skge.c 87 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346
  1. /*
  2. * New driver for Marvell Yukon chipset and SysKonnect Gigabit
  3. * Ethernet adapters. Based on earlier sk98lin, e100 and
  4. * FreeBSD if_sk drivers.
  5. *
  6. * This driver intentionally does not support all the features
  7. * of the original driver such as link fail-over and link management because
  8. * those should be done at higher levels.
  9. *
  10. * Copyright (C) 2004, 2005 Stephen Hemminger <shemminger@osdl.org>
  11. *
  12. * This program is free software; you can redistribute it and/or modify
  13. * it under the terms of the GNU General Public License as published by
  14. * the Free Software Foundation; either version 2 of the License, or
  15. * (at your option) any later version.
  16. *
  17. * This program is distributed in the hope that it will be useful,
  18. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  19. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  20. * GNU General Public License for more details.
  21. *
  22. * You should have received a copy of the GNU General Public License
  23. * along with this program; if not, write to the Free Software
  24. * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  25. */
  26. #include <linux/config.h>
  27. #include <linux/kernel.h>
  28. #include <linux/module.h>
  29. #include <linux/moduleparam.h>
  30. #include <linux/netdevice.h>
  31. #include <linux/etherdevice.h>
  32. #include <linux/ethtool.h>
  33. #include <linux/pci.h>
  34. #include <linux/if_vlan.h>
  35. #include <linux/ip.h>
  36. #include <linux/delay.h>
  37. #include <linux/crc32.h>
  38. #include <linux/dma-mapping.h>
  39. #include <asm/irq.h>
  40. #include "skge.h"
  41. #define DRV_NAME "skge"
  42. #define DRV_VERSION "1.1"
  43. #define PFX DRV_NAME " "
  44. #define DEFAULT_TX_RING_SIZE 128
  45. #define DEFAULT_RX_RING_SIZE 512
  46. #define MAX_TX_RING_SIZE 1024
  47. #define MAX_RX_RING_SIZE 4096
  48. #define RX_COPY_THRESHOLD 128
  49. #define RX_BUF_SIZE 1536
  50. #define PHY_RETRIES 1000
  51. #define ETH_JUMBO_MTU 9000
  52. #define TX_WATCHDOG (5 * HZ)
  53. #define NAPI_WEIGHT 64
  54. #define BLINK_MS 250
  55. MODULE_DESCRIPTION("SysKonnect Gigabit Ethernet driver");
  56. MODULE_AUTHOR("Stephen Hemminger <shemminger@osdl.org>");
  57. MODULE_LICENSE("GPL");
  58. MODULE_VERSION(DRV_VERSION);
  59. static const u32 default_msg
  60. = NETIF_MSG_DRV| NETIF_MSG_PROBE| NETIF_MSG_LINK
  61. | NETIF_MSG_IFUP| NETIF_MSG_IFDOWN;
  62. static int debug = -1; /* defaults above */
  63. module_param(debug, int, 0);
  64. MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
  65. static const struct pci_device_id skge_id_table[] = {
  66. { PCI_DEVICE(PCI_VENDOR_ID_3COM, PCI_DEVICE_ID_3COM_3C940) },
  67. { PCI_DEVICE(PCI_VENDOR_ID_3COM, PCI_DEVICE_ID_3COM_3C940B) },
  68. { PCI_DEVICE(PCI_VENDOR_ID_SYSKONNECT, PCI_DEVICE_ID_SYSKONNECT_GE) },
  69. { PCI_DEVICE(PCI_VENDOR_ID_SYSKONNECT, PCI_DEVICE_ID_SYSKONNECT_YU) },
  70. { PCI_DEVICE(PCI_VENDOR_ID_DLINK, PCI_DEVICE_ID_DLINK_DGE510T), },
  71. { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4320) },
  72. { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x5005) }, /* Belkin */
  73. { PCI_DEVICE(PCI_VENDOR_ID_CNET, PCI_DEVICE_ID_CNET_GIGACARD) },
  74. { PCI_DEVICE(PCI_VENDOR_ID_LINKSYS, PCI_DEVICE_ID_LINKSYS_EG1064) },
  75. { PCI_VENDOR_ID_LINKSYS, 0x1032, PCI_ANY_ID, 0x0015, },
  76. { 0 }
  77. };
  78. MODULE_DEVICE_TABLE(pci, skge_id_table);
  79. static int skge_up(struct net_device *dev);
  80. static int skge_down(struct net_device *dev);
  81. static void skge_tx_clean(struct skge_port *skge);
  82. static void xm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val);
  83. static void gm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val);
  84. static void genesis_get_stats(struct skge_port *skge, u64 *data);
  85. static void yukon_get_stats(struct skge_port *skge, u64 *data);
  86. static void yukon_init(struct skge_hw *hw, int port);
  87. static void yukon_reset(struct skge_hw *hw, int port);
  88. static void genesis_mac_init(struct skge_hw *hw, int port);
  89. static void genesis_reset(struct skge_hw *hw, int port);
  90. static void genesis_link_up(struct skge_port *skge);
  91. /* Avoid conditionals by using array */
  92. static const int txqaddr[] = { Q_XA1, Q_XA2 };
  93. static const int rxqaddr[] = { Q_R1, Q_R2 };
  94. static const u32 rxirqmask[] = { IS_R1_F, IS_R2_F };
  95. static const u32 txirqmask[] = { IS_XA1_F, IS_XA2_F };
  96. static const u32 portirqmask[] = { IS_PORT_1, IS_PORT_2 };
  97. static int skge_get_regs_len(struct net_device *dev)
  98. {
  99. return 0x4000;
  100. }
  101. /*
  102. * Returns copy of whole control register region
  103. * Note: skip RAM address register because accessing it will
  104. * cause bus hangs!
  105. */
  106. static void skge_get_regs(struct net_device *dev, struct ethtool_regs *regs,
  107. void *p)
  108. {
  109. const struct skge_port *skge = netdev_priv(dev);
  110. const void __iomem *io = skge->hw->regs;
  111. regs->version = 1;
  112. memset(p, 0, regs->len);
  113. memcpy_fromio(p, io, B3_RAM_ADDR);
  114. memcpy_fromio(p + B3_RI_WTO_R1, io + B3_RI_WTO_R1,
  115. regs->len - B3_RI_WTO_R1);
  116. }
  117. /* Wake on Lan only supported on Yukon chps with rev 1 or above */
  118. static int wol_supported(const struct skge_hw *hw)
  119. {
  120. return !((hw->chip_id == CHIP_ID_GENESIS ||
  121. (hw->chip_id == CHIP_ID_YUKON && hw->chip_rev == 0)));
  122. }
  123. static void skge_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
  124. {
  125. struct skge_port *skge = netdev_priv(dev);
  126. wol->supported = wol_supported(skge->hw) ? WAKE_MAGIC : 0;
  127. wol->wolopts = skge->wol ? WAKE_MAGIC : 0;
  128. }
  129. static int skge_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
  130. {
  131. struct skge_port *skge = netdev_priv(dev);
  132. struct skge_hw *hw = skge->hw;
  133. if (wol->wolopts != WAKE_MAGIC && wol->wolopts != 0)
  134. return -EOPNOTSUPP;
  135. if (wol->wolopts == WAKE_MAGIC && !wol_supported(hw))
  136. return -EOPNOTSUPP;
  137. skge->wol = wol->wolopts == WAKE_MAGIC;
  138. if (skge->wol) {
  139. memcpy_toio(hw->regs + WOL_MAC_ADDR, dev->dev_addr, ETH_ALEN);
  140. skge_write16(hw, WOL_CTRL_STAT,
  141. WOL_CTL_ENA_PME_ON_MAGIC_PKT |
  142. WOL_CTL_ENA_MAGIC_PKT_UNIT);
  143. } else
  144. skge_write16(hw, WOL_CTRL_STAT, WOL_CTL_DEFAULT);
  145. return 0;
  146. }
  147. /* Determine supported/adverised modes based on hardware.
  148. * Note: ethtoool ADVERTISED_xxx == SUPPORTED_xxx
  149. */
  150. static u32 skge_supported_modes(const struct skge_hw *hw)
  151. {
  152. u32 supported;
  153. if (hw->copper) {
  154. supported = SUPPORTED_10baseT_Half
  155. | SUPPORTED_10baseT_Full
  156. | SUPPORTED_100baseT_Half
  157. | SUPPORTED_100baseT_Full
  158. | SUPPORTED_1000baseT_Half
  159. | SUPPORTED_1000baseT_Full
  160. | SUPPORTED_Autoneg| SUPPORTED_TP;
  161. if (hw->chip_id == CHIP_ID_GENESIS)
  162. supported &= ~(SUPPORTED_10baseT_Half
  163. | SUPPORTED_10baseT_Full
  164. | SUPPORTED_100baseT_Half
  165. | SUPPORTED_100baseT_Full);
  166. else if (hw->chip_id == CHIP_ID_YUKON)
  167. supported &= ~SUPPORTED_1000baseT_Half;
  168. } else
  169. supported = SUPPORTED_1000baseT_Full | SUPPORTED_FIBRE
  170. | SUPPORTED_Autoneg;
  171. return supported;
  172. }
  173. static int skge_get_settings(struct net_device *dev,
  174. struct ethtool_cmd *ecmd)
  175. {
  176. struct skge_port *skge = netdev_priv(dev);
  177. struct skge_hw *hw = skge->hw;
  178. ecmd->transceiver = XCVR_INTERNAL;
  179. ecmd->supported = skge_supported_modes(hw);
  180. if (hw->copper) {
  181. ecmd->port = PORT_TP;
  182. ecmd->phy_address = hw->phy_addr;
  183. } else
  184. ecmd->port = PORT_FIBRE;
  185. ecmd->advertising = skge->advertising;
  186. ecmd->autoneg = skge->autoneg;
  187. ecmd->speed = skge->speed;
  188. ecmd->duplex = skge->duplex;
  189. return 0;
  190. }
  191. static int skge_set_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
  192. {
  193. struct skge_port *skge = netdev_priv(dev);
  194. const struct skge_hw *hw = skge->hw;
  195. u32 supported = skge_supported_modes(hw);
  196. if (ecmd->autoneg == AUTONEG_ENABLE) {
  197. ecmd->advertising = supported;
  198. skge->duplex = -1;
  199. skge->speed = -1;
  200. } else {
  201. u32 setting;
  202. switch (ecmd->speed) {
  203. case SPEED_1000:
  204. if (ecmd->duplex == DUPLEX_FULL)
  205. setting = SUPPORTED_1000baseT_Full;
  206. else if (ecmd->duplex == DUPLEX_HALF)
  207. setting = SUPPORTED_1000baseT_Half;
  208. else
  209. return -EINVAL;
  210. break;
  211. case SPEED_100:
  212. if (ecmd->duplex == DUPLEX_FULL)
  213. setting = SUPPORTED_100baseT_Full;
  214. else if (ecmd->duplex == DUPLEX_HALF)
  215. setting = SUPPORTED_100baseT_Half;
  216. else
  217. return -EINVAL;
  218. break;
  219. case SPEED_10:
  220. if (ecmd->duplex == DUPLEX_FULL)
  221. setting = SUPPORTED_10baseT_Full;
  222. else if (ecmd->duplex == DUPLEX_HALF)
  223. setting = SUPPORTED_10baseT_Half;
  224. else
  225. return -EINVAL;
  226. break;
  227. default:
  228. return -EINVAL;
  229. }
  230. if ((setting & supported) == 0)
  231. return -EINVAL;
  232. skge->speed = ecmd->speed;
  233. skge->duplex = ecmd->duplex;
  234. }
  235. skge->autoneg = ecmd->autoneg;
  236. skge->advertising = ecmd->advertising;
  237. if (netif_running(dev)) {
  238. skge_down(dev);
  239. skge_up(dev);
  240. }
  241. return (0);
  242. }
  243. static void skge_get_drvinfo(struct net_device *dev,
  244. struct ethtool_drvinfo *info)
  245. {
  246. struct skge_port *skge = netdev_priv(dev);
  247. strcpy(info->driver, DRV_NAME);
  248. strcpy(info->version, DRV_VERSION);
  249. strcpy(info->fw_version, "N/A");
  250. strcpy(info->bus_info, pci_name(skge->hw->pdev));
  251. }
  252. static const struct skge_stat {
  253. char name[ETH_GSTRING_LEN];
  254. u16 xmac_offset;
  255. u16 gma_offset;
  256. } skge_stats[] = {
  257. { "tx_bytes", XM_TXO_OK_HI, GM_TXO_OK_HI },
  258. { "rx_bytes", XM_RXO_OK_HI, GM_RXO_OK_HI },
  259. { "tx_broadcast", XM_TXF_BC_OK, GM_TXF_BC_OK },
  260. { "rx_broadcast", XM_RXF_BC_OK, GM_RXF_BC_OK },
  261. { "tx_multicast", XM_TXF_MC_OK, GM_TXF_MC_OK },
  262. { "rx_multicast", XM_RXF_MC_OK, GM_RXF_MC_OK },
  263. { "tx_unicast", XM_TXF_UC_OK, GM_TXF_UC_OK },
  264. { "rx_unicast", XM_RXF_UC_OK, GM_RXF_UC_OK },
  265. { "tx_mac_pause", XM_TXF_MPAUSE, GM_TXF_MPAUSE },
  266. { "rx_mac_pause", XM_RXF_MPAUSE, GM_RXF_MPAUSE },
  267. { "collisions", XM_TXF_SNG_COL, GM_TXF_SNG_COL },
  268. { "multi_collisions", XM_TXF_MUL_COL, GM_TXF_MUL_COL },
  269. { "aborted", XM_TXF_ABO_COL, GM_TXF_ABO_COL },
  270. { "late_collision", XM_TXF_LAT_COL, GM_TXF_LAT_COL },
  271. { "fifo_underrun", XM_TXE_FIFO_UR, GM_TXE_FIFO_UR },
  272. { "fifo_overflow", XM_RXE_FIFO_OV, GM_RXE_FIFO_OV },
  273. { "rx_toolong", XM_RXF_LNG_ERR, GM_RXF_LNG_ERR },
  274. { "rx_jabber", XM_RXF_JAB_PKT, GM_RXF_JAB_PKT },
  275. { "rx_runt", XM_RXE_RUNT, GM_RXE_FRAG },
  276. { "rx_too_long", XM_RXF_LNG_ERR, GM_RXF_LNG_ERR },
  277. { "rx_fcs_error", XM_RXF_FCS_ERR, GM_RXF_FCS_ERR },
  278. };
  279. static int skge_get_stats_count(struct net_device *dev)
  280. {
  281. return ARRAY_SIZE(skge_stats);
  282. }
  283. static void skge_get_ethtool_stats(struct net_device *dev,
  284. struct ethtool_stats *stats, u64 *data)
  285. {
  286. struct skge_port *skge = netdev_priv(dev);
  287. if (skge->hw->chip_id == CHIP_ID_GENESIS)
  288. genesis_get_stats(skge, data);
  289. else
  290. yukon_get_stats(skge, data);
  291. }
  292. /* Use hardware MIB variables for critical path statistics and
  293. * transmit feedback not reported at interrupt.
  294. * Other errors are accounted for in interrupt handler.
