s3c2410.c 17 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728
  1. /* linux/drivers/mtd/nand/s3c2410.c
  2. *
  3. * Copyright (c) 2004,2005 Simtec Electronics
  4. * http://www.simtec.co.uk/products/SWLINUX/
  5. * Ben Dooks <ben@simtec.co.uk>
  6. *
  7. * Samsung S3C2410/S3C240 NAND driver
  8. *
  9. * Changelog:
  10. * 21-Sep-2004 BJD Initial version
  11. * 23-Sep-2004 BJD Mulitple device support
  12. * 28-Sep-2004 BJD Fixed ECC placement for Hardware mode
  13. * 12-Oct-2004 BJD Fixed errors in use of platform data
  14. * 18-Feb-2005 BJD Fix sparse errors
  15. * 14-Mar-2005 BJD Applied tglx's code reduction patch
  16. * 02-May-2005 BJD Fixed s3c2440 support
  17. * 02-May-2005 BJD Reduced hwcontrol decode
  18. * 20-Jun-2005 BJD Updated s3c2440 support, fixed timing bug
  19. * 08-Jul-2005 BJD Fix OOPS when no platform data supplied
  20. *
  21. * $Id: s3c2410.c,v 1.14 2005/07/06 20:05:06 bjd Exp $
  22. *
  23. * This program is free software; you can redistribute it and/or modify
  24. * it under the terms of the GNU General Public License as published by
  25. * the Free Software Foundation; either version 2 of the License, or
  26. * (at your option) any later version.
  27. *
  28. * This program is distributed in the hope that it will be useful,
  29. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  30. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  31. * GNU General Public License for more details.
  32. *
  33. * You should have received a copy of the GNU General Public License
  34. * along with this program; if not, write to the Free Software
  35. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  36. */
  37. #include <config/mtd/nand/s3c2410/hwecc.h>
  38. #include <config/mtd/nand/s3c2410/debug.h>
  39. #ifdef CONFIG_MTD_NAND_S3C2410_DEBUG
  40. #define DEBUG
  41. #endif
  42. #include <linux/module.h>
  43. #include <linux/types.h>
  44. #include <linux/init.h>
  45. #include <linux/kernel.h>
  46. #include <linux/string.h>
  47. #include <linux/ioport.h>
  48. #include <linux/device.h>
  49. #include <linux/delay.h>
  50. #include <linux/err.h>
  51. #include <linux/mtd/mtd.h>
  52. #include <linux/mtd/nand.h>
  53. #include <linux/mtd/nand_ecc.h>
  54. #include <linux/mtd/partitions.h>
  55. #include <asm/io.h>
  56. #include <asm/hardware/clock.h>
  57. #include <asm/arch/regs-nand.h>
  58. #include <asm/arch/nand.h>
  59. #define PFX "s3c2410-nand: "
  60. #ifdef CONFIG_MTD_NAND_S3C2410_HWECC
  61. static int hardware_ecc = 1;
  62. #else
  63. static int hardware_ecc = 0;
  64. #endif
  65. /* new oob placement block for use with hardware ecc generation
  66. */
  67. static struct nand_oobinfo nand_hw_eccoob = {
  68. .useecc = MTD_NANDECC_AUTOPLACE,
  69. .eccbytes = 3,
  70. .eccpos = {0, 1, 2 },
  71. .oobfree = { {8, 8} }
  72. };
  73. /* controller and mtd information */
  74. struct s3c2410_nand_info;
  75. struct s3c2410_nand_mtd {
  76. struct mtd_info mtd;
  77. struct nand_chip chip;
  78. struct s3c2410_nand_set *set;
  79. struct s3c2410_nand_info *info;
  80. int scan_res;
  81. };
  82. /* overview of the s3c2410 nand state */
  83. struct s3c2410_nand_info {
  84. /* mtd info */
  85. struct nand_hw_control controller;
  86. struct s3c2410_nand_mtd *mtds;
  87. struct s3c2410_platform_nand *platform;
  88. /* device info */
  89. struct device *device;
  90. struct resource *area;
  91. struct clk *clk;
  92. void __iomem *regs;
  93. int mtd_count;
  94. unsigned char is_s3c2440;
  95. };
  96. /* conversion functions */
  97. static struct s3c2410_nand_mtd *s3c2410_nand_mtd_toours(struct mtd_info *mtd)
  98. {
  99. return container_of(mtd, struct s3c2410_nand_mtd, mtd);
  100. }
