intel_display.c 267 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096809780988099810081018102810381048105810681078108810981108111811281138114811581168117811881198120812181228123812481258126812781288129813081318132813381348135813681378138813981408141814281438144814581468147814881498150815181528153815481558156815781588159816081618162816381648165816681678168816981708171817281738174817581768177817881798180818181828183818481858186818781888189819081918192819381948195819681978198819982008201820282038204820582068207820882098210821182128213821482158216821782188219822082218222822382248225822682278228822982308231823282338234823582368237823882398240824182428243824482458246824782488249825082518252825382548255825682578258825982608261826282638264826582668267826882698270827182728273827482758276827782788279828082818282828382848285828682878288828982908291829282938294829582968297829882998300830183028303830483058306830783088309831083118312831383148315831683178318831983208321832283238324832583268327832883298330833183328333833483358336833783388339834083418342834383448345834683478348834983508351835283538354835583568357835883598360836183628363836483658366836783688369837083718372837383748375837683778378837983808381838283838384838583868387838883898390839183928393839483958396839783988399840084018402840384048405840684078408840984108411841284138414841584168417841884198420842184228423842484258426842784288429843084318432843384348435843684378438843984408441844284438444844584468447844884498450845184528453845484558456845784588459846084618462846384648465846684678468846984708471847284738474847584768477847884798480848184828483848484858486848784888489849084918492849384948495849684978498849985008501850285038504850585068507850885098510851185128513851485158516851785188519852085218522852385248525852685278528852985308531853285338534853585368537853885398540854185428543854485458546854785488549855085518552855385548555855685578558855985608561856285638564856585668567856885698570857185728573857485758576857785788579858085818582858385848585858685878588858985908591859285938594859585968597859885998600860186028603860486058606860786088609861086118612861386148615861686178618861986208621862286238624862586268627862886298630863186328633863486358636863786388639864086418642864386448645864686478648864986508651865286538654865586568657865886598660866186628663866486658666866786688669867086718672867386748675867686778678867986808681868286838684868586868687868886898690869186928693869486958696869786988699870087018702870387048705870687078708870987108711871287138714871587168717871887198720872187228723872487258726872787288729873087318732873387348735873687378738873987408741874287438744874587468747874887498750875187528753875487558756875787588759876087618762876387648765876687678768876987708771877287738774877587768777877887798780878187828783878487858786878787888789879087918792879387948795879687978798879988008801880288038804880588068807880888098810881188128813881488158816881788188819882088218822882388248825882688278828882988308831883288338834883588368837883888398840884188428843884488458846884788488849885088518852885388548855885688578858885988608861886288638864886588668867886888698870887188728873887488758876887788788879888088818882888388848885888688878888888988908891889288938894889588968897889888998900890189028903890489058906890789088909891089118912891389148915891689178918891989208921892289238924892589268927892889298930893189328933893489358936893789388939894089418942894389448945894689478948894989508951895289538954895589568957895889598960896189628963896489658966896789688969897089718972897389748975897689778978897989808981898289838984898589868987898889898990899189928993899489958996899789988999900090019002900390049005900690079008900990109011901290139014901590169017901890199020902190229023902490259026902790289029903090319032903390349035903690379038903990409041904290439044904590469047904890499050905190529053905490559056905790589059906090619062906390649065906690679068906990709071907290739074907590769077907890799080908190829083908490859086908790889089909090919092909390949095909690979098909991009101910291039104910591069107910891099110911191129113911491159116911791189119912091219122912391249125912691279128912991309131913291339134913591369137913891399140914191429143914491459146914791489149915091519152915391549155915691579158915991609161916291639164916591669167916891699170917191729173917491759176917791789179918091819182918391849185918691879188918991909191919291939194919591969197919891999200920192029203920492059206920792089209921092119212921392149215921692179218921992209221922292239224922592269227922892299230923192329233923492359236923792389239924092419242924392449245924692479248924992509251925292539254925592569257925892599260926192629263926492659266926792689269927092719272927392749275927692779278927992809281928292839284928592869287928892899290929192929293929492959296929792989299930093019302930393049305930693079308930993109311931293139314931593169317931893199320932193229323932493259326932793289329933093319332933393349335933693379338933993409341934293439344934593469347934893499350935193529353935493559356935793589359936093619362936393649365936693679368936993709371937293739374937593769377937893799380938193829383938493859386938793889389939093919392939393949395939693979398939994009401940294039404940594069407940894099410941194129413941494159416941794189419942094219422942394249425942694279428942994309431943294339434943594369437943894399440944194429443944494459446944794489449945094519452945394549455945694579458945994609461946294639464946594669467946894699470947194729473947494759476947794789479948094819482948394849485948694879488948994909491949294939494949594969497949894999500950195029503950495059506950795089509951095119512951395149515951695179518951995209521952295239524952595269527952895299530953195329533953495359536953795389539954095419542954395449545954695479548954995509551955295539554955595569557955895599560956195629563956495659566956795689569957095719572957395749575957695779578957995809581958295839584958595869587958895899590959195929593959495959596959795989599960096019602960396049605960696079608960996109611961296139614961596169617961896199620962196229623962496259626962796289629963096319632963396349635963696379638963996409641964296439644964596469647964896499650965196529653965496559656965796589659966096619662966396649665966696679668966996709671967296739674967596769677967896799680968196829683968496859686968796889689969096919692969396949695969696979698969997009701970297039704970597069707970897099710971197129713971497159716971797189719972097219722972397249725972697279728972997309731973297339734973597369737973897399740974197429743974497459746974797489749975097519752975397549755975697579758975997609761976297639764976597669767976897699770977197729773977497759776977797789779978097819782978397849785978697879788978997909791979297939794979597969797979897999800980198029803980498059806980798089809981098119812981398149815981698179818981998209821982298239824982598269827982898299830983198329833983498359836983798389839984098419842984398449845984698479848984998509851985298539854985598569857985898599860986198629863986498659866
  1. /*
  2. * Copyright © 2006-2007 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
  21. * DEALINGS IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Eric Anholt <eric@anholt.net>
  25. */
  26. #include <linux/dmi.h>
  27. #include <linux/cpufreq.h>
  28. #include <linux/module.h>
  29. #include <linux/input.h>
  30. #include <linux/i2c.h>
  31. #include <linux/kernel.h>
  32. #include <linux/slab.h>
  33. #include <linux/vgaarb.h>
  34. #include <drm/drm_edid.h>
  35. #include "drmP.h"
  36. #include "intel_drv.h"
  37. #include "i915_drm.h"
  38. #include "i915_drv.h"
  39. #include "i915_trace.h"
  40. #include "drm_dp_helper.h"
  41. #include "drm_crtc_helper.h"
  42. #include <linux/dma_remapping.h>
  43. #define HAS_eDP (intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
  44. bool intel_pipe_has_type(struct drm_crtc *crtc, int type);
  45. static void intel_increase_pllclock(struct drm_crtc *crtc);
  46. static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
  47. typedef struct {
  48. /* given values */
  49. int n;
  50. int m1, m2;
  51. int p1, p2;
  52. /* derived values */
  53. int dot;
  54. int vco;
  55. int m;
  56. int p;
  57. } intel_clock_t;
  58. typedef struct {
  59. int min, max;
  60. } intel_range_t;
  61. typedef struct {
  62. int dot_limit;
  63. int p2_slow, p2_fast;
  64. } intel_p2_t;
  65. #define INTEL_P2_NUM 2
  66. typedef struct intel_limit intel_limit_t;
  67. struct intel_limit {
  68. intel_range_t dot, vco, n, m, m1, m2, p, p1;
  69. intel_p2_t p2;
  70. bool (* find_pll)(const intel_limit_t *, struct drm_crtc *,
  71. int, int, intel_clock_t *, intel_clock_t *);
  72. };
  73. /* FDI */
  74. #define IRONLAKE_FDI_FREQ 2700000 /* in kHz for mode->clock */
  75. static bool
  76. intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
  77. int target, int refclk, intel_clock_t *match_clock,
  78. intel_clock_t *best_clock);
  79. static bool
  80. intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
  81. int target, int refclk, intel_clock_t *match_clock,
  82. intel_clock_t *best_clock);
  83. static bool
  84. intel_find_pll_g4x_dp(const intel_limit_t *, struct drm_crtc *crtc,
  85. int target, int refclk, intel_clock_t *match_clock,
  86. intel_clock_t *best_clock);
  87. static bool
  88. intel_find_pll_ironlake_dp(const intel_limit_t *, struct drm_crtc *crtc,
  89. int target, int refclk, intel_clock_t *match_clock,
  90. intel_clock_t *best_clock);
  91. static inline u32 /* units of 100MHz */
  92. intel_fdi_link_freq(struct drm_device *dev)
  93. {
  94. if (IS_GEN5(dev)) {
  95. struct drm_i915_private *dev_priv = dev->dev_private;
  96. return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
  97. } else
  98. return 27;
  99. }
  100. static const intel_limit_t intel_limits_i8xx_dvo = {
  101. .dot = { .min = 25000, .max = 350000 },
  102. .vco = { .min = 930000, .max = 1400000 },
  103. .n = { .min = 3, .max = 16 },
  104. .m = { .min = 96, .max = 140 },
  105. .m1 = { .min = 18, .max = 26 },
  106. .m2 = { .min = 6, .max = 16 },
  107. .p = { .min = 4, .max = 128 },
  108. .p1 = { .min = 2, .max = 33 },
  109. .p2 = { .dot_limit = 165000,
  110. .p2_slow = 4, .p2_fast = 2 },
  111. .find_pll = intel_find_best_PLL,
  112. };
  113. static const intel_limit_t intel_limits_i8xx_lvds = {
  114. .dot = { .min = 25000, .max = 350000 },
  115. .vco = { .min = 930000, .max = 1400000 },
  116. .n = { .min = 3, .max = 16 },
  117. .m = { .min = 96, .max = 140 },
  118. .m1 = { .min = 18, .max = 26 },
  119. .m2 = { .min = 6, .max = 16 },
  120. .p = { .min = 4, .max = 128 },
  121. .p1 = { .min = 1, .max = 6 },
  122. .p2 = { .dot_limit = 165000,
  123. .p2_slow = 14, .p2_fast = 7 },
  124. .find_pll = intel_find_best_PLL,
  125. };
  126. static const intel_limit_t intel_limits_i9xx_sdvo = {
  127. .dot = { .min = 20000, .max = 400000 },
  128. .vco = { .min = 1400000, .max = 2800000 },
  129. .n = { .min = 1, .max = 6 },
  130. .m = { .min = 70, .max = 120 },
  131. .m1 = { .min = 10, .max = 22 },
  132. .m2 = { .min = 5, .max = 9 },
  133. .p = { .min = 5, .max = 80 },
  134. .p1 = { .min = 1, .max = 8 },
  135. .p2 = { .dot_limit = 200000,
  136. .p2_slow = 10, .p2_fast = 5 },
  137. .find_pll = intel_find_best_PLL,
  138. };
  139. static const intel_limit_t intel_limits_i9xx_lvds = {
  140. .dot = { .min = 20000, .max = 400000 },
  141. .vco = { .min = 1400000, .max = 2800000 },
  142. .n = { .min = 1, .max = 6 },
  143. .m = { .min = 70, .max = 120 },
  144. .m1 = { .min = 10, .max = 22 },
  145. .m2 = { .min = 5, .max = 9 },
  146. .p = { .min = 7, .max = 98 },
  147. .p1 = { .min = 1, .max = 8 },
  148. .p2 = { .dot_limit = 112000,
  149. .p2_slow = 14, .p2_fast = 7 },
  150. .find_pll = intel_find_best_PLL,
  151. };
  152. static const intel_limit_t intel_limits_g4x_sdvo = {
  153. .dot = { .min = 25000, .max = 270000 },
  154. .vco = { .min = 1750000, .max = 3500000},
  155. .n = { .min = 1, .max = 4 },
  156. .m = { .min = 104, .max = 138 },
  157. .m1 = { .min = 17, .max = 23 },
  158. .m2 = { .min = 5, .max = 11 },
  159. .p = { .min = 10, .max = 30 },
  160. .p1 = { .min = 1, .max = 3},
  161. .p2 = { .dot_limit = 270000,
  162. .p2_slow = 10,
  163. .p2_fast = 10
  164. },
  165. .find_pll = intel_g4x_find_best_PLL,
  166. };
  167. static const intel_limit_t intel_limits_g4x_hdmi = {
  168. .dot = { .min = 22000, .max = 400000 },
  169. .vco = { .min = 1750000, .max = 3500000},
  170. .n = { .min = 1, .max = 4 },
  171. .m = { .min = 104, .max = 138 },
  172. .m1 = { .min = 16, .max = 23 },
  173. .m2 = { .min = 5, .max = 11 },
  174. .p = { .min = 5, .max = 80 },
  175. .p1 = { .min = 1, .max = 8},
  176. .p2 = { .dot_limit = 165000,
  177. .p2_slow = 10, .p2_fast = 5 },
  178. .find_pll = intel_g4x_find_best_PLL,
  179. };
  180. static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
  181. .dot = { .min = 20000, .max = 115000 },
  182. .vco = { .min = 1750000, .max = 3500000 },
  183. .n = { .min = 1, .max = 3 },
  184. .m = { .min = 104, .max = 138 },
  185. .m1 = { .min = 17, .max = 23 },
  186. .m2 = { .min = 5, .max = 11 },
  187. .p = { .min = 28, .max = 112 },
  188. .p1 = { .min = 2, .max = 8 },
  189. .p2 = { .dot_limit = 0,
  190. .p2_slow = 14, .p2_fast = 14
  191. },
  192. .find_pll = intel_g4x_find_best_PLL,
  193. };
  194. static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
  195. .dot = { .min = 80000, .max = 224000 },
  196. .vco = { .min = 1750000, .max = 3500000 },
  197. .n = { .min = 1, .max = 3 },
  198. .m = { .min = 104, .max = 138 },
  199. .m1 = { .min = 17, .max = 23 },
  200. .m2 = { .min = 5, .max = 11 },
  201. .p = { .min = 14, .max = 42 },
  202. .p1 = { .min = 2, .max = 6 },
  203. .p2 = { .dot_limit = 0,
  204. .p2_slow = 7, .p2_fast = 7
  205. },
  206. .find_pll = intel_g4x_find_best_PLL,
  207. };
  208. static const intel_limit_t intel_limits_g4x_display_port = {
  209. .dot = { .min = 161670, .max = 227000 },
  210. .vco = { .min = 1750000, .max = 3500000},
  211. .n = { .min = 1, .max = 2 },
  212. .m = { .min = 97, .max = 108 },
  213. .m1 = { .min = 0x10, .max = 0x12 },
  214. .m2 = { .min = 0x05, .max = 0x06 },
  215. .p = { .min = 10, .max = 20 },
  216. .p1 = { .min = 1, .max = 2},
  217. .p2 = { .dot_limit = 0,
  218. .p2_slow = 10, .p2_fast = 10 },
  219. .find_pll = intel_find_pll_g4x_dp,
  220. };
  221. static const intel_limit_t intel_limits_pineview_sdvo = {
  222. .dot = { .min = 20000, .max = 400000},
  223. .vco = { .min = 1700000, .max = 3500000 },
  224. /* Pineview's Ncounter is a ring counter */
  225. .n = { .min = 3, .max = 6 },
  226. .m = { .min = 2, .max = 256 },
  227. /* Pineview only has one combined m divider, which we treat as m2. */
  228. .m1 = { .min = 0, .max = 0 },
  229. .m2 = { .min = 0, .max = 254 },
  230. .p = { .min = 5, .max = 80 },
  231. .p1 = { .min = 1, .max = 8 },
  232. .p2 = { .dot_limit = 200000,
  233. .p2_slow = 10, .p2_fast = 5 },
  234. .find_pll = intel_find_best_PLL,
  235. };
  236. static const intel_limit_t intel_limits_pineview_lvds = {
  237. .dot = { .min = 20000, .max = 400000 },
  238. .vco = { .min = 1700000, .max = 3500000 },
  239. .n = { .min = 3, .max = 6 },
  240. .m = { .min = 2, .max = 256 },
  241. .m1 = { .min = 0, .max = 0 },
  242. .m2 = { .min = 0, .max = 254 },
  243. .p = { .min = 7, .max = 112 },
  244. .p1 = { .min = 1, .max = 8 },
  245. .p2 = { .dot_limit = 112000,
  246. .p2_slow = 14, .p2_fast = 14 },
  247. .find_pll = intel_find_best_PLL,
  248. };
  249. /* Ironlake / Sandybridge
  250. *
  251. * We calculate clock using (register_value + 2) for N/M1/M2, so here
  252. * the range value for them is (actual_value - 2).
  253. */
  254. static const intel_limit_t intel_limits_ironlake_dac = {
  255. .dot = { .min = 25000, .max = 350000 },
  256. .vco = { .min = 1760000, .max = 3510000 },
  257. .n = { .min = 1, .max = 5 },
  258. .m = { .min = 79, .max = 127 },
  259. .m1 = { .min = 12, .max = 22 },
  260. .m2 = { .min = 5, .max = 9 },
  261. .p = { .min = 5, .max = 80 },
  262. .p1 = { .min = 1, .max = 8 },
  263. .p2 = { .dot_limit = 225000,
  264. .p2_slow = 10, .p2_fast = 5 },
  265. .find_pll = intel_g4x_find_best_PLL,
  266. };
  267. static const intel_limit_t intel_limits_ironlake_single_lvds = {
  268. .dot = { .min = 25000, .max = 350000 },
  269. .vco = { .min = 1760000, .max = 3510000 },
  270. .n = { .min = 1, .max = 3 },
  271. .m = { .min = 79, .max = 118 },
  272. .m1 = { .min = 12, .max = 22 },
  273. .m2 = { .min = 5, .max = 9 },
  274. .p = { .min = 28, .max = 112 },
  275. .p1 = { .min = 2, .max = 8 },
  276. .p2 = { .dot_limit = 225000,
  277. .p2_slow = 14, .p2_fast = 14 },
  278. .find_pll = intel_g4x_find_best_PLL,
  279. };
  280. static const intel_limit_t intel_limits_ironlake_dual_lvds = {
  281. .dot = { .min = 25000, .max = 350000 },
  282. .vco = { .min = 1760000, .max = 3510000 },
  283. .n = { .min = 1, .max = 3 },
  284. .m = { .min = 79, .max = 127 },
  285. .m1 = { .min = 12, .max = 22 },
  286. .m2 = { .min = 5, .max = 9 },
  287. .p = { .min = 14, .max = 56 },
  288. .p1 = { .min = 2, .max = 8 },
  289. .p2 = { .dot_limit = 225000,
  290. .p2_slow = 7, .p2_fast = 7 },
  291. .find_pll = intel_g4x_find_best_PLL,
  292. };
  293. /* LVDS 100mhz refclk limits. */
  294. static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
  295. .dot = { .min = 25000, .max = 350000 },
  296. .vco = { .min = 1760000, .max = 3510000 },
  297. .n = { .min = 1, .max = 2 },
  298. .m = { .min = 79, .max = 126 },
  299. .m1 = { .min = 12, .max = 22 },
  300. .m2 = { .min = 5, .max = 9 },
  301. .p = { .min = 28, .max = 112 },
  302. .p1 = { .min = 2, .max = 8 },
  303. .p2 = { .dot_limit = 225000,
  304. .p2_slow = 14, .p2_fast = 14 },
  305. .find_pll = intel_g4x_find_best_PLL,
  306. };
  307. static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
  308. .dot = { .min = 25000, .max = 350000 },
  309. .vco = { .min = 1760000, .max = 3510000 },
  310. .n = { .min = 1, .max = 3 },
  311. .m = { .min = 79, .max = 126 },
  312. .m1 = { .min = 12, .max = 22 },
  313. .m2 = { .min = 5, .max = 9 },
  314. .p = { .min = 14, .max = 42 },
  315. .p1 = { .min = 2, .max = 6 },
  316. .p2 = { .dot_limit = 225000,
  317. .p2_slow = 7, .p2_fast = 7 },
  318. .find_pll = intel_g4x_find_best_PLL,
  319. };
  320. static const intel_limit_t intel_limits_ironlake_display_port = {
  321. .dot = { .min = 25000, .max = 350000 },
  322. .vco = { .min = 1760000, .max = 3510000},
  323. .n = { .min = 1, .max = 2 },
  324. .m = { .min = 81, .max = 90 },
  325. .m1 = { .min = 12, .max = 22 },
  326. .m2 = { .min = 5, .max = 9 },
  327. .p = { .min = 10, .max = 20 },
  328. .p1 = { .min = 1, .max = 2},
  329. .p2 = { .dot_limit = 0,
  330. .p2_slow = 10, .p2_fast = 10 },
  331. .find_pll = intel_find_pll_ironlake_dp,
  332. };
  333. u32 intel_dpio_read(struct drm_i915_private *dev_priv, int reg)
  334. {
  335. unsigned long flags;
  336. u32 val = 0;
  337. spin_lock_irqsave(&dev_priv->dpio_lock, flags);
  338. if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100)) {
  339. DRM_ERROR("DPIO idle wait timed out\n");
  340. goto out_unlock;
  341. }
  342. I915_WRITE(DPIO_REG, reg);
  343. I915_WRITE(DPIO_PKT, DPIO_RID | DPIO_OP_READ | DPIO_PORTID |
  344. DPIO_BYTE);
  345. if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100)) {
  346. DRM_ERROR("DPIO read wait timed out\n");
  347. goto out_unlock;
  348. }
  349. val = I915_READ(DPIO_DATA);
  350. out_unlock:
  351. spin_unlock_irqrestore(&dev_priv->dpio_lock, flags);
  352. return val;
  353. }
  354. static void intel_dpio_write(struct drm_i915_private *dev_priv, int reg,
  355. u32 val)
  356. {
  357. unsigned long flags;
  358. spin_lock_irqsave(&dev_priv->dpio_lock, flags);
  359. if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100)) {
  360. DRM_ERROR("DPIO idle wait timed out\n");
  361. goto out_unlock;
  362. }
  363. I915_WRITE(DPIO_DATA, val);
  364. I915_WRITE(DPIO_REG, reg);
  365. I915_WRITE(DPIO_PKT, DPIO_RID | DPIO_OP_WRITE | DPIO_PORTID |
  366. DPIO_BYTE);
  367. if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100))
  368. DRM_ERROR("DPIO write wait timed out\n");
  369. out_unlock:
  370. spin_unlock_irqrestore(&dev_priv->dpio_lock, flags);
  371. }
  372. static void vlv_init_dpio(struct drm_device *dev)
  373. {
  374. struct drm_i915_private *dev_priv = dev->dev_private;
  375. /* Reset the DPIO config */
  376. I915_WRITE(DPIO_CTL, 0);
  377. POSTING_READ(DPIO_CTL);
  378. I915_WRITE(DPIO_CTL, 1);
  379. POSTING_READ(DPIO_CTL);
  380. }
  381. static int intel_dual_link_lvds_callback(const struct dmi_system_id *id)
  382. {
  383. DRM_INFO("Forcing lvds to dual link mode on %s\n", id->ident);
  384. return 1;
  385. }
  386. static const struct dmi_system_id intel_dual_link_lvds[] = {
  387. {
  388. .callback = intel_dual_link_lvds_callback,
  389. .ident = "Apple MacBook Pro (Core i5/i7 Series)",
  390. .matches = {
  391. DMI_MATCH(DMI_SYS_VENDOR, "Apple Inc."),
  392. DMI_MATCH(DMI_PRODUCT_NAME, "MacBookPro8,2"),
  393. },
  394. },
  395. { } /* terminating entry */
  396. };
  397. static bool is_dual_link_lvds(struct drm_i915_private *dev_priv,
  398. unsigned int reg)
  399. {
  400. unsigned int val;
  401. /* use the module option value if specified */
  402. if (i915_lvds_channel_mode > 0)
  403. return i915_lvds_channel_mode == 2;
  404. if (dmi_check_system(intel_dual_link_lvds))
  405. return true;
  406. if (dev_priv->lvds_val)
  407. val = dev_priv->lvds_val;
  408. else {
  409. /* BIOS should set the proper LVDS register value at boot, but
  410. * in reality, it doesn't set the value when the lid is closed;
  411. * we need to check "the value to be set" in VBT when LVDS
  412. * register is uninitialized.
  413. */
  414. val = I915_READ(reg);
  415. if (!(val & ~LVDS_DETECTED))
  416. val = dev_priv->bios_lvds_val;
  417. dev_priv->lvds_val = val;
  418. }
  419. return (val & LVDS_CLKB_POWER_MASK) == LVDS_CLKB_POWER_UP;
  420. }
  421. static const intel_limit_t *intel_ironlake_limit(struct drm_crtc *crtc,
  422. int refclk)
  423. {
  424. struct drm_device *dev = crtc->dev;
  425. struct drm_i915_private *dev_priv = dev->dev_private;
  426. const intel_limit_t *limit;
  427. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  428. if (is_dual_link_lvds(dev_priv, PCH_LVDS)) {
  429. /* LVDS dual channel */
  430. if (refclk == 100000)
  431. limit = &intel_limits_ironlake_dual_lvds_100m;
  432. else
  433. limit = &intel_limits_ironlake_dual_lvds;
  434. } else {
  435. if (refclk == 100000)
  436. limit = &intel_limits_ironlake_single_lvds_100m;
  437. else
  438. limit = &intel_limits_ironlake_single_lvds;
  439. }
  440. } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
  441. HAS_eDP)
  442. limit = &intel_limits_ironlake_display_port;
  443. else
  444. limit = &intel_limits_ironlake_dac;
  445. return limit;
  446. }
  447. static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
  448. {
  449. struct drm_device *dev = crtc->dev;
  450. struct drm_i915_private *dev_priv = dev->dev_private;
  451. const intel_limit_t *limit;
  452. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  453. if (is_dual_link_lvds(dev_priv, LVDS))
  454. /* LVDS with dual channel */
  455. limit = &intel_limits_g4x_dual_channel_lvds;
  456. else
  457. /* LVDS with dual channel */
  458. limit = &intel_limits_g4x_single_channel_lvds;
  459. } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
  460. intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
  461. limit = &intel_limits_g4x_hdmi;
  462. } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
  463. limit = &intel_limits_g4x_sdvo;
  464. } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
  465. limit = &intel_limits_g4x_display_port;
  466. } else /* The option is for other outputs */
  467. limit = &intel_limits_i9xx_sdvo;
  468. return limit;
  469. }
  470. static const intel_limit_t *intel_limit(struct drm_crtc *crtc, int refclk)
  471. {
  472. struct drm_device *dev = crtc->dev;
  473. const intel_limit_t *limit;
  474. if (HAS_PCH_SPLIT(dev))
  475. limit = intel_ironlake_limit(crtc, refclk);
  476. else if (IS_G4X(dev)) {
  477. limit = intel_g4x_limit(crtc);
  478. } else if (IS_PINEVIEW(dev)) {
  479. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
  480. limit = &intel_limits_pineview_lvds;
  481. else
  482. limit = &intel_limits_pineview_sdvo;
  483. } else if (!IS_GEN2(dev)) {
  484. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
  485. limit = &intel_limits_i9xx_lvds;
  486. else
  487. limit = &intel_limits_i9xx_sdvo;
  488. } else {
  489. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
  490. limit = &intel_limits_i8xx_lvds;
  491. else
  492. limit = &intel_limits_i8xx_dvo;
  493. }
  494. return limit;
  495. }
  496. /* m1 is reserved as 0 in Pineview, n is a ring counter */
  497. static void pineview_clock(int refclk, intel_clock_t *clock)
  498. {
  499. clock->m = clock->m2 + 2;
  500. clock->p = clock->p1 * clock->p2;
  501. clock->vco = refclk * clock->m / clock->n;
  502. clock->dot = clock->vco / clock->p;
  503. }
  504. static void intel_clock(struct drm_device *dev, int refclk, intel_clock_t *clock)
  505. {
  506. if (IS_PINEVIEW(dev)) {
  507. pineview_clock(refclk, clock);
  508. return;
  509. }
  510. clock->m = 5 * (clock->m1 + 2) + (clock->m2 + 2);
  511. clock->p = clock->p1 * clock->p2;
  512. clock->vco = refclk * clock->m / (clock->n + 2);
  513. clock->dot = clock->vco / clock->p;
  514. }
  515. /**
  516. * Returns whether any output on the specified pipe is of the specified type
  517. */
  518. bool intel_pipe_has_type(struct drm_crtc *crtc, int type)
  519. {
  520. struct drm_device *dev = crtc->dev;
  521. struct drm_mode_config *mode_config = &dev->mode_config;
  522. struct intel_encoder *encoder;
  523. list_for_each_entry(encoder, &mode_config->encoder_list, base.head)
  524. if (encoder->base.crtc == crtc && encoder->type == type)
  525. return true;
  526. return false;
  527. }
  528. #define INTELPllInvalid(s) do { /* DRM_DEBUG(s); */ return false; } while (0)
  529. /**
  530. * Returns whether the given set of divisors are valid for a given refclk with
  531. * the given connectors.
  532. */
  533. static bool intel_PLL_is_valid(struct drm_device *dev,
  534. const intel_limit_t *limit,
  535. const intel_clock_t *clock)
  536. {
  537. if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
  538. INTELPllInvalid("p1 out of range\n");
  539. if (clock->p < limit->p.min || limit->p.max < clock->p)
  540. INTELPllInvalid("p out of range\n");
  541. if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
  542. INTELPllInvalid("m2 out of range\n");
  543. if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
  544. INTELPllInvalid("m1 out of range\n");
  545. if (clock->m1 <= clock->m2 && !IS_PINEVIEW(dev))
  546. INTELPllInvalid("m1 <= m2\n");
  547. if (clock->m < limit->m.min || limit->m.max < clock->m)
  548. INTELPllInvalid("m out of range\n");
  549. if (clock->n < limit->n.min || limit->n.max < clock->n)
  550. INTELPllInvalid("n out of range\n");
  551. if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
  552. INTELPllInvalid("vco out of range\n");
  553. /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
  554. * connector, etc., rather than just a single range.
  555. */
  556. if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
  557. INTELPllInvalid("dot out of range\n");
  558. return true;
  559. }
  560. static bool
  561. intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
  562. int target, int refclk, intel_clock_t *match_clock,
  563. intel_clock_t *best_clock)
  564. {
  565. struct drm_device *dev = crtc->dev;
  566. struct drm_i915_private *dev_priv = dev->dev_private;
  567. intel_clock_t clock;
  568. int err = target;
  569. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
  570. (I915_READ(LVDS)) != 0) {
  571. /*
  572. * For LVDS, if the panel is on, just rely on its current
  573. * settings for dual-channel. We haven't figured out how to
  574. * reliably set up different single/dual channel state, if we
  575. * even can.
  576. */
  577. if (is_dual_link_lvds(dev_priv, LVDS))
  578. clock.p2 = limit->p2.p2_fast;
  579. else
  580. clock.p2 = limit->p2.p2_slow;
  581. } else {
  582. if (target < limit->p2.dot_limit)
  583. clock.p2 = limit->p2.p2_slow;
  584. else
  585. clock.p2 = limit->p2.p2_fast;
  586. }
  587. memset(best_clock, 0, sizeof(*best_clock));
  588. for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
  589. clock.m1++) {
  590. for (clock.m2 = limit->m2.min;
  591. clock.m2 <= limit->m2.max; clock.m2++) {
  592. /* m1 is always 0 in Pineview */
  593. if (clock.m2 >= clock.m1 && !IS_PINEVIEW(dev))
  594. break;
  595. for (clock.n = limit->n.min;
  596. clock.n <= limit->n.max; clock.n++) {
  597. for (clock.p1 = limit->p1.min;
  598. clock.p1 <= limit->p1.max; clock.p1++) {
  599. int this_err;
  600. intel_clock(dev, refclk, &clock);
  601. if (!intel_PLL_is_valid(dev, limit,
  602. &clock))
  603. continue;
  604. if (match_clock &&
  605. clock.p != match_clock->p)
  606. continue;
  607. this_err = abs(clock.dot - target);
  608. if (this_err < err) {
  609. *best_clock = clock;
  610. err = this_err;
  611. }
  612. }
  613. }
  614. }
  615. }
  616. return (err != target);
  617. }
  618. static bool
  619. intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
  620. int target, int refclk, intel_clock_t *match_clock,
  621. intel_clock_t *best_clock)
  622. {
  623. struct drm_device *dev = crtc->dev;
  624. struct drm_i915_private *dev_priv = dev->dev_private;
  625. intel_clock_t clock;
  626. int max_n;
  627. bool found;
  628. /* approximately equals target * 0.00585 */
  629. int err_most = (target >> 8) + (target >> 9);
  630. found = false;
  631. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  632. int lvds_reg;
  633. if (HAS_PCH_SPLIT(dev))
  634. lvds_reg = PCH_LVDS;
  635. else
  636. lvds_reg = LVDS;
  637. if ((I915_READ(lvds_reg) & LVDS_CLKB_POWER_MASK) ==
  638. LVDS_CLKB_POWER_UP)
  639. clock.p2 = limit->p2.p2_fast;
  640. else
  641. clock.p2 = limit->p2.p2_slow;
  642. } else {
  643. if (target < limit->p2.dot_limit)
  644. clock.p2 = limit->p2.p2_slow;
  645. else
  646. clock.p2 = limit->p2.p2_fast;
  647. }
  648. memset(best_clock, 0, sizeof(*best_clock));
  649. max_n = limit->n.max;
  650. /* based on hardware requirement, prefer smaller n to precision */
  651. for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
  652. /* based on hardware requirement, prefere larger m1,m2 */
  653. for (clock.m1 = limit->m1.max;
  654. clock.m1 >= limit->m1.min; clock.m1--) {
  655. for (clock.m2 = limit->m2.max;
  656. clock.m2 >= limit->m2.min; clock.m2--) {
  657. for (clock.p1 = limit->p1.max;
  658. clock.p1 >= limit->p1.min; clock.p1--) {
  659. int this_err;
  660. intel_clock(dev, refclk, &clock);
  661. if (!intel_PLL_is_valid(dev, limit,
  662. &clock))
  663. continue;
  664. if (match_clock &&
  665. clock.p != match_clock->p)
  666. continue;
  667. this_err = abs(clock.dot - target);
  668. if (this_err < err_most) {
  669. *best_clock = clock;
  670. err_most = this_err;
  671. max_n = clock.n;
  672. found = true;
  673. }
  674. }
  675. }
  676. }
  677. }
  678. return found;
  679. }
  680. static bool
  681. intel_find_pll_ironlake_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
  682. int target, int refclk, intel_clock_t *match_clock,
  683. intel_clock_t *best_clock)
  684. {
  685. struct drm_device *dev = crtc->dev;
  686. intel_clock_t clock;
  687. if (target < 200000) {
  688. clock.n = 1;
  689. clock.p1 = 2;
  690. clock.p2 = 10;
  691. clock.m1 = 12;
  692. clock.m2 = 9;
  693. } else {
  694. clock.n = 2;
  695. clock.p1 = 1;
  696. clock.p2 = 10;
  697. clock.m1 = 14;
  698. clock.m2 = 8;
  699. }
  700. intel_clock(dev, refclk, &clock);
  701. memcpy(best_clock, &clock, sizeof(intel_clock_t));
  702. return true;
  703. }
  704. /* DisplayPort has only two frequencies, 162MHz and 270MHz */
  705. static bool
  706. intel_find_pll_g4x_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
  707. int target, int refclk, intel_clock_t *match_clock,
  708. intel_clock_t *best_clock)
  709. {
  710. intel_clock_t clock;
  711. if (target < 200000) {
  712. clock.p1 = 2;
  713. clock.p2 = 10;
  714. clock.n = 2;
  715. clock.m1 = 23;
  716. clock.m2 = 8;
  717. } else {
  718. clock.p1 = 1;
  719. clock.p2 = 10;
  720. clock.n = 1;
  721. clock.m1 = 14;
  722. clock.m2 = 2;
  723. }
  724. clock.m = 5 * (clock.m1 + 2) + (clock.m2 + 2);
  725. clock.p = (clock.p1 * clock.p2);
  726. clock.dot = 96000 * clock.m / (clock.n + 2) / clock.p;
  727. clock.vco = 0;
  728. memcpy(best_clock, &clock, sizeof(intel_clock_t));
  729. return true;
  730. }
  731. /**
  732. * intel_wait_for_vblank - wait for vblank on a given pipe
  733. * @dev: drm device
  734. * @pipe: pipe to wait for
  735. *
  736. * Wait for vblank to occur on a given pipe. Needed for various bits of
  737. * mode setting code.
  738. */
  739. void intel_wait_for_vblank(struct drm_device *dev, int pipe)
  740. {
  741. struct drm_i915_private *dev_priv = dev->dev_private;
  742. int pipestat_reg = PIPESTAT(pipe);
  743. /* Clear existing vblank status. Note this will clear any other
  744. * sticky status fields as well.
  745. *
  746. * This races with i915_driver_irq_handler() with the result
  747. * that either function could miss a vblank event. Here it is not
  748. * fatal, as we will either wait upon the next vblank interrupt or
  749. * timeout. Generally speaking intel_wait_for_vblank() is only
  750. * called during modeset at which time the GPU should be idle and
  751. * should *not* be performing page flips and thus not waiting on
  752. * vblanks...
  753. * Currently, the result of us stealing a vblank from the irq
  754. * handler is that a single frame will be skipped during swapbuffers.
  755. */
  756. I915_WRITE(pipestat_reg,
  757. I915_READ(pipestat_reg) | PIPE_VBLANK_INTERRUPT_STATUS);
  758. /* Wait for vblank interrupt bit to set */
  759. if (wait_for(I915_READ(pipestat_reg) &
  760. PIPE_VBLANK_INTERRUPT_STATUS,
  761. 50))
  762. DRM_DEBUG_KMS("vblank wait timed out\n");
  763. }
  764. /*
  765. * intel_wait_for_pipe_off - wait for pipe to turn off
  766. * @dev: drm device
  767. * @pipe: pipe to wait for
  768. *
  769. * After disabling a pipe, we can't wait for vblank in the usual way,
  770. * spinning on the vblank interrupt status bit, since we won't actually
  771. * see an interrupt when the pipe is disabled.
  772. *
  773. * On Gen4 and above:
  774. * wait for the pipe register state bit to turn off
  775. *
  776. * Otherwise:
  777. * wait for the display line value to settle (it usually
  778. * ends up stopping at the start of the next frame).
  779. *
  780. */
  781. void intel_wait_for_pipe_off(struct drm_device *dev, int pipe)
  782. {
  783. struct drm_i915_private *dev_priv = dev->dev_private;
  784. if (INTEL_INFO(dev)->gen >= 4) {
  785. int reg = PIPECONF(pipe);
  786. /* Wait for the Pipe State to go off */
  787. if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
  788. 100))
  789. DRM_DEBUG_KMS("pipe_off wait timed out\n");
  790. } else {
  791. u32 last_line;
  792. int reg = PIPEDSL(pipe);
  793. unsigned long timeout = jiffies + msecs_to_jiffies(100);
  794. /* Wait for the display line to settle */
  795. do {
  796. last_line = I915_READ(reg) & DSL_LINEMASK;
  797. mdelay(5);
  798. } while (((I915_READ(reg) & DSL_LINEMASK) != last_line) &&
  799. time_after(timeout, jiffies));
  800. if (time_after(jiffies, timeout))
  801. DRM_DEBUG_KMS("pipe_off wait timed out\n");
  802. }
  803. }
  804. static const char *state_string(bool enabled)
  805. {
  806. return enabled ? "on" : "off";
  807. }
  808. /* Only for pre-ILK configs */
  809. static void assert_pll(struct drm_i915_private *dev_priv,
  810. enum pipe pipe, bool state)
  811. {
  812. int reg;
  813. u32 val;
  814. bool cur_state;
  815. reg = DPLL(pipe);
  816. val = I915_READ(reg);
  817. cur_state = !!(val & DPLL_VCO_ENABLE);
  818. WARN(cur_state != state,
  819. "PLL state assertion failure (expected %s, current %s)\n",
  820. state_string(state), state_string(cur_state));
  821. }
  822. #define assert_pll_enabled(d, p) assert_pll(d, p, true)
  823. #define assert_pll_disabled(d, p) assert_pll(d, p, false)
  824. /* For ILK+ */
  825. static void assert_pch_pll(struct drm_i915_private *dev_priv,
  826. enum pipe pipe, bool state)
  827. {
  828. int reg;
  829. u32 val;
  830. bool cur_state;
  831. if (HAS_PCH_CPT(dev_priv->dev)) {
  832. u32 pch_dpll;
  833. pch_dpll = I915_READ(PCH_DPLL_SEL);
  834. /* Make sure the selected PLL is enabled to the transcoder */
  835. WARN(!((pch_dpll >> (4 * pipe)) & 8),
  836. "transcoder %d PLL not enabled\n", pipe);
  837. /* Convert the transcoder pipe number to a pll pipe number */
  838. pipe = (pch_dpll >> (4 * pipe)) & 1;
  839. }
  840. reg = PCH_DPLL(pipe);
  841. val = I915_READ(reg);
  842. cur_state = !!(val & DPLL_VCO_ENABLE);
  843. WARN(cur_state != state,
  844. "PCH PLL state assertion failure (expected %s, current %s)\n",
  845. state_string(state), state_string(cur_state));
  846. }
  847. #define assert_pch_pll_enabled(d, p) assert_pch_pll(d, p, true)
  848. #define assert_pch_pll_disabled(d, p) assert_pch_pll(d, p, false)
  849. static void assert_fdi_tx(struct drm_i915_private *dev_priv,
  850. enum pipe pipe, bool state)
  851. {
  852. int reg;
  853. u32 val;
  854. bool cur_state;
  855. reg = FDI_TX_CTL(pipe);
  856. val = I915_READ(reg);
  857. cur_state = !!(val & FDI_TX_ENABLE);
  858. WARN(cur_state != state,
  859. "FDI TX state assertion failure (expected %s, current %s)\n",
  860. state_string(state), state_string(cur_state));
  861. }
  862. #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
  863. #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
  864. static void assert_fdi_rx(struct drm_i915_private *dev_priv,
  865. enum pipe pipe, bool state)
  866. {
  867. int reg;
  868. u32 val;
  869. bool cur_state;
  870. reg = FDI_RX_CTL(pipe);
  871. val = I915_READ(reg);
  872. cur_state = !!(val & FDI_RX_ENABLE);
  873. WARN(cur_state != state,
  874. "FDI RX state assertion failure (expected %s, current %s)\n",
  875. state_string(state), state_string(cur_state));
  876. }
  877. #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
  878. #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
  879. static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
  880. enum pipe pipe)
  881. {
  882. int reg;
  883. u32 val;
  884. /* ILK FDI PLL is always enabled */
  885. if (dev_priv->info->gen == 5)
  886. return;
  887. reg = FDI_TX_CTL(pipe);
  888. val = I915_READ(reg);
  889. WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
  890. }
  891. static void assert_fdi_rx_pll_enabled(struct drm_i915_private *dev_priv,
  892. enum pipe pipe)
  893. {
  894. int reg;
  895. u32 val;
  896. reg = FDI_RX_CTL(pipe);
  897. val = I915_READ(reg);
  898. WARN(!(val & FDI_RX_PLL_ENABLE), "FDI RX PLL assertion failure, should be active but is disabled\n");
  899. }
  900. static void assert_panel_unlocked(struct drm_i915_private *dev_priv,
  901. enum pipe pipe)
  902. {
  903. int pp_reg, lvds_reg;
  904. u32 val;
  905. enum pipe panel_pipe = PIPE_A;
  906. bool locked = true;
  907. if (HAS_PCH_SPLIT(dev_priv->dev)) {
  908. pp_reg = PCH_PP_CONTROL;
  909. lvds_reg = PCH_LVDS;
  910. } else {
  911. pp_reg = PP_CONTROL;
  912. lvds_reg = LVDS;
  913. }
  914. val = I915_READ(pp_reg);
  915. if (!(val & PANEL_POWER_ON) ||
  916. ((val & PANEL_UNLOCK_REGS) == PANEL_UNLOCK_REGS))
  917. locked = false;
  918. if (I915_READ(lvds_reg) & LVDS_PIPEB_SELECT)
  919. panel_pipe = PIPE_B;
  920. WARN(panel_pipe == pipe && locked,
  921. "panel assertion failure, pipe %c regs locked\n",
  922. pipe_name(pipe));
  923. }
  924. void assert_pipe(struct drm_i915_private *dev_priv,
  925. enum pipe pipe, bool state)
  926. {
  927. int reg;
  928. u32 val;
  929. bool cur_state;
  930. /* if we need the pipe A quirk it must be always on */
  931. if (pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE)
  932. state = true;
  933. reg = PIPECONF(pipe);
  934. val = I915_READ(reg);
  935. cur_state = !!(val & PIPECONF_ENABLE);
  936. WARN(cur_state != state,
  937. "pipe %c assertion failure (expected %s, current %s)\n",
  938. pipe_name(pipe), state_string(state), state_string(cur_state));
  939. }
  940. static void assert_plane(struct drm_i915_private *dev_priv,
  941. enum plane plane, bool state)
  942. {
  943. int reg;
  944. u32 val;
  945. bool cur_state;
  946. reg = DSPCNTR(plane);
  947. val = I915_READ(reg);
  948. cur_state = !!(val & DISPLAY_PLANE_ENABLE);
  949. WARN(cur_state != state,
  950. "plane %c assertion failure (expected %s, current %s)\n",
  951. plane_name(plane), state_string(state), state_string(cur_state));
  952. }
  953. #define assert_plane_enabled(d, p) assert_plane(d, p, true)
  954. #define assert_plane_disabled(d, p) assert_plane(d, p, false)
  955. static void assert_planes_disabled(struct drm_i915_private *dev_priv,
  956. enum pipe pipe)
  957. {
  958. int reg, i;
  959. u32 val;
  960. int cur_pipe;
  961. /* Planes are fixed to pipes on ILK+ */
  962. if (HAS_PCH_SPLIT(dev_priv->dev)) {
  963. reg = DSPCNTR(pipe);
  964. val = I915_READ(reg);
  965. WARN((val & DISPLAY_PLANE_ENABLE),
  966. "plane %c assertion failure, should be disabled but not\n",
  967. plane_name(pipe));
  968. return;
  969. }
  970. /* Need to check both planes against the pipe */
  971. for (i = 0; i < 2; i++) {
  972. reg = DSPCNTR(i);
  973. val = I915_READ(reg);
  974. cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
  975. DISPPLANE_SEL_PIPE_SHIFT;
  976. WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
  977. "plane %c assertion failure, should be off on pipe %c but is still active\n",
  978. plane_name(i), pipe_name(pipe));
  979. }
  980. }
  981. static void assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
  982. {
  983. u32 val;
  984. bool enabled;
  985. val = I915_READ(PCH_DREF_CONTROL);
  986. enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
  987. DREF_SUPERSPREAD_SOURCE_MASK));
  988. WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
  989. }
  990. static void assert_transcoder_disabled(struct drm_i915_private *dev_priv,
  991. enum pipe pipe)
  992. {
  993. int reg;
  994. u32 val;
  995. bool enabled;
  996. reg = TRANSCONF(pipe);
  997. val = I915_READ(reg);
  998. enabled = !!(val & TRANS_ENABLE);
  999. WARN(enabled,
  1000. "transcoder assertion failed, should be off on pipe %c but is still active\n",
  1001. pipe_name(pipe));
  1002. }
  1003. static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
  1004. enum pipe pipe, u32 port_sel, u32 val)
  1005. {
  1006. if ((val & DP_PORT_EN) == 0)
  1007. return false;
  1008. if (HAS_PCH_CPT(dev_priv->dev)) {
  1009. u32 trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
  1010. u32 trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
  1011. if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
  1012. return false;
  1013. } else {
  1014. if ((val & DP_PIPE_MASK) != (pipe << 30))
  1015. return false;
  1016. }
  1017. return true;
  1018. }
  1019. static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
  1020. enum pipe pipe, u32 val)
  1021. {
  1022. if ((val & PORT_ENABLE) == 0)
  1023. return false;
  1024. if (HAS_PCH_CPT(dev_priv->dev)) {
  1025. if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
  1026. return false;
  1027. } else {
  1028. if ((val & TRANSCODER_MASK) != TRANSCODER(pipe))
  1029. return false;
  1030. }
  1031. return true;
  1032. }
  1033. static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
  1034. enum pipe pipe, u32 val)
  1035. {
  1036. if ((val & LVDS_PORT_EN) == 0)
  1037. return false;
  1038. if (HAS_PCH_CPT(dev_priv->dev)) {
  1039. if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
  1040. return false;
  1041. } else {
  1042. if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
  1043. return false;
  1044. }
  1045. return true;
  1046. }
  1047. static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
  1048. enum pipe pipe, u32 val)
  1049. {
  1050. if ((val & ADPA_DAC_ENABLE) == 0)
  1051. return false;
  1052. if (HAS_PCH_CPT(dev_priv->dev)) {
  1053. if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
  1054. return false;
  1055. } else {
  1056. if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
  1057. return false;
  1058. }
  1059. return true;
  1060. }
  1061. static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
  1062. enum pipe pipe, int reg, u32 port_sel)
  1063. {
  1064. u32 val = I915_READ(reg);
  1065. WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
  1066. "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
  1067. reg, pipe_name(pipe));
  1068. }
  1069. static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
  1070. enum pipe pipe, int reg)
  1071. {
  1072. u32 val = I915_READ(reg);
  1073. WARN(hdmi_pipe_enabled(dev_priv, val, pipe),
  1074. "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
  1075. reg, pipe_name(pipe));
  1076. }
  1077. static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
  1078. enum pipe pipe)
  1079. {
  1080. int reg;
  1081. u32 val;
  1082. assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
  1083. assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
  1084. assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
  1085. reg = PCH_ADPA;
  1086. val = I915_READ(reg);
  1087. WARN(adpa_pipe_enabled(dev_priv, val, pipe),
  1088. "PCH VGA enabled on transcoder %c, should be disabled\n",
  1089. pipe_name(pipe));
  1090. reg = PCH_LVDS;
  1091. val = I915_READ(reg);
  1092. WARN(lvds_pipe_enabled(dev_priv, val, pipe),
  1093. "PCH LVDS enabled on transcoder %c, should be disabled\n",
  1094. pipe_name(pipe));
  1095. assert_pch_hdmi_disabled(dev_priv, pipe, HDMIB);
  1096. assert_pch_hdmi_disabled(dev_priv, pipe, HDMIC);
  1097. assert_pch_hdmi_disabled(dev_priv, pipe, HDMID);
  1098. }
  1099. /**
  1100. * intel_enable_pll - enable a PLL
  1101. * @dev_priv: i915 private structure
  1102. * @pipe: pipe PLL to enable
  1103. *
  1104. * Enable @pipe's PLL so we can start pumping pixels from a plane. Check to
  1105. * make sure the PLL reg is writable first though, since the panel write
  1106. * protect mechanism may be enabled.
