sched.c 235 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071807280738074807580768077807880798080808180828083808480858086808780888089809080918092809380948095809680978098809981008101810281038104810581068107810881098110811181128113811481158116811781188119812081218122812381248125812681278128812981308131813281338134813581368137813881398140814181428143814481458146814781488149815081518152815381548155815681578158815981608161816281638164816581668167816881698170817181728173817481758176817781788179818081818182818381848185818681878188818981908191819281938194819581968197819881998200820182028203820482058206820782088209821082118212821382148215821682178218821982208221822282238224822582268227822882298230823182328233823482358236823782388239824082418242824382448245824682478248824982508251825282538254825582568257825882598260826182628263826482658266826782688269827082718272827382748275827682778278827982808281828282838284828582868287828882898290829182928293829482958296829782988299830083018302830383048305830683078308830983108311831283138314831583168317831883198320832183228323832483258326832783288329833083318332833383348335833683378338833983408341834283438344834583468347834883498350835183528353835483558356835783588359836083618362836383648365836683678368836983708371837283738374837583768377837883798380838183828383838483858386838783888389839083918392839383948395839683978398839984008401840284038404840584068407840884098410841184128413841484158416841784188419842084218422842384248425842684278428842984308431843284338434843584368437843884398440844184428443844484458446844784488449845084518452845384548455845684578458845984608461846284638464846584668467846884698470847184728473847484758476847784788479848084818482848384848485848684878488848984908491849284938494849584968497849884998500850185028503850485058506850785088509851085118512851385148515851685178518851985208521852285238524852585268527852885298530853185328533853485358536853785388539854085418542854385448545854685478548854985508551855285538554855585568557855885598560856185628563856485658566856785688569857085718572857385748575857685778578857985808581858285838584858585868587858885898590859185928593859485958596859785988599860086018602860386048605860686078608860986108611861286138614861586168617861886198620862186228623862486258626862786288629863086318632863386348635863686378638863986408641864286438644864586468647864886498650865186528653865486558656865786588659866086618662866386648665866686678668866986708671867286738674867586768677867886798680868186828683868486858686868786888689869086918692869386948695869686978698869987008701870287038704870587068707870887098710871187128713871487158716871787188719872087218722872387248725872687278728872987308731873287338734873587368737873887398740874187428743874487458746874787488749875087518752875387548755875687578758875987608761876287638764876587668767876887698770877187728773877487758776877787788779878087818782878387848785878687878788878987908791879287938794879587968797879887998800880188028803880488058806880788088809881088118812881388148815881688178818881988208821882288238824882588268827882888298830883188328833883488358836883788388839884088418842884388448845884688478848884988508851885288538854885588568857885888598860886188628863886488658866886788688869887088718872887388748875887688778878887988808881888288838884888588868887888888898890889188928893889488958896889788988899890089018902890389048905890689078908890989108911891289138914891589168917891889198920892189228923892489258926892789288929893089318932893389348935893689378938893989408941894289438944894589468947894889498950895189528953895489558956895789588959896089618962896389648965896689678968896989708971897289738974897589768977897889798980898189828983898489858986898789888989899089918992899389948995899689978998899990009001900290039004900590069007900890099010901190129013901490159016901790189019902090219022902390249025902690279028902990309031903290339034903590369037903890399040904190429043904490459046904790489049905090519052905390549055905690579058905990609061906290639064906590669067906890699070907190729073907490759076907790789079908090819082908390849085908690879088908990909091909290939094909590969097909890999100910191029103910491059106910791089109911091119112911391149115911691179118911991209121912291239124912591269127912891299130913191329133913491359136913791389139914091419142914391449145914691479148914991509151915291539154915591569157915891599160916191629163916491659166916791689169917091719172917391749175917691779178917991809181918291839184918591869187918891899190919191929193919491959196919791989199920092019202920392049205920692079208920992109211921292139214921592169217921892199220922192229223922492259226922792289229923092319232923392349235923692379238923992409241924292439244924592469247924892499250925192529253925492559256925792589259926092619262926392649265926692679268926992709271927292739274927592769277927892799280928192829283928492859286928792889289929092919292929392949295929692979298929993009301930293039304930593069307930893099310931193129313931493159316931793189319932093219322932393249325932693279328932993309331933293339334933593369337933893399340934193429343934493459346934793489349935093519352935393549355935693579358935993609361936293639364936593669367936893699370937193729373937493759376937793789379938093819382938393849385938693879388938993909391939293939394939593969397939893999400940194029403940494059406940794089409941094119412941394149415941694179418941994209421942294239424942594269427942894299430943194329433943494359436943794389439944094419442944394449445944694479448944994509451945294539454945594569457945894599460946194629463946494659466946794689469947094719472947394749475947694779478947994809481948294839484948594869487948894899490949194929493949494959496949794989499950095019502950395049505950695079508950995109511951295139514951595169517951895199520952195229523952495259526952795289529953095319532953395349535953695379538953995409541954295439544954595469547954895499550955195529553955495559556955795589559956095619562956395649565956695679568956995709571957295739574957595769577957895799580958195829583958495859586958795889589959095919592959395949595959695979598959996009601960296039604960596069607960896099610961196129613961496159616961796189619962096219622962396249625962696279628962996309631963296339634963596369637963896399640964196429643964496459646964796489649965096519652965396549655965696579658965996609661966296639664966596669667966896699670967196729673967496759676967796789679968096819682968396849685968696879688968996909691969296939694969596969697969896999700970197029703970497059706
  1. /*
  2. * kernel/sched.c
  3. *
  4. * Kernel scheduler and related syscalls
  5. *
  6. * Copyright (C) 1991-2002 Linus Torvalds
  7. *
  8. * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
  9. * make semaphores SMP safe
  10. * 1998-11-19 Implemented schedule_timeout() and related stuff
  11. * by Andrea Arcangeli
  12. * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
  13. * hybrid priority-list and round-robin design with
  14. * an array-switch method of distributing timeslices
  15. * and per-CPU runqueues. Cleanups and useful suggestions
  16. * by Davide Libenzi, preemptible kernel bits by Robert Love.
  17. * 2003-09-03 Interactivity tuning by Con Kolivas.
  18. * 2004-04-02 Scheduler domains code by Nick Piggin
  19. * 2007-04-15 Work begun on replacing all interactivity tuning with a
  20. * fair scheduling design by Con Kolivas.
  21. * 2007-05-05 Load balancing (smp-nice) and other improvements
  22. * by Peter Williams
  23. * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
  24. * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
  25. * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
  26. * Thomas Gleixner, Mike Kravetz
  27. */
  28. #include <linux/mm.h>
  29. #include <linux/module.h>
  30. #include <linux/nmi.h>
  31. #include <linux/init.h>
  32. #include <linux/uaccess.h>
  33. #include <linux/highmem.h>
  34. #include <linux/smp_lock.h>
  35. #include <asm/mmu_context.h>
  36. #include <linux/interrupt.h>
  37. #include <linux/capability.h>
  38. #include <linux/completion.h>
  39. #include <linux/kernel_stat.h>
  40. #include <linux/debug_locks.h>
  41. #include <linux/security.h>
  42. #include <linux/notifier.h>
  43. #include <linux/profile.h>
  44. #include <linux/freezer.h>
  45. #include <linux/vmalloc.h>
  46. #include <linux/blkdev.h>
  47. #include <linux/delay.h>
  48. #include <linux/pid_namespace.h>
  49. #include <linux/smp.h>
  50. #include <linux/threads.h>
  51. #include <linux/timer.h>
  52. #include <linux/rcupdate.h>
  53. #include <linux/cpu.h>
  54. #include <linux/cpuset.h>
  55. #include <linux/percpu.h>
  56. #include <linux/kthread.h>
  57. #include <linux/proc_fs.h>
  58. #include <linux/seq_file.h>
  59. #include <linux/sysctl.h>
  60. #include <linux/syscalls.h>
  61. #include <linux/times.h>
  62. #include <linux/tsacct_kern.h>
  63. #include <linux/kprobes.h>
  64. #include <linux/delayacct.h>
  65. #include <linux/reciprocal_div.h>
  66. #include <linux/unistd.h>
  67. #include <linux/pagemap.h>
  68. #include <linux/hrtimer.h>
  69. #include <linux/tick.h>
  70. #include <linux/bootmem.h>
  71. #include <linux/debugfs.h>
  72. #include <linux/ctype.h>
  73. #include <linux/ftrace.h>
  74. #include <trace/sched.h>
  75. #include <asm/tlb.h>
  76. #include <asm/irq_regs.h>
  77. #include "sched_cpupri.h"
  78. /*
  79. * Convert user-nice values [ -20 ... 0 ... 19 ]
  80. * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
  81. * and back.
  82. */
  83. #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
  84. #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
  85. #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
  86. /*
  87. * 'User priority' is the nice value converted to something we
  88. * can work with better when scaling various scheduler parameters,
  89. * it's a [ 0 ... 39 ] range.
  90. */
  91. #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
  92. #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
  93. #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
  94. /*
  95. * Helpers for converting nanosecond timing to jiffy resolution
  96. */
  97. #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
  98. #define NICE_0_LOAD SCHED_LOAD_SCALE
  99. #define NICE_0_SHIFT SCHED_LOAD_SHIFT
  100. /*
  101. * These are the 'tuning knobs' of the scheduler:
  102. *
  103. * default timeslice is 100 msecs (used only for SCHED_RR tasks).
  104. * Timeslices get refilled after they expire.
  105. */
  106. #define DEF_TIMESLICE (100 * HZ / 1000)
  107. /*
  108. * single value that denotes runtime == period, ie unlimited time.
  109. */
  110. #define RUNTIME_INF ((u64)~0ULL)
  111. DEFINE_TRACE(sched_wait_task);
  112. DEFINE_TRACE(sched_wakeup);
  113. DEFINE_TRACE(sched_wakeup_new);
  114. DEFINE_TRACE(sched_switch);
  115. DEFINE_TRACE(sched_migrate_task);
  116. #ifdef CONFIG_SMP
  117. static void double_rq_lock(struct rq *rq1, struct rq *rq2);
  118. /*
  119. * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
  120. * Since cpu_power is a 'constant', we can use a reciprocal divide.
  121. */
  122. static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
  123. {
  124. return reciprocal_divide(load, sg->reciprocal_cpu_power);
  125. }
  126. /*
  127. * Each time a sched group cpu_power is changed,
  128. * we must compute its reciprocal value
  129. */
  130. static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
  131. {
  132. sg->__cpu_power += val;
  133. sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
  134. }
  135. #endif
  136. static inline int rt_policy(int policy)
  137. {
  138. if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
  139. return 1;
  140. return 0;
  141. }
  142. static inline int task_has_rt_policy(struct task_struct *p)
  143. {
  144. return rt_policy(p->policy);
  145. }
  146. /*
  147. * This is the priority-queue data structure of the RT scheduling class:
  148. */
  149. struct rt_prio_array {
  150. DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
  151. struct list_head queue[MAX_RT_PRIO];
  152. };
  153. struct rt_bandwidth {
  154. /* nests inside the rq lock: */
  155. spinlock_t rt_runtime_lock;
  156. ktime_t rt_period;
  157. u64 rt_runtime;
  158. struct hrtimer rt_period_timer;
  159. };
  160. static struct rt_bandwidth def_rt_bandwidth;
  161. static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
  162. static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
  163. {
  164. struct rt_bandwidth *rt_b =
  165. container_of(timer, struct rt_bandwidth, rt_period_timer);
  166. ktime_t now;
  167. int overrun;
  168. int idle = 0;
  169. for (;;) {
  170. now = hrtimer_cb_get_time(timer);
  171. overrun = hrtimer_forward(timer, now, rt_b->rt_period);
  172. if (!overrun)
  173. break;
  174. idle = do_sched_rt_period_timer(rt_b, overrun);
  175. }
  176. return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
  177. }
  178. static
  179. void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
  180. {
  181. rt_b->rt_period = ns_to_ktime(period);
  182. rt_b->rt_runtime = runtime;
  183. spin_lock_init(&rt_b->rt_runtime_lock);
  184. hrtimer_init(&rt_b->rt_period_timer,
  185. CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  186. rt_b->rt_period_timer.function = sched_rt_period_timer;
  187. }
  188. static inline int rt_bandwidth_enabled(void)
  189. {
  190. return sysctl_sched_rt_runtime >= 0;
  191. }
  192. static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
  193. {
  194. ktime_t now;
  195. if (rt_bandwidth_enabled() && rt_b->rt_runtime == RUNTIME_INF)
  196. return;
  197. if (hrtimer_active(&rt_b->rt_period_timer))
  198. return;
  199. spin_lock(&rt_b->rt_runtime_lock);
  200. for (;;) {
  201. if (hrtimer_active(&rt_b->rt_period_timer))
  202. break;
  203. now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
  204. hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
  205. hrtimer_start_expires(&rt_b->rt_period_timer,
  206. HRTIMER_MODE_ABS);
  207. }
  208. spin_unlock(&rt_b->rt_runtime_lock);
  209. }
  210. #ifdef CONFIG_RT_GROUP_SCHED
  211. static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
  212. {
  213. hrtimer_cancel(&rt_b->rt_period_timer);
  214. }
  215. #endif
  216. /*
  217. * sched_domains_mutex serializes calls to arch_init_sched_domains,
  218. * detach_destroy_domains and partition_sched_domains.
  219. */
  220. static DEFINE_MUTEX(sched_domains_mutex);
  221. #ifdef CONFIG_GROUP_SCHED
  222. #include <linux/cgroup.h>
  223. struct cfs_rq;
  224. static LIST_HEAD(task_groups);
  225. /* task group related information */
  226. struct task_group {
  227. #ifdef CONFIG_CGROUP_SCHED
  228. struct cgroup_subsys_state css;
  229. #endif
  230. #ifdef CONFIG_USER_SCHED
  231. uid_t uid;
  232. #endif
  233. #ifdef CONFIG_FAIR_GROUP_SCHED
  234. /* schedulable entities of this group on each cpu */
  235. struct sched_entity **se;
  236. /* runqueue "owned" by this group on each cpu */
  237. struct cfs_rq **cfs_rq;
  238. unsigned long shares;
  239. #endif
  240. #ifdef CONFIG_RT_GROUP_SCHED
  241. struct sched_rt_entity **rt_se;
  242. struct rt_rq **rt_rq;
  243. struct rt_bandwidth rt_bandwidth;
  244. #endif
  245. struct rcu_head rcu;
  246. struct list_head list;
  247. struct task_group *parent;
  248. struct list_head siblings;
  249. struct list_head children;
  250. };
  251. #ifdef CONFIG_USER_SCHED
  252. /* Helper function to pass uid information to create_sched_user() */
  253. void set_tg_uid(struct user_struct *user)
  254. {
  255. user->tg->uid = user->uid;
  256. }
  257. /*
  258. * Root task group.
