setup.c 17 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661
  1. /*
  2. * This file is subject to the terms and conditions of the GNU General Public
  3. * License. See the file "COPYING" in the main directory of this archive
  4. * for more details.
  5. *
  6. * Copyright (C) 1999,2001-2005 Silicon Graphics, Inc. All rights reserved.
  7. */
  8. #include <linux/config.h>
  9. #include <linux/module.h>
  10. #include <linux/init.h>
  11. #include <linux/delay.h>
  12. #include <linux/kernel.h>
  13. #include <linux/kdev_t.h>
  14. #include <linux/string.h>
  15. #include <linux/tty.h>
  16. #include <linux/console.h>
  17. #include <linux/timex.h>
  18. #include <linux/sched.h>
  19. #include <linux/ioport.h>
  20. #include <linux/mm.h>
  21. #include <linux/serial.h>
  22. #include <linux/irq.h>
  23. #include <linux/bootmem.h>
  24. #include <linux/mmzone.h>
  25. #include <linux/interrupt.h>
  26. #include <linux/acpi.h>
  27. #include <linux/compiler.h>
  28. #include <linux/sched.h>
  29. #include <linux/root_dev.h>
  30. #include <linux/nodemask.h>
  31. #include <linux/pm.h>
  32. #include <asm/io.h>
  33. #include <asm/sal.h>
  34. #include <asm/machvec.h>
  35. #include <asm/system.h>
  36. #include <asm/processor.h>
  37. #include <asm/vga.h>
  38. #include <asm/sn/arch.h>
  39. #include <asm/sn/addrs.h>
  40. #include <asm/sn/pda.h>
  41. #include <asm/sn/nodepda.h>
  42. #include <asm/sn/sn_cpuid.h>
  43. #include <asm/sn/simulator.h>
  44. #include <asm/sn/leds.h>
  45. #include <asm/sn/bte.h>
  46. #include <asm/sn/shub_mmr.h>
  47. #include <asm/sn/clksupport.h>
  48. #include <asm/sn/sn_sal.h>
  49. #include <asm/sn/geo.h>
  50. #include <asm/sn/sn_feature_sets.h>
  51. #include "xtalk/xwidgetdev.h"
  52. #include "xtalk/hubdev.h"
  53. #include <asm/sn/klconfig.h>
  54. DEFINE_PER_CPU(struct pda_s, pda_percpu);
  55. #define MAX_PHYS_MEMORY (1UL << IA64_MAX_PHYS_BITS) /* Max physical address supported */
  56. lboard_t *root_lboard[MAX_COMPACT_NODES];
  57. extern void bte_init_node(nodepda_t *, cnodeid_t);
  58. extern void sn_timer_init(void);
  59. extern unsigned long last_time_offset;
  60. extern void (*ia64_mark_idle) (int);
  61. extern void snidle(int);
  62. extern unsigned char acpi_kbd_controller_present;
  63. unsigned long sn_rtc_cycles_per_second;
  64. EXPORT_SYMBOL(sn_rtc_cycles_per_second);
  65. DEFINE_PER_CPU(struct sn_hub_info_s, __sn_hub_info);
  66. EXPORT_PER_CPU_SYMBOL(__sn_hub_info);
  67. DEFINE_PER_CPU(short, __sn_cnodeid_to_nasid[MAX_NUMNODES]);
  68. EXPORT_PER_CPU_SYMBOL(__sn_cnodeid_to_nasid);
  69. DEFINE_PER_CPU(struct nodepda_s *, __sn_nodepda);
  70. EXPORT_PER_CPU_SYMBOL(__sn_nodepda);
  71. char sn_system_serial_number_string[128];
  72. EXPORT_SYMBOL(sn_system_serial_number_string);
  73. u64 sn_partition_serial_number;
  74. EXPORT_SYMBOL(sn_partition_serial_number);
  75. u8 sn_partition_id;
  76. EXPORT_SYMBOL(sn_partition_id);
  77. u8 sn_system_size;
  78. EXPORT_SYMBOL(sn_system_size);
  79. u8 sn_sharing_domain_size;
  80. EXPORT_SYMBOL(sn_sharing_domain_size);
  81. u8 sn_coherency_id;
  82. EXPORT_SYMBOL(sn_coherency_id);
  83. u8 sn_region_size;
  84. EXPORT_SYMBOL(sn_region_size);
  85. int sn_prom_type; /* 0=hardware, 1=medusa/realprom, 2=medusa/fakeprom */
  86. short physical_node_map[MAX_PHYSNODE_ID];
  87. static unsigned long sn_prom_features[MAX_PROM_FEATURE_SETS];
  88. EXPORT_SYMBOL(physical_node_map);
  89. int numionodes;
  90. static void sn_init_pdas(char **);
  91. static void scan_for_ionodes(void);
  92. static nodepda_t *nodepdaindr[MAX_COMPACT_NODES];
  93. /*
  94. * The format of "screen_info" is strange, and due to early i386-setup
  95. * code. This is just enough to make the console code think we're on a
  96. * VGA color display.