  1107. *
  1108. * Note! This is for pre-ILK only.
  1109. */
  1110. static void intel_enable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
  1111. {
  1112. int reg;
  1113. u32 val;
  1114. /* No really, not for ILK+ */
  1115. BUG_ON(dev_priv->info->gen >= 5);
  1116. /* PLL is protected by panel, make sure we can write it */
  1117. if (IS_MOBILE(dev_priv->dev) && !IS_I830(dev_priv->dev))
  1118. assert_panel_unlocked(dev_priv, pipe);
  1119. reg = DPLL(pipe);
  1120. val = I915_READ(reg);
  1121. val |= DPLL_VCO_ENABLE;
  1122. /* We do this three times for luck */
  1123. I915_WRITE(reg, val);
  1124. POSTING_READ(reg);
  1125. udelay(150); /* wait for warmup */
  1126. I915_WRITE(reg, val);
  1127. POSTING_READ(reg);
  1128. udelay(150); /* wait for warmup */
  1129. I915_WRITE(reg, val);
  1130. POSTING_READ(reg);
  1131. udelay(150); /* wait for warmup */
  1132. }
  1133. /**
  1134. * intel_disable_pll - disable a PLL
  1135. * @dev_priv: i915 private structure
  1136. * @pipe: pipe PLL to disable
  1137. *
  1138. * Disable the PLL for @pipe, making sure the pipe is off first.
  1139. *
  1140. * Note! This is for pre-ILK only.
  1141. */
  1142. static void intel_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
  1143. {
  1144. int reg;
  1145. u32 val;
  1146. /* Don't disable pipe A or pipe A PLLs if needed */
  1147. if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
  1148. return;
  1149. /* Make sure the pipe isn't still relying on us */
  1150. assert_pipe_disabled(dev_priv, pipe);
  1151. reg = DPLL(pipe);
  1152. val = I915_READ(reg);
  1153. val &= ~DPLL_VCO_ENABLE;
  1154. I915_WRITE(reg, val);
  1155. POSTING_READ(reg);
  1156. }
  1157. /**
  1158. * intel_enable_pch_pll - enable PCH PLL
  1159. * @dev_priv: i915 private structure
  1160. * @pipe: pipe PLL to enable
  1161. *
  1162. * The PCH PLL needs to be enabled before the PCH transcoder, since it
  1163. * drives the transcoder clock.
  1164. */
  1165. static void intel_enable_pch_pll(struct drm_i915_private *dev_priv,
  1166. enum pipe pipe)
  1167. {
  1168. int reg;
  1169. u32 val;
  1170. if (pipe > 1)
  1171. return;
  1172. /* PCH only available on ILK+ */
  1173. BUG_ON(dev_priv->info->gen < 5);
  1174. /* PCH refclock must be enabled first */
  1175. assert_pch_refclk_enabled(dev_priv);
  1176. reg = PCH_DPLL(pipe);
  1177. val = I915_READ(reg);
  1178. val |= DPLL_VCO_ENABLE;
  1179. I915_WRITE(reg, val);
  1180. POSTING_READ(reg);
  1181. udelay(200);
  1182. }
  1183. static void intel_disable_pch_pll(struct drm_i915_private *dev_priv,
  1184. enum pipe pipe)
  1185. {
  1186. int reg;
  1187. u32 val, pll_mask = TRANSC_DPLL_ENABLE | TRANSC_DPLLB_SEL,
  1188. pll_sel = TRANSC_DPLL_ENABLE;
  1189. if (pipe > 1)
  1190. return;
  1191. /* PCH only available on ILK+ */
  1192. BUG_ON(dev_priv->info->gen < 5);
  1193. /* Make sure transcoder isn't still depending on us */
  1194. assert_transcoder_disabled(dev_priv, pipe);
  1195. if (pipe == 0)
  1196. pll_sel |= TRANSC_DPLLA_SEL;
  1197. else if (pipe == 1)
  1198. pll_sel |= TRANSC_DPLLB_SEL;
  1199. if ((I915_READ(PCH_DPLL_SEL) & pll_mask) == pll_sel)
  1200. return;
  1201. reg = PCH_DPLL(pipe);
  1202. val = I915_READ(reg);
  1203. val &= ~DPLL_VCO_ENABLE;
  1204. I915_WRITE(reg, val);
  1205. POSTING_READ(reg);
  1206. udelay(200);
  1207. }
  1208. static void intel_enable_transcoder(struct drm_i915_private *dev_priv,
  1209. enum pipe pipe)
  1210. {
  1211. int reg;
  1212. u32 val, pipeconf_val;
  1213. struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
  1214. /* PCH only available on ILK+ */
  1215. BUG_ON(dev_priv->info->gen < 5);
  1216. /* Make sure PCH DPLL is enabled */
  1217. assert_pch_pll_enabled(dev_priv, pipe);
  1218. /* FDI must be feeding us bits for PCH ports */
  1219. assert_fdi_tx_enabled(dev_priv, pipe);
  1220. assert_fdi_rx_enabled(dev_priv, pipe);
  1221. reg = TRANSCONF(pipe);
  1222. val = I915_READ(reg);
  1223. pipeconf_val = I915_READ(PIPECONF(pipe));
  1224. if (HAS_PCH_IBX(dev_priv->dev)) {
  1225. /*
  1226. * make the BPC in transcoder be consistent with
  1227. * that in pipeconf reg.
  1228. */
  1229. val &= ~PIPE_BPC_MASK;
  1230. val |= pipeconf_val & PIPE_BPC_MASK;
  1231. }
  1232. val &= ~TRANS_INTERLACE_MASK;
  1233. if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
  1234. if (HAS_PCH_IBX(dev_priv->dev) &&
  1235. intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO))
  1236. val |= TRANS_LEGACY_INTERLACED_ILK;
  1237. else
  1238. val |= TRANS_INTERLACED;
  1239. else
  1240. val |= TRANS_PROGRESSIVE;
  1241. I915_WRITE(reg, val | TRANS_ENABLE);
  1242. if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
  1243. DRM_ERROR("failed to enable transcoder %d\n", pipe);
  1244. }
  1245. static void intel_disable_transcoder(struct drm_i915_private *dev_priv,
  1246. enum pipe pipe)
  1247. {
  1248. int reg;
  1249. u32 val;
  1250. /* FDI relies on the transcoder */
  1251. assert_fdi_tx_disabled(dev_priv, pipe);
  1252. assert_fdi_rx_disabled(dev_priv, pipe);
  1253. /* Ports must be off as well */
  1254. assert_pch_ports_disabled(dev_priv, pipe);
  1255. reg = TRANSCONF(pipe);
  1256. val = I915_READ(reg);
  1257. val &= ~TRANS_ENABLE;
  1258. I915_WRITE(reg, val);
  1259. /* wait for PCH transcoder off, transcoder state */
  1260. if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
  1261. DRM_ERROR("failed to disable transcoder %d\n", pipe);
  1262. }
  1263. /**
  1264. * intel_enable_pipe - enable a pipe, asserting requirements
  1265. * @dev_priv: i915 private structure
  1266. * @pipe: pipe to enable
  1267. * @pch_port: on ILK+, is this pipe driving a PCH port or not
  1268. *
  1269. * Enable @pipe, making sure that various hardware specific requirements
  1270. * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
  1271. *
  1272. * @pipe should be %PIPE_A or %PIPE_B.
  1273. *
  1274. * Will wait until the pipe is actually running (i.e. first vblank) before
  1275. * returning.
  1276. */
  1277. static void intel_enable_pipe(struct drm_i915_private *dev_priv, enum pipe pipe,
  1278. bool pch_port)
  1279. {
  1280. int reg;
  1281. u32 val;
  1282. /*
  1283. * A pipe without a PLL won't actually be able to drive bits from
  1284. * a plane. On ILK+ the pipe PLLs are integrated, so we don't
  1285. * need the check.
  1286. */
  1287. if (!HAS_PCH_SPLIT(dev_priv->dev))
  1288. assert_pll_enabled(dev_priv, pipe);
  1289. else {
  1290. if (pch_port) {
  1291. /* if driving the PCH, we need FDI enabled */
  1292. assert_fdi_rx_pll_enabled(dev_priv, pipe);
  1293. assert_fdi_tx_pll_enabled(dev_priv, pipe);
  1294. }
  1295. /* FIXME: assert CPU port conditions for SNB+ */
  1296. }
  1297. reg = PIPECONF(pipe);
  1298. val = I915_READ(reg);
  1299. if (val & PIPECONF_ENABLE)
  1300. return;
  1301. I915_WRITE(reg, val | PIPECONF_ENABLE);
  1302. intel_wait_for_vblank(dev_priv->dev, pipe);
  1303. }
  1304. /**
  1305. * intel_disable_pipe - disable a pipe, asserting requirements
  1306. * @dev_priv: i915 private structure
  1307. * @pipe: pipe to disable
  1308. *
  1309. * Disable @pipe, making sure that various hardware specific requirements
  1310. * are met, if applicable, e.g. plane disabled, panel fitter off, etc.
  1311. *
  1312. * @pipe should be %PIPE_A or %PIPE_B.
  1313. *
  1314. * Will wait until the pipe has shut down before returning.
  1315. */
  1316. static void intel_disable_pipe(struct drm_i915_private *dev_priv,
  1317. enum pipe pipe)
  1318. {
  1319. int reg;
  1320. u32 val;
  1321. /*
  1322. * Make sure planes won't keep trying to pump pixels to us,
  1323. * or we might hang the display.
  1324. */
  1325. assert_planes_disabled(dev_priv, pipe);
  1326. /* Don't disable pipe A or pipe A PLLs if needed */
  1327. if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
  1328. return;
  1329. reg = PIPECONF(pipe);
  1330. val = I915_READ(reg);
  1331. if ((val & PIPECONF_ENABLE) == 0)
  1332. return;
  1333. I915_WRITE(reg, val & ~PIPECONF_ENABLE);
  1334. intel_wait_for_pipe_off(dev_priv->dev, pipe);
  1335. }
  1336. /*
  1337. * Plane regs are double buffered, going from enabled->disabled needs a
  1338. * trigger in order to latch. The display address reg provides this.
  1339. */
  1340. static void intel_flush_display_plane(struct drm_i915_private *dev_priv,
  1341. enum plane plane)
  1342. {
  1343. I915_WRITE(DSPADDR(plane), I915_READ(DSPADDR(plane)));
  1344. I915_WRITE(DSPSURF(plane), I915_READ(DSPSURF(plane)));
  1345. }
  1346. /**
  1347. * intel_enable_plane - enable a display plane on a given pipe
  1348. * @dev_priv: i915 private structure
  1349. * @plane: plane to enable
  1350. * @pipe: pipe being fed
  1351. *
  1352. * Enable @plane on @pipe, making sure that @pipe is running first.
  1353. */
  1354. static void intel_enable_plane(struct drm_i915_private *dev_priv,
  1355. enum plane plane, enum pipe pipe)
  1356. {
  1357. int reg;
  1358. u32 val;
  1359. /* If the pipe isn't enabled, we can't pump pixels and may hang */
  1360. assert_pipe_enabled(dev_priv, pipe);
  1361. reg = DSPCNTR(plane);
  1362. val = I915_READ(reg);
  1363. if (val & DISPLAY_PLANE_ENABLE)
  1364. return;
  1365. I915_WRITE(reg, val | DISPLAY_PLANE_ENABLE);
  1366. intel_flush_display_plane(dev_priv, plane);
  1367. intel_wait_for_vblank(dev_priv->dev, pipe);
  1368. }
  1369. /**
  1370. * intel_disable_plane - disable a display plane
  1371. * @dev_priv: i915 private structure
  1372. * @plane: plane to disable
  1373. * @pipe: pipe consuming the data
  1374. *
  1375. * Disable @plane; should be an independent operation.
  1376. */
  1377. static void intel_disable_plane(struct drm_i915_private *dev_priv,
  1378. enum plane plane, enum pipe pipe)
  1379. {
  1380. int reg;
  1381. u32 val;
  1382. reg = DSPCNTR(plane);
  1383. val = I915_READ(reg);
  1384. if ((val & DISPLAY_PLANE_ENABLE) == 0)
  1385. return;
  1386. I915_WRITE(reg, val & ~DISPLAY_PLANE_ENABLE);
  1387. intel_flush_display_plane(dev_priv, plane);
  1388. intel_wait_for_vblank(dev_priv->dev, pipe);
  1389. }
  1390. static void disable_pch_dp(struct drm_i915_private *dev_priv,
  1391. enum pipe pipe, int reg, u32 port_sel)
  1392. {
  1393. u32 val = I915_READ(reg);
  1394. if (dp_pipe_enabled(dev_priv, pipe, port_sel, val)) {
  1395. DRM_DEBUG_KMS("Disabling pch dp %x on pipe %d\n", reg, pipe);
  1396. I915_WRITE(reg, val & ~DP_PORT_EN);
  1397. }
  1398. }
  1399. static void disable_pch_hdmi(struct drm_i915_private *dev_priv,
  1400. enum pipe pipe, int reg)
  1401. {
  1402. u32 val = I915_READ(reg);
  1403. if (hdmi_pipe_enabled(dev_priv, val, pipe)) {
  1404. DRM_DEBUG_KMS("Disabling pch HDMI %x on pipe %d\n",
  1405. reg, pipe);
  1406. I915_WRITE(reg, val & ~PORT_ENABLE);
  1407. }
  1408. }
  1409. /* Disable any ports connected to this transcoder */
  1410. static void intel_disable_pch_ports(struct drm_i915_private *dev_priv,
  1411. enum pipe pipe)
  1412. {
  1413. u32 reg, val;
  1414. val = I915_READ(PCH_PP_CONTROL);
  1415. I915_WRITE(PCH_PP_CONTROL, val | PANEL_UNLOCK_REGS);
  1416. disable_pch_dp(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
  1417. disable_pch_dp(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
  1418. disable_pch_dp(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
  1419. reg = PCH_ADPA;
  1420. val = I915_READ(reg);
  1421. if (adpa_pipe_enabled(dev_priv, val, pipe))
  1422. I915_WRITE(reg, val & ~ADPA_DAC_ENABLE);
  1423. reg = PCH_LVDS;
  1424. val = I915_READ(reg);
  1425. if (lvds_pipe_enabled(dev_priv, val, pipe)) {
  1426. DRM_DEBUG_KMS("disable lvds on pipe %d val 0x%08x\n", pipe, val);
  1427. I915_WRITE(reg, val & ~LVDS_PORT_EN);
  1428. POSTING_READ(reg);
  1429. udelay(100);
  1430. }
  1431. disable_pch_hdmi(dev_priv, pipe, HDMIB);
  1432. disable_pch_hdmi(dev_priv, pipe, HDMIC);
  1433. disable_pch_hdmi(dev_priv, pipe, HDMID);
  1434. }
  1435. static void i8xx_disable_fbc(struct drm_device *dev)
  1436. {
  1437. struct drm_i915_private *dev_priv = dev->dev_private;
  1438. u32 fbc_ctl;
  1439. /* Disable compression */
  1440. fbc_ctl = I915_READ(FBC_CONTROL);
  1441. if ((fbc_ctl & FBC_CTL_EN) == 0)
  1442. return;
  1443. fbc_ctl &= ~FBC_CTL_EN;
  1444. I915_WRITE(FBC_CONTROL, fbc_ctl);
  1445. /* Wait for compressing bit to clear */
  1446. if (wait_for((I915_READ(FBC_STATUS) & FBC_STAT_COMPRESSING) == 0, 10)) {
  1447. DRM_DEBUG_KMS("FBC idle timed out\n");
  1448. return;
  1449. }
  1450. DRM_DEBUG_KMS("disabled FBC\n");
  1451. }
  1452. static void i8xx_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
  1453. {
  1454. struct drm_device *dev = crtc->dev;
  1455. struct drm_i915_private *dev_priv = dev->dev_private;
  1456. struct drm_framebuffer *fb = crtc->fb;
  1457. struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
  1458. struct drm_i915_gem_object *obj = intel_fb->obj;
  1459. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1460. int cfb_pitch;
  1461. int plane, i;
  1462. u32 fbc_ctl, fbc_ctl2;
  1463. cfb_pitch = dev_priv->cfb_size / FBC_LL_SIZE;
  1464. if (fb->pitches[0] < cfb_pitch)
  1465. cfb_pitch = fb->pitches[0];
  1466. /* FBC_CTL wants 64B units */
  1467. cfb_pitch = (cfb_pitch / 64) - 1;
  1468. plane = intel_crtc->plane == 0 ? FBC_CTL_PLANEA : FBC_CTL_PLANEB;
  1469. /* Clear old tags */
  1470. for (i = 0; i < (FBC_LL_SIZE / 32) + 1; i++)
  1471. I915_WRITE(FBC_TAG + (i * 4), 0);
  1472. /* Set it up... */
  1473. fbc_ctl2 = FBC_CTL_FENCE_DBL | FBC_CTL_IDLE_IMM | FBC_CTL_CPU_FENCE;
  1474. fbc_ctl2 |= plane;
  1475. I915_WRITE(FBC_CONTROL2, fbc_ctl2);
  1476. I915_WRITE(FBC_FENCE_OFF, crtc->y);
  1477. /* enable it... */
  1478. fbc_ctl = FBC_CTL_EN | FBC_CTL_PERIODIC;
  1479. if (IS_I945GM(dev))
  1480. fbc_ctl |= FBC_CTL_C3_IDLE; /* 945 needs special SR handling */
  1481. fbc_ctl |= (cfb_pitch & 0xff) << FBC_CTL_STRIDE_SHIFT;
  1482. fbc_ctl |= (interval & 0x2fff) << FBC_CTL_INTERVAL_SHIFT;
  1483. fbc_ctl |= obj->fence_reg;
  1484. I915_WRITE(FBC_CONTROL, fbc_ctl);
  1485. DRM_DEBUG_KMS("enabled FBC, pitch %d, yoff %d, plane %d, ",
  1486. cfb_pitch, crtc->y, intel_crtc->plane);
  1487. }
  1488. static bool i8xx_fbc_enabled(struct drm_device *dev)
  1489. {
  1490. struct drm_i915_private *dev_priv = dev->dev_private;
  1491. return I915_READ(FBC_CONTROL) & FBC_CTL_EN;
  1492. }
  1493. static void g4x_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
  1494. {
  1495. struct drm_device *dev = crtc->dev;
  1496. struct drm_i915_private *dev_priv = dev->dev_private;
  1497. struct drm_framebuffer *fb = crtc->fb;
  1498. struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
  1499. struct drm_i915_gem_object *obj = intel_fb->obj;
  1500. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1501. int plane = intel_crtc->plane == 0 ? DPFC_CTL_PLANEA : DPFC_CTL_PLANEB;
  1502. unsigned long stall_watermark = 200;
  1503. u32 dpfc_ctl;
  1504. dpfc_ctl = plane | DPFC_SR_EN | DPFC_CTL_LIMIT_1X;
  1505. dpfc_ctl |= DPFC_CTL_FENCE_EN | obj->fence_reg;
  1506. I915_WRITE(DPFC_CHICKEN, DPFC_HT_MODIFY);
  1507. I915_WRITE(DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
  1508. (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
  1509. (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
  1510. I915_WRITE(DPFC_FENCE_YOFF, crtc->y);
  1511. /* enable it... */
  1512. I915_WRITE(DPFC_CONTROL, I915_READ(DPFC_CONTROL) | DPFC_CTL_EN);
  1513. DRM_DEBUG_KMS("enabled fbc on plane %d\n", intel_crtc->plane);
  1514. }
  1515. static void g4x_disable_fbc(struct drm_device *dev)
  1516. {
  1517. struct drm_i915_private *dev_priv = dev->dev_private;
  1518. u32 dpfc_ctl;
  1519. /* Disable compression */
  1520. dpfc_ctl = I915_READ(DPFC_CONTROL);
  1521. if (dpfc_ctl & DPFC_CTL_EN) {
  1522. dpfc_ctl &= ~DPFC_CTL_EN;
  1523. I915_WRITE(DPFC_CONTROL, dpfc_ctl);
  1524. DRM_DEBUG_KMS("disabled FBC\n");
  1525. }
  1526. }
  1527. static bool g4x_fbc_enabled(struct drm_device *dev)
  1528. {
  1529. struct drm_i915_private *dev_priv = dev->dev_private;
  1530. return I915_READ(DPFC_CONTROL) & DPFC_CTL_EN;
  1531. }
  1532. static void sandybridge_blit_fbc_update(struct drm_device *dev)
  1533. {
  1534. struct drm_i915_private *dev_priv = dev->dev_private;
  1535. u32 blt_ecoskpd;
  1536. /* Make sure blitter notifies FBC of writes */
  1537. gen6_gt_force_wake_get(dev_priv);
  1538. blt_ecoskpd = I915_READ(GEN6_BLITTER_ECOSKPD);
  1539. blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY <<
  1540. GEN6_BLITTER_LOCK_SHIFT;
  1541. I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
  1542. blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY;
  1543. I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
  1544. blt_ecoskpd &= ~(GEN6_BLITTER_FBC_NOTIFY <<
  1545. GEN6_BLITTER_LOCK_SHIFT);
  1546. I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
  1547. POSTING_READ(GEN6_BLITTER_ECOSKPD);
  1548. gen6_gt_force_wake_put(dev_priv);
  1549. }
  1550. static void ironlake_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
  1551. {
  1552. struct drm_device *dev = crtc->dev;
  1553. struct drm_i915_private *dev_priv = dev->dev_private;
  1554. struct drm_framebuffer *fb = crtc->fb;
  1555. struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
  1556. struct drm_i915_gem_object *obj = intel_fb->obj;
  1557. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1558. int plane = intel_crtc->plane == 0 ? DPFC_CTL_PLANEA : DPFC_CTL_PLANEB;
  1559. unsigned long stall_watermark = 200;
  1560. u32 dpfc_ctl;
  1561. dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
  1562. dpfc_ctl &= DPFC_RESERVED;
  1563. dpfc_ctl |= (plane | DPFC_CTL_LIMIT_1X);
  1564. /* Set persistent mode for front-buffer rendering, ala X. */
  1565. dpfc_ctl |= DPFC_CTL_PERSISTENT_MODE;
  1566. dpfc_ctl |= (DPFC_CTL_FENCE_EN | obj->fence_reg);
  1567. I915_WRITE(ILK_DPFC_CHICKEN, DPFC_HT_MODIFY);
  1568. I915_WRITE(ILK_DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
  1569. (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
  1570. (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
  1571. I915_WRITE(ILK_DPFC_FENCE_YOFF, crtc->y);
  1572. I915_WRITE(ILK_FBC_RT_BASE, obj->gtt_offset | ILK_FBC_RT_VALID);
  1573. /* enable it... */
  1574. I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl | DPFC_CTL_EN);
  1575. if (IS_GEN6(dev)) {
  1576. I915_WRITE(SNB_DPFC_CTL_SA,
  1577. SNB_CPU_FENCE_ENABLE | obj->fence_reg);
  1578. I915_WRITE(DPFC_CPU_FENCE_OFFSET, crtc->y);
  1579. sandybridge_blit_fbc_update(dev);
  1580. }
  1581. DRM_DEBUG_KMS("enabled fbc on plane %d\n", intel_crtc->plane);
  1582. }
  1583. static void ironlake_disable_fbc(struct drm_device *dev)
  1584. {
  1585. struct drm_i915_private *dev_priv = dev->dev_private;
  1586. u32 dpfc_ctl;
  1587. /* Disable compression */
  1588. dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
  1589. if (dpfc_ctl & DPFC_CTL_EN) {
  1590. dpfc_ctl &= ~DPFC_CTL_EN;
  1591. I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl);
  1592. DRM_DEBUG_KMS("disabled FBC\n");
  1593. }
  1594. }
  1595. static bool ironlake_fbc_enabled(struct drm_device *dev)
  1596. {
  1597. struct drm_i915_private *dev_priv = dev->dev_private;
  1598. return I915_READ(ILK_DPFC_CONTROL) & DPFC_CTL_EN;
  1599. }
  1600. bool intel_fbc_enabled(struct drm_device *dev)
  1601. {
  1602. struct drm_i915_private *dev_priv = dev->dev_private;
  1603. if (!dev_priv->display.fbc_enabled)
  1604. return false;
  1605. return dev_priv->display.fbc_enabled(dev);
  1606. }
  1607. static void intel_fbc_work_fn(struct work_struct *__work)
  1608. {
  1609. struct intel_fbc_work *work =
  1610. container_of(to_delayed_work(__work),
  1611. struct intel_fbc_work, work);
  1612. struct drm_device *dev = work->crtc->dev;
  1613. struct drm_i915_private *dev_priv = dev->dev_private;
  1614. mutex_lock(&dev->struct_mutex);
  1615. if (work == dev_priv->fbc_work) {
  1616. /* Double check that we haven't switched fb without cancelling
  1617. * the prior work.
  1618. */
  1619. if (work->crtc->fb == work->fb) {
  1620. dev_priv->display.enable_fbc(work->crtc,
  1621. work->interval);
  1622. dev_priv->cfb_plane = to_intel_crtc(work->crtc)->plane;
  1623. dev_priv->cfb_fb = work->crtc->fb->base.id;
  1624. dev_priv->cfb_y = work->crtc->y;
  1625. }
  1626. dev_priv->fbc_work = NULL;
  1627. }
  1628. mutex_unlock(&dev->struct_mutex);
  1629. kfree(work);
  1630. }
  1631. static void intel_cancel_fbc_work(struct drm_i915_private *dev_priv)
  1632. {
  1633. if (dev_priv->fbc_work == NULL)
  1634. return;
  1635. DRM_DEBUG_KMS("cancelling pending FBC enable\n");
  1636. /* Synchronisation is provided by struct_mutex and checking of
  1637. * dev_priv->fbc_work, so we can perform the cancellation
  1638. * entirely asynchronously.
  1639. */
  1640. if (cancel_delayed_work(&dev_priv->fbc_work->work))
  1641. /* tasklet was killed before being run, clean up */
  1642. kfree(dev_priv->fbc_work);
  1643. /* Mark the work as no longer wanted so that if it does
  1644. * wake-up (because the work was already running and waiting
  1645. * for our mutex), it will discover that is no longer
  1646. * necessary to run.
  1647. */
  1648. dev_priv->fbc_work = NULL;
  1649. }
  1650. static void intel_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
  1651. {
  1652. struct intel_fbc_work *work;
  1653. struct drm_device *dev = crtc->dev;
  1654. struct drm_i915_private *dev_priv = dev->dev_private;
  1655. if (!dev_priv->display.enable_fbc)
  1656. return;
  1657. intel_cancel_fbc_work(dev_priv);
  1658. work = kzalloc(sizeof *work, GFP_KERNEL);
  1659. if (work == NULL) {
  1660. dev_priv->display.enable_fbc(crtc, interval);
  1661. return;
  1662. }
  1663. work->crtc = crtc;
  1664. work->fb = crtc->fb;
  1665. work->interval = interval;
  1666. INIT_DELAYED_WORK(&work->work, intel_fbc_work_fn);
  1667. dev_priv->fbc_work = work;
  1668. DRM_DEBUG_KMS("scheduling delayed FBC enable\n");
  1669. /* Delay the actual enabling to let pageflipping cease and the
  1670. * display to settle before starting the compression. Note that
  1671. * this delay also serves a second purpose: it allows for a
  1672. * vblank to pass after disabling the FBC before we attempt
  1673. * to modify the control registers.
  1674. *
  1675. * A more complicated solution would involve tracking vblanks
  1676. * following the termination of the page-flipping sequence
  1677. * and indeed performing the enable as a co-routine and not
  1678. * waiting synchronously upon the vblank.
  1679. */
  1680. schedule_delayed_work(&work->work, msecs_to_jiffies(50));
  1681. }
  1682. void intel_disable_fbc(struct drm_device *dev)
  1683. {
  1684. struct drm_i915_private *dev_priv = dev->dev_private;
  1685. intel_cancel_fbc_work(dev_priv);
  1686. if (!dev_priv->display.disable_fbc)
  1687. return;
  1688. dev_priv->display.disable_fbc(dev);
  1689. dev_priv->cfb_plane = -1;
  1690. }
  1691. /**
  1692. * intel_update_fbc - enable/disable FBC as needed
  1693. * @dev: the drm_device
  1694. *
  1695. * Set up the framebuffer compression hardware at mode set time. We
  1696. * enable it if possible:
  1697. * - plane A only (on pre-965)
  1698. * - no pixel mulitply/line duplication
  1699. * - no alpha buffer discard
  1700. * - no dual wide
  1701. * - framebuffer <= 2048 in width, 1536 in height
  1702. *
  1703. * We can't assume that any compression will take place (worst case),
  1704. * so the compressed buffer has to be the same size as the uncompressed
  1705. * one. It also must reside (along with the line length buffer) in
  1706. * stolen memory.
  1707. *
  1708. * We need to enable/disable FBC on a global basis.
  1709. */
  1710. static void intel_update_fbc(struct drm_device *dev)
  1711. {
  1712. struct drm_i915_private *dev_priv = dev->dev_private;
  1713. struct drm_crtc *crtc = NULL, *tmp_crtc;
  1714. struct intel_crtc *intel_crtc;
  1715. struct drm_framebuffer *fb;
  1716. struct intel_framebuffer *intel_fb;
  1717. struct drm_i915_gem_object *obj;
  1718. int enable_fbc;
  1719. DRM_DEBUG_KMS("\n");
  1720. if (!i915_powersave)
  1721. return;
  1722. if (!I915_HAS_FBC(dev))
  1723. return;
  1724. /*
  1725. * If FBC is already on, we just have to verify that we can
  1726. * keep it that way...
  1727. * Need to disable if:
  1728. * - more than one pipe is active
  1729. * - changing FBC params (stride, fence, mode)
  1730. * - new fb is too large to fit in compressed buffer
  1731. * - going to an unsupported config (interlace, pixel multiply, etc.)
  1732. */
  1733. list_for_each_entry(tmp_crtc, &dev->mode_config.crtc_list, head) {
  1734. if (tmp_crtc->enabled && tmp_crtc->fb) {
  1735. if (crtc) {
  1736. DRM_DEBUG_KMS("more than one pipe active, disabling compression\n");
  1737. dev_priv->no_fbc_reason = FBC_MULTIPLE_PIPES;
  1738. goto out_disable;
  1739. }
  1740. crtc = tmp_crtc;
  1741. }
  1742. }
  1743. if (!crtc || crtc->fb == NULL) {
  1744. DRM_DEBUG_KMS("no output, disabling\n");
  1745. dev_priv->no_fbc_reason = FBC_NO_OUTPUT;
  1746. goto out_disable;
  1747. }
  1748. intel_crtc = to_intel_crtc(crtc);
  1749. fb = crtc->fb;
  1750. intel_fb = to_intel_framebuffer(fb);
  1751. obj = intel_fb->obj;
  1752. enable_fbc = i915_enable_fbc;
  1753. if (enable_fbc < 0) {
  1754. DRM_DEBUG_KMS("fbc set to per-chip default\n");
  1755. enable_fbc = 1;
  1756. if (INTEL_INFO(dev)->gen <= 6)
  1757. enable_fbc = 0;
  1758. }
  1759. if (!enable_fbc) {
  1760. DRM_DEBUG_KMS("fbc disabled per module param\n");
  1761. dev_priv->no_fbc_reason = FBC_MODULE_PARAM;
  1762. goto out_disable;
  1763. }
  1764. if (intel_fb->obj->base.size > dev_priv->cfb_size) {
  1765. DRM_DEBUG_KMS("framebuffer too large, disabling "
  1766. "compression\n");
  1767. dev_priv->no_fbc_reason = FBC_STOLEN_TOO_SMALL;
  1768. goto out_disable;
  1769. }
  1770. if ((crtc->mode.flags & DRM_MODE_FLAG_INTERLACE) ||
  1771. (crtc->mode.flags & DRM_MODE_FLAG_DBLSCAN)) {
  1772. DRM_DEBUG_KMS("mode incompatible with compression, "
  1773. "disabling\n");
  1774. dev_priv->no_fbc_reason = FBC_UNSUPPORTED_MODE;
  1775. goto out_disable;
  1776. }
  1777. if ((crtc->mode.hdisplay > 2048) ||
  1778. (crtc->mode.vdisplay > 1536)) {
  1779. DRM_DEBUG_KMS("mode too large for compression, disabling\n");
  1780. dev_priv->no_fbc_reason = FBC_MODE_TOO_LARGE;
  1781. goto out_disable;
  1782. }
  1783. if ((IS_I915GM(dev) || IS_I945GM(dev)) && intel_crtc->plane != 0) {
  1784. DRM_DEBUG_KMS("plane not 0, disabling compression\n");
  1785. dev_priv->no_fbc_reason = FBC_BAD_PLANE;
  1786. goto out_disable;
  1787. }
  1788. /* The use of a CPU fence is mandatory in order to detect writes
  1789. * by the CPU to the scanout and trigger updates to the FBC.
  1790. */
  1791. if (obj->tiling_mode != I915_TILING_X ||
  1792. obj->fence_reg == I915_FENCE_REG_NONE) {
  1793. DRM_DEBUG_KMS("framebuffer not tiled or fenced, disabling compression\n");
  1794. dev_priv->no_fbc_reason = FBC_NOT_TILED;
  1795. goto out_disable;
  1796. }
  1797. /* If the kernel debugger is active, always disable compression */
  1798. if (in_dbg_master())
  1799. goto out_disable;
  1800. /* If the scanout has not changed, don't modify the FBC settings.
  1801. * Note that we make the fundamental assumption that the fb->obj
  1802. * cannot be unpinned (and have its GTT offset and fence revoked)
  1803. * without first being decoupled from the scanout and FBC disabled.
  1804. */
  1805. if (dev_priv->cfb_plane == intel_crtc->plane &&
  1806. dev_priv->cfb_fb == fb->base.id &&
  1807. dev_priv->cfb_y == crtc->y)
  1808. return;
  1809. if (intel_fbc_enabled(dev)) {
  1810. /* We update FBC along two paths, after changing fb/crtc
  1811. * configuration (modeswitching) and after page-flipping
  1812. * finishes. For the latter, we know that not only did
  1813. * we disable the FBC at the start of the page-flip
  1814. * sequence, but also more than one vblank has passed.
  1815. *
  1816. * For the former case of modeswitching, it is possible
  1817. * to switch between two FBC valid configurations
  1818. * instantaneously so we do need to disable the FBC
  1819. * before we can modify its control registers. We also
  1820. * have to wait for the next vblank for that to take
  1821. * effect. However, since we delay enabling FBC we can
  1822. * assume that a vblank has passed since disabling and
  1823. * that we can safely alter the registers in the deferred
  1824. * callback.
  1825. *
  1826. * In the scenario that we go from a valid to invalid
  1827. * and then back to valid FBC configuration we have
  1828. * no strict enforcement that a vblank occurred since
  1829. * disabling the FBC. However, along all current pipe
  1830. * disabling paths we do need to wait for a vblank at
  1831. * some point. And we wait before enabling FBC anyway.
  1832. */
  1833. DRM_DEBUG_KMS("disabling active FBC for update\n");
  1834. intel_disable_fbc(dev);
  1835. }
  1836. intel_enable_fbc(crtc, 500);
  1837. return;
  1838. out_disable:
  1839. /* Multiple disables should be harmless */
  1840. if (intel_fbc_enabled(dev)) {
  1841. DRM_DEBUG_KMS("unsupported config, disabling FBC\n");
  1842. intel_disable_fbc(dev);
  1843. }
  1844. }
  1845. int
  1846. intel_pin_and_fence_fb_obj(struct drm_device *dev,
  1847. struct drm_i915_gem_object *obj,
  1848. struct intel_ring_buffer *pipelined)
  1849. {
  1850. struct drm_i915_private *dev_priv = dev->dev_private;
  1851. u32 alignment;
  1852. int ret;
  1853. switch (obj->tiling_mode) {
  1854. case I915_TILING_NONE:
  1855. if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
  1856. alignment = 128 * 1024;
  1857. else if (INTEL_INFO(dev)->gen >= 4)
  1858. alignment = 4 * 1024;
  1859. else
  1860. alignment = 64 * 1024;
  1861. break;
  1862. case I915_TILING_X:
  1863. /* pin() will align the object as required by fence */
  1864. alignment = 0;
  1865. break;
  1866. case I915_TILING_Y:
  1867. /* FIXME: Is this true? */
  1868. DRM_ERROR("Y tiled not allowed for scan out buffers\n");
  1869. return -EINVAL;
  1870. default:
  1871. BUG();
  1872. }
  1873. dev_priv->mm.interruptible = false;
  1874. ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined);
  1875. if (ret)
  1876. goto err_interruptible;
  1877. /* Install a fence for tiled scan-out. Pre-i965 always needs a
  1878. * fence, whereas 965+ only requires a fence if using
  1879. * framebuffer compression. For simplicity, we always install
  1880. * a fence as the cost is not that onerous.
  1881. */
  1882. ret = i915_gem_object_get_fence(obj, pipelined);
  1883. if (ret)
  1884. goto err_unpin;
  1885. i915_gem_object_pin_fence(obj);
  1886. dev_priv->mm.interruptible = true;
  1887. return 0;
  1888. err_unpin:
  1889. i915_gem_object_unpin(obj);
  1890. err_interruptible:
  1891. dev_priv->mm.interruptible = true;
  1892. return ret;
  1893. }
  1894. void intel_unpin_fb_obj(struct drm_i915_gem_object *obj)
  1895. {
  1896. i915_gem_object_unpin_fence(obj);
  1897. i915_gem_object_unpin(obj);
  1898. }
  1899. static int i9xx_update_plane(struct drm_crtc *crtc, struct drm_framebuffer *fb,
  1900. int x, int y)
  1901. {
  1902. struct drm_device *dev = crtc->dev;
  1903. struct drm_i915_private *dev_priv = dev->dev_private;
  1904. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1905. struct intel_framebuffer *intel_fb;
  1906. struct drm_i915_gem_object *obj;
  1907. int plane = intel_crtc->plane;
  1908. unsigned long Start, Offset;
  1909. u32 dspcntr;
  1910. u32 reg;
  1911. switch (plane) {
  1912. case 0:
  1913. case 1:
  1914. break;
  1915. default:
  1916. DRM_ERROR("Can't update plane %d in SAREA\n", plane);
  1917. return -EINVAL;
  1918. }
  1919. intel_fb = to_intel_framebuffer(fb);
  1920. obj = intel_fb->obj;
  1921. reg = DSPCNTR(plane);
  1922. dspcntr = I915_READ(reg);
  1923. /* Mask out pixel format bits in case we change it */
  1924. dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
  1925. switch (fb->bits_per_pixel) {
  1926. case 8:
  1927. dspcntr |= DISPPLANE_8BPP;
  1928. break;
  1929. case 16:
  1930. if (fb->depth == 15)
  1931. dspcntr |= DISPPLANE_15_16BPP;
  1932. else
  1933. dspcntr |= DISPPLANE_16BPP;
  1934. break;
  1935. case 24:
  1936. case 32:
  1937. dspcntr |= DISPPLANE_32BPP_NO_ALPHA;
  1938. break;
  1939. default:
  1940. DRM_ERROR("Unknown color depth %d\n", fb->bits_per_pixel);
  1941. return -EINVAL;
  1942. }
  1943. if (INTEL_INFO(dev)->gen >= 4) {
  1944. if (obj->tiling_mode != I915_TILING_NONE)
  1945. dspcntr |= DISPPLANE_TILED;
  1946. else
  1947. dspcntr &= ~DISPPLANE_TILED;
  1948. }
  1949. I915_WRITE(reg, dspcntr);
  1950. Start = obj->gtt_offset;
  1951. Offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
  1952. DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
  1953. Start, Offset, x, y, fb->pitches[0]);
  1954. I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
  1955. if (INTEL_INFO(dev)->gen >= 4) {
  1956. I915_MODIFY_DISPBASE(DSPSURF(plane), Start);
  1957. I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
  1958. I915_WRITE(DSPADDR(plane), Offset);
  1959. } else
  1960. I915_WRITE(DSPADDR(plane), Start + Offset);
  1961. POSTING_READ(reg);
  1962. return 0;
  1963. }
  1964. static int ironlake_update_plane(struct drm_crtc *crtc,
  1965. struct drm_framebuffer *fb, int x, int y)
  1966. {
  1967. struct drm_device *dev = crtc->dev;
  1968. struct drm_i915_private *dev_priv = dev->dev_private;
  1969. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1970. struct intel_framebuffer *intel_fb;
  1971. struct drm_i915_gem_object *obj;
  1972. int plane = intel_crtc->plane;
  1973. unsigned long Start, Offset;
  1974. u32 dspcntr;
  1975. u32 reg;
  1976. switch (plane) {
  1977. case 0:
  1978. case 1:
  1979. case 2:
  1980. break;
  1981. default:
  1982. DRM_ERROR("Can't update plane %d in SAREA\n", plane);
  1983. return -EINVAL;
  1984. }
  1985. intel_fb = to_intel_framebuffer(fb);
  1986. obj = intel_fb->obj;
  1987. reg = DSPCNTR(plane);
  1988. dspcntr = I915_READ(reg);
  1989. /* Mask out pixel format bits in case we change it */
  1990. dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
  1991. switch (fb->bits_per_pixel) {
  1992. case 8:
  1993. dspcntr |= DISPPLANE_8BPP;
  1994. break;
  1995. case 16:
  1996. if (fb->depth != 16)
  1997. return -EINVAL;
  1998. dspcntr |= DISPPLANE_16BPP;
  1999. break;
  2000. case 24:
  2001. case 32:
  2002. if (fb->depth == 24)
  2003. dspcntr |= DISPPLANE_32BPP_NO_ALPHA;
  2004. else if (fb->depth == 30)
  2005. dspcntr |= DISPPLANE_32BPP_30BIT_NO_ALPHA;
  2006. else
  2007. return -EINVAL;
  2008. break;
  2009. default:
  2010. DRM_ERROR("Unknown color depth %d\n", fb->bits_per_pixel);
  2011. return -EINVAL;
  2012. }
  2013. if (obj->tiling_mode != I915_TILING_NONE)
  2014. dspcntr |= DISPPLANE_TILED;
  2015. else
  2016. dspcntr &= ~DISPPLANE_TILED;
  2017. /* must disable */
  2018. dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
  2019. I915_WRITE(reg, dspcntr);
  2020. Start = obj->gtt_offset;
  2021. Offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
  2022. DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
  2023. Start, Offset, x, y, fb->pitches[0]);
  2024. I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
  2025. I915_MODIFY_DISPBASE(DSPSURF(plane), Start);
  2026. I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
  2027. I915_WRITE(DSPADDR(plane), Offset);
  2028. POSTING_READ(reg);
  2029. return 0;
  2030. }
  2031. /* Assume fb object is pinned & idle & fenced and just update base pointers */
  2032. static int
  2033. intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
  2034. int x, int y, enum mode_set_atomic state)
  2035. {
  2036. struct drm_device *dev = crtc->dev;
  2037. struct drm_i915_private *dev_priv = dev->dev_private;
  2038. int ret;
  2039. ret = dev_priv->display.update_plane(crtc, fb, x, y);
  2040. if (ret)
  2041. return ret;
  2042. intel_update_fbc(dev);
  2043. intel_increase_pllclock(crtc);
  2044. return 0;
  2045. }
  2046. static int
  2047. intel_finish_fb(struct drm_framebuffer *old_fb)
  2048. {
  2049. struct drm_i915_gem_object *obj = to_intel_framebuffer(old_fb)->obj;
  2050. struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
  2051. bool was_interruptible = dev_priv->mm.interruptible;
  2052. int ret;
  2053. wait_event(dev_priv->pending_flip_queue,
  2054. atomic_read(&dev_priv->mm.wedged) ||
  2055. atomic_read(&obj->pending_flip) == 0);
  2056. /* Big Hammer, we also need to ensure that any pending
  2057. * MI_WAIT_FOR_EVENT inside a user batch buffer on the
  2058. * current scanout is retired before unpinning the old
  2059. * framebuffer.
  2060. *
  2061. * This should only fail upon a hung GPU, in which case we
  2062. * can safely continue.
