elevator.c 23 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026
  1. /*
  2. * Block device elevator/IO-scheduler.
  3. *
  4. * Copyright (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
  5. *
  6. * 30042000 Jens Axboe <axboe@kernel.dk> :
  7. *
  8. * Split the elevator a bit so that it is possible to choose a different
  9. * one or even write a new "plug in". There are three pieces:
  10. * - elevator_fn, inserts a new request in the queue list
  11. * - elevator_merge_fn, decides whether a new buffer can be merged with
  12. * an existing request
  13. * - elevator_dequeue_fn, called when a request is taken off the active list
  14. *
  15. * 20082000 Dave Jones <davej@suse.de> :
  16. * Removed tests for max-bomb-segments, which was breaking elvtune
  17. * when run without -bN
  18. *
  19. * Jens:
  20. * - Rework again to work with bio instead of buffer_heads
  21. * - loose bi_dev comparisons, partition handling is right now
  22. * - completely modularize elevator setup and teardown
  23. *
  24. */
  25. #include <linux/kernel.h>
  26. #include <linux/fs.h>
  27. #include <linux/blkdev.h>
  28. #include <linux/elevator.h>
  29. #include <linux/bio.h>
  30. #include <linux/module.h>
  31. #include <linux/slab.h>
  32. #include <linux/init.h>
  33. #include <linux/compiler.h>
  34. #include <linux/blktrace_api.h>
  35. #include <linux/hash.h>
  36. #include <linux/uaccess.h>
  37. #include <trace/events/block.h>
  38. #include "blk.h"
  39. #include "blk-cgroup.h"
  40. static DEFINE_SPINLOCK(elv_list_lock);
  41. static LIST_HEAD(elv_list);
  42. /*
  43. * Merge hash stuff.
  44. */
  45. static const int elv_hash_shift = 6;
  46. #define ELV_HASH_BLOCK(sec) ((sec) >> 3)
  47. #define ELV_HASH_FN(sec) \
  48. (hash_long(ELV_HASH_BLOCK((sec)), elv_hash_shift))
  49. #define ELV_HASH_ENTRIES (1 << elv_hash_shift)
  50. #define rq_hash_key(rq) (blk_rq_pos(rq) + blk_rq_sectors(rq))
  51. /*
  52. * Query io scheduler to see if the current process issuing bio may be
  53. * merged with rq.
  54. */
  55. static int elv_iosched_allow_merge(struct request *rq, struct bio *bio)
  56. {
  57. struct request_queue *q = rq->q;
  58. struct elevator_queue *e = q->elevator;
  59. if (e->type->ops.elevator_allow_merge_fn)
  60. return e->type->ops.elevator_allow_merge_fn(q, rq, bio);
  61. return 1;
  62. }
  63. /*
  64. * can we safely merge with this request?
  65. */
  66. bool elv_rq_merge_ok(struct request *rq, struct bio *bio)
  67. {
  68. if (!blk_rq_merge_ok(rq, bio))
  69. return 0;
  70. if (!elv_iosched_allow_merge(rq, bio))
  71. return 0;
  72. return 1;
  73. }
  74. EXPORT_SYMBOL(elv_rq_merge_ok);
  75. static struct elevator_type *elevator_find(const char *name)
  76. {
  77. struct elevator_type *e;
  78. list_for_each_entry(e, &elv_list, list) {
  79. if (!strcmp(e->elevator_name, name))
  80. return e;
  81. }
  82. return NULL;
  83. }
  84. static void elevator_put(struct elevator_type *e)
  85. {
  86. module_put(e->elevator_owner);
  87. }
  88. static struct elevator_type *elevator_get(const char *name)
  89. {
  90. struct elevator_type *e;
  91. spin_lock(&elv_list_lock);
  92. e = elevator_find(name);
  93. if (!e) {
  94. spin_unlock(&elv_list_lock);
  95. request_module("%s-iosched", name);
  96. spin_lock(&elv_list_lock);
  97. e = elevator_find(name);
  98. }
  99. if (e && !try_module_get(e->elevator_owner))
  100. e = NULL;
  101. spin_unlock(&elv_list_lock);
  102. return e;
  103. }
  104. static char chosen_elevator[ELV_NAME_MAX];
  105. static int __init elevator_setup(char *str)
  106. {
  107. /*
  108. * Be backwards-compatible with previous kernels, so users
  109. * won't get the wrong elevator.