  101. static struct s3c2410_nand_info *s3c2410_nand_mtd_toinfo(struct mtd_info *mtd)
  102. {
  103. return s3c2410_nand_mtd_toours(mtd)->info;
  104. }
  105. static struct s3c2410_nand_info *to_nand_info(struct device *dev)
  106. {
  107. return dev_get_drvdata(dev);
  108. }
  109. static struct s3c2410_platform_nand *to_nand_plat(struct device *dev)
  110. {
  111. return dev->platform_data;
  112. }
  113. /* timing calculations */
  114. #define NS_IN_KHZ 10000000
  115. static int s3c2410_nand_calc_rate(int wanted, unsigned long clk, int max)
  116. {
  117. int result;
  118. result = (wanted * NS_IN_KHZ) / clk;
  119. result++;
  120. pr_debug("result %d from %ld, %d\n", result, clk, wanted);
  121. if (result > max) {
  122. printk("%d ns is too big for current clock rate %ld\n",
  123. wanted, clk);
  124. return -1;
  125. }
  126. if (result < 1)
  127. result = 1;
  128. return result;
  129. }
  130. #define to_ns(ticks,clk) (((clk) * (ticks)) / NS_IN_KHZ)
  131. /* controller setup */
  132. static int s3c2410_nand_inithw(struct s3c2410_nand_info *info,
  133. struct device *dev)
  134. {
  135. struct s3c2410_platform_nand *plat = to_nand_plat(dev);
  136. unsigned int tacls, twrph0, twrph1;
  137. unsigned long clkrate = clk_get_rate(info->clk);
  138. unsigned long cfg;
  139. /* calculate the timing information for the controller */
  140. if (plat != NULL) {
  141. tacls = s3c2410_nand_calc_rate(plat->tacls, clkrate, 4);
  142. twrph0 = s3c2410_nand_calc_rate(plat->twrph0, clkrate, 8);
  143. twrph1 = s3c2410_nand_calc_rate(plat->twrph1, clkrate, 8);
  144. } else {
  145. /* default timings */
  146. tacls = 4;
  147. twrph0 = 8;
  148. twrph1 = 8;
  149. }
  150. if (tacls < 0 || twrph0 < 0 || twrph1 < 0) {
  151. printk(KERN_ERR PFX "cannot get timings suitable for board\n");
  152. return -EINVAL;
  153. }
  154. printk(KERN_INFO PFX "timing: Tacls %ldns, Twrph0 %ldns, Twrph1 %ldns\n",
  155. to_ns(tacls, clkrate),
  156. to_ns(twrph0, clkrate),
  157. to_ns(twrph1, clkrate));
  158. if (!info->is_s3c2440) {
  159. cfg = S3C2410_NFCONF_EN;
  160. cfg |= S3C2410_NFCONF_TACLS(tacls-1);
  161. cfg |= S3C2410_NFCONF_TWRPH0(twrph0-1);
  162. cfg |= S3C2410_NFCONF_TWRPH1(twrph1-1);
  163. } else {
  164. cfg = S3C2440_NFCONF_TACLS(tacls-1);
  165. cfg |= S3C2440_NFCONF_TWRPH0(twrph0-1);
  166. cfg |= S3C2440_NFCONF_TWRPH1(twrph1-1);
  167. }
  168. pr_debug(PFX "NF_CONF is 0x%lx\n", cfg);
  169. writel(cfg, info->regs + S3C2410_NFCONF);
  170. return 0;
  171. }
  172. /* select chip */
  173. static void s3c2410_nand_select_chip(struct mtd_info *mtd, int chip)
  174. {
  175. struct s3c2410_nand_info *info;
  176. struct s3c2410_nand_mtd *nmtd;
  177. struct nand_chip *this = mtd->priv;
  178. void __iomem *reg;
  179. unsigned long cur;
  180. unsigned long bit;
  181. nmtd = this->priv;
  182. info = nmtd->info;
  183. bit = (info->is_s3c2440) ? S3C2440_NFCONT_nFCE : S3C2410_NFCONF_nFCE;
  184. reg = info->regs+((info->is_s3c2440) ? S3C2440_NFCONT:S3C2410_NFCONF);
  185. cur = readl(reg);
  186. if (chip == -1) {
  187. cur |= bit;
  188. } else {
  189. if (nmtd->set != NULL && chip > nmtd->set->nr_chips) {
  190. printk(KERN_ERR PFX "chip %d out of range\n", chip);
  191. return;
  192. }
  193. if (info->platform != NULL) {
  194. if (info->platform->select_chip != NULL)
  195. (info->platform->select_chip)(nmtd->set, chip);
  196. }
  197. cur &= ~bit;
  198. }
  199. writel(cur, reg);
  200. }
  201. /* command and control functions
  202. *
  203. * Note, these all use tglx's method of changing the IO_ADDR_W field
  204. * to make the code simpler, and use the nand layer's code to issue the
  205. * command and address sequences via the proper IO ports.