  2063. */
  2064. dev_priv->mm.interruptible = false;
  2065. ret = i915_gem_object_finish_gpu(obj);
  2066. dev_priv->mm.interruptible = was_interruptible;
  2067. return ret;
  2068. }
  2069. static int
  2070. intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
  2071. struct drm_framebuffer *old_fb)
  2072. {
  2073. struct drm_device *dev = crtc->dev;
  2074. struct drm_i915_master_private *master_priv;
  2075. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2076. int ret;
  2077. /* no fb bound */
  2078. if (!crtc->fb) {
  2079. DRM_ERROR("No FB bound\n");
  2080. return 0;
  2081. }
  2082. switch (intel_crtc->plane) {
  2083. case 0:
  2084. case 1:
  2085. break;
  2086. case 2:
  2087. if (IS_IVYBRIDGE(dev))
  2088. break;
  2089. /* fall through otherwise */
  2090. default:
  2091. DRM_ERROR("no plane for crtc\n");
  2092. return -EINVAL;
  2093. }
  2094. mutex_lock(&dev->struct_mutex);
  2095. ret = intel_pin_and_fence_fb_obj(dev,
  2096. to_intel_framebuffer(crtc->fb)->obj,
  2097. NULL);
  2098. if (ret != 0) {
  2099. mutex_unlock(&dev->struct_mutex);
  2100. DRM_ERROR("pin & fence failed\n");
  2101. return ret;
  2102. }
  2103. if (old_fb)
  2104. intel_finish_fb(old_fb);
  2105. ret = intel_pipe_set_base_atomic(crtc, crtc->fb, x, y,
  2106. LEAVE_ATOMIC_MODE_SET);
  2107. if (ret) {
  2108. intel_unpin_fb_obj(to_intel_framebuffer(crtc->fb)->obj);
  2109. mutex_unlock(&dev->struct_mutex);
  2110. DRM_ERROR("failed to update base address\n");
  2111. return ret;
  2112. }
  2113. if (old_fb) {
  2114. intel_wait_for_vblank(dev, intel_crtc->pipe);
  2115. intel_unpin_fb_obj(to_intel_framebuffer(old_fb)->obj);
  2116. }
  2117. mutex_unlock(&dev->struct_mutex);
  2118. if (!dev->primary->master)
  2119. return 0;
  2120. master_priv = dev->primary->master->driver_priv;
  2121. if (!master_priv->sarea_priv)
  2122. return 0;
  2123. if (intel_crtc->pipe) {
  2124. master_priv->sarea_priv->pipeB_x = x;
  2125. master_priv->sarea_priv->pipeB_y = y;
  2126. } else {
  2127. master_priv->sarea_priv->pipeA_x = x;
  2128. master_priv->sarea_priv->pipeA_y = y;
  2129. }
  2130. return 0;
  2131. }
  2132. static void ironlake_set_pll_edp(struct drm_crtc *crtc, int clock)
  2133. {
  2134. struct drm_device *dev = crtc->dev;
  2135. struct drm_i915_private *dev_priv = dev->dev_private;
  2136. u32 dpa_ctl;
  2137. DRM_DEBUG_KMS("eDP PLL enable for clock %d\n", clock);
  2138. dpa_ctl = I915_READ(DP_A);
  2139. dpa_ctl &= ~DP_PLL_FREQ_MASK;
  2140. if (clock < 200000) {
  2141. u32 temp;
  2142. dpa_ctl |= DP_PLL_FREQ_160MHZ;
  2143. /* workaround for 160Mhz:
  2144. 1) program 0x4600c bits 15:0 = 0x8124
  2145. 2) program 0x46010 bit 0 = 1
  2146. 3) program 0x46034 bit 24 = 1
  2147. 4) program 0x64000 bit 14 = 1
  2148. */
  2149. temp = I915_READ(0x4600c);
  2150. temp &= 0xffff0000;
  2151. I915_WRITE(0x4600c, temp | 0x8124);
  2152. temp = I915_READ(0x46010);
  2153. I915_WRITE(0x46010, temp | 1);
  2154. temp = I915_READ(0x46034);
  2155. I915_WRITE(0x46034, temp | (1 << 24));
  2156. } else {
  2157. dpa_ctl |= DP_PLL_FREQ_270MHZ;
  2158. }
  2159. I915_WRITE(DP_A, dpa_ctl);
  2160. POSTING_READ(DP_A);
  2161. udelay(500);
  2162. }
  2163. static void intel_fdi_normal_train(struct drm_crtc *crtc)
  2164. {
  2165. struct drm_device *dev = crtc->dev;
  2166. struct drm_i915_private *dev_priv = dev->dev_private;
  2167. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2168. int pipe = intel_crtc->pipe;
  2169. u32 reg, temp;
  2170. /* enable normal train */
  2171. reg = FDI_TX_CTL(pipe);
  2172. temp = I915_READ(reg);
  2173. if (IS_IVYBRIDGE(dev)) {
  2174. temp &= ~FDI_LINK_TRAIN_NONE_IVB;
  2175. temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
  2176. } else {
  2177. temp &= ~FDI_LINK_TRAIN_NONE;
  2178. temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
  2179. }
  2180. I915_WRITE(reg, temp);
  2181. reg = FDI_RX_CTL(pipe);
  2182. temp = I915_READ(reg);
  2183. if (HAS_PCH_CPT(dev)) {
  2184. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  2185. temp |= FDI_LINK_TRAIN_NORMAL_CPT;
  2186. } else {
  2187. temp &= ~FDI_LINK_TRAIN_NONE;
  2188. temp |= FDI_LINK_TRAIN_NONE;
  2189. }
  2190. I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
  2191. /* wait one idle pattern time */
  2192. POSTING_READ(reg);
  2193. udelay(1000);
  2194. /* IVB wants error correction enabled */
  2195. if (IS_IVYBRIDGE(dev))
  2196. I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
  2197. FDI_FE_ERRC_ENABLE);
  2198. }
  2199. static void cpt_phase_pointer_enable(struct drm_device *dev, int pipe)
  2200. {
  2201. struct drm_i915_private *dev_priv = dev->dev_private;
  2202. u32 flags = I915_READ(SOUTH_CHICKEN1);
  2203. flags |= FDI_PHASE_SYNC_OVR(pipe);
  2204. I915_WRITE(SOUTH_CHICKEN1, flags); /* once to unlock... */
  2205. flags |= FDI_PHASE_SYNC_EN(pipe);
  2206. I915_WRITE(SOUTH_CHICKEN1, flags); /* then again to enable */
  2207. POSTING_READ(SOUTH_CHICKEN1);
  2208. }
  2209. /* The FDI link training functions for ILK/Ibexpeak. */
  2210. static void ironlake_fdi_link_train(struct drm_crtc *crtc)
  2211. {
  2212. struct drm_device *dev = crtc->dev;
  2213. struct drm_i915_private *dev_priv = dev->dev_private;
  2214. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2215. int pipe = intel_crtc->pipe;
  2216. int plane = intel_crtc->plane;
  2217. u32 reg, temp, tries;
  2218. /* FDI needs bits from pipe & plane first */
  2219. assert_pipe_enabled(dev_priv, pipe);
  2220. assert_plane_enabled(dev_priv, plane);
  2221. /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
  2222. for train result */
  2223. reg = FDI_RX_IMR(pipe);
  2224. temp = I915_READ(reg);
  2225. temp &= ~FDI_RX_SYMBOL_LOCK;
  2226. temp &= ~FDI_RX_BIT_LOCK;
  2227. I915_WRITE(reg, temp);
  2228. I915_READ(reg);
  2229. udelay(150);
  2230. /* enable CPU FDI TX and PCH FDI RX */
  2231. reg = FDI_TX_CTL(pipe);
  2232. temp = I915_READ(reg);
  2233. temp &= ~(7 << 19);
  2234. temp |= (intel_crtc->fdi_lanes - 1) << 19;
  2235. temp &= ~FDI_LINK_TRAIN_NONE;
  2236. temp |= FDI_LINK_TRAIN_PATTERN_1;
  2237. I915_WRITE(reg, temp | FDI_TX_ENABLE);
  2238. reg = FDI_RX_CTL(pipe);
  2239. temp = I915_READ(reg);
  2240. temp &= ~FDI_LINK_TRAIN_NONE;
  2241. temp |= FDI_LINK_TRAIN_PATTERN_1;
  2242. I915_WRITE(reg, temp | FDI_RX_ENABLE);
  2243. POSTING_READ(reg);
  2244. udelay(150);
  2245. /* Ironlake workaround, enable clock pointer after FDI enable*/
  2246. if (HAS_PCH_IBX(dev)) {
  2247. I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
  2248. I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
  2249. FDI_RX_PHASE_SYNC_POINTER_EN);
  2250. }
  2251. reg = FDI_RX_IIR(pipe);
  2252. for (tries = 0; tries < 5; tries++) {
  2253. temp = I915_READ(reg);
  2254. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2255. if ((temp & FDI_RX_BIT_LOCK)) {
  2256. DRM_DEBUG_KMS("FDI train 1 done.\n");
  2257. I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
  2258. break;
  2259. }
  2260. }
  2261. if (tries == 5)
  2262. DRM_ERROR("FDI train 1 fail!\n");
  2263. /* Train 2 */
  2264. reg = FDI_TX_CTL(pipe);
  2265. temp = I915_READ(reg);
  2266. temp &= ~FDI_LINK_TRAIN_NONE;
  2267. temp |= FDI_LINK_TRAIN_PATTERN_2;
  2268. I915_WRITE(reg, temp);
  2269. reg = FDI_RX_CTL(pipe);
  2270. temp = I915_READ(reg);
  2271. temp &= ~FDI_LINK_TRAIN_NONE;
  2272. temp |= FDI_LINK_TRAIN_PATTERN_2;
  2273. I915_WRITE(reg, temp);
  2274. POSTING_READ(reg);
  2275. udelay(150);
  2276. reg = FDI_RX_IIR(pipe);
  2277. for (tries = 0; tries < 5; tries++) {
  2278. temp = I915_READ(reg);
  2279. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2280. if (temp & FDI_RX_SYMBOL_LOCK) {
  2281. I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
  2282. DRM_DEBUG_KMS("FDI train 2 done.\n");
  2283. break;
  2284. }
  2285. }
  2286. if (tries == 5)
  2287. DRM_ERROR("FDI train 2 fail!\n");
  2288. DRM_DEBUG_KMS("FDI train done\n");
  2289. }
  2290. static const int snb_b_fdi_train_param[] = {
  2291. FDI_LINK_TRAIN_400MV_0DB_SNB_B,
  2292. FDI_LINK_TRAIN_400MV_6DB_SNB_B,
  2293. FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
  2294. FDI_LINK_TRAIN_800MV_0DB_SNB_B,
  2295. };
  2296. /* The FDI link training functions for SNB/Cougarpoint. */
  2297. static void gen6_fdi_link_train(struct drm_crtc *crtc)
  2298. {
  2299. struct drm_device *dev = crtc->dev;
  2300. struct drm_i915_private *dev_priv = dev->dev_private;
  2301. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2302. int pipe = intel_crtc->pipe;
  2303. u32 reg, temp, i, retry;
  2304. /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
  2305. for train result */
  2306. reg = FDI_RX_IMR(pipe);
  2307. temp = I915_READ(reg);
  2308. temp &= ~FDI_RX_SYMBOL_LOCK;
  2309. temp &= ~FDI_RX_BIT_LOCK;
  2310. I915_WRITE(reg, temp);
  2311. POSTING_READ(reg);
  2312. udelay(150);
  2313. /* enable CPU FDI TX and PCH FDI RX */
  2314. reg = FDI_TX_CTL(pipe);
  2315. temp = I915_READ(reg);
  2316. temp &= ~(7 << 19);
  2317. temp |= (intel_crtc->fdi_lanes - 1) << 19;
  2318. temp &= ~FDI_LINK_TRAIN_NONE;
  2319. temp |= FDI_LINK_TRAIN_PATTERN_1;
  2320. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2321. /* SNB-B */
  2322. temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
  2323. I915_WRITE(reg, temp | FDI_TX_ENABLE);
  2324. reg = FDI_RX_CTL(pipe);
  2325. temp = I915_READ(reg);
  2326. if (HAS_PCH_CPT(dev)) {
  2327. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  2328. temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
  2329. } else {
  2330. temp &= ~FDI_LINK_TRAIN_NONE;
  2331. temp |= FDI_LINK_TRAIN_PATTERN_1;
  2332. }
  2333. I915_WRITE(reg, temp | FDI_RX_ENABLE);
  2334. POSTING_READ(reg);
  2335. udelay(150);
  2336. if (HAS_PCH_CPT(dev))
  2337. cpt_phase_pointer_enable(dev, pipe);
  2338. for (i = 0; i < 4; i++) {
  2339. reg = FDI_TX_CTL(pipe);
  2340. temp = I915_READ(reg);
  2341. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2342. temp |= snb_b_fdi_train_param[i];
  2343. I915_WRITE(reg, temp);
  2344. POSTING_READ(reg);
  2345. udelay(500);
  2346. for (retry = 0; retry < 5; retry++) {
  2347. reg = FDI_RX_IIR(pipe);
  2348. temp = I915_READ(reg);
  2349. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2350. if (temp & FDI_RX_BIT_LOCK) {
  2351. I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
  2352. DRM_DEBUG_KMS("FDI train 1 done.\n");
  2353. break;
  2354. }
  2355. udelay(50);
  2356. }
  2357. if (retry < 5)
  2358. break;
  2359. }
  2360. if (i == 4)
  2361. DRM_ERROR("FDI train 1 fail!\n");
  2362. /* Train 2 */
  2363. reg = FDI_TX_CTL(pipe);
  2364. temp = I915_READ(reg);
  2365. temp &= ~FDI_LINK_TRAIN_NONE;
  2366. temp |= FDI_LINK_TRAIN_PATTERN_2;
  2367. if (IS_GEN6(dev)) {
  2368. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2369. /* SNB-B */
  2370. temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
  2371. }
  2372. I915_WRITE(reg, temp);
  2373. reg = FDI_RX_CTL(pipe);
  2374. temp = I915_READ(reg);
  2375. if (HAS_PCH_CPT(dev)) {
  2376. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  2377. temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
  2378. } else {
  2379. temp &= ~FDI_LINK_TRAIN_NONE;
  2380. temp |= FDI_LINK_TRAIN_PATTERN_2;
  2381. }
  2382. I915_WRITE(reg, temp);
  2383. POSTING_READ(reg);
  2384. udelay(150);
  2385. for (i = 0; i < 4; i++) {
  2386. reg = FDI_TX_CTL(pipe);
  2387. temp = I915_READ(reg);
  2388. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2389. temp |= snb_b_fdi_train_param[i];
  2390. I915_WRITE(reg, temp);
  2391. POSTING_READ(reg);
  2392. udelay(500);
  2393. for (retry = 0; retry < 5; retry++) {
  2394. reg = FDI_RX_IIR(pipe);
  2395. temp = I915_READ(reg);
  2396. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2397. if (temp & FDI_RX_SYMBOL_LOCK) {
  2398. I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
  2399. DRM_DEBUG_KMS("FDI train 2 done.\n");
  2400. break;
  2401. }
  2402. udelay(50);
  2403. }
  2404. if (retry < 5)
  2405. break;
  2406. }
  2407. if (i == 4)
  2408. DRM_ERROR("FDI train 2 fail!\n");
  2409. DRM_DEBUG_KMS("FDI train done.\n");
  2410. }
  2411. /* Manual link training for Ivy Bridge A0 parts */
  2412. static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
  2413. {
  2414. struct drm_device *dev = crtc->dev;
  2415. struct drm_i915_private *dev_priv = dev->dev_private;
  2416. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2417. int pipe = intel_crtc->pipe;
  2418. u32 reg, temp, i;
  2419. /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
  2420. for train result */
  2421. reg = FDI_RX_IMR(pipe);
  2422. temp = I915_READ(reg);
  2423. temp &= ~FDI_RX_SYMBOL_LOCK;
  2424. temp &= ~FDI_RX_BIT_LOCK;
  2425. I915_WRITE(reg, temp);
  2426. POSTING_READ(reg);
  2427. udelay(150);
  2428. /* enable CPU FDI TX and PCH FDI RX */
  2429. reg = FDI_TX_CTL(pipe);
  2430. temp = I915_READ(reg);
  2431. temp &= ~(7 << 19);
  2432. temp |= (intel_crtc->fdi_lanes - 1) << 19;
  2433. temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
  2434. temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
  2435. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2436. temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
  2437. temp |= FDI_COMPOSITE_SYNC;
  2438. I915_WRITE(reg, temp | FDI_TX_ENABLE);
  2439. reg = FDI_RX_CTL(pipe);
  2440. temp = I915_READ(reg);
  2441. temp &= ~FDI_LINK_TRAIN_AUTO;
  2442. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  2443. temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
  2444. temp |= FDI_COMPOSITE_SYNC;
  2445. I915_WRITE(reg, temp | FDI_RX_ENABLE);
  2446. POSTING_READ(reg);
  2447. udelay(150);
  2448. if (HAS_PCH_CPT(dev))
  2449. cpt_phase_pointer_enable(dev, pipe);
  2450. for (i = 0; i < 4; i++) {
  2451. reg = FDI_TX_CTL(pipe);
  2452. temp = I915_READ(reg);
  2453. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2454. temp |= snb_b_fdi_train_param[i];
  2455. I915_WRITE(reg, temp);
  2456. POSTING_READ(reg);
  2457. udelay(500);
  2458. reg = FDI_RX_IIR(pipe);
  2459. temp = I915_READ(reg);
  2460. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2461. if (temp & FDI_RX_BIT_LOCK ||
  2462. (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
  2463. I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
  2464. DRM_DEBUG_KMS("FDI train 1 done.\n");
  2465. break;
  2466. }
  2467. }
  2468. if (i == 4)
  2469. DRM_ERROR("FDI train 1 fail!\n");
  2470. /* Train 2 */
  2471. reg = FDI_TX_CTL(pipe);
  2472. temp = I915_READ(reg);
  2473. temp &= ~FDI_LINK_TRAIN_NONE_IVB;
  2474. temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
  2475. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2476. temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
  2477. I915_WRITE(reg, temp);
  2478. reg = FDI_RX_CTL(pipe);
  2479. temp = I915_READ(reg);
  2480. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  2481. temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
  2482. I915_WRITE(reg, temp);
  2483. POSTING_READ(reg);
  2484. udelay(150);
  2485. for (i = 0; i < 4; i++) {
  2486. reg = FDI_TX_CTL(pipe);
  2487. temp = I915_READ(reg);
  2488. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2489. temp |= snb_b_fdi_train_param[i];
  2490. I915_WRITE(reg, temp);
  2491. POSTING_READ(reg);
  2492. udelay(500);
  2493. reg = FDI_RX_IIR(pipe);
  2494. temp = I915_READ(reg);
  2495. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2496. if (temp & FDI_RX_SYMBOL_LOCK) {
  2497. I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
  2498. DRM_DEBUG_KMS("FDI train 2 done.\n");
  2499. break;
  2500. }
  2501. }
  2502. if (i == 4)
  2503. DRM_ERROR("FDI train 2 fail!\n");
  2504. DRM_DEBUG_KMS("FDI train done.\n");
  2505. }
  2506. static void ironlake_fdi_pll_enable(struct drm_crtc *crtc)
  2507. {
  2508. struct drm_device *dev = crtc->dev;
  2509. struct drm_i915_private *dev_priv = dev->dev_private;
  2510. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2511. int pipe = intel_crtc->pipe;
  2512. u32 reg, temp;
  2513. /* Write the TU size bits so error detection works */
  2514. I915_WRITE(FDI_RX_TUSIZE1(pipe),
  2515. I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
  2516. /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
  2517. reg = FDI_RX_CTL(pipe);
  2518. temp = I915_READ(reg);
  2519. temp &= ~((0x7 << 19) | (0x7 << 16));
  2520. temp |= (intel_crtc->fdi_lanes - 1) << 19;
  2521. temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
  2522. I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
  2523. POSTING_READ(reg);
  2524. udelay(200);
  2525. /* Switch from Rawclk to PCDclk */
  2526. temp = I915_READ(reg);
  2527. I915_WRITE(reg, temp | FDI_PCDCLK);
  2528. POSTING_READ(reg);
  2529. udelay(200);
  2530. /* Enable CPU FDI TX PLL, always on for Ironlake */
  2531. reg = FDI_TX_CTL(pipe);
  2532. temp = I915_READ(reg);
  2533. if ((temp & FDI_TX_PLL_ENABLE) == 0) {
  2534. I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
  2535. POSTING_READ(reg);
  2536. udelay(100);
  2537. }
  2538. }
  2539. static void cpt_phase_pointer_disable(struct drm_device *dev, int pipe)
  2540. {
  2541. struct drm_i915_private *dev_priv = dev->dev_private;
  2542. u32 flags = I915_READ(SOUTH_CHICKEN1);
  2543. flags &= ~(FDI_PHASE_SYNC_EN(pipe));
  2544. I915_WRITE(SOUTH_CHICKEN1, flags); /* once to disable... */
  2545. flags &= ~(FDI_PHASE_SYNC_OVR(pipe));
  2546. I915_WRITE(SOUTH_CHICKEN1, flags); /* then again to lock */
  2547. POSTING_READ(SOUTH_CHICKEN1);
  2548. }
  2549. static void ironlake_fdi_disable(struct drm_crtc *crtc)
  2550. {
  2551. struct drm_device *dev = crtc->dev;
  2552. struct drm_i915_private *dev_priv = dev->dev_private;
  2553. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2554. int pipe = intel_crtc->pipe;
  2555. u32 reg, temp;
  2556. /* disable CPU FDI tx and PCH FDI rx */
  2557. reg = FDI_TX_CTL(pipe);
  2558. temp = I915_READ(reg);
  2559. I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
  2560. POSTING_READ(reg);
  2561. reg = FDI_RX_CTL(pipe);
  2562. temp = I915_READ(reg);
  2563. temp &= ~(0x7 << 16);
  2564. temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
  2565. I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
  2566. POSTING_READ(reg);
  2567. udelay(100);
  2568. /* Ironlake workaround, disable clock pointer after downing FDI */
  2569. if (HAS_PCH_IBX(dev)) {
  2570. I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
  2571. I915_WRITE(FDI_RX_CHICKEN(pipe),
  2572. I915_READ(FDI_RX_CHICKEN(pipe) &
  2573. ~FDI_RX_PHASE_SYNC_POINTER_EN));
  2574. } else if (HAS_PCH_CPT(dev)) {
  2575. cpt_phase_pointer_disable(dev, pipe);
  2576. }
  2577. /* still set train pattern 1 */
  2578. reg = FDI_TX_CTL(pipe);
  2579. temp = I915_READ(reg);
  2580. temp &= ~FDI_LINK_TRAIN_NONE;
  2581. temp |= FDI_LINK_TRAIN_PATTERN_1;
  2582. I915_WRITE(reg, temp);
  2583. reg = FDI_RX_CTL(pipe);
  2584. temp = I915_READ(reg);
  2585. if (HAS_PCH_CPT(dev)) {
  2586. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  2587. temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
  2588. } else {
  2589. temp &= ~FDI_LINK_TRAIN_NONE;
  2590. temp |= FDI_LINK_TRAIN_PATTERN_1;
  2591. }
  2592. /* BPC in FDI rx is consistent with that in PIPECONF */
  2593. temp &= ~(0x07 << 16);
  2594. temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
  2595. I915_WRITE(reg, temp);
  2596. POSTING_READ(reg);
  2597. udelay(100);
  2598. }
  2599. /*
  2600. * When we disable a pipe, we need to clear any pending scanline wait events
  2601. * to avoid hanging the ring, which we assume we are waiting on.
  2602. */
  2603. static void intel_clear_scanline_wait(struct drm_device *dev)
  2604. {
  2605. struct drm_i915_private *dev_priv = dev->dev_private;
  2606. struct intel_ring_buffer *ring;
  2607. u32 tmp;
  2608. if (IS_GEN2(dev))
  2609. /* Can't break the hang on i8xx */
  2610. return;
  2611. ring = LP_RING(dev_priv);
  2612. tmp = I915_READ_CTL(ring);
  2613. if (tmp & RING_WAIT)
  2614. I915_WRITE_CTL(ring, tmp);
  2615. }
  2616. static void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
  2617. {
  2618. struct drm_i915_gem_object *obj;
  2619. struct drm_i915_private *dev_priv;
  2620. if (crtc->fb == NULL)
  2621. return;
  2622. obj = to_intel_framebuffer(crtc->fb)->obj;
  2623. dev_priv = crtc->dev->dev_private;
  2624. wait_event(dev_priv->pending_flip_queue,
  2625. atomic_read(&obj->pending_flip) == 0);
  2626. }
  2627. static bool intel_crtc_driving_pch(struct drm_crtc *crtc)
  2628. {
  2629. struct drm_device *dev = crtc->dev;
  2630. struct drm_mode_config *mode_config = &dev->mode_config;
  2631. struct intel_encoder *encoder;
  2632. /*
  2633. * If there's a non-PCH eDP on this crtc, it must be DP_A, and that
  2634. * must be driven by its own crtc; no sharing is possible.
  2635. */
  2636. list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
  2637. if (encoder->base.crtc != crtc)
  2638. continue;
  2639. switch (encoder->type) {
  2640. case INTEL_OUTPUT_EDP:
  2641. if (!intel_encoder_is_pch_edp(&encoder->base))
  2642. return false;
  2643. continue;
  2644. }
  2645. }
  2646. return true;
  2647. }
  2648. /*
  2649. * Enable PCH resources required for PCH ports:
  2650. * - PCH PLLs
  2651. * - FDI training & RX/TX
  2652. * - update transcoder timings
  2653. * - DP transcoding bits
  2654. * - transcoder
  2655. */
  2656. static void ironlake_pch_enable(struct drm_crtc *crtc)
  2657. {
  2658. struct drm_device *dev = crtc->dev;
  2659. struct drm_i915_private *dev_priv = dev->dev_private;
  2660. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2661. int pipe = intel_crtc->pipe;
  2662. u32 reg, temp, transc_sel;
  2663. /* For PCH output, training FDI link */
  2664. dev_priv->display.fdi_link_train(crtc);
  2665. intel_enable_pch_pll(dev_priv, pipe);
  2666. if (HAS_PCH_CPT(dev)) {
  2667. transc_sel = intel_crtc->use_pll_a ? TRANSC_DPLLA_SEL :
  2668. TRANSC_DPLLB_SEL;
  2669. /* Be sure PCH DPLL SEL is set */
  2670. temp = I915_READ(PCH_DPLL_SEL);
  2671. if (pipe == 0) {
  2672. temp &= ~(TRANSA_DPLLB_SEL);
  2673. temp |= (TRANSA_DPLL_ENABLE | TRANSA_DPLLA_SEL);
  2674. } else if (pipe == 1) {
  2675. temp &= ~(TRANSB_DPLLB_SEL);
  2676. temp |= (TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL);
  2677. } else if (pipe == 2) {
  2678. temp &= ~(TRANSC_DPLLB_SEL);
  2679. temp |= (TRANSC_DPLL_ENABLE | transc_sel);
  2680. }
  2681. I915_WRITE(PCH_DPLL_SEL, temp);
  2682. }
  2683. /* set transcoder timing, panel must allow it */
  2684. assert_panel_unlocked(dev_priv, pipe);
  2685. I915_WRITE(TRANS_HTOTAL(pipe), I915_READ(HTOTAL(pipe)));
  2686. I915_WRITE(TRANS_HBLANK(pipe), I915_READ(HBLANK(pipe)));
  2687. I915_WRITE(TRANS_HSYNC(pipe), I915_READ(HSYNC(pipe)));
  2688. I915_WRITE(TRANS_VTOTAL(pipe), I915_READ(VTOTAL(pipe)));
  2689. I915_WRITE(TRANS_VBLANK(pipe), I915_READ(VBLANK(pipe)));
  2690. I915_WRITE(TRANS_VSYNC(pipe), I915_READ(VSYNC(pipe)));
  2691. I915_WRITE(TRANS_VSYNCSHIFT(pipe), I915_READ(VSYNCSHIFT(pipe)));
  2692. intel_fdi_normal_train(crtc);
  2693. /* For PCH DP, enable TRANS_DP_CTL */
  2694. if (HAS_PCH_CPT(dev) &&
  2695. (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
  2696. intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
  2697. u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) >> 5;
  2698. reg = TRANS_DP_CTL(pipe);
  2699. temp = I915_READ(reg);
  2700. temp &= ~(TRANS_DP_PORT_SEL_MASK |
  2701. TRANS_DP_SYNC_MASK |
  2702. TRANS_DP_BPC_MASK);
  2703. temp |= (TRANS_DP_OUTPUT_ENABLE |
  2704. TRANS_DP_ENH_FRAMING);
  2705. temp |= bpc << 9; /* same format but at 11:9 */
  2706. if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
  2707. temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
  2708. if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
  2709. temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
  2710. switch (intel_trans_dp_port_sel(crtc)) {
  2711. case PCH_DP_B:
  2712. temp |= TRANS_DP_PORT_SEL_B;
  2713. break;
  2714. case PCH_DP_C:
  2715. temp |= TRANS_DP_PORT_SEL_C;
  2716. break;
  2717. case PCH_DP_D:
  2718. temp |= TRANS_DP_PORT_SEL_D;
  2719. break;
  2720. default:
  2721. DRM_DEBUG_KMS("Wrong PCH DP port return. Guess port B\n");
  2722. temp |= TRANS_DP_PORT_SEL_B;
  2723. break;
  2724. }
  2725. I915_WRITE(reg, temp);
  2726. }
  2727. intel_enable_transcoder(dev_priv, pipe);
  2728. }
  2729. void intel_cpt_verify_modeset(struct drm_device *dev, int pipe)
  2730. {
  2731. struct drm_i915_private *dev_priv = dev->dev_private;
  2732. int dslreg = PIPEDSL(pipe), tc2reg = TRANS_CHICKEN2(pipe);
  2733. u32 temp;
  2734. temp = I915_READ(dslreg);
  2735. udelay(500);
  2736. if (wait_for(I915_READ(dslreg) != temp, 5)) {
  2737. /* Without this, mode sets may fail silently on FDI */
  2738. I915_WRITE(tc2reg, TRANS_AUTOTRAIN_GEN_STALL_DIS);
  2739. udelay(250);
  2740. I915_WRITE(tc2reg, 0);
  2741. if (wait_for(I915_READ(dslreg) != temp, 5))
  2742. DRM_ERROR("mode set failed: pipe %d stuck\n", pipe);
  2743. }
  2744. }
  2745. static void ironlake_crtc_enable(struct drm_crtc *crtc)
  2746. {
  2747. struct drm_device *dev = crtc->dev;
  2748. struct drm_i915_private *dev_priv = dev->dev_private;
  2749. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2750. int pipe = intel_crtc->pipe;
  2751. int plane = intel_crtc->plane;
  2752. u32 temp;
  2753. bool is_pch_port;
  2754. if (intel_crtc->active)
  2755. return;
  2756. intel_crtc->active = true;
  2757. intel_update_watermarks(dev);
  2758. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  2759. temp = I915_READ(PCH_LVDS);
  2760. if ((temp & LVDS_PORT_EN) == 0)
  2761. I915_WRITE(PCH_LVDS, temp | LVDS_PORT_EN);
  2762. }
  2763. is_pch_port = intel_crtc_driving_pch(crtc);
  2764. if (is_pch_port)
  2765. ironlake_fdi_pll_enable(crtc);
  2766. else
  2767. ironlake_fdi_disable(crtc);
  2768. /* Enable panel fitting for LVDS */
  2769. if (dev_priv->pch_pf_size &&
  2770. (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) || HAS_eDP)) {
  2771. /* Force use of hard-coded filter coefficients
  2772. * as some pre-programmed values are broken,
  2773. * e.g. x201.
  2774. */
  2775. I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
  2776. I915_WRITE(PF_WIN_POS(pipe), dev_priv->pch_pf_pos);
  2777. I915_WRITE(PF_WIN_SZ(pipe), dev_priv->pch_pf_size);
  2778. }
  2779. /*
  2780. * On ILK+ LUT must be loaded before the pipe is running but with
  2781. * clocks enabled
  2782. */
  2783. intel_crtc_load_lut(crtc);
  2784. intel_enable_pipe(dev_priv, pipe, is_pch_port);
  2785. intel_enable_plane(dev_priv, plane, pipe);
  2786. if (is_pch_port)
  2787. ironlake_pch_enable(crtc);
  2788. mutex_lock(&dev->struct_mutex);
  2789. intel_update_fbc(dev);
  2790. mutex_unlock(&dev->struct_mutex);
  2791. intel_crtc_update_cursor(crtc, true);
  2792. }
  2793. static void ironlake_crtc_disable(struct drm_crtc *crtc)
  2794. {
  2795. struct drm_device *dev = crtc->dev;
  2796. struct drm_i915_private *dev_priv = dev->dev_private;
  2797. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2798. int pipe = intel_crtc->pipe;
  2799. int plane = intel_crtc->plane;
  2800. u32 reg, temp;
  2801. if (!intel_crtc->active)
  2802. return;
  2803. intel_crtc_wait_for_pending_flips(crtc);
  2804. drm_vblank_off(dev, pipe);
  2805. intel_crtc_update_cursor(crtc, false);
  2806. intel_disable_plane(dev_priv, plane, pipe);
  2807. if (dev_priv->cfb_plane == plane)
  2808. intel_disable_fbc(dev);
  2809. intel_disable_pipe(dev_priv, pipe);
  2810. /* Disable PF */
  2811. I915_WRITE(PF_CTL(pipe), 0);
  2812. I915_WRITE(PF_WIN_SZ(pipe), 0);
  2813. ironlake_fdi_disable(crtc);
  2814. /* This is a horrible layering violation; we should be doing this in
  2815. * the connector/encoder ->prepare instead, but we don't always have
  2816. * enough information there about the config to know whether it will
  2817. * actually be necessary or just cause undesired flicker.
  2818. */
  2819. intel_disable_pch_ports(dev_priv, pipe);
  2820. intel_disable_transcoder(dev_priv, pipe);
  2821. if (HAS_PCH_CPT(dev)) {
  2822. /* disable TRANS_DP_CTL */
  2823. reg = TRANS_DP_CTL(pipe);
  2824. temp = I915_READ(reg);
  2825. temp &= ~(TRANS_DP_OUTPUT_ENABLE | TRANS_DP_PORT_SEL_MASK);
  2826. temp |= TRANS_DP_PORT_SEL_NONE;
  2827. I915_WRITE(reg, temp);
  2828. /* disable DPLL_SEL */
  2829. temp = I915_READ(PCH_DPLL_SEL);
  2830. switch (pipe) {
  2831. case 0:
  2832. temp &= ~(TRANSA_DPLL_ENABLE | TRANSA_DPLLB_SEL);
  2833. break;
  2834. case 1:
  2835. temp &= ~(TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL);
  2836. break;
  2837. case 2:
  2838. /* C shares PLL A or B */
  2839. temp &= ~(TRANSC_DPLL_ENABLE | TRANSC_DPLLB_SEL);
  2840. break;
  2841. default:
  2842. BUG(); /* wtf */
  2843. }
  2844. I915_WRITE(PCH_DPLL_SEL, temp);
  2845. }
  2846. /* disable PCH DPLL */
  2847. if (!intel_crtc->no_pll)
  2848. intel_disable_pch_pll(dev_priv, pipe);
  2849. /* Switch from PCDclk to Rawclk */
  2850. reg = FDI_RX_CTL(pipe);
  2851. temp = I915_READ(reg);
  2852. I915_WRITE(reg, temp & ~FDI_PCDCLK);
  2853. /* Disable CPU FDI TX PLL */
  2854. reg = FDI_TX_CTL(pipe);
  2855. temp = I915_READ(reg);
  2856. I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
  2857. POSTING_READ(reg);
  2858. udelay(100);
  2859. reg = FDI_RX_CTL(pipe);
  2860. temp = I915_READ(reg);
  2861. I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
  2862. /* Wait for the clocks to turn off. */
  2863. POSTING_READ(reg);
  2864. udelay(100);
  2865. intel_crtc->active = false;
  2866. intel_update_watermarks(dev);
  2867. mutex_lock(&dev->struct_mutex);
  2868. intel_update_fbc(dev);
  2869. intel_clear_scanline_wait(dev);
  2870. mutex_unlock(&dev->struct_mutex);
  2871. }
  2872. static void ironlake_crtc_dpms(struct drm_crtc *crtc, int mode)
  2873. {
  2874. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2875. int pipe = intel_crtc->pipe;
  2876. int plane = intel_crtc->plane;
  2877. /* XXX: When our outputs are all unaware of DPMS modes other than off
  2878. * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
  2879. */
  2880. switch (mode) {
  2881. case DRM_MODE_DPMS_ON:
  2882. case DRM_MODE_DPMS_STANDBY:
  2883. case DRM_MODE_DPMS_SUSPEND:
  2884. DRM_DEBUG_KMS("crtc %d/%d dpms on\n", pipe, plane);
  2885. ironlake_crtc_enable(crtc);
  2886. break;
  2887. case DRM_MODE_DPMS_OFF:
  2888. DRM_DEBUG_KMS("crtc %d/%d dpms off\n", pipe, plane);
  2889. ironlake_crtc_disable(crtc);
  2890. break;
  2891. }
  2892. }
  2893. static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
  2894. {
  2895. if (!enable && intel_crtc->overlay) {
  2896. struct drm_device *dev = intel_crtc->base.dev;
  2897. struct drm_i915_private *dev_priv = dev->dev_private;
  2898. mutex_lock(&dev->struct_mutex);
  2899. dev_priv->mm.interruptible = false;
  2900. (void) intel_overlay_switch_off(intel_crtc->overlay);
  2901. dev_priv->mm.interruptible = true;
  2902. mutex_unlock(&dev->struct_mutex);
  2903. }
  2904. /* Let userspace switch the overlay on again. In most cases userspace
  2905. * has to recompute where to put it anyway.
  2906. */
  2907. }
  2908. static void i9xx_crtc_enable(struct drm_crtc *crtc)
  2909. {
  2910. struct drm_device *dev = crtc->dev;
  2911. struct drm_i915_private *dev_priv = dev->dev_private;
  2912. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2913. int pipe = intel_crtc->pipe;
  2914. int plane = intel_crtc->plane;
  2915. if (intel_crtc->active)
  2916. return;
  2917. intel_crtc->active = true;
  2918. intel_update_watermarks(dev);
  2919. intel_enable_pll(dev_priv, pipe);
  2920. intel_enable_pipe(dev_priv, pipe, false);
  2921. intel_enable_plane(dev_priv, plane, pipe);
  2922. intel_crtc_load_lut(crtc);
  2923. intel_update_fbc(dev);
  2924. /* Give the overlay scaler a chance to enable if it's on this pipe */
  2925. intel_crtc_dpms_overlay(intel_crtc, true);
  2926. intel_crtc_update_cursor(crtc, true);
  2927. }
  2928. static void i9xx_crtc_disable(struct drm_crtc *crtc)
  2929. {
  2930. struct drm_device *dev = crtc->dev;
  2931. struct drm_i915_private *dev_priv = dev->dev_private;
  2932. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2933. int pipe = intel_crtc->pipe;
  2934. int plane = intel_crtc->plane;
  2935. if (!intel_crtc->active)
  2936. return;
  2937. /* Give the overlay scaler a chance to disable if it's on this pipe */
  2938. intel_crtc_wait_for_pending_flips(crtc);
  2939. drm_vblank_off(dev, pipe);
  2940. intel_crtc_dpms_overlay(intel_crtc, false);
  2941. intel_crtc_update_cursor(crtc, false);
  2942. if (dev_priv->cfb_plane == plane)
  2943. intel_disable_fbc(dev);
  2944. intel_disable_plane(dev_priv, plane, pipe);
  2945. intel_disable_pipe(dev_priv, pipe);
  2946. intel_disable_pll(dev_priv, pipe);
  2947. intel_crtc->active = false;
  2948. intel_update_fbc(dev);
  2949. intel_update_watermarks(dev);
  2950. intel_clear_scanline_wait(dev);
  2951. }
  2952. static void i9xx_crtc_dpms(struct drm_crtc *crtc, int mode)
  2953. {
  2954. /* XXX: When our outputs are all unaware of DPMS modes other than off
  2955. * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
  2956. */
  2957. switch (mode) {
  2958. case DRM_MODE_DPMS_ON:
  2959. case DRM_MODE_DPMS_STANDBY:
  2960. case DRM_MODE_DPMS_SUSPEND:
  2961. i9xx_crtc_enable(crtc);
  2962. break;
  2963. case DRM_MODE_DPMS_OFF:
  2964. i9xx_crtc_disable(crtc);
  2965. break;
  2966. }
  2967. }
  2968. /**
  2969. * Sets the power management mode of the pipe and plane.
  2970. */
  2971. static void intel_crtc_dpms(struct drm_crtc *crtc, int mode)
  2972. {
  2973. struct drm_device *dev = crtc->dev;
  2974. struct drm_i915_private *dev_priv = dev->dev_private;
  2975. struct drm_i915_master_private *master_priv;
  2976. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2977. int pipe = intel_crtc->pipe;
  2978. bool enabled;
  2979. if (intel_crtc->dpms_mode == mode)
  2980. return;
  2981. intel_crtc->dpms_mode = mode;
  2982. dev_priv->display.dpms(crtc, mode);
  2983. if (!dev->primary->master)
  2984. return;
  2985. master_priv = dev->primary->master->driver_priv;
  2986. if (!master_priv->sarea_priv)
  2987. return;
  2988. enabled = crtc->enabled && mode != DRM_MODE_DPMS_OFF;
  2989. switch (pipe) {
  2990. case 0:
  2991. master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
  2992. master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
  2993. break;
  2994. case 1:
  2995. master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
  2996. master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
  2997. break;
  2998. default:
  2999. DRM_ERROR("Can't update pipe %c in SAREA\n", pipe_name(pipe));
  3000. break;
  3001. }
  3002. }
  3003. static void intel_crtc_disable(struct drm_crtc *crtc)
  3004. {
  3005. struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
  3006. struct drm_device *dev = crtc->dev;
  3007. /* Flush any pending WAITs before we disable the pipe. Note that
  3008. * we need to drop the struct_mutex in order to acquire it again
  3009. * during the lowlevel dpms routines around a couple of the
  3010. * operations. It does not look trivial nor desirable to move
  3011. * that locking higher. So instead we leave a window for the
  3012. * submission of further commands on the fb before we can actually
  3013. * disable it. This race with userspace exists anyway, and we can
  3014. * only rely on the pipe being disabled by userspace after it
  3015. * receives the hotplug notification and has flushed any pending
  3016. * batches.
  3017. */
  3018. if (crtc->fb) {
  3019. mutex_lock(&dev->struct_mutex);
  3020. intel_finish_fb(crtc->fb);
  3021. mutex_unlock(&dev->struct_mutex);
  3022. }
  3023. crtc_funcs->dpms(crtc, DRM_MODE_DPMS_OFF);
  3024. assert_plane_disabled(dev->dev_private, to_intel_crtc(crtc)->plane);
  3025. assert_pipe_disabled(dev->dev_private, to_intel_crtc(crtc)->pipe);
  3026. if (crtc->fb) {
  3027. mutex_lock(&dev->struct_mutex);
  3028. intel_unpin_fb_obj(to_intel_framebuffer(crtc->fb)->obj);
  3029. mutex_unlock(&dev->struct_mutex);
  3030. }
  3031. }
  3032. /* Prepare for a mode set.
  3033. *
  3034. * Note we could be a lot smarter here. We need to figure out which outputs
  3035. * will be enabled, which disabled (in short, how the config will changes)
  3036. * and perform the minimum necessary steps to accomplish that, e.g. updating
  3037. * watermarks, FBC configuration, making sure PLLs are programmed correctly,
  3038. * panel fitting is in the proper state, etc.
  3039. */
  3040. static void i9xx_crtc_prepare(struct drm_crtc *crtc)
  3041. {
  3042. i9xx_crtc_disable(crtc);
  3043. }
  3044. static void i9xx_crtc_commit(struct drm_crtc *crtc)
  3045. {
  3046. i9xx_crtc_enable(crtc);
  3047. }
  3048. static void ironlake_crtc_prepare(struct drm_crtc *crtc)
  3049. {
  3050. ironlake_crtc_disable(crtc);
  3051. }
  3052. static void ironlake_crtc_commit(struct drm_crtc *crtc)
  3053. {
  3054. ironlake_crtc_enable(crtc);
  3055. }
  3056. void intel_encoder_prepare(struct drm_encoder *encoder)
  3057. {
  3058. struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
  3059. /* lvds has its own version of prepare see intel_lvds_prepare */
  3060. encoder_funcs->dpms(encoder, DRM_MODE_DPMS_OFF);
  3061. }
  3062. void intel_encoder_commit(struct drm_encoder *encoder)
  3063. {
  3064. struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
  3065. struct drm_device *dev = encoder->dev;
  3066. struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
  3067. struct intel_crtc *intel_crtc = to_intel_crtc(intel_encoder->base.crtc);
  3068. /* lvds has its own version of commit see intel_lvds_commit */
  3069. encoder_funcs->dpms(encoder, DRM_MODE_DPMS_ON);
  3070. if (HAS_PCH_CPT(dev))
  3071. intel_cpt_verify_modeset(dev, intel_crtc->pipe);
  3072. }
  3073. void intel_encoder_destroy(struct drm_encoder *encoder)
  3074. {
  3075. struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
  3076. drm_encoder_cleanup(encoder);
  3077. kfree(intel_encoder);
  3078. }
  3079. static bool intel_crtc_mode_fixup(struct drm_crtc *crtc,
  3080. struct drm_display_mode *mode,
  3081. struct drm_display_mode *adjusted_mode)
  3082. {
  3083. struct drm_device *dev = crtc->dev;
  3084. if (HAS_PCH_SPLIT(dev)) {
  3085. /* FDI link clock is fixed at 2.7G */
  3086. if (mode->clock * 3 > IRONLAKE_FDI_FREQ * 4)
  3087. return false;
  3088. }
  3089. /* All interlaced capable intel hw wants timings in frames. */
  3090. drm_mode_set_crtcinfo(adjusted_mode, 0);
  3091. return true;
  3092. }
  3093. static int valleyview_get_display_clock_speed(struct drm_device *dev)
  3094. {
  3095. return 400000; /* FIXME */
  3096. }
  3097. static int i945_get_display_clock_speed(struct drm_device *dev)
  3098. {
  3099. return 400000;
  3100. }
  3101. static int i915_get_display_clock_speed(struct drm_device *dev)
  3102. {
  3103. return 333000;
  3104. }
  3105. static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
  3106. {
  3107. return 200000;
  3108. }
  3109. static int i915gm_get_display_clock_speed(struct drm_device *dev)
  3110. {
  3111. u16 gcfgc = 0;
  3112. pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
  3113. if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
  3114. return 133000;
  3115. else {
  3116. switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
  3117. case GC_DISPLAY_CLOCK_333_MHZ:
  3118. return 333000;
  3119. default:
  3120. case GC_DISPLAY_CLOCK_190_200_MHZ:
  3121. return 190000;
  3122. }
  3123. }
  3124. }
  3125. static int i865_get_display_clock_speed(struct drm_device *dev)
  3126. {
  3127. return 266000;
  3128. }
  3129. static int i855_get_display_clock_speed(struct drm_device *dev)
  3130. {
  3131. u16 hpllcc = 0;
  3132. /* Assume that the hardware is in the high speed state. This
  3133. * should be the default.
