xfs_buf.c 45 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989
  1. /*
  2. * Copyright (c) 2000-2005 Silicon Graphics, Inc. All Rights Reserved.
  3. *
  4. * This program is free software; you can redistribute it and/or modify it
  5. * under the terms of version 2 of the GNU General Public License as
  6. * published by the Free Software Foundation.
  7. *
  8. * This program is distributed in the hope that it would be useful, but
  9. * WITHOUT ANY WARRANTY; without even the implied warranty of
  10. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
  11. *
  12. * Further, this software is distributed without any warranty that it is
  13. * free of the rightful claim of any third person regarding infringement
  14. * or the like. Any license provided herein, whether implied or
  15. * otherwise, applies only to this software file. Patent licenses, if
  16. * any, provided herein do not apply to combinations of this program with
  17. * other software, or any other product whatsoever.
  18. *
  19. * You should have received a copy of the GNU General Public License along
  20. * with this program; if not, write the Free Software Foundation, Inc., 59
  21. * Temple Place - Suite 330, Boston MA 02111-1307, USA.
  22. *
  23. * Contact information: Silicon Graphics, Inc., 1600 Amphitheatre Pkwy,
  24. * Mountain View, CA 94043, or:
  25. *
  26. * http://www.sgi.com
  27. *
  28. * For further information regarding this notice, see:
  29. *
  30. * http://oss.sgi.com/projects/GenInfo/SGIGPLNoticeExplan/
  31. */
  32. /*
  33. * The xfs_buf.c code provides an abstract buffer cache model on top
  34. * of the Linux page cache. Cached metadata blocks for a file system
  35. * are hashed to the inode for the block device. xfs_buf.c assembles
  36. * buffers (xfs_buf_t) on demand to aggregate such cached pages for I/O.
  37. *
  38. * Written by Steve Lord, Jim Mostek, Russell Cattelan
  39. * and Rajagopal Ananthanarayanan ("ananth") at SGI.
  40. *
  41. */
  42. #include <linux/stddef.h>
  43. #include <linux/errno.h>
  44. #include <linux/slab.h>
  45. #include <linux/pagemap.h>
  46. #include <linux/init.h>
  47. #include <linux/vmalloc.h>
  48. #include <linux/bio.h>
  49. #include <linux/sysctl.h>
  50. #include <linux/proc_fs.h>
  51. #include <linux/workqueue.h>
  52. #include <linux/percpu.h>
  53. #include <linux/blkdev.h>
  54. #include <linux/hash.h>
  55. #include <linux/kthread.h>
  56. #include "xfs_linux.h"
  57. /*
  58. * File wide globals
  59. */
  60. STATIC kmem_cache_t *pagebuf_zone;
  61. STATIC kmem_shaker_t pagebuf_shake;
  62. STATIC int xfsbufd_wakeup(int, gfp_t);
  63. STATIC void pagebuf_delwri_queue(xfs_buf_t *, int);
  64. STATIC struct workqueue_struct *xfslogd_workqueue;
  65. struct workqueue_struct *xfsdatad_workqueue;
  66. /*
  67. * Pagebuf debugging
  68. */
  69. #ifdef PAGEBUF_TRACE
  70. void
  71. pagebuf_trace(
  72. xfs_buf_t *pb,
  73. char *id,
  74. void *data,
  75. void *ra)
  76. {
  77. ktrace_enter(pagebuf_trace_buf,
  78. pb, id,
  79. (void *)(unsigned long)pb->pb_flags,
  80. (void *)(unsigned long)pb->pb_hold.counter,
  81. (void *)(unsigned long)pb->pb_sema.count.counter,
  82. (void *)current,
  83. data, ra,
  84. (void *)(unsigned long)((pb->pb_file_offset>>32) & 0xffffffff),
  85. (void *)(unsigned long)(pb->pb_file_offset & 0xffffffff),
  86. (void *)(unsigned long)pb->pb_buffer_length,
  87. NULL, NULL, NULL, NULL, NULL);
  88. }
  89. ktrace_t *pagebuf_trace_buf;
  90. #define PAGEBUF_TRACE_SIZE 4096
  91. #define PB_TRACE(pb, id, data) \
  92. pagebuf_trace(pb, id, (void *)data, (void *)__builtin_return_address(0))
  93. #else
  94. #define PB_TRACE(pb, id, data) do { } while (0)
  95. #endif
  96. #ifdef PAGEBUF_LOCK_TRACKING
  97. # define PB_SET_OWNER(pb) ((pb)->pb_last_holder = current->pid)
  98. # define PB_CLEAR_OWNER(pb) ((pb)->pb_last_holder = -1)
  99. # define PB_GET_OWNER(pb) ((pb)->pb_last_holder)
  100. #else
  101. # define PB_SET_OWNER(pb) do { } while (0)
  102. # define PB_CLEAR_OWNER(pb) do { } while (0)
  103. # define PB_GET_OWNER(pb) do { } while (0)
  104. #endif
  105. /*
  106. * Pagebuf allocation / freeing.
  107. */
  108. #define pb_to_gfp(flags) \
  109. ((((flags) & PBF_READ_AHEAD) ? __GFP_NORETRY : \
  110. ((flags) & PBF_DONT_BLOCK) ? GFP_NOFS : GFP_KERNEL) | __GFP_NOWARN)
  111. #define pb_to_km(flags) \
  112. (((flags) & PBF_DONT_BLOCK) ? KM_NOFS : KM_SLEEP)
  113. #define pagebuf_allocate(flags) \
  114. kmem_zone_alloc(pagebuf_zone, pb_to_km(flags))
  115. #define pagebuf_deallocate(pb) \
  116. kmem_zone_free(pagebuf_zone, (pb));
  117. /*
  118. * Page Region interfaces.
  119. *
  120. * For pages in filesystems where the blocksize is smaller than the
  121. * pagesize, we use the page->private field (long) to hold a bitmap
  122. * of uptodate regions within the page.
  123. *
  124. * Each such region is "bytes per page / bits per long" bytes long.
  125. *
  126. * NBPPR == number-of-bytes-per-page-region
  127. * BTOPR == bytes-to-page-region (rounded up)
  128. * BTOPRT == bytes-to-page-region-truncated (rounded down)
  129. */
  130. #if (BITS_PER_LONG == 32)
  131. #define PRSHIFT (PAGE_CACHE_SHIFT - 5) /* (32 == 1<<5) */
  132. #elif (BITS_PER_LONG == 64)
  133. #define PRSHIFT (PAGE_CACHE_SHIFT - 6) /* (64 == 1<<6) */
  134. #else
  135. #error BITS_PER_LONG must be 32 or 64
  136. #endif
  137. #define NBPPR (PAGE_CACHE_SIZE/BITS_PER_LONG)
  138. #define BTOPR(b) (((unsigned int)(b) + (NBPPR - 1)) >> PRSHIFT)
  139. #define BTOPRT(b) (((unsigned int)(b) >> PRSHIFT))
  140. STATIC unsigned long
  141. page_region_mask(
  142. size_t offset,
  143. size_t length)
  144. {
  145. unsigned long mask;
  146. int first, final;
  147. first = BTOPR(offset);
  148. final = BTOPRT(offset + length - 1);
  149. first = min(first, final);
  150. mask = ~0UL;
  151. mask <<= BITS_PER_LONG - (final - first);
  152. mask >>= BITS_PER_LONG - (final);
  153. ASSERT(offset + length <= PAGE_CACHE_SIZE);
  154. ASSERT((final - first) < BITS_PER_LONG && (final - first) >= 0);
  155. return mask;
  156. }
  157. STATIC inline void
  158. set_page_region(
  159. struct page *page,
  160. size_t offset,
  161. size_t length)
  162. {
  163. page->private |= page_region_mask(offset, length);
  164. if (page->private == ~0UL)
  165. SetPageUptodate(page);
  166. }
  167. STATIC inline int
  168. test_page_region(
  169. struct page *page,
  170. size_t offset,
  171. size_t length)
  172. {
  173. unsigned long mask = page_region_mask(offset, length);
  174. return (mask && (page->private & mask) == mask);
  175. }
  176. /*
  177. * Mapping of multi-page buffers into contiguous virtual space
  178. */
  179. typedef struct a_list {
  180. void *vm_addr;
  181. struct a_list *next;
  182. } a_list_t;
  183. STATIC a_list_t *as_free_head;
  184. STATIC int as_list_len;
  185. STATIC DEFINE_SPINLOCK(as_lock);
  186. /*
  187. * Try to batch vunmaps because they are costly.