  295. */
  296. static struct net_device_stats *skge_get_stats(struct net_device *dev)
  297. {
  298. struct skge_port *skge = netdev_priv(dev);
  299. u64 data[ARRAY_SIZE(skge_stats)];
  300. if (skge->hw->chip_id == CHIP_ID_GENESIS)
  301. genesis_get_stats(skge, data);
  302. else
  303. yukon_get_stats(skge, data);
  304. skge->net_stats.tx_bytes = data[0];
  305. skge->net_stats.rx_bytes = data[1];
  306. skge->net_stats.tx_packets = data[2] + data[4] + data[6];
  307. skge->net_stats.rx_packets = data[3] + data[5] + data[7];
  308. skge->net_stats.multicast = data[5] + data[7];
  309. skge->net_stats.collisions = data[10];
  310. skge->net_stats.tx_aborted_errors = data[12];
  311. return &skge->net_stats;
  312. }
  313. static void skge_get_strings(struct net_device *dev, u32 stringset, u8 *data)
  314. {
  315. int i;
  316. switch (stringset) {
  317. case ETH_SS_STATS:
  318. for (i = 0; i < ARRAY_SIZE(skge_stats); i++)
  319. memcpy(data + i * ETH_GSTRING_LEN,
  320. skge_stats[i].name, ETH_GSTRING_LEN);
  321. break;
  322. }
  323. }
  324. static void skge_get_ring_param(struct net_device *dev,
  325. struct ethtool_ringparam *p)
  326. {
  327. struct skge_port *skge = netdev_priv(dev);
  328. p->rx_max_pending = MAX_RX_RING_SIZE;
  329. p->tx_max_pending = MAX_TX_RING_SIZE;
  330. p->rx_mini_max_pending = 0;
  331. p->rx_jumbo_max_pending = 0;
  332. p->rx_pending = skge->rx_ring.count;
  333. p->tx_pending = skge->tx_ring.count;
  334. p->rx_mini_pending = 0;
  335. p->rx_jumbo_pending = 0;
  336. }
  337. static int skge_set_ring_param(struct net_device *dev,
  338. struct ethtool_ringparam *p)
  339. {
  340. struct skge_port *skge = netdev_priv(dev);
  341. if (p->rx_pending == 0 || p->rx_pending > MAX_RX_RING_SIZE ||
  342. p->tx_pending == 0 || p->tx_pending > MAX_TX_RING_SIZE)
  343. return -EINVAL;
  344. skge->rx_ring.count = p->rx_pending;
  345. skge->tx_ring.count = p->tx_pending;
  346. if (netif_running(dev)) {
  347. skge_down(dev);
  348. skge_up(dev);
  349. }
  350. return 0;
  351. }
  352. static u32 skge_get_msglevel(struct net_device *netdev)
  353. {
  354. struct skge_port *skge = netdev_priv(netdev);
  355. return skge->msg_enable;
  356. }
  357. static void skge_set_msglevel(struct net_device *netdev, u32 value)
  358. {
  359. struct skge_port *skge = netdev_priv(netdev);
  360. skge->msg_enable = value;
  361. }
  362. static int skge_nway_reset(struct net_device *dev)
  363. {
  364. struct skge_port *skge = netdev_priv(dev);
  365. struct skge_hw *hw = skge->hw;
  366. int port = skge->port;
  367. if (skge->autoneg != AUTONEG_ENABLE || !netif_running(dev))
  368. return -EINVAL;
  369. spin_lock_bh(&hw->phy_lock);
  370. if (hw->chip_id == CHIP_ID_GENESIS) {
  371. genesis_reset(hw, port);
  372. genesis_mac_init(hw, port);
  373. } else {
  374. yukon_reset(hw, port);
  375. yukon_init(hw, port);
  376. }
  377. spin_unlock_bh(&hw->phy_lock);
  378. return 0;
  379. }
  380. static int skge_set_sg(struct net_device *dev, u32 data)
  381. {
  382. struct skge_port *skge = netdev_priv(dev);
  383. struct skge_hw *hw = skge->hw;
  384. if (hw->chip_id == CHIP_ID_GENESIS && data)
  385. return -EOPNOTSUPP;
  386. return ethtool_op_set_sg(dev, data);
  387. }
  388. static int skge_set_tx_csum(struct net_device *dev, u32 data)
  389. {
  390. struct skge_port *skge = netdev_priv(dev);
  391. struct skge_hw *hw = skge->hw;
  392. if (hw->chip_id == CHIP_ID_GENESIS && data)
  393. return -EOPNOTSUPP;
  394. return ethtool_op_set_tx_csum(dev, data);
  395. }
  396. static u32 skge_get_rx_csum(struct net_device *dev)
  397. {
  398. struct skge_port *skge = netdev_priv(dev);
  399. return skge->rx_csum;
  400. }
  401. /* Only Yukon supports checksum offload. */
  402. static int skge_set_rx_csum(struct net_device *dev, u32 data)
  403. {
  404. struct skge_port *skge = netdev_priv(dev);
  405. if (skge->hw->chip_id == CHIP_ID_GENESIS && data)
  406. return -EOPNOTSUPP;
  407. skge->rx_csum = data;
  408. return 0;
  409. }
  410. static void skge_get_pauseparam(struct net_device *dev,
  411. struct ethtool_pauseparam *ecmd)
  412. {
  413. struct skge_port *skge = netdev_priv(dev);
  414. ecmd->tx_pause = (skge->flow_control == FLOW_MODE_LOC_SEND)
  415. || (skge->flow_control == FLOW_MODE_SYMMETRIC);
  416. ecmd->rx_pause = (skge->flow_control == FLOW_MODE_REM_SEND)
  417. || (skge->flow_control == FLOW_MODE_SYMMETRIC);
  418. ecmd->autoneg = skge->autoneg;
  419. }
  420. static int skge_set_pauseparam(struct net_device *dev,
  421. struct ethtool_pauseparam *ecmd)
  422. {
  423. struct skge_port *skge = netdev_priv(dev);
  424. skge->autoneg = ecmd->autoneg;
  425. if (ecmd->rx_pause && ecmd->tx_pause)
  426. skge->flow_control = FLOW_MODE_SYMMETRIC;
  427. else if (ecmd->rx_pause && !ecmd->tx_pause)
  428. skge->flow_control = FLOW_MODE_REM_SEND;
  429. else if (!ecmd->rx_pause && ecmd->tx_pause)
  430. skge->flow_control = FLOW_MODE_LOC_SEND;
  431. else
  432. skge->flow_control = FLOW_MODE_NONE;
  433. if (netif_running(dev)) {
  434. skge_down(dev);
  435. skge_up(dev);
  436. }
  437. return 0;
  438. }
  439. /* Chip internal frequency for clock calculations */
  440. static inline u32 hwkhz(const struct skge_hw *hw)
  441. {
  442. if (hw->chip_id == CHIP_ID_GENESIS)
  443. return 53215; /* or: 53.125 MHz */
  444. else
  445. return 78215; /* or: 78.125 MHz */
  446. }
  447. /* Chip hz to microseconds */
  448. static inline u32 skge_clk2usec(const struct skge_hw *hw, u32 ticks)
  449. {
  450. return (ticks * 1000) / hwkhz(hw);
  451. }
  452. /* Microseconds to chip hz */
  453. static inline u32 skge_usecs2clk(const struct skge_hw *hw, u32 usec)
  454. {
  455. return hwkhz(hw) * usec / 1000;
  456. }
  457. static int skge_get_coalesce(struct net_device *dev,
  458. struct ethtool_coalesce *ecmd)
  459. {
  460. struct skge_port *skge = netdev_priv(dev);
  461. struct skge_hw *hw = skge->hw;
  462. int port = skge->port;
  463. ecmd->rx_coalesce_usecs = 0;
  464. ecmd->tx_coalesce_usecs = 0;
  465. if (skge_read32(hw, B2_IRQM_CTRL) & TIM_START) {
  466. u32 delay = skge_clk2usec(hw, skge_read32(hw, B2_IRQM_INI));
  467. u32 msk = skge_read32(hw, B2_IRQM_MSK);
  468. if (msk & rxirqmask[port])
  469. ecmd->rx_coalesce_usecs = delay;
  470. if (msk & txirqmask[port])
  471. ecmd->tx_coalesce_usecs = delay;
  472. }
  473. return 0;
  474. }
  475. /* Note: interrupt timer is per board, but can turn on/off per port */
  476. static int skge_set_coalesce(struct net_device *dev,
  477. struct ethtool_coalesce *ecmd)
  478. {
  479. struct skge_port *skge = netdev_priv(dev);
  480. struct skge_hw *hw = skge->hw;
  481. int port = skge->port;
  482. u32 msk = skge_read32(hw, B2_IRQM_MSK);
  483. u32 delay = 25;
  484. if (ecmd->rx_coalesce_usecs == 0)
  485. msk &= ~rxirqmask[port];
  486. else if (ecmd->rx_coalesce_usecs < 25 ||
  487. ecmd->rx_coalesce_usecs > 33333)
  488. return -EINVAL;
  489. else {
  490. msk |= rxirqmask[port];
  491. delay = ecmd->rx_coalesce_usecs;
  492. }
  493. if (ecmd->tx_coalesce_usecs == 0)
  494. msk &= ~txirqmask[port];
  495. else if (ecmd->tx_coalesce_usecs < 25 ||
  496. ecmd->tx_coalesce_usecs > 33333)
  497. return -EINVAL;
  498. else {
  499. msk |= txirqmask[port];
  500. delay = min(delay, ecmd->rx_coalesce_usecs);
  501. }
  502. skge_write32(hw, B2_IRQM_MSK, msk);
  503. if (msk == 0)
  504. skge_write32(hw, B2_IRQM_CTRL, TIM_STOP);
  505. else {
  506. skge_write32(hw, B2_IRQM_INI, skge_usecs2clk(hw, delay));
  507. skge_write32(hw, B2_IRQM_CTRL, TIM_START);
  508. }
  509. return 0;
  510. }
  511. enum led_mode { LED_MODE_OFF, LED_MODE_ON, LED_MODE_TST };
  512. static void skge_led(struct skge_port *skge, enum led_mode mode)
  513. {
  514. struct skge_hw *hw = skge->hw;
  515. int port = skge->port;
  516. spin_lock_bh(&hw->phy_lock);
  517. if (hw->chip_id == CHIP_ID_GENESIS) {
  518. switch (mode) {
  519. case LED_MODE_OFF:
  520. xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL, PHY_B_PEC_LED_OFF);
  521. skge_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_OFF);
  522. skge_write32(hw, SK_REG(port, RX_LED_VAL), 0);
  523. skge_write8(hw, SK_REG(port, RX_LED_CTRL), LED_T_OFF);
  524. break;
  525. case LED_MODE_ON:
  526. skge_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_ON);
  527. skge_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_LINKSYNC_ON);
  528. skge_write8(hw, SK_REG(port, RX_LED_CTRL), LED_START);
  529. skge_write8(hw, SK_REG(port, TX_LED_CTRL), LED_START);
  530. break;
  531. case LED_MODE_TST:
  532. skge_write8(hw, SK_REG(port, RX_LED_TST), LED_T_ON);
  533. skge_write32(hw, SK_REG(port, RX_LED_VAL), 100);
  534. skge_write8(hw, SK_REG(port, RX_LED_CTRL), LED_START);
  535. xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL, PHY_B_PEC_LED_ON);
  536. break;
  537. }
  538. } else {
  539. switch (mode) {
  540. case LED_MODE_OFF:
  541. gm_phy_write(hw, port, PHY_MARV_LED_CTRL, 0);
  542. gm_phy_write(hw, port, PHY_MARV_LED_OVER,
  543. PHY_M_LED_MO_DUP(MO_LED_OFF) |
  544. PHY_M_LED_MO_10(MO_LED_OFF) |
  545. PHY_M_LED_MO_100(MO_LED_OFF) |
  546. PHY_M_LED_MO_1000(MO_LED_OFF) |
  547. PHY_M_LED_MO_RX(MO_LED_OFF));
  548. break;
  549. case LED_MODE_ON:
  550. gm_phy_write(hw, port, PHY_MARV_LED_CTRL,
  551. PHY_M_LED_PULS_DUR(PULS_170MS) |
  552. PHY_M_LED_BLINK_RT(BLINK_84MS) |
  553. PHY_M_LEDC_TX_CTRL |
  554. PHY_M_LEDC_DP_CTRL);
  555. gm_phy_write(hw, port, PHY_MARV_LED_OVER,
  556. PHY_M_LED_MO_RX(MO_LED_OFF) |
  557. (skge->speed == SPEED_100 ?
  558. PHY_M_LED_MO_100(MO_LED_ON) : 0));
  559. break;
  560. case LED_MODE_TST:
  561. gm_phy_write(hw, port, PHY_MARV_LED_CTRL, 0);
  562. gm_phy_write(hw, port, PHY_MARV_LED_OVER,
  563. PHY_M_LED_MO_DUP(MO_LED_ON) |
  564. PHY_M_LED_MO_10(MO_LED_ON) |
  565. PHY_M_LED_MO_100(MO_LED_ON) |
  566. PHY_M_LED_MO_1000(MO_LED_ON) |
  567. PHY_M_LED_MO_RX(MO_LED_ON));
  568. }
  569. }
  570. spin_unlock_bh(&hw->phy_lock);
  571. }
  572. /* blink LED's for finding board */
  573. static int skge_phys_id(struct net_device *dev, u32 data)
  574. {
  575. struct skge_port *skge = netdev_priv(dev);
  576. unsigned long ms;
  577. enum led_mode mode = LED_MODE_TST;
  578. if (!data || data > (u32)(MAX_SCHEDULE_TIMEOUT / HZ))
  579. ms = jiffies_to_msecs(MAX_SCHEDULE_TIMEOUT / HZ) * 1000;
  580. else
  581. ms = data * 1000;
  582. while (ms > 0) {
  583. skge_led(skge, mode);
  584. mode ^= LED_MODE_TST;
  585. if (msleep_interruptible(BLINK_MS))
  586. break;
  587. ms -= BLINK_MS;
  588. }
  589. /* back to regular LED state */
  590. skge_led(skge, netif_running(dev) ? LED_MODE_ON : LED_MODE_OFF);
  591. return 0;
  592. }
  593. static struct ethtool_ops skge_ethtool_ops = {
  594. .get_settings = skge_get_settings,
  595. .set_settings = skge_set_settings,
  596. .get_drvinfo = skge_get_drvinfo,
  597. .get_regs_len = skge_get_regs_len,
  598. .get_regs = skge_get_regs,
  599. .get_wol = skge_get_wol,
  600. .set_wol = skge_set_wol,
  601. .get_msglevel = skge_get_msglevel,
  602. .set_msglevel = skge_set_msglevel,
  603. .nway_reset = skge_nway_reset,
  604. .get_link = ethtool_op_get_link,
  605. .get_ringparam = skge_get_ring_param,
  606. .set_ringparam = skge_set_ring_param,
  607. .get_pauseparam = skge_get_pauseparam,
  608. .set_pauseparam = skge_set_pauseparam,
  609. .get_coalesce = skge_get_coalesce,
  610. .set_coalesce = skge_set_coalesce,
  611. .get_sg = ethtool_op_get_sg,
  612. .set_sg = skge_set_sg,
  613. .get_tx_csum = ethtool_op_get_tx_csum,
  614. .set_tx_csum = skge_set_tx_csum,
  615. .get_rx_csum = skge_get_rx_csum,
  616. .set_rx_csum = skge_set_rx_csum,
  617. .get_strings = skge_get_strings,
  618. .phys_id = skge_phys_id,
  619. .get_stats_count = skge_get_stats_count,
  620. .get_ethtool_stats = skge_get_ethtool_stats,
  621. .get_perm_addr = ethtool_op_get_perm_addr,
  622. };
  623. /*
  624. * Allocate ring elements and chain them together
  625. * One-to-one association of board descriptors with ring elements
  626. */
  627. static int skge_ring_alloc(struct skge_ring *ring, void *vaddr, u64 base)
  628. {
  629. struct skge_tx_desc *d;
  630. struct skge_element *e;
  631. int i;
  632. ring->start = kmalloc(sizeof(*e)*ring->count, GFP_KERNEL);
  633. if (!ring->start)
  634. return -ENOMEM;
  635. for (i = 0, e = ring->start, d = vaddr; i < ring->count; i++, e++, d++) {
  636. e->desc = d;
  637. e->skb = NULL;
  638. if (i == ring->count - 1) {
  639. e->next = ring->start;
  640. d->next_offset = base;
  641. } else {
  642. e->next = e + 1;
  643. d->next_offset = base + (i+1) * sizeof(*d);
  644. }
  645. }
  646. ring->to_use = ring->to_clean = ring->start;
  647. return 0;
  648. }
  649. /* Allocate and setup a new buffer for receiving */
  650. static void skge_rx_setup(struct skge_port *skge, struct skge_element *e,
  651. struct sk_buff *skb, unsigned int bufsize)
  652. {
  653. struct skge_rx_desc *rd = e->desc;
  654. u64 map;
  655. map = pci_map_single(skge->hw->pdev, skb->data, bufsize,
  656. PCI_DMA_FROMDEVICE);
  657. rd->dma_lo = map;
  658. rd->dma_hi = map >> 32;
  659. e->skb = skb;
  660. rd->csum1_start = ETH_HLEN;
  661. rd->csum2_start = ETH_HLEN;
  662. rd->csum1 = 0;
  663. rd->csum2 = 0;
  664. wmb();
  665. rd->control = BMU_OWN | BMU_STF | BMU_IRQ_EOF | BMU_TCP_CHECK | bufsize;
  666. pci_unmap_addr_set(e, mapaddr, map);
  667. pci_unmap_len_set(e, maplen, bufsize);
  668. }
  669. /* Resume receiving using existing skb,
  670. * Note: DMA address is not changed by chip.
  671. * MTU not changed while receiver active.
  672. */
  673. static void skge_rx_reuse(struct skge_element *e, unsigned int size)
  674. {
  675. struct skge_rx_desc *rd = e->desc;
  676. rd->csum2 = 0;
  677. rd->csum2_start = ETH_HLEN;
  678. wmb();
  679. rd->control = BMU_OWN | BMU_STF | BMU_IRQ_EOF | BMU_TCP_CHECK | size;
  680. }
  681. /* Free all buffers in receive ring, assumes receiver stopped */
  682. static void skge_rx_clean(struct skge_port *skge)
  683. {
  684. struct skge_hw *hw = skge->hw;
  685. struct skge_ring *ring = &skge->rx_ring;
  686. struct skge_element *e;
  687. e = ring->start;
  688. do {
  689. struct skge_rx_desc *rd = e->desc;
  690. rd->control = 0;
  691. if (e->skb) {
  692. pci_unmap_single(hw->pdev,
  693. pci_unmap_addr(e, mapaddr),
  694. pci_unmap_len(e, maplen),
  695. PCI_DMA_FROMDEVICE);
  696. dev_kfree_skb(e->skb);
  697. e->skb = NULL;
  698. }
  699. } while ((e = e->next) != ring->start);
  700. }
  701. /* Allocate buffers for receive ring
  702. * For receive: to_clean is next received frame.