  97. */
  98. struct screen_info sn_screen_info = {
  99. .orig_x = 0,
  100. .orig_y = 0,
  101. .orig_video_mode = 3,
  102. .orig_video_cols = 80,
  103. .orig_video_ega_bx = 3,
  104. .orig_video_lines = 25,
  105. .orig_video_isVGA = 1,
  106. .orig_video_points = 16
  107. };
  108. /*
  109. * This is here so we can use the CMOS detection in ide-probe.c to
  110. * determine what drives are present. In theory, we don't need this
  111. * as the auto-detection could be done via ide-probe.c:do_probe() but
  112. * in practice that would be much slower, which is painful when
  113. * running in the simulator. Note that passing zeroes in DRIVE_INFO
  114. * is sufficient (the IDE driver will autodetect the drive geometry).
  115. */
  116. #ifdef CONFIG_IA64_GENERIC
  117. extern char drive_info[4 * 16];
  118. #else
  119. char drive_info[4 * 16];
  120. #endif
  121. /*
  122. * Get nasid of current cpu early in boot before nodepda is initialized
  123. */
  124. static int
  125. boot_get_nasid(void)
  126. {
  127. int nasid;
  128. if (ia64_sn_get_sapic_info(get_sapicid(), &nasid, NULL, NULL))
  129. BUG();
  130. return nasid;
  131. }
  132. /*
  133. * This routine can only be used during init, since
  134. * smp_boot_data is an init data structure.
  135. * We have to use smp_boot_data.cpu_phys_id to find
  136. * the physical id of the processor because the normal
  137. * cpu_physical_id() relies on data structures that
  138. * may not be initialized yet.
  139. */
  140. static int __init pxm_to_nasid(int pxm)
  141. {
  142. int i;
  143. int nid;
  144. nid = pxm_to_nid_map[pxm];
  145. for (i = 0; i < num_node_memblks; i++) {
  146. if (node_memblk[i].nid == nid) {
  147. return NASID_GET(node_memblk[i].start_paddr);
  148. }
  149. }
  150. return -1;
  151. }
  152. /**
  153. * early_sn_setup - early setup routine for SN platforms
  154. *
  155. * Sets up an initial console to aid debugging. Intended primarily
  156. * for bringup. See start_kernel() in init/main.c.
  157. */
  158. void __init early_sn_setup(void)
  159. {
  160. efi_system_table_t *efi_systab;
  161. efi_config_table_t *config_tables;
  162. struct ia64_sal_systab *sal_systab;
  163. struct ia64_sal_desc_entry_point *ep;
  164. char *p;
  165. int i, j;
  166. /*
  167. * Parse enough of the SAL tables to locate the SAL entry point. Since, console
  168. * IO on SN2 is done via SAL calls, early_printk won't work without this.
  169. *
  170. * This code duplicates some of the ACPI table parsing that is in efi.c & sal.c.
  171. * Any changes to those file may have to be made hereas well.