  188. */
  189. STATIC void
  190. free_address(
  191. void *addr)
  192. {
  193. a_list_t *aentry;
  194. aentry = kmalloc(sizeof(a_list_t), GFP_ATOMIC & ~__GFP_HIGH);
  195. if (likely(aentry)) {
  196. spin_lock(&as_lock);
  197. aentry->next = as_free_head;
  198. aentry->vm_addr = addr;
  199. as_free_head = aentry;
  200. as_list_len++;
  201. spin_unlock(&as_lock);
  202. } else {
  203. vunmap(addr);
  204. }
  205. }
  206. STATIC void
  207. purge_addresses(void)
  208. {
  209. a_list_t *aentry, *old;
  210. if (as_free_head == NULL)
  211. return;
  212. spin_lock(&as_lock);
  213. aentry = as_free_head;
  214. as_free_head = NULL;
  215. as_list_len = 0;
  216. spin_unlock(&as_lock);
  217. while ((old = aentry) != NULL) {
  218. vunmap(aentry->vm_addr);
  219. aentry = aentry->next;
  220. kfree(old);
  221. }
  222. }
  223. /*
  224. * Internal pagebuf object manipulation
  225. */
  226. STATIC void
  227. _pagebuf_initialize(
  228. xfs_buf_t *pb,
  229. xfs_buftarg_t *target,
  230. loff_t range_base,
  231. size_t range_length,
  232. page_buf_flags_t flags)
  233. {
  234. /*
  235. * We don't want certain flags to appear in pb->pb_flags.
  236. */
  237. flags &= ~(PBF_LOCK|PBF_MAPPED|PBF_DONT_BLOCK|PBF_READ_AHEAD);
  238. memset(pb, 0, sizeof(xfs_buf_t));
  239. atomic_set(&pb->pb_hold, 1);
  240. init_MUTEX_LOCKED(&pb->pb_iodonesema);
  241. INIT_LIST_HEAD(&pb->pb_list);
  242. INIT_LIST_HEAD(&pb->pb_hash_list);
  243. init_MUTEX_LOCKED(&pb->pb_sema); /* held, no waiters */
  244. PB_SET_OWNER(pb);
  245. pb->pb_target = target;
  246. pb->pb_file_offset = range_base;
  247. /*
  248. * Set buffer_length and count_desired to the same value initially.
  249. * I/O routines should use count_desired, which will be the same in
  250. * most cases but may be reset (e.g. XFS recovery).
  251. */
  252. pb->pb_buffer_length = pb->pb_count_desired = range_length;
  253. pb->pb_flags = flags | PBF_NONE;
  254. pb->pb_bn = XFS_BUF_DADDR_NULL;
  255. atomic_set(&pb->pb_pin_count, 0);
  256. init_waitqueue_head(&pb->pb_waiters);
  257. XFS_STATS_INC(pb_create);
  258. PB_TRACE(pb, "initialize", target);
  259. }
  260. /*
  261. * Allocate a page array capable of holding a specified number
  262. * of pages, and point the page buf at it.
  263. */
  264. STATIC int
  265. _pagebuf_get_pages(
  266. xfs_buf_t *pb,
  267. int page_count,
  268. page_buf_flags_t flags)
  269. {
  270. /* Make sure that we have a page list */
  271. if (pb->pb_pages == NULL) {
  272. pb->pb_offset = page_buf_poff(pb->pb_file_offset);
  273. pb->pb_page_count = page_count;
  274. if (page_count <= PB_PAGES) {
  275. pb->pb_pages = pb->pb_page_array;
  276. } else {
  277. pb->pb_pages = kmem_alloc(sizeof(struct page *) *
  278. page_count, pb_to_km(flags));
  279. if (pb->pb_pages == NULL)
  280. return -ENOMEM;
  281. }
  282. memset(pb->pb_pages, 0, sizeof(struct page *) * page_count);
  283. }
  284. return 0;
  285. }
  286. /*
  287. * Frees pb_pages if it was malloced.
  288. */
  289. STATIC void
  290. _pagebuf_free_pages(
  291. xfs_buf_t *bp)
  292. {
  293. if (bp->pb_pages != bp->pb_page_array) {
  294. kmem_free(bp->pb_pages,
  295. bp->pb_page_count * sizeof(struct page *));
  296. }
  297. }
  298. /*
  299. * Releases the specified buffer.
  300. *
  301. * The modification state of any associated pages is left unchanged.
  302. * The buffer most not be on any hash - use pagebuf_rele instead for
  303. * hashed and refcounted buffers
  304. */
  305. void
  306. pagebuf_free(
  307. xfs_buf_t *bp)
  308. {
  309. PB_TRACE(bp, "free", 0);
  310. ASSERT(list_empty(&bp->pb_hash_list));
  311. if (bp->pb_flags & _PBF_PAGE_CACHE) {
  312. uint i;
  313. if ((bp->pb_flags & PBF_MAPPED) && (bp->pb_page_count > 1))
  314. free_address(bp->pb_addr - bp->pb_offset);
  315. for (i = 0; i < bp->pb_page_count; i++)
  316. page_cache_release(bp->pb_pages[i]);
  317. _pagebuf_free_pages(bp);
  318. } else if (bp->pb_flags & _PBF_KMEM_ALLOC) {
  319. /*
  320. * XXX(hch): bp->pb_count_desired might be incorrect (see
  321. * pagebuf_associate_memory for details), but fortunately
  322. * the Linux version of kmem_free ignores the len argument..
  323. */
  324. kmem_free(bp->pb_addr, bp->pb_count_desired);
  325. _pagebuf_free_pages(bp);
  326. }
  327. pagebuf_deallocate(bp);
  328. }
  329. /*
  330. * Finds all pages for buffer in question and builds it's page list.
  331. */
  332. STATIC int
  333. _pagebuf_lookup_pages(
  334. xfs_buf_t *bp,
  335. uint flags)
  336. {
  337. struct address_space *mapping = bp->pb_target->pbr_mapping;
  338. size_t blocksize = bp->pb_target->pbr_bsize;
  339. size_t size = bp->pb_count_desired;
  340. size_t nbytes, offset;
  341. gfp_t gfp_mask = pb_to_gfp(flags);
  342. unsigned short page_count, i;
  343. pgoff_t first;
  344. loff_t end;
  345. int error;
  346. end = bp->pb_file_offset + bp->pb_buffer_length;
  347. page_count = page_buf_btoc(end) - page_buf_btoct(bp->pb_file_offset);
  348. error = _pagebuf_get_pages(bp, page_count, flags);
  349. if (unlikely(error))
  350. return error;
  351. bp->pb_flags |= _PBF_PAGE_CACHE;
  352. offset = bp->pb_offset;
  353. first = bp->pb_file_offset >> PAGE_CACHE_SHIFT;
  354. for (i = 0; i < bp->pb_page_count; i++) {
  355. struct page *page;
  356. uint retries = 0;
  357. retry:
  358. page = find_or_create_page(mapping, first + i, gfp_mask);
  359. if (unlikely(page == NULL)) {
  360. if (flags & PBF_READ_AHEAD) {
  361. bp->pb_page_count = i;
  362. for (i = 0; i < bp->pb_page_count; i++)
  363. unlock_page(bp->pb_pages[i]);
  364. return -ENOMEM;
  365. }
  366. /*
  367. * This could deadlock.
  368. *
  369. * But until all the XFS lowlevel code is revamped to
  370. * handle buffer allocation failures we can't do much.
  371. */
  372. if (!(++retries % 100))
  373. printk(KERN_ERR
  374. "XFS: possible memory allocation "
  375. "deadlock in %s (mode:0x%x)\n",
  376. __FUNCTION__, gfp_mask);
  377. XFS_STATS_INC(pb_page_retries);
  378. xfsbufd_wakeup(0, gfp_mask);
  379. blk_congestion_wait(WRITE, HZ/50);
  380. goto retry;
  381. }
  382. XFS_STATS_INC(pb_page_found);
  383. nbytes = min_t(size_t, size, PAGE_CACHE_SIZE - offset);
  384. size -= nbytes;
  385. if (!PageUptodate(page)) {
  386. page_count--;
  387. if (blocksize >= PAGE_CACHE_SIZE) {
  388. if (flags & PBF_READ)
  389. bp->pb_locked = 1;
  390. } else if (!PagePrivate(page)) {
  391. if (test_page_region(page, offset, nbytes))
  392. page_count++;
  393. }
  394. }
  395. bp->pb_pages[i] = page;
  396. offset = 0;
  397. }
  398. if (!bp->pb_locked) {
  399. for (i = 0; i < bp->pb_page_count; i++)
  400. unlock_page(bp->pb_pages[i]);
  401. }
  402. if (page_count) {
  403. /* if we have any uptodate pages, mark that in the buffer */
  404. bp->pb_flags &= ~PBF_NONE;
  405. /* if some pages aren't uptodate, mark that in the buffer */
  406. if (page_count != bp->pb_page_count)
  407. bp->pb_flags |= PBF_PARTIAL;
  408. }
  409. PB_TRACE(bp, "lookup_pages", (long)page_count);
  410. return error;
  411. }
  412. /*
  413. * Map buffer into kernel address-space if nessecary.