  110. */
  111. strncpy(chosen_elevator, str, sizeof(chosen_elevator) - 1);
  112. return 1;
  113. }
  114. __setup("elevator=", elevator_setup);
  115. static struct kobj_type elv_ktype;
  116. static struct elevator_queue *elevator_alloc(struct request_queue *q,
  117. struct elevator_type *e)
  118. {
  119. struct elevator_queue *eq;
  120. int i;
  121. eq = kmalloc_node(sizeof(*eq), GFP_KERNEL | __GFP_ZERO, q->node);
  122. if (unlikely(!eq))
  123. goto err;
  124. eq->type = e;
  125. kobject_init(&eq->kobj, &elv_ktype);
  126. mutex_init(&eq->sysfs_lock);
  127. eq->hash = kmalloc_node(sizeof(struct hlist_head) * ELV_HASH_ENTRIES,
  128. GFP_KERNEL, q->node);
  129. if (!eq->hash)
  130. goto err;
  131. for (i = 0; i < ELV_HASH_ENTRIES; i++)
  132. INIT_HLIST_HEAD(&eq->hash[i]);
  133. return eq;
  134. err:
  135. kfree(eq);
  136. elevator_put(e);
  137. return NULL;
  138. }
  139. static void elevator_release(struct kobject *kobj)
  140. {
  141. struct elevator_queue *e;
  142. e = container_of(kobj, struct elevator_queue, kobj);
  143. elevator_put(e->type);
  144. kfree(e->hash);
  145. kfree(e);
  146. }
  147. int elevator_init(struct request_queue *q, char *name)
  148. {
  149. struct elevator_type *e = NULL;
  150. int err;
  151. if (unlikely(q->elevator))
  152. return 0;
  153. INIT_LIST_HEAD(&q->queue_head);
  154. q->last_merge = NULL;
  155. q->end_sector = 0;
  156. q->boundary_rq = NULL;
  157. if (name) {
  158. e = elevator_get(name);
  159. if (!e)
  160. return -EINVAL;
  161. }
  162. if (!e && *chosen_elevator) {
  163. e = elevator_get(chosen_elevator);
  164. if (!e)
  165. printk(KERN_ERR "I/O scheduler %s not found\n",
  166. chosen_elevator);
  167. }
  168. if (!e) {
  169. e = elevator_get(CONFIG_DEFAULT_IOSCHED);
  170. if (!e) {
  171. printk(KERN_ERR
  172. "Default I/O scheduler not found. " \
  173. "Using noop.\n");
  174. e = elevator_get("noop");
  175. }
  176. }
  177. q->elevator = elevator_alloc(q, e);
  178. if (!q->elevator)
  179. return -ENOMEM;
  180. err = e->ops.elevator_init_fn(q);
  181. if (err) {
  182. kobject_put(&q->elevator->kobj);
  183. return err;
  184. }
  185. return 0;
  186. }
  187. EXPORT_SYMBOL(elevator_init);
  188. void elevator_exit(struct elevator_queue *e)
  189. {
  190. mutex_lock(&e->sysfs_lock);
  191. if (e->type->ops.elevator_exit_fn)
  192. e->type->ops.elevator_exit_fn(e);
  193. mutex_unlock(&e->sysfs_lock);
  194. kobject_put(&e->kobj);
  195. }
  196. EXPORT_SYMBOL(elevator_exit);
  197. static inline void __elv_rqhash_del(struct request *rq)
  198. {
  199. hlist_del_init(&rq->hash);
  200. }
  201. static void elv_rqhash_del(struct request_queue *q, struct request *rq)
  202. {
  203. if (ELV_ON_HASH(rq))
  204. __elv_rqhash_del(rq);
  205. }
  206. static void elv_rqhash_add(struct request_queue *q, struct request *rq)
  207. {
  208. struct elevator_queue *e = q->elevator;
  209. BUG_ON(ELV_ON_HASH(rq));
  210. hlist_add_head(&rq->hash, &e->hash[ELV_HASH_FN(rq_hash_key(rq))]);
  211. }
  212. static void elv_rqhash_reposition(struct request_queue *q, struct request *rq)
  213. {
  214. __elv_rqhash_del(rq);
  215. elv_rqhash_add(q, rq);
  216. }
  217. static struct request *elv_rqhash_find(struct request_queue *q, sector_t offset)
  218. {
  219. struct elevator_queue *e = q->elevator;
  220. struct hlist_head *hash_list = &e->hash[ELV_HASH_FN(offset)];
  221. struct hlist_node *entry, *next;
  222. struct request *rq;
  223. hlist_for_each_entry_safe(rq, entry, next, hash_list, hash) {
  224. BUG_ON(!ELV_ON_HASH(rq));
  225. if (unlikely(!rq_mergeable(rq))) {
  226. __elv_rqhash_del(rq);
  227. continue;
  228. }
  229. if (rq_hash_key(rq) == offset)
  230. return rq;
  231. }
  232. return NULL;
  233. }
  234. /*
  235. * RB-tree support functions for inserting/lookup/removal of requests
  236. * in a sorted RB tree.