  206. *
  207. */
  208. static void s3c2410_nand_hwcontrol(struct mtd_info *mtd, int cmd)
  209. {
  210. struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
  211. struct nand_chip *chip = mtd->priv;
  212. switch (cmd) {
  213. case NAND_CTL_SETNCE:
  214. case NAND_CTL_CLRNCE:
  215. printk(KERN_ERR "%s: called for NCE\n", __FUNCTION__);
  216. break;
  217. case NAND_CTL_SETCLE:
  218. chip->IO_ADDR_W = info->regs + S3C2410_NFCMD;
  219. break;
  220. case NAND_CTL_SETALE:
  221. chip->IO_ADDR_W = info->regs + S3C2410_NFADDR;
  222. break;
  223. /* NAND_CTL_CLRCLE: */
  224. /* NAND_CTL_CLRALE: */
  225. default:
  226. chip->IO_ADDR_W = info->regs + S3C2410_NFDATA;
  227. break;
  228. }
  229. }
  230. /* command and control functions */
  231. static void s3c2440_nand_hwcontrol(struct mtd_info *mtd, int cmd)
  232. {
  233. struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
  234. struct nand_chip *chip = mtd->priv;
  235. switch (cmd) {
  236. case NAND_CTL_SETNCE:
  237. case NAND_CTL_CLRNCE:
  238. printk(KERN_ERR "%s: called for NCE\n", __FUNCTION__);
  239. break;
  240. case NAND_CTL_SETCLE:
  241. chip->IO_ADDR_W = info->regs + S3C2440_NFCMD;
  242. break;
  243. case NAND_CTL_SETALE:
  244. chip->IO_ADDR_W = info->regs + S3C2440_NFADDR;
  245. break;
  246. /* NAND_CTL_CLRCLE: */
  247. /* NAND_CTL_CLRALE: */
  248. default:
  249. chip->IO_ADDR_W = info->regs + S3C2440_NFDATA;
  250. break;
  251. }
  252. }
  253. /* s3c2410_nand_devready()
  254. *
  255. * returns 0 if the nand is busy, 1 if it is ready
  256. */
  257. static int s3c2410_nand_devready(struct mtd_info *mtd)
  258. {
  259. struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
  260. if (info->is_s3c2440)
  261. return readb(info->regs + S3C2440_NFSTAT) & S3C2440_NFSTAT_READY;
  262. return readb(info->regs + S3C2410_NFSTAT) & S3C2410_NFSTAT_BUSY;
  263. }
  264. /* ECC handling functions */
  265. static int s3c2410_nand_correct_data(struct mtd_info *mtd, u_char *dat,
  266. u_char *read_ecc, u_char *calc_ecc)
  267. {
  268. pr_debug("s3c2410_nand_correct_data(%p,%p,%p,%p)\n",
  269. mtd, dat, read_ecc, calc_ecc);
  270. pr_debug("eccs: read %02x,%02x,%02x vs calc %02x,%02x,%02x\n",
  271. read_ecc[0], read_ecc[1], read_ecc[2],
  272. calc_ecc[0], calc_ecc[1], calc_ecc[2]);
  273. if (read_ecc[0] == calc_ecc[0] &&
  274. read_ecc[1] == calc_ecc[1] &&
  275. read_ecc[2] == calc_ecc[2])
  276. return 0;
  277. /* we curently have no method for correcting the error */
  278. return -1;
  279. }
  280. /* ECC functions
  281. *
  282. * These allow the s3c2410 and s3c2440 to use the controller's ECC
  283. * generator block to ECC the data as it passes through]
  284. */
  285. static void s3c2410_nand_enable_hwecc(struct mtd_info *mtd, int mode)
  286. {
  287. struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
  288. unsigned long ctrl;
  289. ctrl = readl(info->regs + S3C2410_NFCONF);
  290. ctrl |= S3C2410_NFCONF_INITECC;
  291. writel(ctrl, info->regs + S3C2410_NFCONF);
  292. }
  293. static void s3c2440_nand_enable_hwecc(struct mtd_info *mtd, int mode)
  294. {
  295. struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
  296. unsigned long ctrl;
  297. ctrl = readl(info->regs + S3C2440_NFCONT);