  259. * Every UID task group (including init_task_group aka UID-0) will
  260. * be a child to this group.
  261. */
  262. struct task_group root_task_group;
  263. #ifdef CONFIG_FAIR_GROUP_SCHED
  264. /* Default task group's sched entity on each cpu */
  265. static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
  266. /* Default task group's cfs_rq on each cpu */
  267. static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
  268. #endif /* CONFIG_FAIR_GROUP_SCHED */
  269. #ifdef CONFIG_RT_GROUP_SCHED
  270. static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
  271. static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
  272. #endif /* CONFIG_RT_GROUP_SCHED */
  273. #else /* !CONFIG_USER_SCHED */
  274. #define root_task_group init_task_group
  275. #endif /* CONFIG_USER_SCHED */
  276. /* task_group_lock serializes add/remove of task groups and also changes to
  277. * a task group's cpu shares.
  278. */
  279. static DEFINE_SPINLOCK(task_group_lock);
  280. #ifdef CONFIG_FAIR_GROUP_SCHED
  281. #ifdef CONFIG_USER_SCHED
  282. # define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
  283. #else /* !CONFIG_USER_SCHED */
  284. # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
  285. #endif /* CONFIG_USER_SCHED */
  286. /*
  287. * A weight of 0 or 1 can cause arithmetics problems.
  288. * A weight of a cfs_rq is the sum of weights of which entities
  289. * are queued on this cfs_rq, so a weight of a entity should not be
  290. * too large, so as the shares value of a task group.
  291. * (The default weight is 1024 - so there's no practical
  292. * limitation from this.)
  293. */
  294. #define MIN_SHARES 2
  295. #define MAX_SHARES (1UL << 18)
  296. static int init_task_group_load = INIT_TASK_GROUP_LOAD;
  297. #endif
  298. /* Default task group.
  299. * Every task in system belong to this group at bootup.
  300. */
  301. struct task_group init_task_group;
  302. /* return group to which a task belongs */
  303. static inline struct task_group *task_group(struct task_struct *p)
  304. {
  305. struct task_group *tg;
  306. #ifdef CONFIG_USER_SCHED
  307. rcu_read_lock();
  308. tg = __task_cred(p)->user->tg;
  309. rcu_read_unlock();
  310. #elif defined(CONFIG_CGROUP_SCHED)
  311. tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
  312. struct task_group, css);
  313. #else
  314. tg = &init_task_group;
  315. #endif
  316. return tg;
  317. }
  318. /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
  319. static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
  320. {
  321. #ifdef CONFIG_FAIR_GROUP_SCHED
  322. p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
  323. p->se.parent = task_group(p)->se[cpu];
  324. #endif
  325. #ifdef CONFIG_RT_GROUP_SCHED
  326. p->rt.rt_rq = task_group(p)->rt_rq[cpu];
  327. p->rt.parent = task_group(p)->rt_se[cpu];
  328. #endif
  329. }
  330. #else
  331. static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
  332. static inline struct task_group *task_group(struct task_struct *p)
  333. {
  334. return NULL;
  335. }
  336. #endif /* CONFIG_GROUP_SCHED */
  337. /* CFS-related fields in a runqueue */
  338. struct cfs_rq {
  339. struct load_weight load;
  340. unsigned long nr_running;
  341. u64 exec_clock;
  342. u64 min_vruntime;
  343. struct rb_root tasks_timeline;
  344. struct rb_node *rb_leftmost;
  345. struct list_head tasks;
  346. struct list_head *balance_iterator;
  347. /*
  348. * 'curr' points to currently running entity on this cfs_rq.
  349. * It is set to NULL otherwise (i.e when none are currently running).
  350. */
  351. struct sched_entity *curr, *next, *last;
  352. unsigned int nr_spread_over;
  353. #ifdef CONFIG_FAIR_GROUP_SCHED
  354. struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
  355. /*
  356. * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
  357. * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
  358. * (like users, containers etc.)
  359. *
  360. * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
  361. * list is used during load balance.
  362. */
  363. struct list_head leaf_cfs_rq_list;
  364. struct task_group *tg; /* group that "owns" this runqueue */
  365. #ifdef CONFIG_SMP
  366. /*
  367. * the part of load.weight contributed by tasks
  368. */
  369. unsigned long task_weight;
  370. /*
  371. * h_load = weight * f(tg)
  372. *
  373. * Where f(tg) is the recursive weight fraction assigned to
  374. * this group.
  375. */
  376. unsigned long h_load;
  377. /*
  378. * this cpu's part of tg->shares
  379. */
  380. unsigned long shares;
  381. /*
  382. * load.weight at the time we set shares
  383. */
  384. unsigned long rq_weight;
  385. #endif
  386. #endif
  387. };
  388. /* Real-Time classes' related field in a runqueue: */
  389. struct rt_rq {
  390. struct rt_prio_array active;
  391. unsigned long rt_nr_running;
  392. #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
  393. struct {
  394. int curr; /* highest queued rt task prio */
  395. #ifdef CONFIG_SMP
  396. int next; /* next highest */
  397. #endif
  398. } highest_prio;
  399. #endif
  400. #ifdef CONFIG_SMP
  401. unsigned long rt_nr_migratory;
  402. int overloaded;
  403. struct plist_head pushable_tasks;
  404. #endif
  405. int rt_throttled;
  406. u64 rt_time;
  407. u64 rt_runtime;
  408. /* Nests inside the rq lock: */
  409. spinlock_t rt_runtime_lock;
  410. #ifdef CONFIG_RT_GROUP_SCHED
  411. unsigned long rt_nr_boosted;
  412. struct rq *rq;
  413. struct list_head leaf_rt_rq_list;
  414. struct task_group *tg;
  415. struct sched_rt_entity *rt_se;
  416. #endif
  417. };
  418. #ifdef CONFIG_SMP
  419. /*
  420. * We add the notion of a root-domain which will be used to define per-domain
  421. * variables. Each exclusive cpuset essentially defines an island domain by
  422. * fully partitioning the member cpus from any other cpuset. Whenever a new
  423. * exclusive cpuset is created, we also create and attach a new root-domain
  424. * object.
  425. *
  426. */
  427. struct root_domain {
  428. atomic_t refcount;
  429. cpumask_var_t span;
  430. cpumask_var_t online;
  431. /*
  432. * The "RT overload" flag: it gets set if a CPU has more than
  433. * one runnable RT task.
  434. */
  435. cpumask_var_t rto_mask;
  436. atomic_t rto_count;
  437. #ifdef CONFIG_SMP
  438. struct cpupri cpupri;
  439. #endif
  440. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  441. /*
  442. * Preferred wake up cpu nominated by sched_mc balance that will be
  443. * used when most cpus are idle in the system indicating overall very
  444. * low system utilisation. Triggered at POWERSAVINGS_BALANCE_WAKEUP(2)
  445. */
  446. unsigned int sched_mc_preferred_wakeup_cpu;
  447. #endif
  448. };
  449. /*
  450. * By default the system creates a single root-domain with all cpus as
  451. * members (mimicking the global state we have today).
  452. */
  453. static struct root_domain def_root_domain;
  454. #endif
  455. /*
  456. * This is the main, per-CPU runqueue data structure.
  457. *
  458. * Locking rule: those places that want to lock multiple runqueues
  459. * (such as the load balancing or the thread migration code), lock
  460. * acquire operations must be ordered by ascending &runqueue.
  461. */
  462. struct rq {
  463. /* runqueue lock: */
  464. spinlock_t lock;
  465. /*
  466. * nr_running and cpu_load should be in the same cacheline because
  467. * remote CPUs use both these fields when doing load calculation.
  468. */
  469. unsigned long nr_running;
  470. #define CPU_LOAD_IDX_MAX 5
  471. unsigned long cpu_load[CPU_LOAD_IDX_MAX];
  472. #ifdef CONFIG_NO_HZ
  473. unsigned long last_tick_seen;
  474. unsigned char in_nohz_recently;
  475. #endif
  476. /* capture load from *all* tasks on this cpu: */
  477. struct load_weight load;
  478. unsigned long nr_load_updates;
  479. u64 nr_switches;
  480. struct cfs_rq cfs;
  481. struct rt_rq rt;
  482. #ifdef CONFIG_FAIR_GROUP_SCHED
  483. /* list of leaf cfs_rq on this cpu: */
  484. struct list_head leaf_cfs_rq_list;
  485. #endif
  486. #ifdef CONFIG_RT_GROUP_SCHED
  487. struct list_head leaf_rt_rq_list;
  488. #endif
  489. /*
  490. * This is part of a global counter where only the total sum
  491. * over all CPUs matters. A task can increase this counter on
  492. * one CPU and if it got migrated afterwards it may decrease
  493. * it on another CPU. Always updated under the runqueue lock:
  494. */
  495. unsigned long nr_uninterruptible;
  496. struct task_struct *curr, *idle;
  497. unsigned long next_balance;
  498. struct mm_struct *prev_mm;
  499. u64 clock;
  500. atomic_t nr_iowait;
  501. #ifdef CONFIG_SMP
  502. struct root_domain *rd;
  503. struct sched_domain *sd;
  504. unsigned char idle_at_tick;
  505. /* For active balancing */
  506. int active_balance;
  507. int push_cpu;
  508. /* cpu of this runqueue: */
  509. int cpu;
  510. int online;
  511. unsigned long avg_load_per_task;
  512. struct task_struct *migration_thread;
  513. struct list_head migration_queue;
  514. #endif
  515. #ifdef CONFIG_SCHED_HRTICK
  516. #ifdef CONFIG_SMP
  517. int hrtick_csd_pending;
  518. struct call_single_data hrtick_csd;
  519. #endif
  520. struct hrtimer hrtick_timer;
  521. #endif
  522. #ifdef CONFIG_SCHEDSTATS
  523. /* latency stats */
  524. struct sched_info rq_sched_info;
  525. unsigned long long rq_cpu_time;
  526. /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
  527. /* sys_sched_yield() stats */
  528. unsigned int yld_exp_empty;
  529. unsigned int yld_act_empty;
  530. unsigned int yld_both_empty;
  531. unsigned int yld_count;
  532. /* schedule() stats */
  533. unsigned int sched_switch;
  534. unsigned int sched_count;
  535. unsigned int sched_goidle;
  536. /* try_to_wake_up() stats */
  537. unsigned int ttwu_count;
  538. unsigned int ttwu_local;
  539. /* BKL stats */
  540. unsigned int bkl_count;
  541. #endif
  542. };
  543. static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
  544. static inline void check_preempt_curr(struct rq *rq, struct task_struct *p, int sync)
  545. {
  546. rq->curr->sched_class->check_preempt_curr(rq, p, sync);
  547. }
  548. static inline int cpu_of(struct rq *rq)
  549. {
  550. #ifdef CONFIG_SMP
  551. return rq->cpu;
  552. #else
  553. return 0;
  554. #endif
  555. }
  556. /*
  557. * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
  558. * See detach_destroy_domains: synchronize_sched for details.
  559. *
  560. * The domain tree of any CPU may only be accessed from within
  561. * preempt-disabled sections.
  562. */
  563. #define for_each_domain(cpu, __sd) \
  564. for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
  565. #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
  566. #define this_rq() (&__get_cpu_var(runqueues))
  567. #define task_rq(p) cpu_rq(task_cpu(p))
  568. #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
  569. static inline void update_rq_clock(struct rq *rq)
  570. {
  571. rq->clock = sched_clock_cpu(cpu_of(rq));
  572. }
  573. /*
  574. * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
  575. */
  576. #ifdef CONFIG_SCHED_DEBUG
  577. # define const_debug __read_mostly
  578. #else
  579. # define const_debug static const
  580. #endif
  581. /**
  582. * runqueue_is_locked
  583. *
  584. * Returns true if the current cpu runqueue is locked.
  585. * This interface allows printk to be called with the runqueue lock
  586. * held and know whether or not it is OK to wake up the klogd.
  587. */
  588. int runqueue_is_locked(void)
  589. {
  590. int cpu = get_cpu();
  591. struct rq *rq = cpu_rq(cpu);
  592. int ret;
  593. ret = spin_is_locked(&rq->lock);
  594. put_cpu();
  595. return ret;
  596. }
  597. /*
  598. * Debugging: various feature bits
  599. */
  600. #define SCHED_FEAT(name, enabled) \
  601. __SCHED_FEAT_##name ,
  602. enum {
  603. #include "sched_features.h"
  604. };
  605. #undef SCHED_FEAT
  606. #define SCHED_FEAT(name, enabled) \
  607. (1UL << __SCHED_FEAT_##name) * enabled |
  608. const_debug unsigned int sysctl_sched_features =
  609. #include "sched_features.h"
  610. 0;
  611. #undef SCHED_FEAT
  612. #ifdef CONFIG_SCHED_DEBUG
  613. #define SCHED_FEAT(name, enabled) \
  614. #name ,
  615. static __read_mostly char *sched_feat_names[] = {
  616. #include "sched_features.h"
  617. NULL
  618. };
  619. #undef SCHED_FEAT
  620. static int sched_feat_show(struct seq_file *m, void *v)
  621. {
  622. int i;
  623. for (i = 0; sched_feat_names[i]; i++) {
  624. if (!(sysctl_sched_features & (1UL << i)))
  625. seq_puts(m, "NO_");
  626. seq_printf(m, "%s ", sched_feat_names[i]);
  627. }
  628. seq_puts(m, "\n");
  629. return 0;
  630. }
  631. static ssize_t
  632. sched_feat_write(struct file *filp, const char __user *ubuf,
  633. size_t cnt, loff_t *ppos)
  634. {
  635. char buf[64];
  636. char *cmp = buf;
  637. int neg = 0;
  638. int i;
  639. if (cnt > 63)
  640. cnt = 63;
  641. if (copy_from_user(&buf, ubuf, cnt))
  642. return -EFAULT;
  643. buf[cnt] = 0;
  644. if (strncmp(buf, "NO_", 3) == 0) {
  645. neg = 1;
  646. cmp += 3;
  647. }
  648. for (i = 0; sched_feat_names[i]; i++) {
  649. int len = strlen(sched_feat_names[i]);
  650. if (strncmp(cmp, sched_feat_names[i], len) == 0) {
  651. if (neg)
  652. sysctl_sched_features &= ~(1UL << i);
  653. else
  654. sysctl_sched_features |= (1UL << i);
  655. break;
  656. }
  657. }
  658. if (!sched_feat_names[i])
  659. return -EINVAL;
  660. filp->f_pos += cnt;
  661. return cnt;
  662. }
  663. static int sched_feat_open(struct inode *inode, struct file *filp)
  664. {
  665. return single_open(filp, sched_feat_show, NULL);
  666. }
  667. static struct file_operations sched_feat_fops = {
  668. .open = sched_feat_open,
  669. .write = sched_feat_write,
  670. .read = seq_read,
  671. .llseek = seq_lseek,
  672. .release = single_release,
  673. };
  674. static __init int sched_init_debug(void)
  675. {
  676. debugfs_create_file("sched_features", 0644, NULL, NULL,
  677. &sched_feat_fops);
  678. return 0;
  679. }
  680. late_initcall(sched_init_debug);
  681. #endif
  682. #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
  683. /*
  684. * Number of tasks to iterate in a single balance run.