  237. */
  238. void elv_rb_add(struct rb_root *root, struct request *rq)
  239. {
  240. struct rb_node **p = &root->rb_node;
  241. struct rb_node *parent = NULL;
  242. struct request *__rq;
  243. while (*p) {
  244. parent = *p;
  245. __rq = rb_entry(parent, struct request, rb_node);
  246. if (blk_rq_pos(rq) < blk_rq_pos(__rq))
  247. p = &(*p)->rb_left;
  248. else if (blk_rq_pos(rq) >= blk_rq_pos(__rq))
  249. p = &(*p)->rb_right;
  250. }
  251. rb_link_node(&rq->rb_node, parent, p);
  252. rb_insert_color(&rq->rb_node, root);
  253. }
  254. EXPORT_SYMBOL(elv_rb_add);
  255. void elv_rb_del(struct rb_root *root, struct request *rq)
  256. {
  257. BUG_ON(RB_EMPTY_NODE(&rq->rb_node));
  258. rb_erase(&rq->rb_node, root);
  259. RB_CLEAR_NODE(&rq->rb_node);
  260. }
  261. EXPORT_SYMBOL(elv_rb_del);
  262. struct request *elv_rb_find(struct rb_root *root, sector_t sector)
  263. {
  264. struct rb_node *n = root->rb_node;
  265. struct request *rq;
  266. while (n) {
  267. rq = rb_entry(n, struct request, rb_node);
  268. if (sector < blk_rq_pos(rq))
  269. n = n->rb_left;
  270. else if (sector > blk_rq_pos(rq))
  271. n = n->rb_right;
  272. else
  273. return rq;
  274. }
  275. return NULL;
  276. }
  277. EXPORT_SYMBOL(elv_rb_find);
  278. /*
  279. * Insert rq into dispatch queue of q. Queue lock must be held on
  280. * entry. rq is sort instead into the dispatch queue. To be used by
  281. * specific elevators.
  282. */
  283. void elv_dispatch_sort(struct request_queue *q, struct request *rq)
  284. {
  285. sector_t boundary;
  286. struct list_head *entry;
  287. int stop_flags;
  288. if (q->last_merge == rq)
  289. q->last_merge = NULL;
  290. elv_rqhash_del(q, rq);
  291. q->nr_sorted--;
  292. boundary = q->end_sector;
  293. stop_flags = REQ_SOFTBARRIER | REQ_STARTED;
  294. list_for_each_prev(entry, &q->queue_head) {
  295. struct request *pos = list_entry_rq(entry);
  296. if ((rq->cmd_flags & REQ_DISCARD) !=
  297. (pos->cmd_flags & REQ_DISCARD))
  298. break;
  299. if (rq_data_dir(rq) != rq_data_dir(pos))
  300. break;
  301. if (pos->cmd_flags & stop_flags)
  302. break;
  303. if (blk_rq_pos(rq) >= boundary) {
  304. if (blk_rq_pos(pos) < boundary)
  305. continue;
  306. } else {
  307. if (blk_rq_pos(pos) >= boundary)
  308. break;
  309. }
  310. if (blk_rq_pos(rq) >= blk_rq_pos(pos))
  311. break;
  312. }
  313. list_add(&rq->queuelist, entry);
  314. }
  315. EXPORT_SYMBOL(elv_dispatch_sort);
  316. /*
  317. * Insert rq into dispatch queue of q. Queue lock must be held on
  318. * entry. rq is added to the back of the dispatch queue. To be used by
  319. * specific elevators.