  3134. */
  3135. switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
  3136. case GC_CLOCK_133_200:
  3137. case GC_CLOCK_100_200:
  3138. return 200000;
  3139. case GC_CLOCK_166_250:
  3140. return 250000;
  3141. case GC_CLOCK_100_133:
  3142. return 133000;
  3143. }
  3144. /* Shouldn't happen */
  3145. return 0;
  3146. }
  3147. static int i830_get_display_clock_speed(struct drm_device *dev)
  3148. {
  3149. return 133000;
  3150. }
  3151. struct fdi_m_n {
  3152. u32 tu;
  3153. u32 gmch_m;
  3154. u32 gmch_n;
  3155. u32 link_m;
  3156. u32 link_n;
  3157. };
  3158. static void
  3159. fdi_reduce_ratio(u32 *num, u32 *den)
  3160. {
  3161. while (*num > 0xffffff || *den > 0xffffff) {
  3162. *num >>= 1;
  3163. *den >>= 1;
  3164. }
  3165. }
  3166. static void
  3167. ironlake_compute_m_n(int bits_per_pixel, int nlanes, int pixel_clock,
  3168. int link_clock, struct fdi_m_n *m_n)
  3169. {
  3170. m_n->tu = 64; /* default size */
  3171. /* BUG_ON(pixel_clock > INT_MAX / 36); */
  3172. m_n->gmch_m = bits_per_pixel * pixel_clock;
  3173. m_n->gmch_n = link_clock * nlanes * 8;
  3174. fdi_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
  3175. m_n->link_m = pixel_clock;
  3176. m_n->link_n = link_clock;
  3177. fdi_reduce_ratio(&m_n->link_m, &m_n->link_n);
  3178. }
  3179. struct intel_watermark_params {
  3180. unsigned long fifo_size;
  3181. unsigned long max_wm;
  3182. unsigned long default_wm;
  3183. unsigned long guard_size;
  3184. unsigned long cacheline_size;
  3185. };
  3186. /* Pineview has different values for various configs */
  3187. static const struct intel_watermark_params pineview_display_wm = {
  3188. PINEVIEW_DISPLAY_FIFO,
  3189. PINEVIEW_MAX_WM,
  3190. PINEVIEW_DFT_WM,
  3191. PINEVIEW_GUARD_WM,
  3192. PINEVIEW_FIFO_LINE_SIZE
  3193. };
  3194. static const struct intel_watermark_params pineview_display_hplloff_wm = {
  3195. PINEVIEW_DISPLAY_FIFO,
  3196. PINEVIEW_MAX_WM,
  3197. PINEVIEW_DFT_HPLLOFF_WM,
  3198. PINEVIEW_GUARD_WM,
  3199. PINEVIEW_FIFO_LINE_SIZE
  3200. };
  3201. static const struct intel_watermark_params pineview_cursor_wm = {
  3202. PINEVIEW_CURSOR_FIFO,
  3203. PINEVIEW_CURSOR_MAX_WM,
  3204. PINEVIEW_CURSOR_DFT_WM,
  3205. PINEVIEW_CURSOR_GUARD_WM,
  3206. PINEVIEW_FIFO_LINE_SIZE,
  3207. };
  3208. static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
  3209. PINEVIEW_CURSOR_FIFO,
  3210. PINEVIEW_CURSOR_MAX_WM,
  3211. PINEVIEW_CURSOR_DFT_WM,
  3212. PINEVIEW_CURSOR_GUARD_WM,
  3213. PINEVIEW_FIFO_LINE_SIZE
  3214. };
  3215. static const struct intel_watermark_params g4x_wm_info = {
  3216. G4X_FIFO_SIZE,
  3217. G4X_MAX_WM,
  3218. G4X_MAX_WM,
  3219. 2,
  3220. G4X_FIFO_LINE_SIZE,
  3221. };
  3222. static const struct intel_watermark_params g4x_cursor_wm_info = {
  3223. I965_CURSOR_FIFO,
  3224. I965_CURSOR_MAX_WM,
  3225. I965_CURSOR_DFT_WM,
  3226. 2,
  3227. G4X_FIFO_LINE_SIZE,
  3228. };
  3229. static const struct intel_watermark_params valleyview_wm_info = {
  3230. VALLEYVIEW_FIFO_SIZE,
  3231. VALLEYVIEW_MAX_WM,
  3232. VALLEYVIEW_MAX_WM,
  3233. 2,
  3234. G4X_FIFO_LINE_SIZE,
  3235. };
  3236. static const struct intel_watermark_params valleyview_cursor_wm_info = {
  3237. I965_CURSOR_FIFO,
  3238. VALLEYVIEW_CURSOR_MAX_WM,
  3239. I965_CURSOR_DFT_WM,
  3240. 2,
  3241. G4X_FIFO_LINE_SIZE,
  3242. };
  3243. static const struct intel_watermark_params i965_cursor_wm_info = {
  3244. I965_CURSOR_FIFO,
  3245. I965_CURSOR_MAX_WM,
  3246. I965_CURSOR_DFT_WM,
  3247. 2,
  3248. I915_FIFO_LINE_SIZE,
  3249. };
  3250. static const struct intel_watermark_params i945_wm_info = {
  3251. I945_FIFO_SIZE,
  3252. I915_MAX_WM,
  3253. 1,
  3254. 2,
  3255. I915_FIFO_LINE_SIZE
  3256. };
  3257. static const struct intel_watermark_params i915_wm_info = {
  3258. I915_FIFO_SIZE,
  3259. I915_MAX_WM,
  3260. 1,
  3261. 2,
  3262. I915_FIFO_LINE_SIZE
  3263. };
  3264. static const struct intel_watermark_params i855_wm_info = {
  3265. I855GM_FIFO_SIZE,
  3266. I915_MAX_WM,
  3267. 1,
  3268. 2,
  3269. I830_FIFO_LINE_SIZE
  3270. };
  3271. static const struct intel_watermark_params i830_wm_info = {
  3272. I830_FIFO_SIZE,
  3273. I915_MAX_WM,
  3274. 1,
  3275. 2,
  3276. I830_FIFO_LINE_SIZE
  3277. };
  3278. static const struct intel_watermark_params ironlake_display_wm_info = {
  3279. ILK_DISPLAY_FIFO,
  3280. ILK_DISPLAY_MAXWM,
  3281. ILK_DISPLAY_DFTWM,
  3282. 2,
  3283. ILK_FIFO_LINE_SIZE
  3284. };
  3285. static const struct intel_watermark_params ironlake_cursor_wm_info = {
  3286. ILK_CURSOR_FIFO,
  3287. ILK_CURSOR_MAXWM,
  3288. ILK_CURSOR_DFTWM,
  3289. 2,
  3290. ILK_FIFO_LINE_SIZE
  3291. };
  3292. static const struct intel_watermark_params ironlake_display_srwm_info = {
  3293. ILK_DISPLAY_SR_FIFO,
  3294. ILK_DISPLAY_MAX_SRWM,
  3295. ILK_DISPLAY_DFT_SRWM,
  3296. 2,
  3297. ILK_FIFO_LINE_SIZE
  3298. };
  3299. static const struct intel_watermark_params ironlake_cursor_srwm_info = {
  3300. ILK_CURSOR_SR_FIFO,
  3301. ILK_CURSOR_MAX_SRWM,
  3302. ILK_CURSOR_DFT_SRWM,
  3303. 2,
  3304. ILK_FIFO_LINE_SIZE
  3305. };
  3306. static const struct intel_watermark_params sandybridge_display_wm_info = {
  3307. SNB_DISPLAY_FIFO,
  3308. SNB_DISPLAY_MAXWM,
  3309. SNB_DISPLAY_DFTWM,
  3310. 2,
  3311. SNB_FIFO_LINE_SIZE
  3312. };
  3313. static const struct intel_watermark_params sandybridge_cursor_wm_info = {
  3314. SNB_CURSOR_FIFO,
  3315. SNB_CURSOR_MAXWM,
  3316. SNB_CURSOR_DFTWM,
  3317. 2,
  3318. SNB_FIFO_LINE_SIZE
  3319. };
  3320. static const struct intel_watermark_params sandybridge_display_srwm_info = {
  3321. SNB_DISPLAY_SR_FIFO,
  3322. SNB_DISPLAY_MAX_SRWM,
  3323. SNB_DISPLAY_DFT_SRWM,
  3324. 2,
  3325. SNB_FIFO_LINE_SIZE
  3326. };
  3327. static const struct intel_watermark_params sandybridge_cursor_srwm_info = {
  3328. SNB_CURSOR_SR_FIFO,
  3329. SNB_CURSOR_MAX_SRWM,
  3330. SNB_CURSOR_DFT_SRWM,
  3331. 2,
  3332. SNB_FIFO_LINE_SIZE
  3333. };
  3334. /**
  3335. * intel_calculate_wm - calculate watermark level
  3336. * @clock_in_khz: pixel clock
  3337. * @wm: chip FIFO params
  3338. * @pixel_size: display pixel size
  3339. * @latency_ns: memory latency for the platform
  3340. *
  3341. * Calculate the watermark level (the level at which the display plane will
  3342. * start fetching from memory again). Each chip has a different display
  3343. * FIFO size and allocation, so the caller needs to figure that out and pass
  3344. * in the correct intel_watermark_params structure.
  3345. *
  3346. * As the pixel clock runs, the FIFO will be drained at a rate that depends
  3347. * on the pixel size. When it reaches the watermark level, it'll start
  3348. * fetching FIFO line sized based chunks from memory until the FIFO fills
  3349. * past the watermark point. If the FIFO drains completely, a FIFO underrun
  3350. * will occur, and a display engine hang could result.
  3351. */
  3352. static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
  3353. const struct intel_watermark_params *wm,
  3354. int fifo_size,
  3355. int pixel_size,
  3356. unsigned long latency_ns)
  3357. {
  3358. long entries_required, wm_size;
  3359. /*
  3360. * Note: we need to make sure we don't overflow for various clock &
  3361. * latency values.
  3362. * clocks go from a few thousand to several hundred thousand.
  3363. * latency is usually a few thousand
  3364. */
  3365. entries_required = ((clock_in_khz / 1000) * pixel_size * latency_ns) /
  3366. 1000;
  3367. entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);
  3368. DRM_DEBUG_KMS("FIFO entries required for mode: %ld\n", entries_required);
  3369. wm_size = fifo_size - (entries_required + wm->guard_size);
  3370. DRM_DEBUG_KMS("FIFO watermark level: %ld\n", wm_size);
  3371. /* Don't promote wm_size to unsigned... */
  3372. if (wm_size > (long)wm->max_wm)
  3373. wm_size = wm->max_wm;
  3374. if (wm_size <= 0)
  3375. wm_size = wm->default_wm;
  3376. return wm_size;
  3377. }
  3378. struct cxsr_latency {
  3379. int is_desktop;
  3380. int is_ddr3;
  3381. unsigned long fsb_freq;
  3382. unsigned long mem_freq;
  3383. unsigned long display_sr;
  3384. unsigned long display_hpll_disable;
  3385. unsigned long cursor_sr;
  3386. unsigned long cursor_hpll_disable;
  3387. };
  3388. static const struct cxsr_latency cxsr_latency_table[] = {
  3389. {1, 0, 800, 400, 3382, 33382, 3983, 33983}, /* DDR2-400 SC */
  3390. {1, 0, 800, 667, 3354, 33354, 3807, 33807}, /* DDR2-667 SC */
  3391. {1, 0, 800, 800, 3347, 33347, 3763, 33763}, /* DDR2-800 SC */
  3392. {1, 1, 800, 667, 6420, 36420, 6873, 36873}, /* DDR3-667 SC */
  3393. {1, 1, 800, 800, 5902, 35902, 6318, 36318}, /* DDR3-800 SC */
  3394. {1, 0, 667, 400, 3400, 33400, 4021, 34021}, /* DDR2-400 SC */
  3395. {1, 0, 667, 667, 3372, 33372, 3845, 33845}, /* DDR2-667 SC */
  3396. {1, 0, 667, 800, 3386, 33386, 3822, 33822}, /* DDR2-800 SC */
  3397. {1, 1, 667, 667, 6438, 36438, 6911, 36911}, /* DDR3-667 SC */
  3398. {1, 1, 667, 800, 5941, 35941, 6377, 36377}, /* DDR3-800 SC */
  3399. {1, 0, 400, 400, 3472, 33472, 4173, 34173}, /* DDR2-400 SC */
  3400. {1, 0, 400, 667, 3443, 33443, 3996, 33996}, /* DDR2-667 SC */
  3401. {1, 0, 400, 800, 3430, 33430, 3946, 33946}, /* DDR2-800 SC */
  3402. {1, 1, 400, 667, 6509, 36509, 7062, 37062}, /* DDR3-667 SC */
  3403. {1, 1, 400, 800, 5985, 35985, 6501, 36501}, /* DDR3-800 SC */
  3404. {0, 0, 800, 400, 3438, 33438, 4065, 34065}, /* DDR2-400 SC */
  3405. {0, 0, 800, 667, 3410, 33410, 3889, 33889}, /* DDR2-667 SC */
  3406. {0, 0, 800, 800, 3403, 33403, 3845, 33845}, /* DDR2-800 SC */
  3407. {0, 1, 800, 667, 6476, 36476, 6955, 36955}, /* DDR3-667 SC */
  3408. {0, 1, 800, 800, 5958, 35958, 6400, 36400}, /* DDR3-800 SC */
  3409. {0, 0, 667, 400, 3456, 33456, 4103, 34106}, /* DDR2-400 SC */
  3410. {0, 0, 667, 667, 3428, 33428, 3927, 33927}, /* DDR2-667 SC */
  3411. {0, 0, 667, 800, 3443, 33443, 3905, 33905}, /* DDR2-800 SC */
  3412. {0, 1, 667, 667, 6494, 36494, 6993, 36993}, /* DDR3-667 SC */
  3413. {0, 1, 667, 800, 5998, 35998, 6460, 36460}, /* DDR3-800 SC */
  3414. {0, 0, 400, 400, 3528, 33528, 4255, 34255}, /* DDR2-400 SC */
  3415. {0, 0, 400, 667, 3500, 33500, 4079, 34079}, /* DDR2-667 SC */
  3416. {0, 0, 400, 800, 3487, 33487, 4029, 34029}, /* DDR2-800 SC */
  3417. {0, 1, 400, 667, 6566, 36566, 7145, 37145}, /* DDR3-667 SC */
  3418. {0, 1, 400, 800, 6042, 36042, 6584, 36584}, /* DDR3-800 SC */
  3419. };
  3420. static const struct cxsr_latency *intel_get_cxsr_latency(int is_desktop,
  3421. int is_ddr3,
  3422. int fsb,
  3423. int mem)
  3424. {
  3425. const struct cxsr_latency *latency;
  3426. int i;
  3427. if (fsb == 0 || mem == 0)
  3428. return NULL;
  3429. for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
  3430. latency = &cxsr_latency_table[i];
  3431. if (is_desktop == latency->is_desktop &&
  3432. is_ddr3 == latency->is_ddr3 &&
  3433. fsb == latency->fsb_freq && mem == latency->mem_freq)
  3434. return latency;
  3435. }
  3436. DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
  3437. return NULL;
  3438. }
  3439. static void pineview_disable_cxsr(struct drm_device *dev)
  3440. {
  3441. struct drm_i915_private *dev_priv = dev->dev_private;
  3442. /* deactivate cxsr */
  3443. I915_WRITE(DSPFW3, I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN);
  3444. }
  3445. /*
  3446. * Latency for FIFO fetches is dependent on several factors:
  3447. * - memory configuration (speed, channels)
  3448. * - chipset
  3449. * - current MCH state
  3450. * It can be fairly high in some situations, so here we assume a fairly
  3451. * pessimal value. It's a tradeoff between extra memory fetches (if we
  3452. * set this value too high, the FIFO will fetch frequently to stay full)
  3453. * and power consumption (set it too low to save power and we might see
  3454. * FIFO underruns and display "flicker").
  3455. *
  3456. * A value of 5us seems to be a good balance; safe for very low end
  3457. * platforms but not overly aggressive on lower latency configs.
  3458. */
  3459. static const int latency_ns = 5000;
  3460. static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
  3461. {
  3462. struct drm_i915_private *dev_priv = dev->dev_private;
  3463. uint32_t dsparb = I915_READ(DSPARB);
  3464. int size;
  3465. size = dsparb & 0x7f;
  3466. if (plane)
  3467. size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;
  3468. DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
  3469. plane ? "B" : "A", size);
  3470. return size;
  3471. }
  3472. static int i85x_get_fifo_size(struct drm_device *dev, int plane)
  3473. {
  3474. struct drm_i915_private *dev_priv = dev->dev_private;
  3475. uint32_t dsparb = I915_READ(DSPARB);
  3476. int size;
  3477. size = dsparb & 0x1ff;
  3478. if (plane)
  3479. size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
  3480. size >>= 1; /* Convert to cachelines */
  3481. DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
  3482. plane ? "B" : "A", size);
  3483. return size;
  3484. }
  3485. static int i845_get_fifo_size(struct drm_device *dev, int plane)
  3486. {
  3487. struct drm_i915_private *dev_priv = dev->dev_private;
  3488. uint32_t dsparb = I915_READ(DSPARB);
  3489. int size;
  3490. size = dsparb & 0x7f;
  3491. size >>= 2; /* Convert to cachelines */
  3492. DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
  3493. plane ? "B" : "A",
  3494. size);
  3495. return size;
  3496. }
  3497. static int i830_get_fifo_size(struct drm_device *dev, int plane)
  3498. {
  3499. struct drm_i915_private *dev_priv = dev->dev_private;
  3500. uint32_t dsparb = I915_READ(DSPARB);
  3501. int size;
  3502. size = dsparb & 0x7f;
  3503. size >>= 1; /* Convert to cachelines */
  3504. DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
  3505. plane ? "B" : "A", size);
  3506. return size;
  3507. }
  3508. static struct drm_crtc *single_enabled_crtc(struct drm_device *dev)
  3509. {
  3510. struct drm_crtc *crtc, *enabled = NULL;
  3511. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  3512. if (crtc->enabled && crtc->fb) {
  3513. if (enabled)
  3514. return NULL;
  3515. enabled = crtc;
  3516. }
  3517. }
  3518. return enabled;
  3519. }
  3520. static void pineview_update_wm(struct drm_device *dev)
  3521. {
  3522. struct drm_i915_private *dev_priv = dev->dev_private;
  3523. struct drm_crtc *crtc;
  3524. const struct cxsr_latency *latency;
  3525. u32 reg;
  3526. unsigned long wm;
  3527. latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3,
  3528. dev_priv->fsb_freq, dev_priv->mem_freq);
  3529. if (!latency) {
  3530. DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
  3531. pineview_disable_cxsr(dev);
  3532. return;
  3533. }
  3534. crtc = single_enabled_crtc(dev);
  3535. if (crtc) {
  3536. int clock = crtc->mode.clock;
  3537. int pixel_size = crtc->fb->bits_per_pixel / 8;
  3538. /* Display SR */
  3539. wm = intel_calculate_wm(clock, &pineview_display_wm,
  3540. pineview_display_wm.fifo_size,
  3541. pixel_size, latency->display_sr);
  3542. reg = I915_READ(DSPFW1);
  3543. reg &= ~DSPFW_SR_MASK;
  3544. reg |= wm << DSPFW_SR_SHIFT;
  3545. I915_WRITE(DSPFW1, reg);
  3546. DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
  3547. /* cursor SR */
  3548. wm = intel_calculate_wm(clock, &pineview_cursor_wm,
  3549. pineview_display_wm.fifo_size,
  3550. pixel_size, latency->cursor_sr);
  3551. reg = I915_READ(DSPFW3);
  3552. reg &= ~DSPFW_CURSOR_SR_MASK;
  3553. reg |= (wm & 0x3f) << DSPFW_CURSOR_SR_SHIFT;
  3554. I915_WRITE(DSPFW3, reg);
  3555. /* Display HPLL off SR */
  3556. wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
  3557. pineview_display_hplloff_wm.fifo_size,
  3558. pixel_size, latency->display_hpll_disable);
  3559. reg = I915_READ(DSPFW3);
  3560. reg &= ~DSPFW_HPLL_SR_MASK;
  3561. reg |= wm & DSPFW_HPLL_SR_MASK;
  3562. I915_WRITE(DSPFW3, reg);
  3563. /* cursor HPLL off SR */
  3564. wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
  3565. pineview_display_hplloff_wm.fifo_size,
  3566. pixel_size, latency->cursor_hpll_disable);
  3567. reg = I915_READ(DSPFW3);
  3568. reg &= ~DSPFW_HPLL_CURSOR_MASK;
  3569. reg |= (wm & 0x3f) << DSPFW_HPLL_CURSOR_SHIFT;
  3570. I915_WRITE(DSPFW3, reg);
  3571. DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
  3572. /* activate cxsr */
  3573. I915_WRITE(DSPFW3,
  3574. I915_READ(DSPFW3) | PINEVIEW_SELF_REFRESH_EN);
  3575. DRM_DEBUG_KMS("Self-refresh is enabled\n");
  3576. } else {
  3577. pineview_disable_cxsr(dev);
  3578. DRM_DEBUG_KMS("Self-refresh is disabled\n");
  3579. }
  3580. }
  3581. static bool g4x_compute_wm0(struct drm_device *dev,
  3582. int plane,
  3583. const struct intel_watermark_params *display,
  3584. int display_latency_ns,
  3585. const struct intel_watermark_params *cursor,
  3586. int cursor_latency_ns,
  3587. int *plane_wm,
  3588. int *cursor_wm)
  3589. {
  3590. struct drm_crtc *crtc;
  3591. int htotal, hdisplay, clock, pixel_size;
  3592. int line_time_us, line_count;
  3593. int entries, tlb_miss;
  3594. crtc = intel_get_crtc_for_plane(dev, plane);
  3595. if (crtc->fb == NULL || !crtc->enabled) {
  3596. *cursor_wm = cursor->guard_size;
  3597. *plane_wm = display->guard_size;
  3598. return false;
  3599. }
  3600. htotal = crtc->mode.htotal;
  3601. hdisplay = crtc->mode.hdisplay;
  3602. clock = crtc->mode.clock;
  3603. pixel_size = crtc->fb->bits_per_pixel / 8;
  3604. /* Use the small buffer method to calculate plane watermark */
  3605. entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
  3606. tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
  3607. if (tlb_miss > 0)
  3608. entries += tlb_miss;
  3609. entries = DIV_ROUND_UP(entries, display->cacheline_size);
  3610. *plane_wm = entries + display->guard_size;
  3611. if (*plane_wm > (int)display->max_wm)
  3612. *plane_wm = display->max_wm;
  3613. /* Use the large buffer method to calculate cursor watermark */
  3614. line_time_us = ((htotal * 1000) / clock);
  3615. line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
  3616. entries = line_count * 64 * pixel_size;
  3617. tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
  3618. if (tlb_miss > 0)
  3619. entries += tlb_miss;
  3620. entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
  3621. *cursor_wm = entries + cursor->guard_size;
  3622. if (*cursor_wm > (int)cursor->max_wm)
  3623. *cursor_wm = (int)cursor->max_wm;
  3624. return true;
  3625. }
  3626. /*
  3627. * Check the wm result.
  3628. *
  3629. * If any calculated watermark values is larger than the maximum value that
  3630. * can be programmed into the associated watermark register, that watermark
  3631. * must be disabled.
  3632. */
  3633. static bool g4x_check_srwm(struct drm_device *dev,
  3634. int display_wm, int cursor_wm,
  3635. const struct intel_watermark_params *display,
  3636. const struct intel_watermark_params *cursor)
  3637. {
  3638. DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n",
  3639. display_wm, cursor_wm);
  3640. if (display_wm > display->max_wm) {
  3641. DRM_DEBUG_KMS("display watermark is too large(%d/%ld), disabling\n",
  3642. display_wm, display->max_wm);
  3643. return false;
  3644. }
  3645. if (cursor_wm > cursor->max_wm) {
  3646. DRM_DEBUG_KMS("cursor watermark is too large(%d/%ld), disabling\n",
  3647. cursor_wm, cursor->max_wm);
  3648. return false;
  3649. }
  3650. if (!(display_wm || cursor_wm)) {
  3651. DRM_DEBUG_KMS("SR latency is 0, disabling\n");
  3652. return false;
  3653. }
  3654. return true;
  3655. }
  3656. static bool g4x_compute_srwm(struct drm_device *dev,
  3657. int plane,
  3658. int latency_ns,
  3659. const struct intel_watermark_params *display,
  3660. const struct intel_watermark_params *cursor,
  3661. int *display_wm, int *cursor_wm)
  3662. {
  3663. struct drm_crtc *crtc;
  3664. int hdisplay, htotal, pixel_size, clock;
  3665. unsigned long line_time_us;
  3666. int line_count, line_size;
  3667. int small, large;
  3668. int entries;
  3669. if (!latency_ns) {
  3670. *display_wm = *cursor_wm = 0;
  3671. return false;
  3672. }
  3673. crtc = intel_get_crtc_for_plane(dev, plane);
  3674. hdisplay = crtc->mode.hdisplay;
  3675. htotal = crtc->mode.htotal;
  3676. clock = crtc->mode.clock;
  3677. pixel_size = crtc->fb->bits_per_pixel / 8;
  3678. line_time_us = (htotal * 1000) / clock;
  3679. line_count = (latency_ns / line_time_us + 1000) / 1000;
  3680. line_size = hdisplay * pixel_size;
  3681. /* Use the minimum of the small and large buffer method for primary */
  3682. small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
  3683. large = line_count * line_size;
  3684. entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
  3685. *display_wm = entries + display->guard_size;
  3686. /* calculate the self-refresh watermark for display cursor */
  3687. entries = line_count * pixel_size * 64;
  3688. entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
  3689. *cursor_wm = entries + cursor->guard_size;
  3690. return g4x_check_srwm(dev,
  3691. *display_wm, *cursor_wm,
  3692. display, cursor);
  3693. }
  3694. static bool vlv_compute_drain_latency(struct drm_device *dev,
  3695. int plane,
  3696. int *plane_prec_mult,
  3697. int *plane_dl,
  3698. int *cursor_prec_mult,
  3699. int *cursor_dl)
  3700. {
  3701. struct drm_crtc *crtc;
  3702. int clock, pixel_size;
  3703. int entries;
  3704. crtc = intel_get_crtc_for_plane(dev, plane);
  3705. if (crtc->fb == NULL || !crtc->enabled)
  3706. return false;
  3707. clock = crtc->mode.clock; /* VESA DOT Clock */
  3708. pixel_size = crtc->fb->bits_per_pixel / 8; /* BPP */
  3709. entries = (clock / 1000) * pixel_size;
  3710. *plane_prec_mult = (entries > 256) ?
  3711. DRAIN_LATENCY_PRECISION_32 : DRAIN_LATENCY_PRECISION_16;
  3712. *plane_dl = (64 * (*plane_prec_mult) * 4) / ((clock / 1000) *
  3713. pixel_size);
  3714. entries = (clock / 1000) * 4; /* BPP is always 4 for cursor */
  3715. *cursor_prec_mult = (entries > 256) ?
  3716. DRAIN_LATENCY_PRECISION_32 : DRAIN_LATENCY_PRECISION_16;
  3717. *cursor_dl = (64 * (*cursor_prec_mult) * 4) / ((clock / 1000) * 4);
  3718. return true;
  3719. }
  3720. /*
  3721. * Update drain latency registers of memory arbiter
  3722. *
  3723. * Valleyview SoC has a new memory arbiter and needs drain latency registers
  3724. * to be programmed. Each plane has a drain latency multiplier and a drain
  3725. * latency value.
  3726. */
  3727. static void vlv_update_drain_latency(struct drm_device *dev)
  3728. {
  3729. struct drm_i915_private *dev_priv = dev->dev_private;
  3730. int planea_prec, planea_dl, planeb_prec, planeb_dl;
  3731. int cursora_prec, cursora_dl, cursorb_prec, cursorb_dl;
  3732. int plane_prec_mult, cursor_prec_mult; /* Precision multiplier is
  3733. either 16 or 32 */
  3734. /* For plane A, Cursor A */
  3735. if (vlv_compute_drain_latency(dev, 0, &plane_prec_mult, &planea_dl,
  3736. &cursor_prec_mult, &cursora_dl)) {
  3737. cursora_prec = (cursor_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
  3738. DDL_CURSORA_PRECISION_32 : DDL_CURSORA_PRECISION_16;
  3739. planea_prec = (plane_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
  3740. DDL_PLANEA_PRECISION_32 : DDL_PLANEA_PRECISION_16;
  3741. I915_WRITE(VLV_DDL1, cursora_prec |
  3742. (cursora_dl << DDL_CURSORA_SHIFT) |
  3743. planea_prec | planea_dl);
  3744. }
  3745. /* For plane B, Cursor B */
  3746. if (vlv_compute_drain_latency(dev, 1, &plane_prec_mult, &planeb_dl,
  3747. &cursor_prec_mult, &cursorb_dl)) {
  3748. cursorb_prec = (cursor_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
  3749. DDL_CURSORB_PRECISION_32 : DDL_CURSORB_PRECISION_16;
  3750. planeb_prec = (plane_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
  3751. DDL_PLANEB_PRECISION_32 : DDL_PLANEB_PRECISION_16;
  3752. I915_WRITE(VLV_DDL2, cursorb_prec |
  3753. (cursorb_dl << DDL_CURSORB_SHIFT) |
  3754. planeb_prec | planeb_dl);
  3755. }
  3756. }
  3757. #define single_plane_enabled(mask) is_power_of_2(mask)
  3758. static void valleyview_update_wm(struct drm_device *dev)
  3759. {
  3760. static const int sr_latency_ns = 12000;
  3761. struct drm_i915_private *dev_priv = dev->dev_private;
  3762. int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
  3763. int plane_sr, cursor_sr;
  3764. unsigned int enabled = 0;
  3765. vlv_update_drain_latency(dev);
  3766. if (g4x_compute_wm0(dev, 0,
  3767. &valleyview_wm_info, latency_ns,
  3768. &valleyview_cursor_wm_info, latency_ns,
  3769. &planea_wm, &cursora_wm))
  3770. enabled |= 1;
  3771. if (g4x_compute_wm0(dev, 1,
  3772. &valleyview_wm_info, latency_ns,
  3773. &valleyview_cursor_wm_info, latency_ns,
  3774. &planeb_wm, &cursorb_wm))
  3775. enabled |= 2;
  3776. plane_sr = cursor_sr = 0;
  3777. if (single_plane_enabled(enabled) &&
  3778. g4x_compute_srwm(dev, ffs(enabled) - 1,
  3779. sr_latency_ns,
  3780. &valleyview_wm_info,
  3781. &valleyview_cursor_wm_info,
  3782. &plane_sr, &cursor_sr))
  3783. I915_WRITE(FW_BLC_SELF_VLV, FW_CSPWRDWNEN);
  3784. else
  3785. I915_WRITE(FW_BLC_SELF_VLV,
  3786. I915_READ(FW_BLC_SELF_VLV) & ~FW_CSPWRDWNEN);
  3787. DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
  3788. planea_wm, cursora_wm,
  3789. planeb_wm, cursorb_wm,
  3790. plane_sr, cursor_sr);
  3791. I915_WRITE(DSPFW1,
  3792. (plane_sr << DSPFW_SR_SHIFT) |
  3793. (cursorb_wm << DSPFW_CURSORB_SHIFT) |
  3794. (planeb_wm << DSPFW_PLANEB_SHIFT) |
  3795. planea_wm);
  3796. I915_WRITE(DSPFW2,
  3797. (I915_READ(DSPFW2) & DSPFW_CURSORA_MASK) |
  3798. (cursora_wm << DSPFW_CURSORA_SHIFT));
  3799. I915_WRITE(DSPFW3,
  3800. (I915_READ(DSPFW3) | (cursor_sr << DSPFW_CURSOR_SR_SHIFT)));
  3801. }
  3802. static void g4x_update_wm(struct drm_device *dev)
  3803. {
  3804. static const int sr_latency_ns = 12000;
  3805. struct drm_i915_private *dev_priv = dev->dev_private;
  3806. int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
  3807. int plane_sr, cursor_sr;
  3808. unsigned int enabled = 0;
  3809. if (g4x_compute_wm0(dev, 0,
  3810. &g4x_wm_info, latency_ns,
  3811. &g4x_cursor_wm_info, latency_ns,
  3812. &planea_wm, &cursora_wm))
  3813. enabled |= 1;
  3814. if (g4x_compute_wm0(dev, 1,
  3815. &g4x_wm_info, latency_ns,
  3816. &g4x_cursor_wm_info, latency_ns,
  3817. &planeb_wm, &cursorb_wm))
  3818. enabled |= 2;
  3819. plane_sr = cursor_sr = 0;
  3820. if (single_plane_enabled(enabled) &&
  3821. g4x_compute_srwm(dev, ffs(enabled) - 1,
  3822. sr_latency_ns,
  3823. &g4x_wm_info,
  3824. &g4x_cursor_wm_info,
  3825. &plane_sr, &cursor_sr))
  3826. I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
  3827. else
  3828. I915_WRITE(FW_BLC_SELF,
  3829. I915_READ(FW_BLC_SELF) & ~FW_BLC_SELF_EN);
  3830. DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
  3831. planea_wm, cursora_wm,
  3832. planeb_wm, cursorb_wm,
  3833. plane_sr, cursor_sr);
  3834. I915_WRITE(DSPFW1,
  3835. (plane_sr << DSPFW_SR_SHIFT) |
  3836. (cursorb_wm << DSPFW_CURSORB_SHIFT) |
  3837. (planeb_wm << DSPFW_PLANEB_SHIFT) |
  3838. planea_wm);
  3839. I915_WRITE(DSPFW2,
  3840. (I915_READ(DSPFW2) & DSPFW_CURSORA_MASK) |
  3841. (cursora_wm << DSPFW_CURSORA_SHIFT));
  3842. /* HPLL off in SR has some issues on G4x... disable it */
  3843. I915_WRITE(DSPFW3,
  3844. (I915_READ(DSPFW3) & ~DSPFW_HPLL_SR_EN) |
  3845. (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
  3846. }
  3847. static void i965_update_wm(struct drm_device *dev)
  3848. {
  3849. struct drm_i915_private *dev_priv = dev->dev_private;
  3850. struct drm_crtc *crtc;
  3851. int srwm = 1;
  3852. int cursor_sr = 16;
  3853. /* Calc sr entries for one plane configs */
  3854. crtc = single_enabled_crtc(dev);
  3855. if (crtc) {
  3856. /* self-refresh has much higher latency */
  3857. static const int sr_latency_ns = 12000;
  3858. int clock = crtc->mode.clock;
  3859. int htotal = crtc->mode.htotal;
  3860. int hdisplay = crtc->mode.hdisplay;
  3861. int pixel_size = crtc->fb->bits_per_pixel / 8;
  3862. unsigned long line_time_us;
  3863. int entries;
  3864. line_time_us = ((htotal * 1000) / clock);
  3865. /* Use ns/us then divide to preserve precision */
  3866. entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
  3867. pixel_size * hdisplay;
  3868. entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
  3869. srwm = I965_FIFO_SIZE - entries;
  3870. if (srwm < 0)
  3871. srwm = 1;
  3872. srwm &= 0x1ff;
  3873. DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
  3874. entries, srwm);
  3875. entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
  3876. pixel_size * 64;
  3877. entries = DIV_ROUND_UP(entries,
  3878. i965_cursor_wm_info.cacheline_size);
  3879. cursor_sr = i965_cursor_wm_info.fifo_size -
  3880. (entries + i965_cursor_wm_info.guard_size);
  3881. if (cursor_sr > i965_cursor_wm_info.max_wm)
  3882. cursor_sr = i965_cursor_wm_info.max_wm;
  3883. DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
  3884. "cursor %d\n", srwm, cursor_sr);
  3885. if (IS_CRESTLINE(dev))
  3886. I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
  3887. } else {
  3888. /* Turn off self refresh if both pipes are enabled */
  3889. if (IS_CRESTLINE(dev))
  3890. I915_WRITE(FW_BLC_SELF, I915_READ(FW_BLC_SELF)
  3891. & ~FW_BLC_SELF_EN);
  3892. }
  3893. DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
  3894. srwm);
  3895. /* 965 has limitations... */
  3896. I915_WRITE(DSPFW1, (srwm << DSPFW_SR_SHIFT) |
  3897. (8 << 16) | (8 << 8) | (8 << 0));
  3898. I915_WRITE(DSPFW2, (8 << 8) | (8 << 0));
  3899. /* update cursor SR watermark */
  3900. I915_WRITE(DSPFW3, (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
  3901. }
  3902. static void i9xx_update_wm(struct drm_device *dev)
  3903. {
  3904. struct drm_i915_private *dev_priv = dev->dev_private;
  3905. const struct intel_watermark_params *wm_info;
  3906. uint32_t fwater_lo;
  3907. uint32_t fwater_hi;
  3908. int cwm, srwm = 1;
  3909. int fifo_size;
  3910. int planea_wm, planeb_wm;
  3911. struct drm_crtc *crtc, *enabled = NULL;
  3912. if (IS_I945GM(dev))
  3913. wm_info = &i945_wm_info;
  3914. else if (!IS_GEN2(dev))
  3915. wm_info = &i915_wm_info;
  3916. else
  3917. wm_info = &i855_wm_info;
  3918. fifo_size = dev_priv->display.get_fifo_size(dev, 0);
  3919. crtc = intel_get_crtc_for_plane(dev, 0);
  3920. if (crtc->enabled && crtc->fb) {
  3921. planea_wm = intel_calculate_wm(crtc->mode.clock,
  3922. wm_info, fifo_size,
  3923. crtc->fb->bits_per_pixel / 8,
  3924. latency_ns);
  3925. enabled = crtc;
  3926. } else
  3927. planea_wm = fifo_size - wm_info->guard_size;
  3928. fifo_size = dev_priv->display.get_fifo_size(dev, 1);
  3929. crtc = intel_get_crtc_for_plane(dev, 1);
  3930. if (crtc->enabled && crtc->fb) {
  3931. planeb_wm = intel_calculate_wm(crtc->mode.clock,
  3932. wm_info, fifo_size,
  3933. crtc->fb->bits_per_pixel / 8,
  3934. latency_ns);
  3935. if (enabled == NULL)
  3936. enabled = crtc;
  3937. else
  3938. enabled = NULL;
  3939. } else
  3940. planeb_wm = fifo_size - wm_info->guard_size;
  3941. DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
  3942. /*
  3943. * Overlay gets an aggressive default since video jitter is bad.
  3944. */
  3945. cwm = 2;
  3946. /* Play safe and disable self-refresh before adjusting watermarks. */
  3947. if (IS_I945G(dev) || IS_I945GM(dev))
  3948. I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN_MASK | 0);
  3949. else if (IS_I915GM(dev))
  3950. I915_WRITE(INSTPM, I915_READ(INSTPM) & ~INSTPM_SELF_EN);
  3951. /* Calc sr entries for one plane configs */
  3952. if (HAS_FW_BLC(dev) && enabled) {
  3953. /* self-refresh has much higher latency */
  3954. static const int sr_latency_ns = 6000;
  3955. int clock = enabled->mode.clock;
  3956. int htotal = enabled->mode.htotal;
  3957. int hdisplay = enabled->mode.hdisplay;
  3958. int pixel_size = enabled->fb->bits_per_pixel / 8;
  3959. unsigned long line_time_us;
  3960. int entries;
  3961. line_time_us = (htotal * 1000) / clock;
  3962. /* Use ns/us then divide to preserve precision */
  3963. entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
  3964. pixel_size * hdisplay;
  3965. entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
  3966. DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
  3967. srwm = wm_info->fifo_size - entries;
  3968. if (srwm < 0)
  3969. srwm = 1;
  3970. if (IS_I945G(dev) || IS_I945GM(dev))
  3971. I915_WRITE(FW_BLC_SELF,
  3972. FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
  3973. else if (IS_I915GM(dev))
  3974. I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
  3975. }
  3976. DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
  3977. planea_wm, planeb_wm, cwm, srwm);
  3978. fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
  3979. fwater_hi = (cwm & 0x1f);
  3980. /* Set request length to 8 cachelines per fetch */
  3981. fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
  3982. fwater_hi = fwater_hi | (1 << 8);
  3983. I915_WRITE(FW_BLC, fwater_lo);
  3984. I915_WRITE(FW_BLC2, fwater_hi);
  3985. if (HAS_FW_BLC(dev)) {
  3986. if (enabled) {
  3987. if (IS_I945G(dev) || IS_I945GM(dev))
  3988. I915_WRITE(FW_BLC_SELF,
  3989. FW_BLC_SELF_EN_MASK | FW_BLC_SELF_EN);
  3990. else if (IS_I915GM(dev))
  3991. I915_WRITE(INSTPM, I915_READ(INSTPM) | INSTPM_SELF_EN);
  3992. DRM_DEBUG_KMS("memory self refresh enabled\n");
  3993. } else
  3994. DRM_DEBUG_KMS("memory self refresh disabled\n");
  3995. }
  3996. }
  3997. static void i830_update_wm(struct drm_device *dev)
  3998. {
  3999. struct drm_i915_private *dev_priv = dev->dev_private;
  4000. struct drm_crtc *crtc;
  4001. uint32_t fwater_lo;
  4002. int planea_wm;
  4003. crtc = single_enabled_crtc(dev);
  4004. if (crtc == NULL)
  4005. return;
  4006. planea_wm = intel_calculate_wm(crtc->mode.clock, &i830_wm_info,
  4007. dev_priv->display.get_fifo_size(dev, 0),
  4008. crtc->fb->bits_per_pixel / 8,
  4009. latency_ns);
  4010. fwater_lo = I915_READ(FW_BLC) & ~0xfff;
  4011. fwater_lo |= (3<<8) | planea_wm;
  4012. DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
  4013. I915_WRITE(FW_BLC, fwater_lo);
  4014. }
  4015. #define ILK_LP0_PLANE_LATENCY 700
  4016. #define ILK_LP0_CURSOR_LATENCY 1300
  4017. /*
  4018. * Check the wm result.
  4019. *
  4020. * If any calculated watermark values is larger than the maximum value that
  4021. * can be programmed into the associated watermark register, that watermark
  4022. * must be disabled.
  4023. */
  4024. static bool ironlake_check_srwm(struct drm_device *dev, int level,
  4025. int fbc_wm, int display_wm, int cursor_wm,
  4026. const struct intel_watermark_params *display,
  4027. const struct intel_watermark_params *cursor)
  4028. {
  4029. struct drm_i915_private *dev_priv = dev->dev_private;
  4030. DRM_DEBUG_KMS("watermark %d: display plane %d, fbc lines %d,"
  4031. " cursor %d\n", level, display_wm, fbc_wm, cursor_wm);
  4032. if (fbc_wm > SNB_FBC_MAX_SRWM) {
  4033. DRM_DEBUG_KMS("fbc watermark(%d) is too large(%d), disabling wm%d+\n",
  4034. fbc_wm, SNB_FBC_MAX_SRWM, level);
  4035. /* fbc has it's own way to disable FBC WM */
  4036. I915_WRITE(DISP_ARB_CTL,
  4037. I915_READ(DISP_ARB_CTL) | DISP_FBC_WM_DIS);
  4038. return false;
  4039. }
  4040. if (display_wm > display->max_wm) {
  4041. DRM_DEBUG_KMS("display watermark(%d) is too large(%d), disabling wm%d+\n",
  4042. display_wm, SNB_DISPLAY_MAX_SRWM, level);
  4043. return false;
  4044. }
  4045. if (cursor_wm > cursor->max_wm) {
  4046. DRM_DEBUG_KMS("cursor watermark(%d) is too large(%d), disabling wm%d+\n",
  4047. cursor_wm, SNB_CURSOR_MAX_SRWM, level);
  4048. return false;
  4049. }
  4050. if (!(fbc_wm || display_wm || cursor_wm)) {
  4051. DRM_DEBUG_KMS("latency %d is 0, disabling wm%d+\n", level, level);
  4052. return false;
  4053. }
  4054. return true;
  4055. }
  4056. /*
  4057. * Compute watermark values of WM[1-3],
  4058. */
  4059. static bool ironlake_compute_srwm(struct drm_device *dev, int level, int plane,
  4060. int latency_ns,
  4061. const struct intel_watermark_params *display,
  4062. const struct intel_watermark_params *cursor,
  4063. int *fbc_wm, int *display_wm, int *cursor_wm)
  4064. {
  4065. struct drm_crtc *crtc;
  4066. unsigned long line_time_us;
  4067. int hdisplay, htotal, pixel_size, clock;
  4068. int line_count, line_size;
  4069. int small, large;
  4070. int entries;
  4071. if (!latency_ns) {
  4072. *fbc_wm = *display_wm = *cursor_wm = 0;
  4073. return false;
  4074. }
  4075. crtc = intel_get_crtc_for_plane(dev, plane);
  4076. hdisplay = crtc->mode.hdisplay;
  4077. htotal = crtc->mode.htotal;
  4078. clock = crtc->mode.clock;
  4079. pixel_size = crtc->fb->bits_per_pixel / 8;
  4080. line_time_us = (htotal * 1000) / clock;
  4081. line_count = (latency_ns / line_time_us + 1000) / 1000;
  4082. line_size = hdisplay * pixel_size;
  4083. /* Use the minimum of the small and large buffer method for primary */
  4084. small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
  4085. large = line_count * line_size;
  4086. entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
  4087. *display_wm = entries + display->guard_size;
  4088. /*
  4089. * Spec says:
  4090. * FBC WM = ((Final Primary WM * 64) / number of bytes per line) + 2
  4091. */
  4092. *fbc_wm = DIV_ROUND_UP(*display_wm * 64, line_size) + 2;
  4093. /* calculate the self-refresh watermark for display cursor */
  4094. entries = line_count * pixel_size * 64;
  4095. entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
  4096. *cursor_wm = entries + cursor->guard_size;
  4097. return ironlake_check_srwm(dev, level,
  4098. *fbc_wm, *display_wm, *cursor_wm,
  4099. display, cursor);
  4100. }
  4101. static void ironlake_update_wm(struct drm_device *dev)
  4102. {
  4103. struct drm_i915_private *dev_priv = dev->dev_private;
  4104. int fbc_wm, plane_wm, cursor_wm;
  4105. unsigned int enabled;
  4106. enabled = 0;
  4107. if (g4x_compute_wm0(dev, 0,
  4108. &ironlake_display_wm_info,
  4109. ILK_LP0_PLANE_LATENCY,
  4110. &ironlake_cursor_wm_info,
  4111. ILK_LP0_CURSOR_LATENCY,
  4112. &plane_wm, &cursor_wm)) {
  4113. I915_WRITE(WM0_PIPEA_ILK,
  4114. (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
  4115. DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
  4116. " plane %d, " "cursor: %d\n",
  4117. plane_wm, cursor_wm);
  4118. enabled |= 1;
  4119. }
  4120. if (g4x_compute_wm0(dev, 1,
  4121. &ironlake_display_wm_info,
  4122. ILK_LP0_PLANE_LATENCY,
  4123. &ironlake_cursor_wm_info,
  4124. ILK_LP0_CURSOR_LATENCY,
  4125. &plane_wm, &cursor_wm)) {
  4126. I915_WRITE(WM0_PIPEB_ILK,
  4127. (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
  4128. DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
  4129. " plane %d, cursor: %d\n",
  4130. plane_wm, cursor_wm);
  4131. enabled |= 2;
  4132. }
  4133. /*
  4134. * Calculate and update the self-refresh watermark only when one
  4135. * display plane is used.
  4136. */
  4137. I915_WRITE(WM3_LP_ILK, 0);
  4138. I915_WRITE(WM2_LP_ILK, 0);
  4139. I915_WRITE(WM1_LP_ILK, 0);
  4140. if (!single_plane_enabled(enabled))
  4141. return;
  4142. enabled = ffs(enabled) - 1;
  4143. /* WM1 */
  4144. if (!ironlake_compute_srwm(dev, 1, enabled,
  4145. ILK_READ_WM1_LATENCY() * 500,
  4146. &ironlake_display_srwm_info,
  4147. &ironlake_cursor_srwm_info,
  4148. &fbc_wm, &plane_wm, &cursor_wm))
  4149. return;
  4150. I915_WRITE(WM1_LP_ILK,
  4151. WM1_LP_SR_EN |
  4152. (ILK_READ_WM1_LATENCY() << WM1_LP_LATENCY_SHIFT) |
  4153. (fbc_wm << WM1_LP_FBC_SHIFT) |
  4154. (plane_wm << WM1_LP_SR_SHIFT) |
  4155. cursor_wm);
  4156. /* WM2 */
  4157. if (!ironlake_compute_srwm(dev, 2, enabled,
  4158. ILK_READ_WM2_LATENCY() * 500,
  4159. &ironlake_display_srwm_info,
  4160. &ironlake_cursor_srwm_info,
  4161. &fbc_wm, &plane_wm, &cursor_wm))
  4162. return;
  4163. I915_WRITE(WM2_LP_ILK,
  4164. WM2_LP_EN |
  4165. (ILK_READ_WM2_LATENCY() << WM1_LP_LATENCY_SHIFT) |
  4166. (fbc_wm << WM1_LP_FBC_SHIFT) |
  4167. (plane_wm << WM1_LP_SR_SHIFT) |
  4168. cursor_wm);
  4169. /*
  4170. * WM3 is unsupported on ILK, probably because we don't have latency
  4171. * data for that power state
  4172. */
  4173. }
  4174. static void sandybridge_update_wm(struct drm_device *dev)
  4175. {
  4176. struct drm_i915_private *dev_priv = dev->dev_private;
  4177. int latency = SNB_READ_WM0_LATENCY() * 100; /* In unit 0.1us */
  4178. u32 val;
  4179. int fbc_wm, plane_wm, cursor_wm;
  4180. unsigned int enabled;
  4181. enabled = 0;
  4182. if (g4x_compute_wm0(dev, 0,
  4183. &sandybridge_display_wm_info, latency,
  4184. &sandybridge_cursor_wm_info, latency,
  4185. &plane_wm, &cursor_wm)) {
  4186. val = I915_READ(WM0_PIPEA_ILK);
  4187. val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
  4188. I915_WRITE(WM0_PIPEA_ILK, val |
  4189. ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
  4190. DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
  4191. " plane %d, " "cursor: %d\n",
  4192. plane_wm, cursor_wm);
  4193. enabled |= 1;
  4194. }
  4195. if (g4x_compute_wm0(dev, 1,
  4196. &sandybridge_display_wm_info, latency,
  4197. &sandybridge_cursor_wm_info, latency,
  4198. &plane_wm, &cursor_wm)) {
  4199. val = I915_READ(WM0_PIPEB_ILK);
  4200. val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
  4201. I915_WRITE(WM0_PIPEB_ILK, val |
  4202. ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
  4203. DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
  4204. " plane %d, cursor: %d\n",
  4205. plane_wm, cursor_wm);
  4206. enabled |= 2;
  4207. }
  4208. /* IVB has 3 pipes */
  4209. if (IS_IVYBRIDGE(dev) &&
  4210. g4x_compute_wm0(dev, 2,
  4211. &sandybridge_display_wm_info, latency,
  4212. &sandybridge_cursor_wm_info, latency,
  4213. &plane_wm, &cursor_wm)) {
  4214. val = I915_READ(WM0_PIPEC_IVB);
  4215. val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
  4216. I915_WRITE(WM0_PIPEC_IVB, val |
  4217. ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
  4218. DRM_DEBUG_KMS("FIFO watermarks For pipe C -"
  4219. " plane %d, cursor: %d\n",
  4220. plane_wm, cursor_wm);
  4221. enabled |= 3;
  4222. }
  4223. /*
  4224. * Calculate and update the self-refresh watermark only when one
  4225. * display plane is used.