  685. * Limited because this is done with IRQs disabled.
  686. */
  687. const_debug unsigned int sysctl_sched_nr_migrate = 32;
  688. /*
  689. * ratelimit for updating the group shares.
  690. * default: 0.25ms
  691. */
  692. unsigned int sysctl_sched_shares_ratelimit = 250000;
  693. /*
  694. * Inject some fuzzyness into changing the per-cpu group shares
  695. * this avoids remote rq-locks at the expense of fairness.
  696. * default: 4
  697. */
  698. unsigned int sysctl_sched_shares_thresh = 4;
  699. /*
  700. * period over which we measure -rt task cpu usage in us.
  701. * default: 1s
  702. */
  703. unsigned int sysctl_sched_rt_period = 1000000;
  704. static __read_mostly int scheduler_running;
  705. /*
  706. * part of the period that we allow rt tasks to run in us.
  707. * default: 0.95s
  708. */
  709. int sysctl_sched_rt_runtime = 950000;
  710. static inline u64 global_rt_period(void)
  711. {
  712. return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
  713. }
  714. static inline u64 global_rt_runtime(void)
  715. {
  716. if (sysctl_sched_rt_runtime < 0)
  717. return RUNTIME_INF;
  718. return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
  719. }
  720. #ifndef prepare_arch_switch
  721. # define prepare_arch_switch(next) do { } while (0)
  722. #endif
  723. #ifndef finish_arch_switch
  724. # define finish_arch_switch(prev) do { } while (0)
  725. #endif
  726. static inline int task_current(struct rq *rq, struct task_struct *p)
  727. {
  728. return rq->curr == p;
  729. }
  730. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  731. static inline int task_running(struct rq *rq, struct task_struct *p)
  732. {
  733. return task_current(rq, p);
  734. }
  735. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  736. {
  737. }
  738. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  739. {
  740. #ifdef CONFIG_DEBUG_SPINLOCK
  741. /* this is a valid case when another task releases the spinlock */
  742. rq->lock.owner = current;
  743. #endif
  744. /*
  745. * If we are tracking spinlock dependencies then we have to
  746. * fix up the runqueue lock - which gets 'carried over' from
  747. * prev into current:
  748. */
  749. spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
  750. spin_unlock_irq(&rq->lock);
  751. }
  752. #else /* __ARCH_WANT_UNLOCKED_CTXSW */
  753. static inline int task_running(struct rq *rq, struct task_struct *p)
  754. {
  755. #ifdef CONFIG_SMP
  756. return p->oncpu;
  757. #else
  758. return task_current(rq, p);
  759. #endif
  760. }
  761. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  762. {
  763. #ifdef CONFIG_SMP
  764. /*
  765. * We can optimise this out completely for !SMP, because the
  766. * SMP rebalancing from interrupt is the only thing that cares
  767. * here.
  768. */
  769. next->oncpu = 1;
  770. #endif
  771. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  772. spin_unlock_irq(&rq->lock);
  773. #else
  774. spin_unlock(&rq->lock);
  775. #endif
  776. }
  777. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  778. {
  779. #ifdef CONFIG_SMP
  780. /*
  781. * After ->oncpu is cleared, the task can be moved to a different CPU.
  782. * We must ensure this doesn't happen until the switch is completely
  783. * finished.
  784. */
  785. smp_wmb();
  786. prev->oncpu = 0;
  787. #endif
  788. #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  789. local_irq_enable();
  790. #endif
  791. }
  792. #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
  793. /*
  794. * __task_rq_lock - lock the runqueue a given task resides on.
  795. * Must be called interrupts disabled.
  796. */
  797. static inline struct rq *__task_rq_lock(struct task_struct *p)
  798. __acquires(rq->lock)
  799. {
  800. for (;;) {
  801. struct rq *rq = task_rq(p);
  802. spin_lock(&rq->lock);
  803. if (likely(rq == task_rq(p)))
  804. return rq;
  805. spin_unlock(&rq->lock);
  806. }
  807. }
  808. /*
  809. * task_rq_lock - lock the runqueue a given task resides on and disable
  810. * interrupts. Note the ordering: we can safely lookup the task_rq without
  811. * explicitly disabling preemption.
  812. */
  813. static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
  814. __acquires(rq->lock)
  815. {
  816. struct rq *rq;
  817. for (;;) {
  818. local_irq_save(*flags);
  819. rq = task_rq(p);
  820. spin_lock(&rq->lock);
  821. if (likely(rq == task_rq(p)))
  822. return rq;
  823. spin_unlock_irqrestore(&rq->lock, *flags);
  824. }
  825. }
  826. void task_rq_unlock_wait(struct task_struct *p)
  827. {
  828. struct rq *rq = task_rq(p);
  829. smp_mb(); /* spin-unlock-wait is not a full memory barrier */
  830. spin_unlock_wait(&rq->lock);
  831. }
  832. static void __task_rq_unlock(struct rq *rq)
  833. __releases(rq->lock)
  834. {
  835. spin_unlock(&rq->lock);
  836. }
  837. static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
  838. __releases(rq->lock)
  839. {
  840. spin_unlock_irqrestore(&rq->lock, *flags);
  841. }
  842. /*
  843. * this_rq_lock - lock this runqueue and disable interrupts.
  844. */
  845. static struct rq *this_rq_lock(void)
  846. __acquires(rq->lock)
  847. {
  848. struct rq *rq;
  849. local_irq_disable();
  850. rq = this_rq();
  851. spin_lock(&rq->lock);
  852. return rq;
  853. }
  854. #ifdef CONFIG_SCHED_HRTICK
  855. /*
  856. * Use HR-timers to deliver accurate preemption points.
  857. *
  858. * Its all a bit involved since we cannot program an hrt while holding the
  859. * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
  860. * reschedule event.
  861. *
  862. * When we get rescheduled we reprogram the hrtick_timer outside of the
  863. * rq->lock.
  864. */
  865. /*
  866. * Use hrtick when:
  867. * - enabled by features
  868. * - hrtimer is actually high res
  869. */
  870. static inline int hrtick_enabled(struct rq *rq)
  871. {
  872. if (!sched_feat(HRTICK))
  873. return 0;
  874. if (!cpu_active(cpu_of(rq)))
  875. return 0;
  876. return hrtimer_is_hres_active(&rq->hrtick_timer);
  877. }
  878. static void hrtick_clear(struct rq *rq)
  879. {
  880. if (hrtimer_active(&rq->hrtick_timer))
  881. hrtimer_cancel(&rq->hrtick_timer);
  882. }
  883. /*
  884. * High-resolution timer tick.
  885. * Runs from hardirq context with interrupts disabled.
  886. */
  887. static enum hrtimer_restart hrtick(struct hrtimer *timer)
  888. {
  889. struct rq *rq = container_of(timer, struct rq, hrtick_timer);
  890. WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
  891. spin_lock(&rq->lock);
  892. update_rq_clock(rq);
  893. rq->curr->sched_class->task_tick(rq, rq->curr, 1);
  894. spin_unlock(&rq->lock);
  895. return HRTIMER_NORESTART;
  896. }
  897. #ifdef CONFIG_SMP
  898. /*
  899. * called from hardirq (IPI) context
  900. */
  901. static void __hrtick_start(void *arg)
  902. {
  903. struct rq *rq = arg;
  904. spin_lock(&rq->lock);
  905. hrtimer_restart(&rq->hrtick_timer);
  906. rq->hrtick_csd_pending = 0;
  907. spin_unlock(&rq->lock);
  908. }
  909. /*
  910. * Called to set the hrtick timer state.
  911. *
  912. * called with rq->lock held and irqs disabled
  913. */
  914. static void hrtick_start(struct rq *rq, u64 delay)
  915. {
  916. struct hrtimer *timer = &rq->hrtick_timer;
  917. ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
  918. hrtimer_set_expires(timer, time);
  919. if (rq == this_rq()) {
  920. hrtimer_restart(timer);
  921. } else if (!rq->hrtick_csd_pending) {
  922. __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd);
  923. rq->hrtick_csd_pending = 1;
  924. }
  925. }
  926. static int
  927. hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
  928. {
  929. int cpu = (int)(long)hcpu;
  930. switch (action) {
  931. case CPU_UP_CANCELED:
  932. case CPU_UP_CANCELED_FROZEN:
  933. case CPU_DOWN_PREPARE:
  934. case CPU_DOWN_PREPARE_FROZEN:
  935. case CPU_DEAD:
  936. case CPU_DEAD_FROZEN:
  937. hrtick_clear(cpu_rq(cpu));
  938. return NOTIFY_OK;
  939. }
  940. return NOTIFY_DONE;
  941. }
  942. static __init void init_hrtick(void)
  943. {
  944. hotcpu_notifier(hotplug_hrtick, 0);
  945. }
  946. #else
  947. /*
  948. * Called to set the hrtick timer state.
  949. *
  950. * called with rq->lock held and irqs disabled
  951. */
  952. static void hrtick_start(struct rq *rq, u64 delay)
  953. {
  954. hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay), HRTIMER_MODE_REL);
  955. }
  956. static inline void init_hrtick(void)
  957. {
  958. }
  959. #endif /* CONFIG_SMP */
  960. static void init_rq_hrtick(struct rq *rq)
  961. {
  962. #ifdef CONFIG_SMP
  963. rq->hrtick_csd_pending = 0;
  964. rq->hrtick_csd.flags = 0;
  965. rq->hrtick_csd.func = __hrtick_start;
  966. rq->hrtick_csd.info = rq;
  967. #endif
  968. hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  969. rq->hrtick_timer.function = hrtick;
  970. }
  971. #else /* CONFIG_SCHED_HRTICK */
  972. static inline void hrtick_clear(struct rq *rq)
  973. {
  974. }
  975. static inline void init_rq_hrtick(struct rq *rq)
  976. {
  977. }
  978. static inline void init_hrtick(void)
  979. {
  980. }
  981. #endif /* CONFIG_SCHED_HRTICK */
  982. /*
  983. * resched_task - mark a task 'to be rescheduled now'.
  984. *
  985. * On UP this means the setting of the need_resched flag, on SMP it
  986. * might also involve a cross-CPU call to trigger the scheduler on
  987. * the target CPU.
  988. */
  989. #ifdef CONFIG_SMP
  990. #ifndef tsk_is_polling
  991. #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
  992. #endif
  993. static void resched_task(struct task_struct *p)
  994. {
  995. int cpu;
  996. assert_spin_locked(&task_rq(p)->lock);
  997. if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
  998. return;
  999. set_tsk_thread_flag(p, TIF_NEED_RESCHED);
  1000. cpu = task_cpu(p);
  1001. if (cpu == smp_processor_id())
  1002. return;
  1003. /* NEED_RESCHED must be visible before we test polling */
  1004. smp_mb();
  1005. if (!tsk_is_polling(p))
  1006. smp_send_reschedule(cpu);
  1007. }
  1008. static void resched_cpu(int cpu)
  1009. {
  1010. struct rq *rq = cpu_rq(cpu);
  1011. unsigned long flags;
  1012. if (!spin_trylock_irqsave(&rq->lock, flags))
  1013. return;
  1014. resched_task(cpu_curr(cpu));
  1015. spin_unlock_irqrestore(&rq->lock, flags);
  1016. }
  1017. #ifdef CONFIG_NO_HZ
  1018. /*
  1019. * When add_timer_on() enqueues a timer into the timer wheel of an
  1020. * idle CPU then this timer might expire before the next timer event
  1021. * which is scheduled to wake up that CPU. In case of a completely
  1022. * idle system the next event might even be infinite time into the
  1023. * future. wake_up_idle_cpu() ensures that the CPU is woken up and
  1024. * leaves the inner idle loop so the newly added timer is taken into
  1025. * account when the CPU goes back to idle and evaluates the timer
  1026. * wheel for the next timer event.
  1027. */
  1028. void wake_up_idle_cpu(int cpu)
  1029. {
  1030. struct rq *rq = cpu_rq(cpu);
  1031. if (cpu == smp_processor_id())
  1032. return;
  1033. /*
  1034. * This is safe, as this function is called with the timer
  1035. * wheel base lock of (cpu) held. When the CPU is on the way
  1036. * to idle and has not yet set rq->curr to idle then it will
  1037. * be serialized on the timer wheel base lock and take the new
  1038. * timer into account automatically.
  1039. */
  1040. if (rq->curr != rq->idle)
  1041. return;
  1042. /*
  1043. * We can set TIF_RESCHED on the idle task of the other CPU
  1044. * lockless. The worst case is that the other CPU runs the
  1045. * idle task through an additional NOOP schedule()
  1046. */
  1047. set_tsk_thread_flag(rq->idle, TIF_NEED_RESCHED);
  1048. /* NEED_RESCHED must be visible before we test polling */
  1049. smp_mb();
  1050. if (!tsk_is_polling(rq->idle))
  1051. smp_send_reschedule(cpu);
  1052. }
  1053. #endif /* CONFIG_NO_HZ */
  1054. #else /* !CONFIG_SMP */
  1055. static void resched_task(struct task_struct *p)
  1056. {
  1057. assert_spin_locked(&task_rq(p)->lock);
  1058. set_tsk_need_resched(p);
  1059. }
  1060. #endif /* CONFIG_SMP */
  1061. #if BITS_PER_LONG == 32
  1062. # define WMULT_CONST (~0UL)
  1063. #else
  1064. # define WMULT_CONST (1UL << 32)
  1065. #endif
  1066. #define WMULT_SHIFT 32
  1067. /*
  1068. * Shift right and round:
  1069. */
  1070. #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
  1071. /*
  1072. * delta *= weight / lw
  1073. */
  1074. static unsigned long
  1075. calc_delta_mine(unsigned long delta_exec, unsigned long weight,
  1076. struct load_weight *lw)
  1077. {
  1078. u64 tmp;
  1079. if (!lw->inv_weight) {
  1080. if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
  1081. lw->inv_weight = 1;
  1082. else
  1083. lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
  1084. / (lw->weight+1);
  1085. }
  1086. tmp = (u64)delta_exec * weight;
  1087. /*
  1088. * Check whether we'd overflow the 64-bit multiplication:
  1089. */
  1090. if (unlikely(tmp > WMULT_CONST))
  1091. tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
  1092. WMULT_SHIFT/2);
  1093. else
  1094. tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
  1095. return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
  1096. }
  1097. static inline void update_load_add(struct load_weight *lw, unsigned long inc)
  1098. {
  1099. lw->weight += inc;
  1100. lw->inv_weight = 0;
  1101. }
  1102. static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
  1103. {
  1104. lw->weight -= dec;
  1105. lw->inv_weight = 0;
  1106. }
  1107. /*
  1108. * To aid in avoiding the subversion of "niceness" due to uneven distribution
  1109. * of tasks with abnormal "nice" values across CPUs the contribution that
  1110. * each task makes to its run queue's load is weighted according to its
  1111. * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
  1112. * scaled version of the new time slice allocation that they receive on time
  1113. * slice expiry etc.