  414. */
  415. STATIC int
  416. _pagebuf_map_pages(
  417. xfs_buf_t *bp,
  418. uint flags)
  419. {
  420. /* A single page buffer is always mappable */
  421. if (bp->pb_page_count == 1) {
  422. bp->pb_addr = page_address(bp->pb_pages[0]) + bp->pb_offset;
  423. bp->pb_flags |= PBF_MAPPED;
  424. } else if (flags & PBF_MAPPED) {
  425. if (as_list_len > 64)
  426. purge_addresses();
  427. bp->pb_addr = vmap(bp->pb_pages, bp->pb_page_count,
  428. VM_MAP, PAGE_KERNEL);
  429. if (unlikely(bp->pb_addr == NULL))
  430. return -ENOMEM;
  431. bp->pb_addr += bp->pb_offset;
  432. bp->pb_flags |= PBF_MAPPED;
  433. }
  434. return 0;
  435. }
  436. /*
  437. * Finding and Reading Buffers
  438. */
  439. /*
  440. * _pagebuf_find
  441. *
  442. * Looks up, and creates if absent, a lockable buffer for
  443. * a given range of an inode. The buffer is returned
  444. * locked. If other overlapping buffers exist, they are
  445. * released before the new buffer is created and locked,
  446. * which may imply that this call will block until those buffers
  447. * are unlocked. No I/O is implied by this call.
  448. */
  449. xfs_buf_t *
  450. _pagebuf_find(
  451. xfs_buftarg_t *btp, /* block device target */
  452. loff_t ioff, /* starting offset of range */
  453. size_t isize, /* length of range */
  454. page_buf_flags_t flags, /* PBF_TRYLOCK */
  455. xfs_buf_t *new_pb)/* newly allocated buffer */
  456. {
  457. loff_t range_base;
  458. size_t range_length;
  459. xfs_bufhash_t *hash;
  460. xfs_buf_t *pb, *n;
  461. range_base = (ioff << BBSHIFT);
  462. range_length = (isize << BBSHIFT);
  463. /* Check for IOs smaller than the sector size / not sector aligned */
  464. ASSERT(!(range_length < (1 << btp->pbr_sshift)));
  465. ASSERT(!(range_base & (loff_t)btp->pbr_smask));
  466. hash = &btp->bt_hash[hash_long((unsigned long)ioff, btp->bt_hashshift)];
  467. spin_lock(&hash->bh_lock);
  468. list_for_each_entry_safe(pb, n, &hash->bh_list, pb_hash_list) {
  469. ASSERT(btp == pb->pb_target);
  470. if (pb->pb_file_offset == range_base &&
  471. pb->pb_buffer_length == range_length) {
  472. /*
  473. * If we look at something bring it to the
  474. * front of the list for next time.
  475. */
  476. atomic_inc(&pb->pb_hold);
  477. list_move(&pb->pb_hash_list, &hash->bh_list);
  478. goto found;
  479. }
  480. }
  481. /* No match found */
  482. if (new_pb) {
  483. _pagebuf_initialize(new_pb, btp, range_base,
  484. range_length, flags);
  485. new_pb->pb_hash = hash;
  486. list_add(&new_pb->pb_hash_list, &hash->bh_list);
  487. } else {
  488. XFS_STATS_INC(pb_miss_locked);
  489. }
  490. spin_unlock(&hash->bh_lock);
  491. return new_pb;
  492. found:
  493. spin_unlock(&hash->bh_lock);
  494. /* Attempt to get the semaphore without sleeping,
  495. * if this does not work then we need to drop the
  496. * spinlock and do a hard attempt on the semaphore.
  497. */
  498. if (down_trylock(&pb->pb_sema)) {
  499. if (!(flags & PBF_TRYLOCK)) {
  500. /* wait for buffer ownership */
  501. PB_TRACE(pb, "get_lock", 0);
  502. pagebuf_lock(pb);
  503. XFS_STATS_INC(pb_get_locked_waited);
  504. } else {
  505. /* We asked for a trylock and failed, no need
  506. * to look at file offset and length here, we
  507. * know that this pagebuf at least overlaps our
  508. * pagebuf and is locked, therefore our buffer
  509. * either does not exist, or is this buffer
  510. */
  511. pagebuf_rele(pb);
  512. XFS_STATS_INC(pb_busy_locked);
  513. return (NULL);
  514. }
  515. } else {
  516. /* trylock worked */
  517. PB_SET_OWNER(pb);
  518. }
  519. if (pb->pb_flags & PBF_STALE) {
  520. ASSERT((pb->pb_flags & _PBF_DELWRI_Q) == 0);
  521. pb->pb_flags &= PBF_MAPPED;
  522. }
  523. PB_TRACE(pb, "got_lock", 0);
  524. XFS_STATS_INC(pb_get_locked);
  525. return (pb);
  526. }
  527. /*
  528. * xfs_buf_get_flags assembles a buffer covering the specified range.
  529. *
  530. * Storage in memory for all portions of the buffer will be allocated,
  531. * although backing storage may not be.
  532. */
  533. xfs_buf_t *
  534. xfs_buf_get_flags( /* allocate a buffer */
  535. xfs_buftarg_t *target,/* target for buffer */
  536. loff_t ioff, /* starting offset of range */
  537. size_t isize, /* length of range */
  538. page_buf_flags_t flags) /* PBF_TRYLOCK */
  539. {
  540. xfs_buf_t *pb, *new_pb;
  541. int error = 0, i;
  542. new_pb = pagebuf_allocate(flags);
  543. if (unlikely(!new_pb))
  544. return NULL;
  545. pb = _pagebuf_find(target, ioff, isize, flags, new_pb);
  546. if (pb == new_pb) {
  547. error = _pagebuf_lookup_pages(pb, flags);
  548. if (error)
  549. goto no_buffer;
  550. } else {
  551. pagebuf_deallocate(new_pb);
  552. if (unlikely(pb == NULL))
  553. return NULL;
  554. }
  555. for (i = 0; i < pb->pb_page_count; i++)
  556. mark_page_accessed(pb->pb_pages[i]);
  557. if (!(pb->pb_flags & PBF_MAPPED)) {
  558. error = _pagebuf_map_pages(pb, flags);
  559. if (unlikely(error)) {
  560. printk(KERN_WARNING "%s: failed to map pages\n",
  561. __FUNCTION__);
  562. goto no_buffer;
  563. }
  564. }
  565. XFS_STATS_INC(pb_get);
  566. /*
  567. * Always fill in the block number now, the mapped cases can do
  568. * their own overlay of this later.
  569. */
  570. pb->pb_bn = ioff;
  571. pb->pb_count_desired = pb->pb_buffer_length;
  572. PB_TRACE(pb, "get", (unsigned long)flags);
  573. return pb;
  574. no_buffer:
  575. if (flags & (PBF_LOCK | PBF_TRYLOCK))
  576. pagebuf_unlock(pb);
  577. pagebuf_rele(pb);
  578. return NULL;
  579. }
  580. xfs_buf_t *
  581. xfs_buf_read_flags(
  582. xfs_buftarg_t *target,
  583. loff_t ioff,
  584. size_t isize,
  585. page_buf_flags_t flags)
  586. {
  587. xfs_buf_t *pb;
  588. flags |= PBF_READ;
  589. pb = xfs_buf_get_flags(target, ioff, isize, flags);
  590. if (pb) {
  591. if (PBF_NOT_DONE(pb)) {
  592. PB_TRACE(pb, "read", (unsigned long)flags);
  593. XFS_STATS_INC(pb_get_read);
  594. pagebuf_iostart(pb, flags);
  595. } else if (flags & PBF_ASYNC) {
  596. PB_TRACE(pb, "read_async", (unsigned long)flags);
  597. /*
  598. * Read ahead call which is already satisfied,
  599. * drop the buffer
  600. */
  601. goto no_buffer;
  602. } else {
  603. PB_TRACE(pb, "read_done", (unsigned long)flags);
  604. /* We do not want read in the flags */
  605. pb->pb_flags &= ~PBF_READ;
  606. }
  607. }
  608. return pb;
  609. no_buffer:
  610. if (flags & (PBF_LOCK | PBF_TRYLOCK))
  611. pagebuf_unlock(pb);
  612. pagebuf_rele(pb);
  613. return NULL;
  614. }
  615. /*
  616. * If we are not low on memory then do the readahead in a deadlock
  617. * safe manner.