  172. */
  173. efi_systab = (efi_system_table_t *) __va(ia64_boot_param->efi_systab);
  174. config_tables = __va(efi_systab->tables);
  175. for (i = 0; i < efi_systab->nr_tables; i++) {
  176. if (efi_guidcmp(config_tables[i].guid, SAL_SYSTEM_TABLE_GUID) ==
  177. 0) {
  178. sal_systab = __va(config_tables[i].table);
  179. p = (char *)(sal_systab + 1);
  180. for (j = 0; j < sal_systab->entry_count; j++) {
  181. if (*p == SAL_DESC_ENTRY_POINT) {
  182. ep = (struct ia64_sal_desc_entry_point
  183. *)p;
  184. ia64_sal_handler_init(__va
  185. (ep->sal_proc),
  186. __va(ep->gp));
  187. return;
  188. }
  189. p += SAL_DESC_SIZE(*p);
  190. }
  191. }
  192. }
  193. /* Uh-oh, SAL not available?? */
  194. printk(KERN_ERR "failed to find SAL entry point\n");
  195. }
  196. extern int platform_intr_list[];
  197. extern nasid_t master_nasid;
  198. static int __initdata shub_1_1_found = 0;
  199. /*
  200. * sn_check_for_wars
  201. *
  202. * Set flag for enabling shub specific wars
  203. */
  204. static inline int __init is_shub_1_1(int nasid)
  205. {
  206. unsigned long id;
  207. int rev;
  208. if (is_shub2())
  209. return 0;
  210. id = REMOTE_HUB_L(nasid, SH1_SHUB_ID);
  211. rev = (id & SH1_SHUB_ID_REVISION_MASK) >> SH1_SHUB_ID_REVISION_SHFT;
  212. return rev <= 2;
  213. }
  214. static void __init sn_check_for_wars(void)
  215. {
  216. int cnode;
  217. if (is_shub2()) {
  218. /* none yet */
  219. } else {
  220. for_each_online_node(cnode) {
  221. if (is_shub_1_1(cnodeid_to_nasid(cnode)))
  222. shub_1_1_found = 1;
  223. }
  224. }
  225. }
  226. /**
  227. * sn_setup - SN platform setup routine
  228. * @cmdline_p: kernel command line
  229. *
  230. * Handles platform setup for SN machines. This includes determining
  231. * the RTC frequency (via a SAL call), initializing secondary CPUs, and
  232. * setting up per-node data areas. The console is also initialized here.
  233. */
  234. void __init sn_setup(char **cmdline_p)
  235. {
  236. long status, ticks_per_sec, drift;
  237. int pxm;
  238. u32 version = sn_sal_rev();
  239. extern void sn_cpu_init(void);
  240. ia64_sn_plat_set_error_handling_features(); // obsolete
  241. ia64_sn_set_os_feature(OSF_MCA_SLV_TO_OS_INIT_SLV);
  242. ia64_sn_set_os_feature(OSF_FEAT_LOG_SBES);
  243. #if defined(CONFIG_VT) && defined(CONFIG_VGA_CONSOLE)
  244. /*
  245. * If there was a primary vga adapter identified through the
  246. * EFI PCDP table, make it the preferred console. Otherwise
  247. * zero out conswitchp.
  248. */
  249. if (vga_console_membase) {
  250. /* usable vga ... make tty0 the preferred default console */
  251. add_preferred_console("tty", 0, NULL);
  252. } else {
  253. printk(KERN_DEBUG "SGI: Disabling VGA console\n");
  254. #ifdef CONFIG_DUMMY_CONSOLE
  255. conswitchp = &dummy_con;
  256. #else
  257. conswitchp = NULL;
  258. #endif /* CONFIG_DUMMY_CONSOLE */
  259. }
  260. #endif /* def(CONFIG_VT) && def(CONFIG_VGA_CONSOLE) */
  261. MAX_DMA_ADDRESS = PAGE_OFFSET + MAX_PHYS_MEMORY;
  262. memset(physical_node_map, -1, sizeof(physical_node_map));
  263. for (pxm = 0; pxm < MAX_PXM_DOMAINS; pxm++)
  264. if (pxm_to_nid_map[pxm] != -1)
  265. physical_node_map[pxm_to_nasid(pxm)] =
  266. pxm_to_nid_map[pxm];
  267. /*
  268. * Old PROMs do not provide an ACPI FADT. Disable legacy keyboard
  269. * support here so we don't have to listen to failed keyboard probe
  270. * messages.
  271. */
  272. if (version <= 0x0209 && acpi_kbd_controller_present) {
  273. printk(KERN_INFO "Disabling legacy keyboard support as prom "
  274. "is too old and doesn't provide FADT\n");
  275. acpi_kbd_controller_present = 0;
  276. }
  277. printk("SGI SAL version %x.%02x\n", version >> 8, version & 0x00FF);
  278. master_nasid = boot_get_nasid();
  279. status =
  280. ia64_sal_freq_base(SAL_FREQ_BASE_REALTIME_CLOCK, &ticks_per_sec,
  281. &drift);
  282. if (status != 0 || ticks_per_sec < 100000) {
  283. printk(KERN_WARNING
  284. "unable to determine platform RTC clock frequency, guessing.\n");
  285. /* PROM gives wrong value for clock freq. so guess */
  286. sn_rtc_cycles_per_second = 1000000000000UL / 30000UL;
  287. } else
  288. sn_rtc_cycles_per_second = ticks_per_sec;
  289. platform_intr_list[ACPI_INTERRUPT_CPEI] = IA64_CPE_VECTOR;
  290. /*
  291. * we set the default root device to /dev/hda
  292. * to make simulation easy
  293. */
  294. ROOT_DEV = Root_HDA1;
  295. /*
  296. * Create the PDAs and NODEPDAs for all the cpus.