  1114. */
  1115. #define WEIGHT_IDLEPRIO 3
  1116. #define WMULT_IDLEPRIO 1431655765
  1117. /*
  1118. * Nice levels are multiplicative, with a gentle 10% change for every
  1119. * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
  1120. * nice 1, it will get ~10% less CPU time than another CPU-bound task
  1121. * that remained on nice 0.
  1122. *
  1123. * The "10% effect" is relative and cumulative: from _any_ nice level,
  1124. * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
  1125. * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
  1126. * If a task goes up by ~10% and another task goes down by ~10% then
  1127. * the relative distance between them is ~25%.)
  1128. */
  1129. static const int prio_to_weight[40] = {
  1130. /* -20 */ 88761, 71755, 56483, 46273, 36291,
  1131. /* -15 */ 29154, 23254, 18705, 14949, 11916,
  1132. /* -10 */ 9548, 7620, 6100, 4904, 3906,
  1133. /* -5 */ 3121, 2501, 1991, 1586, 1277,
  1134. /* 0 */ 1024, 820, 655, 526, 423,
  1135. /* 5 */ 335, 272, 215, 172, 137,
  1136. /* 10 */ 110, 87, 70, 56, 45,
  1137. /* 15 */ 36, 29, 23, 18, 15,
  1138. };
  1139. /*
  1140. * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
  1141. *
  1142. * In cases where the weight does not change often, we can use the
  1143. * precalculated inverse to speed up arithmetics by turning divisions
  1144. * into multiplications:
  1145. */
  1146. static const u32 prio_to_wmult[40] = {
  1147. /* -20 */ 48388, 59856, 76040, 92818, 118348,
  1148. /* -15 */ 147320, 184698, 229616, 287308, 360437,
  1149. /* -10 */ 449829, 563644, 704093, 875809, 1099582,
  1150. /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
  1151. /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
  1152. /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
  1153. /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
  1154. /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
  1155. };
  1156. static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
  1157. /*
  1158. * runqueue iterator, to support SMP load-balancing between different
  1159. * scheduling classes, without having to expose their internal data
  1160. * structures to the load-balancing proper:
  1161. */
  1162. struct rq_iterator {
  1163. void *arg;
  1164. struct task_struct *(*start)(void *);
  1165. struct task_struct *(*next)(void *);
  1166. };
  1167. #ifdef CONFIG_SMP
  1168. static unsigned long
  1169. balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1170. unsigned long max_load_move, struct sched_domain *sd,
  1171. enum cpu_idle_type idle, int *all_pinned,
  1172. int *this_best_prio, struct rq_iterator *iterator);
  1173. static int
  1174. iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1175. struct sched_domain *sd, enum cpu_idle_type idle,
  1176. struct rq_iterator *iterator);
  1177. #endif
  1178. #ifdef CONFIG_CGROUP_CPUACCT
  1179. static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
  1180. #else
  1181. static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
  1182. #endif
  1183. static inline void inc_cpu_load(struct rq *rq, unsigned long load)
  1184. {
  1185. update_load_add(&rq->load, load);
  1186. }
  1187. static inline void dec_cpu_load(struct rq *rq, unsigned long load)
  1188. {
  1189. update_load_sub(&rq->load, load);
  1190. }
  1191. #if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
  1192. typedef int (*tg_visitor)(struct task_group *, void *);
  1193. /*
  1194. * Iterate the full tree, calling @down when first entering a node and @up when
  1195. * leaving it for the final time.
  1196. */
  1197. static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
  1198. {
  1199. struct task_group *parent, *child;
  1200. int ret;
  1201. rcu_read_lock();
  1202. parent = &root_task_group;
  1203. down:
  1204. ret = (*down)(parent, data);
  1205. if (ret)
  1206. goto out_unlock;
  1207. list_for_each_entry_rcu(child, &parent->children, siblings) {
  1208. parent = child;
  1209. goto down;
  1210. up:
  1211. continue;
  1212. }
  1213. ret = (*up)(parent, data);
  1214. if (ret)
  1215. goto out_unlock;
  1216. child = parent;
  1217. parent = parent->parent;
  1218. if (parent)
  1219. goto up;
  1220. out_unlock:
  1221. rcu_read_unlock();
  1222. return ret;
  1223. }
  1224. static int tg_nop(struct task_group *tg, void *data)
  1225. {
  1226. return 0;
  1227. }
  1228. #endif
  1229. #ifdef CONFIG_SMP
  1230. static unsigned long source_load(int cpu, int type);
  1231. static unsigned long target_load(int cpu, int type);
  1232. static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
  1233. static unsigned long cpu_avg_load_per_task(int cpu)
  1234. {
  1235. struct rq *rq = cpu_rq(cpu);
  1236. unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
  1237. if (nr_running)
  1238. rq->avg_load_per_task = rq->load.weight / nr_running;
  1239. else
  1240. rq->avg_load_per_task = 0;
  1241. return rq->avg_load_per_task;
  1242. }
  1243. #ifdef CONFIG_FAIR_GROUP_SCHED
  1244. static void __set_se_shares(struct sched_entity *se, unsigned long shares);
  1245. /*
  1246. * Calculate and set the cpu's group shares.
  1247. */
  1248. static void
  1249. update_group_shares_cpu(struct task_group *tg, int cpu,
  1250. unsigned long sd_shares, unsigned long sd_rq_weight)
  1251. {
  1252. unsigned long shares;
  1253. unsigned long rq_weight;
  1254. if (!tg->se[cpu])
  1255. return;
  1256. rq_weight = tg->cfs_rq[cpu]->rq_weight;
  1257. /*
  1258. * \Sum shares * rq_weight
  1259. * shares = -----------------------
  1260. * \Sum rq_weight
  1261. *
  1262. */
  1263. shares = (sd_shares * rq_weight) / sd_rq_weight;
  1264. shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
  1265. if (abs(shares - tg->se[cpu]->load.weight) >
  1266. sysctl_sched_shares_thresh) {
  1267. struct rq *rq = cpu_rq(cpu);
  1268. unsigned long flags;
  1269. spin_lock_irqsave(&rq->lock, flags);
  1270. tg->cfs_rq[cpu]->shares = shares;
  1271. __set_se_shares(tg->se[cpu], shares);
  1272. spin_unlock_irqrestore(&rq->lock, flags);
  1273. }
  1274. }
  1275. /*
  1276. * Re-compute the task group their per cpu shares over the given domain.
  1277. * This needs to be done in a bottom-up fashion because the rq weight of a
  1278. * parent group depends on the shares of its child groups.
  1279. */
  1280. static int tg_shares_up(struct task_group *tg, void *data)
  1281. {
  1282. unsigned long weight, rq_weight = 0;
  1283. unsigned long shares = 0;
  1284. struct sched_domain *sd = data;
  1285. int i;
  1286. for_each_cpu(i, sched_domain_span(sd)) {
  1287. /*
  1288. * If there are currently no tasks on the cpu pretend there
  1289. * is one of average load so that when a new task gets to
  1290. * run here it will not get delayed by group starvation.
  1291. */
  1292. weight = tg->cfs_rq[i]->load.weight;
  1293. if (!weight)
  1294. weight = NICE_0_LOAD;
  1295. tg->cfs_rq[i]->rq_weight = weight;
  1296. rq_weight += weight;
  1297. shares += tg->cfs_rq[i]->shares;
  1298. }
  1299. if ((!shares && rq_weight) || shares > tg->shares)
  1300. shares = tg->shares;
  1301. if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
  1302. shares = tg->shares;
  1303. for_each_cpu(i, sched_domain_span(sd))
  1304. update_group_shares_cpu(tg, i, shares, rq_weight);
  1305. return 0;
  1306. }
  1307. /*
  1308. * Compute the cpu's hierarchical load factor for each task group.
  1309. * This needs to be done in a top-down fashion because the load of a child
  1310. * group is a fraction of its parents load.
  1311. */
  1312. static int tg_load_down(struct task_group *tg, void *data)
  1313. {
  1314. unsigned long load;
  1315. long cpu = (long)data;
  1316. if (!tg->parent) {
  1317. load = cpu_rq(cpu)->load.weight;
  1318. } else {
  1319. load = tg->parent->cfs_rq[cpu]->h_load;
  1320. load *= tg->cfs_rq[cpu]->shares;
  1321. load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
  1322. }
  1323. tg->cfs_rq[cpu]->h_load = load;
  1324. return 0;
  1325. }
  1326. static void update_shares(struct sched_domain *sd)
  1327. {
  1328. u64 now = cpu_clock(raw_smp_processor_id());
  1329. s64 elapsed = now - sd->last_update;
  1330. if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
  1331. sd->last_update = now;
  1332. walk_tg_tree(tg_nop, tg_shares_up, sd);
  1333. }
  1334. }
  1335. static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
  1336. {
  1337. spin_unlock(&rq->lock);
  1338. update_shares(sd);
  1339. spin_lock(&rq->lock);
  1340. }
  1341. static void update_h_load(long cpu)
  1342. {
  1343. walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
  1344. }
  1345. #else
  1346. static inline void update_shares(struct sched_domain *sd)
  1347. {
  1348. }
  1349. static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
  1350. {
  1351. }
  1352. #endif
  1353. #ifdef CONFIG_PREEMPT
  1354. /*
  1355. * fair double_lock_balance: Safely acquires both rq->locks in a fair
  1356. * way at the expense of forcing extra atomic operations in all
  1357. * invocations. This assures that the double_lock is acquired using the
  1358. * same underlying policy as the spinlock_t on this architecture, which
  1359. * reduces latency compared to the unfair variant below. However, it
  1360. * also adds more overhead and therefore may reduce throughput.
  1361. */
  1362. static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
  1363. __releases(this_rq->lock)
  1364. __acquires(busiest->lock)
  1365. __acquires(this_rq->lock)
  1366. {
  1367. spin_unlock(&this_rq->lock);
  1368. double_rq_lock(this_rq, busiest);
  1369. return 1;
  1370. }
  1371. #else
  1372. /*
  1373. * Unfair double_lock_balance: Optimizes throughput at the expense of
  1374. * latency by eliminating extra atomic operations when the locks are
  1375. * already in proper order on entry. This favors lower cpu-ids and will
  1376. * grant the double lock to lower cpus over higher ids under contention,
  1377. * regardless of entry order into the function.
  1378. */
  1379. static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
  1380. __releases(this_rq->lock)
  1381. __acquires(busiest->lock)
  1382. __acquires(this_rq->lock)
  1383. {
  1384. int ret = 0;
  1385. if (unlikely(!spin_trylock(&busiest->lock))) {
  1386. if (busiest < this_rq) {
  1387. spin_unlock(&this_rq->lock);
  1388. spin_lock(&busiest->lock);
  1389. spin_lock_nested(&this_rq->lock, SINGLE_DEPTH_NESTING);
  1390. ret = 1;
  1391. } else
  1392. spin_lock_nested(&busiest->lock, SINGLE_DEPTH_NESTING);
  1393. }
  1394. return ret;
  1395. }
  1396. #endif /* CONFIG_PREEMPT */
  1397. /*
  1398. * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
  1399. */
  1400. static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
  1401. {
  1402. if (unlikely(!irqs_disabled())) {
  1403. /* printk() doesn't work good under rq->lock */
  1404. spin_unlock(&this_rq->lock);
  1405. BUG_ON(1);
  1406. }
  1407. return _double_lock_balance(this_rq, busiest);
  1408. }
  1409. static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
  1410. __releases(busiest->lock)
  1411. {
  1412. spin_unlock(&busiest->lock);
  1413. lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
  1414. }
  1415. #endif
  1416. #ifdef CONFIG_FAIR_GROUP_SCHED
  1417. static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
  1418. {
  1419. #ifdef CONFIG_SMP
  1420. cfs_rq->shares = shares;
  1421. #endif
  1422. }
  1423. #endif
  1424. #include "sched_stats.h"
  1425. #include "sched_idletask.c"
  1426. #include "sched_fair.c"
  1427. #include "sched_rt.c"
  1428. #ifdef CONFIG_SCHED_DEBUG
  1429. # include "sched_debug.c"
  1430. #endif
  1431. #define sched_class_highest (&rt_sched_class)
  1432. #define for_each_class(class) \
  1433. for (class = sched_class_highest; class; class = class->next)
  1434. static void inc_nr_running(struct rq *rq)
  1435. {
  1436. rq->nr_running++;
  1437. }
  1438. static void dec_nr_running(struct rq *rq)
  1439. {
  1440. rq->nr_running--;
  1441. }
  1442. static void set_load_weight(struct task_struct *p)
  1443. {
  1444. if (task_has_rt_policy(p)) {
  1445. p->se.load.weight = prio_to_weight[0] * 2;
  1446. p->se.load.inv_weight = prio_to_wmult[0] >> 1;
  1447. return;
  1448. }
  1449. /*
  1450. * SCHED_IDLE tasks get minimal weight:
  1451. */
  1452. if (p->policy == SCHED_IDLE) {
  1453. p->se.load.weight = WEIGHT_IDLEPRIO;
  1454. p->se.load.inv_weight = WMULT_IDLEPRIO;
  1455. return;
  1456. }
  1457. p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
  1458. p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
  1459. }
  1460. static void update_avg(u64 *avg, u64 sample)
  1461. {
  1462. s64 diff = sample - *avg;
  1463. *avg += diff >> 3;
  1464. }
  1465. static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
  1466. {
  1467. if (wakeup)
  1468. p->se.start_runtime = p->se.sum_exec_runtime;
  1469. sched_info_queued(p);
  1470. p->sched_class->enqueue_task(rq, p, wakeup);
  1471. p->se.on_rq = 1;
  1472. }
  1473. static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
  1474. {
  1475. if (sleep) {
  1476. if (p->se.last_wakeup) {
  1477. update_avg(&p->se.avg_overlap,
  1478. p->se.sum_exec_runtime - p->se.last_wakeup);
  1479. p->se.last_wakeup = 0;
  1480. } else {
  1481. update_avg(&p->se.avg_wakeup,
  1482. sysctl_sched_wakeup_granularity);
  1483. }
  1484. }
  1485. sched_info_dequeued(p);
  1486. p->sched_class->dequeue_task(rq, p, sleep);
  1487. p->se.on_rq = 0;
  1488. }
  1489. /*
  1490. * __normal_prio - return the priority that is based on the static prio
  1491. */
  1492. static inline int __normal_prio(struct task_struct *p)
  1493. {
  1494. return p->static_prio;
  1495. }
  1496. /*
  1497. * Calculate the expected normal priority: i.e. priority
  1498. * without taking RT-inheritance into account. Might be
  1499. * boosted by interactivity modifiers. Changes upon fork,
  1500. * setprio syscalls, and whenever the interactivity
  1501. * estimator recalculates.