  703. */
  704. static int skge_rx_fill(struct skge_port *skge)
  705. {
  706. struct skge_ring *ring = &skge->rx_ring;
  707. struct skge_element *e;
  708. e = ring->start;
  709. do {
  710. struct sk_buff *skb;
  711. skb = dev_alloc_skb(skge->rx_buf_size + NET_IP_ALIGN);
  712. if (!skb)
  713. return -ENOMEM;
  714. skb_reserve(skb, NET_IP_ALIGN);
  715. skge_rx_setup(skge, e, skb, skge->rx_buf_size);
  716. } while ( (e = e->next) != ring->start);
  717. ring->to_clean = ring->start;
  718. return 0;
  719. }
  720. static void skge_link_up(struct skge_port *skge)
  721. {
  722. skge_write8(skge->hw, SK_REG(skge->port, LNK_LED_REG),
  723. LED_BLK_OFF|LED_SYNC_OFF|LED_ON);
  724. netif_carrier_on(skge->netdev);
  725. if (skge->tx_avail > MAX_SKB_FRAGS + 1)
  726. netif_wake_queue(skge->netdev);
  727. if (netif_msg_link(skge))
  728. printk(KERN_INFO PFX
  729. "%s: Link is up at %d Mbps, %s duplex, flow control %s\n",
  730. skge->netdev->name, skge->speed,
  731. skge->duplex == DUPLEX_FULL ? "full" : "half",
  732. (skge->flow_control == FLOW_MODE_NONE) ? "none" :
  733. (skge->flow_control == FLOW_MODE_LOC_SEND) ? "tx only" :
  734. (skge->flow_control == FLOW_MODE_REM_SEND) ? "rx only" :
  735. (skge->flow_control == FLOW_MODE_SYMMETRIC) ? "tx and rx" :
  736. "unknown");
  737. }
  738. static void skge_link_down(struct skge_port *skge)
  739. {
  740. skge_write8(skge->hw, SK_REG(skge->port, LNK_LED_REG), LED_OFF);
  741. netif_carrier_off(skge->netdev);
  742. netif_stop_queue(skge->netdev);
  743. if (netif_msg_link(skge))
  744. printk(KERN_INFO PFX "%s: Link is down.\n", skge->netdev->name);
  745. }
  746. static u16 xm_phy_read(struct skge_hw *hw, int port, u16 reg)
  747. {
  748. int i;
  749. u16 v;
  750. xm_write16(hw, port, XM_PHY_ADDR, reg | hw->phy_addr);
  751. v = xm_read16(hw, port, XM_PHY_DATA);
  752. /* Need to wait for external PHY */
  753. for (i = 0; i < PHY_RETRIES; i++) {
  754. udelay(1);
  755. if (xm_read16(hw, port, XM_MMU_CMD)
  756. & XM_MMU_PHY_RDY)
  757. goto ready;
  758. }
  759. printk(KERN_WARNING PFX "%s: phy read timed out\n",
  760. hw->dev[port]->name);
  761. return 0;
  762. ready:
  763. v = xm_read16(hw, port, XM_PHY_DATA);
  764. return v;
  765. }
  766. static void xm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val)
  767. {
  768. int i;
  769. xm_write16(hw, port, XM_PHY_ADDR, reg | hw->phy_addr);
  770. for (i = 0; i < PHY_RETRIES; i++) {
  771. if (!(xm_read16(hw, port, XM_MMU_CMD) & XM_MMU_PHY_BUSY))
  772. goto ready;
  773. udelay(1);
  774. }
  775. printk(KERN_WARNING PFX "%s: phy write failed to come ready\n",
  776. hw->dev[port]->name);
  777. ready:
  778. xm_write16(hw, port, XM_PHY_DATA, val);
  779. for (i = 0; i < PHY_RETRIES; i++) {
  780. udelay(1);
  781. if (!(xm_read16(hw, port, XM_MMU_CMD) & XM_MMU_PHY_BUSY))
  782. return;
  783. }
  784. printk(KERN_WARNING PFX "%s: phy write timed out\n",
  785. hw->dev[port]->name);
  786. }
  787. static void genesis_init(struct skge_hw *hw)
  788. {
  789. /* set blink source counter */
  790. skge_write32(hw, B2_BSC_INI, (SK_BLK_DUR * SK_FACT_53) / 100);
  791. skge_write8(hw, B2_BSC_CTRL, BSC_START);
  792. /* configure mac arbiter */
  793. skge_write16(hw, B3_MA_TO_CTRL, MA_RST_CLR);
  794. /* configure mac arbiter timeout values */
  795. skge_write8(hw, B3_MA_TOINI_RX1, SK_MAC_TO_53);
  796. skge_write8(hw, B3_MA_TOINI_RX2, SK_MAC_TO_53);
  797. skge_write8(hw, B3_MA_TOINI_TX1, SK_MAC_TO_53);
  798. skge_write8(hw, B3_MA_TOINI_TX2, SK_MAC_TO_53);
  799. skge_write8(hw, B3_MA_RCINI_RX1, 0);
  800. skge_write8(hw, B3_MA_RCINI_RX2, 0);
  801. skge_write8(hw, B3_MA_RCINI_TX1, 0);
  802. skge_write8(hw, B3_MA_RCINI_TX2, 0);
  803. /* configure packet arbiter timeout */
  804. skge_write16(hw, B3_PA_CTRL, PA_RST_CLR);
  805. skge_write16(hw, B3_PA_TOINI_RX1, SK_PKT_TO_MAX);
  806. skge_write16(hw, B3_PA_TOINI_TX1, SK_PKT_TO_MAX);
  807. skge_write16(hw, B3_PA_TOINI_RX2, SK_PKT_TO_MAX);
  808. skge_write16(hw, B3_PA_TOINI_TX2, SK_PKT_TO_MAX);
  809. }
  810. static void genesis_reset(struct skge_hw *hw, int port)
  811. {
  812. const u8 zero[8] = { 0 };
  813. skge_write8(hw, SK_REG(port, GMAC_IRQ_MSK), 0);
  814. /* reset the statistics module */
  815. xm_write32(hw, port, XM_GP_PORT, XM_GP_RES_STAT);
  816. xm_write16(hw, port, XM_IMSK, 0xffff); /* disable XMAC IRQs */
  817. xm_write32(hw, port, XM_MODE, 0); /* clear Mode Reg */
  818. xm_write16(hw, port, XM_TX_CMD, 0); /* reset TX CMD Reg */
  819. xm_write16(hw, port, XM_RX_CMD, 0); /* reset RX CMD Reg */
  820. /* disable Broadcom PHY IRQ */
  821. xm_write16(hw, port, PHY_BCOM_INT_MASK, 0xffff);
  822. xm_outhash(hw, port, XM_HSM, zero);
  823. }
  824. /* Convert mode to MII values */
  825. static const u16 phy_pause_map[] = {
  826. [FLOW_MODE_NONE] = 0,
  827. [FLOW_MODE_LOC_SEND] = PHY_AN_PAUSE_ASYM,
  828. [FLOW_MODE_SYMMETRIC] = PHY_AN_PAUSE_CAP,
  829. [FLOW_MODE_REM_SEND] = PHY_AN_PAUSE_CAP | PHY_AN_PAUSE_ASYM,
  830. };
  831. /* Check status of Broadcom phy link */
  832. static void bcom_check_link(struct skge_hw *hw, int port)
  833. {
  834. struct net_device *dev = hw->dev[port];
  835. struct skge_port *skge = netdev_priv(dev);
  836. u16 status;
  837. /* read twice because of latch */
  838. (void) xm_phy_read(hw, port, PHY_BCOM_STAT);
  839. status = xm_phy_read(hw, port, PHY_BCOM_STAT);
  840. if ((status & PHY_ST_LSYNC) == 0) {
  841. u16 cmd = xm_read16(hw, port, XM_MMU_CMD);
  842. cmd &= ~(XM_MMU_ENA_RX | XM_MMU_ENA_TX);
  843. xm_write16(hw, port, XM_MMU_CMD, cmd);
  844. /* dummy read to ensure writing */
  845. (void) xm_read16(hw, port, XM_MMU_CMD);
  846. if (netif_carrier_ok(dev))
  847. skge_link_down(skge);
  848. } else {
  849. if (skge->autoneg == AUTONEG_ENABLE &&
  850. (status & PHY_ST_AN_OVER)) {
  851. u16 lpa = xm_phy_read(hw, port, PHY_BCOM_AUNE_LP);
  852. u16 aux = xm_phy_read(hw, port, PHY_BCOM_AUX_STAT);
  853. if (lpa & PHY_B_AN_RF) {
  854. printk(KERN_NOTICE PFX "%s: remote fault\n",
  855. dev->name);
  856. return;
  857. }
  858. /* Check Duplex mismatch */
  859. switch (aux & PHY_B_AS_AN_RES_MSK) {
  860. case PHY_B_RES_1000FD:
  861. skge->duplex = DUPLEX_FULL;
  862. break;
  863. case PHY_B_RES_1000HD:
  864. skge->duplex = DUPLEX_HALF;
  865. break;
  866. default:
  867. printk(KERN_NOTICE PFX "%s: duplex mismatch\n",
  868. dev->name);
  869. return;
  870. }
  871. /* We are using IEEE 802.3z/D5.0 Table 37-4 */
  872. switch (aux & PHY_B_AS_PAUSE_MSK) {
  873. case PHY_B_AS_PAUSE_MSK:
  874. skge->flow_control = FLOW_MODE_SYMMETRIC;
  875. break;
  876. case PHY_B_AS_PRR:
  877. skge->flow_control = FLOW_MODE_REM_SEND;
  878. break;
  879. case PHY_B_AS_PRT:
  880. skge->flow_control = FLOW_MODE_LOC_SEND;
  881. break;
  882. default:
  883. skge->flow_control = FLOW_MODE_NONE;
  884. }
  885. skge->speed = SPEED_1000;
  886. }
  887. if (!netif_carrier_ok(dev))
  888. genesis_link_up(skge);
  889. }
  890. }
  891. /* Broadcom 5400 only supports giagabit! SysKonnect did not put an additional
  892. * Phy on for 100 or 10Mbit operation
  893. */
  894. static void bcom_phy_init(struct skge_port *skge, int jumbo)
  895. {
  896. struct skge_hw *hw = skge->hw;
  897. int port = skge->port;
  898. int i;
  899. u16 id1, r, ext, ctl;
  900. /* magic workaround patterns for Broadcom */
  901. static const struct {
  902. u16 reg;
  903. u16 val;
  904. } A1hack[] = {
  905. { 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1104 },
  906. { 0x17, 0x0013 }, { 0x15, 0x0404 }, { 0x17, 0x8006 },
  907. { 0x15, 0x0132 }, { 0x17, 0x8006 }, { 0x15, 0x0232 },
  908. { 0x17, 0x800D }, { 0x15, 0x000F }, { 0x18, 0x0420 },
  909. }, C0hack[] = {
  910. { 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1204 },
  911. { 0x17, 0x0013 }, { 0x15, 0x0A04 }, { 0x18, 0x0420 },
  912. };
  913. /* read Id from external PHY (all have the same address) */
  914. id1 = xm_phy_read(hw, port, PHY_XMAC_ID1);
  915. /* Optimize MDIO transfer by suppressing preamble. */
  916. r = xm_read16(hw, port, XM_MMU_CMD);
  917. r |= XM_MMU_NO_PRE;
  918. xm_write16(hw, port, XM_MMU_CMD,r);
  919. switch (id1) {
  920. case PHY_BCOM_ID1_C0:
  921. /*
  922. * Workaround BCOM Errata for the C0 type.
  923. * Write magic patterns to reserved registers.
  924. */
  925. for (i = 0; i < ARRAY_SIZE(C0hack); i++)
  926. xm_phy_write(hw, port,
  927. C0hack[i].reg, C0hack[i].val);
  928. break;
  929. case PHY_BCOM_ID1_A1:
  930. /*
  931. * Workaround BCOM Errata for the A1 type.
  932. * Write magic patterns to reserved registers.
  933. */
  934. for (i = 0; i < ARRAY_SIZE(A1hack); i++)
  935. xm_phy_write(hw, port,
  936. A1hack[i].reg, A1hack[i].val);
  937. break;
  938. }
  939. /*
  940. * Workaround BCOM Errata (#10523) for all BCom PHYs.
  941. * Disable Power Management after reset.
  942. */
  943. r = xm_phy_read(hw, port, PHY_BCOM_AUX_CTRL);
  944. r |= PHY_B_AC_DIS_PM;
  945. xm_phy_write(hw, port, PHY_BCOM_AUX_CTRL, r);
  946. /* Dummy read */
  947. xm_read16(hw, port, XM_ISRC);
  948. ext = PHY_B_PEC_EN_LTR; /* enable tx led */
  949. ctl = PHY_CT_SP1000; /* always 1000mbit */
  950. if (skge->autoneg == AUTONEG_ENABLE) {
  951. /*
  952. * Workaround BCOM Errata #1 for the C5 type.
  953. * 1000Base-T Link Acquisition Failure in Slave Mode
  954. * Set Repeater/DTE bit 10 of the 1000Base-T Control Register
  955. */
  956. u16 adv = PHY_B_1000C_RD;
  957. if (skge->advertising & ADVERTISED_1000baseT_Half)
  958. adv |= PHY_B_1000C_AHD;
  959. if (skge->advertising & ADVERTISED_1000baseT_Full)
  960. adv |= PHY_B_1000C_AFD;
  961. xm_phy_write(hw, port, PHY_BCOM_1000T_CTRL, adv);
  962. ctl |= PHY_CT_ANE | PHY_CT_RE_CFG;
  963. } else {
  964. if (skge->duplex == DUPLEX_FULL)
  965. ctl |= PHY_CT_DUP_MD;
  966. /* Force to slave */
  967. xm_phy_write(hw, port, PHY_BCOM_1000T_CTRL, PHY_B_1000C_MSE);
  968. }
  969. /* Set autonegotiation pause parameters */
  970. xm_phy_write(hw, port, PHY_BCOM_AUNE_ADV,
  971. phy_pause_map[skge->flow_control] | PHY_AN_CSMA);
  972. /* Handle Jumbo frames */
  973. if (jumbo) {
  974. xm_phy_write(hw, port, PHY_BCOM_AUX_CTRL,
  975. PHY_B_AC_TX_TST | PHY_B_AC_LONG_PACK);
  976. ext |= PHY_B_PEC_HIGH_LA;
  977. }
  978. xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL, ext);
  979. xm_phy_write(hw, port, PHY_BCOM_CTRL, ctl);
  980. /* Use link status change interrrupt */
  981. xm_phy_write(hw, port, PHY_BCOM_INT_MASK, PHY_B_DEF_MSK);
  982. bcom_check_link(hw, port);
  983. }
  984. static void genesis_mac_init(struct skge_hw *hw, int port)
  985. {
  986. struct net_device *dev = hw->dev[port];
  987. struct skge_port *skge = netdev_priv(dev);
  988. int jumbo = hw->dev[port]->mtu > ETH_DATA_LEN;
  989. int i;
  990. u32 r;
  991. const u8 zero[6] = { 0 };
  992. /* Clear MIB counters */
  993. xm_write16(hw, port, XM_STAT_CMD,
  994. XM_SC_CLR_RXC | XM_SC_CLR_TXC);
  995. /* Clear two times according to Errata #3 */
  996. xm_write16(hw, port, XM_STAT_CMD,
  997. XM_SC_CLR_RXC | XM_SC_CLR_TXC);
  998. /* Unreset the XMAC. */
  999. skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_CLR_MAC_RST);
  1000. /*
  1001. * Perform additional initialization for external PHYs,
  1002. * namely for the 1000baseTX cards that use the XMAC's
  1003. * GMII mode.
  1004. */
  1005. /* Take external Phy out of reset */
  1006. r = skge_read32(hw, B2_GP_IO);
  1007. if (port == 0)
  1008. r |= GP_DIR_0|GP_IO_0;
  1009. else
  1010. r |= GP_DIR_2|GP_IO_2;
  1011. skge_write32(hw, B2_GP_IO, r);
  1012. skge_read32(hw, B2_GP_IO);
  1013. /* Enable GMII interfac */
  1014. xm_write16(hw, port, XM_HW_CFG, XM_HW_GMII_MD);
  1015. bcom_phy_init(skge, jumbo);
  1016. /* Set Station Address */
  1017. xm_outaddr(hw, port, XM_SA, dev->dev_addr);
  1018. /* We don't use match addresses so clear */
  1019. for (i = 1; i < 16; i++)
  1020. xm_outaddr(hw, port, XM_EXM(i), zero);
  1021. /* configure Rx High Water Mark (XM_RX_HI_WM) */
  1022. xm_write16(hw, port, XM_RX_HI_WM, 1450);
  1023. /* We don't need the FCS appended to the packet. */
  1024. r = XM_RX_LENERR_OK | XM_RX_STRIP_FCS;
  1025. if (jumbo)
  1026. r |= XM_RX_BIG_PK_OK;
  1027. if (skge->duplex == DUPLEX_HALF) {
  1028. /*
  1029. * If in manual half duplex mode the other side might be in
  1030. * full duplex mode, so ignore if a carrier extension is not seen
  1031. * on frames received
  1032. */
  1033. r |= XM_RX_DIS_CEXT;
  1034. }
  1035. xm_write16(hw, port, XM_RX_CMD, r);
  1036. /* We want short frames padded to 60 bytes. */
  1037. xm_write16(hw, port, XM_TX_CMD, XM_TX_AUTO_PAD);
  1038. /*
  1039. * Bump up the transmit threshold. This helps hold off transmit
  1040. * underruns when we're blasting traffic from both ports at once.
  1041. */
  1042. xm_write16(hw, port, XM_TX_THR, 512);
  1043. /*
  1044. * Enable the reception of all error frames. This is is
  1045. * a necessary evil due to the design of the XMAC. The
  1046. * XMAC's receive FIFO is only 8K in size, however jumbo
  1047. * frames can be up to 9000 bytes in length. When bad
  1048. * frame filtering is enabled, the XMAC's RX FIFO operates
  1049. * in 'store and forward' mode. For this to work, the
  1050. * entire frame has to fit into the FIFO, but that means
  1051. * that jumbo frames larger than 8192 bytes will be
  1052. * truncated. Disabling all bad frame filtering causes
  1053. * the RX FIFO to operate in streaming mode, in which
  1054. * case the XMAC will start transfering frames out of the
  1055. * RX FIFO as soon as the FIFO threshold is reached.
  1056. */
  1057. xm_write32(hw, port, XM_MODE, XM_DEF_MODE);
  1058. /*
  1059. * Initialize the Receive Counter Event Mask (XM_RX_EV_MSK)
  1060. * - Enable all bits excepting 'Octets Rx OK Low CntOv'
  1061. * and 'Octets Rx OK Hi Cnt Ov'.
