64(GUEST_IA32_PAT, vmcs12->host_ia32_pat);
  6527. if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
  6528. vmcs_write64(GUEST_IA32_PERF_GLOBAL_CTRL,
  6529. vmcs12->host_ia32_perf_global_ctrl);
  6530. kvm_set_dr(vcpu, 7, 0x400);
  6531. vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
  6532. }
  6533. /*
  6534. * Emulate an exit from nested guest (L2) to L1, i.e., prepare to run L1
  6535. * and modify vmcs12 to make it see what it would expect to see there if
  6536. * L2 was its real guest. Must only be called when in L2 (is_guest_mode())
  6537. */
  6538. static void nested_vmx_vmexit(struct kvm_vcpu *vcpu)
  6539. {
  6540. struct vcpu_vmx *vmx = to_vmx(vcpu);
  6541. int cpu;
  6542. struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
  6543. leave_guest_mode(vcpu);
  6544. prepare_vmcs12(vcpu, vmcs12);
  6545. cpu = get_cpu();
  6546. vmx->loaded_vmcs = &vmx->vmcs01;
  6547. vmx_vcpu_put(vcpu);
  6548. vmx_vcpu_load(vcpu, cpu);
  6549. vcpu->cpu = cpu;
  6550. put_cpu();
  6551. vmx_segment_cache_clear(vmx);
  6552. /* if no vmcs02 cache requested, remove the one we used */
  6553. if (VMCS02_POOL_SIZE == 0)
  6554. nested_free_vmcs02(vmx, vmx->nested.current_vmptr);
  6555. load_vmcs12_host_state(vcpu, vmcs12);
  6556. /* Update TSC_OFFSET if TSC was changed while L2 ran */
  6557. vmcs_write64(TSC_OFFSET, vmx->nested.vmcs01_tsc_offset);
  6558. /* This is needed for same reason as it was needed in prepare_vmcs02 */
  6559. vmx->host_rsp = 0;
  6560. /* Unpin physical memory we referred to in vmcs02 */
  6561. if (vmx->nested.apic_access_page) {
  6562. nested_release_page(vmx->nested.apic_access_page);
  6563. vmx->nested.apic_access_page = 0;
  6564. }
  6565. /*
  6566. * Exiting from L2 to L1, we're now back to L1 which thinks it just
  6567. * finished a VMLAUNCH or VMRESUME instruction, so we need to set the
  6568. * success or failure flag accordingly.
  6569. */
  6570. if (unlikely(vmx->fail)) {
  6571. vmx->fail = 0;
  6572. nested_vmx_failValid(vcpu, vmcs_read32(VM_INSTRUCTION_ERROR));
  6573. } else
  6574. nested_vmx_succeed(vcpu);
  6575. }
  6576. /*
  6577. * L1's failure to enter L2 is a subset of a normal exit, as explained in
  6578. * 23.7 "VM-entry failures during or after loading guest state" (this also
  6579. * lists the acceptable exit-reason and exit-qualification parameters).
  6580. * It should only be called before L2 actually succeeded to run, and when
  6581. * vmcs01 is current (it doesn't leave_guest_mode() or switch vmcss).
  6582. */
  6583. static void nested_vmx_entry_failure(struct kvm_vcpu *vcpu,
  6584. struct vmcs12 *vmcs12,
  6585. u32 reason, unsigned long qualification)
  6586. {
  6587. load_vmcs12_host_state(vcpu, vmcs12);
  6588. vmcs12->vm_exit_reason = reason | VMX_EXIT_REASONS_FAILED_VMENTRY;
  6589. vmcs12->exit_qualification = qualification;
  6590. nested_vmx_succeed(vcpu);
  6591. }
  6592. static int vmx_check_intercept(struct kvm_vcpu *vcpu,
  6593. struct x86_instruction_info *info,
  6594. enum x86_intercept_stage stage)
  6595. {
  6596. return X86EMUL_CONTINUE;
  6597. }
  6598. static struct kvm_x86_ops vmx_x86_ops = {
  6599. .cpu_has_kvm_support = cpu_has_kvm_support,
  6600. .disabled_by_bios = vmx_disabled_by_bios,
  6601. .hardware_setup = hardware_setup,
  6602. .hardware_unsetup = hardware_unsetup,
  6603. .check_processor_compatibility = vmx_check_processor_compat,
  6604. .hardware_enable = hardware_enable,
  6605. .hardware_disable = hardware_disable,
  6606. .cpu_has_accelerated_tpr = report_flexpriority,
  6607. .vcpu_create = vmx_create_vcpu,
  6608. .vcpu_free = vmx_free_vcpu,
  6609. .vcpu_reset = vmx_vcpu_reset,
  6610. .prepare_guest_switch = vmx_save_host_state,
  6611. .vcpu_load = vmx_vcpu_load,
  6612. .vcpu_put = vmx_vcpu_put,
  6613. .update_db_bp_intercept = update_exception_bitmap,
  6614. .get_msr = vmx_get_msr,
  6615. .set_msr = vmx_set_msr,
  6616. .get_segment_base = vmx_get_segment_base,