  297. */
  298. sn_init_pdas(cmdline_p);
  299. ia64_mark_idle = &snidle;
  300. /*
  301. * For the bootcpu, we do this here. All other cpus will make the
  302. * call as part of cpu_init in slave cpu initialization.
  303. */
  304. sn_cpu_init();
  305. #ifdef CONFIG_SMP
  306. init_smp_config();
  307. #endif
  308. screen_info = sn_screen_info;
  309. sn_timer_init();
  310. /*
  311. * set pm_power_off to a SAL call to allow
  312. * sn machines to power off. The SAL call can be replaced
  313. * by an ACPI interface call when ACPI is fully implemented
  314. * for sn.
  315. */
  316. pm_power_off = ia64_sn_power_down;
  317. }
  318. /**
  319. * sn_init_pdas - setup node data areas
  320. *
  321. * One time setup for Node Data Area. Called by sn_setup().
  322. */
  323. static void __init sn_init_pdas(char **cmdline_p)
  324. {
  325. cnodeid_t cnode;
  326. memset(sn_cnodeid_to_nasid, -1,
  327. sizeof(__ia64_per_cpu_var(__sn_cnodeid_to_nasid)));
  328. for_each_online_node(cnode)
  329. sn_cnodeid_to_nasid[cnode] =
  330. pxm_to_nasid(nid_to_pxm_map[cnode]);
  331. numionodes = num_online_nodes();
  332. scan_for_ionodes();
  333. /*
  334. * Allocate & initalize the nodepda for each node.
  335. */
  336. for_each_online_node(cnode) {
  337. nodepdaindr[cnode] =
  338. alloc_bootmem_node(NODE_DATA(cnode), sizeof(nodepda_t));
  339. memset(nodepdaindr[cnode], 0, sizeof(nodepda_t));
  340. memset(nodepdaindr[cnode]->phys_cpuid, -1,
  341. sizeof(nodepdaindr[cnode]->phys_cpuid));
  342. spin_lock_init(&nodepdaindr[cnode]->ptc_lock);
  343. }
  344. /*
  345. * Allocate & initialize nodepda for TIOs. For now, put them on node 0.
  346. */
  347. for (cnode = num_online_nodes(); cnode < numionodes; cnode++) {
  348. nodepdaindr[cnode] =
  349. alloc_bootmem_node(NODE_DATA(0), sizeof(nodepda_t));
  350. memset(nodepdaindr[cnode], 0, sizeof(nodepda_t));
  351. }
  352. /*
  353. * Now copy the array of nodepda pointers to each nodepda.
  354. */
  355. for (cnode = 0; cnode < numionodes; cnode++)
  356. memcpy(nodepdaindr[cnode]->pernode_pdaindr, nodepdaindr,
  357. sizeof(nodepdaindr));
  358. /*
  359. * Set up IO related platform-dependent nodepda fields.
  360. * The following routine actually sets up the hubinfo struct
  361. * in nodepda.
  362. */
  363. for_each_online_node(cnode) {
  364. bte_init_node(nodepdaindr[cnode], cnode);
  365. }
  366. /*
  367. * Initialize the per node hubdev. This includes IO Nodes and
  368. * headless/memless nodes.
  369. */
  370. for (cnode = 0; cnode < numionodes; cnode++) {
  371. hubdev_init_node(nodepdaindr[cnode], cnode);
  372. }
  373. }
  374. /**
  375. * sn_cpu_init - initialize per-cpu data areas
  376. * @cpuid: cpuid of the caller
  377. *
  378. * Called during cpu initialization on each cpu as it starts.
  379. * Currently, initializes the per-cpu data area for SNIA.
  380. * Also sets up a few fields in the nodepda. Also known as
  381. * platform_cpu_init() by the ia64 machvec code.