  1062. */
  1063. xm_write32(hw, port, XM_RX_EV_MSK, XMR_DEF_MSK);
  1064. /*
  1065. * Initialize the Transmit Counter Event Mask (XM_TX_EV_MSK)
  1066. * - Enable all bits excepting 'Octets Tx OK Low CntOv'
  1067. * and 'Octets Tx OK Hi Cnt Ov'.
  1068. */
  1069. xm_write32(hw, port, XM_TX_EV_MSK, XMT_DEF_MSK);
  1070. /* Configure MAC arbiter */
  1071. skge_write16(hw, B3_MA_TO_CTRL, MA_RST_CLR);
  1072. /* configure timeout values */
  1073. skge_write8(hw, B3_MA_TOINI_RX1, 72);
  1074. skge_write8(hw, B3_MA_TOINI_RX2, 72);
  1075. skge_write8(hw, B3_MA_TOINI_TX1, 72);
  1076. skge_write8(hw, B3_MA_TOINI_TX2, 72);
  1077. skge_write8(hw, B3_MA_RCINI_RX1, 0);
  1078. skge_write8(hw, B3_MA_RCINI_RX2, 0);
  1079. skge_write8(hw, B3_MA_RCINI_TX1, 0);
  1080. skge_write8(hw, B3_MA_RCINI_TX2, 0);
  1081. /* Configure Rx MAC FIFO */
  1082. skge_write8(hw, SK_REG(port, RX_MFF_CTRL2), MFF_RST_CLR);
  1083. skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_ENA_TIM_PAT);
  1084. skge_write8(hw, SK_REG(port, RX_MFF_CTRL2), MFF_ENA_OP_MD);
  1085. /* Configure Tx MAC FIFO */
  1086. skge_write8(hw, SK_REG(port, TX_MFF_CTRL2), MFF_RST_CLR);
  1087. skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_TX_CTRL_DEF);
  1088. skge_write8(hw, SK_REG(port, TX_MFF_CTRL2), MFF_ENA_OP_MD);
  1089. if (jumbo) {
  1090. /* Enable frame flushing if jumbo frames used */
  1091. skge_write16(hw, SK_REG(port,RX_MFF_CTRL1), MFF_ENA_FLUSH);
  1092. } else {
  1093. /* enable timeout timers if normal frames */
  1094. skge_write16(hw, B3_PA_CTRL,
  1095. (port == 0) ? PA_ENA_TO_TX1 : PA_ENA_TO_TX2);
  1096. }
  1097. }
  1098. static void genesis_stop(struct skge_port *skge)
  1099. {
  1100. struct skge_hw *hw = skge->hw;
  1101. int port = skge->port;
  1102. u32 reg;
  1103. genesis_reset(hw, port);
  1104. /* Clear Tx packet arbiter timeout IRQ */
  1105. skge_write16(hw, B3_PA_CTRL,
  1106. port == 0 ? PA_CLR_TO_TX1 : PA_CLR_TO_TX2);
  1107. /*
  1108. * If the transfer stucks at the MAC the STOP command will not
  1109. * terminate if we don't flush the XMAC's transmit FIFO !
  1110. */
  1111. xm_write32(hw, port, XM_MODE,
  1112. xm_read32(hw, port, XM_MODE)|XM_MD_FTF);
  1113. /* Reset the MAC */
  1114. skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_SET_MAC_RST);
  1115. /* For external PHYs there must be special handling */
  1116. reg = skge_read32(hw, B2_GP_IO);
  1117. if (port == 0) {
  1118. reg |= GP_DIR_0;
  1119. reg &= ~GP_IO_0;
  1120. } else {
  1121. reg |= GP_DIR_2;
  1122. reg &= ~GP_IO_2;
  1123. }
  1124. skge_write32(hw, B2_GP_IO, reg);
  1125. skge_read32(hw, B2_GP_IO);
  1126. xm_write16(hw, port, XM_MMU_CMD,
  1127. xm_read16(hw, port, XM_MMU_CMD)
  1128. & ~(XM_MMU_ENA_RX | XM_MMU_ENA_TX));
  1129. xm_read16(hw, port, XM_MMU_CMD);
  1130. }
  1131. static void genesis_get_stats(struct skge_port *skge, u64 *data)
  1132. {
  1133. struct skge_hw *hw = skge->hw;
  1134. int port = skge->port;
  1135. int i;
  1136. unsigned long timeout = jiffies + HZ;
  1137. xm_write16(hw, port,
  1138. XM_STAT_CMD, XM_SC_SNP_TXC | XM_SC_SNP_RXC);
  1139. /* wait for update to complete */
  1140. while (xm_read16(hw, port, XM_STAT_CMD)
  1141. & (XM_SC_SNP_TXC | XM_SC_SNP_RXC)) {
  1142. if (time_after(jiffies, timeout))
  1143. break;
  1144. udelay(10);
  1145. }
  1146. /* special case for 64 bit octet counter */
  1147. data[0] = (u64) xm_read32(hw, port, XM_TXO_OK_HI) << 32
  1148. | xm_read32(hw, port, XM_TXO_OK_LO);
  1149. data[1] = (u64) xm_read32(hw, port, XM_RXO_OK_HI) << 32
  1150. | xm_read32(hw, port, XM_RXO_OK_LO);
  1151. for (i = 2; i < ARRAY_SIZE(skge_stats); i++)
  1152. data[i] = xm_read32(hw, port, skge_stats[i].xmac_offset);
  1153. }
  1154. static void genesis_mac_intr(struct skge_hw *hw, int port)
  1155. {
  1156. struct skge_port *skge = netdev_priv(hw->dev[port]);
  1157. u16 status = xm_read16(hw, port, XM_ISRC);
  1158. if (netif_msg_intr(skge))
  1159. printk(KERN_DEBUG PFX "%s: mac interrupt status 0x%x\n",
  1160. skge->netdev->name, status);
  1161. if (status & XM_IS_TXF_UR) {
  1162. xm_write32(hw, port, XM_MODE, XM_MD_FTF);
  1163. ++skge->net_stats.tx_fifo_errors;
  1164. }
  1165. if (status & XM_IS_RXF_OV) {
  1166. xm_write32(hw, port, XM_MODE, XM_MD_FRF);
  1167. ++skge->net_stats.rx_fifo_errors;
  1168. }
  1169. }
  1170. static void gm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val)
  1171. {
  1172. int i;
  1173. gma_write16(hw, port, GM_SMI_DATA, val);
  1174. gma_write16(hw, port, GM_SMI_CTRL,
  1175. GM_SMI_CT_PHY_AD(hw->phy_addr) | GM_SMI_CT_REG_AD(reg));
  1176. for (i = 0; i < PHY_RETRIES; i++) {
  1177. udelay(1);
  1178. if (!(gma_read16(hw, port, GM_SMI_CTRL) & GM_SMI_CT_BUSY))
  1179. break;
  1180. }
  1181. }
  1182. static u16 gm_phy_read(struct skge_hw *hw, int port, u16 reg)
  1183. {
  1184. int i;
  1185. gma_write16(hw, port, GM_SMI_CTRL,
  1186. GM_SMI_CT_PHY_AD(hw->phy_addr)
  1187. | GM_SMI_CT_REG_AD(reg) | GM_SMI_CT_OP_RD);
  1188. for (i = 0; i < PHY_RETRIES; i++) {
  1189. udelay(1);
  1190. if (gma_read16(hw, port, GM_SMI_CTRL) & GM_SMI_CT_RD_VAL)
  1191. goto ready;
  1192. }
  1193. printk(KERN_WARNING PFX "%s: phy read timeout\n",
  1194. hw->dev[port]->name);
  1195. return 0;
  1196. ready:
  1197. return gma_read16(hw, port, GM_SMI_DATA);
  1198. }
  1199. static void genesis_link_up(struct skge_port *skge)
  1200. {
  1201. struct skge_hw *hw = skge->hw;
  1202. int port = skge->port;
  1203. u16 cmd;
  1204. u32 mode, msk;
  1205. cmd = xm_read16(hw, port, XM_MMU_CMD);
  1206. /*
  1207. * enabling pause frame reception is required for 1000BT
  1208. * because the XMAC is not reset if the link is going down
  1209. */
  1210. if (skge->flow_control == FLOW_MODE_NONE ||
  1211. skge->flow_control == FLOW_MODE_LOC_SEND)
  1212. /* Disable Pause Frame Reception */
  1213. cmd |= XM_MMU_IGN_PF;
  1214. else
  1215. /* Enable Pause Frame Reception */
  1216. cmd &= ~XM_MMU_IGN_PF;
  1217. xm_write16(hw, port, XM_MMU_CMD, cmd);
  1218. mode = xm_read32(hw, port, XM_MODE);
  1219. if (skge->flow_control == FLOW_MODE_SYMMETRIC ||
  1220. skge->flow_control == FLOW_MODE_LOC_SEND) {
  1221. /*
  1222. * Configure Pause Frame Generation
  1223. * Use internal and external Pause Frame Generation.
  1224. * Sending pause frames is edge triggered.
  1225. * Send a Pause frame with the maximum pause time if
  1226. * internal oder external FIFO full condition occurs.
  1227. * Send a zero pause time frame to re-start transmission.
  1228. */
  1229. /* XM_PAUSE_DA = '010000C28001' (default) */
  1230. /* XM_MAC_PTIME = 0xffff (maximum) */
  1231. /* remember this value is defined in big endian (!) */
  1232. xm_write16(hw, port, XM_MAC_PTIME, 0xffff);
  1233. mode |= XM_PAUSE_MODE;
  1234. skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_ENA_PAUSE);
  1235. } else {
  1236. /*
  1237. * disable pause frame generation is required for 1000BT
  1238. * because the XMAC is not reset if the link is going down
  1239. */
  1240. /* Disable Pause Mode in Mode Register */
  1241. mode &= ~XM_PAUSE_MODE;
  1242. skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_DIS_PAUSE);
  1243. }
  1244. xm_write32(hw, port, XM_MODE, mode);
  1245. msk = XM_DEF_MSK;
  1246. /* disable GP0 interrupt bit for external Phy */
  1247. msk |= XM_IS_INP_ASS;
  1248. xm_write16(hw, port, XM_IMSK, msk);
  1249. xm_read16(hw, port, XM_ISRC);
  1250. /* get MMU Command Reg. */
  1251. cmd = xm_read16(hw, port, XM_MMU_CMD);
  1252. if (skge->duplex == DUPLEX_FULL)
  1253. cmd |= XM_MMU_GMII_FD;
  1254. /*
  1255. * Workaround BCOM Errata (#10523) for all BCom Phys
  1256. * Enable Power Management after link up
  1257. */
  1258. xm_phy_write(hw, port, PHY_BCOM_AUX_CTRL,
  1259. xm_phy_read(hw, port, PHY_BCOM_AUX_CTRL)
  1260. & ~PHY_B_AC_DIS_PM);
  1261. xm_phy_write(hw, port, PHY_BCOM_INT_MASK, PHY_B_DEF_MSK);
  1262. /* enable Rx/Tx */
  1263. xm_write16(hw, port, XM_MMU_CMD,
  1264. cmd | XM_MMU_ENA_RX | XM_MMU_ENA_TX);
  1265. skge_link_up(skge);
  1266. }
  1267. static inline void bcom_phy_intr(struct skge_port *skge)
  1268. {
  1269. struct skge_hw *hw = skge->hw;
  1270. int port = skge->port;
  1271. u16 isrc;
  1272. isrc = xm_phy_read(hw, port, PHY_BCOM_INT_STAT);
  1273. if (netif_msg_intr(skge))
  1274. printk(KERN_DEBUG PFX "%s: phy interrupt status 0x%x\n",
  1275. skge->netdev->name, isrc);
  1276. if (isrc & PHY_B_IS_PSE)
  1277. printk(KERN_ERR PFX "%s: uncorrectable pair swap error\n",
  1278. hw->dev[port]->name);
  1279. /* Workaround BCom Errata:
  1280. * enable and disable loopback mode if "NO HCD" occurs.
  1281. */
  1282. if (isrc & PHY_B_IS_NO_HDCL) {
  1283. u16 ctrl = xm_phy_read(hw, port, PHY_BCOM_CTRL);
  1284. xm_phy_write(hw, port, PHY_BCOM_CTRL,
  1285. ctrl | PHY_CT_LOOP);
  1286. xm_phy_write(hw, port, PHY_BCOM_CTRL,
  1287. ctrl & ~PHY_CT_LOOP);
  1288. }
  1289. if (isrc & (PHY_B_IS_AN_PR | PHY_B_IS_LST_CHANGE))
  1290. bcom_check_link(hw, port);
  1291. }
  1292. /* Marvell Phy Initailization */
  1293. static void yukon_init(struct skge_hw *hw, int port)
  1294. {
  1295. struct skge_port *skge = netdev_priv(hw->dev[port]);
  1296. u16 ctrl, ct1000, adv;
  1297. if (skge->autoneg == AUTONEG_ENABLE) {
  1298. u16 ectrl = gm_phy_read(hw, port, PHY_MARV_EXT_CTRL);
  1299. ectrl &= ~(PHY_M_EC_M_DSC_MSK | PHY_M_EC_S_DSC_MSK |
  1300. PHY_M_EC_MAC_S_MSK);
  1301. ectrl |= PHY_M_EC_MAC_S(MAC_TX_CLK_25_MHZ);
  1302. ectrl |= PHY_M_EC_M_DSC(0) | PHY_M_EC_S_DSC(1);
  1303. gm_phy_write(hw, port, PHY_MARV_EXT_CTRL, ectrl);
  1304. }
  1305. ctrl = gm_phy_read(hw, port, PHY_MARV_CTRL);
  1306. if (skge->autoneg == AUTONEG_DISABLE)
  1307. ctrl &= ~PHY_CT_ANE;
  1308. ctrl |= PHY_CT_RESET;
  1309. gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
  1310. ctrl = 0;
  1311. ct1000 = 0;
  1312. adv = PHY_AN_CSMA;
  1313. if (skge->autoneg == AUTONEG_ENABLE) {
  1314. if (hw->copper) {
  1315. if (skge->advertising & ADVERTISED_1000baseT_Full)
  1316. ct1000 |= PHY_M_1000C_AFD;
  1317. if (skge->advertising & ADVERTISED_1000baseT_Half)
  1318. ct1000 |= PHY_M_1000C_AHD;
  1319. if (skge->advertising & ADVERTISED_100baseT_Full)
  1320. adv |= PHY_M_AN_100_FD;
  1321. if (skge->advertising & ADVERTISED_100baseT_Half)
  1322. adv |= PHY_M_AN_100_HD;
  1323. if (skge->advertising & ADVERTISED_10baseT_Full)
  1324. adv |= PHY_M_AN_10_FD;
  1325. if (skge->advertising & ADVERTISED_10baseT_Half)
  1326. adv |= PHY_M_AN_10_HD;
  1327. } else /* special defines for FIBER (88E1011S only) */
  1328. adv |= PHY_M_AN_1000X_AHD | PHY_M_AN_1000X_AFD;
  1329. /* Set Flow-control capabilities */
  1330. adv |= phy_pause_map[skge->flow_control];
  1331. /* Restart Auto-negotiation */
  1332. ctrl |= PHY_CT_ANE | PHY_CT_RE_CFG;
  1333. } else {
  1334. /* forced speed/duplex settings */
  1335. ct1000 = PHY_M_1000C_MSE;
  1336. if (skge->duplex == DUPLEX_FULL)
  1337. ctrl |= PHY_CT_DUP_MD;
  1338. switch (skge->speed) {
  1339. case SPEED_1000:
  1340. ctrl |= PHY_CT_SP1000;
  1341. break;
  1342. case SPEED_100:
  1343. ctrl |= PHY_CT_SP100;
  1344. break;
  1345. }
  1346. ctrl |= PHY_CT_RESET;
  1347. }
  1348. gm_phy_write(hw, port, PHY_MARV_1000T_CTRL, ct1000);
  1349. gm_phy_write(hw, port, PHY_MARV_AUNE_ADV, adv);
  1350. gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
  1351. /* Enable phy interrupt on autonegotiation complete (or link up) */
  1352. if (skge->autoneg == AUTONEG_ENABLE)
  1353. gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_IS_AN_MSK);
  1354. else
  1355. gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_IS_DEF_MSK);
  1356. }
  1357. static void yukon_reset(struct skge_hw *hw, int port)
  1358. {
  1359. gm_phy_write(hw, port, PHY_MARV_INT_MASK, 0);/* disable PHY IRQs */
  1360. gma_write16(hw, port, GM_MC_ADDR_H1, 0); /* clear MC hash */
  1361. gma_write16(hw, port, GM_MC_ADDR_H2, 0);
  1362. gma_write16(hw, port, GM_MC_ADDR_H3, 0);
  1363. gma_write16(hw, port, GM_MC_ADDR_H4, 0);
  1364. gma_write16(hw, port, GM_RX_CTRL,
  1365. gma_read16(hw, port, GM_RX_CTRL)
  1366. | GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA);
  1367. }
  1368. /* Apparently, early versions of Yukon-Lite had wrong chip_id? */
  1369. static int is_yukon_lite_a0(struct skge_hw *hw)
  1370. {
  1371. u32 reg;
  1372. int ret;
  1373. if (hw->chip_id != CHIP_ID_YUKON)
  1374. return 0;
  1375. reg = skge_read32(hw, B2_FAR);
  1376. skge_write8(hw, B2_FAR + 3, 0xff);
  1377. ret = (skge_read8(hw, B2_FAR + 3) != 0);
  1378. skge_write32(hw, B2_FAR, reg);
  1379. return ret;
  1380. }
  1381. static void yukon_mac_init(struct skge_hw *hw, int port)
  1382. {
  1383. struct skge_port *skge = netdev_priv(hw->dev[port]);