  1502. */
  1503. static inline int normal_prio(struct task_struct *p)
  1504. {
  1505. int prio;
  1506. if (task_has_rt_policy(p))
  1507. prio = MAX_RT_PRIO-1 - p->rt_priority;
  1508. else
  1509. prio = __normal_prio(p);
  1510. return prio;
  1511. }
  1512. /*
  1513. * Calculate the current priority, i.e. the priority
  1514. * taken into account by the scheduler. This value might
  1515. * be boosted by RT tasks, or might be boosted by
  1516. * interactivity modifiers. Will be RT if the task got
  1517. * RT-boosted. If not then it returns p->normal_prio.
  1518. */
  1519. static int effective_prio(struct task_struct *p)
  1520. {
  1521. p->normal_prio = normal_prio(p);
  1522. /*
  1523. * If we are RT tasks or we were boosted to RT priority,
  1524. * keep the priority unchanged. Otherwise, update priority
  1525. * to the normal priority:
  1526. */
  1527. if (!rt_prio(p->prio))
  1528. return p->normal_prio;
  1529. return p->prio;
  1530. }
  1531. /*
  1532. * activate_task - move a task to the runqueue.
  1533. */
  1534. static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
  1535. {
  1536. if (task_contributes_to_load(p))
  1537. rq->nr_uninterruptible--;
  1538. enqueue_task(rq, p, wakeup);
  1539. inc_nr_running(rq);
  1540. }
  1541. /*
  1542. * deactivate_task - remove a task from the runqueue.
  1543. */
  1544. static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
  1545. {
  1546. if (task_contributes_to_load(p))
  1547. rq->nr_uninterruptible++;
  1548. dequeue_task(rq, p, sleep);
  1549. dec_nr_running(rq);
  1550. }
  1551. /**
  1552. * task_curr - is this task currently executing on a CPU?
  1553. * @p: the task in question.
  1554. */
  1555. inline int task_curr(const struct task_struct *p)
  1556. {
  1557. return cpu_curr(task_cpu(p)) == p;
  1558. }
  1559. static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
  1560. {
  1561. set_task_rq(p, cpu);
  1562. #ifdef CONFIG_SMP
  1563. /*
  1564. * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
  1565. * successfuly executed on another CPU. We must ensure that updates of
  1566. * per-task data have been completed by this moment.
  1567. */
  1568. smp_wmb();
  1569. task_thread_info(p)->cpu = cpu;
  1570. #endif
  1571. }
  1572. static inline void check_class_changed(struct rq *rq, struct task_struct *p,
  1573. const struct sched_class *prev_class,
  1574. int oldprio, int running)
  1575. {
  1576. if (prev_class != p->sched_class) {
  1577. if (prev_class->switched_from)
  1578. prev_class->switched_from(rq, p, running);
  1579. p->sched_class->switched_to(rq, p, running);
  1580. } else
  1581. p->sched_class->prio_changed(rq, p, oldprio, running);
  1582. }
  1583. #ifdef CONFIG_SMP
  1584. /* Used instead of source_load when we know the type == 0 */
  1585. static unsigned long weighted_cpuload(const int cpu)
  1586. {
  1587. return cpu_rq(cpu)->load.weight;
  1588. }
  1589. /*
  1590. * Is this task likely cache-hot:
  1591. */
  1592. static int
  1593. task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
  1594. {
  1595. s64 delta;
  1596. /*
  1597. * Buddy candidates are cache hot:
  1598. */
  1599. if (sched_feat(CACHE_HOT_BUDDY) &&
  1600. (&p->se == cfs_rq_of(&p->se)->next ||
  1601. &p->se == cfs_rq_of(&p->se)->last))
  1602. return 1;
  1603. if (p->sched_class != &fair_sched_class)
  1604. return 0;
  1605. if (sysctl_sched_migration_cost == -1)
  1606. return 1;
  1607. if (sysctl_sched_migration_cost == 0)
  1608. return 0;
  1609. delta = now - p->se.exec_start;
  1610. return delta < (s64)sysctl_sched_migration_cost;
  1611. }
  1612. void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
  1613. {
  1614. int old_cpu = task_cpu(p);
  1615. struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
  1616. struct cfs_rq *old_cfsrq = task_cfs_rq(p),
  1617. *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
  1618. u64 clock_offset;
  1619. clock_offset = old_rq->clock - new_rq->clock;
  1620. trace_sched_migrate_task(p, task_cpu(p), new_cpu);
  1621. #ifdef CONFIG_SCHEDSTATS
  1622. if (p->se.wait_start)
  1623. p->se.wait_start -= clock_offset;
  1624. if (p->se.sleep_start)
  1625. p->se.sleep_start -= clock_offset;
  1626. if (p->se.block_start)
  1627. p->se.block_start -= clock_offset;
  1628. if (old_cpu != new_cpu) {
  1629. schedstat_inc(p, se.nr_migrations);
  1630. if (task_hot(p, old_rq->clock, NULL))
  1631. schedstat_inc(p, se.nr_forced2_migrations);
  1632. }
  1633. #endif
  1634. p->se.vruntime -= old_cfsrq->min_vruntime -
  1635. new_cfsrq->min_vruntime;
  1636. __set_task_cpu(p, new_cpu);
  1637. }
  1638. struct migration_req {
  1639. struct list_head list;
  1640. struct task_struct *task;
  1641. int dest_cpu;
  1642. struct completion done;
  1643. };
  1644. /*
  1645. * The task's runqueue lock must be held.
  1646. * Returns true if you have to wait for migration thread.
  1647. */
  1648. static int
  1649. migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
  1650. {
  1651. struct rq *rq = task_rq(p);
  1652. /*
  1653. * If the task is not on a runqueue (and not running), then
  1654. * it is sufficient to simply update the task's cpu field.
  1655. */
  1656. if (!p->se.on_rq && !task_running(rq, p)) {
  1657. set_task_cpu(p, dest_cpu);
  1658. return 0;
  1659. }
  1660. init_completion(&req->done);
  1661. req->task = p;
  1662. req->dest_cpu = dest_cpu;
  1663. list_add(&req->list, &rq->migration_queue);
  1664. return 1;
  1665. }
  1666. /*
  1667. * wait_task_inactive - wait for a thread to unschedule.
  1668. *
  1669. * If @match_state is nonzero, it's the @p->state value just checked and
  1670. * not expected to change. If it changes, i.e. @p might have woken up,
  1671. * then return zero. When we succeed in waiting for @p to be off its CPU,
  1672. * we return a positive number (its total switch count). If a second call
  1673. * a short while later returns the same number, the caller can be sure that
  1674. * @p has remained unscheduled the whole time.
  1675. *
  1676. * The caller must ensure that the task *will* unschedule sometime soon,
  1677. * else this function might spin for a *long* time. This function can't
  1678. * be called with interrupts off, or it may introduce deadlock with
  1679. * smp_call_function() if an IPI is sent by the same process we are
  1680. * waiting to become inactive.
  1681. */
  1682. unsigned long wait_task_inactive(struct task_struct *p, long match_state)
  1683. {
  1684. unsigned long flags;
  1685. int running, on_rq;
  1686. unsigned long ncsw;
  1687. struct rq *rq;
  1688. for (;;) {
  1689. /*
  1690. * We do the initial early heuristics without holding
  1691. * any task-queue locks at all. We'll only try to get
  1692. * the runqueue lock when things look like they will
  1693. * work out!
  1694. */
  1695. rq = task_rq(p);
  1696. /*
  1697. * If the task is actively running on another CPU
  1698. * still, just relax and busy-wait without holding
  1699. * any locks.
  1700. *
  1701. * NOTE! Since we don't hold any locks, it's not
  1702. * even sure that "rq" stays as the right runqueue!
  1703. * But we don't care, since "task_running()" will
  1704. * return false if the runqueue has changed and p
  1705. * is actually now running somewhere else!
  1706. */
  1707. while (task_running(rq, p)) {
  1708. if (match_state && unlikely(p->state != match_state))
  1709. return 0;
  1710. cpu_relax();
  1711. }
  1712. /*
  1713. * Ok, time to look more closely! We need the rq
  1714. * lock now, to be *sure*. If we're wrong, we'll
  1715. * just go back and repeat.
  1716. */
  1717. rq = task_rq_lock(p, &flags);
  1718. trace_sched_wait_task(rq, p);
  1719. running = task_running(rq, p);
  1720. on_rq = p->se.on_rq;
  1721. ncsw = 0;
  1722. if (!match_state || p->state == match_state)
  1723. ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
  1724. task_rq_unlock(rq, &flags);
  1725. /*
  1726. * If it changed from the expected state, bail out now.
  1727. */
  1728. if (unlikely(!ncsw))
  1729. break;
  1730. /*
  1731. * Was it really running after all now that we
  1732. * checked with the proper locks actually held?
  1733. *
  1734. * Oops. Go back and try again..
  1735. */
  1736. if (unlikely(running)) {
  1737. cpu_relax();
  1738. continue;
  1739. }
  1740. /*
  1741. * It's not enough that it's not actively running,
  1742. * it must be off the runqueue _entirely_, and not
  1743. * preempted!
  1744. *
  1745. * So if it wa still runnable (but just not actively
  1746. * running right now), it's preempted, and we should
  1747. * yield - it could be a while.
  1748. */
  1749. if (unlikely(on_rq)) {
  1750. schedule_timeout_uninterruptible(1);
  1751. continue;
  1752. }
  1753. /*
  1754. * Ahh, all good. It wasn't running, and it wasn't
  1755. * runnable, which means that it will never become
  1756. * running in the future either. We're all done!
  1757. */
  1758. break;
  1759. }
  1760. return ncsw;
  1761. }
  1762. /***
  1763. * kick_process - kick a running thread to enter/exit the kernel
  1764. * @p: the to-be-kicked thread
  1765. *
  1766. * Cause a process which is running on another CPU to enter
  1767. * kernel-mode, without any delay. (to get signals handled.)
  1768. *
  1769. * NOTE: this function doesnt have to take the runqueue lock,
  1770. * because all it wants to ensure is that the remote task enters
  1771. * the kernel. If the IPI races and the task has been migrated
  1772. * to another CPU then no harm is done and the purpose has been
  1773. * achieved as well.
  1774. */
  1775. void kick_process(struct task_struct *p)
  1776. {
  1777. int cpu;
  1778. preempt_disable();
  1779. cpu = task_cpu(p);
  1780. if ((cpu != smp_processor_id()) && task_curr(p))
  1781. smp_send_reschedule(cpu);
  1782. preempt_enable();
  1783. }
  1784. /*
  1785. * Return a low guess at the load of a migration-source cpu weighted
  1786. * according to the scheduling class and "nice" value.
  1787. *
  1788. * We want to under-estimate the load of migration sources, to
  1789. * balance conservatively.
  1790. */
  1791. static unsigned long source_load(int cpu, int type)
  1792. {
  1793. struct rq *rq = cpu_rq(cpu);
  1794. unsigned long total = weighted_cpuload(cpu);
  1795. if (type == 0 || !sched_feat(LB_BIAS))
  1796. return total;
  1797. return min(rq->cpu_load[type-1], total);
  1798. }
  1799. /*
  1800. * Return a high guess at the load of a migration-target cpu weighted
  1801. * according to the scheduling class and "nice" value.
  1802. */
  1803. static unsigned long target_load(int cpu, int type)
  1804. {
  1805. struct rq *rq = cpu_rq(cpu);
  1806. unsigned long total = weighted_cpuload(cpu);
  1807. if (type == 0 || !sched_feat(LB_BIAS))
  1808. return total;
  1809. return max(rq->cpu_load[type-1], total);
  1810. }
  1811. /*
  1812. * find_idlest_group finds and returns the least busy CPU group within the
  1813. * domain.
  1814. */
  1815. static struct sched_group *
  1816. find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
  1817. {
  1818. struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
  1819. unsigned long min_load = ULONG_MAX, this_load = 0;
  1820. int load_idx = sd->forkexec_idx;
  1821. int imbalance = 100 + (sd->imbalance_pct-100)/2;
  1822. do {
  1823. unsigned long load, avg_load;
  1824. int local_group;
  1825. int i;
  1826. /* Skip over this group if it has no CPUs allowed */
  1827. if (!cpumask_intersects(sched_group_cpus(group),
  1828. &p->cpus_allowed))
  1829. continue;
  1830. local_group = cpumask_test_cpu(this_cpu,
  1831. sched_group_cpus(group));
  1832. /* Tally up the load of all CPUs in the group */
  1833. avg_load = 0;
  1834. for_each_cpu(i, sched_group_cpus(group)) {
  1835. /* Bias balancing toward cpus of our domain */
  1836. if (local_group)
  1837. load = source_load(i, load_idx);
  1838. else
  1839. load = target_load(i, load_idx);
  1840. avg_load += load;
  1841. }
  1842. /* Adjust by relative CPU power of the group */
  1843. avg_load = sg_div_cpu_power(group,
  1844. avg_load * SCHED_LOAD_SCALE);
  1845. if (local_group) {
  1846. this_load = avg_load;
  1847. this = group;
  1848. } else if (avg_load < min_load) {
  1849. min_load = avg_load;
  1850. idlest = group;
  1851. }
  1852. } while (group = group->next, group != sd->groups);
  1853. if (!idlest || 100*this_load < imbalance*min_load)
  1854. return NULL;
  1855. return idlest;
  1856. }
  1857. /*
  1858. * find_idlest_cpu - find the idlest cpu among the cpus in group.
  1859. */
  1860. static int
  1861. find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
  1862. {
  1863. unsigned long load, min_load = ULONG_MAX;
  1864. int idlest = -1;
  1865. int i;
  1866. /* Traverse only the allowed CPUs */
  1867. for_each_cpu_and(i, sched_group_cpus(group), &p->cpus_allowed) {
  1868. load = weighted_cpuload(i);
  1869. if (load < min_load || (load == min_load && i == this_cpu)) {
  1870. min_load = load;
  1871. idlest = i;
  1872. }
  1873. }
  1874. return idlest;
  1875. }
  1876. /*
  1877. * sched_balance_self: balance the current task (running on cpu) in domains
  1878. * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
  1879. * SD_BALANCE_EXEC.