  320. */
  321. void elv_dispatch_add_tail(struct request_queue *q, struct request *rq)
  322. {
  323. if (q->last_merge == rq)
  324. q->last_merge = NULL;
  325. elv_rqhash_del(q, rq);
  326. q->nr_sorted--;
  327. q->end_sector = rq_end_sector(rq);
  328. q->boundary_rq = rq;
  329. list_add_tail(&rq->queuelist, &q->queue_head);
  330. }
  331. EXPORT_SYMBOL(elv_dispatch_add_tail);
  332. int elv_merge(struct request_queue *q, struct request **req, struct bio *bio)
  333. {
  334. struct elevator_queue *e = q->elevator;
  335. struct request *__rq;
  336. int ret;
  337. /*
  338. * Levels of merges:
  339. * nomerges: No merges at all attempted
  340. * noxmerges: Only simple one-hit cache try
  341. * merges: All merge tries attempted
  342. */
  343. if (blk_queue_nomerges(q))
  344. return ELEVATOR_NO_MERGE;
  345. /*
  346. * First try one-hit cache.
  347. */
  348. if (q->last_merge && elv_rq_merge_ok(q->last_merge, bio)) {
  349. ret = blk_try_merge(q->last_merge, bio);
  350. if (ret != ELEVATOR_NO_MERGE) {
  351. *req = q->last_merge;
  352. return ret;
  353. }
  354. }
  355. if (blk_queue_noxmerges(q))
  356. return ELEVATOR_NO_MERGE;
  357. /*
  358. * See if our hash lookup can find a potential backmerge.
  359. */
  360. __rq = elv_rqhash_find(q, bio->bi_sector);
  361. if (__rq && elv_rq_merge_ok(__rq, bio)) {
  362. *req = __rq;
  363. return ELEVATOR_BACK_MERGE;
  364. }
  365. if (e->type->ops.elevator_merge_fn)
  366. return e->type->ops.elevator_merge_fn(q, req, bio);
  367. return ELEVATOR_NO_MERGE;
  368. }
  369. /*
  370. * Attempt to do an insertion back merge. Only check for the case where
  371. * we can append 'rq' to an existing request, so we can throw 'rq' away
  372. * afterwards.
  373. *
  374. * Returns true if we merged, false otherwise
  375. */
  376. static bool elv_attempt_insert_merge(struct request_queue *q,
  377. struct request *rq)
  378. {
  379. struct request *__rq;
  380. if (blk_queue_nomerges(q))
  381. return false;
  382. /*
  383. * First try one-hit cache.
  384. */
  385. if (q->last_merge && blk_attempt_req_merge(q, q->last_merge, rq))
  386. return true;
  387. if (blk_queue_noxmerges(q))
  388. return false;
  389. /*
  390. * See if our hash lookup can find a potential backmerge.
  391. */
  392. __rq = elv_rqhash_find(q, blk_rq_pos(rq));
  393. if (__rq && blk_attempt_req_merge(q, __rq, rq))
  394. return true;
  395. return false;
  396. }
  397. void elv_merged_request(struct request_queue *q, struct request *rq, int type)
  398. {
  399. struct elevator_queue *e = q->elevator;
  400. if (e->type->ops.elevator_merged_fn)
  401. e->type->ops.elevator_merged_fn(q, rq, type);
  402. if (type == ELEVATOR_BACK_MERGE)
  403. elv_rqhash_reposition(q, rq);
  404. q->last_merge = rq;
  405. }
  406. void elv_merge_requests(struct request_queue *q, struct request *rq,
  407. struct request *next)
  408. {
  409. struct elevator_queue *e = q->elevator;
  410. const int next_sorted = next->cmd_flags & REQ_SORTED;
  411. if (next_sorted && e->type->ops.elevator_merge_req_fn)
  412. e->type->ops.elevator_merge_req_fn(q, rq, next);
  413. elv_rqhash_reposition(q, rq);
  414. if (next_sorted) {
  415. elv_rqhash_del(q, next);
  416. q->nr_sorted--;
  417. }
  418. q->last_merge = rq;
  419. }