  4226. *
  4227. * SNB support 3 levels of watermark.
  4228. *
  4229. * WM1/WM2/WM2 watermarks have to be enabled in the ascending order,
  4230. * and disabled in the descending order
  4231. *
  4232. */
  4233. I915_WRITE(WM3_LP_ILK, 0);
  4234. I915_WRITE(WM2_LP_ILK, 0);
  4235. I915_WRITE(WM1_LP_ILK, 0);
  4236. if (!single_plane_enabled(enabled) ||
  4237. dev_priv->sprite_scaling_enabled)
  4238. return;
  4239. enabled = ffs(enabled) - 1;
  4240. /* WM1 */
  4241. if (!ironlake_compute_srwm(dev, 1, enabled,
  4242. SNB_READ_WM1_LATENCY() * 500,
  4243. &sandybridge_display_srwm_info,
  4244. &sandybridge_cursor_srwm_info,
  4245. &fbc_wm, &plane_wm, &cursor_wm))
  4246. return;
  4247. I915_WRITE(WM1_LP_ILK,
  4248. WM1_LP_SR_EN |
  4249. (SNB_READ_WM1_LATENCY() << WM1_LP_LATENCY_SHIFT) |
  4250. (fbc_wm << WM1_LP_FBC_SHIFT) |
  4251. (plane_wm << WM1_LP_SR_SHIFT) |
  4252. cursor_wm);
  4253. /* WM2 */
  4254. if (!ironlake_compute_srwm(dev, 2, enabled,
  4255. SNB_READ_WM2_LATENCY() * 500,
  4256. &sandybridge_display_srwm_info,
  4257. &sandybridge_cursor_srwm_info,
  4258. &fbc_wm, &plane_wm, &cursor_wm))
  4259. return;
  4260. I915_WRITE(WM2_LP_ILK,
  4261. WM2_LP_EN |
  4262. (SNB_READ_WM2_LATENCY() << WM1_LP_LATENCY_SHIFT) |
  4263. (fbc_wm << WM1_LP_FBC_SHIFT) |
  4264. (plane_wm << WM1_LP_SR_SHIFT) |
  4265. cursor_wm);
  4266. /* WM3 */
  4267. if (!ironlake_compute_srwm(dev, 3, enabled,
  4268. SNB_READ_WM3_LATENCY() * 500,
  4269. &sandybridge_display_srwm_info,
  4270. &sandybridge_cursor_srwm_info,
  4271. &fbc_wm, &plane_wm, &cursor_wm))
  4272. return;
  4273. I915_WRITE(WM3_LP_ILK,
  4274. WM3_LP_EN |
  4275. (SNB_READ_WM3_LATENCY() << WM1_LP_LATENCY_SHIFT) |
  4276. (fbc_wm << WM1_LP_FBC_SHIFT) |
  4277. (plane_wm << WM1_LP_SR_SHIFT) |
  4278. cursor_wm);
  4279. }
  4280. static bool
  4281. sandybridge_compute_sprite_wm(struct drm_device *dev, int plane,
  4282. uint32_t sprite_width, int pixel_size,
  4283. const struct intel_watermark_params *display,
  4284. int display_latency_ns, int *sprite_wm)
  4285. {
  4286. struct drm_crtc *crtc;
  4287. int clock;
  4288. int entries, tlb_miss;
  4289. crtc = intel_get_crtc_for_plane(dev, plane);
  4290. if (crtc->fb == NULL || !crtc->enabled) {
  4291. *sprite_wm = display->guard_size;
  4292. return false;
  4293. }
  4294. clock = crtc->mode.clock;
  4295. /* Use the small buffer method to calculate the sprite watermark */
  4296. entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
  4297. tlb_miss = display->fifo_size*display->cacheline_size -
  4298. sprite_width * 8;
  4299. if (tlb_miss > 0)
  4300. entries += tlb_miss;
  4301. entries = DIV_ROUND_UP(entries, display->cacheline_size);
  4302. *sprite_wm = entries + display->guard_size;
  4303. if (*sprite_wm > (int)display->max_wm)
  4304. *sprite_wm = display->max_wm;
  4305. return true;
  4306. }
  4307. static bool
  4308. sandybridge_compute_sprite_srwm(struct drm_device *dev, int plane,
  4309. uint32_t sprite_width, int pixel_size,
  4310. const struct intel_watermark_params *display,
  4311. int latency_ns, int *sprite_wm)
  4312. {
  4313. struct drm_crtc *crtc;
  4314. unsigned long line_time_us;
  4315. int clock;
  4316. int line_count, line_size;
  4317. int small, large;
  4318. int entries;
  4319. if (!latency_ns) {
  4320. *sprite_wm = 0;
  4321. return false;
  4322. }
  4323. crtc = intel_get_crtc_for_plane(dev, plane);
  4324. clock = crtc->mode.clock;
  4325. if (!clock) {
  4326. *sprite_wm = 0;
  4327. return false;
  4328. }
  4329. line_time_us = (sprite_width * 1000) / clock;
  4330. if (!line_time_us) {
  4331. *sprite_wm = 0;
  4332. return false;
  4333. }
  4334. line_count = (latency_ns / line_time_us + 1000) / 1000;
  4335. line_size = sprite_width * pixel_size;
  4336. /* Use the minimum of the small and large buffer method for primary */
  4337. small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
  4338. large = line_count * line_size;
  4339. entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
  4340. *sprite_wm = entries + display->guard_size;
  4341. return *sprite_wm > 0x3ff ? false : true;
  4342. }
  4343. static void sandybridge_update_sprite_wm(struct drm_device *dev, int pipe,
  4344. uint32_t sprite_width, int pixel_size)
  4345. {
  4346. struct drm_i915_private *dev_priv = dev->dev_private;
  4347. int latency = SNB_READ_WM0_LATENCY() * 100; /* In unit 0.1us */
  4348. u32 val;
  4349. int sprite_wm, reg;
  4350. int ret;
  4351. switch (pipe) {
  4352. case 0:
  4353. reg = WM0_PIPEA_ILK;
  4354. break;
  4355. case 1:
  4356. reg = WM0_PIPEB_ILK;
  4357. break;
  4358. case 2:
  4359. reg = WM0_PIPEC_IVB;
  4360. break;
  4361. default:
  4362. return; /* bad pipe */
  4363. }
  4364. ret = sandybridge_compute_sprite_wm(dev, pipe, sprite_width, pixel_size,
  4365. &sandybridge_display_wm_info,
  4366. latency, &sprite_wm);
  4367. if (!ret) {
  4368. DRM_DEBUG_KMS("failed to compute sprite wm for pipe %d\n",
  4369. pipe);
  4370. return;
  4371. }
  4372. val = I915_READ(reg);
  4373. val &= ~WM0_PIPE_SPRITE_MASK;
  4374. I915_WRITE(reg, val | (sprite_wm << WM0_PIPE_SPRITE_SHIFT));
  4375. DRM_DEBUG_KMS("sprite watermarks For pipe %d - %d\n", pipe, sprite_wm);
  4376. ret = sandybridge_compute_sprite_srwm(dev, pipe, sprite_width,
  4377. pixel_size,
  4378. &sandybridge_display_srwm_info,
  4379. SNB_READ_WM1_LATENCY() * 500,
  4380. &sprite_wm);
  4381. if (!ret) {
  4382. DRM_DEBUG_KMS("failed to compute sprite lp1 wm on pipe %d\n",
  4383. pipe);
  4384. return;
  4385. }
  4386. I915_WRITE(WM1S_LP_ILK, sprite_wm);
  4387. /* Only IVB has two more LP watermarks for sprite */
  4388. if (!IS_IVYBRIDGE(dev))
  4389. return;
  4390. ret = sandybridge_compute_sprite_srwm(dev, pipe, sprite_width,
  4391. pixel_size,
  4392. &sandybridge_display_srwm_info,
  4393. SNB_READ_WM2_LATENCY() * 500,
  4394. &sprite_wm);
  4395. if (!ret) {
  4396. DRM_DEBUG_KMS("failed to compute sprite lp2 wm on pipe %d\n",
  4397. pipe);
  4398. return;
  4399. }
  4400. I915_WRITE(WM2S_LP_IVB, sprite_wm);
  4401. ret = sandybridge_compute_sprite_srwm(dev, pipe, sprite_width,
  4402. pixel_size,
  4403. &sandybridge_display_srwm_info,
  4404. SNB_READ_WM3_LATENCY() * 500,
  4405. &sprite_wm);
  4406. if (!ret) {
  4407. DRM_DEBUG_KMS("failed to compute sprite lp3 wm on pipe %d\n",
  4408. pipe);
  4409. return;
  4410. }
  4411. I915_WRITE(WM3S_LP_IVB, sprite_wm);
  4412. }
  4413. /**
  4414. * intel_update_watermarks - update FIFO watermark values based on current modes
  4415. *
  4416. * Calculate watermark values for the various WM regs based on current mode
  4417. * and plane configuration.
  4418. *
  4419. * There are several cases to deal with here:
  4420. * - normal (i.e. non-self-refresh)
  4421. * - self-refresh (SR) mode
  4422. * - lines are large relative to FIFO size (buffer can hold up to 2)
  4423. * - lines are small relative to FIFO size (buffer can hold more than 2
  4424. * lines), so need to account for TLB latency
  4425. *
  4426. * The normal calculation is:
  4427. * watermark = dotclock * bytes per pixel * latency
  4428. * where latency is platform & configuration dependent (we assume pessimal
  4429. * values here).
  4430. *
  4431. * The SR calculation is:
  4432. * watermark = (trunc(latency/line time)+1) * surface width *
  4433. * bytes per pixel
  4434. * where
  4435. * line time = htotal / dotclock
  4436. * surface width = hdisplay for normal plane and 64 for cursor
  4437. * and latency is assumed to be high, as above.
  4438. *
  4439. * The final value programmed to the register should always be rounded up,
  4440. * and include an extra 2 entries to account for clock crossings.
  4441. *
  4442. * We don't use the sprite, so we can ignore that. And on Crestline we have
  4443. * to set the non-SR watermarks to 8.
  4444. */
  4445. void intel_update_watermarks(struct drm_device *dev)
  4446. {
  4447. struct drm_i915_private *dev_priv = dev->dev_private;
  4448. if (dev_priv->display.update_wm)
  4449. dev_priv->display.update_wm(dev);
  4450. }
  4451. void intel_update_sprite_watermarks(struct drm_device *dev, int pipe,
  4452. uint32_t sprite_width, int pixel_size)
  4453. {
  4454. struct drm_i915_private *dev_priv = dev->dev_private;
  4455. if (dev_priv->display.update_sprite_wm)
  4456. dev_priv->display.update_sprite_wm(dev, pipe, sprite_width,
  4457. pixel_size);
  4458. }
  4459. static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
  4460. {
  4461. if (i915_panel_use_ssc >= 0)
  4462. return i915_panel_use_ssc != 0;
  4463. return dev_priv->lvds_use_ssc
  4464. && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
  4465. }
  4466. /**
  4467. * intel_choose_pipe_bpp_dither - figure out what color depth the pipe should send
  4468. * @crtc: CRTC structure
  4469. * @mode: requested mode
  4470. *
  4471. * A pipe may be connected to one or more outputs. Based on the depth of the
  4472. * attached framebuffer, choose a good color depth to use on the pipe.
  4473. *
  4474. * If possible, match the pipe depth to the fb depth. In some cases, this
  4475. * isn't ideal, because the connected output supports a lesser or restricted
  4476. * set of depths. Resolve that here:
  4477. * LVDS typically supports only 6bpc, so clamp down in that case
  4478. * HDMI supports only 8bpc or 12bpc, so clamp to 8bpc with dither for 10bpc
  4479. * Displays may support a restricted set as well, check EDID and clamp as
  4480. * appropriate.
  4481. * DP may want to dither down to 6bpc to fit larger modes
  4482. *
  4483. * RETURNS:
  4484. * Dithering requirement (i.e. false if display bpc and pipe bpc match,
  4485. * true if they don't match).
  4486. */
  4487. static bool intel_choose_pipe_bpp_dither(struct drm_crtc *crtc,
  4488. unsigned int *pipe_bpp,
  4489. struct drm_display_mode *mode)
  4490. {
  4491. struct drm_device *dev = crtc->dev;
  4492. struct drm_i915_private *dev_priv = dev->dev_private;
  4493. struct drm_encoder *encoder;
  4494. struct drm_connector *connector;
  4495. unsigned int display_bpc = UINT_MAX, bpc;
  4496. /* Walk the encoders & connectors on this crtc, get min bpc */
  4497. list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
  4498. struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
  4499. if (encoder->crtc != crtc)
  4500. continue;
  4501. if (intel_encoder->type == INTEL_OUTPUT_LVDS) {
  4502. unsigned int lvds_bpc;
  4503. if ((I915_READ(PCH_LVDS) & LVDS_A3_POWER_MASK) ==
  4504. LVDS_A3_POWER_UP)
  4505. lvds_bpc = 8;
  4506. else
  4507. lvds_bpc = 6;
  4508. if (lvds_bpc < display_bpc) {
  4509. DRM_DEBUG_KMS("clamping display bpc (was %d) to LVDS (%d)\n", display_bpc, lvds_bpc);
  4510. display_bpc = lvds_bpc;
  4511. }
  4512. continue;
  4513. }
  4514. if (intel_encoder->type == INTEL_OUTPUT_EDP) {
  4515. /* Use VBT settings if we have an eDP panel */
  4516. unsigned int edp_bpc = dev_priv->edp.bpp / 3;
  4517. if (edp_bpc < display_bpc) {
  4518. DRM_DEBUG_KMS("clamping display bpc (was %d) to eDP (%d)\n", display_bpc, edp_bpc);
  4519. display_bpc = edp_bpc;
  4520. }
  4521. continue;
  4522. }
  4523. /* Not one of the known troublemakers, check the EDID */
  4524. list_for_each_entry(connector, &dev->mode_config.connector_list,
  4525. head) {
  4526. if (connector->encoder != encoder)
  4527. continue;
  4528. /* Don't use an invalid EDID bpc value */
  4529. if (connector->display_info.bpc &&
  4530. connector->display_info.bpc < display_bpc) {
  4531. DRM_DEBUG_KMS("clamping display bpc (was %d) to EDID reported max of %d\n", display_bpc, connector->display_info.bpc);
  4532. display_bpc = connector->display_info.bpc;
  4533. }
  4534. }
  4535. /*
  4536. * HDMI is either 12 or 8, so if the display lets 10bpc sneak
  4537. * through, clamp it down. (Note: >12bpc will be caught below.)
  4538. */
  4539. if (intel_encoder->type == INTEL_OUTPUT_HDMI) {
  4540. if (display_bpc > 8 && display_bpc < 12) {
  4541. DRM_DEBUG_KMS("forcing bpc to 12 for HDMI\n");
  4542. display_bpc = 12;
  4543. } else {
  4544. DRM_DEBUG_KMS("forcing bpc to 8 for HDMI\n");
  4545. display_bpc = 8;
  4546. }
  4547. }
  4548. }
  4549. if (mode->private_flags & INTEL_MODE_DP_FORCE_6BPC) {
  4550. DRM_DEBUG_KMS("Dithering DP to 6bpc\n");
  4551. display_bpc = 6;
  4552. }
  4553. /*
  4554. * We could just drive the pipe at the highest bpc all the time and
  4555. * enable dithering as needed, but that costs bandwidth. So choose
  4556. * the minimum value that expresses the full color range of the fb but
  4557. * also stays within the max display bpc discovered above.
  4558. */
  4559. switch (crtc->fb->depth) {
  4560. case 8:
  4561. bpc = 8; /* since we go through a colormap */
  4562. break;
  4563. case 15:
  4564. case 16:
  4565. bpc = 6; /* min is 18bpp */
  4566. break;
  4567. case 24:
  4568. bpc = 8;
  4569. break;
  4570. case 30:
  4571. bpc = 10;
  4572. break;
  4573. case 48:
  4574. bpc = 12;
  4575. break;
  4576. default:
  4577. DRM_DEBUG("unsupported depth, assuming 24 bits\n");
  4578. bpc = min((unsigned int)8, display_bpc);
  4579. break;
  4580. }
  4581. display_bpc = min(display_bpc, bpc);
  4582. DRM_DEBUG_KMS("setting pipe bpc to %d (max display bpc %d)\n",
  4583. bpc, display_bpc);
  4584. *pipe_bpp = display_bpc * 3;
  4585. return display_bpc != bpc;
  4586. }
  4587. static int i9xx_get_refclk(struct drm_crtc *crtc, int num_connectors)
  4588. {
  4589. struct drm_device *dev = crtc->dev;
  4590. struct drm_i915_private *dev_priv = dev->dev_private;
  4591. int refclk;
  4592. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
  4593. intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
  4594. refclk = dev_priv->lvds_ssc_freq * 1000;
  4595. DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
  4596. refclk / 1000);
  4597. } else if (!IS_GEN2(dev)) {
  4598. refclk = 96000;
  4599. } else {
  4600. refclk = 48000;
  4601. }
  4602. return refclk;
  4603. }
  4604. static void i9xx_adjust_sdvo_tv_clock(struct drm_display_mode *adjusted_mode,
  4605. intel_clock_t *clock)
  4606. {
  4607. /* SDVO TV has fixed PLL values depend on its clock range,
  4608. this mirrors vbios setting. */
  4609. if (adjusted_mode->clock >= 100000
  4610. && adjusted_mode->clock < 140500) {
  4611. clock->p1 = 2;
  4612. clock->p2 = 10;
  4613. clock->n = 3;
  4614. clock->m1 = 16;
  4615. clock->m2 = 8;
  4616. } else if (adjusted_mode->clock >= 140500
  4617. && adjusted_mode->clock <= 200000) {
  4618. clock->p1 = 1;
  4619. clock->p2 = 10;
  4620. clock->n = 6;
  4621. clock->m1 = 12;
  4622. clock->m2 = 8;
  4623. }
  4624. }
  4625. static void i9xx_update_pll_dividers(struct drm_crtc *crtc,
  4626. intel_clock_t *clock,
  4627. intel_clock_t *reduced_clock)
  4628. {
  4629. struct drm_device *dev = crtc->dev;
  4630. struct drm_i915_private *dev_priv = dev->dev_private;
  4631. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4632. int pipe = intel_crtc->pipe;
  4633. u32 fp, fp2 = 0;
  4634. if (IS_PINEVIEW(dev)) {
  4635. fp = (1 << clock->n) << 16 | clock->m1 << 8 | clock->m2;
  4636. if (reduced_clock)
  4637. fp2 = (1 << reduced_clock->n) << 16 |
  4638. reduced_clock->m1 << 8 | reduced_clock->m2;
  4639. } else {
  4640. fp = clock->n << 16 | clock->m1 << 8 | clock->m2;
  4641. if (reduced_clock)
  4642. fp2 = reduced_clock->n << 16 | reduced_clock->m1 << 8 |
  4643. reduced_clock->m2;
  4644. }
  4645. I915_WRITE(FP0(pipe), fp);
  4646. intel_crtc->lowfreq_avail = false;
  4647. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
  4648. reduced_clock && i915_powersave) {
  4649. I915_WRITE(FP1(pipe), fp2);
  4650. intel_crtc->lowfreq_avail = true;
  4651. } else {
  4652. I915_WRITE(FP1(pipe), fp);
  4653. }
  4654. }
  4655. static void intel_update_lvds(struct drm_crtc *crtc, intel_clock_t *clock,
  4656. struct drm_display_mode *adjusted_mode)
  4657. {
  4658. struct drm_device *dev = crtc->dev;
  4659. struct drm_i915_private *dev_priv = dev->dev_private;
  4660. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4661. int pipe = intel_crtc->pipe;
  4662. u32 temp, lvds_sync = 0;
  4663. temp = I915_READ(LVDS);
  4664. temp |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
  4665. if (pipe == 1) {
  4666. temp |= LVDS_PIPEB_SELECT;
  4667. } else {
  4668. temp &= ~LVDS_PIPEB_SELECT;
  4669. }
  4670. /* set the corresponsding LVDS_BORDER bit */
  4671. temp |= dev_priv->lvds_border_bits;
  4672. /* Set the B0-B3 data pairs corresponding to whether we're going to
  4673. * set the DPLLs for dual-channel mode or not.
  4674. */
  4675. if (clock->p2 == 7)
  4676. temp |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
  4677. else
  4678. temp &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
  4679. /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
  4680. * appropriately here, but we need to look more thoroughly into how
  4681. * panels behave in the two modes.
  4682. */
  4683. /* set the dithering flag on LVDS as needed */
  4684. if (INTEL_INFO(dev)->gen >= 4) {
  4685. if (dev_priv->lvds_dither)
  4686. temp |= LVDS_ENABLE_DITHER;
  4687. else
  4688. temp &= ~LVDS_ENABLE_DITHER;
  4689. }
  4690. if (adjusted_mode->flags & DRM_MODE_FLAG_NHSYNC)
  4691. lvds_sync |= LVDS_HSYNC_POLARITY;
  4692. if (adjusted_mode->flags & DRM_MODE_FLAG_NVSYNC)
  4693. lvds_sync |= LVDS_VSYNC_POLARITY;
  4694. if ((temp & (LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY))
  4695. != lvds_sync) {
  4696. char flags[2] = "-+";
  4697. DRM_INFO("Changing LVDS panel from "
  4698. "(%chsync, %cvsync) to (%chsync, %cvsync)\n",
  4699. flags[!(temp & LVDS_HSYNC_POLARITY)],
  4700. flags[!(temp & LVDS_VSYNC_POLARITY)],
  4701. flags[!(lvds_sync & LVDS_HSYNC_POLARITY)],
  4702. flags[!(lvds_sync & LVDS_VSYNC_POLARITY)]);
  4703. temp &= ~(LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY);
  4704. temp |= lvds_sync;
  4705. }
  4706. I915_WRITE(LVDS, temp);
  4707. }
  4708. static void i9xx_update_pll(struct drm_crtc *crtc,
  4709. struct drm_display_mode *mode,
  4710. struct drm_display_mode *adjusted_mode,
  4711. intel_clock_t *clock, intel_clock_t *reduced_clock,
  4712. int num_connectors)
  4713. {
  4714. struct drm_device *dev = crtc->dev;
  4715. struct drm_i915_private *dev_priv = dev->dev_private;
  4716. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4717. int pipe = intel_crtc->pipe;
  4718. u32 dpll;
  4719. bool is_sdvo;
  4720. is_sdvo = intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO) ||
  4721. intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI);
  4722. dpll = DPLL_VGA_MODE_DIS;
  4723. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
  4724. dpll |= DPLLB_MODE_LVDS;
  4725. else
  4726. dpll |= DPLLB_MODE_DAC_SERIAL;
  4727. if (is_sdvo) {
  4728. int pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
  4729. if (pixel_multiplier > 1) {
  4730. if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
  4731. dpll |= (pixel_multiplier - 1) << SDVO_MULTIPLIER_SHIFT_HIRES;
  4732. }
  4733. dpll |= DPLL_DVO_HIGH_SPEED;
  4734. }
  4735. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT))
  4736. dpll |= DPLL_DVO_HIGH_SPEED;
  4737. /* compute bitmask from p1 value */
  4738. if (IS_PINEVIEW(dev))
  4739. dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
  4740. else {
  4741. dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
  4742. if (IS_G4X(dev) && reduced_clock)
  4743. dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
  4744. }
  4745. switch (clock->p2) {
  4746. case 5:
  4747. dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
  4748. break;
  4749. case 7:
  4750. dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
  4751. break;
  4752. case 10:
  4753. dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
  4754. break;
  4755. case 14:
  4756. dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
  4757. break;
  4758. }
  4759. if (INTEL_INFO(dev)->gen >= 4)
  4760. dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
  4761. if (is_sdvo && intel_pipe_has_type(crtc, INTEL_OUTPUT_TVOUT))
  4762. dpll |= PLL_REF_INPUT_TVCLKINBC;
  4763. else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_TVOUT))
  4764. /* XXX: just matching BIOS for now */
  4765. /* dpll |= PLL_REF_INPUT_TVCLKINBC; */
  4766. dpll |= 3;
  4767. else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
  4768. intel_panel_use_ssc(dev_priv) && num_connectors < 2)
  4769. dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
  4770. else
  4771. dpll |= PLL_REF_INPUT_DREFCLK;
  4772. dpll |= DPLL_VCO_ENABLE;
  4773. I915_WRITE(DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
  4774. POSTING_READ(DPLL(pipe));
  4775. udelay(150);
  4776. /* The LVDS pin pair needs to be on before the DPLLs are enabled.
  4777. * This is an exception to the general rule that mode_set doesn't turn
  4778. * things on.
  4779. */
  4780. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
  4781. intel_update_lvds(crtc, clock, adjusted_mode);
  4782. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT))
  4783. intel_dp_set_m_n(crtc, mode, adjusted_mode);
  4784. I915_WRITE(DPLL(pipe), dpll);
  4785. /* Wait for the clocks to stabilize. */
  4786. POSTING_READ(DPLL(pipe));
  4787. udelay(150);
  4788. if (INTEL_INFO(dev)->gen >= 4) {
  4789. u32 temp = 0;
  4790. if (is_sdvo) {
  4791. temp = intel_mode_get_pixel_multiplier(adjusted_mode);
  4792. if (temp > 1)
  4793. temp = (temp - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
  4794. else
  4795. temp = 0;
  4796. }
  4797. I915_WRITE(DPLL_MD(pipe), temp);
  4798. } else {
  4799. /* The pixel multiplier can only be updated once the
  4800. * DPLL is enabled and the clocks are stable.
  4801. *
  4802. * So write it again.
  4803. */
  4804. I915_WRITE(DPLL(pipe), dpll);
  4805. }
  4806. }
  4807. static void i8xx_update_pll(struct drm_crtc *crtc,
  4808. struct drm_display_mode *adjusted_mode,
  4809. intel_clock_t *clock,
  4810. int num_connectors)
  4811. {
  4812. struct drm_device *dev = crtc->dev;
  4813. struct drm_i915_private *dev_priv = dev->dev_private;
  4814. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4815. int pipe = intel_crtc->pipe;
  4816. u32 dpll;
  4817. dpll = DPLL_VGA_MODE_DIS;
  4818. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  4819. dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
  4820. } else {
  4821. if (clock->p1 == 2)
  4822. dpll |= PLL_P1_DIVIDE_BY_TWO;
  4823. else
  4824. dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
  4825. if (clock->p2 == 4)
  4826. dpll |= PLL_P2_DIVIDE_BY_4;
  4827. }
  4828. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_TVOUT))
  4829. /* XXX: just matching BIOS for now */
  4830. /* dpll |= PLL_REF_INPUT_TVCLKINBC; */
  4831. dpll |= 3;
  4832. else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
  4833. intel_panel_use_ssc(dev_priv) && num_connectors < 2)
  4834. dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
  4835. else
  4836. dpll |= PLL_REF_INPUT_DREFCLK;
  4837. dpll |= DPLL_VCO_ENABLE;
  4838. I915_WRITE(DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
  4839. POSTING_READ(DPLL(pipe));
  4840. udelay(150);
  4841. I915_WRITE(DPLL(pipe), dpll);
  4842. /* Wait for the clocks to stabilize. */
  4843. POSTING_READ(DPLL(pipe));
  4844. udelay(150);
  4845. /* The LVDS pin pair needs to be on before the DPLLs are enabled.
  4846. * This is an exception to the general rule that mode_set doesn't turn
  4847. * things on.
  4848. */
  4849. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
  4850. intel_update_lvds(crtc, clock, adjusted_mode);
  4851. /* The pixel multiplier can only be updated once the
  4852. * DPLL is enabled and the clocks are stable.
  4853. *
  4854. * So write it again.
  4855. */
  4856. I915_WRITE(DPLL(pipe), dpll);
  4857. }
  4858. static int i9xx_crtc_mode_set(struct drm_crtc *crtc,
  4859. struct drm_display_mode *mode,
  4860. struct drm_display_mode *adjusted_mode,
  4861. int x, int y,
  4862. struct drm_framebuffer *old_fb)
  4863. {
  4864. struct drm_device *dev = crtc->dev;
  4865. struct drm_i915_private *dev_priv = dev->dev_private;
  4866. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4867. int pipe = intel_crtc->pipe;
  4868. int plane = intel_crtc->plane;
  4869. int refclk, num_connectors = 0;
  4870. intel_clock_t clock, reduced_clock;
  4871. u32 dspcntr, pipeconf, vsyncshift;
  4872. bool ok, has_reduced_clock = false, is_sdvo = false;
  4873. bool is_lvds = false, is_tv = false, is_dp = false;
  4874. struct drm_mode_config *mode_config = &dev->mode_config;
  4875. struct intel_encoder *encoder;
  4876. const intel_limit_t *limit;
  4877. int ret;
  4878. list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
  4879. if (encoder->base.crtc != crtc)
  4880. continue;
  4881. switch (encoder->type) {
  4882. case INTEL_OUTPUT_LVDS:
  4883. is_lvds = true;
  4884. break;
  4885. case INTEL_OUTPUT_SDVO:
  4886. case INTEL_OUTPUT_HDMI:
  4887. is_sdvo = true;
  4888. if (encoder->needs_tv_clock)
  4889. is_tv = true;
  4890. break;
  4891. case INTEL_OUTPUT_TVOUT:
  4892. is_tv = true;
  4893. break;
  4894. case INTEL_OUTPUT_DISPLAYPORT:
  4895. is_dp = true;
  4896. break;
  4897. }
  4898. num_connectors++;
  4899. }
  4900. refclk = i9xx_get_refclk(crtc, num_connectors);
  4901. /*
  4902. * Returns a set of divisors for the desired target clock with the given
  4903. * refclk, or FALSE. The returned values represent the clock equation:
  4904. * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
  4905. */
  4906. limit = intel_limit(crtc, refclk);
  4907. ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, NULL,
  4908. &clock);
  4909. if (!ok) {
  4910. DRM_ERROR("Couldn't find PLL settings for mode!\n");
  4911. return -EINVAL;
  4912. }
  4913. /* Ensure that the cursor is valid for the new mode before changing... */
  4914. intel_crtc_update_cursor(crtc, true);
  4915. if (is_lvds && dev_priv->lvds_downclock_avail) {
  4916. /*
  4917. * Ensure we match the reduced clock's P to the target clock.
  4918. * If the clocks don't match, we can't switch the display clock
  4919. * by using the FP0/FP1. In such case we will disable the LVDS
  4920. * downclock feature.
  4921. */
  4922. has_reduced_clock = limit->find_pll(limit, crtc,
  4923. dev_priv->lvds_downclock,
  4924. refclk,
  4925. &clock,
  4926. &reduced_clock);
  4927. }
  4928. if (is_sdvo && is_tv)
  4929. i9xx_adjust_sdvo_tv_clock(adjusted_mode, &clock);
  4930. i9xx_update_pll_dividers(crtc, &clock, has_reduced_clock ?
  4931. &reduced_clock : NULL);
  4932. if (IS_GEN2(dev))
  4933. i8xx_update_pll(crtc, adjusted_mode, &clock, num_connectors);
  4934. else
  4935. i9xx_update_pll(crtc, mode, adjusted_mode, &clock,
  4936. has_reduced_clock ? &reduced_clock : NULL,
  4937. num_connectors);
  4938. /* setup pipeconf */
  4939. pipeconf = I915_READ(PIPECONF(pipe));
  4940. /* Set up the display plane register */
  4941. dspcntr = DISPPLANE_GAMMA_ENABLE;
  4942. if (pipe == 0)
  4943. dspcntr &= ~DISPPLANE_SEL_PIPE_MASK;
  4944. else
  4945. dspcntr |= DISPPLANE_SEL_PIPE_B;
  4946. if (pipe == 0 && INTEL_INFO(dev)->gen < 4) {
  4947. /* Enable pixel doubling when the dot clock is > 90% of the (display)
  4948. * core speed.
  4949. *
  4950. * XXX: No double-wide on 915GM pipe B. Is that the only reason for the
  4951. * pipe == 0 check?
  4952. */
  4953. if (mode->clock >
  4954. dev_priv->display.get_display_clock_speed(dev) * 9 / 10)
  4955. pipeconf |= PIPECONF_DOUBLE_WIDE;
  4956. else
  4957. pipeconf &= ~PIPECONF_DOUBLE_WIDE;
  4958. }
  4959. /* default to 8bpc */
  4960. pipeconf &= ~(PIPECONF_BPP_MASK | PIPECONF_DITHER_EN);
  4961. if (is_dp) {
  4962. if (mode->private_flags & INTEL_MODE_DP_FORCE_6BPC) {
  4963. pipeconf |= PIPECONF_BPP_6 |
  4964. PIPECONF_DITHER_EN |
  4965. PIPECONF_DITHER_TYPE_SP;
  4966. }
  4967. }
  4968. DRM_DEBUG_KMS("Mode for pipe %c:\n", pipe == 0 ? 'A' : 'B');
  4969. drm_mode_debug_printmodeline(mode);
  4970. if (HAS_PIPE_CXSR(dev)) {
  4971. if (intel_crtc->lowfreq_avail) {
  4972. DRM_DEBUG_KMS("enabling CxSR downclocking\n");
  4973. pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
  4974. } else {
  4975. DRM_DEBUG_KMS("disabling CxSR downclocking\n");
  4976. pipeconf &= ~PIPECONF_CXSR_DOWNCLOCK;
  4977. }
  4978. }
  4979. pipeconf &= ~PIPECONF_INTERLACE_MASK;
  4980. if (!IS_GEN2(dev) &&
  4981. adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
  4982. pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
  4983. /* the chip adds 2 halflines automatically */
  4984. adjusted_mode->crtc_vtotal -= 1;
  4985. adjusted_mode->crtc_vblank_end -= 1;
  4986. vsyncshift = adjusted_mode->crtc_hsync_start
  4987. - adjusted_mode->crtc_htotal/2;
  4988. } else {
  4989. pipeconf |= PIPECONF_PROGRESSIVE;
  4990. vsyncshift = 0;
  4991. }
  4992. if (!IS_GEN3(dev))
  4993. I915_WRITE(VSYNCSHIFT(pipe), vsyncshift);
  4994. I915_WRITE(HTOTAL(pipe),
  4995. (adjusted_mode->crtc_hdisplay - 1) |
  4996. ((adjusted_mode->crtc_htotal - 1) << 16));
  4997. I915_WRITE(HBLANK(pipe),
  4998. (adjusted_mode->crtc_hblank_start - 1) |
  4999. ((adjusted_mode->crtc_hblank_end - 1) << 16));
  5000. I915_WRITE(HSYNC(pipe),
  5001. (adjusted_mode->crtc_hsync_start - 1) |
  5002. ((adjusted_mode->crtc_hsync_end - 1) << 16));
  5003. I915_WRITE(VTOTAL(pipe),
  5004. (adjusted_mode->crtc_vdisplay - 1) |
  5005. ((adjusted_mode->crtc_vtotal - 1) << 16));
  5006. I915_WRITE(VBLANK(pipe),
  5007. (adjusted_mode->crtc_vblank_start - 1) |
  5008. ((adjusted_mode->crtc_vblank_end - 1) << 16));
  5009. I915_WRITE(VSYNC(pipe),
  5010. (adjusted_mode->crtc_vsync_start - 1) |
  5011. ((adjusted_mode->crtc_vsync_end - 1) << 16));
  5012. /* pipesrc and dspsize control the size that is scaled from,
  5013. * which should always be the user's requested size.
  5014. */
  5015. I915_WRITE(DSPSIZE(plane),
  5016. ((mode->vdisplay - 1) << 16) |
  5017. (mode->hdisplay - 1));
  5018. I915_WRITE(DSPPOS(plane), 0);
  5019. I915_WRITE(PIPESRC(pipe),
  5020. ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
  5021. I915_WRITE(PIPECONF(pipe), pipeconf);
  5022. POSTING_READ(PIPECONF(pipe));
  5023. intel_enable_pipe(dev_priv, pipe, false);
  5024. intel_wait_for_vblank(dev, pipe);
  5025. I915_WRITE(DSPCNTR(plane), dspcntr);
  5026. POSTING_READ(DSPCNTR(plane));
  5027. intel_enable_plane(dev_priv, plane, pipe);
  5028. ret = intel_pipe_set_base(crtc, x, y, old_fb);
  5029. intel_update_watermarks(dev);
  5030. return ret;
  5031. }
  5032. /*
  5033. * Initialize reference clocks when the driver loads
  5034. */
  5035. void ironlake_init_pch_refclk(struct drm_device *dev)
  5036. {
  5037. struct drm_i915_private *dev_priv = dev->dev_private;
  5038. struct drm_mode_config *mode_config = &dev->mode_config;
  5039. struct intel_encoder *encoder;
  5040. u32 temp;
  5041. bool has_lvds = false;
  5042. bool has_cpu_edp = false;
  5043. bool has_pch_edp = false;
  5044. bool has_panel = false;
  5045. bool has_ck505 = false;
  5046. bool can_ssc = false;
  5047. /* We need to take the global config into account */
  5048. list_for_each_entry(encoder, &mode_config->encoder_list,
  5049. base.head) {
  5050. switch (encoder->type) {
  5051. case INTEL_OUTPUT_LVDS:
  5052. has_panel = true;
  5053. has_lvds = true;
  5054. break;
  5055. case INTEL_OUTPUT_EDP:
  5056. has_panel = true;
  5057. if (intel_encoder_is_pch_edp(&encoder->base))
  5058. has_pch_edp = true;
  5059. else
  5060. has_cpu_edp = true;
  5061. break;
  5062. }
  5063. }
  5064. if (HAS_PCH_IBX(dev)) {
  5065. has_ck505 = dev_priv->display_clock_mode;
  5066. can_ssc = has_ck505;
  5067. } else {
  5068. has_ck505 = false;
  5069. can_ssc = true;
  5070. }
  5071. DRM_DEBUG_KMS("has_panel %d has_lvds %d has_pch_edp %d has_cpu_edp %d has_ck505 %d\n",
  5072. has_panel, has_lvds, has_pch_edp, has_cpu_edp,
  5073. has_ck505);
  5074. /* Ironlake: try to setup display ref clock before DPLL
  5075. * enabling. This is only under driver's control after
  5076. * PCH B stepping, previous chipset stepping should be
  5077. * ignoring this setting.
  5078. */
  5079. temp = I915_READ(PCH_DREF_CONTROL);
  5080. /* Always enable nonspread source */
  5081. temp &= ~DREF_NONSPREAD_SOURCE_MASK;
  5082. if (has_ck505)
  5083. temp |= DREF_NONSPREAD_CK505_ENABLE;
  5084. else
  5085. temp |= DREF_NONSPREAD_SOURCE_ENABLE;
  5086. if (has_panel) {
  5087. temp &= ~DREF_SSC_SOURCE_MASK;
  5088. temp |= DREF_SSC_SOURCE_ENABLE;
  5089. /* SSC must be turned on before enabling the CPU output */
  5090. if (intel_panel_use_ssc(dev_priv) && can_ssc) {
  5091. DRM_DEBUG_KMS("Using SSC on panel\n");
  5092. temp |= DREF_SSC1_ENABLE;
  5093. } else
  5094. temp &= ~DREF_SSC1_ENABLE;
  5095. /* Get SSC going before enabling the outputs */
  5096. I915_WRITE(PCH_DREF_CONTROL, temp);
  5097. POSTING_READ(PCH_DREF_CONTROL);
  5098. udelay(200);
  5099. temp &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
  5100. /* Enable CPU source on CPU attached eDP */
  5101. if (has_cpu_edp) {
  5102. if (intel_panel_use_ssc(dev_priv) && can_ssc) {
  5103. DRM_DEBUG_KMS("Using SSC on eDP\n");
  5104. temp |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
  5105. }
  5106. else
  5107. temp |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
  5108. } else
  5109. temp |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
  5110. I915_WRITE(PCH_DREF_CONTROL, temp);
  5111. POSTING_READ(PCH_DREF_CONTROL);
  5112. udelay(200);
  5113. } else {
  5114. DRM_DEBUG_KMS("Disabling SSC entirely\n");
  5115. temp &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
  5116. /* Turn off CPU output */
  5117. temp |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
  5118. I915_WRITE(PCH_DREF_CONTROL, temp);
  5119. POSTING_READ(PCH_DREF_CONTROL);
  5120. udelay(200);
  5121. /* Turn off the SSC source */
  5122. temp &= ~DREF_SSC_SOURCE_MASK;
  5123. temp |= DREF_SSC_SOURCE_DISABLE;
  5124. /* Turn off SSC1 */
  5125. temp &= ~ DREF_SSC1_ENABLE;
  5126. I915_WRITE(PCH_DREF_CONTROL, temp);
  5127. POSTING_READ(PCH_DREF_CONTROL);
  5128. udelay(200);
  5129. }
  5130. }
  5131. static int ironlake_get_refclk(struct drm_crtc *crtc)
  5132. {
  5133. struct drm_device *dev = crtc->dev;
  5134. struct drm_i915_private *dev_priv = dev->dev_private;
  5135. struct intel_encoder *encoder;
  5136. struct drm_mode_config *mode_config = &dev->mode_config;
  5137. struct intel_encoder *edp_encoder = NULL;
  5138. int num_connectors = 0;
  5139. bool is_lvds = false;
  5140. list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
  5141. if (encoder->base.crtc != crtc)
  5142. continue;
  5143. switch (encoder->type) {
  5144. case INTEL_OUTPUT_LVDS:
  5145. is_lvds = true;
  5146. break;
  5147. case INTEL_OUTPUT_EDP:
  5148. edp_encoder = encoder;
  5149. break;
  5150. }
  5151. num_connectors++;
  5152. }
  5153. if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
  5154. DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
  5155. dev_priv->lvds_ssc_freq);
  5156. return dev_priv->lvds_ssc_freq * 1000;
  5157. }
  5158. return 120000;
  5159. }
  5160. static int ironlake_crtc_mode_set(struct drm_crtc *crtc,
  5161. struct drm_display_mode *mode,
  5162. struct drm_display_mode *adjusted_mode,
  5163. int x, int y,
  5164. struct drm_framebuffer *old_fb)
  5165. {
  5166. struct drm_device *dev = crtc->dev;
  5167. struct drm_i915_private *dev_priv = dev->dev_private;
  5168. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5169. int pipe = intel_crtc->pipe;
  5170. int plane = intel_crtc->plane;
  5171. int refclk, num_connectors = 0;
  5172. intel_clock_t clock, reduced_clock;
  5173. u32 dpll, fp = 0, fp2 = 0, dspcntr, pipeconf;
  5174. bool ok, has_reduced_clock = false, is_sdvo = false;
  5175. bool is_crt = false, is_lvds = false, is_tv = false, is_dp = false;
  5176. struct drm_mode_config *mode_config = &dev->mode_config;
  5177. struct intel_encoder *encoder, *edp_encoder = NULL;
  5178. const intel_limit_t *limit;
  5179. int ret;
  5180. struct fdi_m_n m_n = {0};
  5181. u32 temp;
  5182. u32 lvds_sync = 0;
  5183. int target_clock, pixel_multiplier, lane, link_bw, factor;
  5184. unsigned int pipe_bpp;
  5185. bool dither;
  5186. bool is_cpu_edp = false, is_pch_edp = false;
  5187. list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
  5188. if (encoder->base.crtc != crtc)
  5189. continue;
  5190. switch (encoder->type) {
  5191. case INTEL_OUTPUT_LVDS:
  5192. is_lvds = true;
  5193. break;
  5194. case INTEL_OUTPUT_SDVO:
  5195. case INTEL_OUTPUT_HDMI:
  5196. is_sdvo = true;
  5197. if (encoder->needs_tv_clock)
  5198. is_tv = true;
  5199. break;
  5200. case INTEL_OUTPUT_TVOUT:
  5201. is_tv = true;
  5202. break;
  5203. case INTEL_OUTPUT_ANALOG:
  5204. is_crt = true;
  5205. break;
  5206. case INTEL_OUTPUT_DISPLAYPORT:
  5207. is_dp = true;
  5208. break;
  5209. case INTEL_OUTPUT_EDP:
  5210. is_dp = true;
  5211. if (intel_encoder_is_pch_edp(&encoder->base))
  5212. is_pch_edp = true;
  5213. else
  5214. is_cpu_edp = true;
  5215. edp_encoder = encoder;
  5216. break;
  5217. }
  5218. num_connectors++;
  5219. }
  5220. refclk = ironlake_get_refclk(crtc);
  5221. /*
  5222. * Returns a set of divisors for the desired target clock with the given
  5223. * refclk, or FALSE. The returned values represent the clock equation:
  5224. * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
  5225. */
  5226. limit = intel_limit(crtc, refclk);
  5227. ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, NULL,
  5228. &clock);
  5229. if (!ok) {
  5230. DRM_ERROR("Couldn't find PLL settings for mode!\n");
  5231. return -EINVAL;
  5232. }
  5233. /* Ensure that the cursor is valid for the new mode before changing... */
  5234. intel_crtc_update_cursor(crtc, true);
  5235. if (is_lvds && dev_priv->lvds_downclock_avail) {
  5236. /*
  5237. * Ensure we match the reduced clock's P to the target clock.
  5238. * If the clocks don't match, we can't switch the display clock
  5239. * by using the FP0/FP1. In such case we will disable the LVDS
  5240. * downclock feature.
  5241. */
  5242. has_reduced_clock = limit->find_pll(limit, crtc,
  5243. dev_priv->lvds_downclock,
  5244. refclk,
  5245. &clock,
  5246. &reduced_clock);
  5247. }
  5248. /* SDVO TV has fixed PLL values depend on its clock range,
  5249. this mirrors vbios setting. */
  5250. if (is_sdvo && is_tv) {
  5251. if (adjusted_mode->clock >= 100000
  5252. && adjusted_mode->clock < 140500) {
  5253. clock.p1 = 2;
  5254. clock.p2 = 10;
  5255. clock.n = 3;
  5256. clock.m1 = 16;
  5257. clock.m2 = 8;
  5258. } else if (adjusted_mode->clock >= 140500
  5259. && adjusted_mode->clock <= 200000) {
  5260. clock.p1 = 1;
  5261. clock.p2 = 10;
  5262. clock.n = 6;
  5263. clock.m1 = 12;
  5264. clock.m2 = 8;
  5265. }
  5266. }
  5267. /* FDI link */
  5268. pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
  5269. lane = 0;
  5270. /* CPU eDP doesn't require FDI link, so just set DP M/N
  5271. according to current link config */
  5272. if (is_cpu_edp) {
  5273. target_clock = mode->clock;
  5274. intel_edp_link_config(edp_encoder, &lane, &link_bw);
  5275. } else {
  5276. /* [e]DP over FDI requires target mode clock
  5277. instead of link clock */
  5278. if (is_dp)
  5279. target_clock = mode->clock;
  5280. else
  5281. target_clock = adjusted_mode->clock;
  5282. /* FDI is a binary signal running at ~2.7GHz, encoding
  5283. * each output octet as 10 bits. The actual frequency
  5284. * is stored as a divider into a 100MHz clock, and the
  5285. * mode pixel clock is stored in units of 1KHz.
  5286. * Hence the bw of each lane in terms of the mode signal
  5287. * is:
  5288. */
  5289. link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
  5290. }
  5291. /* determine panel color depth */
  5292. temp = I915_READ(PIPECONF(pipe));
  5293. temp &= ~PIPE_BPC_MASK;
  5294. dither = intel_choose_pipe_bpp_dither(crtc, &pipe_bpp, mode);
  5295. switch (pipe_bpp) {
  5296. case 18:
  5297. temp |= PIPE_6BPC;
  5298. break;
  5299. case 24:
  5300. temp |= PIPE_8BPC;
  5301. break;
  5302. case 30:
  5303. temp |= PIPE_10BPC;
  5304. break;
  5305. case 36:
  5306. temp |= PIPE_12BPC;
  5307. break;
  5308. default:
  5309. WARN(1, "intel_choose_pipe_bpp returned invalid value %d\n",
  5310. pipe_bpp);
  5311. temp |= PIPE_8BPC;
  5312. pipe_bpp = 24;
  5313. break;
  5314. }
  5315. intel_crtc->bpp = pipe_bpp;
  5316. I915_WRITE(PIPECONF(pipe), temp);
  5317. if (!lane) {
  5318. /*
  5319. * Account for spread spectrum to avoid
  5320. * oversubscribing the link. Max center spread
  5321. * is 2.5%; use 5% for safety's sake.