  1384. int i;
  1385. u32 reg;
  1386. const u8 *addr = hw->dev[port]->dev_addr;
  1387. /* WA code for COMA mode -- set PHY reset */
  1388. if (hw->chip_id == CHIP_ID_YUKON_LITE &&
  1389. hw->chip_rev >= CHIP_REV_YU_LITE_A3) {
  1390. reg = skge_read32(hw, B2_GP_IO);
  1391. reg |= GP_DIR_9 | GP_IO_9;
  1392. skge_write32(hw, B2_GP_IO, reg);
  1393. }
  1394. /* hard reset */
  1395. skge_write32(hw, SK_REG(port, GPHY_CTRL), GPC_RST_SET);
  1396. skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_RST_SET);
  1397. /* WA code for COMA mode -- clear PHY reset */
  1398. if (hw->chip_id == CHIP_ID_YUKON_LITE &&
  1399. hw->chip_rev >= CHIP_REV_YU_LITE_A3) {
  1400. reg = skge_read32(hw, B2_GP_IO);
  1401. reg |= GP_DIR_9;
  1402. reg &= ~GP_IO_9;
  1403. skge_write32(hw, B2_GP_IO, reg);
  1404. }
  1405. /* Set hardware config mode */
  1406. reg = GPC_INT_POL_HI | GPC_DIS_FC | GPC_DIS_SLEEP |
  1407. GPC_ENA_XC | GPC_ANEG_ADV_ALL_M | GPC_ENA_PAUSE;
  1408. reg |= hw->copper ? GPC_HWCFG_GMII_COP : GPC_HWCFG_GMII_FIB;
  1409. /* Clear GMC reset */
  1410. skge_write32(hw, SK_REG(port, GPHY_CTRL), reg | GPC_RST_SET);
  1411. skge_write32(hw, SK_REG(port, GPHY_CTRL), reg | GPC_RST_CLR);
  1412. skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_ON | GMC_RST_CLR);
  1413. if (skge->autoneg == AUTONEG_DISABLE) {
  1414. reg = GM_GPCR_AU_ALL_DIS;
  1415. gma_write16(hw, port, GM_GP_CTRL,
  1416. gma_read16(hw, port, GM_GP_CTRL) | reg);
  1417. switch (skge->speed) {
  1418. case SPEED_1000:
  1419. reg |= GM_GPCR_SPEED_1000;
  1420. /* fallthru */
  1421. case SPEED_100:
  1422. reg |= GM_GPCR_SPEED_100;
  1423. }
  1424. if (skge->duplex == DUPLEX_FULL)
  1425. reg |= GM_GPCR_DUP_FULL;
  1426. } else
  1427. reg = GM_GPCR_SPEED_1000 | GM_GPCR_SPEED_100 | GM_GPCR_DUP_FULL;
  1428. switch (skge->flow_control) {
  1429. case FLOW_MODE_NONE:
  1430. skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_OFF);
  1431. reg |= GM_GPCR_FC_TX_DIS | GM_GPCR_FC_RX_DIS | GM_GPCR_AU_FCT_DIS;
  1432. break;
  1433. case FLOW_MODE_LOC_SEND:
  1434. /* disable Rx flow-control */
  1435. reg |= GM_GPCR_FC_RX_DIS | GM_GPCR_AU_FCT_DIS;
  1436. }
  1437. gma_write16(hw, port, GM_GP_CTRL, reg);
  1438. skge_read16(hw, SK_REG(port, GMAC_IRQ_SRC));
  1439. yukon_init(hw, port);
  1440. /* MIB clear */
  1441. reg = gma_read16(hw, port, GM_PHY_ADDR);
  1442. gma_write16(hw, port, GM_PHY_ADDR, reg | GM_PAR_MIB_CLR);
  1443. for (i = 0; i < GM_MIB_CNT_SIZE; i++)
  1444. gma_read16(hw, port, GM_MIB_CNT_BASE + 8*i);
  1445. gma_write16(hw, port, GM_PHY_ADDR, reg);
  1446. /* transmit control */
  1447. gma_write16(hw, port, GM_TX_CTRL, TX_COL_THR(TX_COL_DEF));
  1448. /* receive control reg: unicast + multicast + no FCS */
  1449. gma_write16(hw, port, GM_RX_CTRL,
  1450. GM_RXCR_UCF_ENA | GM_RXCR_CRC_DIS | GM_RXCR_MCF_ENA);
  1451. /* transmit flow control */
  1452. gma_write16(hw, port, GM_TX_FLOW_CTRL, 0xffff);
  1453. /* transmit parameter */
  1454. gma_write16(hw, port, GM_TX_PARAM,
  1455. TX_JAM_LEN_VAL(TX_JAM_LEN_DEF) |
  1456. TX_JAM_IPG_VAL(TX_JAM_IPG_DEF) |
  1457. TX_IPG_JAM_DATA(TX_IPG_JAM_DEF));
  1458. /* serial mode register */
  1459. reg = GM_SMOD_VLAN_ENA | IPG_DATA_VAL(IPG_DATA_DEF);
  1460. if (hw->dev[port]->mtu > 1500)
  1461. reg |= GM_SMOD_JUMBO_ENA;
  1462. gma_write16(hw, port, GM_SERIAL_MODE, reg);
  1463. /* physical address: used for pause frames */
  1464. gma_set_addr(hw, port, GM_SRC_ADDR_1L, addr);
  1465. /* virtual address for data */
  1466. gma_set_addr(hw, port, GM_SRC_ADDR_2L, addr);
  1467. /* enable interrupt mask for counter overflows */
  1468. gma_write16(hw, port, GM_TX_IRQ_MSK, 0);
  1469. gma_write16(hw, port, GM_RX_IRQ_MSK, 0);
  1470. gma_write16(hw, port, GM_TR_IRQ_MSK, 0);
  1471. /* Initialize Mac Fifo */
  1472. /* Configure Rx MAC FIFO */
  1473. skge_write16(hw, SK_REG(port, RX_GMF_FL_MSK), RX_FF_FL_DEF_MSK);
  1474. reg = GMF_OPER_ON | GMF_RX_F_FL_ON;
  1475. /* disable Rx GMAC FIFO Flush for YUKON-Lite Rev. A0 only */
  1476. if (is_yukon_lite_a0(hw))
  1477. reg &= ~GMF_RX_F_FL_ON;
  1478. skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_RST_CLR);
  1479. skge_write16(hw, SK_REG(port, RX_GMF_CTRL_T), reg);
  1480. /*
  1481. * because Pause Packet Truncation in GMAC is not working
  1482. * we have to increase the Flush Threshold to 64 bytes
  1483. * in order to flush pause packets in Rx FIFO on Yukon-1
  1484. */
  1485. skge_write16(hw, SK_REG(port, RX_GMF_FL_THR), RX_GMF_FL_THR_DEF+1);
  1486. /* Configure Tx MAC FIFO */
  1487. skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_RST_CLR);
  1488. skge_write16(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_OPER_ON);
  1489. }
  1490. static void yukon_stop(struct skge_port *skge)
  1491. {
  1492. struct skge_hw *hw = skge->hw;
  1493. int port = skge->port;
  1494. skge_write8(hw, SK_REG(port, GMAC_IRQ_MSK), 0);
  1495. yukon_reset(hw, port);
  1496. gma_write16(hw, port, GM_GP_CTRL,
  1497. gma_read16(hw, port, GM_GP_CTRL)
  1498. & ~(GM_GPCR_TX_ENA|GM_GPCR_RX_ENA));
  1499. gma_read16(hw, port, GM_GP_CTRL);
  1500. if (hw->chip_id == CHIP_ID_YUKON_LITE &&
  1501. hw->chip_rev >= CHIP_REV_YU_LITE_A3) {
  1502. u32 io = skge_read32(hw, B2_GP_IO);
  1503. io |= GP_DIR_9 | GP_IO_9;
  1504. skge_write32(hw, B2_GP_IO, io);
  1505. skge_read32(hw, B2_GP_IO);
  1506. }
  1507. /* set GPHY Control reset */
  1508. skge_write8(hw, SK_REG(port, GPHY_CTRL), GPC_RST_SET);
  1509. skge_write8(hw, SK_REG(port, GMAC_CTRL), GMC_RST_SET);
  1510. }
  1511. static void yukon_get_stats(struct skge_port *skge, u64 *data)
  1512. {
  1513. struct skge_hw *hw = skge->hw;
  1514. int port = skge->port;
  1515. int i;
  1516. data[0] = (u64) gma_read32(hw, port, GM_TXO_OK_HI) << 32
  1517. | gma_read32(hw, port, GM_TXO_OK_LO);
  1518. data[1] = (u64) gma_read32(hw, port, GM_RXO_OK_HI) << 32
  1519. | gma_read32(hw, port, GM_RXO_OK_LO);
  1520. for (i = 2; i < ARRAY_SIZE(skge_stats); i++)
  1521. data[i] = gma_read32(hw, port,
  1522. skge_stats[i].gma_offset);
  1523. }
  1524. static void yukon_mac_intr(struct skge_hw *hw, int port)
  1525. {
  1526. struct net_device *dev = hw->dev[port];
  1527. struct skge_port *skge = netdev_priv(dev);
  1528. u8 status = skge_read8(hw, SK_REG(port, GMAC_IRQ_SRC));
  1529. if (netif_msg_intr(skge))
  1530. printk(KERN_DEBUG PFX "%s: mac interrupt status 0x%x\n",
  1531. dev->name, status);
  1532. if (status & GM_IS_RX_FF_OR) {
  1533. ++skge->net_stats.rx_fifo_errors;
  1534. skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_CLI_RX_FO);
  1535. }
  1536. if (status & GM_IS_TX_FF_UR) {
  1537. ++skge->net_stats.tx_fifo_errors;
  1538. skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_CLI_TX_FU);
  1539. }
  1540. }
  1541. static u16 yukon_speed(const struct skge_hw *hw, u16 aux)
  1542. {
  1543. switch (aux & PHY_M_PS_SPEED_MSK) {
  1544. case PHY_M_PS_SPEED_1000:
  1545. return SPEED_1000;
  1546. case PHY_M_PS_SPEED_100:
  1547. return SPEED_100;
  1548. default:
  1549. return SPEED_10;
  1550. }
  1551. }
  1552. static void yukon_link_up(struct skge_port *skge)
  1553. {
  1554. struct skge_hw *hw = skge->hw;
  1555. int port = skge->port;
  1556. u16 reg;
  1557. /* Enable Transmit FIFO Underrun */
  1558. skge_write8(hw, SK_REG(port, GMAC_IRQ_MSK), GMAC_DEF_MSK);
  1559. reg = gma_read16(hw, port, GM_GP_CTRL);
  1560. if (skge->duplex == DUPLEX_FULL || skge->autoneg == AUTONEG_ENABLE)
  1561. reg |= GM_GPCR_DUP_FULL;
  1562. /* enable Rx/Tx */
  1563. reg |= GM_GPCR_RX_ENA | GM_GPCR_TX_ENA;
  1564. gma_write16(hw, port, GM_GP_CTRL, reg);
  1565. gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_IS_DEF_MSK);
  1566. skge_link_up(skge);
  1567. }
  1568. static void yukon_link_down(struct skge_port *skge)
  1569. {
  1570. struct skge_hw *hw = skge->hw;
  1571. int port = skge->port;
  1572. u16 ctrl;
  1573. gm_phy_write(hw, port, PHY_MARV_INT_MASK, 0);
  1574. ctrl = gma_read16(hw, port, GM_GP_CTRL);
  1575. ctrl &= ~(GM_GPCR_RX_ENA | GM_GPCR_TX_ENA);
  1576. gma_write16(hw, port, GM_GP_CTRL, ctrl);
  1577. if (skge->flow_control == FLOW_MODE_REM_SEND) {
  1578. /* restore Asymmetric Pause bit */
  1579. gm_phy_write(hw, port, PHY_MARV_AUNE_ADV,
  1580. gm_phy_read(hw, port,
  1581. PHY_MARV_AUNE_ADV)
  1582. | PHY_M_AN_ASP);
  1583. }
  1584. yukon_reset(hw, port);
  1585. skge_link_down(skge);
  1586. yukon_init(hw, port);
  1587. }
  1588. static void yukon_phy_intr(struct skge_port *skge)
  1589. {
  1590. struct skge_hw *hw = skge->hw;
  1591. int port = skge->port;
  1592. const char *reason = NULL;
  1593. u16 istatus, phystat;
  1594. istatus = gm_phy_read(hw, port, PHY_MARV_INT_STAT);
  1595. phystat = gm_phy_read(hw, port, PHY_MARV_PHY_STAT);
  1596. if (netif_msg_intr(skge))
  1597. printk(KERN_DEBUG PFX "%s: phy interrupt status 0x%x 0x%x\n",
  1598. skge->netdev->name, istatus, phystat);
  1599. if (istatus & PHY_M_IS_AN_COMPL) {
  1600. if (gm_phy_read(hw, port, PHY_MARV_AUNE_LP)
  1601. & PHY_M_AN_RF) {
  1602. reason = "remote fault";
  1603. goto failed;
  1604. }
  1605. if (gm_phy_read(hw, port, PHY_MARV_1000T_STAT) & PHY_B_1000S_MSF) {
  1606. reason = "master/slave fault";
  1607. goto failed;
  1608. }
  1609. if (!(phystat & PHY_M_PS_SPDUP_RES)) {
  1610. reason = "speed/duplex";
  1611. goto failed;
  1612. }
  1613. skge->duplex = (phystat & PHY_M_PS_FULL_DUP)
  1614. ? DUPLEX_FULL : DUPLEX_HALF;
  1615. skge->speed = yukon_speed(hw, phystat);
  1616. /* We are using IEEE 802.3z/D5.0 Table 37-4 */
  1617. switch (phystat & PHY_M_PS_PAUSE_MSK) {
  1618. case PHY_M_PS_PAUSE_MSK:
  1619. skge->flow_control = FLOW_MODE_SYMMETRIC;
  1620. break;
  1621. case PHY_M_PS_RX_P_EN:
  1622. skge->flow_control = FLOW_MODE_REM_SEND;
  1623. break;
  1624. case PHY_M_PS_TX_P_EN:
  1625. skge->flow_control = FLOW_MODE_LOC_SEND;
  1626. break;
  1627. default:
  1628. skge->flow_control = FLOW_MODE_NONE;
  1629. }
  1630. if (skge->flow_control == FLOW_MODE_NONE ||
  1631. (skge->speed < SPEED_1000 && skge->duplex == DUPLEX_HALF))
  1632. skge_write8(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_OFF);
  1633. else
  1634. skge_write8(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_ON);
  1635. yukon_link_up(skge);
  1636. return;
  1637. }
  1638. if (istatus & PHY_M_IS_LSP_CHANGE)
  1639. skge->speed = yukon_speed(hw, phystat);
  1640. if (istatus & PHY_M_IS_DUP_CHANGE)
  1641. skge->duplex = (phystat & PHY_M_PS_FULL_DUP) ? DUPLEX_FULL : DUPLEX_HALF;
  1642. if (istatus & PHY_M_IS_LST_CHANGE) {
  1643. if (phystat & PHY_M_PS_LINK_UP)
  1644. yukon_link_up(skge);
  1645. else
  1646. yukon_link_down(skge);
  1647. }
  1648. return;
  1649. failed:
  1650. printk(KERN_ERR PFX "%s: autonegotiation failed (%s)\n",
  1651. skge->netdev->name, reason);
  1652. /* XXX restart autonegotiation? */
  1653. }
  1654. static void skge_ramset(struct skge_hw *hw, u16 q, u32 start, size_t len)
  1655. {
  1656. u32 end;
  1657. start /= 8;
  1658. len /= 8;
  1659. end = start + len - 1;
  1660. skge_write8(hw, RB_ADDR(q, RB_CTRL), RB_RST_CLR);
  1661. skge_write32(hw, RB_ADDR(q, RB_START), start);
  1662. skge_write32(hw, RB_ADDR(q, RB_WP), start);
  1663. skge_write32(hw, RB_ADDR(q, RB_RP), start);
  1664. skge_write32(hw, RB_ADDR(q, RB_END), end);
  1665. if (q == Q_R1 || q == Q_R2) {
  1666. /* Set thresholds on receive queue's */
  1667. skge_write32(hw, RB_ADDR(q, RB_RX_UTPP),
  1668. start + (2*len)/3);
  1669. skge_write32(hw, RB_ADDR(q, RB_RX_LTPP),
  1670. start + (len/3));
  1671. } else {
  1672. /* Enable store & forward on Tx queue's because
  1673. * Tx FIFO is only 4K on Genesis and 1K on Yukon
  1674. */
  1675. skge_write8(hw, RB_ADDR(q, RB_CTRL), RB_ENA_STFWD);
  1676. }
  1677. skge_write8(hw, RB_ADDR(q, RB_CTRL), RB_ENA_OP_MD);
  1678. }
  1679. /* Setup Bus Memory Interface */
  1680. static void skge_qset(struct skge_port *skge, u16 q,
  1681. const struct skge_element *e)
  1682. {
  1683. struct skge_hw *hw = skge->hw;
  1684. u32 watermark = 0x600;
  1685. u64 base = skge->dma + (e->desc - skge->mem);
  1686. /* optimization to reduce window on 32bit/33mhz */
  1687. if ((skge_read16(hw, B0_CTST) & (CS_BUS_CLOCK | CS_BUS_SLOT_SZ)) == 0)
  1688. watermark /= 2;
  1689. skge_write32(hw, Q_ADDR(q, Q_CSR), CSR_CLR_RESET);
  1690. skge_write32(hw, Q_ADDR(q, Q_F), watermark);
  1691. skge_write32(hw, Q_ADDR(q, Q_DA_H), (u32)(base >> 32));
  1692. skge_write32(hw, Q_ADDR(q, Q_DA_L), (u32)base);
  1693. }
  1694. static int skge_up(struct net_device *dev)
  1695. {
  1696. struct skge_port *skge = netdev_priv(dev);
  1697. struct skge_hw *hw = skge->hw;
  1698. int port = skge->port;
  1699. u32 chunk, ram_addr;