  420. void elv_bio_merged(struct request_queue *q, struct request *rq,
  421. struct bio *bio)
  422. {
  423. struct elevator_queue *e = q->elevator;
  424. if (e->type->ops.elevator_bio_merged_fn)
  425. e->type->ops.elevator_bio_merged_fn(q, rq, bio);
  426. }
  427. void elv_requeue_request(struct request_queue *q, struct request *rq)
  428. {
  429. /*
  430. * it already went through dequeue, we need to decrement the
  431. * in_flight count again
  432. */
  433. if (blk_account_rq(rq)) {
  434. q->in_flight[rq_is_sync(rq)]--;
  435. if (rq->cmd_flags & REQ_SORTED)
  436. elv_deactivate_rq(q, rq);
  437. }
  438. rq->cmd_flags &= ~REQ_STARTED;
  439. __elv_add_request(q, rq, ELEVATOR_INSERT_REQUEUE);
  440. }
  441. void elv_drain_elevator(struct request_queue *q)
  442. {
  443. static int printed;
  444. lockdep_assert_held(q->queue_lock);
  445. while (q->elevator->type->ops.elevator_dispatch_fn(q, 1))
  446. ;
  447. if (q->nr_sorted && printed++ < 10) {
  448. printk(KERN_ERR "%s: forced dispatching is broken "
  449. "(nr_sorted=%u), please report this\n",
  450. q->elevator->type->elevator_name, q->nr_sorted);
  451. }
  452. }
  453. void __elv_add_request(struct request_queue *q, struct request *rq, int where)
  454. {
  455. trace_block_rq_insert(q, rq);
  456. rq->q = q;
  457. if (rq->cmd_flags & REQ_SOFTBARRIER) {
  458. /* barriers are scheduling boundary, update end_sector */
  459. if (rq->cmd_type == REQ_TYPE_FS ||
  460. (rq->cmd_flags & REQ_DISCARD)) {
  461. q->end_sector = rq_end_sector(rq);
  462. q->boundary_rq = rq;
  463. }
  464. } else if (!(rq->cmd_flags & REQ_ELVPRIV) &&
  465. (where == ELEVATOR_INSERT_SORT ||
  466. where == ELEVATOR_INSERT_SORT_MERGE))
  467. where = ELEVATOR_INSERT_BACK;
  468. switch (where) {
  469. case ELEVATOR_INSERT_REQUEUE:
  470. case ELEVATOR_INSERT_FRONT:
  471. rq->cmd_flags |= REQ_SOFTBARRIER;
  472. list_add(&rq->queuelist, &q->queue_head);
  473. break;
  474. case ELEVATOR_INSERT_BACK:
  475. rq->cmd_flags |= REQ_SOFTBARRIER;
  476. elv_drain_elevator(q);
  477. list_add_tail(&rq->queuelist, &q->queue_head);
  478. /*
  479. * We kick the queue here for the following reasons.
  480. * - The elevator might have returned NULL previously
  481. * to delay requests and returned them now. As the
  482. * queue wasn't empty before this request, ll_rw_blk
  483. * won't run the queue on return, resulting in hang.
  484. * - Usually, back inserted requests won't be merged
  485. * with anything. There's no point in delaying queue
  486. * processing.
  487. */
  488. __blk_run_queue(q);
  489. break;
  490. case ELEVATOR_INSERT_SORT_MERGE:
  491. /*
  492. * If we succeed in merging this request with one in the
  493. * queue already, we are done - rq has now been freed,
  494. * so no need to do anything further.
  495. */
  496. if (elv_attempt_insert_merge(q, rq))
  497. break;
  498. case ELEVATOR_INSERT_SORT:
  499. BUG_ON(rq->cmd_type != REQ_TYPE_FS &&
  500. !(rq->cmd_flags & REQ_DISCARD));
  501. rq->cmd_flags |= REQ_SORTED;
  502. q->nr_sorted++;
  503. if (rq_mergeable(rq)) {
  504. elv_rqhash_add(q, rq);
  505. if (!q->last_merge)
  506. q->last_merge = rq;
  507. }
  508. /*
  509. * Some ioscheds (cfq) run q->request_fn directly, so
  510. * rq cannot be accessed after calling
  511. * elevator_add_req_fn.