  5322. */
  5323. u32 bps = target_clock * intel_crtc->bpp * 21 / 20;
  5324. lane = bps / (link_bw * 8) + 1;
  5325. }
  5326. intel_crtc->fdi_lanes = lane;
  5327. if (pixel_multiplier > 1)
  5328. link_bw *= pixel_multiplier;
  5329. ironlake_compute_m_n(intel_crtc->bpp, lane, target_clock, link_bw,
  5330. &m_n);
  5331. fp = clock.n << 16 | clock.m1 << 8 | clock.m2;
  5332. if (has_reduced_clock)
  5333. fp2 = reduced_clock.n << 16 | reduced_clock.m1 << 8 |
  5334. reduced_clock.m2;
  5335. /* Enable autotuning of the PLL clock (if permissible) */
  5336. factor = 21;
  5337. if (is_lvds) {
  5338. if ((intel_panel_use_ssc(dev_priv) &&
  5339. dev_priv->lvds_ssc_freq == 100) ||
  5340. (I915_READ(PCH_LVDS) & LVDS_CLKB_POWER_MASK) == LVDS_CLKB_POWER_UP)
  5341. factor = 25;
  5342. } else if (is_sdvo && is_tv)
  5343. factor = 20;
  5344. if (clock.m < factor * clock.n)
  5345. fp |= FP_CB_TUNE;
  5346. dpll = 0;
  5347. if (is_lvds)
  5348. dpll |= DPLLB_MODE_LVDS;
  5349. else
  5350. dpll |= DPLLB_MODE_DAC_SERIAL;
  5351. if (is_sdvo) {
  5352. int pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
  5353. if (pixel_multiplier > 1) {
  5354. dpll |= (pixel_multiplier - 1) << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
  5355. }
  5356. dpll |= DPLL_DVO_HIGH_SPEED;
  5357. }
  5358. if (is_dp && !is_cpu_edp)
  5359. dpll |= DPLL_DVO_HIGH_SPEED;
  5360. /* compute bitmask from p1 value */
  5361. dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
  5362. /* also FPA1 */
  5363. dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
  5364. switch (clock.p2) {
  5365. case 5:
  5366. dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
  5367. break;
  5368. case 7:
  5369. dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
  5370. break;
  5371. case 10:
  5372. dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
  5373. break;
  5374. case 14:
  5375. dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
  5376. break;
  5377. }
  5378. if (is_sdvo && is_tv)
  5379. dpll |= PLL_REF_INPUT_TVCLKINBC;
  5380. else if (is_tv)
  5381. /* XXX: just matching BIOS for now */
  5382. /* dpll |= PLL_REF_INPUT_TVCLKINBC; */
  5383. dpll |= 3;
  5384. else if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
  5385. dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
  5386. else
  5387. dpll |= PLL_REF_INPUT_DREFCLK;
  5388. /* setup pipeconf */
  5389. pipeconf = I915_READ(PIPECONF(pipe));
  5390. /* Set up the display plane register */
  5391. dspcntr = DISPPLANE_GAMMA_ENABLE;
  5392. DRM_DEBUG_KMS("Mode for pipe %d:\n", pipe);
  5393. drm_mode_debug_printmodeline(mode);
  5394. /* PCH eDP needs FDI, but CPU eDP does not */
  5395. if (!intel_crtc->no_pll) {
  5396. if (!is_cpu_edp) {
  5397. I915_WRITE(PCH_FP0(pipe), fp);
  5398. I915_WRITE(PCH_DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
  5399. POSTING_READ(PCH_DPLL(pipe));
  5400. udelay(150);
  5401. }
  5402. } else {
  5403. if (dpll == (I915_READ(PCH_DPLL(0)) & 0x7fffffff) &&
  5404. fp == I915_READ(PCH_FP0(0))) {
  5405. intel_crtc->use_pll_a = true;
  5406. DRM_DEBUG_KMS("using pipe a dpll\n");
  5407. } else if (dpll == (I915_READ(PCH_DPLL(1)) & 0x7fffffff) &&
  5408. fp == I915_READ(PCH_FP0(1))) {
  5409. intel_crtc->use_pll_a = false;
  5410. DRM_DEBUG_KMS("using pipe b dpll\n");
  5411. } else {
  5412. DRM_DEBUG_KMS("no matching PLL configuration for pipe 2\n");
  5413. return -EINVAL;
  5414. }
  5415. }
  5416. /* The LVDS pin pair needs to be on before the DPLLs are enabled.
  5417. * This is an exception to the general rule that mode_set doesn't turn
  5418. * things on.
  5419. */
  5420. if (is_lvds) {
  5421. temp = I915_READ(PCH_LVDS);
  5422. temp |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
  5423. if (HAS_PCH_CPT(dev)) {
  5424. temp &= ~PORT_TRANS_SEL_MASK;
  5425. temp |= PORT_TRANS_SEL_CPT(pipe);
  5426. } else {
  5427. if (pipe == 1)
  5428. temp |= LVDS_PIPEB_SELECT;
  5429. else
  5430. temp &= ~LVDS_PIPEB_SELECT;
  5431. }
  5432. /* set the corresponsding LVDS_BORDER bit */
  5433. temp |= dev_priv->lvds_border_bits;
  5434. /* Set the B0-B3 data pairs corresponding to whether we're going to
  5435. * set the DPLLs for dual-channel mode or not.
  5436. */
  5437. if (clock.p2 == 7)
  5438. temp |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
  5439. else
  5440. temp &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
  5441. /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
  5442. * appropriately here, but we need to look more thoroughly into how
  5443. * panels behave in the two modes.
  5444. */
  5445. if (adjusted_mode->flags & DRM_MODE_FLAG_NHSYNC)
  5446. lvds_sync |= LVDS_HSYNC_POLARITY;
  5447. if (adjusted_mode->flags & DRM_MODE_FLAG_NVSYNC)
  5448. lvds_sync |= LVDS_VSYNC_POLARITY;
  5449. if ((temp & (LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY))
  5450. != lvds_sync) {
  5451. char flags[2] = "-+";
  5452. DRM_INFO("Changing LVDS panel from "
  5453. "(%chsync, %cvsync) to (%chsync, %cvsync)\n",
  5454. flags[!(temp & LVDS_HSYNC_POLARITY)],
  5455. flags[!(temp & LVDS_VSYNC_POLARITY)],
  5456. flags[!(lvds_sync & LVDS_HSYNC_POLARITY)],
  5457. flags[!(lvds_sync & LVDS_VSYNC_POLARITY)]);
  5458. temp &= ~(LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY);
  5459. temp |= lvds_sync;
  5460. }
  5461. I915_WRITE(PCH_LVDS, temp);
  5462. }
  5463. pipeconf &= ~PIPECONF_DITHER_EN;
  5464. pipeconf &= ~PIPECONF_DITHER_TYPE_MASK;
  5465. if ((is_lvds && dev_priv->lvds_dither) || dither) {
  5466. pipeconf |= PIPECONF_DITHER_EN;
  5467. pipeconf |= PIPECONF_DITHER_TYPE_SP;
  5468. }
  5469. if (is_dp && !is_cpu_edp) {
  5470. intel_dp_set_m_n(crtc, mode, adjusted_mode);
  5471. } else {
  5472. /* For non-DP output, clear any trans DP clock recovery setting.*/
  5473. I915_WRITE(TRANSDATA_M1(pipe), 0);
  5474. I915_WRITE(TRANSDATA_N1(pipe), 0);
  5475. I915_WRITE(TRANSDPLINK_M1(pipe), 0);
  5476. I915_WRITE(TRANSDPLINK_N1(pipe), 0);
  5477. }
  5478. if (!intel_crtc->no_pll && (!edp_encoder || is_pch_edp)) {
  5479. I915_WRITE(PCH_DPLL(pipe), dpll);
  5480. /* Wait for the clocks to stabilize. */
  5481. POSTING_READ(PCH_DPLL(pipe));
  5482. udelay(150);
  5483. /* The pixel multiplier can only be updated once the
  5484. * DPLL is enabled and the clocks are stable.
  5485. *
  5486. * So write it again.
  5487. */
  5488. I915_WRITE(PCH_DPLL(pipe), dpll);
  5489. }
  5490. intel_crtc->lowfreq_avail = false;
  5491. if (!intel_crtc->no_pll) {
  5492. if (is_lvds && has_reduced_clock && i915_powersave) {
  5493. I915_WRITE(PCH_FP1(pipe), fp2);
  5494. intel_crtc->lowfreq_avail = true;
  5495. if (HAS_PIPE_CXSR(dev)) {
  5496. DRM_DEBUG_KMS("enabling CxSR downclocking\n");
  5497. pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
  5498. }
  5499. } else {
  5500. I915_WRITE(PCH_FP1(pipe), fp);
  5501. if (HAS_PIPE_CXSR(dev)) {
  5502. DRM_DEBUG_KMS("disabling CxSR downclocking\n");
  5503. pipeconf &= ~PIPECONF_CXSR_DOWNCLOCK;
  5504. }
  5505. }
  5506. }
  5507. pipeconf &= ~PIPECONF_INTERLACE_MASK;
  5508. if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
  5509. pipeconf |= PIPECONF_INTERLACED_ILK;
  5510. /* the chip adds 2 halflines automatically */
  5511. adjusted_mode->crtc_vtotal -= 1;
  5512. adjusted_mode->crtc_vblank_end -= 1;
  5513. I915_WRITE(VSYNCSHIFT(pipe),
  5514. adjusted_mode->crtc_hsync_start
  5515. - adjusted_mode->crtc_htotal/2);
  5516. } else {
  5517. pipeconf |= PIPECONF_PROGRESSIVE;
  5518. I915_WRITE(VSYNCSHIFT(pipe), 0);
  5519. }
  5520. I915_WRITE(HTOTAL(pipe),
  5521. (adjusted_mode->crtc_hdisplay - 1) |
  5522. ((adjusted_mode->crtc_htotal - 1) << 16));
  5523. I915_WRITE(HBLANK(pipe),
  5524. (adjusted_mode->crtc_hblank_start - 1) |
  5525. ((adjusted_mode->crtc_hblank_end - 1) << 16));
  5526. I915_WRITE(HSYNC(pipe),
  5527. (adjusted_mode->crtc_hsync_start - 1) |
  5528. ((adjusted_mode->crtc_hsync_end - 1) << 16));
  5529. I915_WRITE(VTOTAL(pipe),
  5530. (adjusted_mode->crtc_vdisplay - 1) |
  5531. ((adjusted_mode->crtc_vtotal - 1) << 16));
  5532. I915_WRITE(VBLANK(pipe),
  5533. (adjusted_mode->crtc_vblank_start - 1) |
  5534. ((adjusted_mode->crtc_vblank_end - 1) << 16));
  5535. I915_WRITE(VSYNC(pipe),
  5536. (adjusted_mode->crtc_vsync_start - 1) |
  5537. ((adjusted_mode->crtc_vsync_end - 1) << 16));
  5538. /* pipesrc controls the size that is scaled from, which should
  5539. * always be the user's requested size.
  5540. */
  5541. I915_WRITE(PIPESRC(pipe),
  5542. ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
  5543. I915_WRITE(PIPE_DATA_M1(pipe), TU_SIZE(m_n.tu) | m_n.gmch_m);
  5544. I915_WRITE(PIPE_DATA_N1(pipe), m_n.gmch_n);
  5545. I915_WRITE(PIPE_LINK_M1(pipe), m_n.link_m);
  5546. I915_WRITE(PIPE_LINK_N1(pipe), m_n.link_n);
  5547. if (is_cpu_edp)
  5548. ironlake_set_pll_edp(crtc, adjusted_mode->clock);
  5549. I915_WRITE(PIPECONF(pipe), pipeconf);
  5550. POSTING_READ(PIPECONF(pipe));
  5551. intel_wait_for_vblank(dev, pipe);
  5552. I915_WRITE(DSPCNTR(plane), dspcntr);
  5553. POSTING_READ(DSPCNTR(plane));
  5554. ret = intel_pipe_set_base(crtc, x, y, old_fb);
  5555. intel_update_watermarks(dev);
  5556. return ret;
  5557. }
  5558. static int intel_crtc_mode_set(struct drm_crtc *crtc,
  5559. struct drm_display_mode *mode,
  5560. struct drm_display_mode *adjusted_mode,
  5561. int x, int y,
  5562. struct drm_framebuffer *old_fb)
  5563. {
  5564. struct drm_device *dev = crtc->dev;
  5565. struct drm_i915_private *dev_priv = dev->dev_private;
  5566. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5567. int pipe = intel_crtc->pipe;
  5568. int ret;
  5569. drm_vblank_pre_modeset(dev, pipe);
  5570. ret = dev_priv->display.crtc_mode_set(crtc, mode, adjusted_mode,
  5571. x, y, old_fb);
  5572. drm_vblank_post_modeset(dev, pipe);
  5573. if (ret)
  5574. intel_crtc->dpms_mode = DRM_MODE_DPMS_OFF;
  5575. else
  5576. intel_crtc->dpms_mode = DRM_MODE_DPMS_ON;
  5577. return ret;
  5578. }
  5579. static bool intel_eld_uptodate(struct drm_connector *connector,
  5580. int reg_eldv, uint32_t bits_eldv,
  5581. int reg_elda, uint32_t bits_elda,
  5582. int reg_edid)
  5583. {
  5584. struct drm_i915_private *dev_priv = connector->dev->dev_private;
  5585. uint8_t *eld = connector->eld;
  5586. uint32_t i;
  5587. i = I915_READ(reg_eldv);
  5588. i &= bits_eldv;
  5589. if (!eld[0])
  5590. return !i;
  5591. if (!i)
  5592. return false;
  5593. i = I915_READ(reg_elda);
  5594. i &= ~bits_elda;
  5595. I915_WRITE(reg_elda, i);
  5596. for (i = 0; i < eld[2]; i++)
  5597. if (I915_READ(reg_edid) != *((uint32_t *)eld + i))
  5598. return false;
  5599. return true;
  5600. }
  5601. static void g4x_write_eld(struct drm_connector *connector,
  5602. struct drm_crtc *crtc)
  5603. {
  5604. struct drm_i915_private *dev_priv = connector->dev->dev_private;
  5605. uint8_t *eld = connector->eld;
  5606. uint32_t eldv;
  5607. uint32_t len;
  5608. uint32_t i;
  5609. i = I915_READ(G4X_AUD_VID_DID);
  5610. if (i == INTEL_AUDIO_DEVBLC || i == INTEL_AUDIO_DEVCL)
  5611. eldv = G4X_ELDV_DEVCL_DEVBLC;
  5612. else
  5613. eldv = G4X_ELDV_DEVCTG;
  5614. if (intel_eld_uptodate(connector,
  5615. G4X_AUD_CNTL_ST, eldv,
  5616. G4X_AUD_CNTL_ST, G4X_ELD_ADDR,
  5617. G4X_HDMIW_HDMIEDID))
  5618. return;
  5619. i = I915_READ(G4X_AUD_CNTL_ST);
  5620. i &= ~(eldv | G4X_ELD_ADDR);
  5621. len = (i >> 9) & 0x1f; /* ELD buffer size */
  5622. I915_WRITE(G4X_AUD_CNTL_ST, i);
  5623. if (!eld[0])
  5624. return;
  5625. len = min_t(uint8_t, eld[2], len);
  5626. DRM_DEBUG_DRIVER("ELD size %d\n", len);
  5627. for (i = 0; i < len; i++)
  5628. I915_WRITE(G4X_HDMIW_HDMIEDID, *((uint32_t *)eld + i));
  5629. i = I915_READ(G4X_AUD_CNTL_ST);
  5630. i |= eldv;
  5631. I915_WRITE(G4X_AUD_CNTL_ST, i);
  5632. }
  5633. static void ironlake_write_eld(struct drm_connector *connector,
  5634. struct drm_crtc *crtc)
  5635. {
  5636. struct drm_i915_private *dev_priv = connector->dev->dev_private;
  5637. uint8_t *eld = connector->eld;
  5638. uint32_t eldv;
  5639. uint32_t i;
  5640. int len;
  5641. int hdmiw_hdmiedid;
  5642. int aud_config;
  5643. int aud_cntl_st;
  5644. int aud_cntrl_st2;
  5645. if (HAS_PCH_IBX(connector->dev)) {
  5646. hdmiw_hdmiedid = IBX_HDMIW_HDMIEDID_A;
  5647. aud_config = IBX_AUD_CONFIG_A;
  5648. aud_cntl_st = IBX_AUD_CNTL_ST_A;
  5649. aud_cntrl_st2 = IBX_AUD_CNTL_ST2;
  5650. } else {
  5651. hdmiw_hdmiedid = CPT_HDMIW_HDMIEDID_A;
  5652. aud_config = CPT_AUD_CONFIG_A;
  5653. aud_cntl_st = CPT_AUD_CNTL_ST_A;
  5654. aud_cntrl_st2 = CPT_AUD_CNTRL_ST2;
  5655. }
  5656. i = to_intel_crtc(crtc)->pipe;
  5657. hdmiw_hdmiedid += i * 0x100;
  5658. aud_cntl_st += i * 0x100;
  5659. aud_config += i * 0x100;
  5660. DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(i));
  5661. i = I915_READ(aud_cntl_st);
  5662. i = (i >> 29) & 0x3; /* DIP_Port_Select, 0x1 = PortB */
  5663. if (!i) {
  5664. DRM_DEBUG_DRIVER("Audio directed to unknown port\n");
  5665. /* operate blindly on all ports */
  5666. eldv = IBX_ELD_VALIDB;
  5667. eldv |= IBX_ELD_VALIDB << 4;
  5668. eldv |= IBX_ELD_VALIDB << 8;
  5669. } else {
  5670. DRM_DEBUG_DRIVER("ELD on port %c\n", 'A' + i);
  5671. eldv = IBX_ELD_VALIDB << ((i - 1) * 4);
  5672. }
  5673. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
  5674. DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
  5675. eld[5] |= (1 << 2); /* Conn_Type, 0x1 = DisplayPort */
  5676. I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
  5677. } else
  5678. I915_WRITE(aud_config, 0);
  5679. if (intel_eld_uptodate(connector,
  5680. aud_cntrl_st2, eldv,
  5681. aud_cntl_st, IBX_ELD_ADDRESS,
  5682. hdmiw_hdmiedid))
  5683. return;
  5684. i = I915_READ(aud_cntrl_st2);
  5685. i &= ~eldv;
  5686. I915_WRITE(aud_cntrl_st2, i);
  5687. if (!eld[0])
  5688. return;
  5689. i = I915_READ(aud_cntl_st);
  5690. i &= ~IBX_ELD_ADDRESS;
  5691. I915_WRITE(aud_cntl_st, i);
  5692. len = min_t(uint8_t, eld[2], 21); /* 84 bytes of hw ELD buffer */
  5693. DRM_DEBUG_DRIVER("ELD size %d\n", len);
  5694. for (i = 0; i < len; i++)
  5695. I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
  5696. i = I915_READ(aud_cntrl_st2);
  5697. i |= eldv;
  5698. I915_WRITE(aud_cntrl_st2, i);
  5699. }
  5700. void intel_write_eld(struct drm_encoder *encoder,
  5701. struct drm_display_mode *mode)
  5702. {
  5703. struct drm_crtc *crtc = encoder->crtc;
  5704. struct drm_connector *connector;
  5705. struct drm_device *dev = encoder->dev;
  5706. struct drm_i915_private *dev_priv = dev->dev_private;
  5707. connector = drm_select_eld(encoder, mode);
  5708. if (!connector)
  5709. return;
  5710. DRM_DEBUG_DRIVER("ELD on [CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
  5711. connector->base.id,
  5712. drm_get_connector_name(connector),
  5713. connector->encoder->base.id,
  5714. drm_get_encoder_name(connector->encoder));
  5715. connector->eld[6] = drm_av_sync_delay(connector, mode) / 2;
  5716. if (dev_priv->display.write_eld)
  5717. dev_priv->display.write_eld(connector, crtc);
  5718. }
  5719. /** Loads the palette/gamma unit for the CRTC with the prepared values */
  5720. void intel_crtc_load_lut(struct drm_crtc *crtc)
  5721. {
  5722. struct drm_device *dev = crtc->dev;
  5723. struct drm_i915_private *dev_priv = dev->dev_private;
  5724. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5725. int palreg = PALETTE(intel_crtc->pipe);
  5726. int i;
  5727. /* The clocks have to be on to load the palette. */
  5728. if (!crtc->enabled || !intel_crtc->active)
  5729. return;
  5730. /* use legacy palette for Ironlake */
  5731. if (HAS_PCH_SPLIT(dev))
  5732. palreg = LGC_PALETTE(intel_crtc->pipe);
  5733. for (i = 0; i < 256; i++) {
  5734. I915_WRITE(palreg + 4 * i,
  5735. (intel_crtc->lut_r[i] << 16) |
  5736. (intel_crtc->lut_g[i] << 8) |
  5737. intel_crtc->lut_b[i]);
  5738. }
  5739. }
  5740. static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
  5741. {
  5742. struct drm_device *dev = crtc->dev;
  5743. struct drm_i915_private *dev_priv = dev->dev_private;
  5744. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5745. bool visible = base != 0;
  5746. u32 cntl;
  5747. if (intel_crtc->cursor_visible == visible)
  5748. return;
  5749. cntl = I915_READ(_CURACNTR);
  5750. if (visible) {
  5751. /* On these chipsets we can only modify the base whilst
  5752. * the cursor is disabled.
  5753. */
  5754. I915_WRITE(_CURABASE, base);
  5755. cntl &= ~(CURSOR_FORMAT_MASK);
  5756. /* XXX width must be 64, stride 256 => 0x00 << 28 */
  5757. cntl |= CURSOR_ENABLE |
  5758. CURSOR_GAMMA_ENABLE |
  5759. CURSOR_FORMAT_ARGB;
  5760. } else
  5761. cntl &= ~(CURSOR_ENABLE | CURSOR_GAMMA_ENABLE);
  5762. I915_WRITE(_CURACNTR, cntl);
  5763. intel_crtc->cursor_visible = visible;
  5764. }
  5765. static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
  5766. {
  5767. struct drm_device *dev = crtc->dev;
  5768. struct drm_i915_private *dev_priv = dev->dev_private;
  5769. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5770. int pipe = intel_crtc->pipe;
  5771. bool visible = base != 0;
  5772. if (intel_crtc->cursor_visible != visible) {
  5773. uint32_t cntl = I915_READ(CURCNTR(pipe));
  5774. if (base) {
  5775. cntl &= ~(CURSOR_MODE | MCURSOR_PIPE_SELECT);
  5776. cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
  5777. cntl |= pipe << 28; /* Connect to correct pipe */
  5778. } else {
  5779. cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
  5780. cntl |= CURSOR_MODE_DISABLE;
  5781. }
  5782. I915_WRITE(CURCNTR(pipe), cntl);
  5783. intel_crtc->cursor_visible = visible;
  5784. }
  5785. /* and commit changes on next vblank */
  5786. I915_WRITE(CURBASE(pipe), base);
  5787. }
  5788. static void ivb_update_cursor(struct drm_crtc *crtc, u32 base)
  5789. {
  5790. struct drm_device *dev = crtc->dev;
  5791. struct drm_i915_private *dev_priv = dev->dev_private;
  5792. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5793. int pipe = intel_crtc->pipe;
  5794. bool visible = base != 0;
  5795. if (intel_crtc->cursor_visible != visible) {
  5796. uint32_t cntl = I915_READ(CURCNTR_IVB(pipe));
  5797. if (base) {
  5798. cntl &= ~CURSOR_MODE;
  5799. cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
  5800. } else {
  5801. cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
  5802. cntl |= CURSOR_MODE_DISABLE;
  5803. }
  5804. I915_WRITE(CURCNTR_IVB(pipe), cntl);
  5805. intel_crtc->cursor_visible = visible;
  5806. }
  5807. /* and commit changes on next vblank */
  5808. I915_WRITE(CURBASE_IVB(pipe), base);
  5809. }
  5810. /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
  5811. static void intel_crtc_update_cursor(struct drm_crtc *crtc,
  5812. bool on)
  5813. {
  5814. struct drm_device *dev = crtc->dev;
  5815. struct drm_i915_private *dev_priv = dev->dev_private;
  5816. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5817. int pipe = intel_crtc->pipe;
  5818. int x = intel_crtc->cursor_x;
  5819. int y = intel_crtc->cursor_y;
  5820. u32 base, pos;
  5821. bool visible;
  5822. pos = 0;
  5823. if (on && crtc->enabled && crtc->fb) {
  5824. base = intel_crtc->cursor_addr;
  5825. if (x > (int) crtc->fb->width)
  5826. base = 0;
  5827. if (y > (int) crtc->fb->height)
  5828. base = 0;
  5829. } else
  5830. base = 0;
  5831. if (x < 0) {
  5832. if (x + intel_crtc->cursor_width < 0)
  5833. base = 0;
  5834. pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
  5835. x = -x;
  5836. }
  5837. pos |= x << CURSOR_X_SHIFT;
  5838. if (y < 0) {
  5839. if (y + intel_crtc->cursor_height < 0)
  5840. base = 0;
  5841. pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
  5842. y = -y;
  5843. }
  5844. pos |= y << CURSOR_Y_SHIFT;
  5845. visible = base != 0;
  5846. if (!visible && !intel_crtc->cursor_visible)
  5847. return;
  5848. if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) {
  5849. I915_WRITE(CURPOS_IVB(pipe), pos);
  5850. ivb_update_cursor(crtc, base);
  5851. } else {
  5852. I915_WRITE(CURPOS(pipe), pos);
  5853. if (IS_845G(dev) || IS_I865G(dev))
  5854. i845_update_cursor(crtc, base);
  5855. else
  5856. i9xx_update_cursor(crtc, base);
  5857. }
  5858. if (visible)
  5859. intel_mark_busy(dev, to_intel_framebuffer(crtc->fb)->obj);
  5860. }
  5861. static int intel_crtc_cursor_set(struct drm_crtc *crtc,
  5862. struct drm_file *file,
  5863. uint32_t handle,
  5864. uint32_t width, uint32_t height)
  5865. {
  5866. struct drm_device *dev = crtc->dev;
  5867. struct drm_i915_private *dev_priv = dev->dev_private;
  5868. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5869. struct drm_i915_gem_object *obj;
  5870. uint32_t addr;
  5871. int ret;
  5872. DRM_DEBUG_KMS("\n");
  5873. /* if we want to turn off the cursor ignore width and height */
  5874. if (!handle) {
  5875. DRM_DEBUG_KMS("cursor off\n");
  5876. addr = 0;
  5877. obj = NULL;
  5878. mutex_lock(&dev->struct_mutex);
  5879. goto finish;
  5880. }
  5881. /* Currently we only support 64x64 cursors */
  5882. if (width != 64 || height != 64) {
  5883. DRM_ERROR("we currently only support 64x64 cursors\n");
  5884. return -EINVAL;
  5885. }
  5886. obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
  5887. if (&obj->base == NULL)
  5888. return -ENOENT;
  5889. if (obj->base.size < width * height * 4) {
  5890. DRM_ERROR("buffer is to small\n");
  5891. ret = -ENOMEM;
  5892. goto fail;
  5893. }
  5894. /* we only need to pin inside GTT if cursor is non-phy */
  5895. mutex_lock(&dev->struct_mutex);
  5896. if (!dev_priv->info->cursor_needs_physical) {
  5897. if (obj->tiling_mode) {
  5898. DRM_ERROR("cursor cannot be tiled\n");
  5899. ret = -EINVAL;
  5900. goto fail_locked;
  5901. }
  5902. ret = i915_gem_object_pin_to_display_plane(obj, 0, NULL);
  5903. if (ret) {
  5904. DRM_ERROR("failed to move cursor bo into the GTT\n");
  5905. goto fail_locked;
  5906. }
  5907. ret = i915_gem_object_put_fence(obj);
  5908. if (ret) {
  5909. DRM_ERROR("failed to release fence for cursor");
  5910. goto fail_unpin;
  5911. }
  5912. addr = obj->gtt_offset;
  5913. } else {
  5914. int align = IS_I830(dev) ? 16 * 1024 : 256;
  5915. ret = i915_gem_attach_phys_object(dev, obj,
  5916. (intel_crtc->pipe == 0) ? I915_GEM_PHYS_CURSOR_0 : I915_GEM_PHYS_CURSOR_1,
  5917. align);
  5918. if (ret) {
  5919. DRM_ERROR("failed to attach phys object\n");
  5920. goto fail_locked;
  5921. }
  5922. addr = obj->phys_obj->handle->busaddr;
  5923. }
  5924. if (IS_GEN2(dev))
  5925. I915_WRITE(CURSIZE, (height << 12) | width);
  5926. finish:
  5927. if (intel_crtc->cursor_bo) {
  5928. if (dev_priv->info->cursor_needs_physical) {
  5929. if (intel_crtc->cursor_bo != obj)
  5930. i915_gem_detach_phys_object(dev, intel_crtc->cursor_bo);
  5931. } else
  5932. i915_gem_object_unpin(intel_crtc->cursor_bo);
  5933. drm_gem_object_unreference(&intel_crtc->cursor_bo->base);
  5934. }
  5935. mutex_unlock(&dev->struct_mutex);
  5936. intel_crtc->cursor_addr = addr;
  5937. intel_crtc->cursor_bo = obj;
  5938. intel_crtc->cursor_width = width;
  5939. intel_crtc->cursor_height = height;
  5940. intel_crtc_update_cursor(crtc, true);
  5941. return 0;
  5942. fail_unpin:
  5943. i915_gem_object_unpin(obj);
  5944. fail_locked:
  5945. mutex_unlock(&dev->struct_mutex);
  5946. fail:
  5947. drm_gem_object_unreference_unlocked(&obj->base);
  5948. return ret;
  5949. }
  5950. static int intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
  5951. {
  5952. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5953. intel_crtc->cursor_x = x;
  5954. intel_crtc->cursor_y = y;
  5955. intel_crtc_update_cursor(crtc, true);
  5956. return 0;
  5957. }
  5958. /** Sets the color ramps on behalf of RandR */
  5959. void intel_crtc_fb_gamma_set(struct drm_crtc *crtc, u16 red, u16 green,
  5960. u16 blue, int regno)
  5961. {
  5962. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5963. intel_crtc->lut_r[regno] = red >> 8;
  5964. intel_crtc->lut_g[regno] = green >> 8;
  5965. intel_crtc->lut_b[regno] = blue >> 8;
  5966. }
  5967. void intel_crtc_fb_gamma_get(struct drm_crtc *crtc, u16 *red, u16 *green,
  5968. u16 *blue, int regno)
  5969. {
  5970. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5971. *red = intel_crtc->lut_r[regno] << 8;
  5972. *green = intel_crtc->lut_g[regno] << 8;
  5973. *blue = intel_crtc->lut_b[regno] << 8;
  5974. }
  5975. static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
  5976. u16 *blue, uint32_t start, uint32_t size)
  5977. {
  5978. int end = (start + size > 256) ? 256 : start + size, i;
  5979. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5980. for (i = start; i < end; i++) {
  5981. intel_crtc->lut_r[i] = red[i] >> 8;
  5982. intel_crtc->lut_g[i] = green[i] >> 8;
  5983. intel_crtc->lut_b[i] = blue[i] >> 8;
  5984. }
  5985. intel_crtc_load_lut(crtc);
  5986. }
  5987. /**
  5988. * Get a pipe with a simple mode set on it for doing load-based monitor
  5989. * detection.
  5990. *
  5991. * It will be up to the load-detect code to adjust the pipe as appropriate for
  5992. * its requirements. The pipe will be connected to no other encoders.
  5993. *
  5994. * Currently this code will only succeed if there is a pipe with no encoders
  5995. * configured for it. In the future, it could choose to temporarily disable
  5996. * some outputs to free up a pipe for its use.
  5997. *
  5998. * \return crtc, or NULL if no pipes are available.
  5999. */
  6000. /* VESA 640x480x72Hz mode to set on the pipe */
  6001. static struct drm_display_mode load_detect_mode = {
  6002. DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
  6003. 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
  6004. };
  6005. static struct drm_framebuffer *
  6006. intel_framebuffer_create(struct drm_device *dev,
  6007. struct drm_mode_fb_cmd2 *mode_cmd,
  6008. struct drm_i915_gem_object *obj)
  6009. {
  6010. struct intel_framebuffer *intel_fb;
  6011. int ret;
  6012. intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
  6013. if (!intel_fb) {
  6014. drm_gem_object_unreference_unlocked(&obj->base);
  6015. return ERR_PTR(-ENOMEM);
  6016. }
  6017. ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
  6018. if (ret) {
  6019. drm_gem_object_unreference_unlocked(&obj->base);
  6020. kfree(intel_fb);
  6021. return ERR_PTR(ret);
  6022. }
  6023. return &intel_fb->base;
  6024. }
  6025. static u32
  6026. intel_framebuffer_pitch_for_width(int width, int bpp)
  6027. {
  6028. u32 pitch = DIV_ROUND_UP(width * bpp, 8);
  6029. return ALIGN(pitch, 64);
  6030. }
  6031. static u32
  6032. intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
  6033. {
  6034. u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
  6035. return ALIGN(pitch * mode->vdisplay, PAGE_SIZE);
  6036. }
  6037. static struct drm_framebuffer *
  6038. intel_framebuffer_create_for_mode(struct drm_device *dev,
  6039. struct drm_display_mode *mode,
  6040. int depth, int bpp)
  6041. {
  6042. struct drm_i915_gem_object *obj;
  6043. struct drm_mode_fb_cmd2 mode_cmd;
  6044. obj = i915_gem_alloc_object(dev,
  6045. intel_framebuffer_size_for_mode(mode, bpp));
  6046. if (obj == NULL)
  6047. return ERR_PTR(-ENOMEM);
  6048. mode_cmd.width = mode->hdisplay;
  6049. mode_cmd.height = mode->vdisplay;
  6050. mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
  6051. bpp);
  6052. mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
  6053. return intel_framebuffer_create(dev, &mode_cmd, obj);
  6054. }
  6055. static struct drm_framebuffer *
  6056. mode_fits_in_fbdev(struct drm_device *dev,
  6057. struct drm_display_mode *mode)
  6058. {
  6059. struct drm_i915_private *dev_priv = dev->dev_private;
  6060. struct drm_i915_gem_object *obj;
  6061. struct drm_framebuffer *fb;
  6062. if (dev_priv->fbdev == NULL)
  6063. return NULL;
  6064. obj = dev_priv->fbdev->ifb.obj;
  6065. if (obj == NULL)
  6066. return NULL;
  6067. fb = &dev_priv->fbdev->ifb.base;
  6068. if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
  6069. fb->bits_per_pixel))
  6070. return NULL;
  6071. if (obj->base.size < mode->vdisplay * fb->pitches[0])
  6072. return NULL;
  6073. return fb;
  6074. }
  6075. bool intel_get_load_detect_pipe(struct intel_encoder *intel_encoder,
  6076. struct drm_connector *connector,
  6077. struct drm_display_mode *mode,
  6078. struct intel_load_detect_pipe *old)
  6079. {
  6080. struct intel_crtc *intel_crtc;
  6081. struct drm_crtc *possible_crtc;
  6082. struct drm_encoder *encoder = &intel_encoder->base;
  6083. struct drm_crtc *crtc = NULL;
  6084. struct drm_device *dev = encoder->dev;
  6085. struct drm_framebuffer *old_fb;
  6086. int i = -1;
  6087. DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
  6088. connector->base.id, drm_get_connector_name(connector),
  6089. encoder->base.id, drm_get_encoder_name(encoder));
  6090. /*
  6091. * Algorithm gets a little messy:
  6092. *
  6093. * - if the connector already has an assigned crtc, use it (but make
  6094. * sure it's on first)
  6095. *
  6096. * - try to find the first unused crtc that can drive this connector,
  6097. * and use that if we find one
  6098. */
  6099. /* See if we already have a CRTC for this connector */
  6100. if (encoder->crtc) {
  6101. crtc = encoder->crtc;
  6102. intel_crtc = to_intel_crtc(crtc);
  6103. old->dpms_mode = intel_crtc->dpms_mode;
  6104. old->load_detect_temp = false;
  6105. /* Make sure the crtc and connector are running */
  6106. if (intel_crtc->dpms_mode != DRM_MODE_DPMS_ON) {
  6107. struct drm_encoder_helper_funcs *encoder_funcs;
  6108. struct drm_crtc_helper_funcs *crtc_funcs;
  6109. crtc_funcs = crtc->helper_private;
  6110. crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
  6111. encoder_funcs = encoder->helper_private;
  6112. encoder_funcs->dpms(encoder, DRM_MODE_DPMS_ON);
  6113. }
  6114. return true;
  6115. }
  6116. /* Find an unused one (if possible) */
  6117. list_for_each_entry(possible_crtc, &dev->mode_config.crtc_list, head) {
  6118. i++;
  6119. if (!(encoder->possible_crtcs & (1 << i)))
  6120. continue;
  6121. if (!possible_crtc->enabled) {
  6122. crtc = possible_crtc;
  6123. break;
  6124. }
  6125. }
  6126. /*
  6127. * If we didn't find an unused CRTC, don't use any.
  6128. */
  6129. if (!crtc) {
  6130. DRM_DEBUG_KMS("no pipe available for load-detect\n");
  6131. return false;
  6132. }
  6133. encoder->crtc = crtc;
  6134. connector->encoder = encoder;
  6135. intel_crtc = to_intel_crtc(crtc);
  6136. old->dpms_mode = intel_crtc->dpms_mode;
  6137. old->load_detect_temp = true;
  6138. old->release_fb = NULL;
  6139. if (!mode)
  6140. mode = &load_detect_mode;
  6141. old_fb = crtc->fb;
  6142. /* We need a framebuffer large enough to accommodate all accesses
  6143. * that the plane may generate whilst we perform load detection.
  6144. * We can not rely on the fbcon either being present (we get called
  6145. * during its initialisation to detect all boot displays, or it may
  6146. * not even exist) or that it is large enough to satisfy the
  6147. * requested mode.
  6148. */
  6149. crtc->fb = mode_fits_in_fbdev(dev, mode);
  6150. if (crtc->fb == NULL) {
  6151. DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
  6152. crtc->fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
  6153. old->release_fb = crtc->fb;
  6154. } else
  6155. DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
  6156. if (IS_ERR(crtc->fb)) {
  6157. DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
  6158. crtc->fb = old_fb;
  6159. return false;
  6160. }
  6161. if (!drm_crtc_helper_set_mode(crtc, mode, 0, 0, old_fb)) {
  6162. DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
  6163. if (old->release_fb)
  6164. old->release_fb->funcs->destroy(old->release_fb);
  6165. crtc->fb = old_fb;
  6166. return false;
  6167. }
  6168. /* let the connector get through one full cycle before testing */
  6169. intel_wait_for_vblank(dev, intel_crtc->pipe);
  6170. return true;
  6171. }
  6172. void intel_release_load_detect_pipe(struct intel_encoder *intel_encoder,
  6173. struct drm_connector *connector,
  6174. struct intel_load_detect_pipe *old)
  6175. {
  6176. struct drm_encoder *encoder = &intel_encoder->base;
  6177. struct drm_device *dev = encoder->dev;
  6178. struct drm_crtc *crtc = encoder->crtc;
  6179. struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
  6180. struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
  6181. DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
  6182. connector->base.id, drm_get_connector_name(connector),
  6183. encoder->base.id, drm_get_encoder_name(encoder));
  6184. if (old->load_detect_temp) {
  6185. connector->encoder = NULL;
  6186. drm_helper_disable_unused_functions(dev);
  6187. if (old->release_fb)
  6188. old->release_fb->funcs->destroy(old->release_fb);
  6189. return;
  6190. }
  6191. /* Switch crtc and encoder back off if necessary */
  6192. if (old->dpms_mode != DRM_MODE_DPMS_ON) {
  6193. encoder_funcs->dpms(encoder, old->dpms_mode);
  6194. crtc_funcs->dpms(crtc, old->dpms_mode);
  6195. }
  6196. }
  6197. /* Returns the clock of the currently programmed mode of the given pipe. */
  6198. static int intel_crtc_clock_get(struct drm_device *dev, struct drm_crtc *crtc)
  6199. {
  6200. struct drm_i915_private *dev_priv = dev->dev_private;
  6201. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6202. int pipe = intel_crtc->pipe;
  6203. u32 dpll = I915_READ(DPLL(pipe));
  6204. u32 fp;
  6205. intel_clock_t clock;
  6206. if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
  6207. fp = I915_READ(FP0(pipe));
  6208. else
  6209. fp = I915_READ(FP1(pipe));
  6210. clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
  6211. if (IS_PINEVIEW(dev)) {
  6212. clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
  6213. clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
  6214. } else {
  6215. clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
  6216. clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
  6217. }
  6218. if (!IS_GEN2(dev)) {
  6219. if (IS_PINEVIEW(dev))
  6220. clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
  6221. DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
  6222. else
  6223. clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
  6224. DPLL_FPA01_P1_POST_DIV_SHIFT);
  6225. switch (dpll & DPLL_MODE_MASK) {
  6226. case DPLLB_MODE_DAC_SERIAL:
  6227. clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
  6228. 5 : 10;
  6229. break;
  6230. case DPLLB_MODE_LVDS:
  6231. clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
  6232. 7 : 14;
  6233. break;
  6234. default:
  6235. DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
  6236. "mode\n", (int)(dpll & DPLL_MODE_MASK));
  6237. return 0;
  6238. }
  6239. /* XXX: Handle the 100Mhz refclk */
  6240. intel_clock(dev, 96000, &clock);
  6241. } else {
  6242. bool is_lvds = (pipe == 1) && (I915_READ(LVDS) & LVDS_PORT_EN);
  6243. if (is_lvds) {
  6244. clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
  6245. DPLL_FPA01_P1_POST_DIV_SHIFT);
  6246. clock.p2 = 14;
  6247. if ((dpll & PLL_REF_INPUT_MASK) ==
  6248. PLLB_REF_INPUT_SPREADSPECTRUMIN) {
  6249. /* XXX: might not be 66MHz */
  6250. intel_clock(dev, 66000, &clock);
  6251. } else
  6252. intel_clock(dev, 48000, &clock);
  6253. } else {
  6254. if (dpll & PLL_P1_DIVIDE_BY_TWO)
  6255. clock.p1 = 2;
  6256. else {
  6257. clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
  6258. DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
  6259. }
  6260. if (dpll & PLL_P2_DIVIDE_BY_4)
  6261. clock.p2 = 4;
  6262. else
  6263. clock.p2 = 2;
  6264. intel_clock(dev, 48000, &clock);
  6265. }
  6266. }
  6267. /* XXX: It would be nice to validate the clocks, but we can't reuse
  6268. * i830PllIsValid() because it relies on the xf86_config connector
  6269. * configuration being accurate, which it isn't necessarily.
  6270. */
  6271. return clock.dot;
  6272. }
  6273. /** Returns the currently programmed mode of the given pipe. */
  6274. struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
  6275. struct drm_crtc *crtc)
  6276. {
  6277. struct drm_i915_private *dev_priv = dev->dev_private;
  6278. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6279. int pipe = intel_crtc->pipe;
  6280. struct drm_display_mode *mode;
  6281. int htot = I915_READ(HTOTAL(pipe));
  6282. int hsync = I915_READ(HSYNC(pipe));
  6283. int vtot = I915_READ(VTOTAL(pipe));
  6284. int vsync = I915_READ(VSYNC(pipe));
  6285. mode = kzalloc(sizeof(*mode), GFP_KERNEL);
  6286. if (!mode)
  6287. return NULL;
  6288. mode->clock = intel_crtc_clock_get(dev, crtc);
  6289. mode->hdisplay = (htot & 0xffff) + 1;
  6290. mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
  6291. mode->hsync_start = (hsync & 0xffff) + 1;
  6292. mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
  6293. mode->vdisplay = (vtot & 0xffff) + 1;
  6294. mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
  6295. mode->vsync_start = (vsync & 0xffff) + 1;
  6296. mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
  6297. drm_mode_set_name(mode);
  6298. drm_mode_set_crtcinfo(mode, 0);
  6299. return mode;
  6300. }
  6301. #define GPU_IDLE_TIMEOUT 500 /* ms */
  6302. /* When this timer fires, we've been idle for awhile */
  6303. static void intel_gpu_idle_timer(unsigned long arg)
  6304. {
  6305. struct drm_device *dev = (struct drm_device *)arg;
  6306. drm_i915_private_t *dev_priv = dev->dev_private;
  6307. if (!list_empty(&dev_priv->mm.active_list)) {
  6308. /* Still processing requests, so just re-arm the timer. */
  6309. mod_timer(&dev_priv->idle_timer, jiffies +
  6310. msecs_to_jiffies(GPU_IDLE_TIMEOUT));
  6311. return;
  6312. }
  6313. dev_priv->busy = false;
  6314. queue_work(dev_priv->wq, &dev_priv->idle_work);
  6315. }
  6316. #define CRTC_IDLE_TIMEOUT 1000 /* ms */
  6317. static void intel_crtc_idle_timer(unsigned long arg)
  6318. {
  6319. struct intel_crtc *intel_crtc = (struct intel_crtc *)arg;
  6320. struct drm_crtc *crtc = &intel_crtc->base;
  6321. drm_i915_private_t *dev_priv = crtc->dev->dev_private;
  6322. struct intel_framebuffer *intel_fb;
  6323. intel_fb = to_intel_framebuffer(crtc->fb);
  6324. if (intel_fb && intel_fb->obj->active) {
  6325. /* The framebuffer is still being accessed by the GPU. */
  6326. mod_timer(&intel_crtc->idle_timer, jiffies +
  6327. msecs_to_jiffies(CRTC_IDLE_TIMEOUT));
  6328. return;
  6329. }
  6330. intel_crtc->busy = false;
  6331. queue_work(dev_priv->wq, &dev_priv->idle_work);
  6332. }
  6333. static void intel_increase_pllclock(struct drm_crtc *crtc)
  6334. {
  6335. struct drm_device *dev = crtc->dev;
  6336. drm_i915_private_t *dev_priv = dev->dev_private;
  6337. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6338. int pipe = intel_crtc->pipe;
  6339. int dpll_reg = DPLL(pipe);
  6340. int dpll;
  6341. if (HAS_PCH_SPLIT(dev))
  6342. return;
  6343. if (!dev_priv->lvds_downclock_avail)
  6344. return;
  6345. dpll = I915_READ(dpll_reg);
  6346. if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) {
  6347. DRM_DEBUG_DRIVER("upclocking LVDS\n");
  6348. assert_panel_unlocked(dev_priv, pipe);
  6349. dpll &= ~DISPLAY_RATE_SELECT_FPA1;
  6350. I915_WRITE(dpll_reg, dpll);
  6351. intel_wait_for_vblank(dev, pipe);
  6352. dpll = I915_READ(dpll_reg);
  6353. if (dpll & DISPLAY_RATE_SELECT_FPA1)
  6354. DRM_DEBUG_DRIVER("failed to upclock LVDS!\n");
  6355. }
  6356. /* Schedule downclock */
  6357. mod_timer(&intel_crtc->idle_timer, jiffies +
  6358. msecs_to_jiffies(CRTC_IDLE_TIMEOUT));
  6359. }
  6360. static void intel_decrease_pllclock(struct drm_crtc *crtc)
  6361. {
  6362. struct drm_device *dev = crtc->dev;
  6363. drm_i915_private_t *dev_priv = dev->dev_private;
  6364. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6365. int pipe = intel_crtc->pipe;
  6366. int dpll_reg = DPLL(pipe);
  6367. int dpll = I915_READ(dpll_reg);
  6368. if (HAS_PCH_SPLIT(dev))
  6369. return;
  6370. if (!dev_priv->lvds_downclock_avail)
  6371. return;
  6372. /*
  6373. * Since this is called by a timer, we should never get here in
  6374. * the manual case.