  1700. size_t rx_size, tx_size;
  1701. int err;
  1702. if (netif_msg_ifup(skge))
  1703. printk(KERN_INFO PFX "%s: enabling interface\n", dev->name);
  1704. if (dev->mtu > RX_BUF_SIZE)
  1705. skge->rx_buf_size = dev->mtu + ETH_HLEN + NET_IP_ALIGN;
  1706. else
  1707. skge->rx_buf_size = RX_BUF_SIZE;
  1708. rx_size = skge->rx_ring.count * sizeof(struct skge_rx_desc);
  1709. tx_size = skge->tx_ring.count * sizeof(struct skge_tx_desc);
  1710. skge->mem_size = tx_size + rx_size;
  1711. skge->mem = pci_alloc_consistent(hw->pdev, skge->mem_size, &skge->dma);
  1712. if (!skge->mem)
  1713. return -ENOMEM;
  1714. memset(skge->mem, 0, skge->mem_size);
  1715. if ((err = skge_ring_alloc(&skge->rx_ring, skge->mem, skge->dma)))
  1716. goto free_pci_mem;
  1717. err = skge_rx_fill(skge);
  1718. if (err)
  1719. goto free_rx_ring;
  1720. if ((err = skge_ring_alloc(&skge->tx_ring, skge->mem + rx_size,
  1721. skge->dma + rx_size)))
  1722. goto free_rx_ring;
  1723. skge->tx_avail = skge->tx_ring.count - 1;
  1724. /* Enable IRQ from port */
  1725. hw->intr_mask |= portirqmask[port];
  1726. skge_write32(hw, B0_IMSK, hw->intr_mask);
  1727. /* Initialze MAC */
  1728. spin_lock_bh(&hw->phy_lock);
  1729. if (hw->chip_id == CHIP_ID_GENESIS)
  1730. genesis_mac_init(hw, port);
  1731. else
  1732. yukon_mac_init(hw, port);
  1733. spin_unlock_bh(&hw->phy_lock);
  1734. /* Configure RAMbuffers */
  1735. chunk = hw->ram_size / ((hw->ports + 1)*2);
  1736. ram_addr = hw->ram_offset + 2 * chunk * port;
  1737. skge_ramset(hw, rxqaddr[port], ram_addr, chunk);
  1738. skge_qset(skge, rxqaddr[port], skge->rx_ring.to_clean);
  1739. BUG_ON(skge->tx_ring.to_use != skge->tx_ring.to_clean);
  1740. skge_ramset(hw, txqaddr[port], ram_addr+chunk, chunk);
  1741. skge_qset(skge, txqaddr[port], skge->tx_ring.to_use);
  1742. /* Start receiver BMU */
  1743. wmb();
  1744. skge_write8(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_START | CSR_IRQ_CL_F);
  1745. skge_led(skge, LED_MODE_ON);
  1746. return 0;
  1747. free_rx_ring:
  1748. skge_rx_clean(skge);
  1749. kfree(skge->rx_ring.start);
  1750. free_pci_mem:
  1751. pci_free_consistent(hw->pdev, skge->mem_size, skge->mem, skge->dma);
  1752. return err;
  1753. }
  1754. static int skge_down(struct net_device *dev)
  1755. {
  1756. struct skge_port *skge = netdev_priv(dev);
  1757. struct skge_hw *hw = skge->hw;
  1758. int port = skge->port;
  1759. if (netif_msg_ifdown(skge))
  1760. printk(KERN_INFO PFX "%s: disabling interface\n", dev->name);
  1761. netif_stop_queue(dev);
  1762. skge_write8(skge->hw, SK_REG(skge->port, LNK_LED_REG), LED_OFF);
  1763. if (hw->chip_id == CHIP_ID_GENESIS)
  1764. genesis_stop(skge);
  1765. else
  1766. yukon_stop(skge);
  1767. hw->intr_mask &= ~portirqmask[skge->port];
  1768. skge_write32(hw, B0_IMSK, hw->intr_mask);
  1769. /* Stop transmitter */
  1770. skge_write8(hw, Q_ADDR(txqaddr[port], Q_CSR), CSR_STOP);
  1771. skge_write32(hw, RB_ADDR(txqaddr[port], RB_CTRL),
  1772. RB_RST_SET|RB_DIS_OP_MD);
  1773. /* Disable Force Sync bit and Enable Alloc bit */
  1774. skge_write8(hw, SK_REG(port, TXA_CTRL),
  1775. TXA_DIS_FSYNC | TXA_DIS_ALLOC | TXA_STOP_RC);
  1776. /* Stop Interval Timer and Limit Counter of Tx Arbiter */
  1777. skge_write32(hw, SK_REG(port, TXA_ITI_INI), 0L);
  1778. skge_write32(hw, SK_REG(port, TXA_LIM_INI), 0L);
  1779. /* Reset PCI FIFO */
  1780. skge_write32(hw, Q_ADDR(txqaddr[port], Q_CSR), CSR_SET_RESET);
  1781. skge_write32(hw, RB_ADDR(txqaddr[port], RB_CTRL), RB_RST_SET);
  1782. /* Reset the RAM Buffer async Tx queue */
  1783. skge_write8(hw, RB_ADDR(port == 0 ? Q_XA1 : Q_XA2, RB_CTRL), RB_RST_SET);
  1784. /* stop receiver */
  1785. skge_write8(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_STOP);
  1786. skge_write32(hw, RB_ADDR(port ? Q_R2 : Q_R1, RB_CTRL),
  1787. RB_RST_SET|RB_DIS_OP_MD);
  1788. skge_write32(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_SET_RESET);
  1789. if (hw->chip_id == CHIP_ID_GENESIS) {
  1790. skge_write8(hw, SK_REG(port, TX_MFF_CTRL2), MFF_RST_SET);
  1791. skge_write8(hw, SK_REG(port, RX_MFF_CTRL2), MFF_RST_SET);
  1792. } else {
  1793. skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_RST_SET);
  1794. skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_RST_SET);
  1795. }
  1796. skge_led(skge, LED_MODE_OFF);
  1797. skge_tx_clean(skge);
  1798. skge_rx_clean(skge);
  1799. kfree(skge->rx_ring.start);
  1800. kfree(skge->tx_ring.start);
  1801. pci_free_consistent(hw->pdev, skge->mem_size, skge->mem, skge->dma);
  1802. return 0;
  1803. }
  1804. static int skge_xmit_frame(struct sk_buff *skb, struct net_device *dev)
  1805. {
  1806. struct skge_port *skge = netdev_priv(dev);
  1807. struct skge_hw *hw = skge->hw;
  1808. struct skge_ring *ring = &skge->tx_ring;
  1809. struct skge_element *e;
  1810. struct skge_tx_desc *td;
  1811. int i;
  1812. u32 control, len;
  1813. u64 map;
  1814. unsigned long flags;
  1815. skb = skb_padto(skb, ETH_ZLEN);
  1816. if (!skb)
  1817. return NETDEV_TX_OK;
  1818. local_irq_save(flags);
  1819. if (!spin_trylock(&skge->tx_lock)) {
  1820. /* Collision - tell upper layer to requeue */
  1821. local_irq_restore(flags);
  1822. return NETDEV_TX_LOCKED;
  1823. }
  1824. if (unlikely(skge->tx_avail < skb_shinfo(skb)->nr_frags +1)) {
  1825. netif_stop_queue(dev);
  1826. spin_unlock_irqrestore(&skge->tx_lock, flags);
  1827. printk(KERN_WARNING PFX "%s: ring full when queue awake!\n",
  1828. dev->name);
  1829. return NETDEV_TX_BUSY;
  1830. }
  1831. e = ring->to_use;
  1832. td = e->desc;
  1833. e->skb = skb;
  1834. len = skb_headlen(skb);
  1835. map = pci_map_single(hw->pdev, skb->data, len, PCI_DMA_TODEVICE);
  1836. pci_unmap_addr_set(e, mapaddr, map);
  1837. pci_unmap_len_set(e, maplen, len);
  1838. td->dma_lo = map;
  1839. td->dma_hi = map >> 32;
  1840. if (skb->ip_summed == CHECKSUM_HW) {
  1841. const struct iphdr *ip
  1842. = (const struct iphdr *) (skb->data + ETH_HLEN);
  1843. int offset = skb->h.raw - skb->data;
  1844. /* This seems backwards, but it is what the sk98lin
  1845. * does. Looks like hardware is wrong?
  1846. */
  1847. if (ip->protocol == IPPROTO_UDP
  1848. && hw->chip_rev == 0 && hw->chip_id == CHIP_ID_YUKON)
  1849. control = BMU_TCP_CHECK;
  1850. else
  1851. control = BMU_UDP_CHECK;
  1852. td->csum_offs = 0;
  1853. td->csum_start = offset;
  1854. td->csum_write = offset + skb->csum;
  1855. } else
  1856. control = BMU_CHECK;
  1857. if (!skb_shinfo(skb)->nr_frags) /* single buffer i.e. no fragments */
  1858. control |= BMU_EOF| BMU_IRQ_EOF;
  1859. else {
  1860. struct skge_tx_desc *tf = td;
  1861. control |= BMU_STFWD;
  1862. for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
  1863. skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
  1864. map = pci_map_page(hw->pdev, frag->page, frag->page_offset,
  1865. frag->size, PCI_DMA_TODEVICE);
  1866. e = e->next;
  1867. e->skb = NULL;
  1868. tf = e->desc;
  1869. tf->dma_lo = map;
  1870. tf->dma_hi = (u64) map >> 32;
  1871. pci_unmap_addr_set(e, mapaddr, map);
  1872. pci_unmap_len_set(e, maplen, frag->size);
  1873. tf->control = BMU_OWN | BMU_SW | control | frag->size;
  1874. }
  1875. tf->control |= BMU_EOF | BMU_IRQ_EOF;
  1876. }
  1877. /* Make sure all the descriptors written */
  1878. wmb();
  1879. td->control = BMU_OWN | BMU_SW | BMU_STF | control | len;
  1880. wmb();
  1881. skge_write8(hw, Q_ADDR(txqaddr[skge->port], Q_CSR), CSR_START);
  1882. if (netif_msg_tx_queued(skge))
  1883. printk(KERN_DEBUG "%s: tx queued, slot %td, len %d\n",
  1884. dev->name, e - ring->start, skb->len);
  1885. ring->to_use = e->next;
  1886. skge->tx_avail -= skb_shinfo(skb)->nr_frags + 1;
  1887. if (skge->tx_avail <= MAX_SKB_FRAGS + 1) {
  1888. pr_debug("%s: transmit queue full\n", dev->name);
  1889. netif_stop_queue(dev);
  1890. }
  1891. dev->trans_start = jiffies;
  1892. spin_unlock_irqrestore(&skge->tx_lock, flags);
  1893. return NETDEV_TX_OK;
  1894. }
  1895. static inline void skge_tx_free(struct skge_hw *hw, struct skge_element *e)
  1896. {
  1897. /* This ring element can be skb or fragment */
  1898. if (e->skb) {
  1899. pci_unmap_single(hw->pdev,
  1900. pci_unmap_addr(e, mapaddr),
  1901. pci_unmap_len(e, maplen),
  1902. PCI_DMA_TODEVICE);
  1903. dev_kfree_skb_any(e->skb);
  1904. e->skb = NULL;
  1905. } else {
  1906. pci_unmap_page(hw->pdev,
  1907. pci_unmap_addr(e, mapaddr),
  1908. pci_unmap_len(e, maplen),
  1909. PCI_DMA_TODEVICE);
  1910. }
  1911. }
  1912. static void skge_tx_clean(struct skge_port *skge)
  1913. {
  1914. struct skge_ring *ring = &skge->tx_ring;
  1915. struct skge_element *e;
  1916. unsigned long flags;
  1917. spin_lock_irqsave(&skge->tx_lock, flags);
  1918. for (e = ring->to_clean; e != ring->to_use; e = e->next) {
  1919. ++skge->tx_avail;
  1920. skge_tx_free(skge->hw, e);
  1921. }
  1922. ring->to_clean = e;
  1923. spin_unlock_irqrestore(&skge->tx_lock, flags);
  1924. }
  1925. static void skge_tx_timeout(struct net_device *dev)
  1926. {
  1927. struct skge_port *skge = netdev_priv(dev);
  1928. if (netif_msg_timer(skge))
  1929. printk(KERN_DEBUG PFX "%s: tx timeout\n", dev->name);
  1930. skge_write8(skge->hw, Q_ADDR(txqaddr[skge->port], Q_CSR), CSR_STOP);
  1931. skge_tx_clean(skge);
  1932. }
  1933. static int skge_change_mtu(struct net_device *dev, int new_mtu)
  1934. {
  1935. int err = 0;
  1936. int running = netif_running(dev);
  1937. if (new_mtu < ETH_ZLEN || new_mtu > ETH_JUMBO_MTU)
  1938. return -EINVAL;
  1939. if (running)
  1940. skge_down(dev);
  1941. dev->mtu = new_mtu;
  1942. if (running)
  1943. skge_up(dev);
  1944. return err;
  1945. }
  1946. static void genesis_set_multicast(struct net_device *dev)
  1947. {
  1948. struct skge_port *skge = netdev_priv(dev);
  1949. struct skge_hw *hw = skge->hw;
  1950. int port = skge->port;
  1951. int i, count = dev->mc_count;
  1952. struct dev_mc_list *list = dev->mc_list;
  1953. u32 mode;
  1954. u8 filter[8];
  1955. mode = xm_read32(hw, port, XM_MODE);
  1956. mode |= XM_MD_ENA_HASH;
  1957. if (dev->flags & IFF_PROMISC)
  1958. mode |= XM_MD_ENA_PROM;
  1959. else
  1960. mode &= ~XM_MD_ENA_PROM;
  1961. if (dev->flags & IFF_ALLMULTI)
  1962. memset(filter, 0xff, sizeof(filter));
  1963. else {
  1964. memset(filter, 0, sizeof(filter));
  1965. for (i = 0; list && i < count; i++, list = list->next) {
  1966. u32 crc, bit;
  1967. crc = ether_crc_le(ETH_ALEN, list->dmi_addr);
  1968. bit = ~crc & 0x3f;
  1969. filter[bit/8] |= 1 << (bit%8);
  1970. }
  1971. }
  1972. xm_write32(hw, port, XM_MODE, mode);
  1973. xm_outhash(hw, port, XM_HSM, filter);
  1974. }
  1975. static void yukon_set_multicast(struct net_device *dev)
  1976. {
  1977. struct skge_port *skge = netdev_priv(dev);
  1978. struct skge_hw *hw = skge->hw;
  1979. int port = skge->port;
  1980. struct dev_mc_list *list = dev->mc_list;
  1981. u16 reg;
  1982. u8 filter[8];
  1983. memset(filter, 0, sizeof(filter));
  1984. reg = gma_read16(hw, port, GM_RX_CTRL);
  1985. reg |= GM_RXCR_UCF_ENA;
  1986. if (dev->flags & IFF_PROMISC) /* promiscious */
  1987. reg &= ~(GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA);
  1988. else if (dev->flags & IFF_ALLMULTI) /* all multicast */
  1989. memset(filter, 0xff, sizeof(filter));
  1990. else if (dev->mc_count == 0) /* no multicast */
  1991. reg &= ~GM_RXCR_MCF_ENA;
  1992. else {
  1993. int i;
  1994. reg |= GM_RXCR_MCF_ENA;
  1995. for (i = 0; list && i < dev->mc_count; i++, list = list->next) {
  1996. u32 bit = ether_crc(ETH_ALEN, list->dmi_addr) & 0x3f;
  1997. filter[bit/8] |= 1 << (bit%8);
  1998. }
  1999. }
  2000. gma_write16(hw, port, GM_MC_ADDR_H1,
  2001. (u16)filter[0] | ((u16)filter[1] << 8));
  2002. gma_write16(hw, port, GM_MC_ADDR_H2,
  2003. (u16)filter[2] | ((u16)filter[3] << 8));
  2004. gma_write16(hw, port, GM_MC_ADDR_H3,
  2005. (u16)filter[4] | ((u16)filter[5] << 8));
  2006. gma_write16(hw, port, GM_MC_ADDR_H4,
  2007. (u16)filter[6] | ((u16)filter[7] << 8));
  2008. gma_write16(hw, port, GM_RX_CTRL, reg);
  2009. }
  2010. static inline u16 phy_length(const struct skge_hw *hw, u32 status)
  2011. {
  2012. if (hw->chip_id == CHIP_ID_GENESIS)
  2013. return status >> XMR_FS_LEN_SHIFT;
  2014. else
  2015. return status >> GMR_FS_LEN_SHIFT;
  2016. }
  2017. static inline int bad_phy_status(const struct skge_hw *hw, u32 status)
  2018. {
  2019. if (hw->chip_id == CHIP_ID_GENESIS)
  2020. return (status & (XMR_FS_ERR | XMR_FS_2L_VLAN)) != 0;
  2021. else
  2022. return (status & GMR_FS_ANY_ERR) ||
  2023. (status & GMR_FS_RX_OK) == 0;
  2024. }
  2025. /* Get receive buffer from descriptor.