  1880. *
  1881. * Balance, ie. select the least loaded group.
  1882. *
  1883. * Returns the target CPU number, or the same CPU if no balancing is needed.
  1884. *
  1885. * preempt must be disabled.
  1886. */
  1887. static int sched_balance_self(int cpu, int flag)
  1888. {
  1889. struct task_struct *t = current;
  1890. struct sched_domain *tmp, *sd = NULL;
  1891. for_each_domain(cpu, tmp) {
  1892. /*
  1893. * If power savings logic is enabled for a domain, stop there.
  1894. */
  1895. if (tmp->flags & SD_POWERSAVINGS_BALANCE)
  1896. break;
  1897. if (tmp->flags & flag)
  1898. sd = tmp;
  1899. }
  1900. if (sd)
  1901. update_shares(sd);
  1902. while (sd) {
  1903. struct sched_group *group;
  1904. int new_cpu, weight;
  1905. if (!(sd->flags & flag)) {
  1906. sd = sd->child;
  1907. continue;
  1908. }
  1909. group = find_idlest_group(sd, t, cpu);
  1910. if (!group) {
  1911. sd = sd->child;
  1912. continue;
  1913. }
  1914. new_cpu = find_idlest_cpu(group, t, cpu);
  1915. if (new_cpu == -1 || new_cpu == cpu) {
  1916. /* Now try balancing at a lower domain level of cpu */
  1917. sd = sd->child;
  1918. continue;
  1919. }
  1920. /* Now try balancing at a lower domain level of new_cpu */
  1921. cpu = new_cpu;
  1922. weight = cpumask_weight(sched_domain_span(sd));
  1923. sd = NULL;
  1924. for_each_domain(cpu, tmp) {
  1925. if (weight <= cpumask_weight(sched_domain_span(tmp)))
  1926. break;
  1927. if (tmp->flags & flag)
  1928. sd = tmp;
  1929. }
  1930. /* while loop will break here if sd == NULL */
  1931. }
  1932. return cpu;
  1933. }
  1934. #endif /* CONFIG_SMP */
  1935. /***
  1936. * try_to_wake_up - wake up a thread
  1937. * @p: the to-be-woken-up thread
  1938. * @state: the mask of task states that can be woken
  1939. * @sync: do a synchronous wakeup?
  1940. *
  1941. * Put it on the run-queue if it's not already there. The "current"
  1942. * thread is always on the run-queue (except when the actual
  1943. * re-schedule is in progress), and as such you're allowed to do
  1944. * the simpler "current->state = TASK_RUNNING" to mark yourself
  1945. * runnable without the overhead of this.
  1946. *
  1947. * returns failure only if the task is already active.
  1948. */
  1949. static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
  1950. {
  1951. int cpu, orig_cpu, this_cpu, success = 0;
  1952. unsigned long flags;
  1953. long old_state;
  1954. struct rq *rq;
  1955. if (!sched_feat(SYNC_WAKEUPS))
  1956. sync = 0;
  1957. #ifdef CONFIG_SMP
  1958. if (sched_feat(LB_WAKEUP_UPDATE)) {
  1959. struct sched_domain *sd;
  1960. this_cpu = raw_smp_processor_id();
  1961. cpu = task_cpu(p);
  1962. for_each_domain(this_cpu, sd) {
  1963. if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
  1964. update_shares(sd);
  1965. break;
  1966. }
  1967. }
  1968. }
  1969. #endif
  1970. smp_wmb();
  1971. rq = task_rq_lock(p, &flags);
  1972. update_rq_clock(rq);
  1973. old_state = p->state;
  1974. if (!(old_state & state))
  1975. goto out;
  1976. if (p->se.on_rq)
  1977. goto out_running;
  1978. cpu = task_cpu(p);
  1979. orig_cpu = cpu;
  1980. this_cpu = smp_processor_id();
  1981. #ifdef CONFIG_SMP
  1982. if (unlikely(task_running(rq, p)))
  1983. goto out_activate;
  1984. cpu = p->sched_class->select_task_rq(p, sync);
  1985. if (cpu != orig_cpu) {
  1986. set_task_cpu(p, cpu);
  1987. task_rq_unlock(rq, &flags);
  1988. /* might preempt at this point */
  1989. rq = task_rq_lock(p, &flags);
  1990. old_state = p->state;
  1991. if (!(old_state & state))
  1992. goto out;
  1993. if (p->se.on_rq)
  1994. goto out_running;
  1995. this_cpu = smp_processor_id();
  1996. cpu = task_cpu(p);
  1997. }
  1998. #ifdef CONFIG_SCHEDSTATS
  1999. schedstat_inc(rq, ttwu_count);
  2000. if (cpu == this_cpu)
  2001. schedstat_inc(rq, ttwu_local);
  2002. else {
  2003. struct sched_domain *sd;
  2004. for_each_domain(this_cpu, sd) {
  2005. if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
  2006. schedstat_inc(sd, ttwu_wake_remote);
  2007. break;
  2008. }
  2009. }
  2010. }
  2011. #endif /* CONFIG_SCHEDSTATS */
  2012. out_activate:
  2013. #endif /* CONFIG_SMP */
  2014. schedstat_inc(p, se.nr_wakeups);
  2015. if (sync)
  2016. schedstat_inc(p, se.nr_wakeups_sync);
  2017. if (orig_cpu != cpu)
  2018. schedstat_inc(p, se.nr_wakeups_migrate);
  2019. if (cpu == this_cpu)
  2020. schedstat_inc(p, se.nr_wakeups_local);
  2021. else
  2022. schedstat_inc(p, se.nr_wakeups_remote);
  2023. activate_task(rq, p, 1);
  2024. success = 1;
  2025. /*
  2026. * Only attribute actual wakeups done by this task.
  2027. */
  2028. if (!in_interrupt()) {
  2029. struct sched_entity *se = &current->se;
  2030. u64 sample = se->sum_exec_runtime;
  2031. if (se->last_wakeup)
  2032. sample -= se->last_wakeup;
  2033. else
  2034. sample -= se->start_runtime;
  2035. update_avg(&se->avg_wakeup, sample);
  2036. se->last_wakeup = se->sum_exec_runtime;
  2037. }
  2038. out_running:
  2039. trace_sched_wakeup(rq, p, success);
  2040. check_preempt_curr(rq, p, sync);
  2041. p->state = TASK_RUNNING;
  2042. #ifdef CONFIG_SMP
  2043. if (p->sched_class->task_wake_up)
  2044. p->sched_class->task_wake_up(rq, p);
  2045. #endif
  2046. out:
  2047. task_rq_unlock(rq, &flags);
  2048. return success;
  2049. }
  2050. int wake_up_process(struct task_struct *p)
  2051. {
  2052. return try_to_wake_up(p, TASK_ALL, 0);
  2053. }
  2054. EXPORT_SYMBOL(wake_up_process);
  2055. int wake_up_state(struct task_struct *p, unsigned int state)
  2056. {
  2057. return try_to_wake_up(p, state, 0);
  2058. }
  2059. /*
  2060. * Perform scheduler related setup for a newly forked process p.
  2061. * p is forked by current.
  2062. *
  2063. * __sched_fork() is basic setup used by init_idle() too:
  2064. */
  2065. static void __sched_fork(struct task_struct *p)
  2066. {
  2067. p->se.exec_start = 0;
  2068. p->se.sum_exec_runtime = 0;
  2069. p->se.prev_sum_exec_runtime = 0;
  2070. p->se.last_wakeup = 0;
  2071. p->se.avg_overlap = 0;
  2072. p->se.start_runtime = 0;
  2073. p->se.avg_wakeup = sysctl_sched_wakeup_granularity;
  2074. #ifdef CONFIG_SCHEDSTATS
  2075. p->se.wait_start = 0;
  2076. p->se.sum_sleep_runtime = 0;
  2077. p->se.sleep_start = 0;
  2078. p->se.block_start = 0;
  2079. p->se.sleep_max = 0;
  2080. p->se.block_max = 0;
  2081. p->se.exec_max = 0;
  2082. p->se.slice_max = 0;
  2083. p->se.wait_max = 0;
  2084. #endif
  2085. INIT_LIST_HEAD(&p->rt.run_list);
  2086. p->se.on_rq = 0;
  2087. INIT_LIST_HEAD(&p->se.group_node);
  2088. #ifdef CONFIG_PREEMPT_NOTIFIERS
  2089. INIT_HLIST_HEAD(&p->preempt_notifiers);
  2090. #endif
  2091. /*
  2092. * We mark the process as running here, but have not actually
  2093. * inserted it onto the runqueue yet. This guarantees that
  2094. * nobody will actually run it, and a signal or other external
  2095. * event cannot wake it up and insert it on the runqueue either.
  2096. */
  2097. p->state = TASK_RUNNING;
  2098. }
  2099. /*
  2100. * fork()/clone()-time setup:
  2101. */
  2102. void sched_fork(struct task_struct *p, int clone_flags)
  2103. {
  2104. int cpu = get_cpu();
  2105. __sched_fork(p);
  2106. #ifdef CONFIG_SMP
  2107. cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
  2108. #endif
  2109. set_task_cpu(p, cpu);
  2110. /*
  2111. * Make sure we do not leak PI boosting priority to the child:
  2112. */
  2113. p->prio = current->normal_prio;
  2114. if (!rt_prio(p->prio))
  2115. p->sched_class = &fair_sched_class;
  2116. #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
  2117. if (likely(sched_info_on()))
  2118. memset(&p->sched_info, 0, sizeof(p->sched_info));
  2119. #endif
  2120. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  2121. p->oncpu = 0;
  2122. #endif
  2123. #ifdef CONFIG_PREEMPT
  2124. /* Want to start with kernel preemption disabled. */
  2125. task_thread_info(p)->preempt_count = 1;
  2126. #endif
  2127. plist_node_init(&p->pushable_tasks, MAX_PRIO);
  2128. put_cpu();
  2129. }
  2130. /*
  2131. * wake_up_new_task - wake up a newly created task for the first time.
  2132. *
  2133. * This function will do some initial scheduler statistics housekeeping
  2134. * that must be done for every newly created context, then puts the task
  2135. * on the runqueue and wakes it.
  2136. */
  2137. void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
  2138. {
  2139. unsigned long flags;
  2140. struct rq *rq;
  2141. rq = task_rq_lock(p, &flags);
  2142. BUG_ON(p->state != TASK_RUNNING);
  2143. update_rq_clock(rq);
  2144. p->prio = effective_prio(p);
  2145. if (!p->sched_class->task_new || !current->se.on_rq) {
  2146. activate_task(rq, p, 0);
  2147. } else {
  2148. /*
  2149. * Let the scheduling class do new task startup
  2150. * management (if any):
  2151. */
  2152. p->sched_class->task_new(rq, p);
  2153. inc_nr_running(rq);
  2154. }
  2155. trace_sched_wakeup_new(rq, p, 1);
  2156. check_preempt_curr(rq, p, 0);
  2157. #ifdef CONFIG_SMP
  2158. if (p->sched_class->task_wake_up)
  2159. p->sched_class->task_wake_up(rq, p);
  2160. #endif
  2161. task_rq_unlock(rq, &flags);
  2162. }
  2163. #ifdef CONFIG_PREEMPT_NOTIFIERS
  2164. /**
  2165. * preempt_notifier_register - tell me when current is being being preempted & rescheduled
  2166. * @notifier: notifier struct to register
  2167. */
  2168. void preempt_notifier_register(struct preempt_notifier *notifier)
  2169. {
  2170. hlist_add_head(&notifier->link, &current->preempt_notifiers);
  2171. }
  2172. EXPORT_SYMBOL_GPL(preempt_notifier_register);
  2173. /**
  2174. * preempt_notifier_unregister - no longer interested in preemption notifications
  2175. * @notifier: notifier struct to unregister
  2176. *
  2177. * This is safe to call from within a preemption notifier.
  2178. */
  2179. void preempt_notifier_unregister(struct preempt_notifier *notifier)
  2180. {
  2181. hlist_del(&notifier->link);
  2182. }
  2183. EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
  2184. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  2185. {
  2186. struct preempt_notifier *notifier;
  2187. struct hlist_node *node;
  2188. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  2189. notifier->ops->sched_in(notifier, raw_smp_processor_id());
  2190. }
  2191. static void
  2192. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  2193. struct task_struct *next)
  2194. {
  2195. struct preempt_notifier *notifier;
  2196. struct hlist_node *node;
  2197. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  2198. notifier->ops->sched_out(notifier, next);
  2199. }
  2200. #else /* !CONFIG_PREEMPT_NOTIFIERS */
  2201. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  2202. {
  2203. }
  2204. static void
  2205. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  2206. struct task_struct *next)
  2207. {
  2208. }
  2209. #endif /* CONFIG_PREEMPT_NOTIFIERS */
  2210. /**
  2211. * prepare_task_switch - prepare to switch tasks
  2212. * @rq: the runqueue preparing to switch
  2213. * @prev: the current task that is being switched out
  2214. * @next: the task we are going to switch to.
  2215. *
  2216. * This is called with the rq lock held and interrupts off. It must
  2217. * be paired with a subsequent finish_task_switch after the context
  2218. * switch.
  2219. *
  2220. * prepare_task_switch sets up locking and calls architecture specific
  2221. * hooks.
  2222. */
  2223. static inline void
  2224. prepare_task_switch(struct rq *rq, struct task_struct *prev,
  2225. struct task_struct *next)
  2226. {
  2227. fire_sched_out_preempt_notifiers(prev, next);
  2228. prepare_lock_switch(rq, next);
  2229. prepare_arch_switch(next);
  2230. }
  2231. /**
  2232. * finish_task_switch - clean up after a task-switch
  2233. * @rq: runqueue associated with task-switch
  2234. * @prev: the thread we just switched away from.
  2235. *
  2236. * finish_task_switch must be called after the context switch, paired
  2237. * with a prepare_task_switch call before the context switch.
  2238. * finish_task_switch will reconcile locking set up by prepare_task_switch,
  2239. * and do any other architecture-specific cleanup actions.
  2240. *
  2241. * Note that we may have delayed dropping an mm in context_switch(). If
  2242. * so, we finish that here outside of the runqueue lock. (Doing it
  2243. * with the lock held can cause deadlocks; see schedule() for
  2244. * details.)