  298. writel(ctrl | S3C2440_NFCONT_INITECC, info->regs + S3C2440_NFCONT);
  299. }
  300. static int s3c2410_nand_calculate_ecc(struct mtd_info *mtd,
  301. const u_char *dat, u_char *ecc_code)
  302. {
  303. struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
  304. ecc_code[0] = readb(info->regs + S3C2410_NFECC + 0);
  305. ecc_code[1] = readb(info->regs + S3C2410_NFECC + 1);
  306. ecc_code[2] = readb(info->regs + S3C2410_NFECC + 2);
  307. pr_debug("calculate_ecc: returning ecc %02x,%02x,%02x\n",
  308. ecc_code[0], ecc_code[1], ecc_code[2]);
  309. return 0;
  310. }
  311. static int s3c2440_nand_calculate_ecc(struct mtd_info *mtd,
  312. const u_char *dat, u_char *ecc_code)
  313. {
  314. struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
  315. unsigned long ecc = readl(info->regs + S3C2440_NFMECC0);
  316. ecc_code[0] = ecc;
  317. ecc_code[1] = ecc >> 8;
  318. ecc_code[2] = ecc >> 16;
  319. pr_debug("calculate_ecc: returning ecc %02x,%02x,%02x\n",
  320. ecc_code[0], ecc_code[1], ecc_code[2]);
  321. return 0;
  322. }
  323. /* over-ride the standard functions for a little more speed. We can
  324. * use read/write block to move the data buffers to/from the controller
  325. */
  326. static void s3c2410_nand_read_buf(struct mtd_info *mtd, u_char *buf, int len)
  327. {
  328. struct nand_chip *this = mtd->priv;
  329. readsb(this->IO_ADDR_R, buf, len);
  330. }
  331. static void s3c2410_nand_write_buf(struct mtd_info *mtd,
  332. const u_char *buf, int len)
  333. {
  334. struct nand_chip *this = mtd->priv;
  335. writesb(this->IO_ADDR_W, buf, len);
  336. }
  337. /* device management functions */
  338. static int s3c2410_nand_remove(struct device *dev)
  339. {
  340. struct s3c2410_nand_info *info = to_nand_info(dev);
  341. dev_set_drvdata(dev, NULL);
  342. if (info == NULL)
  343. return 0;
  344. /* first thing we need to do is release all our mtds
  345. * and their partitions, then go through freeing the
  346. * resources used
  347. */
  348. if (info->mtds != NULL) {
  349. struct s3c2410_nand_mtd *ptr = info->mtds;
  350. int mtdno;
  351. for (mtdno = 0; mtdno < info->mtd_count; mtdno++, ptr++) {
  352. pr_debug("releasing mtd %d (%p)\n", mtdno, ptr);
  353. nand_release(&ptr->mtd);
  354. }
  355. kfree(info->mtds);
  356. }
  357. /* free the common resources */
  358. if (info->clk != NULL && !IS_ERR(info->clk)) {
  359. clk_disable(info->clk);
  360. clk_unuse(info->clk);
  361. clk_put(info->clk);
  362. }
  363. if (info->regs != NULL) {
  364. iounmap(info->regs);
  365. info->regs = NULL;
  366. }
  367. if (info->area != NULL) {
  368. release_resource(info->area);
  369. kfree(info->area);
  370. info->area = NULL;
  371. }
  372. kfree(info);
  373. return 0;
  374. }
  375. #ifdef CONFIG_MTD_PARTITIONS
  376. static int s3c2410_nand_add_partition(struct s3c2410_nand_info *info,
  377. struct s3c2410_nand_mtd *mtd,
  378. struct s3c2410_nand_set *set)
  379. {
  380. if (set == NULL)
  381. return add_mtd_device(&mtd->mtd);
  382. if (set->nr_partitions > 0 && set->partitions != NULL) {
  383. return add_mtd_partitions(&mtd->mtd,
  384. set->partitions,
  385. set->nr_partitions);
  386. }
  387. return add_mtd_device(&mtd->mtd);