  618. */
  619. void
  620. pagebuf_readahead(
  621. xfs_buftarg_t *target,
  622. loff_t ioff,
  623. size_t isize,
  624. page_buf_flags_t flags)
  625. {
  626. struct backing_dev_info *bdi;
  627. bdi = target->pbr_mapping->backing_dev_info;
  628. if (bdi_read_congested(bdi))
  629. return;
  630. flags |= (PBF_TRYLOCK|PBF_ASYNC|PBF_READ_AHEAD);
  631. xfs_buf_read_flags(target, ioff, isize, flags);
  632. }
  633. xfs_buf_t *
  634. pagebuf_get_empty(
  635. size_t len,
  636. xfs_buftarg_t *target)
  637. {
  638. xfs_buf_t *pb;
  639. pb = pagebuf_allocate(0);
  640. if (pb)
  641. _pagebuf_initialize(pb, target, 0, len, 0);
  642. return pb;
  643. }
  644. static inline struct page *
  645. mem_to_page(
  646. void *addr)
  647. {
  648. if (((unsigned long)addr < VMALLOC_START) ||
  649. ((unsigned long)addr >= VMALLOC_END)) {
  650. return virt_to_page(addr);
  651. } else {
  652. return vmalloc_to_page(addr);
  653. }
  654. }
  655. int
  656. pagebuf_associate_memory(
  657. xfs_buf_t *pb,
  658. void *mem,
  659. size_t len)
  660. {
  661. int rval;
  662. int i = 0;
  663. size_t ptr;
  664. size_t end, end_cur;
  665. off_t offset;
  666. int page_count;
  667. page_count = PAGE_CACHE_ALIGN(len) >> PAGE_CACHE_SHIFT;
  668. offset = (off_t) mem - ((off_t)mem & PAGE_CACHE_MASK);
  669. if (offset && (len > PAGE_CACHE_SIZE))
  670. page_count++;
  671. /* Free any previous set of page pointers */
  672. if (pb->pb_pages)
  673. _pagebuf_free_pages(pb);
  674. pb->pb_pages = NULL;
  675. pb->pb_addr = mem;
  676. rval = _pagebuf_get_pages(pb, page_count, 0);
  677. if (rval)
  678. return rval;
  679. pb->pb_offset = offset;
  680. ptr = (size_t) mem & PAGE_CACHE_MASK;
  681. end = PAGE_CACHE_ALIGN((size_t) mem + len);
  682. end_cur = end;
  683. /* set up first page */
  684. pb->pb_pages[0] = mem_to_page(mem);
  685. ptr += PAGE_CACHE_SIZE;
  686. pb->pb_page_count = ++i;
  687. while (ptr < end) {
  688. pb->pb_pages[i] = mem_to_page((void *)ptr);
  689. pb->pb_page_count = ++i;
  690. ptr += PAGE_CACHE_SIZE;
  691. }
  692. pb->pb_locked = 0;
  693. pb->pb_count_desired = pb->pb_buffer_length = len;
  694. pb->pb_flags |= PBF_MAPPED;
  695. return 0;
  696. }
  697. xfs_buf_t *
  698. pagebuf_get_no_daddr(
  699. size_t len,
  700. xfs_buftarg_t *target)
  701. {
  702. size_t malloc_len = len;
  703. xfs_buf_t *bp;
  704. void *data;
  705. int error;
  706. bp = pagebuf_allocate(0);
  707. if (unlikely(bp == NULL))
  708. goto fail;
  709. _pagebuf_initialize(bp, target, 0, len, PBF_FORCEIO);
  710. try_again:
  711. data = kmem_alloc(malloc_len, KM_SLEEP | KM_MAYFAIL);
  712. if (unlikely(data == NULL))
  713. goto fail_free_buf;
  714. /* check whether alignment matches.. */
  715. if ((__psunsigned_t)data !=
  716. ((__psunsigned_t)data & ~target->pbr_smask)) {
  717. /* .. else double the size and try again */
  718. kmem_free(data, malloc_len);
  719. malloc_len <<= 1;
  720. goto try_again;
  721. }
  722. error = pagebuf_associate_memory(bp, data, len);
  723. if (error)
  724. goto fail_free_mem;
  725. bp->pb_flags |= _PBF_KMEM_ALLOC;
  726. pagebuf_unlock(bp);
  727. PB_TRACE(bp, "no_daddr", data);
  728. return bp;
  729. fail_free_mem:
  730. kmem_free(data, malloc_len);
  731. fail_free_buf:
  732. pagebuf_free(bp);
  733. fail:
  734. return NULL;
  735. }
  736. /*
  737. * pagebuf_hold
  738. *
  739. * Increment reference count on buffer, to hold the buffer concurrently
  740. * with another thread which may release (free) the buffer asynchronously.
  741. *
  742. * Must hold the buffer already to call this function.
  743. */
  744. void
  745. pagebuf_hold(
  746. xfs_buf_t *pb)
  747. {
  748. atomic_inc(&pb->pb_hold);
  749. PB_TRACE(pb, "hold", 0);
  750. }
  751. /*
  752. * pagebuf_rele
  753. *
  754. * pagebuf_rele releases a hold on the specified buffer. If the
  755. * the hold count is 1, pagebuf_rele calls pagebuf_free.
  756. */
  757. void
  758. pagebuf_rele(
  759. xfs_buf_t *pb)
  760. {
  761. xfs_bufhash_t *hash = pb->pb_hash;
  762. PB_TRACE(pb, "rele", pb->pb_relse);
  763. /*
  764. * pagebuf_lookup buffers are not hashed, not delayed write,
  765. * and don't have their own release routines. Special case.
  766. */
  767. if (unlikely(!hash)) {
  768. ASSERT(!pb->pb_relse);
  769. if (atomic_dec_and_test(&pb->pb_hold))
  770. xfs_buf_free(pb);
  771. return;
  772. }
  773. if (atomic_dec_and_lock(&pb->pb_hold, &hash->bh_lock)) {
  774. int do_free = 1;
  775. if (pb->pb_relse) {
  776. atomic_inc(&pb->pb_hold);
  777. spin_unlock(&hash->bh_lock);
  778. (*(pb->pb_relse)) (pb);
  779. spin_lock(&hash->bh_lock);
  780. do_free = 0;
  781. }
  782. if (pb->pb_flags & PBF_FS_MANAGED) {
  783. do_free = 0;
  784. }
  785. if (do_free) {
  786. ASSERT((pb->pb_flags & (PBF_DELWRI|_PBF_DELWRI_Q)) == 0);
  787. list_del_init(&pb->pb_hash_list);
  788. spin_unlock(&hash->bh_lock);
  789. pagebuf_free(pb);
  790. } else {
  791. spin_unlock(&hash->bh_lock);
  792. }
  793. } else {
  794. /*
  795. * Catch reference count leaks
  796. */
  797. ASSERT(atomic_read(&pb->pb_hold) >= 0);
  798. }
  799. }
  800. /*
  801. * Mutual exclusion on buffers. Locking model:
  802. *
  803. * Buffers associated with inodes for which buffer locking
  804. * is not enabled are not protected by semaphores, and are
  805. * assumed to be exclusively owned by the caller. There is a
  806. * spinlock in the buffer, used by the caller when concurrent
  807. * access is possible.
  808. */
  809. /*
  810. * pagebuf_cond_lock
  811. *
  812. * pagebuf_cond_lock locks a buffer object, if it is not already locked.
  813. * Note that this in no way
  814. * locks the underlying pages, so it is only useful for synchronizing
  815. * concurrent use of page buffer objects, not for synchronizing independent
  816. * access to the underlying pages.
  817. */
  818. int
  819. pagebuf_cond_lock( /* lock buffer, if not locked */
  820. /* returns -EBUSY if locked) */
  821. xfs_buf_t *pb)
  822. {
  823. int locked;
  824. locked = down_trylock(&pb->pb_sema) == 0;
  825. if (locked) {
  826. PB_SET_OWNER(pb);
  827. }
  828. PB_TRACE(pb, "cond_lock", (long)locked);
  829. return(locked ? 0 : -EBUSY);
  830. }
  831. #if defined(DEBUG) || defined(XFS_BLI_TRACE)
  832. /*
  833. * pagebuf_lock_value
  834. *
  835. * Return lock value for a pagebuf
  836. */
  837. int
  838. pagebuf_lock_value(
  839. xfs_buf_t *pb)
  840. {
  841. return(atomic_read(&pb->pb_sema.count));
  842. }
  843. #endif
  844. /*
  845. * pagebuf_lock
  846. *
  847. * pagebuf_lock locks a buffer object. Note that this in no way
  848. * locks the underlying pages, so it is only useful for synchronizing
  849. * concurrent use of page buffer objects, not for synchronizing independent
  850. * access to the underlying pages.
  851. */
  852. int
  853. pagebuf_lock(
  854. xfs_buf_t *pb)
  855. {
  856. PB_TRACE(pb, "lock", 0);
  857. if (atomic_read(&pb->pb_io_remaining))
  858. blk_run_address_space(pb->pb_target->pbr_mapping);
  859. down(&pb->pb_sema);
  860. PB_SET_OWNER(pb);
  861. PB_TRACE(pb, "locked", 0);
  862. return 0;
  863. }
  864. /*
  865. * pagebuf_unlock
  866. *
  867. * pagebuf_unlock releases the lock on the buffer object created by
  868. * pagebuf_lock or pagebuf_cond_lock (not any pinning of underlying pages
  869. * created by pagebuf_pin).
  870. *
  871. * If the buffer is marked delwri but is not queued, do so before we
  872. * unlock the buffer as we need to set flags correctly. We also need to
  873. * take a reference for the delwri queue because the unlocker is going to
  874. * drop their's and they don't know we just queued it.