  2245. */
  2246. static void finish_task_switch(struct rq *rq, struct task_struct *prev)
  2247. __releases(rq->lock)
  2248. {
  2249. struct mm_struct *mm = rq->prev_mm;
  2250. long prev_state;
  2251. #ifdef CONFIG_SMP
  2252. int post_schedule = 0;
  2253. if (current->sched_class->needs_post_schedule)
  2254. post_schedule = current->sched_class->needs_post_schedule(rq);
  2255. #endif
  2256. rq->prev_mm = NULL;
  2257. /*
  2258. * A task struct has one reference for the use as "current".
  2259. * If a task dies, then it sets TASK_DEAD in tsk->state and calls
  2260. * schedule one last time. The schedule call will never return, and
  2261. * the scheduled task must drop that reference.
  2262. * The test for TASK_DEAD must occur while the runqueue locks are
  2263. * still held, otherwise prev could be scheduled on another cpu, die
  2264. * there before we look at prev->state, and then the reference would
  2265. * be dropped twice.
  2266. * Manfred Spraul <manfred@colorfullife.com>
  2267. */
  2268. prev_state = prev->state;
  2269. finish_arch_switch(prev);
  2270. finish_lock_switch(rq, prev);
  2271. #ifdef CONFIG_SMP
  2272. if (post_schedule)
  2273. current->sched_class->post_schedule(rq);
  2274. #endif
  2275. fire_sched_in_preempt_notifiers(current);
  2276. if (mm)
  2277. mmdrop(mm);
  2278. if (unlikely(prev_state == TASK_DEAD)) {
  2279. /*
  2280. * Remove function-return probe instances associated with this
  2281. * task and put them back on the free list.
  2282. */
  2283. kprobe_flush_task(prev);
  2284. put_task_struct(prev);
  2285. }
  2286. }
  2287. /**
  2288. * schedule_tail - first thing a freshly forked thread must call.
  2289. * @prev: the thread we just switched away from.
  2290. */
  2291. asmlinkage void schedule_tail(struct task_struct *prev)
  2292. __releases(rq->lock)
  2293. {
  2294. struct rq *rq = this_rq();
  2295. finish_task_switch(rq, prev);
  2296. #ifdef __ARCH_WANT_UNLOCKED_CTXSW
  2297. /* In this case, finish_task_switch does not reenable preemption */
  2298. preempt_enable();
  2299. #endif
  2300. if (current->set_child_tid)
  2301. put_user(task_pid_vnr(current), current->set_child_tid);
  2302. }
  2303. /*
  2304. * context_switch - switch to the new MM and the new
  2305. * thread's register state.
  2306. */
  2307. static inline void
  2308. context_switch(struct rq *rq, struct task_struct *prev,
  2309. struct task_struct *next)
  2310. {
  2311. struct mm_struct *mm, *oldmm;
  2312. prepare_task_switch(rq, prev, next);
  2313. trace_sched_switch(rq, prev, next);
  2314. mm = next->mm;
  2315. oldmm = prev->active_mm;
  2316. /*
  2317. * For paravirt, this is coupled with an exit in switch_to to
  2318. * combine the page table reload and the switch backend into
  2319. * one hypercall.
  2320. */
  2321. arch_enter_lazy_cpu_mode();
  2322. if (unlikely(!mm)) {
  2323. next->active_mm = oldmm;
  2324. atomic_inc(&oldmm->mm_count);
  2325. enter_lazy_tlb(oldmm, next);
  2326. } else
  2327. switch_mm(oldmm, mm, next);
  2328. if (unlikely(!prev->mm)) {
  2329. prev->active_mm = NULL;
  2330. rq->prev_mm = oldmm;
  2331. }
  2332. /*
  2333. * Since the runqueue lock will be released by the next
  2334. * task (which is an invalid locking op but in the case
  2335. * of the scheduler it's an obvious special-case), so we
  2336. * do an early lockdep release here:
  2337. */
  2338. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  2339. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  2340. #endif
  2341. /* Here we just switch the register state and the stack. */
  2342. switch_to(prev, next, prev);
  2343. barrier();
  2344. /*
  2345. * this_rq must be evaluated again because prev may have moved
  2346. * CPUs since it called schedule(), thus the 'rq' on its stack
  2347. * frame will be invalid.
  2348. */
  2349. finish_task_switch(this_rq(), prev);
  2350. }
  2351. /*
  2352. * nr_running, nr_uninterruptible and nr_context_switches:
  2353. *
  2354. * externally visible scheduler statistics: current number of runnable
  2355. * threads, current number of uninterruptible-sleeping threads, total
  2356. * number of context switches performed since bootup.
  2357. */
  2358. unsigned long nr_running(void)
  2359. {
  2360. unsigned long i, sum = 0;
  2361. for_each_online_cpu(i)
  2362. sum += cpu_rq(i)->nr_running;
  2363. return sum;
  2364. }
  2365. unsigned long nr_uninterruptible(void)
  2366. {
  2367. unsigned long i, sum = 0;
  2368. for_each_possible_cpu(i)
  2369. sum += cpu_rq(i)->nr_uninterruptible;
  2370. /*
  2371. * Since we read the counters lockless, it might be slightly
  2372. * inaccurate. Do not allow it to go below zero though:
  2373. */
  2374. if (unlikely((long)sum < 0))
  2375. sum = 0;
  2376. return sum;
  2377. }
  2378. unsigned long long nr_context_switches(void)
  2379. {
  2380. int i;
  2381. unsigned long long sum = 0;
  2382. for_each_possible_cpu(i)
  2383. sum += cpu_rq(i)->nr_switches;
  2384. return sum;
  2385. }
  2386. unsigned long nr_iowait(void)
  2387. {
  2388. unsigned long i, sum = 0;
  2389. for_each_possible_cpu(i)
  2390. sum += atomic_read(&cpu_rq(i)->nr_iowait);
  2391. return sum;
  2392. }
  2393. unsigned long nr_active(void)
  2394. {
  2395. unsigned long i, running = 0, uninterruptible = 0;
  2396. for_each_online_cpu(i) {
  2397. running += cpu_rq(i)->nr_running;
  2398. uninterruptible += cpu_rq(i)->nr_uninterruptible;
  2399. }
  2400. if (unlikely((long)uninterruptible < 0))
  2401. uninterruptible = 0;
  2402. return running + uninterruptible;
  2403. }
  2404. /*
  2405. * Update rq->cpu_load[] statistics. This function is usually called every
  2406. * scheduler tick (TICK_NSEC).
  2407. */
  2408. static void update_cpu_load(struct rq *this_rq)
  2409. {
  2410. unsigned long this_load = this_rq->load.weight;
  2411. int i, scale;
  2412. this_rq->nr_load_updates++;
  2413. /* Update our load: */
  2414. for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
  2415. unsigned long old_load, new_load;
  2416. /* scale is effectively 1 << i now, and >> i divides by scale */
  2417. old_load = this_rq->cpu_load[i];
  2418. new_load = this_load;
  2419. /*
  2420. * Round up the averaging division if load is increasing. This
  2421. * prevents us from getting stuck on 9 if the load is 10, for
  2422. * example.
  2423. */
  2424. if (new_load > old_load)
  2425. new_load += scale-1;
  2426. this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
  2427. }
  2428. }
  2429. #ifdef CONFIG_SMP
  2430. /*
  2431. * double_rq_lock - safely lock two runqueues
  2432. *
  2433. * Note this does not disable interrupts like task_rq_lock,
  2434. * you need to do so manually before calling.
  2435. */
  2436. static void double_rq_lock(struct rq *rq1, struct rq *rq2)
  2437. __acquires(rq1->lock)
  2438. __acquires(rq2->lock)
  2439. {
  2440. BUG_ON(!irqs_disabled());
  2441. if (rq1 == rq2) {
  2442. spin_lock(&rq1->lock);
  2443. __acquire(rq2->lock); /* Fake it out ;) */
  2444. } else {
  2445. if (rq1 < rq2) {
  2446. spin_lock(&rq1->lock);
  2447. spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
  2448. } else {
  2449. spin_lock(&rq2->lock);
  2450. spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
  2451. }
  2452. }
  2453. update_rq_clock(rq1);
  2454. update_rq_clock(rq2);
  2455. }
  2456. /*
  2457. * double_rq_unlock - safely unlock two runqueues
  2458. *
  2459. * Note this does not restore interrupts like task_rq_unlock,
  2460. * you need to do so manually after calling.
  2461. */
  2462. static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
  2463. __releases(rq1->lock)
  2464. __releases(rq2->lock)
  2465. {
  2466. spin_unlock(&rq1->lock);
  2467. if (rq1 != rq2)
  2468. spin_unlock(&rq2->lock);
  2469. else
  2470. __release(rq2->lock);
  2471. }
  2472. /*
  2473. * If dest_cpu is allowed for this process, migrate the task to it.
  2474. * This is accomplished by forcing the cpu_allowed mask to only
  2475. * allow dest_cpu, which will force the cpu onto dest_cpu. Then
  2476. * the cpu_allowed mask is restored.
  2477. */
  2478. static void sched_migrate_task(struct task_struct *p, int dest_cpu)
  2479. {
  2480. struct migration_req req;
  2481. unsigned long flags;
  2482. struct rq *rq;
  2483. rq = task_rq_lock(p, &flags);
  2484. if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed)
  2485. || unlikely(!cpu_active(dest_cpu)))
  2486. goto out;
  2487. /* force the process onto the specified CPU */
  2488. if (migrate_task(p, dest_cpu, &req)) {
  2489. /* Need to wait for migration thread (might exit: take ref). */
  2490. struct task_struct *mt = rq->migration_thread;
  2491. get_task_struct(mt);
  2492. task_rq_unlock(rq, &flags);
  2493. wake_up_process(mt);
  2494. put_task_struct(mt);
  2495. wait_for_completion(&req.done);
  2496. return;
  2497. }
  2498. out:
  2499. task_rq_unlock(rq, &flags);
  2500. }
  2501. /*
  2502. * sched_exec - execve() is a valuable balancing opportunity, because at
  2503. * this point the task has the smallest effective memory and cache footprint.
  2504. */
  2505. void sched_exec(void)
  2506. {
  2507. int new_cpu, this_cpu = get_cpu();
  2508. new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
  2509. put_cpu();
  2510. if (new_cpu != this_cpu)
  2511. sched_migrate_task(current, new_cpu);
  2512. }
  2513. /*
  2514. * pull_task - move a task from a remote runqueue to the local runqueue.
  2515. * Both runqueues must be locked.
  2516. */
  2517. static void pull_task(struct rq *src_rq, struct task_struct *p,
  2518. struct rq *this_rq, int this_cpu)
  2519. {
  2520. deactivate_task(src_rq, p, 0);
  2521. set_task_cpu(p, this_cpu);
  2522. activate_task(this_rq, p, 0);
  2523. /*
  2524. * Note that idle threads have a prio of MAX_PRIO, for this test
  2525. * to be always true for them.
  2526. */
  2527. check_preempt_curr(this_rq, p, 0);
  2528. }
  2529. /*
  2530. * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
  2531. */
  2532. static
  2533. int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
  2534. struct sched_domain *sd, enum cpu_idle_type idle,
  2535. int *all_pinned)
  2536. {
  2537. /*
  2538. * We do not migrate tasks that are:
  2539. * 1) running (obviously), or
  2540. * 2) cannot be migrated to this CPU due to cpus_allowed, or
  2541. * 3) are cache-hot on their current CPU.
  2542. */
  2543. if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) {
  2544. schedstat_inc(p, se.nr_failed_migrations_affine);
  2545. return 0;
  2546. }
  2547. *all_pinned = 0;
  2548. if (task_running(rq, p)) {
  2549. schedstat_inc(p, se.nr_failed_migrations_running);
  2550. return 0;
  2551. }
  2552. /*
  2553. * Aggressive migration if:
  2554. * 1) task is cache cold, or
  2555. * 2) too many balance attempts have failed.
  2556. */
  2557. if (!task_hot(p, rq->clock, sd) ||
  2558. sd->nr_balance_failed > sd->cache_nice_tries) {
  2559. #ifdef CONFIG_SCHEDSTATS
  2560. if (task_hot(p, rq->clock, sd)) {
  2561. schedstat_inc(sd, lb_hot_gained[idle]);
  2562. schedstat_inc(p, se.nr_forced_migrations);
  2563. }
  2564. #endif
  2565. return 1;
  2566. }
  2567. if (task_hot(p, rq->clock, sd)) {
  2568. schedstat_inc(p, se.nr_failed_migrations_hot);
  2569. return 0;
  2570. }
  2571. return 1;
  2572. }
  2573. static unsigned long
  2574. balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2575. unsigned long max_load_move, struct sched_domain *sd,
  2576. enum cpu_idle_type idle, int *all_pinned,
  2577. int *this_best_prio, struct rq_iterator *iterator)
  2578. {
  2579. int loops = 0, pulled = 0, pinned = 0;
  2580. struct task_struct *p;
  2581. long rem_load_move = max_load_move;
  2582. if (max_load_move == 0)
  2583. goto out;
  2584. pinned = 1;
  2585. /*
  2586. * Start the load-balancing iterator:
  2587. */
  2588. p = iterator->start(iterator->arg);
  2589. next:
  2590. if (!p || loops++ > sysctl_sched_nr_migrate)
  2591. goto out;
  2592. if ((p->se.load.weight >> 1) > rem_load_move ||
  2593. !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
  2594. p = iterator->next(iterator->arg);
  2595. goto next;
  2596. }
  2597. pull_task(busiest, p, this_rq, this_cpu);
  2598. pulled++;
  2599. rem_load_move -= p->se.load.weight;
  2600. #ifdef CONFIG_PREEMPT
  2601. /*
  2602. * NEWIDLE balancing is a source of latency, so preemptible kernels
  2603. * will stop after the first task is pulled to minimize the critical
  2604. * section.
  2605. */
  2606. if (idle == CPU_NEWLY_IDLE)
  2607. goto out;
  2608. #endif
  2609. /*
  2610. * We only want to steal up to the prescribed amount of weighted load.
  2611. */
  2612. if (rem_load_move > 0) {
  2613. if (p->prio < *this_best_prio)
  2614. *this_best_prio = p->prio;
  2615. p = iterator->next(iterator->arg);
  2616. goto next;
  2617. }
  2618. out:
  2619. /*
  2620. * Right now, this is one of only two places pull_task() is called,
  2621. * so we can safely collect pull_task() stats here rather than
  2622. * inside pull_task().
  2623. */
  2624. schedstat_add(sd, lb_gained[idle], pulled);
  2625. if (all_pinned)
  2626. *all_pinned = pinned;
  2627. return max_load_move - rem_load_move;
  2628. }
  2629. /*
  2630. * move_tasks tries to move up to max_load_move weighted load from busiest to
  2631. * this_rq, as part of a balancing operation within domain "sd".
  2632. * Returns 1 if successful and 0 otherwise.
  2633. *
  2634. * Called with both runqueues locked.