  512. */
  513. q->elevator->type->ops.elevator_add_req_fn(q, rq);
  514. break;
  515. case ELEVATOR_INSERT_FLUSH:
  516. rq->cmd_flags |= REQ_SOFTBARRIER;
  517. blk_insert_flush(rq);
  518. break;
  519. default:
  520. printk(KERN_ERR "%s: bad insertion point %d\n",
  521. __func__, where);
  522. BUG();
  523. }
  524. }
  525. EXPORT_SYMBOL(__elv_add_request);
  526. void elv_add_request(struct request_queue *q, struct request *rq, int where)
  527. {
  528. unsigned long flags;
  529. spin_lock_irqsave(q->queue_lock, flags);
  530. __elv_add_request(q, rq, where);
  531. spin_unlock_irqrestore(q->queue_lock, flags);
  532. }
  533. EXPORT_SYMBOL(elv_add_request);
  534. struct request *elv_latter_request(struct request_queue *q, struct request *rq)
  535. {
  536. struct elevator_queue *e = q->elevator;
  537. if (e->type->ops.elevator_latter_req_fn)
  538. return e->type->ops.elevator_latter_req_fn(q, rq);
  539. return NULL;
  540. }
  541. struct request *elv_former_request(struct request_queue *q, struct request *rq)
  542. {
  543. struct elevator_queue *e = q->elevator;
  544. if (e->type->ops.elevator_former_req_fn)
  545. return e->type->ops.elevator_former_req_fn(q, rq);
  546. return NULL;
  547. }
  548. int elv_set_request(struct request_queue *q, struct request *rq,
  549. struct bio *bio, gfp_t gfp_mask)
  550. {
  551. struct elevator_queue *e = q->elevator;
  552. if (e->type->ops.elevator_set_req_fn)
  553. return e->type->ops.elevator_set_req_fn(q, rq, bio, gfp_mask);
  554. return 0;
  555. }
  556. void elv_put_request(struct request_queue *q, struct request *rq)
  557. {
  558. struct elevator_queue *e = q->elevator;
  559. if (e->type->ops.elevator_put_req_fn)
  560. e->type->ops.elevator_put_req_fn(rq);
  561. }
  562. int elv_may_queue(struct request_queue *q, int rw)
  563. {
  564. struct elevator_queue *e = q->elevator;
  565. if (e->type->ops.elevator_may_queue_fn)
  566. return e->type->ops.elevator_may_queue_fn(q, rw);
  567. return ELV_MQUEUE_MAY;
  568. }
  569. void elv_abort_queue(struct request_queue *q)
  570. {
  571. struct request *rq;
  572. blk_abort_flushes(q);
  573. while (!list_empty(&q->queue_head)) {
  574. rq = list_entry_rq(q->queue_head.next);
  575. rq->cmd_flags |= REQ_QUIET;
  576. trace_block_rq_abort(q, rq);
  577. /*
  578. * Mark this request as started so we don't trigger
  579. * any debug logic in the end I/O path.
  580. */
  581. blk_start_request(rq);
  582. __blk_end_request_all(rq, -EIO);
  583. }
  584. }
  585. EXPORT_SYMBOL(elv_abort_queue);
  586. void elv_completed_request(struct request_queue *q, struct request *rq)
  587. {
  588. struct elevator_queue *e = q->elevator;
  589. /*
  590. * request is released from the driver, io must be done
  591. */
  592. if (blk_account_rq(rq)) {
  593. q->in_flight[rq_is_sync(rq)]--;
  594. if ((rq->cmd_flags & REQ_SORTED) &&
  595. e->type->ops.elevator_completed_req_fn)
  596. e->type->ops.elevator_completed_req_fn(q, rq);
  597. }
  598. }
  599. #define to_elv(atr) container_of((atr), struct elv_fs_entry, attr)
  600. static ssize_t
  601. elv_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
  602. {
  603. struct elv_fs_entry *entry = to_elv(attr);
  604. struct elevator_queue *e;
  605. ssize_t error;
  606. if (!entry->show)
  607. return -EIO;
  608. e = container_of(kobj, struct elevator_queue, kobj);
  609. mutex_lock(&e->sysfs_lock);
  610. error = e->type ? entry->show(e, page) : -ENOENT;
  611. mutex_unlock(&e->sysfs_lock);
  612. return error;
  613. }
  614. static ssize_t
  615. elv_attr_store(struct kobject *kobj, struct attribute *attr,
  616. const char *page, size_t length)
  617. {
  618. struct elv_fs_entry *entry = to_elv(attr);
  619. struct elevator_queue *e;
  620. ssize_t error;