  6375. */
  6376. if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
  6377. DRM_DEBUG_DRIVER("downclocking LVDS\n");
  6378. assert_panel_unlocked(dev_priv, pipe);
  6379. dpll |= DISPLAY_RATE_SELECT_FPA1;
  6380. I915_WRITE(dpll_reg, dpll);
  6381. intel_wait_for_vblank(dev, pipe);
  6382. dpll = I915_READ(dpll_reg);
  6383. if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
  6384. DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
  6385. }
  6386. }
  6387. /**
  6388. * intel_idle_update - adjust clocks for idleness
  6389. * @work: work struct
  6390. *
  6391. * Either the GPU or display (or both) went idle. Check the busy status
  6392. * here and adjust the CRTC and GPU clocks as necessary.
  6393. */
  6394. static void intel_idle_update(struct work_struct *work)
  6395. {
  6396. drm_i915_private_t *dev_priv = container_of(work, drm_i915_private_t,
  6397. idle_work);
  6398. struct drm_device *dev = dev_priv->dev;
  6399. struct drm_crtc *crtc;
  6400. struct intel_crtc *intel_crtc;
  6401. if (!i915_powersave)
  6402. return;
  6403. mutex_lock(&dev->struct_mutex);
  6404. i915_update_gfx_val(dev_priv);
  6405. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  6406. /* Skip inactive CRTCs */
  6407. if (!crtc->fb)
  6408. continue;
  6409. intel_crtc = to_intel_crtc(crtc);
  6410. if (!intel_crtc->busy)
  6411. intel_decrease_pllclock(crtc);
  6412. }
  6413. mutex_unlock(&dev->struct_mutex);
  6414. }
  6415. /**
  6416. * intel_mark_busy - mark the GPU and possibly the display busy
  6417. * @dev: drm device
  6418. * @obj: object we're operating on
  6419. *
  6420. * Callers can use this function to indicate that the GPU is busy processing
  6421. * commands. If @obj matches one of the CRTC objects (i.e. it's a scanout
  6422. * buffer), we'll also mark the display as busy, so we know to increase its
  6423. * clock frequency.
  6424. */
  6425. void intel_mark_busy(struct drm_device *dev, struct drm_i915_gem_object *obj)
  6426. {
  6427. drm_i915_private_t *dev_priv = dev->dev_private;
  6428. struct drm_crtc *crtc = NULL;
  6429. struct intel_framebuffer *intel_fb;
  6430. struct intel_crtc *intel_crtc;
  6431. if (!drm_core_check_feature(dev, DRIVER_MODESET))
  6432. return;
  6433. if (!dev_priv->busy)
  6434. dev_priv->busy = true;
  6435. else
  6436. mod_timer(&dev_priv->idle_timer, jiffies +
  6437. msecs_to_jiffies(GPU_IDLE_TIMEOUT));
  6438. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  6439. if (!crtc->fb)
  6440. continue;
  6441. intel_crtc = to_intel_crtc(crtc);
  6442. intel_fb = to_intel_framebuffer(crtc->fb);
  6443. if (intel_fb->obj == obj) {
  6444. if (!intel_crtc->busy) {
  6445. /* Non-busy -> busy, upclock */
  6446. intel_increase_pllclock(crtc);
  6447. intel_crtc->busy = true;
  6448. } else {
  6449. /* Busy -> busy, put off timer */
  6450. mod_timer(&intel_crtc->idle_timer, jiffies +
  6451. msecs_to_jiffies(CRTC_IDLE_TIMEOUT));
  6452. }
  6453. }
  6454. }
  6455. }
  6456. static void intel_crtc_destroy(struct drm_crtc *crtc)
  6457. {
  6458. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6459. struct drm_device *dev = crtc->dev;
  6460. struct intel_unpin_work *work;
  6461. unsigned long flags;
  6462. spin_lock_irqsave(&dev->event_lock, flags);
  6463. work = intel_crtc->unpin_work;
  6464. intel_crtc->unpin_work = NULL;
  6465. spin_unlock_irqrestore(&dev->event_lock, flags);
  6466. if (work) {
  6467. cancel_work_sync(&work->work);
  6468. kfree(work);
  6469. }
  6470. drm_crtc_cleanup(crtc);
  6471. kfree(intel_crtc);
  6472. }
  6473. static void intel_unpin_work_fn(struct work_struct *__work)
  6474. {
  6475. struct intel_unpin_work *work =
  6476. container_of(__work, struct intel_unpin_work, work);
  6477. mutex_lock(&work->dev->struct_mutex);
  6478. intel_unpin_fb_obj(work->old_fb_obj);
  6479. drm_gem_object_unreference(&work->pending_flip_obj->base);
  6480. drm_gem_object_unreference(&work->old_fb_obj->base);
  6481. intel_update_fbc(work->dev);
  6482. mutex_unlock(&work->dev->struct_mutex);
  6483. kfree(work);
  6484. }
  6485. static void do_intel_finish_page_flip(struct drm_device *dev,
  6486. struct drm_crtc *crtc)
  6487. {
  6488. drm_i915_private_t *dev_priv = dev->dev_private;
  6489. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6490. struct intel_unpin_work *work;
  6491. struct drm_i915_gem_object *obj;
  6492. struct drm_pending_vblank_event *e;
  6493. struct timeval tnow, tvbl;
  6494. unsigned long flags;
  6495. /* Ignore early vblank irqs */
  6496. if (intel_crtc == NULL)
  6497. return;
  6498. do_gettimeofday(&tnow);
  6499. spin_lock_irqsave(&dev->event_lock, flags);
  6500. work = intel_crtc->unpin_work;
  6501. if (work == NULL || !work->pending) {
  6502. spin_unlock_irqrestore(&dev->event_lock, flags);
  6503. return;
  6504. }
  6505. intel_crtc->unpin_work = NULL;
  6506. if (work->event) {
  6507. e = work->event;
  6508. e->event.sequence = drm_vblank_count_and_time(dev, intel_crtc->pipe, &tvbl);
  6509. /* Called before vblank count and timestamps have
  6510. * been updated for the vblank interval of flip
  6511. * completion? Need to increment vblank count and
  6512. * add one videorefresh duration to returned timestamp
  6513. * to account for this. We assume this happened if we
  6514. * get called over 0.9 frame durations after the last
  6515. * timestamped vblank.
  6516. *
  6517. * This calculation can not be used with vrefresh rates
  6518. * below 5Hz (10Hz to be on the safe side) without
  6519. * promoting to 64 integers.
  6520. */
  6521. if (10 * (timeval_to_ns(&tnow) - timeval_to_ns(&tvbl)) >
  6522. 9 * crtc->framedur_ns) {
  6523. e->event.sequence++;
  6524. tvbl = ns_to_timeval(timeval_to_ns(&tvbl) +
  6525. crtc->framedur_ns);
  6526. }
  6527. e->event.tv_sec = tvbl.tv_sec;
  6528. e->event.tv_usec = tvbl.tv_usec;
  6529. list_add_tail(&e->base.link,
  6530. &e->base.file_priv->event_list);
  6531. wake_up_interruptible(&e->base.file_priv->event_wait);
  6532. }
  6533. drm_vblank_put(dev, intel_crtc->pipe);
  6534. spin_unlock_irqrestore(&dev->event_lock, flags);
  6535. obj = work->old_fb_obj;
  6536. atomic_clear_mask(1 << intel_crtc->plane,
  6537. &obj->pending_flip.counter);
  6538. if (atomic_read(&obj->pending_flip) == 0)
  6539. wake_up(&dev_priv->pending_flip_queue);
  6540. schedule_work(&work->work);
  6541. trace_i915_flip_complete(intel_crtc->plane, work->pending_flip_obj);
  6542. }
  6543. void intel_finish_page_flip(struct drm_device *dev, int pipe)
  6544. {
  6545. drm_i915_private_t *dev_priv = dev->dev_private;
  6546. struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
  6547. do_intel_finish_page_flip(dev, crtc);
  6548. }
  6549. void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
  6550. {
  6551. drm_i915_private_t *dev_priv = dev->dev_private;
  6552. struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
  6553. do_intel_finish_page_flip(dev, crtc);
  6554. }
  6555. void intel_prepare_page_flip(struct drm_device *dev, int plane)
  6556. {
  6557. drm_i915_private_t *dev_priv = dev->dev_private;
  6558. struct intel_crtc *intel_crtc =
  6559. to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
  6560. unsigned long flags;
  6561. spin_lock_irqsave(&dev->event_lock, flags);
  6562. if (intel_crtc->unpin_work) {
  6563. if ((++intel_crtc->unpin_work->pending) > 1)
  6564. DRM_ERROR("Prepared flip multiple times\n");
  6565. } else {
  6566. DRM_DEBUG_DRIVER("preparing flip with no unpin work?\n");
  6567. }
  6568. spin_unlock_irqrestore(&dev->event_lock, flags);
  6569. }
  6570. static int intel_gen2_queue_flip(struct drm_device *dev,
  6571. struct drm_crtc *crtc,
  6572. struct drm_framebuffer *fb,
  6573. struct drm_i915_gem_object *obj)
  6574. {
  6575. struct drm_i915_private *dev_priv = dev->dev_private;
  6576. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6577. unsigned long offset;
  6578. u32 flip_mask;
  6579. int ret;
  6580. ret = intel_pin_and_fence_fb_obj(dev, obj, LP_RING(dev_priv));
  6581. if (ret)
  6582. goto out;
  6583. /* Offset into the new buffer for cases of shared fbs between CRTCs */
  6584. offset = crtc->y * fb->pitches[0] + crtc->x * fb->bits_per_pixel/8;
  6585. ret = BEGIN_LP_RING(6);
  6586. if (ret)
  6587. goto out;
  6588. /* Can't queue multiple flips, so wait for the previous
  6589. * one to finish before executing the next.
  6590. */
  6591. if (intel_crtc->plane)
  6592. flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
  6593. else
  6594. flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
  6595. OUT_RING(MI_WAIT_FOR_EVENT | flip_mask);
  6596. OUT_RING(MI_NOOP);
  6597. OUT_RING(MI_DISPLAY_FLIP |
  6598. MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
  6599. OUT_RING(fb->pitches[0]);
  6600. OUT_RING(obj->gtt_offset + offset);
  6601. OUT_RING(0); /* aux display base address, unused */
  6602. ADVANCE_LP_RING();
  6603. out:
  6604. return ret;
  6605. }
  6606. static int intel_gen3_queue_flip(struct drm_device *dev,
  6607. struct drm_crtc *crtc,
  6608. struct drm_framebuffer *fb,
  6609. struct drm_i915_gem_object *obj)
  6610. {
  6611. struct drm_i915_private *dev_priv = dev->dev_private;
  6612. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6613. unsigned long offset;
  6614. u32 flip_mask;
  6615. int ret;
  6616. ret = intel_pin_and_fence_fb_obj(dev, obj, LP_RING(dev_priv));
  6617. if (ret)
  6618. goto out;
  6619. /* Offset into the new buffer for cases of shared fbs between CRTCs */
  6620. offset = crtc->y * fb->pitches[0] + crtc->x * fb->bits_per_pixel/8;
  6621. ret = BEGIN_LP_RING(6);
  6622. if (ret)
  6623. goto out;
  6624. if (intel_crtc->plane)
  6625. flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
  6626. else
  6627. flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
  6628. OUT_RING(MI_WAIT_FOR_EVENT | flip_mask);
  6629. OUT_RING(MI_NOOP);
  6630. OUT_RING(MI_DISPLAY_FLIP_I915 |
  6631. MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
  6632. OUT_RING(fb->pitches[0]);
  6633. OUT_RING(obj->gtt_offset + offset);
  6634. OUT_RING(MI_NOOP);
  6635. ADVANCE_LP_RING();
  6636. out:
  6637. return ret;
  6638. }
  6639. static int intel_gen4_queue_flip(struct drm_device *dev,
  6640. struct drm_crtc *crtc,
  6641. struct drm_framebuffer *fb,
  6642. struct drm_i915_gem_object *obj)
  6643. {
  6644. struct drm_i915_private *dev_priv = dev->dev_private;
  6645. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6646. uint32_t pf, pipesrc;
  6647. int ret;
  6648. ret = intel_pin_and_fence_fb_obj(dev, obj, LP_RING(dev_priv));
  6649. if (ret)
  6650. goto out;
  6651. ret = BEGIN_LP_RING(4);
  6652. if (ret)
  6653. goto out;
  6654. /* i965+ uses the linear or tiled offsets from the
  6655. * Display Registers (which do not change across a page-flip)
  6656. * so we need only reprogram the base address.
  6657. */
  6658. OUT_RING(MI_DISPLAY_FLIP |
  6659. MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
  6660. OUT_RING(fb->pitches[0]);
  6661. OUT_RING(obj->gtt_offset | obj->tiling_mode);
  6662. /* XXX Enabling the panel-fitter across page-flip is so far
  6663. * untested on non-native modes, so ignore it for now.
  6664. * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
  6665. */
  6666. pf = 0;
  6667. pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
  6668. OUT_RING(pf | pipesrc);
  6669. ADVANCE_LP_RING();
  6670. out:
  6671. return ret;
  6672. }
  6673. static int intel_gen6_queue_flip(struct drm_device *dev,
  6674. struct drm_crtc *crtc,
  6675. struct drm_framebuffer *fb,
  6676. struct drm_i915_gem_object *obj)
  6677. {
  6678. struct drm_i915_private *dev_priv = dev->dev_private;
  6679. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6680. uint32_t pf, pipesrc;
  6681. int ret;
  6682. ret = intel_pin_and_fence_fb_obj(dev, obj, LP_RING(dev_priv));
  6683. if (ret)
  6684. goto out;
  6685. ret = BEGIN_LP_RING(4);
  6686. if (ret)
  6687. goto out;
  6688. OUT_RING(MI_DISPLAY_FLIP |
  6689. MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
  6690. OUT_RING(fb->pitches[0] | obj->tiling_mode);
  6691. OUT_RING(obj->gtt_offset);
  6692. pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
  6693. pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
  6694. OUT_RING(pf | pipesrc);
  6695. ADVANCE_LP_RING();
  6696. out:
  6697. return ret;
  6698. }
  6699. /*
  6700. * On gen7 we currently use the blit ring because (in early silicon at least)
  6701. * the render ring doesn't give us interrpts for page flip completion, which
  6702. * means clients will hang after the first flip is queued. Fortunately the
  6703. * blit ring generates interrupts properly, so use it instead.
  6704. */
  6705. static int intel_gen7_queue_flip(struct drm_device *dev,
  6706. struct drm_crtc *crtc,
  6707. struct drm_framebuffer *fb,
  6708. struct drm_i915_gem_object *obj)
  6709. {
  6710. struct drm_i915_private *dev_priv = dev->dev_private;
  6711. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6712. struct intel_ring_buffer *ring = &dev_priv->ring[BCS];
  6713. int ret;
  6714. ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
  6715. if (ret)
  6716. goto out;
  6717. ret = intel_ring_begin(ring, 4);
  6718. if (ret)
  6719. goto out;
  6720. intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | (intel_crtc->plane << 19));
  6721. intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
  6722. intel_ring_emit(ring, (obj->gtt_offset));
  6723. intel_ring_emit(ring, (MI_NOOP));
  6724. intel_ring_advance(ring);
  6725. out:
  6726. return ret;
  6727. }
  6728. static int intel_default_queue_flip(struct drm_device *dev,
  6729. struct drm_crtc *crtc,
  6730. struct drm_framebuffer *fb,
  6731. struct drm_i915_gem_object *obj)
  6732. {
  6733. return -ENODEV;
  6734. }
  6735. static int intel_crtc_page_flip(struct drm_crtc *crtc,
  6736. struct drm_framebuffer *fb,
  6737. struct drm_pending_vblank_event *event)
  6738. {
  6739. struct drm_device *dev = crtc->dev;
  6740. struct drm_i915_private *dev_priv = dev->dev_private;
  6741. struct intel_framebuffer *intel_fb;
  6742. struct drm_i915_gem_object *obj;
  6743. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6744. struct intel_unpin_work *work;
  6745. unsigned long flags;
  6746. int ret;
  6747. work = kzalloc(sizeof *work, GFP_KERNEL);
  6748. if (work == NULL)
  6749. return -ENOMEM;
  6750. work->event = event;
  6751. work->dev = crtc->dev;
  6752. intel_fb = to_intel_framebuffer(crtc->fb);
  6753. work->old_fb_obj = intel_fb->obj;
  6754. INIT_WORK(&work->work, intel_unpin_work_fn);
  6755. ret = drm_vblank_get(dev, intel_crtc->pipe);
  6756. if (ret)
  6757. goto free_work;
  6758. /* We borrow the event spin lock for protecting unpin_work */
  6759. spin_lock_irqsave(&dev->event_lock, flags);
  6760. if (intel_crtc->unpin_work) {
  6761. spin_unlock_irqrestore(&dev->event_lock, flags);
  6762. kfree(work);
  6763. drm_vblank_put(dev, intel_crtc->pipe);
  6764. DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
  6765. return -EBUSY;
  6766. }
  6767. intel_crtc->unpin_work = work;
  6768. spin_unlock_irqrestore(&dev->event_lock, flags);
  6769. intel_fb = to_intel_framebuffer(fb);
  6770. obj = intel_fb->obj;
  6771. mutex_lock(&dev->struct_mutex);
  6772. /* Reference the objects for the scheduled work. */
  6773. drm_gem_object_reference(&work->old_fb_obj->base);
  6774. drm_gem_object_reference(&obj->base);
  6775. crtc->fb = fb;
  6776. work->pending_flip_obj = obj;
  6777. work->enable_stall_check = true;
  6778. /* Block clients from rendering to the new back buffer until
  6779. * the flip occurs and the object is no longer visible.
  6780. */
  6781. atomic_add(1 << intel_crtc->plane, &work->old_fb_obj->pending_flip);
  6782. ret = dev_priv->display.queue_flip(dev, crtc, fb, obj);
  6783. if (ret)
  6784. goto cleanup_pending;
  6785. intel_disable_fbc(dev);
  6786. mutex_unlock(&dev->struct_mutex);
  6787. trace_i915_flip_request(intel_crtc->plane, obj);
  6788. return 0;
  6789. cleanup_pending:
  6790. atomic_sub(1 << intel_crtc->plane, &work->old_fb_obj->pending_flip);
  6791. drm_gem_object_unreference(&work->old_fb_obj->base);
  6792. drm_gem_object_unreference(&obj->base);
  6793. mutex_unlock(&dev->struct_mutex);
  6794. spin_lock_irqsave(&dev->event_lock, flags);
  6795. intel_crtc->unpin_work = NULL;
  6796. spin_unlock_irqrestore(&dev->event_lock, flags);
  6797. drm_vblank_put(dev, intel_crtc->pipe);
  6798. free_work:
  6799. kfree(work);
  6800. return ret;
  6801. }
  6802. static void intel_sanitize_modesetting(struct drm_device *dev,
  6803. int pipe, int plane)
  6804. {
  6805. struct drm_i915_private *dev_priv = dev->dev_private;
  6806. u32 reg, val;
  6807. /* Clear any frame start delays used for debugging left by the BIOS */
  6808. for_each_pipe(pipe) {
  6809. reg = PIPECONF(pipe);
  6810. I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
  6811. }
  6812. if (HAS_PCH_SPLIT(dev))
  6813. return;
  6814. /* Who knows what state these registers were left in by the BIOS or
  6815. * grub?
  6816. *
  6817. * If we leave the registers in a conflicting state (e.g. with the
  6818. * display plane reading from the other pipe than the one we intend
  6819. * to use) then when we attempt to teardown the active mode, we will
  6820. * not disable the pipes and planes in the correct order -- leaving
  6821. * a plane reading from a disabled pipe and possibly leading to
  6822. * undefined behaviour.
  6823. */
  6824. reg = DSPCNTR(plane);
  6825. val = I915_READ(reg);
  6826. if ((val & DISPLAY_PLANE_ENABLE) == 0)
  6827. return;
  6828. if (!!(val & DISPPLANE_SEL_PIPE_MASK) == pipe)
  6829. return;
  6830. /* This display plane is active and attached to the other CPU pipe. */
  6831. pipe = !pipe;
  6832. /* Disable the plane and wait for it to stop reading from the pipe. */
  6833. intel_disable_plane(dev_priv, plane, pipe);
  6834. intel_disable_pipe(dev_priv, pipe);
  6835. }
  6836. static void intel_crtc_reset(struct drm_crtc *crtc)
  6837. {
  6838. struct drm_device *dev = crtc->dev;
  6839. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6840. /* Reset flags back to the 'unknown' status so that they
  6841. * will be correctly set on the initial modeset.
  6842. */
  6843. intel_crtc->dpms_mode = -1;
  6844. /* We need to fix up any BIOS configuration that conflicts with
  6845. * our expectations.
  6846. */
  6847. intel_sanitize_modesetting(dev, intel_crtc->pipe, intel_crtc->plane);
  6848. }
  6849. static struct drm_crtc_helper_funcs intel_helper_funcs = {
  6850. .dpms = intel_crtc_dpms,
  6851. .mode_fixup = intel_crtc_mode_fixup,
  6852. .mode_set = intel_crtc_mode_set,
  6853. .mode_set_base = intel_pipe_set_base,
  6854. .mode_set_base_atomic = intel_pipe_set_base_atomic,
  6855. .load_lut = intel_crtc_load_lut,
  6856. .disable = intel_crtc_disable,
  6857. };
  6858. static const struct drm_crtc_funcs intel_crtc_funcs = {
  6859. .reset = intel_crtc_reset,
  6860. .cursor_set = intel_crtc_cursor_set,
  6861. .cursor_move = intel_crtc_cursor_move,
  6862. .gamma_set = intel_crtc_gamma_set,
  6863. .set_config = drm_crtc_helper_set_config,
  6864. .destroy = intel_crtc_destroy,
  6865. .page_flip = intel_crtc_page_flip,
  6866. };
  6867. static void intel_crtc_init(struct drm_device *dev, int pipe)
  6868. {
  6869. drm_i915_private_t *dev_priv = dev->dev_private;
  6870. struct intel_crtc *intel_crtc;
  6871. int i;
  6872. intel_crtc = kzalloc(sizeof(struct intel_crtc) + (INTELFB_CONN_LIMIT * sizeof(struct drm_connector *)), GFP_KERNEL);
  6873. if (intel_crtc == NULL)
  6874. return;
  6875. drm_crtc_init(dev, &intel_crtc->base, &intel_crtc_funcs);
  6876. drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
  6877. for (i = 0; i < 256; i++) {
  6878. intel_crtc->lut_r[i] = i;
  6879. intel_crtc->lut_g[i] = i;
  6880. intel_crtc->lut_b[i] = i;
  6881. }
  6882. /* Swap pipes & planes for FBC on pre-965 */
  6883. intel_crtc->pipe = pipe;
  6884. intel_crtc->plane = pipe;
  6885. if (IS_MOBILE(dev) && IS_GEN3(dev)) {
  6886. DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
  6887. intel_crtc->plane = !pipe;
  6888. }
  6889. BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
  6890. dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
  6891. dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
  6892. dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
  6893. intel_crtc_reset(&intel_crtc->base);
  6894. intel_crtc->active = true; /* force the pipe off on setup_init_config */
  6895. intel_crtc->bpp = 24; /* default for pre-Ironlake */
  6896. if (HAS_PCH_SPLIT(dev)) {
  6897. if (pipe == 2 && IS_IVYBRIDGE(dev))
  6898. intel_crtc->no_pll = true;
  6899. intel_helper_funcs.prepare = ironlake_crtc_prepare;
  6900. intel_helper_funcs.commit = ironlake_crtc_commit;
  6901. } else {
  6902. intel_helper_funcs.prepare = i9xx_crtc_prepare;
  6903. intel_helper_funcs.commit = i9xx_crtc_commit;
  6904. }
  6905. drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
  6906. intel_crtc->busy = false;
  6907. setup_timer(&intel_crtc->idle_timer, intel_crtc_idle_timer,
  6908. (unsigned long)intel_crtc);
  6909. }
  6910. int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
  6911. struct drm_file *file)
  6912. {
  6913. drm_i915_private_t *dev_priv = dev->dev_private;
  6914. struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
  6915. struct drm_mode_object *drmmode_obj;
  6916. struct intel_crtc *crtc;
  6917. if (!dev_priv) {
  6918. DRM_ERROR("called with no initialization\n");
  6919. return -EINVAL;
  6920. }
  6921. drmmode_obj = drm_mode_object_find(dev, pipe_from_crtc_id->crtc_id,
  6922. DRM_MODE_OBJECT_CRTC);
  6923. if (!drmmode_obj) {
  6924. DRM_ERROR("no such CRTC id\n");
  6925. return -EINVAL;
  6926. }
  6927. crtc = to_intel_crtc(obj_to_crtc(drmmode_obj));
  6928. pipe_from_crtc_id->pipe = crtc->pipe;
  6929. return 0;
  6930. }
  6931. static int intel_encoder_clones(struct drm_device *dev, int type_mask)
  6932. {
  6933. struct intel_encoder *encoder;
  6934. int index_mask = 0;
  6935. int entry = 0;
  6936. list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
  6937. if (type_mask & encoder->clone_mask)
  6938. index_mask |= (1 << entry);
  6939. entry++;
  6940. }
  6941. return index_mask;
  6942. }
  6943. static bool has_edp_a(struct drm_device *dev)
  6944. {
  6945. struct drm_i915_private *dev_priv = dev->dev_private;
  6946. if (!IS_MOBILE(dev))
  6947. return false;
  6948. if ((I915_READ(DP_A) & DP_DETECTED) == 0)
  6949. return false;
  6950. if (IS_GEN5(dev) &&
  6951. (I915_READ(ILK_DISPLAY_CHICKEN_FUSES) & ILK_eDP_A_DISABLE))
  6952. return false;
  6953. return true;
  6954. }
  6955. static void intel_setup_outputs(struct drm_device *dev)
  6956. {
  6957. struct drm_i915_private *dev_priv = dev->dev_private;
  6958. struct intel_encoder *encoder;
  6959. bool dpd_is_edp = false;
  6960. bool has_lvds;
  6961. has_lvds = intel_lvds_init(dev);
  6962. if (!has_lvds && !HAS_PCH_SPLIT(dev)) {
  6963. /* disable the panel fitter on everything but LVDS */
  6964. I915_WRITE(PFIT_CONTROL, 0);
  6965. }
  6966. if (HAS_PCH_SPLIT(dev)) {
  6967. dpd_is_edp = intel_dpd_is_edp(dev);
  6968. if (has_edp_a(dev))
  6969. intel_dp_init(dev, DP_A);
  6970. if (dpd_is_edp && (I915_READ(PCH_DP_D) & DP_DETECTED))
  6971. intel_dp_init(dev, PCH_DP_D);
  6972. }
  6973. intel_crt_init(dev);
  6974. if (HAS_PCH_SPLIT(dev)) {
  6975. int found;
  6976. if (I915_READ(HDMIB) & PORT_DETECTED) {
  6977. /* PCH SDVOB multiplex with HDMIB */
  6978. found = intel_sdvo_init(dev, PCH_SDVOB, true);
  6979. if (!found)
  6980. intel_hdmi_init(dev, HDMIB);
  6981. if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
  6982. intel_dp_init(dev, PCH_DP_B);
  6983. }
  6984. if (I915_READ(HDMIC) & PORT_DETECTED)
  6985. intel_hdmi_init(dev, HDMIC);
  6986. if (I915_READ(HDMID) & PORT_DETECTED)
  6987. intel_hdmi_init(dev, HDMID);
  6988. if (I915_READ(PCH_DP_C) & DP_DETECTED)
  6989. intel_dp_init(dev, PCH_DP_C);
  6990. if (!dpd_is_edp && (I915_READ(PCH_DP_D) & DP_DETECTED))
  6991. intel_dp_init(dev, PCH_DP_D);
  6992. } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
  6993. bool found = false;
  6994. if (I915_READ(SDVOB) & SDVO_DETECTED) {
  6995. DRM_DEBUG_KMS("probing SDVOB\n");
  6996. found = intel_sdvo_init(dev, SDVOB, true);
  6997. if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
  6998. DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
  6999. intel_hdmi_init(dev, SDVOB);
  7000. }
  7001. if (!found && SUPPORTS_INTEGRATED_DP(dev)) {
  7002. DRM_DEBUG_KMS("probing DP_B\n");
  7003. intel_dp_init(dev, DP_B);
  7004. }
  7005. }
  7006. /* Before G4X SDVOC doesn't have its own detect register */
  7007. if (I915_READ(SDVOB) & SDVO_DETECTED) {
  7008. DRM_DEBUG_KMS("probing SDVOC\n");
  7009. found = intel_sdvo_init(dev, SDVOC, false);
  7010. }
  7011. if (!found && (I915_READ(SDVOC) & SDVO_DETECTED)) {
  7012. if (SUPPORTS_INTEGRATED_HDMI(dev)) {
  7013. DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
  7014. intel_hdmi_init(dev, SDVOC);
  7015. }
  7016. if (SUPPORTS_INTEGRATED_DP(dev)) {
  7017. DRM_DEBUG_KMS("probing DP_C\n");
  7018. intel_dp_init(dev, DP_C);
  7019. }
  7020. }
  7021. if (SUPPORTS_INTEGRATED_DP(dev) &&
  7022. (I915_READ(DP_D) & DP_DETECTED)) {
  7023. DRM_DEBUG_KMS("probing DP_D\n");
  7024. intel_dp_init(dev, DP_D);
  7025. }
  7026. } else if (IS_GEN2(dev))
  7027. intel_dvo_init(dev);
  7028. if (SUPPORTS_TV(dev))
  7029. intel_tv_init(dev);
  7030. list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
  7031. encoder->base.possible_crtcs = encoder->crtc_mask;
  7032. encoder->base.possible_clones =
  7033. intel_encoder_clones(dev, encoder->clone_mask);
  7034. }
  7035. /* disable all the possible outputs/crtcs before entering KMS mode */
  7036. drm_helper_disable_unused_functions(dev);
  7037. if (HAS_PCH_SPLIT(dev))
  7038. ironlake_init_pch_refclk(dev);
  7039. }
  7040. static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
  7041. {
  7042. struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
  7043. drm_framebuffer_cleanup(fb);
  7044. drm_gem_object_unreference_unlocked(&intel_fb->obj->base);
  7045. kfree(intel_fb);
  7046. }
  7047. static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
  7048. struct drm_file *file,
  7049. unsigned int *handle)
  7050. {
  7051. struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
  7052. struct drm_i915_gem_object *obj = intel_fb->obj;
  7053. return drm_gem_handle_create(file, &obj->base, handle);
  7054. }
  7055. static const struct drm_framebuffer_funcs intel_fb_funcs = {
  7056. .destroy = intel_user_framebuffer_destroy,
  7057. .create_handle = intel_user_framebuffer_create_handle,
  7058. };
  7059. int intel_framebuffer_init(struct drm_device *dev,
  7060. struct intel_framebuffer *intel_fb,
  7061. struct drm_mode_fb_cmd2 *mode_cmd,
  7062. struct drm_i915_gem_object *obj)
  7063. {
  7064. int ret;
  7065. if (obj->tiling_mode == I915_TILING_Y)
  7066. return -EINVAL;
  7067. if (mode_cmd->pitches[0] & 63)
  7068. return -EINVAL;
  7069. switch (mode_cmd->pixel_format) {
  7070. case DRM_FORMAT_RGB332:
  7071. case DRM_FORMAT_RGB565:
  7072. case DRM_FORMAT_XRGB8888:
  7073. case DRM_FORMAT_XBGR8888:
  7074. case DRM_FORMAT_ARGB8888:
  7075. case DRM_FORMAT_XRGB2101010:
  7076. case DRM_FORMAT_ARGB2101010:
  7077. /* RGB formats are common across chipsets */
  7078. break;
  7079. case DRM_FORMAT_YUYV:
  7080. case DRM_FORMAT_UYVY:
  7081. case DRM_FORMAT_YVYU:
  7082. case DRM_FORMAT_VYUY:
  7083. break;
  7084. default:
  7085. DRM_DEBUG_KMS("unsupported pixel format %u\n",
  7086. mode_cmd->pixel_format);
  7087. return -EINVAL;
  7088. }
  7089. ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
  7090. if (ret) {
  7091. DRM_ERROR("framebuffer init failed %d\n", ret);
  7092. return ret;
  7093. }
  7094. drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
  7095. intel_fb->obj = obj;
  7096. return 0;
  7097. }
  7098. static struct drm_framebuffer *
  7099. intel_user_framebuffer_create(struct drm_device *dev,
  7100. struct drm_file *filp,
  7101. struct drm_mode_fb_cmd2 *mode_cmd)
  7102. {
  7103. struct drm_i915_gem_object *obj;
  7104. obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
  7105. mode_cmd->handles[0]));
  7106. if (&obj->base == NULL)
  7107. return ERR_PTR(-ENOENT);
  7108. return intel_framebuffer_create(dev, mode_cmd, obj);
  7109. }
  7110. static const struct drm_mode_config_funcs intel_mode_funcs = {
  7111. .fb_create = intel_user_framebuffer_create,
  7112. .output_poll_changed = intel_fb_output_poll_changed,
  7113. };
  7114. static struct drm_i915_gem_object *
  7115. intel_alloc_context_page(struct drm_device *dev)
  7116. {
  7117. struct drm_i915_gem_object *ctx;
  7118. int ret;
  7119. WARN_ON(!mutex_is_locked(&dev->struct_mutex));
  7120. ctx = i915_gem_alloc_object(dev, 4096);
  7121. if (!ctx) {
  7122. DRM_DEBUG("failed to alloc power context, RC6 disabled\n");
  7123. return NULL;
  7124. }
  7125. ret = i915_gem_object_pin(ctx, 4096, true);
  7126. if (ret) {
  7127. DRM_ERROR("failed to pin power context: %d\n", ret);
  7128. goto err_unref;
  7129. }
  7130. ret = i915_gem_object_set_to_gtt_domain(ctx, 1);
  7131. if (ret) {
  7132. DRM_ERROR("failed to set-domain on power context: %d\n", ret);
  7133. goto err_unpin;
  7134. }
  7135. return ctx;
  7136. err_unpin:
  7137. i915_gem_object_unpin(ctx);
  7138. err_unref:
  7139. drm_gem_object_unreference(&ctx->base);
  7140. mutex_unlock(&dev->struct_mutex);
  7141. return NULL;
  7142. }
  7143. bool ironlake_set_drps(struct drm_device *dev, u8 val)
  7144. {
  7145. struct drm_i915_private *dev_priv = dev->dev_private;
  7146. u16 rgvswctl;
  7147. rgvswctl = I915_READ16(MEMSWCTL);
  7148. if (rgvswctl & MEMCTL_CMD_STS) {
  7149. DRM_DEBUG("gpu busy, RCS change rejected\n");
  7150. return false; /* still busy with another command */
  7151. }
  7152. rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
  7153. (val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
  7154. I915_WRITE16(MEMSWCTL, rgvswctl);
  7155. POSTING_READ16(MEMSWCTL);
  7156. rgvswctl |= MEMCTL_CMD_STS;
  7157. I915_WRITE16(MEMSWCTL, rgvswctl);
  7158. return true;
  7159. }
  7160. void ironlake_enable_drps(struct drm_device *dev)
  7161. {
  7162. struct drm_i915_private *dev_priv = dev->dev_private;
  7163. u32 rgvmodectl = I915_READ(MEMMODECTL);
  7164. u8 fmax, fmin, fstart, vstart;
  7165. /* Enable temp reporting */
  7166. I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
  7167. I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);
  7168. /* 100ms RC evaluation intervals */
  7169. I915_WRITE(RCUPEI, 100000);
  7170. I915_WRITE(RCDNEI, 100000);
  7171. /* Set max/min thresholds to 90ms and 80ms respectively */
  7172. I915_WRITE(RCBMAXAVG, 90000);
  7173. I915_WRITE(RCBMINAVG, 80000);
  7174. I915_WRITE(MEMIHYST, 1);
  7175. /* Set up min, max, and cur for interrupt handling */
  7176. fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
  7177. fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
  7178. fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
  7179. MEMMODE_FSTART_SHIFT;
  7180. vstart = (I915_READ(PXVFREQ_BASE + (fstart * 4)) & PXVFREQ_PX_MASK) >>
  7181. PXVFREQ_PX_SHIFT;
  7182. dev_priv->fmax = fmax; /* IPS callback will increase this */
  7183. dev_priv->fstart = fstart;
  7184. dev_priv->max_delay = fstart;
  7185. dev_priv->min_delay = fmin;
  7186. dev_priv->cur_delay = fstart;
  7187. DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
  7188. fmax, fmin, fstart);
  7189. I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
  7190. /*
  7191. * Interrupts will be enabled in ironlake_irq_postinstall
  7192. */
  7193. I915_WRITE(VIDSTART, vstart);
  7194. POSTING_READ(VIDSTART);
  7195. rgvmodectl |= MEMMODE_SWMODE_EN;
  7196. I915_WRITE(MEMMODECTL, rgvmodectl);
  7197. if (wait_for((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
  7198. DRM_ERROR("stuck trying to change perf mode\n");
  7199. msleep(1);
  7200. ironlake_set_drps(dev, fstart);
  7201. dev_priv->last_count1 = I915_READ(0x112e4) + I915_READ(0x112e8) +
  7202. I915_READ(0x112e0);
  7203. dev_priv->last_time1 = jiffies_to_msecs(jiffies);
  7204. dev_priv->last_count2 = I915_READ(0x112f4);
  7205. getrawmonotonic(&dev_priv->last_time2);
  7206. }
  7207. void ironlake_disable_drps(struct drm_device *dev)
  7208. {
  7209. struct drm_i915_private *dev_priv = dev->dev_private;
  7210. u16 rgvswctl = I915_READ16(MEMSWCTL);
  7211. /* Ack interrupts, disable EFC interrupt */
  7212. I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
  7213. I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
  7214. I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
  7215. I915_WRITE(DEIIR, DE_PCU_EVENT);
  7216. I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);
  7217. /* Go back to the starting frequency */
  7218. ironlake_set_drps(dev, dev_priv->fstart);
  7219. msleep(1);
  7220. rgvswctl |= MEMCTL_CMD_STS;
  7221. I915_WRITE(MEMSWCTL, rgvswctl);
  7222. msleep(1);
  7223. }
  7224. void gen6_set_rps(struct drm_device *dev, u8 val)
  7225. {
  7226. struct drm_i915_private *dev_priv = dev->dev_private;
  7227. u32 swreq;
  7228. swreq = (val & 0x3ff) << 25;
  7229. I915_WRITE(GEN6_RPNSWREQ, swreq);
  7230. }
  7231. void gen6_disable_rps(struct drm_device *dev)
  7232. {
  7233. struct drm_i915_private *dev_priv = dev->dev_private;
  7234. I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
  7235. I915_WRITE(GEN6_PMINTRMSK, 0xffffffff);
  7236. I915_WRITE(GEN6_PMIER, 0);
  7237. /* Complete PM interrupt masking here doesn't race with the rps work
  7238. * item again unmasking PM interrupts because that is using a different
  7239. * register (PMIMR) to mask PM interrupts. The only risk is in leaving
  7240. * stale bits in PMIIR and PMIMR which gen6_enable_rps will clean up. */
  7241. spin_lock_irq(&dev_priv->rps_lock);
  7242. dev_priv->pm_iir = 0;
  7243. spin_unlock_irq(&dev_priv->rps_lock);
  7244. I915_WRITE(GEN6_PMIIR, I915_READ(GEN6_PMIIR));
  7245. }
  7246. static unsigned long intel_pxfreq(u32 vidfreq)
  7247. {
  7248. unsigned long freq;
  7249. int div = (vidfreq & 0x3f0000) >> 16;
  7250. int post = (vidfreq & 0x3000) >> 12;
  7251. int pre = (vidfreq & 0x7);
  7252. if (!pre)
  7253. return 0;
  7254. freq = ((div * 133333) / ((1<<post) * pre));
  7255. return freq;
  7256. }
  7257. void intel_init_emon(struct drm_device *dev)
  7258. {
  7259. struct drm_i915_private *dev_priv = dev->dev_private;
  7260. u32 lcfuse;
  7261. u8 pxw[16];
  7262. int i;
  7263. /* Disable to program */
  7264. I915_WRITE(ECR, 0);
  7265. POSTING_READ(ECR);
  7266. /* Program energy weights for various events */
  7267. I915_WRITE(SDEW, 0x15040d00);
  7268. I915_WRITE(CSIEW0, 0x007f0000);
  7269. I915_WRITE(CSIEW1, 0x1e220004);
  7270. I915_WRITE(CSIEW2, 0x04000004);
  7271. for (i = 0; i < 5; i++)
  7272. I915_WRITE(PEW + (i * 4), 0);
  7273. for (i = 0; i < 3; i++)
  7274. I915_WRITE(DEW + (i * 4), 0);
  7275. /* Program P-state weights to account for frequency power adjustment */
  7276. for (i = 0; i < 16; i++) {
  7277. u32 pxvidfreq = I915_READ(PXVFREQ_BASE + (i * 4));
  7278. unsigned long freq = intel_pxfreq(pxvidfreq);
  7279. unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
  7280. PXVFREQ_PX_SHIFT;
  7281. unsigned long val;
  7282. val = vid * vid;
  7283. val *= (freq / 1000);
  7284. val *= 255;
  7285. val /= (127*127*900);
  7286. if (val > 0xff)
  7287. DRM_ERROR("bad pxval: %ld\n", val);
  7288. pxw[i] = val;
  7289. }
  7290. /* Render standby states get 0 weight */
  7291. pxw[14] = 0;
  7292. pxw[15] = 0;
  7293. for (i = 0; i < 4; i++) {
  7294. u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
  7295. (pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
  7296. I915_WRITE(PXW + (i * 4), val);
  7297. }
  7298. /* Adjust magic regs to magic values (more experimental results) */
  7299. I915_WRITE(OGW0, 0);
  7300. I915_WRITE(OGW1, 0);
  7301. I915_WRITE(EG0, 0x00007f00);
  7302. I915_WRITE(EG1, 0x0000000e);
  7303. I915_WRITE(EG2, 0x000e0000);
  7304. I915_WRITE(EG3, 0x68000300);
  7305. I915_WRITE(EG4, 0x42000000);
  7306. I915_WRITE(EG5, 0x00140031);
  7307. I915_WRITE(EG6, 0);
  7308. I915_WRITE(EG7, 0);
  7309. for (i = 0; i < 8; i++)
  7310. I915_WRITE(PXWL + (i * 4), 0);
  7311. /* Enable PMON + select events */
  7312. I915_WRITE(ECR, 0x80000019);
  7313. lcfuse = I915_READ(LCFUSE02);
  7314. dev_priv->corr = (lcfuse & LCFUSE_HIV_MASK);
  7315. }
  7316. int intel_enable_rc6(const struct drm_device *dev)
  7317. {
  7318. /*
  7319. * Respect the kernel parameter if it is set
  7320. */
  7321. if (i915_enable_rc6 >= 0)
  7322. return i915_enable_rc6;
  7323. /*
  7324. * Disable RC6 on Ironlake
  7325. */
  7326. if (INTEL_INFO(dev)->gen == 5)
  7327. return 0;
  7328. /* Sorry Haswell, no RC6 for you for now. */
  7329. if (IS_HASWELL(dev))
  7330. return 0;
  7331. /*
  7332. * Disable rc6 on Sandybridge
  7333. */
  7334. if (INTEL_INFO(dev)->gen == 6) {
  7335. DRM_DEBUG_DRIVER("Sandybridge: deep RC6 disabled\n");
  7336. return INTEL_RC6_ENABLE;
  7337. }
  7338. DRM_DEBUG_DRIVER("RC6 and deep RC6 enabled\n");
  7339. return (INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE);
  7340. }
  7341. void gen6_enable_rps(struct drm_i915_private *dev_priv)
  7342. {
  7343. u32 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
  7344. u32 gt_perf_status = I915_READ(GEN6_GT_PERF_STATUS);
  7345. u32 pcu_mbox, rc6_mask = 0;
  7346. u32 gtfifodbg;
  7347. int cur_freq, min_freq, max_freq;
  7348. int rc6_mode;
  7349. int i;
  7350. /* Here begins a magic sequence of register writes to enable
  7351. * auto-downclocking.
  7352. *
  7353. * Perhaps there might be some value in exposing these to
  7354. * userspace...
  7355. */
  7356. I915_WRITE(GEN6_RC_STATE, 0);
  7357. mutex_lock(&dev_priv->dev->struct_mutex);
  7358. /* Clear the DBG now so we don't confuse earlier errors */
  7359. if ((gtfifodbg = I915_READ(GTFIFODBG))) {
  7360. DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
  7361. I915_WRITE(GTFIFODBG, gtfifodbg);
  7362. }
  7363. gen6_gt_force_wake_get(dev_priv);
  7364. /* disable the counters and set deterministic thresholds */
  7365. I915_WRITE(GEN6_RC_CONTROL, 0);
  7366. I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
  7367. I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
  7368. I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
  7369. I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
  7370. I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
  7371. for (i = 0; i < I915_NUM_RINGS; i++)
  7372. I915_WRITE(RING_MAX_IDLE(dev_priv->ring[i].mmio_base), 10);
  7373. I915_WRITE(GEN6_RC_SLEEP, 0);
  7374. I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
  7375. I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
  7376. I915_WRITE(GEN6_RC6p_THRESHOLD, 100000);
  7377. I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */
  7378. rc6_mode = intel_enable_rc6(dev_priv->dev);
  7379. if (rc6_mode & INTEL_RC6_ENABLE)
  7380. rc6_mask |= GEN6_RC_CTL_RC6_ENABLE;
  7381. if (rc6_mode & INTEL_RC6p_ENABLE)
  7382. rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE;
  7383. if (rc6_mode & INTEL_RC6pp_ENABLE)
  7384. rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE;
  7385. DRM_INFO("Enabling RC6 states: RC6 %s, RC6p %s, RC6pp %s\n",
  7386. (rc6_mode & INTEL_RC6_ENABLE) ? "on" : "off",
  7387. (rc6_mode & INTEL_RC6p_ENABLE) ? "on" : "off",
  7388. (rc6_mode & INTEL_RC6pp_ENABLE) ? "on" : "off");
  7389. I915_WRITE(GEN6_RC_CONTROL,
  7390. rc6_mask |
  7391. GEN6_RC_CTL_EI_MODE(1) |
  7392. GEN6_RC_CTL_HW_ENABLE);
  7393. I915_WRITE(GEN6_RPNSWREQ,
  7394. GEN6_FREQUENCY(10) |
  7395. GEN6_OFFSET(0) |
  7396. GEN6_AGGRESSIVE_TURBO);
  7397. I915_WRITE(GEN6_RC_VIDEO_FREQ,
  7398. GEN6_FREQUENCY(12));
  7399. I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
  7400. I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
  7401. 18 << 24 |
  7402. 6 << 16);
  7403. I915_WRITE(GEN6_RP_UP_THRESHOLD, 10000);
  7404. I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 1000000);
  7405. I915_WRITE(GEN6_RP_UP_EI, 100000);
  7406. I915_WRITE(GEN6_RP_DOWN_EI, 5000000);
  7407. I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
  7408. I915_WRITE(GEN6_RP_CONTROL,
  7409. GEN6_RP_MEDIA_TURBO |
  7410. GEN6_RP_MEDIA_HW_MODE |
  7411. GEN6_RP_MEDIA_IS_GFX |
  7412. GEN6_RP_ENABLE |
  7413. GEN6_RP_UP_BUSY_AVG |
  7414. GEN6_RP_DOWN_IDLE_CONT);
  7415. if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
  7416. 500))
  7417. DRM_ERROR("timeout waiting for pcode mailbox to become idle\n");
  7418. I915_WRITE(GEN6_PCODE_DATA, 0);
  7419. I915_WRITE(GEN6_PCODE_MAILBOX,
  7420. GEN6_PCODE_READY |
  7421. GEN6_PCODE_WRITE_MIN_FREQ_TABLE);
  7422. if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
  7423. 500))
  7424. DRM_ERROR("timeout waiting for pcode mailbox to finish\n");
  7425. min_freq = (rp_state_cap & 0xff0000) >> 16;
  7426. max_freq = rp_state_cap & 0xff;
  7427. cur_freq = (gt_perf_status & 0xff00) >> 8;
  7428. /* Check for overclock support */
  7429. if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
  7430. 500))
  7431. DRM_ERROR("timeout waiting for pcode mailbox to become idle\n");
  7432. I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_READ_OC_PARAMS);
  7433. pcu_mbox = I915_READ(GEN6_PCODE_DATA);
  7434. if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
  7435. 500))
  7436. DRM_ERROR("timeout waiting for pcode mailbox to finish\n");
  7437. if (pcu_mbox & (1<<31)) { /* OC supported */
  7438. max_freq = pcu_mbox & 0xff;
  7439. DRM_DEBUG_DRIVER("overclocking supported, adjusting frequency max to %dMHz\n", pcu_mbox * 50);
  7440. }
  7441. /* In units of 100MHz */
  7442. dev_priv->max_delay = max_freq;
  7443. dev_priv->min_delay = min_freq;
  7444. dev_priv->cur_delay = cur_freq;
  7445. /* requires MSI enabled */
  7446. I915_WRITE(GEN6_PMIER,
  7447. GEN6_PM_MBOX_EVENT |
  7448. GEN6_PM_THERMAL_EVENT |
  7449. GEN6_PM_RP_DOWN_TIMEOUT |
  7450. GEN6_PM_RP_UP_THRESHOLD |
  7451. GEN6_PM_RP_DOWN_THRESHOLD |
  7452. GEN6_PM_RP_UP_EI_EXPIRED |
  7453. GEN6_PM_RP_DOWN_EI_EXPIRED);
  7454. spin_lock_irq(&dev_priv->rps_lock);
  7455. WARN_ON(dev_priv->pm_iir != 0);
  7456. I915_WRITE(GEN6_PMIMR, 0);
  7457. spin_unlock_irq(&dev_priv->rps_lock);
  7458. /* enable all PM interrupts */
  7459. I915_WRITE(GEN6_PMINTRMSK, 0);
  7460. gen6_gt_force_wake_put(dev_priv);
  7461. mutex_unlock(&dev_priv->dev->struct_mutex);
  7462. }
  7463. void gen6_update_ring_freq(struct drm_i915_private *dev_priv)
  7464. {
  7465. int min_freq = 15;
  7466. int gpu_freq, ia_freq, max_ia_freq;
  7467. int scaling_factor = 180;
  7468. max_ia_freq = cpufreq_quick_get_max(0);
  7469. /*
  7470. * Default to measured freq if none found, PCU will ensure we don't go
  7471. * over
  7472. */
  7473. if (!max_ia_freq)
  7474. max_ia_freq = tsc_khz;
  7475. /* Convert from kHz to MHz */
  7476. max_ia_freq /= 1000;
  7477. mutex_lock(&dev_priv->dev->struct_mutex);
  7478. /*
  7479. * For each potential GPU frequency, load a ring frequency we'd like
  7480. * to use for memory access. We do this by specifying the IA frequency
  7481. * the PCU should use as a reference to determine the ring frequency.