  382. */
  383. void __init sn_cpu_init(void)
  384. {
  385. int cpuid;
  386. int cpuphyid;
  387. int nasid;
  388. int subnode;
  389. int slice;
  390. int cnode;
  391. int i;
  392. static int wars_have_been_checked;
  393. if (smp_processor_id() == 0 && IS_MEDUSA()) {
  394. if (ia64_sn_is_fake_prom())
  395. sn_prom_type = 2;
  396. else
  397. sn_prom_type = 1;
  398. printk("Running on medusa with %s PROM\n", (sn_prom_type == 1) ? "real" : "fake");
  399. }
  400. memset(pda, 0, sizeof(pda));
  401. if (ia64_sn_get_sn_info(0, &sn_hub_info->shub2, &sn_hub_info->nasid_bitmask, &sn_hub_info->nasid_shift,
  402. &sn_system_size, &sn_sharing_domain_size, &sn_partition_id,
  403. &sn_coherency_id, &sn_region_size))
  404. BUG();
  405. sn_hub_info->as_shift = sn_hub_info->nasid_shift - 2;
  406. /*
  407. * The boot cpu makes this call again after platform initialization is
  408. * complete.
  409. */
  410. if (nodepdaindr[0] == NULL)
  411. return;
  412. for (i = 0; i < MAX_PROM_FEATURE_SETS; i++)
  413. if (ia64_sn_get_prom_feature_set(i, &sn_prom_features[i]) != 0)
  414. break;
  415. cpuid = smp_processor_id();
  416. cpuphyid = get_sapicid();
  417. if (ia64_sn_get_sapic_info(cpuphyid, &nasid, &subnode, &slice))
  418. BUG();
  419. for (i=0; i < MAX_NUMNODES; i++) {
  420. if (nodepdaindr[i]) {
  421. nodepdaindr[i]->phys_cpuid[cpuid].nasid = nasid;
  422. nodepdaindr[i]->phys_cpuid[cpuid].slice = slice;
  423. nodepdaindr[i]->phys_cpuid[cpuid].subnode = subnode;
  424. }
  425. }
  426. cnode = nasid_to_cnodeid(nasid);
  427. sn_nodepda = nodepdaindr[cnode];
  428. pda->led_address =
  429. (typeof(pda->led_address)) (LED0 + (slice << LED_CPU_SHIFT));
  430. pda->led_state = LED_ALWAYS_SET;
  431. pda->hb_count = HZ / 2;
  432. pda->hb_state = 0;
  433. pda->idle_flag = 0;
  434. if (cpuid != 0) {
  435. /* copy cpu 0's sn_cnodeid_to_nasid table to this cpu's */
  436. memcpy(sn_cnodeid_to_nasid,
  437. (&per_cpu(__sn_cnodeid_to_nasid, 0)),
  438. sizeof(__ia64_per_cpu_var(__sn_cnodeid_to_nasid)));
  439. }
  440. /*
  441. * Check for WARs.
  442. * Only needs to be done once, on BSP.
  443. * Has to be done after loop above, because it uses this cpu's
  444. * sn_cnodeid_to_nasid table which was just initialized if this
  445. * isn't cpu 0.
  446. * Has to be done before assignment below.
  447. */
  448. if (!wars_have_been_checked) {
  449. sn_check_for_wars();
  450. wars_have_been_checked = 1;
  451. }
  452. sn_hub_info->shub_1_1_found = shub_1_1_found;
  453. /*
  454. * Set up addresses of PIO/MEM write status registers.
  455. */
  456. {
  457. u64 pio1[] = {SH1_PIO_WRITE_STATUS_0, 0, SH1_PIO_WRITE_STATUS_1, 0};
  458. u64 pio2[] = {SH2_PIO_WRITE_STATUS_0, SH2_PIO_WRITE_STATUS_2,
  459. SH2_PIO_WRITE_STATUS_1, SH2_PIO_WRITE_STATUS_3};
  460. u64 *pio;
  461. pio = is_shub1() ? pio1 : pio2;
  462. pda->pio_write_status_addr = (volatile unsigned long *) LOCAL_MMR_ADDR(pio[slice]);
  463. pda->pio_write_status_val = is_shub1() ? SH_PIO_WRITE_STATUS_PENDING_WRITE_COUNT_MASK : 0;
  464. }
  465. /*
  466. * WAR addresses for SHUB 1.x.