  875. */
  876. void
  877. pagebuf_unlock( /* unlock buffer */
  878. xfs_buf_t *pb) /* buffer to unlock */
  879. {
  880. if ((pb->pb_flags & (PBF_DELWRI|_PBF_DELWRI_Q)) == PBF_DELWRI) {
  881. atomic_inc(&pb->pb_hold);
  882. pb->pb_flags |= PBF_ASYNC;
  883. pagebuf_delwri_queue(pb, 0);
  884. }
  885. PB_CLEAR_OWNER(pb);
  886. up(&pb->pb_sema);
  887. PB_TRACE(pb, "unlock", 0);
  888. }
  889. /*
  890. * Pinning Buffer Storage in Memory
  891. */
  892. /*
  893. * pagebuf_pin
  894. *
  895. * pagebuf_pin locks all of the memory represented by a buffer in
  896. * memory. Multiple calls to pagebuf_pin and pagebuf_unpin, for
  897. * the same or different buffers affecting a given page, will
  898. * properly count the number of outstanding "pin" requests. The
  899. * buffer may be released after the pagebuf_pin and a different
  900. * buffer used when calling pagebuf_unpin, if desired.
  901. * pagebuf_pin should be used by the file system when it wants be
  902. * assured that no attempt will be made to force the affected
  903. * memory to disk. It does not assure that a given logical page
  904. * will not be moved to a different physical page.
  905. */
  906. void
  907. pagebuf_pin(
  908. xfs_buf_t *pb)
  909. {
  910. atomic_inc(&pb->pb_pin_count);
  911. PB_TRACE(pb, "pin", (long)pb->pb_pin_count.counter);
  912. }
  913. /*
  914. * pagebuf_unpin
  915. *
  916. * pagebuf_unpin reverses the locking of memory performed by
  917. * pagebuf_pin. Note that both functions affected the logical
  918. * pages associated with the buffer, not the buffer itself.
  919. */
  920. void
  921. pagebuf_unpin(
  922. xfs_buf_t *pb)
  923. {
  924. if (atomic_dec_and_test(&pb->pb_pin_count)) {
  925. wake_up_all(&pb->pb_waiters);
  926. }
  927. PB_TRACE(pb, "unpin", (long)pb->pb_pin_count.counter);
  928. }
  929. int
  930. pagebuf_ispin(
  931. xfs_buf_t *pb)
  932. {
  933. return atomic_read(&pb->pb_pin_count);
  934. }
  935. /*
  936. * pagebuf_wait_unpin
  937. *
  938. * pagebuf_wait_unpin waits until all of the memory associated
  939. * with the buffer is not longer locked in memory. It returns
  940. * immediately if none of the affected pages are locked.
  941. */
  942. static inline void
  943. _pagebuf_wait_unpin(
  944. xfs_buf_t *pb)
  945. {
  946. DECLARE_WAITQUEUE (wait, current);
  947. if (atomic_read(&pb->pb_pin_count) == 0)
  948. return;
  949. add_wait_queue(&pb->pb_waiters, &wait);
  950. for (;;) {
  951. set_current_state(TASK_UNINTERRUPTIBLE);
  952. if (atomic_read(&pb->pb_pin_count) == 0)
  953. break;
  954. if (atomic_read(&pb->pb_io_remaining))
  955. blk_run_address_space(pb->pb_target->pbr_mapping);
  956. schedule();
  957. }
  958. remove_wait_queue(&pb->pb_waiters, &wait);
  959. set_current_state(TASK_RUNNING);
  960. }
  961. /*
  962. * Buffer Utility Routines
  963. */
  964. /*
  965. * pagebuf_iodone
  966. *
  967. * pagebuf_iodone marks a buffer for which I/O is in progress
  968. * done with respect to that I/O. The pb_iodone routine, if
  969. * present, will be called as a side-effect.
  970. */
  971. STATIC void
  972. pagebuf_iodone_work(
  973. void *v)
  974. {
  975. xfs_buf_t *bp = (xfs_buf_t *)v;
  976. if (bp->pb_iodone)
  977. (*(bp->pb_iodone))(bp);
  978. else if (bp->pb_flags & PBF_ASYNC)
  979. xfs_buf_relse(bp);
  980. }
  981. void
  982. pagebuf_iodone(
  983. xfs_buf_t *pb,
  984. int dataio,
  985. int schedule)
  986. {
  987. pb->pb_flags &= ~(PBF_READ | PBF_WRITE);
  988. if (pb->pb_error == 0) {
  989. pb->pb_flags &= ~(PBF_PARTIAL | PBF_NONE);
  990. }
  991. PB_TRACE(pb, "iodone", pb->pb_iodone);
  992. if ((pb->pb_iodone) || (pb->pb_flags & PBF_ASYNC)) {
  993. if (schedule) {
  994. INIT_WORK(&pb->pb_iodone_work, pagebuf_iodone_work, pb);
  995. queue_work(dataio ? xfsdatad_workqueue :
  996. xfslogd_workqueue, &pb->pb_iodone_work);
  997. } else {
  998. pagebuf_iodone_work(pb);
  999. }
  1000. } else {
  1001. up(&pb->pb_iodonesema);
  1002. }
  1003. }
  1004. /*
  1005. * pagebuf_ioerror
  1006. *
  1007. * pagebuf_ioerror sets the error code for a buffer.
  1008. */
  1009. void
  1010. pagebuf_ioerror( /* mark/clear buffer error flag */
  1011. xfs_buf_t *pb, /* buffer to mark */
  1012. int error) /* error to store (0 if none) */
  1013. {
  1014. ASSERT(error >= 0 && error <= 0xffff);
  1015. pb->pb_error = (unsigned short)error;
  1016. PB_TRACE(pb, "ioerror", (unsigned long)error);
  1017. }
  1018. /*
  1019. * pagebuf_iostart
  1020. *
  1021. * pagebuf_iostart initiates I/O on a buffer, based on the flags supplied.
  1022. * If necessary, it will arrange for any disk space allocation required,
  1023. * and it will break up the request if the block mappings require it.
  1024. * The pb_iodone routine in the buffer supplied will only be called
  1025. * when all of the subsidiary I/O requests, if any, have been completed.
  1026. * pagebuf_iostart calls the pagebuf_ioinitiate routine or
  1027. * pagebuf_iorequest, if the former routine is not defined, to start
  1028. * the I/O on a given low-level request.
  1029. */
  1030. int
  1031. pagebuf_iostart( /* start I/O on a buffer */
  1032. xfs_buf_t *pb, /* buffer to start */
  1033. page_buf_flags_t flags) /* PBF_LOCK, PBF_ASYNC, PBF_READ, */
  1034. /* PBF_WRITE, PBF_DELWRI, */
  1035. /* PBF_DONT_BLOCK */
  1036. {
  1037. int status = 0;
  1038. PB_TRACE(pb, "iostart", (unsigned long)flags);
  1039. if (flags & PBF_DELWRI) {
  1040. pb->pb_flags &= ~(PBF_READ | PBF_WRITE | PBF_ASYNC);
  1041. pb->pb_flags |= flags & (PBF_DELWRI | PBF_ASYNC);
  1042. pagebuf_delwri_queue(pb, 1);
  1043. return status;
  1044. }
  1045. pb->pb_flags &= ~(PBF_READ | PBF_WRITE | PBF_ASYNC | PBF_DELWRI | \
  1046. PBF_READ_AHEAD | _PBF_RUN_QUEUES);
  1047. pb->pb_flags |= flags & (PBF_READ | PBF_WRITE | PBF_ASYNC | \
  1048. PBF_READ_AHEAD | _PBF_RUN_QUEUES);
  1049. BUG_ON(pb->pb_bn == XFS_BUF_DADDR_NULL);
  1050. /* For writes allow an alternate strategy routine to precede
  1051. * the actual I/O request (which may not be issued at all in
  1052. * a shutdown situation, for example).
  1053. */
  1054. status = (flags & PBF_WRITE) ?
  1055. pagebuf_iostrategy(pb) : pagebuf_iorequest(pb);
  1056. /* Wait for I/O if we are not an async request.
  1057. * Note: async I/O request completion will release the buffer,
  1058. * and that can already be done by this point. So using the
  1059. * buffer pointer from here on, after async I/O, is invalid.