  6617. .get_segment = vmx_get_segment,
  6618. .set_segment = vmx_set_segment,
  6619. .get_cpl = vmx_get_cpl,
  6620. .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
  6621. .decache_cr0_guest_bits = vmx_decache_cr0_guest_bits,
  6622. .decache_cr3 = vmx_decache_cr3,
  6623. .decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
  6624. .set_cr0 = vmx_set_cr0,
  6625. .set_cr3 = vmx_set_cr3,
  6626. .set_cr4 = vmx_set_cr4,
  6627. .set_efer = vmx_set_efer,
  6628. .get_idt = vmx_get_idt,
  6629. .set_idt = vmx_set_idt,
  6630. .get_gdt = vmx_get_gdt,
  6631. .set_gdt = vmx_set_gdt,
  6632. .set_dr7 = vmx_set_dr7,
  6633. .cache_reg = vmx_cache_reg,
  6634. .get_rflags = vmx_get_rflags,
  6635. .set_rflags = vmx_set_rflags,
  6636. .fpu_activate = vmx_fpu_activate,
  6637. .fpu_deactivate = vmx_fpu_deactivate,
  6638. .tlb_flush = vmx_flush_tlb,
  6639. .run = vmx_vcpu_run,
  6640. .handle_exit = vmx_handle_exit,
  6641. .skip_emulated_instruction = skip_emulated_instruction,
  6642. .set_interrupt_shadow = vmx_set_interrupt_shadow,
  6643. .get_interrupt_shadow = vmx_get_interrupt_shadow,
  6644. .patch_hypercall = vmx_patch_hypercall,
  6645. .set_irq = vmx_inject_irq,
  6646. .set_nmi = vmx_inject_nmi,
  6647. .queue_exception = vmx_queue_exception,
  6648. .cancel_injection = vmx_cancel_injection,
  6649. .interrupt_allowed = vmx_interrupt_allowed,
  6650. .nmi_allowed = vmx_nmi_allowed,
  6651. .get_nmi_mask = vmx_get_nmi_mask,
  6652. .set_nmi_mask = vmx_set_nmi_mask,
  6653. .enable_nmi_window = enable_nmi_window,
  6654. .enable_irq_window = enable_irq_window,
  6655. .update_cr8_intercept = update_cr8_intercept,
  6656. .set_virtual_x2apic_mode = vmx_set_virtual_x2apic_mode,
  6657. .vm_has_apicv = vmx_vm_has_apicv,
  6658. .load_eoi_exitmap = vmx_load_eoi_exitmap,
  6659. .hwapic_irr_update = vmx_hwapic_irr_update,
  6660. .hwapic_isr_update = vmx_hwapic_isr_update,
  6661. .set_tss_addr = vmx_set_tss_addr,
  6662. .get_tdp_level = get_ept_level,
  6663. .get_mt_mask = vmx_get_mt_mask,
  6664. .get_exit_info = vmx_get_exit_info,
  6665. .get_lpage_level = vmx_get_lpage_level,
  6666. .cpuid_update = vmx_cpuid_update,
  6667. .rdtscp_supported = vmx_rdtscp_supported,
  6668. .invpcid_supported = vmx_invpcid_supported,
  6669. .set_supported_cpuid = vmx_set_supported_cpuid,
  6670. .has_wbinvd_exit = cpu_has_vmx_wbinvd_exit,
  6671. .set_tsc_khz = vmx_set_tsc_khz,
  6672. .read_tsc_offset = vmx_read_tsc_offset,
  6673. .write_tsc_offset = vmx_write_tsc_offset,
  6674. .adjust_tsc_offset = vmx_adjust_tsc_offset,
  6675. .compute_tsc_offset = vmx_compute_tsc_offset,
  6676. .read_l1_tsc = vmx_read_l1_tsc,
  6677. .set_tdp_cr3 = vmx_set_cr3,
  6678. .check_intercept = vmx_check_intercept,
  6679. };
  6680. static int __init vmx_init(void)
  6681. {
  6682. int r, i, msr;
  6683. rdmsrl_safe(MSR_EFER, &host_efer);
  6684. for (i = 0; i < NR_VMX_MSR; ++i)
  6685. kvm_define_shared_msr(i, vmx_msr_index[i]);
  6686. vmx_io_bitmap_a = (unsigned long *)__get_free_page(GFP_KERNEL);
  6687. if (!vmx_io_bitmap_a)
  6688. return -ENOMEM;
  6689. r = -ENOMEM;
  6690. vmx_io_bitmap_b = (unsigned long *)__get_free_page(GFP_KERNEL);
  6691. if (!vmx_io_bitmap_b)
  6692. goto out;
  6693. vmx_msr_bitmap_legacy = (unsigned long *)__get_free_page(GFP_KERNEL);
  6694. if (!vmx_msr_bitmap_legacy)
  6695. goto out1;
  6696. vmx_msr_bitmap_legacy_x2apic =
  6697. (unsigned long *)__get_free_page(GFP_KERNEL);
  6698. if (!vmx_msr_bitmap_legacy_x2apic)
  6699. goto out2;
  6700. vmx_msr_bitmap_longmode = (unsigned long *)__get_free_page(GFP_KERNEL);
  6701. if (!vmx_msr_bitmap_longmode)
  6702. goto out3;
  6703. vmx_msr_bitmap_longmode_x2apic =
  6704. (unsigned long *)__get_free_page(GFP_KERNEL);
  6705. if (!vmx_msr_bitmap_longmode_x2apic)
  6706. goto out4;
  6707. /*
  6708. * Allow direct access to the PC debug port (it is often used for I/O
  6709. * delays, but the vmexits simply slow things down).