  388. }
  389. #else
  390. static int s3c2410_nand_add_partition(struct s3c2410_nand_info *info,
  391. struct s3c2410_nand_mtd *mtd,
  392. struct s3c2410_nand_set *set)
  393. {
  394. return add_mtd_device(&mtd->mtd);
  395. }
  396. #endif
  397. /* s3c2410_nand_init_chip
  398. *
  399. * init a single instance of an chip
  400. */
  401. static void s3c2410_nand_init_chip(struct s3c2410_nand_info *info,
  402. struct s3c2410_nand_mtd *nmtd,
  403. struct s3c2410_nand_set *set)
  404. {
  405. struct nand_chip *chip = &nmtd->chip;
  406. chip->IO_ADDR_R = info->regs + S3C2410_NFDATA;
  407. chip->IO_ADDR_W = info->regs + S3C2410_NFDATA;
  408. chip->hwcontrol = s3c2410_nand_hwcontrol;
  409. chip->dev_ready = s3c2410_nand_devready;
  410. chip->write_buf = s3c2410_nand_write_buf;
  411. chip->read_buf = s3c2410_nand_read_buf;
  412. chip->select_chip = s3c2410_nand_select_chip;
  413. chip->chip_delay = 50;
  414. chip->priv = nmtd;
  415. chip->options = 0;
  416. chip->controller = &info->controller;
  417. if (info->is_s3c2440) {
  418. chip->IO_ADDR_R = info->regs + S3C2440_NFDATA;
  419. chip->IO_ADDR_W = info->regs + S3C2440_NFDATA;
  420. chip->hwcontrol = s3c2440_nand_hwcontrol;
  421. }
  422. nmtd->info = info;
  423. nmtd->mtd.priv = chip;
  424. nmtd->set = set;
  425. if (hardware_ecc) {
  426. chip->correct_data = s3c2410_nand_correct_data;
  427. chip->enable_hwecc = s3c2410_nand_enable_hwecc;
  428. chip->calculate_ecc = s3c2410_nand_calculate_ecc;
  429. chip->eccmode = NAND_ECC_HW3_512;
  430. chip->autooob = &nand_hw_eccoob;
  431. if (info->is_s3c2440) {
  432. chip->enable_hwecc = s3c2440_nand_enable_hwecc;
  433. chip->calculate_ecc = s3c2440_nand_calculate_ecc;
  434. }
  435. } else {
  436. chip->eccmode = NAND_ECC_SOFT;
  437. }
  438. }
  439. /* s3c2410_nand_probe
  440. *
  441. * called by device layer when it finds a device matching
  442. * one our driver can handled. This code checks to see if
  443. * it can allocate all necessary resources then calls the
  444. * nand layer to look for devices
  445. */
  446. static int s3c24xx_nand_probe(struct device *dev, int is_s3c2440)
  447. {
  448. struct platform_device *pdev = to_platform_device(dev);
  449. struct s3c2410_platform_nand *plat = to_nand_plat(dev);
  450. struct s3c2410_nand_info *info;
  451. struct s3c2410_nand_mtd *nmtd;
  452. struct s3c2410_nand_set *sets;
  453. struct resource *res;
  454. int err = 0;
  455. int size;
  456. int nr_sets;
  457. int setno;
  458. pr_debug("s3c2410_nand_probe(%p)\n", dev);
  459. info = kmalloc(sizeof(*info), GFP_KERNEL);
  460. if (info == NULL) {
  461. printk(KERN_ERR PFX "no memory for flash info\n");
  462. err = -ENOMEM;
  463. goto exit_error;
  464. }
  465. memzero(info, sizeof(*info));
  466. dev_set_drvdata(dev, info);
  467. spin_lock_init(&info->controller.lock);
  468. init_waitqueue_head(&info->controller.wq);
  469. /* get the clock source and enable it */
  470. info->clk = clk_get(dev, "nand");
  471. if (IS_ERR(info->clk)) {
  472. printk(KERN_ERR PFX "failed to get clock");
  473. err = -ENOENT;
  474. goto exit_error;
  475. }
  476. clk_use(info->clk);
  477. clk_enable(info->clk);
  478. /* allocate and map the resource */