  1060. */
  1061. if (!status && !(flags & PBF_ASYNC))
  1062. status = pagebuf_iowait(pb);
  1063. return status;
  1064. }
  1065. /*
  1066. * Helper routine for pagebuf_iorequest
  1067. */
  1068. STATIC __inline__ int
  1069. _pagebuf_iolocked(
  1070. xfs_buf_t *pb)
  1071. {
  1072. ASSERT(pb->pb_flags & (PBF_READ|PBF_WRITE));
  1073. if (pb->pb_flags & PBF_READ)
  1074. return pb->pb_locked;
  1075. return 0;
  1076. }
  1077. STATIC __inline__ void
  1078. _pagebuf_iodone(
  1079. xfs_buf_t *pb,
  1080. int schedule)
  1081. {
  1082. if (atomic_dec_and_test(&pb->pb_io_remaining) == 1) {
  1083. pb->pb_locked = 0;
  1084. pagebuf_iodone(pb, (pb->pb_flags & PBF_FS_DATAIOD), schedule);
  1085. }
  1086. }
  1087. STATIC int
  1088. bio_end_io_pagebuf(
  1089. struct bio *bio,
  1090. unsigned int bytes_done,
  1091. int error)
  1092. {
  1093. xfs_buf_t *pb = (xfs_buf_t *)bio->bi_private;
  1094. unsigned int blocksize = pb->pb_target->pbr_bsize;
  1095. struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
  1096. if (bio->bi_size)
  1097. return 1;
  1098. if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
  1099. pb->pb_error = EIO;
  1100. do {
  1101. struct page *page = bvec->bv_page;
  1102. if (unlikely(pb->pb_error)) {
  1103. if (pb->pb_flags & PBF_READ)
  1104. ClearPageUptodate(page);
  1105. SetPageError(page);
  1106. } else if (blocksize == PAGE_CACHE_SIZE) {
  1107. SetPageUptodate(page);
  1108. } else if (!PagePrivate(page) &&
  1109. (pb->pb_flags & _PBF_PAGE_CACHE)) {
  1110. set_page_region(page, bvec->bv_offset, bvec->bv_len);
  1111. }
  1112. if (--bvec >= bio->bi_io_vec)
  1113. prefetchw(&bvec->bv_page->flags);
  1114. if (_pagebuf_iolocked(pb)) {
  1115. unlock_page(page);
  1116. }
  1117. } while (bvec >= bio->bi_io_vec);
  1118. _pagebuf_iodone(pb, 1);
  1119. bio_put(bio);
  1120. return 0;
  1121. }
  1122. STATIC void
  1123. _pagebuf_ioapply(
  1124. xfs_buf_t *pb)
  1125. {
  1126. int i, rw, map_i, total_nr_pages, nr_pages;
  1127. struct bio *bio;
  1128. int offset = pb->pb_offset;
  1129. int size = pb->pb_count_desired;
  1130. sector_t sector = pb->pb_bn;
  1131. unsigned int blocksize = pb->pb_target->pbr_bsize;
  1132. int locking = _pagebuf_iolocked(pb);
  1133. total_nr_pages = pb->pb_page_count;
  1134. map_i = 0;
  1135. if (pb->pb_flags & _PBF_RUN_QUEUES) {
  1136. pb->pb_flags &= ~_PBF_RUN_QUEUES;
  1137. rw = (pb->pb_flags & PBF_READ) ? READ_SYNC : WRITE_SYNC;
  1138. } else {
  1139. rw = (pb->pb_flags & PBF_READ) ? READ : WRITE;
  1140. }
  1141. /* Special code path for reading a sub page size pagebuf in --
  1142. * we populate up the whole page, and hence the other metadata
  1143. * in the same page. This optimization is only valid when the
  1144. * filesystem block size and the page size are equal.
  1145. */
  1146. if ((pb->pb_buffer_length < PAGE_CACHE_SIZE) &&
  1147. (pb->pb_flags & PBF_READ) && locking &&
  1148. (blocksize == PAGE_CACHE_SIZE)) {
  1149. bio = bio_alloc(GFP_NOIO, 1);
  1150. bio->bi_bdev = pb->pb_target->pbr_bdev;
  1151. bio->bi_sector = sector - (offset >> BBSHIFT);
  1152. bio->bi_end_io = bio_end_io_pagebuf;
  1153. bio->bi_private = pb;
  1154. bio_add_page(bio, pb->pb_pages[0], PAGE_CACHE_SIZE, 0);
  1155. size = 0;
  1156. atomic_inc(&pb->pb_io_remaining);
  1157. goto submit_io;
  1158. }
  1159. /* Lock down the pages which we need to for the request */
  1160. if (locking && (pb->pb_flags & PBF_WRITE) && (pb->pb_locked == 0)) {
  1161. for (i = 0; size; i++) {
  1162. int nbytes = PAGE_CACHE_SIZE - offset;
  1163. struct page *page = pb->pb_pages[i];
  1164. if (nbytes > size)
  1165. nbytes = size;
  1166. lock_page(page);
  1167. size -= nbytes;
  1168. offset = 0;
  1169. }
  1170. offset = pb->pb_offset;
  1171. size = pb->pb_count_desired;
  1172. }
  1173. next_chunk:
  1174. atomic_inc(&pb->pb_io_remaining);
  1175. nr_pages = BIO_MAX_SECTORS >> (PAGE_SHIFT - BBSHIFT);
  1176. if (nr_pages > total_nr_pages)
  1177. nr_pages = total_nr_pages;
  1178. bio = bio_alloc(GFP_NOIO, nr_pages);
  1179. bio->bi_bdev = pb->pb_target->pbr_bdev;
  1180. bio->bi_sector = sector;
  1181. bio->bi_end_io = bio_end_io_pagebuf;
  1182. bio->bi_private = pb;
  1183. for (; size && nr_pages; nr_pages--, map_i++) {
  1184. int nbytes = PAGE_CACHE_SIZE - offset;
  1185. if (nbytes > size)
  1186. nbytes = size;
  1187. if (bio_add_page(bio, pb->pb_pages[map_i],
  1188. nbytes, offset) < nbytes)
  1189. break;
  1190. offset = 0;
  1191. sector += nbytes >> BBSHIFT;
  1192. size -= nbytes;
  1193. total_nr_pages--;
  1194. }
  1195. submit_io:
  1196. if (likely(bio->bi_size)) {
  1197. submit_bio(rw, bio);
  1198. if (size)
  1199. goto next_chunk;
  1200. } else {
  1201. bio_put(bio);
  1202. pagebuf_ioerror(pb, EIO);
  1203. }
  1204. }
  1205. /*
  1206. * pagebuf_iorequest -- the core I/O request routine.
  1207. */
  1208. int
  1209. pagebuf_iorequest( /* start real I/O */
  1210. xfs_buf_t *pb) /* buffer to convey to device */
  1211. {
  1212. PB_TRACE(pb, "iorequest", 0);
  1213. if (pb->pb_flags & PBF_DELWRI) {
  1214. pagebuf_delwri_queue(pb, 1);
  1215. return 0;
  1216. }
  1217. if (pb->pb_flags & PBF_WRITE) {
  1218. _pagebuf_wait_unpin(pb);
  1219. }
  1220. pagebuf_hold(pb);
  1221. /* Set the count to 1 initially, this will stop an I/O
  1222. * completion callout which happens before we have started
  1223. * all the I/O from calling pagebuf_iodone too early.
  1224. */
  1225. atomic_set(&pb->pb_io_remaining, 1);
  1226. _pagebuf_ioapply(pb);
  1227. _pagebuf_iodone(pb, 0);
  1228. pagebuf_rele(pb);
  1229. return 0;
  1230. }
  1231. /*
  1232. * pagebuf_iowait
  1233. *
  1234. * pagebuf_iowait waits for I/O to complete on the buffer supplied.
  1235. * It returns immediately if no I/O is pending. In any case, it returns
  1236. * the error code, if any, or 0 if there is no error.
  1237. */
  1238. int
  1239. pagebuf_iowait(
  1240. xfs_buf_t *pb)
  1241. {
  1242. PB_TRACE(pb, "iowait", 0);
  1243. if (atomic_read(&pb->pb_io_remaining))
  1244. blk_run_address_space(pb->pb_target->pbr_mapping);
  1245. down(&pb->pb_iodonesema);
  1246. PB_TRACE(pb, "iowaited", (long)pb->pb_error);
  1247. return pb->pb_error;
  1248. }
  1249. caddr_t
  1250. pagebuf_offset(
  1251. xfs_buf_t *pb,
  1252. size_t offset)
  1253. {
  1254. struct page *page;
  1255. offset += pb->pb_offset;
  1256. page = pb->pb_pages[offset >> PAGE_CACHE_SHIFT];
  1257. return (caddr_t) page_address(page) + (offset & (PAGE_CACHE_SIZE - 1));
  1258. }
  1259. /*
  1260. * pagebuf_iomove
  1261. *
  1262. * Move data into or out of a buffer.
  1263. */
  1264. void
  1265. pagebuf_iomove(
  1266. xfs_buf_t *pb, /* buffer to process */
  1267. size_t boff, /* starting buffer offset */
  1268. size_t bsize, /* length to copy */
  1269. caddr_t data, /* data address */
  1270. page_buf_rw_t mode) /* read/write flag */
  1271. {
  1272. size_t bend, cpoff, csize;
  1273. struct page *page;
  1274. bend = boff + bsize;
  1275. while (boff < bend) {
  1276. page = pb->pb_pages[page_buf_btoct(boff + pb->pb_offset)];
  1277. cpoff = page_buf_poff(boff + pb->pb_offset);
  1278. csize = min_t(size_t,
  1279. PAGE_CACHE_SIZE-cpoff, pb->pb_count_desired-boff);
  1280. ASSERT(((csize + cpoff) <= PAGE_CACHE_SIZE));
  1281. switch (mode) {
  1282. case PBRW_ZERO:
  1283. memset(page_address(page) + cpoff, 0, csize);
  1284. break;
  1285. case PBRW_READ:
  1286. memcpy(data, page_address(page) + cpoff, csize);
  1287. break;
  1288. case PBRW_WRITE:
  1289. memcpy(page_address(page) + cpoff, data, csize);
  1290. }
  1291. boff += csize;
  1292. data += csize;
  1293. }
  1294. }
  1295. /*
  1296. * Handling of buftargs.