  621. if (!entry->store)
  622. return -EIO;
  623. e = container_of(kobj, struct elevator_queue, kobj);
  624. mutex_lock(&e->sysfs_lock);
  625. error = e->type ? entry->store(e, page, length) : -ENOENT;
  626. mutex_unlock(&e->sysfs_lock);
  627. return error;
  628. }
  629. static const struct sysfs_ops elv_sysfs_ops = {
  630. .show = elv_attr_show,
  631. .store = elv_attr_store,
  632. };
  633. static struct kobj_type elv_ktype = {
  634. .sysfs_ops = &elv_sysfs_ops,
  635. .release = elevator_release,
  636. };
  637. int elv_register_queue(struct request_queue *q)
  638. {
  639. struct elevator_queue *e = q->elevator;
  640. int error;
  641. error = kobject_add(&e->kobj, &q->kobj, "%s", "iosched");
  642. if (!error) {
  643. struct elv_fs_entry *attr = e->type->elevator_attrs;
  644. if (attr) {
  645. while (attr->attr.name) {
  646. if (sysfs_create_file(&e->kobj, &attr->attr))
  647. break;
  648. attr++;
  649. }
  650. }
  651. kobject_uevent(&e->kobj, KOBJ_ADD);
  652. e->registered = 1;
  653. }
  654. return error;
  655. }
  656. EXPORT_SYMBOL(elv_register_queue);
  657. void elv_unregister_queue(struct request_queue *q)
  658. {
  659. if (q) {
  660. struct elevator_queue *e = q->elevator;
  661. kobject_uevent(&e->kobj, KOBJ_REMOVE);
  662. kobject_del(&e->kobj);
  663. e->registered = 0;
  664. }
  665. }
  666. EXPORT_SYMBOL(elv_unregister_queue);
  667. int elv_register(struct elevator_type *e)
  668. {
  669. char *def = "";
  670. /* create icq_cache if requested */
  671. if (e->icq_size) {
  672. if (WARN_ON(e->icq_size < sizeof(struct io_cq)) ||
  673. WARN_ON(e->icq_align < __alignof__(struct io_cq)))
  674. return -EINVAL;
  675. snprintf(e->icq_cache_name, sizeof(e->icq_cache_name),
  676. "%s_io_cq", e->elevator_name);
  677. e->icq_cache = kmem_cache_create(e->icq_cache_name, e->icq_size,
  678. e->icq_align, 0, NULL);
  679. if (!e->icq_cache)
  680. return -ENOMEM;
  681. }
  682. /* register, don't allow duplicate names */
  683. spin_lock(&elv_list_lock);
  684. if (elevator_find(e->elevator_name)) {
  685. spin_unlock(&elv_list_lock);
  686. if (e->icq_cache)
  687. kmem_cache_destroy(e->icq_cache);
  688. return -EBUSY;
  689. }
  690. list_add_tail(&e->list, &elv_list);
  691. spin_unlock(&elv_list_lock);
  692. /* print pretty message */
  693. if (!strcmp(e->elevator_name, chosen_elevator) ||
  694. (!*chosen_elevator &&
  695. !strcmp(e->elevator_name, CONFIG_DEFAULT_IOSCHED)))
  696. def = " (default)";
  697. printk(KERN_INFO "io scheduler %s registered%s\n", e->elevator_name,
  698. def);
  699. return 0;
  700. }
  701. EXPORT_SYMBOL_GPL(elv_register);
  702. void elv_unregister(struct elevator_type *e)
  703. {
  704. /* unregister */
  705. spin_lock(&elv_list_lock);
  706. list_del_init(&e->list);
  707. spin_unlock(&elv_list_lock);
  708. /*
  709. * Destroy icq_cache if it exists. icq's are RCU managed. Make
  710. * sure all RCU operations are complete before proceeding.
  711. */
  712. if (e->icq_cache) {
  713. rcu_barrier();
  714. kmem_cache_destroy(e->icq_cache);
  715. e->icq_cache = NULL;
  716. }
  717. }
  718. EXPORT_SYMBOL_GPL(elv_unregister);
  719. /*
  720. * switch to new_e io scheduler. be careful not to introduce deadlocks -
  721. * we don't free the old io scheduler, before we have allocated what we
  722. * need for the new one. this way we have a chance of going back to the old
  723. * one, if the new one fails init for some reason.
  724. */
  725. static int elevator_switch(struct request_queue *q, struct elevator_type *new_e)
  726. {
  727. struct elevator_queue *old = q->elevator;
  728. bool registered = old->registered;
  729. int err;
  730. /*
  731. * Turn on BYPASS and drain all requests w/ elevator private data.