  2026. * Handles copy of small buffers and reallocation failures
  2027. */
  2028. static inline struct sk_buff *skge_rx_get(struct skge_port *skge,
  2029. struct skge_element *e,
  2030. u32 control, u32 status, u16 csum)
  2031. {
  2032. struct sk_buff *skb;
  2033. u16 len = control & BMU_BBC;
  2034. if (unlikely(netif_msg_rx_status(skge)))
  2035. printk(KERN_DEBUG PFX "%s: rx slot %td status 0x%x len %d\n",
  2036. skge->netdev->name, e - skge->rx_ring.start,
  2037. status, len);
  2038. if (len > skge->rx_buf_size)
  2039. goto error;
  2040. if ((control & (BMU_EOF|BMU_STF)) != (BMU_STF|BMU_EOF))
  2041. goto error;
  2042. if (bad_phy_status(skge->hw, status))
  2043. goto error;
  2044. if (phy_length(skge->hw, status) != len)
  2045. goto error;
  2046. if (len < RX_COPY_THRESHOLD) {
  2047. skb = dev_alloc_skb(len + 2);
  2048. if (!skb)
  2049. goto resubmit;
  2050. skb_reserve(skb, 2);
  2051. pci_dma_sync_single_for_cpu(skge->hw->pdev,
  2052. pci_unmap_addr(e, mapaddr),
  2053. len, PCI_DMA_FROMDEVICE);
  2054. memcpy(skb->data, e->skb->data, len);
  2055. pci_dma_sync_single_for_device(skge->hw->pdev,
  2056. pci_unmap_addr(e, mapaddr),
  2057. len, PCI_DMA_FROMDEVICE);
  2058. skge_rx_reuse(e, skge->rx_buf_size);
  2059. } else {
  2060. struct sk_buff *nskb;
  2061. nskb = dev_alloc_skb(skge->rx_buf_size + NET_IP_ALIGN);
  2062. if (!nskb)
  2063. goto resubmit;
  2064. pci_unmap_single(skge->hw->pdev,
  2065. pci_unmap_addr(e, mapaddr),
  2066. pci_unmap_len(e, maplen),
  2067. PCI_DMA_FROMDEVICE);
  2068. skb = e->skb;
  2069. prefetch(skb->data);
  2070. skge_rx_setup(skge, e, nskb, skge->rx_buf_size);
  2071. }
  2072. skb_put(skb, len);
  2073. skb->dev = skge->netdev;
  2074. if (skge->rx_csum) {
  2075. skb->csum = csum;
  2076. skb->ip_summed = CHECKSUM_HW;
  2077. }
  2078. skb->protocol = eth_type_trans(skb, skge->netdev);
  2079. return skb;
  2080. error:
  2081. if (netif_msg_rx_err(skge))
  2082. printk(KERN_DEBUG PFX "%s: rx err, slot %td control 0x%x status 0x%x\n",
  2083. skge->netdev->name, e - skge->rx_ring.start,
  2084. control, status);
  2085. if (skge->hw->chip_id == CHIP_ID_GENESIS) {
  2086. if (status & (XMR_FS_RUNT|XMR_FS_LNG_ERR))
  2087. skge->net_stats.rx_length_errors++;
  2088. if (status & XMR_FS_FRA_ERR)
  2089. skge->net_stats.rx_frame_errors++;
  2090. if (status & XMR_FS_FCS_ERR)
  2091. skge->net_stats.rx_crc_errors++;
  2092. } else {
  2093. if (status & (GMR_FS_LONG_ERR|GMR_FS_UN_SIZE))
  2094. skge->net_stats.rx_length_errors++;
  2095. if (status & GMR_FS_FRAGMENT)
  2096. skge->net_stats.rx_frame_errors++;
  2097. if (status & GMR_FS_CRC_ERR)
  2098. skge->net_stats.rx_crc_errors++;
  2099. }
  2100. resubmit:
  2101. skge_rx_reuse(e, skge->rx_buf_size);
  2102. return NULL;
  2103. }
  2104. static int skge_poll(struct net_device *dev, int *budget)
  2105. {
  2106. struct skge_port *skge = netdev_priv(dev);
  2107. struct skge_hw *hw = skge->hw;
  2108. struct skge_ring *ring = &skge->rx_ring;
  2109. struct skge_element *e;
  2110. unsigned int to_do = min(dev->quota, *budget);
  2111. unsigned int work_done = 0;
  2112. for (e = ring->to_clean; work_done < to_do; e = e->next) {
  2113. struct skge_rx_desc *rd = e->desc;
  2114. struct sk_buff *skb;
  2115. u32 control;
  2116. rmb();
  2117. control = rd->control;
  2118. if (control & BMU_OWN)
  2119. break;
  2120. skb = skge_rx_get(skge, e, control, rd->status,
  2121. le16_to_cpu(rd->csum2));
  2122. if (likely(skb)) {
  2123. dev->last_rx = jiffies;
  2124. netif_receive_skb(skb);
  2125. ++work_done;
  2126. } else
  2127. skge_rx_reuse(e, skge->rx_buf_size);
  2128. }
  2129. ring->to_clean = e;
  2130. /* restart receiver */
  2131. wmb();
  2132. skge_write8(hw, Q_ADDR(rxqaddr[skge->port], Q_CSR),
  2133. CSR_START | CSR_IRQ_CL_F);
  2134. *budget -= work_done;
  2135. dev->quota -= work_done;
  2136. if (work_done >= to_do)
  2137. return 1; /* not done */
  2138. local_irq_disable();
  2139. __netif_rx_complete(dev);
  2140. hw->intr_mask |= portirqmask[skge->port];
  2141. skge_write32(hw, B0_IMSK, hw->intr_mask);
  2142. local_irq_enable();
  2143. return 0;
  2144. }
  2145. static inline void skge_tx_intr(struct net_device *dev)
  2146. {
  2147. struct skge_port *skge = netdev_priv(dev);
  2148. struct skge_hw *hw = skge->hw;
  2149. struct skge_ring *ring = &skge->tx_ring;
  2150. struct skge_element *e;
  2151. spin_lock(&skge->tx_lock);
  2152. for (e = ring->to_clean; e != ring->to_use; e = e->next) {
  2153. struct skge_tx_desc *td = e->desc;
  2154. u32 control;
  2155. rmb();
  2156. control = td->control;
  2157. if (control & BMU_OWN)
  2158. break;
  2159. if (unlikely(netif_msg_tx_done(skge)))
  2160. printk(KERN_DEBUG PFX "%s: tx done slot %td status 0x%x\n",
  2161. dev->name, e - ring->start, td->status);
  2162. skge_tx_free(hw, e);
  2163. e->skb = NULL;
  2164. ++skge->tx_avail;
  2165. }
  2166. ring->to_clean = e;
  2167. skge_write8(hw, Q_ADDR(txqaddr[skge->port], Q_CSR), CSR_IRQ_CL_F);
  2168. if (skge->tx_avail > MAX_SKB_FRAGS + 1)
  2169. netif_wake_queue(dev);
  2170. spin_unlock(&skge->tx_lock);
  2171. }
  2172. /* Parity errors seem to happen when Genesis is connected to a switch
  2173. * with no other ports present. Heartbeat error??
  2174. */
  2175. static void skge_mac_parity(struct skge_hw *hw, int port)
  2176. {
  2177. struct net_device *dev = hw->dev[port];
  2178. if (dev) {
  2179. struct skge_port *skge = netdev_priv(dev);
  2180. ++skge->net_stats.tx_heartbeat_errors;
  2181. }
  2182. if (hw->chip_id == CHIP_ID_GENESIS)
  2183. skge_write16(hw, SK_REG(port, TX_MFF_CTRL1),
  2184. MFF_CLR_PERR);
  2185. else
  2186. /* HW-Bug #8: cleared by GMF_CLI_TX_FC instead of GMF_CLI_TX_PE */
  2187. skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T),
  2188. (hw->chip_id == CHIP_ID_YUKON && hw->chip_rev == 0)
  2189. ? GMF_CLI_TX_FC : GMF_CLI_TX_PE);
  2190. }
  2191. static void skge_pci_clear(struct skge_hw *hw)
  2192. {
  2193. u16 status;
  2194. pci_read_config_word(hw->pdev, PCI_STATUS, &status);
  2195. skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON);
  2196. pci_write_config_word(hw->pdev, PCI_STATUS,
  2197. status | PCI_STATUS_ERROR_BITS);
  2198. skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
  2199. }
  2200. static void skge_mac_intr(struct skge_hw *hw, int port)
  2201. {
  2202. if (hw->chip_id == CHIP_ID_GENESIS)
  2203. genesis_mac_intr(hw, port);
  2204. else
  2205. yukon_mac_intr(hw, port);
  2206. }
  2207. /* Handle device specific framing and timeout interrupts */
  2208. static void skge_error_irq(struct skge_hw *hw)
  2209. {
  2210. u32 hwstatus = skge_read32(hw, B0_HWE_ISRC);
  2211. if (hw->chip_id == CHIP_ID_GENESIS) {
  2212. /* clear xmac errors */
  2213. if (hwstatus & (IS_NO_STAT_M1|IS_NO_TIST_M1))
  2214. skge_write16(hw, RX_MFF_CTRL1, MFF_CLR_INSTAT);
  2215. if (hwstatus & (IS_NO_STAT_M2|IS_NO_TIST_M2))
  2216. skge_write16(hw, RX_MFF_CTRL2, MFF_CLR_INSTAT);
  2217. } else {
  2218. /* Timestamp (unused) overflow */
  2219. if (hwstatus & IS_IRQ_TIST_OV)
  2220. skge_write8(hw, GMAC_TI_ST_CTRL, GMT_ST_CLR_IRQ);
  2221. }
  2222. if (hwstatus & IS_RAM_RD_PAR) {
  2223. printk(KERN_ERR PFX "Ram read data parity error\n");
  2224. skge_write16(hw, B3_RI_CTRL, RI_CLR_RD_PERR);
  2225. }
  2226. if (hwstatus & IS_RAM_WR_PAR) {
  2227. printk(KERN_ERR PFX "Ram write data parity error\n");
  2228. skge_write16(hw, B3_RI_CTRL, RI_CLR_WR_PERR);
  2229. }
  2230. if (hwstatus & IS_M1_PAR_ERR)
  2231. skge_mac_parity(hw, 0);
  2232. if (hwstatus & IS_M2_PAR_ERR)
  2233. skge_mac_parity(hw, 1);
  2234. if (hwstatus & IS_R1_PAR_ERR)
  2235. skge_write32(hw, B0_R1_CSR, CSR_IRQ_CL_P);
  2236. if (hwstatus & IS_R2_PAR_ERR)
  2237. skge_write32(hw, B0_R2_CSR, CSR_IRQ_CL_P);
  2238. if (hwstatus & (IS_IRQ_MST_ERR|IS_IRQ_STAT)) {
  2239. printk(KERN_ERR PFX "hardware error detected (status 0x%x)\n",
  2240. hwstatus);
  2241. skge_pci_clear(hw);
  2242. /* if error still set then just ignore it */
  2243. hwstatus = skge_read32(hw, B0_HWE_ISRC);
  2244. if (hwstatus & IS_IRQ_STAT) {
  2245. pr_debug("IRQ status %x: still set ignoring hardware errors\n",
  2246. hwstatus);
  2247. hw->intr_mask &= ~IS_HW_ERR;
  2248. }
  2249. }
  2250. }
  2251. /*
  2252. * Interrrupt from PHY are handled in tasklet (soft irq)
  2253. * because accessing phy registers requires spin wait which might
  2254. * cause excess interrupt latency.
  2255. */
  2256. static void skge_extirq(unsigned long data)
  2257. {
  2258. struct skge_hw *hw = (struct skge_hw *) data;
  2259. int port;
  2260. spin_lock(&hw->phy_lock);
  2261. for (port = 0; port < 2; port++) {
  2262. struct net_device *dev = hw->dev[port];
  2263. if (dev && netif_running(dev)) {
  2264. struct skge_port *skge = netdev_priv(dev);
  2265. if (hw->chip_id != CHIP_ID_GENESIS)
  2266. yukon_phy_intr(skge);
  2267. else
  2268. bcom_phy_intr(skge);
  2269. }
  2270. }
  2271. spin_unlock(&hw->phy_lock);
  2272. local_irq_disable();
  2273. hw->intr_mask |= IS_EXT_REG;
  2274. skge_write32(hw, B0_IMSK, hw->intr_mask);
  2275. local_irq_enable();
  2276. }
  2277. static irqreturn_t skge_intr(int irq, void *dev_id, struct pt_regs *regs)
  2278. {
  2279. struct skge_hw *hw = dev_id;
  2280. u32 status = skge_read32(hw, B0_SP_ISRC);
  2281. if (status == 0 || status == ~0) /* hotplug or shared irq */
  2282. return IRQ_NONE;
  2283. status &= hw->intr_mask;
  2284. if (status & IS_R1_F) {
  2285. hw->intr_mask &= ~IS_R1_F;
  2286. netif_rx_schedule(hw->dev[0]);
  2287. }
  2288. if (status & IS_R2_F) {
  2289. hw->intr_mask &= ~IS_R2_F;
  2290. netif_rx_schedule(hw->dev[1]);
  2291. }
  2292. if (status & IS_XA1_F)
  2293. skge_tx_intr(hw->dev[0]);
  2294. if (status & IS_XA2_F)
  2295. skge_tx_intr(hw->dev[1]);
  2296. if (status & IS_PA_TO_RX1) {
  2297. struct skge_port *skge = netdev_priv(hw->dev[0]);
  2298. ++skge->net_stats.rx_over_errors;
  2299. skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_RX1);
  2300. }
  2301. if (status & IS_PA_TO_RX2) {
  2302. struct skge_port *skge = netdev_priv(hw->dev[1]);
  2303. ++skge->net_stats.rx_over_errors;
  2304. skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_RX2);
  2305. }
  2306. if (status & IS_PA_TO_TX1)
  2307. skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_TX1);
  2308. if (status & IS_PA_TO_TX2)
  2309. skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_TX2);
  2310. if (status & IS_MAC1)
  2311. skge_mac_intr(hw, 0);
  2312. if (status & IS_MAC2)
  2313. skge_mac_intr(hw, 1);
  2314. if (status & IS_HW_ERR)
  2315. skge_error_irq(hw);
  2316. if (status & IS_EXT_REG) {
  2317. hw->intr_mask &= ~IS_EXT_REG;
  2318. tasklet_schedule(&hw->ext_tasklet);
  2319. }
  2320. skge_write32(hw, B0_IMSK, hw->intr_mask);
  2321. return IRQ_HANDLED;
  2322. }
  2323. #ifdef CONFIG_NET_POLL_CONTROLLER
  2324. static void skge_netpoll(struct net_device *dev)
  2325. {
  2326. struct skge_port *skge = netdev_priv(dev);
  2327. disable_irq(dev->irq);
  2328. skge_intr(dev->irq, skge->hw, NULL);
  2329. enable_irq(dev->irq);
  2330. }
  2331. #endif
  2332. static int skge_set_mac_address(struct net_device *dev, void *p)
  2333. {
  2334. struct skge_port *skge = netdev_priv(dev);
  2335. struct skge_hw *hw = skge->hw;
  2336. unsigned port = skge->port;
  2337. const struct sockaddr *addr = p;
  2338. if (!is_valid_ether_addr(addr->sa_data))
  2339. return -EADDRNOTAVAIL;
  2340. spin_lock_bh(&hw->phy_lock);
  2341. memcpy(dev->dev_addr, addr->sa_data, ETH_ALEN);
  2342. memcpy_toio(hw->regs + B2_MAC_1 + port*8,
  2343. dev->dev_addr, ETH_ALEN);
  2344. memcpy_toio(hw->regs + B2_MAC_2 + port*8,
  2345. dev->dev_addr, ETH_ALEN);
  2346. if (hw->chip_id == CHIP_ID_GENESIS)
  2347. xm_outaddr(hw, port, XM_SA, dev->dev_addr);
  2348. else {
  2349. gma_set_addr(hw, port, GM_SRC_ADDR_1L, dev->dev_addr);
  2350. gma_set_addr(hw, port, GM_SRC_ADDR_2L, dev->dev_addr);
  2351. }
  2352. spin_unlock_bh(&hw->phy_lock);
  2353. return 0;
  2354. }
  2355. static const struct {
  2356. u8 id;
  2357. const char *name;
  2358. } skge_chips[] = {
  2359. { CHIP_ID_GENESIS, "Genesis" },
  2360. { CHIP_ID_YUKON, "Yukon" },
  2361. { CHIP_ID_YUKON_LITE, "Yukon-Lite"},
  2362. { CHIP_ID_YUKON_LP, "Yukon-LP"},
  2363. };
  2364. static const char *skge_board_name(const struct skge_hw *hw)
  2365. {
  2366. int i;
  2367. static char buf[16];
  2368. for (i = 0; i < ARRAY_SIZE(skge_chips); i++)
  2369. if (skge_chips[i].id == hw->chip_id)
  2370. return skge_chips[i].name;
  2371. snprintf(buf, sizeof buf, "chipid 0x%x", hw->chip_id);
  2372. return buf;
  2373. }
  2374. /*
  2375. * Setup the board data structure, but don't bring up
  2376. * the port(s)
  2377. */
  2378. static int skge_reset(struct skge_hw *hw)
  2379. {
  2380. u16 ctst;
  2381. u8 t8, mac_cfg, pmd_type, phy_type;
  2382. int i;
  2383. ctst = skge_read16(hw, B0_CTST);
  2384. /* do a SW reset */
  2385. skge_write8(hw, B0_CTST, CS_RST_SET);
  2386. skge_write8(hw, B0_CTST, CS_RST_CLR);
  2387. /* clear PCI errors, if any */