  1297. */
  1298. /*
  1299. * Wait for any bufs with callbacks that have been submitted but
  1300. * have not yet returned... walk the hash list for the target.
  1301. */
  1302. void
  1303. xfs_wait_buftarg(
  1304. xfs_buftarg_t *btp)
  1305. {
  1306. xfs_buf_t *bp, *n;
  1307. xfs_bufhash_t *hash;
  1308. uint i;
  1309. for (i = 0; i < (1 << btp->bt_hashshift); i++) {
  1310. hash = &btp->bt_hash[i];
  1311. again:
  1312. spin_lock(&hash->bh_lock);
  1313. list_for_each_entry_safe(bp, n, &hash->bh_list, pb_hash_list) {
  1314. ASSERT(btp == bp->pb_target);
  1315. if (!(bp->pb_flags & PBF_FS_MANAGED)) {
  1316. spin_unlock(&hash->bh_lock);
  1317. /*
  1318. * Catch superblock reference count leaks
  1319. * immediately
  1320. */
  1321. BUG_ON(bp->pb_bn == 0);
  1322. delay(100);
  1323. goto again;
  1324. }
  1325. }
  1326. spin_unlock(&hash->bh_lock);
  1327. }
  1328. }
  1329. /*
  1330. * Allocate buffer hash table for a given target.
  1331. * For devices containing metadata (i.e. not the log/realtime devices)
  1332. * we need to allocate a much larger hash table.
  1333. */
  1334. STATIC void
  1335. xfs_alloc_bufhash(
  1336. xfs_buftarg_t *btp,
  1337. int external)
  1338. {
  1339. unsigned int i;
  1340. btp->bt_hashshift = external ? 3 : 8; /* 8 or 256 buckets */
  1341. btp->bt_hashmask = (1 << btp->bt_hashshift) - 1;
  1342. btp->bt_hash = kmem_zalloc((1 << btp->bt_hashshift) *
  1343. sizeof(xfs_bufhash_t), KM_SLEEP);
  1344. for (i = 0; i < (1 << btp->bt_hashshift); i++) {
  1345. spin_lock_init(&btp->bt_hash[i].bh_lock);
  1346. INIT_LIST_HEAD(&btp->bt_hash[i].bh_list);
  1347. }
  1348. }
  1349. STATIC void
  1350. xfs_free_bufhash(
  1351. xfs_buftarg_t *btp)
  1352. {
  1353. kmem_free(btp->bt_hash,
  1354. (1 << btp->bt_hashshift) * sizeof(xfs_bufhash_t));
  1355. btp->bt_hash = NULL;
  1356. }
  1357. void
  1358. xfs_free_buftarg(
  1359. xfs_buftarg_t *btp,
  1360. int external)
  1361. {
  1362. xfs_flush_buftarg(btp, 1);
  1363. if (external)
  1364. xfs_blkdev_put(btp->pbr_bdev);
  1365. xfs_free_bufhash(btp);
  1366. iput(btp->pbr_mapping->host);
  1367. kmem_free(btp, sizeof(*btp));
  1368. }
  1369. STATIC int
  1370. xfs_setsize_buftarg_flags(
  1371. xfs_buftarg_t *btp,
  1372. unsigned int blocksize,
  1373. unsigned int sectorsize,
  1374. int verbose)
  1375. {
  1376. btp->pbr_bsize = blocksize;
  1377. btp->pbr_sshift = ffs(sectorsize) - 1;
  1378. btp->pbr_smask = sectorsize - 1;
  1379. if (set_blocksize(btp->pbr_bdev, sectorsize)) {
  1380. printk(KERN_WARNING
  1381. "XFS: Cannot set_blocksize to %u on device %s\n",
  1382. sectorsize, XFS_BUFTARG_NAME(btp));
  1383. return EINVAL;
  1384. }
  1385. if (verbose &&
  1386. (PAGE_CACHE_SIZE / BITS_PER_LONG) > sectorsize) {
  1387. printk(KERN_WARNING
  1388. "XFS: %u byte sectors in use on device %s. "
  1389. "This is suboptimal; %u or greater is ideal.\n",
  1390. sectorsize, XFS_BUFTARG_NAME(btp),
  1391. (unsigned int)PAGE_CACHE_SIZE / BITS_PER_LONG);
  1392. }
  1393. return 0;
  1394. }
  1395. /*
  1396. * When allocating the initial buffer target we have not yet
  1397. * read in the superblock, so don't know what sized sectors
  1398. * are being used is at this early stage. Play safe.
  1399. */
  1400. STATIC int
  1401. xfs_setsize_buftarg_early(
  1402. xfs_buftarg_t *btp,
  1403. struct block_device *bdev)
  1404. {
  1405. return xfs_setsize_buftarg_flags(btp,
  1406. PAGE_CACHE_SIZE, bdev_hardsect_size(bdev), 0);
  1407. }
  1408. int
  1409. xfs_setsize_buftarg(
  1410. xfs_buftarg_t *btp,
  1411. unsigned int blocksize,
  1412. unsigned int sectorsize)
  1413. {
  1414. return xfs_setsize_buftarg_flags(btp, blocksize, sectorsize, 1);
  1415. }
  1416. STATIC int
  1417. xfs_mapping_buftarg(
  1418. xfs_buftarg_t *btp,
  1419. struct block_device *bdev)
  1420. {
  1421. struct backing_dev_info *bdi;
  1422. struct inode *inode;
  1423. struct address_space *mapping;
  1424. static struct address_space_operations mapping_aops = {
  1425. .sync_page = block_sync_page,
  1426. };
  1427. inode = new_inode(bdev->bd_inode->i_sb);
  1428. if (!inode) {
  1429. printk(KERN_WARNING
  1430. "XFS: Cannot allocate mapping inode for device %s\n",
  1431. XFS_BUFTARG_NAME(btp));
  1432. return ENOMEM;
  1433. }
  1434. inode->i_mode = S_IFBLK;
  1435. inode->i_bdev = bdev;
  1436. inode->i_rdev = bdev->bd_dev;
  1437. bdi = blk_get_backing_dev_info(bdev);
  1438. if (!bdi)
  1439. bdi = &default_backing_dev_info;
  1440. mapping = &inode->i_data;
  1441. mapping->a_ops = &mapping_aops;
  1442. mapping->backing_dev_info = bdi;
  1443. mapping_set_gfp_mask(mapping, GFP_NOFS);
  1444. btp->pbr_mapping = mapping;
  1445. return 0;
  1446. }
  1447. xfs_buftarg_t *
  1448. xfs_alloc_buftarg(
  1449. struct block_device *bdev,
  1450. int external)
  1451. {
  1452. xfs_buftarg_t *btp;
  1453. btp = kmem_zalloc(sizeof(*btp), KM_SLEEP);
  1454. btp->pbr_dev = bdev->bd_dev;
  1455. btp->pbr_bdev = bdev;
  1456. if (xfs_setsize_buftarg_early(btp, bdev))
  1457. goto error;
  1458. if (xfs_mapping_buftarg(btp, bdev))
  1459. goto error;
  1460. xfs_alloc_bufhash(btp, external);
  1461. return btp;
  1462. error:
  1463. kmem_free(btp, sizeof(*btp));
  1464. return NULL;
  1465. }
  1466. /*
  1467. * Pagebuf delayed write buffer handling
  1468. */
  1469. STATIC LIST_HEAD(pbd_delwrite_queue);
  1470. STATIC DEFINE_SPINLOCK(pbd_delwrite_lock);
  1471. STATIC void
  1472. pagebuf_delwri_queue(
  1473. xfs_buf_t *pb,
  1474. int unlock)
  1475. {
  1476. PB_TRACE(pb, "delwri_q", (long)unlock);
  1477. ASSERT((pb->pb_flags & (PBF_DELWRI|PBF_ASYNC)) ==
  1478. (PBF_DELWRI|PBF_ASYNC));
  1479. spin_lock(&pbd_delwrite_lock);
  1480. /* If already in the queue, dequeue and place at tail */
  1481. if (!list_empty(&pb->pb_list)) {
  1482. ASSERT(pb->pb_flags & _PBF_DELWRI_Q);
  1483. if (unlock) {
  1484. atomic_dec(&pb->pb_hold);
  1485. }
  1486. list_del(&pb->pb_list);
  1487. }
  1488. pb->pb_flags |= _PBF_DELWRI_Q;
  1489. list_add_tail(&pb->pb_list, &pbd_delwrite_queue);
  1490. pb->pb_queuetime = jiffies;
  1491. spin_unlock(&pbd_delwrite_lock);
  1492. if (unlock)
  1493. pagebuf_unlock(pb);
  1494. }
  1495. void
  1496. pagebuf_delwri_dequeue(
  1497. xfs_buf_t *pb)
  1498. {
  1499. int dequeued = 0;
  1500. spin_lock(&pbd_delwrite_lock);
  1501. if ((pb->pb_flags & PBF_DELWRI) && !list_empty(&pb->pb_list)) {
  1502. ASSERT(pb->pb_flags & _PBF_DELWRI_Q);
  1503. list_del_init(&pb->pb_list);
  1504. dequeued = 1;
  1505. }