  732. * Block layer doesn't call into a quiesced elevator - all requests
  733. * are directly put on the dispatch list without elevator data
  734. * using INSERT_BACK. All requests have SOFTBARRIER set and no
  735. * merge happens either.
  736. */
  737. blk_queue_bypass_start(q);
  738. /* unregister and clear all auxiliary data of the old elevator */
  739. if (registered)
  740. elv_unregister_queue(q);
  741. spin_lock_irq(q->queue_lock);
  742. ioc_clear_queue(q);
  743. spin_unlock_irq(q->queue_lock);
  744. /* allocate, init and register new elevator */
  745. err = -ENOMEM;
  746. q->elevator = elevator_alloc(q, new_e);
  747. if (!q->elevator)
  748. goto fail_init;
  749. err = new_e->ops.elevator_init_fn(q);
  750. if (err) {
  751. kobject_put(&q->elevator->kobj);
  752. goto fail_init;
  753. }
  754. if (registered) {
  755. err = elv_register_queue(q);
  756. if (err)
  757. goto fail_register;
  758. }
  759. /* done, kill the old one and finish */
  760. elevator_exit(old);
  761. blk_queue_bypass_end(q);
  762. blk_add_trace_msg(q, "elv switch: %s", new_e->elevator_name);
  763. return 0;
  764. fail_register:
  765. elevator_exit(q->elevator);
  766. fail_init:
  767. /* switch failed, restore and re-register old elevator */
  768. q->elevator = old;
  769. elv_register_queue(q);
  770. blk_queue_bypass_end(q);
  771. return err;
  772. }
  773. /*
  774. * Switch this queue to the given IO scheduler.
  775. */
  776. int elevator_change(struct request_queue *q, const char *name)
  777. {
  778. char elevator_name[ELV_NAME_MAX];
  779. struct elevator_type *e;
  780. if (!q->elevator)
  781. return -ENXIO;
  782. strlcpy(elevator_name, name, sizeof(elevator_name));
  783. e = elevator_get(strstrip(elevator_name));
  784. if (!e) {
  785. printk(KERN_ERR "elevator: type %s not found\n", elevator_name);
  786. return -EINVAL;
  787. }
  788. if (!strcmp(elevator_name, q->elevator->type->elevator_name)) {
  789. elevator_put(e);
  790. return 0;
  791. }
  792. return elevator_switch(q, e);
  793. }
  794. EXPORT_SYMBOL(elevator_change);
  795. ssize_t elv_iosched_store(struct request_queue *q, const char *name,
  796. size_t count)
  797. {
  798. int ret;
  799. if (!q->elevator)
  800. return count;
  801. ret = elevator_change(q, name);
  802. if (!ret)
  803. return count;
  804. printk(KERN_ERR "elevator: switch to %s failed\n", name);
  805. return ret;
  806. }
  807. ssize_t elv_iosched_show(struct request_queue *q, char *name)
  808. {
  809. struct elevator_queue *e = q->elevator;
  810. struct elevator_type *elv;
  811. struct elevator_type *__e;
  812. int len = 0;
  813. if (!q->elevator || !blk_queue_stackable(q))
  814. return sprintf(name, "none\n");
  815. elv = e->type;
  816. spin_lock(&elv_list_lock);
  817. list_for_each_entry(__e, &elv_list, list) {
  818. if (!strcmp(elv->elevator_name, __e->elevator_name))
  819. len += sprintf(name+len, "[%s] ", elv->elevator_name);
  820. else
  821. len += sprintf(name+len, "%s ", __e->elevator_name);
  822. }
  823. spin_unlock(&elv_list_lock);
  824. len += sprintf(len+name, "\n");
  825. return len;
  826. }
  827. struct request *elv_rb_former_request(struct request_queue *q,
  828. struct request *rq)
  829. {
  830. struct rb_node *rbprev = rb_prev(&rq->rb_node);
  831. if (rbprev)
  832. return rb_entry_rq(rbprev);
  833. return NULL;
  834. }
  835. EXPORT_SYMBOL(elv_rb_former_request);
  836. struct request *elv_rb_latter_request(struct request_queue *q,
  837. struct request *rq)
  838. {
  839. struct rb_node *rbnext = rb_next(&rq->rb_node);
  840. if (rbnext)
  841. return rb_entry_rq(rbnext);
  842. return NULL;
  843. }
  844. EXPORT_SYMBOL(elv_rb_latter_request);