  467. */
  468. if (local_node_data->active_cpu_count++ == 0 && is_shub1()) {
  469. int buddy_nasid;
  470. buddy_nasid =
  471. cnodeid_to_nasid(numa_node_id() ==
  472. num_online_nodes() - 1 ? 0 : numa_node_id() + 1);
  473. pda->pio_shub_war_cam_addr =
  474. (volatile unsigned long *)GLOBAL_MMR_ADDR(nasid,
  475. SH1_PI_CAM_CONTROL);
  476. }
  477. }
  478. /*
  479. * Scan klconfig for ionodes. Add the nasids to the
  480. * physical_node_map and the pda and increment numionodes.
  481. */
  482. static void __init scan_for_ionodes(void)
  483. {
  484. int nasid = 0;
  485. lboard_t *brd;
  486. /* fakeprom does not support klgraph */
  487. if (IS_RUNNING_ON_FAKE_PROM())
  488. return;
  489. /* Setup ionodes with memory */
  490. for (nasid = 0; nasid < MAX_PHYSNODE_ID; nasid += 2) {
  491. char *klgraph_header;
  492. cnodeid_t cnodeid;
  493. if (physical_node_map[nasid] == -1)
  494. continue;
  495. cnodeid = -1;
  496. klgraph_header = __va(ia64_sn_get_klconfig_addr(nasid));
  497. if (!klgraph_header) {
  498. BUG(); /* All nodes must have klconfig tables! */
  499. }
  500. cnodeid = nasid_to_cnodeid(nasid);
  501. root_lboard[cnodeid] = (lboard_t *)
  502. NODE_OFFSET_TO_LBOARD((nasid),
  503. ((kl_config_hdr_t
  504. *) (klgraph_header))->
  505. ch_board_info);
  506. }
  507. /* Scan headless/memless IO Nodes. */
  508. for (nasid = 0; nasid < MAX_PHYSNODE_ID; nasid += 2) {
  509. /* if there's no nasid, don't try to read the klconfig on the node */
  510. if (physical_node_map[nasid] == -1)
  511. continue;
  512. brd = find_lboard_any((lboard_t *)
  513. root_lboard[nasid_to_cnodeid(nasid)],
  514. KLTYPE_SNIA);
  515. if (brd) {
  516. brd = KLCF_NEXT_ANY(brd); /* Skip this node's lboard */
  517. if (!brd)
  518. continue;
  519. }
  520. brd = find_lboard_any(brd, KLTYPE_SNIA);
  521. while (brd) {
  522. sn_cnodeid_to_nasid[numionodes] = brd->brd_nasid;
  523. physical_node_map[brd->brd_nasid] = numionodes;
  524. root_lboard[numionodes] = brd;
  525. numionodes++;
  526. brd = KLCF_NEXT_ANY(brd);
  527. if (!brd)
  528. break;
  529. brd = find_lboard_any(brd, KLTYPE_SNIA);
  530. }
  531. }
  532. /* Scan for TIO nodes. */
  533. for (nasid = 0; nasid < MAX_PHYSNODE_ID; nasid += 2) {
  534. /* if there's no nasid, don't try to read the klconfig on the node */
  535. if (physical_node_map[nasid] == -1)
  536. continue;
  537. brd = find_lboard_any((lboard_t *)
  538. root_lboard[nasid_to_cnodeid(nasid)],
  539. KLTYPE_TIO);
  540. while (brd) {
  541. sn_cnodeid_to_nasid[numionodes] = brd->brd_nasid;
  542. physical_node_map[brd->brd_nasid] = numionodes;
  543. root_lboard[numionodes] = brd;
  544. numionodes++;
  545. brd = KLCF_NEXT_ANY(brd);
  546. if (!brd)
  547. break;
  548. brd = find_lboard_any(brd, KLTYPE_TIO);
  549. }
  550. }
  551. }
  552. int
  553. nasid_slice_to_cpuid(int nasid, int slice)
  554. {
  555. long cpu;
  556. for (cpu=0; cpu < NR_CPUS; cpu++)
  557. if (cpuid_to_nasid(cpu) == nasid &&
  558. cpuid_to_slice(cpu) == slice)
  559. return cpu;
  560. return -1;
  561. }
  562. int sn_prom_feature_available(int id)
  563. {
  564. if (id >= BITS_PER_LONG * MAX_PROM_FEATURE_SETS)
  565. return 0;
  566. return test_bit(id, sn_prom_features);
  567. }
  568. EXPORT_SYMBOL(sn_prom_feature_available);