  479. /* currently we assume we have the one resource */
  480. res = pdev->resource;
  481. size = res->end - res->start + 1;
  482. info->area = request_mem_region(res->start, size, pdev->name);
  483. if (info->area == NULL) {
  484. printk(KERN_ERR PFX "cannot reserve register region\n");
  485. err = -ENOENT;
  486. goto exit_error;
  487. }
  488. info->device = dev;
  489. info->platform = plat;
  490. info->regs = ioremap(res->start, size);
  491. info->is_s3c2440 = is_s3c2440;
  492. if (info->regs == NULL) {
  493. printk(KERN_ERR PFX "cannot reserve register region\n");
  494. err = -EIO;
  495. goto exit_error;
  496. }
  497. printk(KERN_INFO PFX "mapped registers at %p\n", info->regs);
  498. /* initialise the hardware */
  499. err = s3c2410_nand_inithw(info, dev);
  500. if (err != 0)
  501. goto exit_error;
  502. sets = (plat != NULL) ? plat->sets : NULL;
  503. nr_sets = (plat != NULL) ? plat->nr_sets : 1;
  504. info->mtd_count = nr_sets;
  505. /* allocate our information */
  506. size = nr_sets * sizeof(*info->mtds);
  507. info->mtds = kmalloc(size, GFP_KERNEL);
  508. if (info->mtds == NULL) {
  509. printk(KERN_ERR PFX "failed to allocate mtd storage\n");
  510. err = -ENOMEM;
  511. goto exit_error;
  512. }
  513. memzero(info->mtds, size);
  514. /* initialise all possible chips */
  515. nmtd = info->mtds;
  516. for (setno = 0; setno < nr_sets; setno++, nmtd++) {
  517. pr_debug("initialising set %d (%p, info %p)\n",
  518. setno, nmtd, info);
  519. s3c2410_nand_init_chip(info, nmtd, sets);
  520. nmtd->scan_res = nand_scan(&nmtd->mtd,
  521. (sets) ? sets->nr_chips : 1);
  522. if (nmtd->scan_res == 0) {
  523. s3c2410_nand_add_partition(info, nmtd, sets);
  524. }
  525. if (sets != NULL)
  526. sets++;
  527. }
  528. pr_debug("initialised ok\n");
  529. return 0;
  530. exit_error:
  531. s3c2410_nand_remove(dev);
  532. if (err == 0)
  533. err = -EINVAL;
  534. return err;
  535. }
  536. /* driver device registration */
  537. static int s3c2410_nand_probe(struct device *dev)
  538. {
  539. return s3c24xx_nand_probe(dev, 0);
  540. }
  541. static int s3c2440_nand_probe(struct device *dev)
  542. {
  543. return s3c24xx_nand_probe(dev, 1);
  544. }
  545. static struct device_driver s3c2410_nand_driver = {
  546. .name = "s3c2410-nand",
  547. .bus = &platform_bus_type,
  548. .probe = s3c2410_nand_probe,
  549. .remove = s3c2410_nand_remove,
  550. };
  551. static struct device_driver s3c2440_nand_driver = {
  552. .name = "s3c2440-nand",
  553. .bus = &platform_bus_type,
  554. .probe = s3c2440_nand_probe,
  555. .remove = s3c2410_nand_remove,
  556. };
  557. static int __init s3c2410_nand_init(void)
  558. {
  559. printk("S3C24XX NAND Driver, (c) 2004 Simtec Electronics\n");
  560. driver_register(&s3c2440_nand_driver);
  561. return driver_register(&s3c2410_nand_driver);
  562. }
  563. static void __exit s3c2410_nand_exit(void)
  564. {
  565. driver_unregister(&s3c2440_nand_driver);
  566. driver_unregister(&s3c2410_nand_driver);
  567. }
  568. module_init(s3c2410_nand_init);
  569. module_exit(s3c2410_nand_exit);
  570. MODULE_LICENSE("GPL");
  571. MODULE_AUTHOR("Ben Dooks <ben@simtec.co.uk>");
  572. MODULE_DESCRIPTION("S3C24XX MTD NAND driver");