  6710. */
  6711. memset(vmx_io_bitmap_a, 0xff, PAGE_SIZE);
  6712. clear_bit(0x80, vmx_io_bitmap_a);
  6713. memset(vmx_io_bitmap_b, 0xff, PAGE_SIZE);
  6714. memset(vmx_msr_bitmap_legacy, 0xff, PAGE_SIZE);
  6715. memset(vmx_msr_bitmap_longmode, 0xff, PAGE_SIZE);
  6716. set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
  6717. r = kvm_init(&vmx_x86_ops, sizeof(struct vcpu_vmx),
  6718. __alignof__(struct vcpu_vmx), THIS_MODULE);
  6719. if (r)
  6720. goto out3;
  6721. #ifdef CONFIG_KEXEC
  6722. rcu_assign_pointer(crash_vmclear_loaded_vmcss,
  6723. crash_vmclear_local_loaded_vmcss);
  6724. #endif
  6725. vmx_disable_intercept_for_msr(MSR_FS_BASE, false);
  6726. vmx_disable_intercept_for_msr(MSR_GS_BASE, false);
  6727. vmx_disable_intercept_for_msr(MSR_KERNEL_GS_BASE, true);
  6728. vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_CS, false);
  6729. vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_ESP, false);
  6730. vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_EIP, false);
  6731. memcpy(vmx_msr_bitmap_legacy_x2apic,
  6732. vmx_msr_bitmap_legacy, PAGE_SIZE);
  6733. memcpy(vmx_msr_bitmap_longmode_x2apic,
  6734. vmx_msr_bitmap_longmode, PAGE_SIZE);
  6735. if (enable_apicv_reg_vid) {
  6736. for (msr = 0x800; msr <= 0x8ff; msr++)
  6737. vmx_disable_intercept_msr_read_x2apic(msr);
  6738. /* According SDM, in x2apic mode, the whole id reg is used.
  6739. * But in KVM, it only use the highest eight bits. Need to
  6740. * intercept it */
  6741. vmx_enable_intercept_msr_read_x2apic(0x802);
  6742. /* TMCCT */
  6743. vmx_enable_intercept_msr_read_x2apic(0x839);
  6744. /* TPR */
  6745. vmx_disable_intercept_msr_write_x2apic(0x808);
  6746. /* EOI */
  6747. vmx_disable_intercept_msr_write_x2apic(0x80b);
  6748. /* SELF-IPI */
  6749. vmx_disable_intercept_msr_write_x2apic(0x83f);
  6750. }
  6751. if (enable_ept) {
  6752. kvm_mmu_set_mask_ptes(0ull,
  6753. (enable_ept_ad_bits) ? VMX_EPT_ACCESS_BIT : 0ull,
  6754. (enable_ept_ad_bits) ? VMX_EPT_DIRTY_BIT : 0ull,
  6755. 0ull, VMX_EPT_EXECUTABLE_MASK);
  6756. ept_set_mmio_spte_mask();
  6757. kvm_enable_tdp();
  6758. } else
  6759. kvm_disable_tdp();
  6760. return 0;
  6761. out4:
  6762. free_page((unsigned long)vmx_msr_bitmap_longmode);
  6763. out3:
  6764. free_page((unsigned long)vmx_msr_bitmap_legacy_x2apic);
  6765. out2:
  6766. free_page((unsigned long)vmx_msr_bitmap_legacy);
  6767. out1:
  6768. free_page((unsigned long)vmx_io_bitmap_b);
  6769. out:
  6770. free_page((unsigned long)vmx_io_bitmap_a);
  6771. return r;
  6772. }
  6773. static void __exit vmx_exit(void)
  6774. {
  6775. free_page((unsigned long)vmx_msr_bitmap_legacy_x2apic);
  6776. free_page((unsigned long)vmx_msr_bitmap_longmode_x2apic);
  6777. free_page((unsigned long)vmx_msr_bitmap_legacy);
  6778. free_page((unsigned long)vmx_msr_bitmap_longmode);
  6779. free_page((unsigned long)vmx_io_bitmap_b);
  6780. free_page((unsigned long)vmx_io_bitmap_a);
  6781. #ifdef CONFIG_KEXEC
  6782. rcu_assign_pointer(crash_vmclear_loaded_vmcss, NULL);
  6783. synchronize_rcu();
  6784. #endif
  6785. kvm_exit();
  6786. }
  6787. module_init(vmx_init)
  6788. module_exit(vmx_exit)