  1506. pb->pb_flags &= ~(PBF_DELWRI|_PBF_DELWRI_Q);
  1507. spin_unlock(&pbd_delwrite_lock);
  1508. if (dequeued)
  1509. pagebuf_rele(pb);
  1510. PB_TRACE(pb, "delwri_dq", (long)dequeued);
  1511. }
  1512. STATIC void
  1513. pagebuf_runall_queues(
  1514. struct workqueue_struct *queue)
  1515. {
  1516. flush_workqueue(queue);
  1517. }
  1518. /* Defines for pagebuf daemon */
  1519. STATIC struct task_struct *xfsbufd_task;
  1520. STATIC int xfsbufd_force_flush;
  1521. STATIC int xfsbufd_force_sleep;
  1522. STATIC int
  1523. xfsbufd_wakeup(
  1524. int priority,
  1525. gfp_t mask)
  1526. {
  1527. if (xfsbufd_force_sleep)
  1528. return 0;
  1529. xfsbufd_force_flush = 1;
  1530. barrier();
  1531. wake_up_process(xfsbufd_task);
  1532. return 0;
  1533. }
  1534. STATIC int
  1535. xfsbufd(
  1536. void *data)
  1537. {
  1538. struct list_head tmp;
  1539. unsigned long age;
  1540. xfs_buftarg_t *target;
  1541. xfs_buf_t *pb, *n;
  1542. current->flags |= PF_MEMALLOC;
  1543. INIT_LIST_HEAD(&tmp);
  1544. do {
  1545. if (unlikely(freezing(current))) {
  1546. xfsbufd_force_sleep = 1;
  1547. refrigerator();
  1548. } else {
  1549. xfsbufd_force_sleep = 0;
  1550. }
  1551. schedule_timeout_interruptible
  1552. (xfs_buf_timer_centisecs * msecs_to_jiffies(10));
  1553. age = xfs_buf_age_centisecs * msecs_to_jiffies(10);
  1554. spin_lock(&pbd_delwrite_lock);
  1555. list_for_each_entry_safe(pb, n, &pbd_delwrite_queue, pb_list) {
  1556. PB_TRACE(pb, "walkq1", (long)pagebuf_ispin(pb));
  1557. ASSERT(pb->pb_flags & PBF_DELWRI);
  1558. if (!pagebuf_ispin(pb) && !pagebuf_cond_lock(pb)) {
  1559. if (!xfsbufd_force_flush &&
  1560. time_before(jiffies,
  1561. pb->pb_queuetime + age)) {
  1562. pagebuf_unlock(pb);
  1563. break;
  1564. }
  1565. pb->pb_flags &= ~(PBF_DELWRI|_PBF_DELWRI_Q);
  1566. pb->pb_flags |= PBF_WRITE;
  1567. list_move(&pb->pb_list, &tmp);
  1568. }
  1569. }
  1570. spin_unlock(&pbd_delwrite_lock);
  1571. while (!list_empty(&tmp)) {
  1572. pb = list_entry(tmp.next, xfs_buf_t, pb_list);
  1573. target = pb->pb_target;
  1574. list_del_init(&pb->pb_list);
  1575. pagebuf_iostrategy(pb);
  1576. blk_run_address_space(target->pbr_mapping);
  1577. }
  1578. if (as_list_len > 0)
  1579. purge_addresses();
  1580. xfsbufd_force_flush = 0;
  1581. } while (!kthread_should_stop());
  1582. return 0;
  1583. }
  1584. /*
  1585. * Go through all incore buffers, and release buffers if they belong to
  1586. * the given device. This is used in filesystem error handling to
  1587. * preserve the consistency of its metadata.
  1588. */
  1589. int
  1590. xfs_flush_buftarg(
  1591. xfs_buftarg_t *target,
  1592. int wait)
  1593. {
  1594. struct list_head tmp;
  1595. xfs_buf_t *pb, *n;
  1596. int pincount = 0;
  1597. pagebuf_runall_queues(xfsdatad_workqueue);
  1598. pagebuf_runall_queues(xfslogd_workqueue);
  1599. INIT_LIST_HEAD(&tmp);
  1600. spin_lock(&pbd_delwrite_lock);
  1601. list_for_each_entry_safe(pb, n, &pbd_delwrite_queue, pb_list) {
  1602. if (pb->pb_target != target)
  1603. continue;
  1604. ASSERT(pb->pb_flags & (PBF_DELWRI|_PBF_DELWRI_Q));
  1605. PB_TRACE(pb, "walkq2", (long)pagebuf_ispin(pb));
  1606. if (pagebuf_ispin(pb)) {
  1607. pincount++;
  1608. continue;
  1609. }
  1610. list_move(&pb->pb_list, &tmp);
  1611. }
  1612. spin_unlock(&pbd_delwrite_lock);
  1613. /*
  1614. * Dropped the delayed write list lock, now walk the temporary list
  1615. */
  1616. list_for_each_entry_safe(pb, n, &tmp, pb_list) {
  1617. pagebuf_lock(pb);
  1618. pb->pb_flags &= ~(PBF_DELWRI|_PBF_DELWRI_Q);
  1619. pb->pb_flags |= PBF_WRITE;
  1620. if (wait)
  1621. pb->pb_flags &= ~PBF_ASYNC;
  1622. else
  1623. list_del_init(&pb->pb_list);
  1624. pagebuf_iostrategy(pb);
  1625. }
  1626. /*
  1627. * Remaining list items must be flushed before returning
  1628. */
  1629. while (!list_empty(&tmp)) {
  1630. pb = list_entry(tmp.next, xfs_buf_t, pb_list);
  1631. list_del_init(&pb->pb_list);
  1632. xfs_iowait(pb);
  1633. xfs_buf_relse(pb);
  1634. }
  1635. if (wait)
  1636. blk_run_address_space(target->pbr_mapping);
  1637. return pincount;
  1638. }
  1639. STATIC int
  1640. xfs_buf_daemons_start(void)
  1641. {
  1642. int error = -ENOMEM;
  1643. xfslogd_workqueue = create_workqueue("xfslogd");
  1644. if (!xfslogd_workqueue)
  1645. goto out;
  1646. xfsdatad_workqueue = create_workqueue("xfsdatad");
  1647. if (!xfsdatad_workqueue)
  1648. goto out_destroy_xfslogd_workqueue;
  1649. xfsbufd_task = kthread_run(xfsbufd, NULL, "xfsbufd");
  1650. if (IS_ERR(xfsbufd_task)) {
  1651. error = PTR_ERR(xfsbufd_task);
  1652. goto out_destroy_xfsdatad_workqueue;
  1653. }
  1654. return 0;
  1655. out_destroy_xfsdatad_workqueue:
  1656. destroy_workqueue(xfsdatad_workqueue);
  1657. out_destroy_xfslogd_workqueue:
  1658. destroy_workqueue(xfslogd_workqueue);
  1659. out:
  1660. return error;
  1661. }
  1662. /*
  1663. * Note: do not mark as __exit, it is called from pagebuf_terminate.
  1664. */
  1665. STATIC void
  1666. xfs_buf_daemons_stop(void)
  1667. {
  1668. kthread_stop(xfsbufd_task);
  1669. destroy_workqueue(xfslogd_workqueue);
  1670. destroy_workqueue(xfsdatad_workqueue);
  1671. }
  1672. /*
  1673. * Initialization and Termination
  1674. */
  1675. int __init
  1676. pagebuf_init(void)
  1677. {
  1678. int error = -ENOMEM;
  1679. pagebuf_zone = kmem_zone_init(sizeof(xfs_buf_t), "xfs_buf");
  1680. if (!pagebuf_zone)
  1681. goto out;
  1682. #ifdef PAGEBUF_TRACE
  1683. pagebuf_trace_buf = ktrace_alloc(PAGEBUF_TRACE_SIZE, KM_SLEEP);
  1684. #endif
  1685. error = xfs_buf_daemons_start();
  1686. if (error)
  1687. goto out_free_buf_zone;
  1688. pagebuf_shake = kmem_shake_register(xfsbufd_wakeup);
  1689. if (!pagebuf_shake) {
  1690. error = -ENOMEM;
  1691. goto out_stop_daemons;
  1692. }
  1693. return 0;
  1694. out_stop_daemons:
  1695. xfs_buf_daemons_stop();
  1696. out_free_buf_zone:
  1697. #ifdef PAGEBUF_TRACE
  1698. ktrace_free(pagebuf_trace_buf);
  1699. #endif
  1700. kmem_zone_destroy(pagebuf_zone);
  1701. out:
  1702. return error;
  1703. }
  1704. /*
  1705. * pagebuf_terminate.
  1706. *
  1707. * Note: do not mark as __exit, this is also called from the __init code.
  1708. */
  1709. void
  1710. pagebuf_terminate(void)
  1711. {
  1712. xfs_buf_daemons_stop();
  1713. #ifdef PAGEBUF_TRACE
  1714. ktrace_free(pagebuf_trace_buf);
  1715. #endif
  1716. kmem_zone_destroy(pagebuf_zone);
  1717. kmem_shake_deregister(pagebuf_shake);
  1718. }