  7482. */
  7483. for (gpu_freq = dev_priv->max_delay; gpu_freq >= dev_priv->min_delay;
  7484. gpu_freq--) {
  7485. int diff = dev_priv->max_delay - gpu_freq;
  7486. /*
  7487. * For GPU frequencies less than 750MHz, just use the lowest
  7488. * ring freq.
  7489. */
  7490. if (gpu_freq < min_freq)
  7491. ia_freq = 800;
  7492. else
  7493. ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
  7494. ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
  7495. I915_WRITE(GEN6_PCODE_DATA,
  7496. (ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT) |
  7497. gpu_freq);
  7498. I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY |
  7499. GEN6_PCODE_WRITE_MIN_FREQ_TABLE);
  7500. if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) &
  7501. GEN6_PCODE_READY) == 0, 10)) {
  7502. DRM_ERROR("pcode write of freq table timed out\n");
  7503. continue;
  7504. }
  7505. }
  7506. mutex_unlock(&dev_priv->dev->struct_mutex);
  7507. }
  7508. static void ironlake_init_clock_gating(struct drm_device *dev)
  7509. {
  7510. struct drm_i915_private *dev_priv = dev->dev_private;
  7511. uint32_t dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE;
  7512. /* Required for FBC */
  7513. dspclk_gate |= DPFCUNIT_CLOCK_GATE_DISABLE |
  7514. DPFCRUNIT_CLOCK_GATE_DISABLE |
  7515. DPFDUNIT_CLOCK_GATE_DISABLE;
  7516. /* Required for CxSR */
  7517. dspclk_gate |= DPARBUNIT_CLOCK_GATE_DISABLE;
  7518. I915_WRITE(PCH_3DCGDIS0,
  7519. MARIUNIT_CLOCK_GATE_DISABLE |
  7520. SVSMUNIT_CLOCK_GATE_DISABLE);
  7521. I915_WRITE(PCH_3DCGDIS1,
  7522. VFMUNIT_CLOCK_GATE_DISABLE);
  7523. I915_WRITE(PCH_DSPCLK_GATE_D, dspclk_gate);
  7524. /*
  7525. * According to the spec the following bits should be set in
  7526. * order to enable memory self-refresh
  7527. * The bit 22/21 of 0x42004
  7528. * The bit 5 of 0x42020
  7529. * The bit 15 of 0x45000
  7530. */
  7531. I915_WRITE(ILK_DISPLAY_CHICKEN2,
  7532. (I915_READ(ILK_DISPLAY_CHICKEN2) |
  7533. ILK_DPARB_GATE | ILK_VSDPFD_FULL));
  7534. I915_WRITE(ILK_DSPCLK_GATE,
  7535. (I915_READ(ILK_DSPCLK_GATE) |
  7536. ILK_DPARB_CLK_GATE));
  7537. I915_WRITE(DISP_ARB_CTL,
  7538. (I915_READ(DISP_ARB_CTL) |
  7539. DISP_FBC_WM_DIS));
  7540. I915_WRITE(WM3_LP_ILK, 0);
  7541. I915_WRITE(WM2_LP_ILK, 0);
  7542. I915_WRITE(WM1_LP_ILK, 0);
  7543. /*
  7544. * Based on the document from hardware guys the following bits
  7545. * should be set unconditionally in order to enable FBC.
  7546. * The bit 22 of 0x42000
  7547. * The bit 22 of 0x42004
  7548. * The bit 7,8,9 of 0x42020.
  7549. */
  7550. if (IS_IRONLAKE_M(dev)) {
  7551. I915_WRITE(ILK_DISPLAY_CHICKEN1,
  7552. I915_READ(ILK_DISPLAY_CHICKEN1) |
  7553. ILK_FBCQ_DIS);
  7554. I915_WRITE(ILK_DISPLAY_CHICKEN2,
  7555. I915_READ(ILK_DISPLAY_CHICKEN2) |
  7556. ILK_DPARB_GATE);
  7557. I915_WRITE(ILK_DSPCLK_GATE,
  7558. I915_READ(ILK_DSPCLK_GATE) |
  7559. ILK_DPFC_DIS1 |
  7560. ILK_DPFC_DIS2 |
  7561. ILK_CLK_FBC);
  7562. }
  7563. I915_WRITE(ILK_DISPLAY_CHICKEN2,
  7564. I915_READ(ILK_DISPLAY_CHICKEN2) |
  7565. ILK_ELPIN_409_SELECT);
  7566. I915_WRITE(_3D_CHICKEN2,
  7567. _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
  7568. _3D_CHICKEN2_WM_READ_PIPELINED);
  7569. }
  7570. static void gen6_init_clock_gating(struct drm_device *dev)
  7571. {
  7572. struct drm_i915_private *dev_priv = dev->dev_private;
  7573. int pipe;
  7574. uint32_t dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE;
  7575. I915_WRITE(PCH_DSPCLK_GATE_D, dspclk_gate);
  7576. I915_WRITE(ILK_DISPLAY_CHICKEN2,
  7577. I915_READ(ILK_DISPLAY_CHICKEN2) |
  7578. ILK_ELPIN_409_SELECT);
  7579. I915_WRITE(WM3_LP_ILK, 0);
  7580. I915_WRITE(WM2_LP_ILK, 0);
  7581. I915_WRITE(WM1_LP_ILK, 0);
  7582. /* clear masked bit */
  7583. I915_WRITE(CACHE_MODE_0,
  7584. CM0_STC_EVICT_DISABLE_LRA_SNB << CM0_MASK_SHIFT);
  7585. I915_WRITE(GEN6_UCGCTL1,
  7586. I915_READ(GEN6_UCGCTL1) |
  7587. GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
  7588. GEN6_CSUNIT_CLOCK_GATE_DISABLE);
  7589. /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
  7590. * gating disable must be set. Failure to set it results in
  7591. * flickering pixels due to Z write ordering failures after
  7592. * some amount of runtime in the Mesa "fire" demo, and Unigine
  7593. * Sanctuary and Tropics, and apparently anything else with
  7594. * alpha test or pixel discard.
  7595. *
  7596. * According to the spec, bit 11 (RCCUNIT) must also be set,
  7597. * but we didn't debug actual testcases to find it out.
  7598. */
  7599. I915_WRITE(GEN6_UCGCTL2,
  7600. GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
  7601. GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
  7602. /* Bspec says we need to always set all mask bits. */
  7603. I915_WRITE(_3D_CHICKEN, (0xFFFF << 16) |
  7604. _3D_CHICKEN_SF_DISABLE_FASTCLIP_CULL);
  7605. /*
  7606. * According to the spec the following bits should be
  7607. * set in order to enable memory self-refresh and fbc:
  7608. * The bit21 and bit22 of 0x42000
  7609. * The bit21 and bit22 of 0x42004
  7610. * The bit5 and bit7 of 0x42020
  7611. * The bit14 of 0x70180
  7612. * The bit14 of 0x71180
  7613. */
  7614. I915_WRITE(ILK_DISPLAY_CHICKEN1,
  7615. I915_READ(ILK_DISPLAY_CHICKEN1) |
  7616. ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
  7617. I915_WRITE(ILK_DISPLAY_CHICKEN2,
  7618. I915_READ(ILK_DISPLAY_CHICKEN2) |
  7619. ILK_DPARB_GATE | ILK_VSDPFD_FULL);
  7620. I915_WRITE(ILK_DSPCLK_GATE,
  7621. I915_READ(ILK_DSPCLK_GATE) |
  7622. ILK_DPARB_CLK_GATE |
  7623. ILK_DPFD_CLK_GATE);
  7624. for_each_pipe(pipe) {
  7625. I915_WRITE(DSPCNTR(pipe),
  7626. I915_READ(DSPCNTR(pipe)) |
  7627. DISPPLANE_TRICKLE_FEED_DISABLE);
  7628. intel_flush_display_plane(dev_priv, pipe);
  7629. }
  7630. }
  7631. static void ivybridge_init_clock_gating(struct drm_device *dev)
  7632. {
  7633. struct drm_i915_private *dev_priv = dev->dev_private;
  7634. int pipe;
  7635. uint32_t dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE;
  7636. I915_WRITE(PCH_DSPCLK_GATE_D, dspclk_gate);
  7637. I915_WRITE(WM3_LP_ILK, 0);
  7638. I915_WRITE(WM2_LP_ILK, 0);
  7639. I915_WRITE(WM1_LP_ILK, 0);
  7640. /* According to the spec, bit 13 (RCZUNIT) must be set on IVB.
  7641. * This implements the WaDisableRCZUnitClockGating workaround.
  7642. */
  7643. I915_WRITE(GEN6_UCGCTL2, GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
  7644. I915_WRITE(ILK_DSPCLK_GATE, IVB_VRHUNIT_CLK_GATE);
  7645. I915_WRITE(IVB_CHICKEN3,
  7646. CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
  7647. CHICKEN3_DGMG_DONE_FIX_DISABLE);
  7648. /* Apply the WaDisableRHWOOptimizationForRenderHang workaround. */
  7649. I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
  7650. GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
  7651. /* WaApplyL3ControlAndL3ChickenMode requires those two on Ivy Bridge */
  7652. I915_WRITE(GEN7_L3CNTLREG1,
  7653. GEN7_WA_FOR_GEN7_L3_CONTROL);
  7654. I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
  7655. GEN7_WA_L3_CHICKEN_MODE);
  7656. /* This is required by WaCatErrorRejectionIssue */
  7657. I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
  7658. I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
  7659. GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
  7660. for_each_pipe(pipe) {
  7661. I915_WRITE(DSPCNTR(pipe),
  7662. I915_READ(DSPCNTR(pipe)) |
  7663. DISPPLANE_TRICKLE_FEED_DISABLE);
  7664. intel_flush_display_plane(dev_priv, pipe);
  7665. }
  7666. }
  7667. static void valleyview_init_clock_gating(struct drm_device *dev)
  7668. {
  7669. struct drm_i915_private *dev_priv = dev->dev_private;
  7670. int pipe;
  7671. uint32_t dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE;
  7672. I915_WRITE(PCH_DSPCLK_GATE_D, dspclk_gate);
  7673. I915_WRITE(WM3_LP_ILK, 0);
  7674. I915_WRITE(WM2_LP_ILK, 0);
  7675. I915_WRITE(WM1_LP_ILK, 0);
  7676. /* According to the spec, bit 13 (RCZUNIT) must be set on IVB.
  7677. * This implements the WaDisableRCZUnitClockGating workaround.
  7678. */
  7679. I915_WRITE(GEN6_UCGCTL2, GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
  7680. I915_WRITE(ILK_DSPCLK_GATE, IVB_VRHUNIT_CLK_GATE);
  7681. I915_WRITE(IVB_CHICKEN3,
  7682. CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
  7683. CHICKEN3_DGMG_DONE_FIX_DISABLE);
  7684. /* Apply the WaDisableRHWOOptimizationForRenderHang workaround. */
  7685. I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
  7686. GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
  7687. /* WaApplyL3ControlAndL3ChickenMode requires those two on Ivy Bridge */
  7688. I915_WRITE(GEN7_L3CNTLREG1, GEN7_WA_FOR_GEN7_L3_CONTROL);
  7689. I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER, GEN7_WA_L3_CHICKEN_MODE);
  7690. /* This is required by WaCatErrorRejectionIssue */
  7691. I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
  7692. I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
  7693. GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
  7694. for_each_pipe(pipe) {
  7695. I915_WRITE(DSPCNTR(pipe),
  7696. I915_READ(DSPCNTR(pipe)) |
  7697. DISPPLANE_TRICKLE_FEED_DISABLE);
  7698. intel_flush_display_plane(dev_priv, pipe);
  7699. }
  7700. I915_WRITE(CACHE_MODE_1, I915_READ(CACHE_MODE_1) |
  7701. (PIXEL_SUBSPAN_COLLECT_OPT_DISABLE << 16) |
  7702. PIXEL_SUBSPAN_COLLECT_OPT_DISABLE);
  7703. }
  7704. static void g4x_init_clock_gating(struct drm_device *dev)
  7705. {
  7706. struct drm_i915_private *dev_priv = dev->dev_private;
  7707. uint32_t dspclk_gate;
  7708. I915_WRITE(RENCLK_GATE_D1, 0);
  7709. I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
  7710. GS_UNIT_CLOCK_GATE_DISABLE |
  7711. CL_UNIT_CLOCK_GATE_DISABLE);
  7712. I915_WRITE(RAMCLK_GATE_D, 0);
  7713. dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
  7714. OVRUNIT_CLOCK_GATE_DISABLE |
  7715. OVCUNIT_CLOCK_GATE_DISABLE;
  7716. if (IS_GM45(dev))
  7717. dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
  7718. I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
  7719. }
  7720. static void crestline_init_clock_gating(struct drm_device *dev)
  7721. {
  7722. struct drm_i915_private *dev_priv = dev->dev_private;
  7723. I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
  7724. I915_WRITE(RENCLK_GATE_D2, 0);
  7725. I915_WRITE(DSPCLK_GATE_D, 0);
  7726. I915_WRITE(RAMCLK_GATE_D, 0);
  7727. I915_WRITE16(DEUC, 0);
  7728. }
  7729. static void broadwater_init_clock_gating(struct drm_device *dev)
  7730. {
  7731. struct drm_i915_private *dev_priv = dev->dev_private;
  7732. I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
  7733. I965_RCC_CLOCK_GATE_DISABLE |
  7734. I965_RCPB_CLOCK_GATE_DISABLE |
  7735. I965_ISC_CLOCK_GATE_DISABLE |
  7736. I965_FBC_CLOCK_GATE_DISABLE);
  7737. I915_WRITE(RENCLK_GATE_D2, 0);
  7738. }
  7739. static void gen3_init_clock_gating(struct drm_device *dev)
  7740. {
  7741. struct drm_i915_private *dev_priv = dev->dev_private;
  7742. u32 dstate = I915_READ(D_STATE);
  7743. dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
  7744. DSTATE_DOT_CLOCK_GATING;
  7745. I915_WRITE(D_STATE, dstate);
  7746. }
  7747. static void i85x_init_clock_gating(struct drm_device *dev)
  7748. {
  7749. struct drm_i915_private *dev_priv = dev->dev_private;
  7750. I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
  7751. }
  7752. static void i830_init_clock_gating(struct drm_device *dev)
  7753. {
  7754. struct drm_i915_private *dev_priv = dev->dev_private;
  7755. I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
  7756. }
  7757. static void ibx_init_clock_gating(struct drm_device *dev)
  7758. {
  7759. struct drm_i915_private *dev_priv = dev->dev_private;
  7760. /*
  7761. * On Ibex Peak and Cougar Point, we need to disable clock
  7762. * gating for the panel power sequencer or it will fail to
  7763. * start up when no ports are active.
  7764. */
  7765. I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
  7766. }
  7767. static void cpt_init_clock_gating(struct drm_device *dev)
  7768. {
  7769. struct drm_i915_private *dev_priv = dev->dev_private;
  7770. int pipe;
  7771. /*
  7772. * On Ibex Peak and Cougar Point, we need to disable clock
  7773. * gating for the panel power sequencer or it will fail to
  7774. * start up when no ports are active.
  7775. */
  7776. I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
  7777. I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
  7778. DPLS_EDP_PPS_FIX_DIS);
  7779. /* Without this, mode sets may fail silently on FDI */
  7780. for_each_pipe(pipe)
  7781. I915_WRITE(TRANS_CHICKEN2(pipe), TRANS_AUTOTRAIN_GEN_STALL_DIS);
  7782. }
  7783. static void ironlake_teardown_rc6(struct drm_device *dev)
  7784. {
  7785. struct drm_i915_private *dev_priv = dev->dev_private;
  7786. if (dev_priv->renderctx) {
  7787. i915_gem_object_unpin(dev_priv->renderctx);
  7788. drm_gem_object_unreference(&dev_priv->renderctx->base);
  7789. dev_priv->renderctx = NULL;
  7790. }
  7791. if (dev_priv->pwrctx) {
  7792. i915_gem_object_unpin(dev_priv->pwrctx);
  7793. drm_gem_object_unreference(&dev_priv->pwrctx->base);
  7794. dev_priv->pwrctx = NULL;
  7795. }
  7796. }
  7797. static void ironlake_disable_rc6(struct drm_device *dev)
  7798. {
  7799. struct drm_i915_private *dev_priv = dev->dev_private;
  7800. if (I915_READ(PWRCTXA)) {
  7801. /* Wake the GPU, prevent RC6, then restore RSTDBYCTL */
  7802. I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) | RCX_SW_EXIT);
  7803. wait_for(((I915_READ(RSTDBYCTL) & RSX_STATUS_MASK) == RSX_STATUS_ON),
  7804. 50);
  7805. I915_WRITE(PWRCTXA, 0);
  7806. POSTING_READ(PWRCTXA);
  7807. I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
  7808. POSTING_READ(RSTDBYCTL);
  7809. }
  7810. ironlake_teardown_rc6(dev);
  7811. }
  7812. static int ironlake_setup_rc6(struct drm_device *dev)
  7813. {
  7814. struct drm_i915_private *dev_priv = dev->dev_private;
  7815. if (dev_priv->renderctx == NULL)
  7816. dev_priv->renderctx = intel_alloc_context_page(dev);
  7817. if (!dev_priv->renderctx)
  7818. return -ENOMEM;
  7819. if (dev_priv->pwrctx == NULL)
  7820. dev_priv->pwrctx = intel_alloc_context_page(dev);
  7821. if (!dev_priv->pwrctx) {
  7822. ironlake_teardown_rc6(dev);
  7823. return -ENOMEM;
  7824. }
  7825. return 0;
  7826. }
  7827. void ironlake_enable_rc6(struct drm_device *dev)
  7828. {
  7829. struct drm_i915_private *dev_priv = dev->dev_private;
  7830. int ret;
  7831. /* rc6 disabled by default due to repeated reports of hanging during
  7832. * boot and resume.
  7833. */
  7834. if (!intel_enable_rc6(dev))
  7835. return;
  7836. mutex_lock(&dev->struct_mutex);
  7837. ret = ironlake_setup_rc6(dev);
  7838. if (ret) {
  7839. mutex_unlock(&dev->struct_mutex);
  7840. return;
  7841. }
  7842. /*
  7843. * GPU can automatically power down the render unit if given a page
  7844. * to save state.
  7845. */
  7846. ret = BEGIN_LP_RING(6);
  7847. if (ret) {
  7848. ironlake_teardown_rc6(dev);
  7849. mutex_unlock(&dev->struct_mutex);
  7850. return;
  7851. }
  7852. OUT_RING(MI_SUSPEND_FLUSH | MI_SUSPEND_FLUSH_EN);
  7853. OUT_RING(MI_SET_CONTEXT);
  7854. OUT_RING(dev_priv->renderctx->gtt_offset |
  7855. MI_MM_SPACE_GTT |
  7856. MI_SAVE_EXT_STATE_EN |
  7857. MI_RESTORE_EXT_STATE_EN |
  7858. MI_RESTORE_INHIBIT);
  7859. OUT_RING(MI_SUSPEND_FLUSH);
  7860. OUT_RING(MI_NOOP);
  7861. OUT_RING(MI_FLUSH);
  7862. ADVANCE_LP_RING();
  7863. /*
  7864. * Wait for the command parser to advance past MI_SET_CONTEXT. The HW
  7865. * does an implicit flush, combined with MI_FLUSH above, it should be
  7866. * safe to assume that renderctx is valid
  7867. */
  7868. ret = intel_wait_ring_idle(LP_RING(dev_priv));
  7869. if (ret) {
  7870. DRM_ERROR("failed to enable ironlake power power savings\n");
  7871. ironlake_teardown_rc6(dev);
  7872. mutex_unlock(&dev->struct_mutex);
  7873. return;
  7874. }
  7875. I915_WRITE(PWRCTXA, dev_priv->pwrctx->gtt_offset | PWRCTX_EN);
  7876. I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
  7877. mutex_unlock(&dev->struct_mutex);
  7878. }
  7879. void intel_init_clock_gating(struct drm_device *dev)
  7880. {
  7881. struct drm_i915_private *dev_priv = dev->dev_private;
  7882. dev_priv->display.init_clock_gating(dev);
  7883. if (dev_priv->display.init_pch_clock_gating)
  7884. dev_priv->display.init_pch_clock_gating(dev);
  7885. }
  7886. /* Set up chip specific display functions */
  7887. static void intel_init_display(struct drm_device *dev)
  7888. {
  7889. struct drm_i915_private *dev_priv = dev->dev_private;
  7890. /* We always want a DPMS function */
  7891. if (HAS_PCH_SPLIT(dev)) {
  7892. dev_priv->display.dpms = ironlake_crtc_dpms;
  7893. dev_priv->display.crtc_mode_set = ironlake_crtc_mode_set;
  7894. dev_priv->display.update_plane = ironlake_update_plane;
  7895. } else {
  7896. dev_priv->display.dpms = i9xx_crtc_dpms;
  7897. dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
  7898. dev_priv->display.update_plane = i9xx_update_plane;
  7899. }
  7900. if (I915_HAS_FBC(dev)) {
  7901. if (HAS_PCH_SPLIT(dev)) {
  7902. dev_priv->display.fbc_enabled = ironlake_fbc_enabled;
  7903. dev_priv->display.enable_fbc = ironlake_enable_fbc;
  7904. dev_priv->display.disable_fbc = ironlake_disable_fbc;
  7905. } else if (IS_GM45(dev)) {
  7906. dev_priv->display.fbc_enabled = g4x_fbc_enabled;
  7907. dev_priv->display.enable_fbc = g4x_enable_fbc;
  7908. dev_priv->display.disable_fbc = g4x_disable_fbc;
  7909. } else if (IS_CRESTLINE(dev)) {
  7910. dev_priv->display.fbc_enabled = i8xx_fbc_enabled;
  7911. dev_priv->display.enable_fbc = i8xx_enable_fbc;
  7912. dev_priv->display.disable_fbc = i8xx_disable_fbc;
  7913. }
  7914. /* 855GM needs testing */
  7915. }
  7916. /* Returns the core display clock speed */
  7917. if (IS_VALLEYVIEW(dev))
  7918. dev_priv->display.get_display_clock_speed =
  7919. valleyview_get_display_clock_speed;
  7920. else if (IS_I945G(dev) || (IS_G33(dev) && !IS_PINEVIEW_M(dev)))
  7921. dev_priv->display.get_display_clock_speed =
  7922. i945_get_display_clock_speed;
  7923. else if (IS_I915G(dev))
  7924. dev_priv->display.get_display_clock_speed =
  7925. i915_get_display_clock_speed;
  7926. else if (IS_I945GM(dev) || IS_845G(dev) || IS_PINEVIEW_M(dev))
  7927. dev_priv->display.get_display_clock_speed =
  7928. i9xx_misc_get_display_clock_speed;
  7929. else if (IS_I915GM(dev))
  7930. dev_priv->display.get_display_clock_speed =
  7931. i915gm_get_display_clock_speed;
  7932. else if (IS_I865G(dev))
  7933. dev_priv->display.get_display_clock_speed =
  7934. i865_get_display_clock_speed;
  7935. else if (IS_I85X(dev))
  7936. dev_priv->display.get_display_clock_speed =
  7937. i855_get_display_clock_speed;
  7938. else /* 852, 830 */
  7939. dev_priv->display.get_display_clock_speed =
  7940. i830_get_display_clock_speed;
  7941. /* For FIFO watermark updates */
  7942. if (HAS_PCH_SPLIT(dev)) {
  7943. dev_priv->display.force_wake_get = __gen6_gt_force_wake_get;
  7944. dev_priv->display.force_wake_put = __gen6_gt_force_wake_put;
  7945. /* IVB configs may use multi-threaded forcewake */
  7946. if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) {
  7947. u32 ecobus;
  7948. /* A small trick here - if the bios hasn't configured MT forcewake,
  7949. * and if the device is in RC6, then force_wake_mt_get will not wake
  7950. * the device and the ECOBUS read will return zero. Which will be
  7951. * (correctly) interpreted by the test below as MT forcewake being
  7952. * disabled.
  7953. */
  7954. mutex_lock(&dev->struct_mutex);
  7955. __gen6_gt_force_wake_mt_get(dev_priv);
  7956. ecobus = I915_READ_NOTRACE(ECOBUS);
  7957. __gen6_gt_force_wake_mt_put(dev_priv);
  7958. mutex_unlock(&dev->struct_mutex);
  7959. if (ecobus & FORCEWAKE_MT_ENABLE) {
  7960. DRM_DEBUG_KMS("Using MT version of forcewake\n");
  7961. dev_priv->display.force_wake_get =
  7962. __gen6_gt_force_wake_mt_get;
  7963. dev_priv->display.force_wake_put =
  7964. __gen6_gt_force_wake_mt_put;
  7965. }
  7966. }
  7967. if (HAS_PCH_IBX(dev))
  7968. dev_priv->display.init_pch_clock_gating = ibx_init_clock_gating;
  7969. else if (HAS_PCH_CPT(dev))
  7970. dev_priv->display.init_pch_clock_gating = cpt_init_clock_gating;
  7971. if (IS_GEN5(dev)) {
  7972. if (I915_READ(MLTR_ILK) & ILK_SRLT_MASK)
  7973. dev_priv->display.update_wm = ironlake_update_wm;
  7974. else {
  7975. DRM_DEBUG_KMS("Failed to get proper latency. "
  7976. "Disable CxSR\n");
  7977. dev_priv->display.update_wm = NULL;
  7978. }
  7979. dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
  7980. dev_priv->display.init_clock_gating = ironlake_init_clock_gating;
  7981. dev_priv->display.write_eld = ironlake_write_eld;
  7982. } else if (IS_GEN6(dev)) {
  7983. if (SNB_READ_WM0_LATENCY()) {
  7984. dev_priv->display.update_wm = sandybridge_update_wm;
  7985. dev_priv->display.update_sprite_wm = sandybridge_update_sprite_wm;
  7986. } else {
  7987. DRM_DEBUG_KMS("Failed to read display plane latency. "
  7988. "Disable CxSR\n");
  7989. dev_priv->display.update_wm = NULL;
  7990. }
  7991. dev_priv->display.fdi_link_train = gen6_fdi_link_train;
  7992. dev_priv->display.init_clock_gating = gen6_init_clock_gating;
  7993. dev_priv->display.write_eld = ironlake_write_eld;
  7994. } else if (IS_IVYBRIDGE(dev)) {
  7995. /* FIXME: detect B0+ stepping and use auto training */
  7996. dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
  7997. if (SNB_READ_WM0_LATENCY()) {
  7998. dev_priv->display.update_wm = sandybridge_update_wm;
  7999. dev_priv->display.update_sprite_wm = sandybridge_update_sprite_wm;
  8000. } else {
  8001. DRM_DEBUG_KMS("Failed to read display plane latency. "
  8002. "Disable CxSR\n");
  8003. dev_priv->display.update_wm = NULL;
  8004. }
  8005. dev_priv->display.init_clock_gating = ivybridge_init_clock_gating;
  8006. dev_priv->display.write_eld = ironlake_write_eld;
  8007. } else
  8008. dev_priv->display.update_wm = NULL;
  8009. } else if (IS_VALLEYVIEW(dev)) {
  8010. dev_priv->display.update_wm = valleyview_update_wm;
  8011. dev_priv->display.init_clock_gating =
  8012. valleyview_init_clock_gating;
  8013. dev_priv->display.force_wake_get = vlv_force_wake_get;
  8014. dev_priv->display.force_wake_put = vlv_force_wake_put;
  8015. } else if (IS_PINEVIEW(dev)) {
  8016. if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
  8017. dev_priv->is_ddr3,
  8018. dev_priv->fsb_freq,
  8019. dev_priv->mem_freq)) {
  8020. DRM_INFO("failed to find known CxSR latency "
  8021. "(found ddr%s fsb freq %d, mem freq %d), "
  8022. "disabling CxSR\n",
  8023. (dev_priv->is_ddr3 == 1) ? "3" : "2",
  8024. dev_priv->fsb_freq, dev_priv->mem_freq);
  8025. /* Disable CxSR and never update its watermark again */
  8026. pineview_disable_cxsr(dev);
  8027. dev_priv->display.update_wm = NULL;
  8028. } else
  8029. dev_priv->display.update_wm = pineview_update_wm;
  8030. dev_priv->display.init_clock_gating = gen3_init_clock_gating;
  8031. } else if (IS_G4X(dev)) {
  8032. dev_priv->display.write_eld = g4x_write_eld;
  8033. dev_priv->display.update_wm = g4x_update_wm;
  8034. dev_priv->display.init_clock_gating = g4x_init_clock_gating;
  8035. } else if (IS_GEN4(dev)) {
  8036. dev_priv->display.update_wm = i965_update_wm;
  8037. if (IS_CRESTLINE(dev))
  8038. dev_priv->display.init_clock_gating = crestline_init_clock_gating;
  8039. else if (IS_BROADWATER(dev))
  8040. dev_priv->display.init_clock_gating = broadwater_init_clock_gating;
  8041. } else if (IS_GEN3(dev)) {
  8042. dev_priv->display.update_wm = i9xx_update_wm;
  8043. dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
  8044. dev_priv->display.init_clock_gating = gen3_init_clock_gating;
  8045. } else if (IS_I865G(dev)) {
  8046. dev_priv->display.update_wm = i830_update_wm;
  8047. dev_priv->display.init_clock_gating = i85x_init_clock_gating;
  8048. dev_priv->display.get_fifo_size = i830_get_fifo_size;
  8049. } else if (IS_I85X(dev)) {
  8050. dev_priv->display.update_wm = i9xx_update_wm;
  8051. dev_priv->display.get_fifo_size = i85x_get_fifo_size;
  8052. dev_priv->display.init_clock_gating = i85x_init_clock_gating;
  8053. } else {
  8054. dev_priv->display.update_wm = i830_update_wm;
  8055. dev_priv->display.init_clock_gating = i830_init_clock_gating;
  8056. if (IS_845G(dev))
  8057. dev_priv->display.get_fifo_size = i845_get_fifo_size;
  8058. else
  8059. dev_priv->display.get_fifo_size = i830_get_fifo_size;
  8060. }
  8061. /* Default just returns -ENODEV to indicate unsupported */
  8062. dev_priv->display.queue_flip = intel_default_queue_flip;
  8063. switch (INTEL_INFO(dev)->gen) {
  8064. case 2:
  8065. dev_priv->display.queue_flip = intel_gen2_queue_flip;
  8066. break;
  8067. case 3:
  8068. dev_priv->display.queue_flip = intel_gen3_queue_flip;
  8069. break;
  8070. case 4:
  8071. case 5:
  8072. dev_priv->display.queue_flip = intel_gen4_queue_flip;
  8073. break;
  8074. case 6:
  8075. dev_priv->display.queue_flip = intel_gen6_queue_flip;
  8076. break;
  8077. case 7:
  8078. dev_priv->display.queue_flip = intel_gen7_queue_flip;
  8079. break;
  8080. }
  8081. }
  8082. /*
  8083. * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
  8084. * resume, or other times. This quirk makes sure that's the case for
  8085. * affected systems.
  8086. */
  8087. static void quirk_pipea_force(struct drm_device *dev)
  8088. {
  8089. struct drm_i915_private *dev_priv = dev->dev_private;
  8090. dev_priv->quirks |= QUIRK_PIPEA_FORCE;
  8091. DRM_INFO("applying pipe a force quirk\n");
  8092. }
  8093. /*
  8094. * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
  8095. */
  8096. static void quirk_ssc_force_disable(struct drm_device *dev)
  8097. {
  8098. struct drm_i915_private *dev_priv = dev->dev_private;
  8099. dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
  8100. DRM_INFO("applying lvds SSC disable quirk\n");
  8101. }
  8102. /*
  8103. * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
  8104. * brightness value
  8105. */
  8106. static void quirk_invert_brightness(struct drm_device *dev)
  8107. {
  8108. struct drm_i915_private *dev_priv = dev->dev_private;
  8109. dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
  8110. DRM_INFO("applying inverted panel brightness quirk\n");
  8111. }
  8112. struct intel_quirk {
  8113. int device;
  8114. int subsystem_vendor;
  8115. int subsystem_device;
  8116. void (*hook)(struct drm_device *dev);
  8117. };
  8118. static struct intel_quirk intel_quirks[] = {
  8119. /* HP Mini needs pipe A force quirk (LP: #322104) */
  8120. { 0x27ae, 0x103c, 0x361a, quirk_pipea_force },
  8121. /* Thinkpad R31 needs pipe A force quirk */
  8122. { 0x3577, 0x1014, 0x0505, quirk_pipea_force },
  8123. /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
  8124. { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
  8125. /* ThinkPad X30 needs pipe A force quirk (LP: #304614) */
  8126. { 0x3577, 0x1014, 0x0513, quirk_pipea_force },
  8127. /* ThinkPad X40 needs pipe A force quirk */
  8128. /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
  8129. { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
  8130. /* 855 & before need to leave pipe A & dpll A up */
  8131. { 0x3582, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
  8132. { 0x2562, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
  8133. /* Lenovo U160 cannot use SSC on LVDS */
  8134. { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
  8135. /* Sony Vaio Y cannot use SSC on LVDS */
  8136. { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
  8137. /* Acer Aspire 5734Z must invert backlight brightness */
  8138. { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
  8139. };
  8140. static void intel_init_quirks(struct drm_device *dev)
  8141. {
  8142. struct pci_dev *d = dev->pdev;
  8143. int i;
  8144. for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
  8145. struct intel_quirk *q = &intel_quirks[i];
  8146. if (d->device == q->device &&
  8147. (d->subsystem_vendor == q->subsystem_vendor ||
  8148. q->subsystem_vendor == PCI_ANY_ID) &&
  8149. (d->subsystem_device == q->subsystem_device ||
  8150. q->subsystem_device == PCI_ANY_ID))
  8151. q->hook(dev);
  8152. }
  8153. }
  8154. /* Disable the VGA plane that we never use */
  8155. static void i915_disable_vga(struct drm_device *dev)
  8156. {
  8157. struct drm_i915_private *dev_priv = dev->dev_private;
  8158. u8 sr1;
  8159. u32 vga_reg;
  8160. if (HAS_PCH_SPLIT(dev))
  8161. vga_reg = CPU_VGACNTRL;
  8162. else
  8163. vga_reg = VGACNTRL;
  8164. vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
  8165. outb(SR01, VGA_SR_INDEX);
  8166. sr1 = inb(VGA_SR_DATA);
  8167. outb(sr1 | 1<<5, VGA_SR_DATA);
  8168. vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
  8169. udelay(300);
  8170. I915_WRITE(vga_reg, VGA_DISP_DISABLE);
  8171. POSTING_READ(vga_reg);
  8172. }
  8173. static void ivb_pch_pwm_override(struct drm_device *dev)
  8174. {
  8175. struct drm_i915_private *dev_priv = dev->dev_private;
  8176. /*
  8177. * IVB has CPU eDP backlight regs too, set things up to let the
  8178. * PCH regs control the backlight
  8179. */
  8180. I915_WRITE(BLC_PWM_CPU_CTL2, PWM_ENABLE);
  8181. I915_WRITE(BLC_PWM_CPU_CTL, 0);
  8182. I915_WRITE(BLC_PWM_PCH_CTL1, PWM_ENABLE | (1<<30));
  8183. }
  8184. void intel_modeset_init_hw(struct drm_device *dev)
  8185. {
  8186. struct drm_i915_private *dev_priv = dev->dev_private;
  8187. intel_init_clock_gating(dev);
  8188. if (IS_IRONLAKE_M(dev)) {
  8189. ironlake_enable_drps(dev);
  8190. intel_init_emon(dev);
  8191. }
  8192. if ((IS_GEN6(dev) || IS_GEN7(dev)) && !IS_VALLEYVIEW(dev)) {
  8193. gen6_enable_rps(dev_priv);
  8194. gen6_update_ring_freq(dev_priv);
  8195. }
  8196. if (IS_IVYBRIDGE(dev))
  8197. ivb_pch_pwm_override(dev);
  8198. }
  8199. void intel_modeset_init(struct drm_device *dev)
  8200. {
  8201. struct drm_i915_private *dev_priv = dev->dev_private;
  8202. int i, ret;
  8203. drm_mode_config_init(dev);
  8204. dev->mode_config.min_width = 0;
  8205. dev->mode_config.min_height = 0;
  8206. dev->mode_config.preferred_depth = 24;
  8207. dev->mode_config.prefer_shadow = 1;
  8208. dev->mode_config.funcs = (void *)&intel_mode_funcs;
  8209. intel_init_quirks(dev);
  8210. intel_init_display(dev);
  8211. if (IS_GEN2(dev)) {
  8212. dev->mode_config.max_width = 2048;
  8213. dev->mode_config.max_height = 2048;
  8214. } else if (IS_GEN3(dev)) {
  8215. dev->mode_config.max_width = 4096;
  8216. dev->mode_config.max_height = 4096;
  8217. } else {
  8218. dev->mode_config.max_width = 8192;
  8219. dev->mode_config.max_height = 8192;
  8220. }
  8221. dev->mode_config.fb_base = dev->agp->base;
  8222. DRM_DEBUG_KMS("%d display pipe%s available.\n",
  8223. dev_priv->num_pipe, dev_priv->num_pipe > 1 ? "s" : "");
  8224. for (i = 0; i < dev_priv->num_pipe; i++) {
  8225. intel_crtc_init(dev, i);
  8226. ret = intel_plane_init(dev, i);
  8227. if (ret)
  8228. DRM_DEBUG_KMS("plane %d init failed: %d\n", i, ret);
  8229. }
  8230. /* Just disable it once at startup */
  8231. i915_disable_vga(dev);
  8232. intel_setup_outputs(dev);
  8233. intel_modeset_init_hw(dev);
  8234. INIT_WORK(&dev_priv->idle_work, intel_idle_update);
  8235. setup_timer(&dev_priv->idle_timer, intel_gpu_idle_timer,
  8236. (unsigned long)dev);
  8237. }
  8238. void intel_modeset_gem_init(struct drm_device *dev)
  8239. {
  8240. if (IS_IRONLAKE_M(dev))
  8241. ironlake_enable_rc6(dev);
  8242. intel_setup_overlay(dev);
  8243. }
  8244. void intel_modeset_cleanup(struct drm_device *dev)
  8245. {
  8246. struct drm_i915_private *dev_priv = dev->dev_private;
  8247. struct drm_crtc *crtc;
  8248. struct intel_crtc *intel_crtc;
  8249. drm_kms_helper_poll_fini(dev);
  8250. mutex_lock(&dev->struct_mutex);
  8251. intel_unregister_dsm_handler();
  8252. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  8253. /* Skip inactive CRTCs */
  8254. if (!crtc->fb)
  8255. continue;
  8256. intel_crtc = to_intel_crtc(crtc);
  8257. intel_increase_pllclock(crtc);
  8258. }
  8259. intel_disable_fbc(dev);
  8260. if (IS_IRONLAKE_M(dev))
  8261. ironlake_disable_drps(dev);
  8262. if ((IS_GEN6(dev) || IS_GEN7(dev)) && !IS_VALLEYVIEW(dev))
  8263. gen6_disable_rps(dev);
  8264. if (IS_IRONLAKE_M(dev))
  8265. ironlake_disable_rc6(dev);
  8266. if (IS_VALLEYVIEW(dev))
  8267. vlv_init_dpio(dev);
  8268. mutex_unlock(&dev->struct_mutex);
  8269. /* Disable the irq before mode object teardown, for the irq might
  8270. * enqueue unpin/hotplug work. */
  8271. drm_irq_uninstall(dev);
  8272. cancel_work_sync(&dev_priv->hotplug_work);
  8273. cancel_work_sync(&dev_priv->rps_work);
  8274. /* flush any delayed tasks or pending work */
  8275. flush_scheduled_work();
  8276. /* Shut off idle work before the crtcs get freed. */
  8277. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  8278. intel_crtc = to_intel_crtc(crtc);
  8279. del_timer_sync(&intel_crtc->idle_timer);
  8280. }
  8281. del_timer_sync(&dev_priv->idle_timer);
  8282. cancel_work_sync(&dev_priv->idle_work);
  8283. drm_mode_config_cleanup(dev);
  8284. }
  8285. /*
  8286. * Return which encoder is currently attached for connector.
  8287. */
  8288. struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
  8289. {
  8290. return &intel_attached_encoder(connector)->base;
  8291. }
  8292. void intel_connector_attach_encoder(struct intel_connector *connector,
  8293. struct intel_encoder *encoder)
  8294. {
  8295. connector->encoder = encoder;
  8296. drm_mode_connector_attach_encoder(&connector->base,
  8297. &encoder->base);
  8298. }
  8299. /*
  8300. * set vga decode state - true == enable VGA decode
  8301. */
  8302. int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
  8303. {
  8304. struct drm_i915_private *dev_priv = dev->dev_private;
  8305. u16 gmch_ctrl;
  8306. pci_read_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, &gmch_ctrl);
  8307. if (state)
  8308. gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
  8309. else
  8310. gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
  8311. pci_write_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, gmch_ctrl);
  8312. return 0;
  8313. }
  8314. #ifdef CONFIG_DEBUG_FS
  8315. #include <linux/seq_file.h>
  8316. struct intel_display_error_state {
  8317. struct intel_cursor_error_state {
  8318. u32 control;
  8319. u32 position;
  8320. u32 base;
  8321. u32 size;
  8322. } cursor[2];
  8323. struct intel_pipe_error_state {
  8324. u32 conf;
  8325. u32 source;
  8326. u32 htotal;
  8327. u32 hblank;
  8328. u32 hsync;
  8329. u32 vtotal;
  8330. u32 vblank;
  8331. u32 vsync;
  8332. } pipe[2];
  8333. struct intel_plane_error_state {
  8334. u32 control;
  8335. u32 stride;
  8336. u32 size;
  8337. u32 pos;
  8338. u32 addr;
  8339. u32 surface;
  8340. u32 tile_offset;
  8341. } plane[2];
  8342. };
  8343. struct intel_display_error_state *
  8344. intel_display_capture_error_state(struct drm_device *dev)
  8345. {
  8346. drm_i915_private_t *dev_priv = dev->dev_private;
  8347. struct intel_display_error_state *error;
  8348. int i;
  8349. error = kmalloc(sizeof(*error), GFP_ATOMIC);
  8350. if (error == NULL)
  8351. return NULL;
  8352. for (i = 0; i < 2; i++) {
  8353. error->cursor[i].control = I915_READ(CURCNTR(i));
  8354. error->cursor[i].position = I915_READ(CURPOS(i));
  8355. error->cursor[i].base = I915_READ(CURBASE(i));
  8356. error->plane[i].control = I915_READ(DSPCNTR(i));
  8357. error->plane[i].stride = I915_READ(DSPSTRIDE(i));
  8358. error->plane[i].size = I915_READ(DSPSIZE(i));
  8359. error->plane[i].pos = I915_READ(DSPPOS(i));
  8360. error->plane[i].addr = I915_READ(DSPADDR(i));
  8361. if (INTEL_INFO(dev)->gen >= 4) {
  8362. error->plane[i].surface = I915_READ(DSPSURF(i));
  8363. error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
  8364. }
  8365. error->pipe[i].conf = I915_READ(PIPECONF(i));
  8366. error->pipe[i].source = I915_READ(PIPESRC(i));
  8367. error->pipe[i].htotal = I915_READ(HTOTAL(i));
  8368. error->pipe[i].hblank = I915_READ(HBLANK(i));
  8369. error->pipe[i].hsync = I915_READ(HSYNC(i));
  8370. error->pipe[i].vtotal = I915_READ(VTOTAL(i));
  8371. error->pipe[i].vblank = I915_READ(VBLANK(i));
  8372. error->pipe[i].vsync = I915_READ(VSYNC(i));
  8373. }
  8374. return error;
  8375. }
  8376. void
  8377. intel_display_print_error_state(struct seq_file *m,
  8378. struct drm_device *dev,
  8379. struct intel_display_error_state *error)
  8380. {
  8381. int i;
  8382. for (i = 0; i < 2; i++) {
  8383. seq_printf(m, "Pipe [%d]:\n", i);
  8384. seq_printf(m, " CONF: %08x\n", error->pipe[i].conf);
  8385. seq_printf(m, " SRC: %08x\n", error->pipe[i].source);
  8386. seq_printf(m, " HTOTAL: %08x\n", error->pipe[i].htotal);
  8387. seq_printf(m, " HBLANK: %08x\n", error->pipe[i].hblank);
  8388. seq_printf(m, " HSYNC: %08x\n", error->pipe[i].hsync);
  8389. seq_printf(m, " VTOTAL: %08x\n", error->pipe[i].vtotal);
  8390. seq_printf(m, " VBLANK: %08x\n", error->pipe[i].vblank);
  8391. seq_printf(m, " VSYNC: %08x\n", error->pipe[i].vsync);
  8392. seq_printf(m, "Plane [%d]:\n", i);
  8393. seq_printf(m, " CNTR: %08x\n", error->plane[i].control);
  8394. seq_printf(m, " STRIDE: %08x\n", error->plane[i].stride);
  8395. seq_printf(m, " SIZE: %08x\n", error->plane[i].size);
  8396. seq_printf(m, " POS: %08x\n", error->plane[i].pos);
  8397. seq_printf(m, " ADDR: %08x\n", error->plane[i].addr);
  8398. if (INTEL_INFO(dev)->gen >= 4) {
  8399. seq_printf(m, " SURF: %08x\n", error->plane[i].surface);
  8400. seq_printf(m, " TILEOFF: %08x\n", error->plane[i].tile_offset);
  8401. }
  8402. seq_printf(m, "Cursor [%d]:\n", i);
  8403. seq_printf(m, " CNTR: %08x\n", error->cursor[i].control);
  8404. seq_printf(m, " POS: %08x\n", error->cursor[i].position);
  8405. seq_printf(m, " BASE: %08x\n", error->cursor[i].base);
  8406. }
  8407. }
  8408. #endif