  2388. skge_pci_clear(hw);
  2389. skge_write8(hw, B0_CTST, CS_MRST_CLR);
  2390. /* restore CLK_RUN bits (for Yukon-Lite) */
  2391. skge_write16(hw, B0_CTST,
  2392. ctst & (CS_CLK_RUN_HOT|CS_CLK_RUN_RST|CS_CLK_RUN_ENA));
  2393. hw->chip_id = skge_read8(hw, B2_CHIP_ID);
  2394. phy_type = skge_read8(hw, B2_E_1) & 0xf;
  2395. pmd_type = skge_read8(hw, B2_PMD_TYP);
  2396. hw->copper = (pmd_type == 'T' || pmd_type == '1');
  2397. switch (hw->chip_id) {
  2398. case CHIP_ID_GENESIS:
  2399. switch (phy_type) {
  2400. case SK_PHY_BCOM:
  2401. hw->phy_addr = PHY_ADDR_BCOM;
  2402. break;
  2403. default:
  2404. printk(KERN_ERR PFX "%s: unsupported phy type 0x%x\n",
  2405. pci_name(hw->pdev), phy_type);
  2406. return -EOPNOTSUPP;
  2407. }
  2408. break;
  2409. case CHIP_ID_YUKON:
  2410. case CHIP_ID_YUKON_LITE:
  2411. case CHIP_ID_YUKON_LP:
  2412. if (phy_type < SK_PHY_MARV_COPPER && pmd_type != 'S')
  2413. hw->copper = 1;
  2414. hw->phy_addr = PHY_ADDR_MARV;
  2415. break;
  2416. default:
  2417. printk(KERN_ERR PFX "%s: unsupported chip type 0x%x\n",
  2418. pci_name(hw->pdev), hw->chip_id);
  2419. return -EOPNOTSUPP;
  2420. }
  2421. mac_cfg = skge_read8(hw, B2_MAC_CFG);
  2422. hw->ports = (mac_cfg & CFG_SNG_MAC) ? 1 : 2;
  2423. hw->chip_rev = (mac_cfg & CFG_CHIP_R_MSK) >> 4;
  2424. /* read the adapters RAM size */
  2425. t8 = skge_read8(hw, B2_E_0);
  2426. if (hw->chip_id == CHIP_ID_GENESIS) {
  2427. if (t8 == 3) {
  2428. /* special case: 4 x 64k x 36, offset = 0x80000 */
  2429. hw->ram_size = 0x100000;
  2430. hw->ram_offset = 0x80000;
  2431. } else
  2432. hw->ram_size = t8 * 512;
  2433. }
  2434. else if (t8 == 0)
  2435. hw->ram_size = 0x20000;
  2436. else
  2437. hw->ram_size = t8 * 4096;
  2438. hw->intr_mask = IS_HW_ERR | IS_EXT_REG;
  2439. if (hw->chip_id == CHIP_ID_GENESIS)
  2440. genesis_init(hw);
  2441. else {
  2442. /* switch power to VCC (WA for VAUX problem) */
  2443. skge_write8(hw, B0_POWER_CTRL,
  2444. PC_VAUX_ENA | PC_VCC_ENA | PC_VAUX_OFF | PC_VCC_ON);
  2445. /* avoid boards with stuck Hardware error bits */
  2446. if ((skge_read32(hw, B0_ISRC) & IS_HW_ERR) &&
  2447. (skge_read32(hw, B0_HWE_ISRC) & IS_IRQ_SENSOR)) {
  2448. printk(KERN_WARNING PFX "stuck hardware sensor bit\n");
  2449. hw->intr_mask &= ~IS_HW_ERR;
  2450. }
  2451. for (i = 0; i < hw->ports; i++) {
  2452. skge_write16(hw, SK_REG(i, GMAC_LINK_CTRL), GMLC_RST_SET);
  2453. skge_write16(hw, SK_REG(i, GMAC_LINK_CTRL), GMLC_RST_CLR);
  2454. }
  2455. }
  2456. /* turn off hardware timer (unused) */
  2457. skge_write8(hw, B2_TI_CTRL, TIM_STOP);
  2458. skge_write8(hw, B2_TI_CTRL, TIM_CLR_IRQ);
  2459. skge_write8(hw, B0_LED, LED_STAT_ON);
  2460. /* enable the Tx Arbiters */
  2461. for (i = 0; i < hw->ports; i++)
  2462. skge_write8(hw, SK_REG(i, TXA_CTRL), TXA_ENA_ARB);
  2463. /* Initialize ram interface */
  2464. skge_write16(hw, B3_RI_CTRL, RI_RST_CLR);
  2465. skge_write8(hw, B3_RI_WTO_R1, SK_RI_TO_53);
  2466. skge_write8(hw, B3_RI_WTO_XA1, SK_RI_TO_53);
  2467. skge_write8(hw, B3_RI_WTO_XS1, SK_RI_TO_53);
  2468. skge_write8(hw, B3_RI_RTO_R1, SK_RI_TO_53);
  2469. skge_write8(hw, B3_RI_RTO_XA1, SK_RI_TO_53);
  2470. skge_write8(hw, B3_RI_RTO_XS1, SK_RI_TO_53);
  2471. skge_write8(hw, B3_RI_WTO_R2, SK_RI_TO_53);
  2472. skge_write8(hw, B3_RI_WTO_XA2, SK_RI_TO_53);
  2473. skge_write8(hw, B3_RI_WTO_XS2, SK_RI_TO_53);
  2474. skge_write8(hw, B3_RI_RTO_R2, SK_RI_TO_53);
  2475. skge_write8(hw, B3_RI_RTO_XA2, SK_RI_TO_53);
  2476. skge_write8(hw, B3_RI_RTO_XS2, SK_RI_TO_53);
  2477. skge_write32(hw, B0_HWE_IMSK, IS_ERR_MSK);
  2478. /* Set interrupt moderation for Transmit only
  2479. * Receive interrupts avoided by NAPI
  2480. */
  2481. skge_write32(hw, B2_IRQM_MSK, IS_XA1_F|IS_XA2_F);
  2482. skge_write32(hw, B2_IRQM_INI, skge_usecs2clk(hw, 100));
  2483. skge_write32(hw, B2_IRQM_CTRL, TIM_START);
  2484. skge_write32(hw, B0_IMSK, hw->intr_mask);
  2485. spin_lock_bh(&hw->phy_lock);
  2486. for (i = 0; i < hw->ports; i++) {
  2487. if (hw->chip_id == CHIP_ID_GENESIS)
  2488. genesis_reset(hw, i);
  2489. else
  2490. yukon_reset(hw, i);
  2491. }
  2492. spin_unlock_bh(&hw->phy_lock);
  2493. return 0;
  2494. }
  2495. /* Initialize network device */
  2496. static struct net_device *skge_devinit(struct skge_hw *hw, int port,
  2497. int highmem)
  2498. {
  2499. struct skge_port *skge;
  2500. struct net_device *dev = alloc_etherdev(sizeof(*skge));
  2501. if (!dev) {
  2502. printk(KERN_ERR "skge etherdev alloc failed");
  2503. return NULL;
  2504. }
  2505. SET_MODULE_OWNER(dev);
  2506. SET_NETDEV_DEV(dev, &hw->pdev->dev);
  2507. dev->open = skge_up;
  2508. dev->stop = skge_down;
  2509. dev->hard_start_xmit = skge_xmit_frame;
  2510. dev->get_stats = skge_get_stats;
  2511. if (hw->chip_id == CHIP_ID_GENESIS)
  2512. dev->set_multicast_list = genesis_set_multicast;
  2513. else
  2514. dev->set_multicast_list = yukon_set_multicast;
  2515. dev->set_mac_address = skge_set_mac_address;
  2516. dev->change_mtu = skge_change_mtu;
  2517. SET_ETHTOOL_OPS(dev, &skge_ethtool_ops);
  2518. dev->tx_timeout = skge_tx_timeout;
  2519. dev->watchdog_timeo = TX_WATCHDOG;
  2520. dev->poll = skge_poll;
  2521. dev->weight = NAPI_WEIGHT;
  2522. #ifdef CONFIG_NET_POLL_CONTROLLER
  2523. dev->poll_controller = skge_netpoll;
  2524. #endif
  2525. dev->irq = hw->pdev->irq;
  2526. dev->features = NETIF_F_LLTX;
  2527. if (highmem)
  2528. dev->features |= NETIF_F_HIGHDMA;
  2529. skge = netdev_priv(dev);
  2530. skge->netdev = dev;
  2531. skge->hw = hw;
  2532. skge->msg_enable = netif_msg_init(debug, default_msg);
  2533. skge->tx_ring.count = DEFAULT_TX_RING_SIZE;
  2534. skge->rx_ring.count = DEFAULT_RX_RING_SIZE;
  2535. /* Auto speed and flow control */
  2536. skge->autoneg = AUTONEG_ENABLE;
  2537. skge->flow_control = FLOW_MODE_SYMMETRIC;
  2538. skge->duplex = -1;
  2539. skge->speed = -1;
  2540. skge->advertising = skge_supported_modes(hw);
  2541. hw->dev[port] = dev;
  2542. skge->port = port;
  2543. spin_lock_init(&skge->tx_lock);
  2544. if (hw->chip_id != CHIP_ID_GENESIS) {
  2545. dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG;
  2546. skge->rx_csum = 1;
  2547. }
  2548. /* read the mac address */
  2549. memcpy_fromio(dev->dev_addr, hw->regs + B2_MAC_1 + port*8, ETH_ALEN);
  2550. memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
  2551. /* device is off until link detection */
  2552. netif_carrier_off(dev);
  2553. netif_stop_queue(dev);
  2554. return dev;
  2555. }
  2556. static void __devinit skge_show_addr(struct net_device *dev)
  2557. {
  2558. const struct skge_port *skge = netdev_priv(dev);
  2559. if (netif_msg_probe(skge))
  2560. printk(KERN_INFO PFX "%s: addr %02x:%02x:%02x:%02x:%02x:%02x\n",
  2561. dev->name,
  2562. dev->dev_addr[0], dev->dev_addr[1], dev->dev_addr[2],
  2563. dev->dev_addr[3], dev->dev_addr[4], dev->dev_addr[5]);
  2564. }
  2565. static int __devinit skge_probe(struct pci_dev *pdev,
  2566. const struct pci_device_id *ent)
  2567. {
  2568. struct net_device *dev, *dev1;
  2569. struct skge_hw *hw;
  2570. int err, using_dac = 0;
  2571. if ((err = pci_enable_device(pdev))) {
  2572. printk(KERN_ERR PFX "%s cannot enable PCI device\n",
  2573. pci_name(pdev));
  2574. goto err_out;
  2575. }
  2576. if ((err = pci_request_regions(pdev, DRV_NAME))) {
  2577. printk(KERN_ERR PFX "%s cannot obtain PCI resources\n",
  2578. pci_name(pdev));
  2579. goto err_out_disable_pdev;
  2580. }
  2581. pci_set_master(pdev);
  2582. if (!(err = pci_set_dma_mask(pdev, DMA_64BIT_MASK)))
  2583. using_dac = 1;
  2584. else if (!(err = pci_set_dma_mask(pdev, DMA_32BIT_MASK))) {
  2585. printk(KERN_ERR PFX "%s no usable DMA configuration\n",
  2586. pci_name(pdev));
  2587. goto err_out_free_regions;
  2588. }
  2589. #ifdef __BIG_ENDIAN
  2590. /* byte swap decriptors in hardware */
  2591. {
  2592. u32 reg;
  2593. pci_read_config_dword(pdev, PCI_DEV_REG2, &reg);
  2594. reg |= PCI_REV_DESC;
  2595. pci_write_config_dword(pdev, PCI_DEV_REG2, reg);
  2596. }
  2597. #endif
  2598. err = -ENOMEM;
  2599. hw = kmalloc(sizeof(*hw), GFP_KERNEL);
  2600. if (!hw) {
  2601. printk(KERN_ERR PFX "%s: cannot allocate hardware struct\n",
  2602. pci_name(pdev));
  2603. goto err_out_free_regions;
  2604. }
  2605. memset(hw, 0, sizeof(*hw));
  2606. hw->pdev = pdev;
  2607. spin_lock_init(&hw->phy_lock);
  2608. tasklet_init(&hw->ext_tasklet, skge_extirq, (unsigned long) hw);
  2609. hw->regs = ioremap_nocache(pci_resource_start(pdev, 0), 0x4000);
  2610. if (!hw->regs) {
  2611. printk(KERN_ERR PFX "%s: cannot map device registers\n",
  2612. pci_name(pdev));
  2613. goto err_out_free_hw;
  2614. }
  2615. if ((err = request_irq(pdev->irq, skge_intr, SA_SHIRQ, DRV_NAME, hw))) {
  2616. printk(KERN_ERR PFX "%s: cannot assign irq %d\n",
  2617. pci_name(pdev), pdev->irq);
  2618. goto err_out_iounmap;
  2619. }
  2620. pci_set_drvdata(pdev, hw);
  2621. err = skge_reset(hw);
  2622. if (err)
  2623. goto err_out_free_irq;
  2624. printk(KERN_INFO PFX "addr 0x%lx irq %d chip %s rev %d\n",
  2625. pci_resource_start(pdev, 0), pdev->irq,
  2626. skge_board_name(hw), hw->chip_rev);
  2627. if ((dev = skge_devinit(hw, 0, using_dac)) == NULL)
  2628. goto err_out_led_off;
  2629. if ((err = register_netdev(dev))) {
  2630. printk(KERN_ERR PFX "%s: cannot register net device\n",
  2631. pci_name(pdev));
  2632. goto err_out_free_netdev;
  2633. }
  2634. skge_show_addr(dev);
  2635. if (hw->ports > 1 && (dev1 = skge_devinit(hw, 1, using_dac))) {
  2636. if (register_netdev(dev1) == 0)
  2637. skge_show_addr(dev1);
  2638. else {
  2639. /* Failure to register second port need not be fatal */
  2640. printk(KERN_WARNING PFX "register of second port failed\n");
  2641. hw->dev[1] = NULL;
  2642. free_netdev(dev1);
  2643. }
  2644. }
  2645. return 0;
  2646. err_out_free_netdev:
  2647. free_netdev(dev);
  2648. err_out_led_off:
  2649. skge_write16(hw, B0_LED, LED_STAT_OFF);
  2650. err_out_free_irq:
  2651. free_irq(pdev->irq, hw);
  2652. err_out_iounmap:
  2653. iounmap(hw->regs);
  2654. err_out_free_hw:
  2655. kfree(hw);
  2656. err_out_free_regions:
  2657. pci_release_regions(pdev);
  2658. err_out_disable_pdev:
  2659. pci_disable_device(pdev);
  2660. pci_set_drvdata(pdev, NULL);
  2661. err_out:
  2662. return err;
  2663. }
  2664. static void __devexit skge_remove(struct pci_dev *pdev)
  2665. {
  2666. struct skge_hw *hw = pci_get_drvdata(pdev);
  2667. struct net_device *dev0, *dev1;
  2668. if (!hw)
  2669. return;
  2670. if ((dev1 = hw->dev[1]))
  2671. unregister_netdev(dev1);
  2672. dev0 = hw->dev[0];
  2673. unregister_netdev(dev0);
  2674. skge_write32(hw, B0_IMSK, 0);
  2675. skge_write16(hw, B0_LED, LED_STAT_OFF);
  2676. skge_pci_clear(hw);
  2677. skge_write8(hw, B0_CTST, CS_RST_SET);
  2678. tasklet_kill(&hw->ext_tasklet);
  2679. free_irq(pdev->irq, hw);
  2680. pci_release_regions(pdev);
  2681. pci_disable_device(pdev);
  2682. if (dev1)
  2683. free_netdev(dev1);
  2684. free_netdev(dev0);
  2685. iounmap(hw->regs);
  2686. kfree(hw);
  2687. pci_set_drvdata(pdev, NULL);
  2688. }
  2689. #ifdef CONFIG_PM
  2690. static int skge_suspend(struct pci_dev *pdev, pm_message_t state)
  2691. {
  2692. struct skge_hw *hw = pci_get_drvdata(pdev);
  2693. int i, wol = 0;
  2694. for (i = 0; i < 2; i++) {
  2695. struct net_device *dev = hw->dev[i];
  2696. if (dev) {
  2697. struct skge_port *skge = netdev_priv(dev);
  2698. if (netif_running(dev)) {
  2699. netif_carrier_off(dev);
  2700. if (skge->wol)
  2701. netif_stop_queue(dev);
  2702. else
  2703. skge_down(dev);
  2704. }
  2705. netif_device_detach(dev);
  2706. wol |= skge->wol;
  2707. }
  2708. }
  2709. pci_save_state(pdev);
  2710. pci_enable_wake(pdev, pci_choose_state(pdev, state), wol);
  2711. pci_disable_device(pdev);
  2712. pci_set_power_state(pdev, pci_choose_state(pdev, state));
  2713. return 0;
  2714. }
  2715. static int skge_resume(struct pci_dev *pdev)
  2716. {
  2717. struct skge_hw *hw = pci_get_drvdata(pdev);
  2718. int i;
  2719. pci_set_power_state(pdev, PCI_D0);
  2720. pci_restore_state(pdev);
  2721. pci_enable_wake(pdev, PCI_D0, 0);
  2722. skge_reset(hw);
  2723. for (i = 0; i < 2; i++) {
  2724. struct net_device *dev = hw->dev[i];
  2725. if (dev) {
  2726. netif_device_attach(dev);
  2727. if (netif_running(dev))
  2728. skge_up(dev);
  2729. }
  2730. }
  2731. return 0;
  2732. }
  2733. #endif
  2734. static struct pci_driver skge_driver = {
  2735. .name = DRV_NAME,
  2736. .id_table = skge_id_table,
  2737. .probe = skge_probe,
  2738. .remove = __devexit_p(skge_remove),
  2739. #ifdef CONFIG_PM
  2740. .suspend = skge_suspend,
  2741. .resume = skge_resume,
  2742. #endif
  2743. };
  2744. static int __init skge_init_module(void)
  2745. {
  2746. return pci_module_init(&skge_driver);
  2747. }
  2748. static void __exit skge_cleanup_module(void)
  2749. {
  2750. pci_unregister_driver(&skge_driver);
  2751. }
  2752. module_init(skge_init_module);
  2753. module_exit(skge_cleanup_module);