  2635. */
  2636. static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2637. unsigned long max_load_move,
  2638. struct sched_domain *sd, enum cpu_idle_type idle,
  2639. int *all_pinned)
  2640. {
  2641. const struct sched_class *class = sched_class_highest;
  2642. unsigned long total_load_moved = 0;
  2643. int this_best_prio = this_rq->curr->prio;
  2644. do {
  2645. total_load_moved +=
  2646. class->load_balance(this_rq, this_cpu, busiest,
  2647. max_load_move - total_load_moved,
  2648. sd, idle, all_pinned, &this_best_prio);
  2649. class = class->next;
  2650. #ifdef CONFIG_PREEMPT
  2651. /*
  2652. * NEWIDLE balancing is a source of latency, so preemptible
  2653. * kernels will stop after the first task is pulled to minimize
  2654. * the critical section.
  2655. */
  2656. if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
  2657. break;
  2658. #endif
  2659. } while (class && max_load_move > total_load_moved);
  2660. return total_load_moved > 0;
  2661. }
  2662. static int
  2663. iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2664. struct sched_domain *sd, enum cpu_idle_type idle,
  2665. struct rq_iterator *iterator)
  2666. {
  2667. struct task_struct *p = iterator->start(iterator->arg);
  2668. int pinned = 0;
  2669. while (p) {
  2670. if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
  2671. pull_task(busiest, p, this_rq, this_cpu);
  2672. /*
  2673. * Right now, this is only the second place pull_task()
  2674. * is called, so we can safely collect pull_task()
  2675. * stats here rather than inside pull_task().
  2676. */
  2677. schedstat_inc(sd, lb_gained[idle]);
  2678. return 1;
  2679. }
  2680. p = iterator->next(iterator->arg);
  2681. }
  2682. return 0;
  2683. }
  2684. /*
  2685. * move_one_task tries to move exactly one task from busiest to this_rq, as
  2686. * part of active balancing operations within "domain".
  2687. * Returns 1 if successful and 0 otherwise.
  2688. *
  2689. * Called with both runqueues locked.
  2690. */
  2691. static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2692. struct sched_domain *sd, enum cpu_idle_type idle)
  2693. {
  2694. const struct sched_class *class;
  2695. for (class = sched_class_highest; class; class = class->next)
  2696. if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
  2697. return 1;
  2698. return 0;
  2699. }
  2700. /*
  2701. * find_busiest_group finds and returns the busiest CPU group within the
  2702. * domain. It calculates and returns the amount of weighted load which
  2703. * should be moved to restore balance via the imbalance parameter.
  2704. */
  2705. static struct sched_group *
  2706. find_busiest_group(struct sched_domain *sd, int this_cpu,
  2707. unsigned long *imbalance, enum cpu_idle_type idle,
  2708. int *sd_idle, const struct cpumask *cpus, int *balance)
  2709. {
  2710. struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
  2711. unsigned long max_load, avg_load, total_load, this_load, total_pwr;
  2712. unsigned long max_pull;
  2713. unsigned long busiest_load_per_task, busiest_nr_running;
  2714. unsigned long this_load_per_task, this_nr_running;
  2715. int load_idx, group_imb = 0;
  2716. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2717. int power_savings_balance = 1;
  2718. unsigned long leader_nr_running = 0, min_load_per_task = 0;
  2719. unsigned long min_nr_running = ULONG_MAX;
  2720. struct sched_group *group_min = NULL, *group_leader = NULL;
  2721. #endif
  2722. max_load = this_load = total_load = total_pwr = 0;
  2723. busiest_load_per_task = busiest_nr_running = 0;
  2724. this_load_per_task = this_nr_running = 0;
  2725. if (idle == CPU_NOT_IDLE)
  2726. load_idx = sd->busy_idx;
  2727. else if (idle == CPU_NEWLY_IDLE)
  2728. load_idx = sd->newidle_idx;
  2729. else
  2730. load_idx = sd->idle_idx;
  2731. do {
  2732. unsigned long load, group_capacity, max_cpu_load, min_cpu_load;
  2733. int local_group;
  2734. int i;
  2735. int __group_imb = 0;
  2736. unsigned int balance_cpu = -1, first_idle_cpu = 0;
  2737. unsigned long sum_nr_running, sum_weighted_load;
  2738. unsigned long sum_avg_load_per_task;
  2739. unsigned long avg_load_per_task;
  2740. local_group = cpumask_test_cpu(this_cpu,
  2741. sched_group_cpus(group));
  2742. if (local_group)
  2743. balance_cpu = cpumask_first(sched_group_cpus(group));
  2744. /* Tally up the load of all CPUs in the group */
  2745. sum_weighted_load = sum_nr_running = avg_load = 0;
  2746. sum_avg_load_per_task = avg_load_per_task = 0;
  2747. max_cpu_load = 0;
  2748. min_cpu_load = ~0UL;
  2749. for_each_cpu_and(i, sched_group_cpus(group), cpus) {
  2750. struct rq *rq = cpu_rq(i);
  2751. if (*sd_idle && rq->nr_running)
  2752. *sd_idle = 0;
  2753. /* Bias balancing toward cpus of our domain */
  2754. if (local_group) {
  2755. if (idle_cpu(i) && !first_idle_cpu) {
  2756. first_idle_cpu = 1;
  2757. balance_cpu = i;
  2758. }
  2759. load = target_load(i, load_idx);
  2760. } else {
  2761. load = source_load(i, load_idx);
  2762. if (load > max_cpu_load)
  2763. max_cpu_load = load;
  2764. if (min_cpu_load > load)
  2765. min_cpu_load = load;
  2766. }
  2767. avg_load += load;
  2768. sum_nr_running += rq->nr_running;
  2769. sum_weighted_load += weighted_cpuload(i);
  2770. sum_avg_load_per_task += cpu_avg_load_per_task(i);
  2771. }
  2772. /*
  2773. * First idle cpu or the first cpu(busiest) in this sched group
  2774. * is eligible for doing load balancing at this and above
  2775. * domains. In the newly idle case, we will allow all the cpu's
  2776. * to do the newly idle load balance.
  2777. */
  2778. if (idle != CPU_NEWLY_IDLE && local_group &&
  2779. balance_cpu != this_cpu && balance) {
  2780. *balance = 0;
  2781. goto ret;
  2782. }
  2783. total_load += avg_load;
  2784. total_pwr += group->__cpu_power;
  2785. /* Adjust by relative CPU power of the group */
  2786. avg_load = sg_div_cpu_power(group,
  2787. avg_load * SCHED_LOAD_SCALE);
  2788. /*
  2789. * Consider the group unbalanced when the imbalance is larger
  2790. * than the average weight of two tasks.
  2791. *
  2792. * APZ: with cgroup the avg task weight can vary wildly and
  2793. * might not be a suitable number - should we keep a
  2794. * normalized nr_running number somewhere that negates
  2795. * the hierarchy?
  2796. */
  2797. avg_load_per_task = sg_div_cpu_power(group,
  2798. sum_avg_load_per_task * SCHED_LOAD_SCALE);
  2799. if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
  2800. __group_imb = 1;
  2801. group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
  2802. if (local_group) {
  2803. this_load = avg_load;
  2804. this = group;
  2805. this_nr_running = sum_nr_running;
  2806. this_load_per_task = sum_weighted_load;
  2807. } else if (avg_load > max_load &&
  2808. (sum_nr_running > group_capacity || __group_imb)) {
  2809. max_load = avg_load;
  2810. busiest = group;
  2811. busiest_nr_running = sum_nr_running;
  2812. busiest_load_per_task = sum_weighted_load;
  2813. group_imb = __group_imb;
  2814. }
  2815. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2816. /*
  2817. * Busy processors will not participate in power savings
  2818. * balance.
  2819. */
  2820. if (idle == CPU_NOT_IDLE ||
  2821. !(sd->flags & SD_POWERSAVINGS_BALANCE))
  2822. goto group_next;
  2823. /*
  2824. * If the local group is idle or completely loaded
  2825. * no need to do power savings balance at this domain
  2826. */
  2827. if (local_group && (this_nr_running >= group_capacity ||
  2828. !this_nr_running))
  2829. power_savings_balance = 0;
  2830. /*
  2831. * If a group is already running at full capacity or idle,
  2832. * don't include that group in power savings calculations
  2833. */
  2834. if (!power_savings_balance || sum_nr_running >= group_capacity
  2835. || !sum_nr_running)
  2836. goto group_next;
  2837. /*
  2838. * Calculate the group which has the least non-idle load.
  2839. * This is the group from where we need to pick up the load
  2840. * for saving power
  2841. */
  2842. if ((sum_nr_running < min_nr_running) ||
  2843. (sum_nr_running == min_nr_running &&
  2844. cpumask_first(sched_group_cpus(group)) >
  2845. cpumask_first(sched_group_cpus(group_min)))) {
  2846. group_min = group;
  2847. min_nr_running = sum_nr_running;
  2848. min_load_per_task = sum_weighted_load /
  2849. sum_nr_running;
  2850. }
  2851. /*
  2852. * Calculate the group which is almost near its
  2853. * capacity but still has some space to pick up some load
  2854. * from other group and save more power
  2855. */
  2856. if (sum_nr_running <= group_capacity - 1) {
  2857. if (sum_nr_running > leader_nr_running ||
  2858. (sum_nr_running == leader_nr_running &&
  2859. cpumask_first(sched_group_cpus(group)) <
  2860. cpumask_first(sched_group_cpus(group_leader)))) {
  2861. group_leader = group;
  2862. leader_nr_running = sum_nr_running;
  2863. }
  2864. }
  2865. group_next:
  2866. #endif
  2867. group = group->next;
  2868. } while (group != sd->groups);
  2869. if (!busiest || this_load >= max_load || busiest_nr_running == 0)
  2870. goto out_balanced;
  2871. avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
  2872. if (this_load >= avg_load ||
  2873. 100*max_load <= sd->imbalance_pct*this_load)
  2874. goto out_balanced;
  2875. busiest_load_per_task /= busiest_nr_running;
  2876. if (group_imb)
  2877. busiest_load_per_task = min(busiest_load_per_task, avg_load);
  2878. /*
  2879. * We're trying to get all the cpus to the average_load, so we don't
  2880. * want to push ourselves above the average load, nor do we wish to
  2881. * reduce the max loaded cpu below the average load, as either of these
  2882. * actions would just result in more rebalancing later, and ping-pong
  2883. * tasks around. Thus we look for the minimum possible imbalance.
  2884. * Negative imbalances (*we* are more loaded than anyone else) will
  2885. * be counted as no imbalance for these purposes -- we can't fix that
  2886. * by pulling tasks to us. Be careful of negative numbers as they'll
  2887. * appear as very large values with unsigned longs.
  2888. */
  2889. if (max_load <= busiest_load_per_task)
  2890. goto out_balanced;
  2891. /*
  2892. * In the presence of smp nice balancing, certain scenarios can have
  2893. * max load less than avg load(as we skip the groups at or below
  2894. * its cpu_power, while calculating max_load..)
  2895. */
  2896. if (max_load < avg_load) {
  2897. *imbalance = 0;
  2898. goto small_imbalance;
  2899. }
  2900. /* Don't want to pull so many tasks that a group would go idle */
  2901. max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
  2902. /* How much load to actually move to equalise the imbalance */
  2903. *imbalance = min(max_pull * busiest->__cpu_power,
  2904. (avg_load - this_load) * this->__cpu_power)
  2905. / SCHED_LOAD_SCALE;
  2906. /*
  2907. * if *imbalance is less than the average load per runnable task
  2908. * there is no gaurantee that any tasks will be moved so we'll have
  2909. * a think about bumping its value to force at least one task to be
  2910. * moved
  2911. */
  2912. if (*imbalance < busiest_load_per_task) {
  2913. unsigned long tmp, pwr_now, pwr_move;
  2914. unsigned int imbn;
  2915. small_imbalance:
  2916. pwr_move = pwr_now = 0;
  2917. imbn = 2;
  2918. if (this_nr_running) {
  2919. this_load_per_task /= this_nr_running;
  2920. if (busiest_load_per_task > this_load_per_task)
  2921. imbn = 1;
  2922. } else
  2923. this_load_per_task = cpu_avg_load_per_task(this_cpu);
  2924. if (max_load - this_load + busiest_load_per_task >=
  2925. busiest_load_per_task * imbn) {
  2926. *imbalance = busiest_load_per_task;
  2927. return busiest;
  2928. }
  2929. /*
  2930. * OK, we don't have enough imbalance to justify moving tasks,
  2931. * however we may be able to increase total CPU power used by
  2932. * moving them.
  2933. */
  2934. pwr_now += busiest->__cpu_power *
  2935. min(busiest_load_per_task, max_load);
  2936. pwr_now += this->__cpu_power *
  2937. min(this_load_per_task, this_load);
  2938. pwr_now /= SCHED_LOAD_SCALE;
  2939. /* Amount of load we'd subtract */
  2940. tmp = sg_div_cpu_power(busiest,
  2941. busiest_load_per_task * SCHED_LOAD_SCALE);
  2942. if (max_load > tmp)
  2943. pwr_move += busiest->__cpu_power *
  2944. min(busiest_load_per_task, max_load - tmp);
  2945. /* Amount of load we'd add */
  2946. if (max_load * busiest->__cpu_power <
  2947. busiest_load_per_task * SCHED_LOAD_SCALE)
  2948. tmp = sg_div_cpu_power(this,
  2949. max_load * busiest->__cpu_power);
  2950. else
  2951. tmp = sg_div_cpu_power(this,
  2952. busiest_load_per_task * SCHED_LOAD_SCALE);
  2953. pwr_move += this->__cpu_power *
  2954. min(this_load_per_task, this_load + tmp);
  2955. pwr_move /= SCHED_LOAD_SCALE;
  2956. /* Move if we gain throughput */
  2957. if (pwr_move > pwr_now)
  2958. *imbalance = busiest_load_per_task;
  2959. }
  2960. return busiest;
  2961. out_balanced:
  2962. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2963. if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
  2964. goto ret;
  2965. if (this == group_leader && group_leader != group_min) {
  2966. *imbalance = min_load_per_task;
  2967. if (sched_mc_power_savings >= POWERSAVINGS_BALANCE_WAKEUP) {
  2968. cpu_rq(this_cpu)->rd->sched_mc_preferred_wakeup_cpu =
  2969. cpumask_first(sched_group_cpus(group_leader));
  2970. }
  2971. return group_min;
  2972. }
  2973. #endif
  2974. ret:
  2975. *imbalance = 0;
  2976. return NULL;
  2977. }
  2978. /*
  2979. * find_busiest_queue - find the busiest runqueue among the cpus in group.
  2980. */
  2981. static struct rq *
  2982. find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
  2983. unsigned long imbalance, const struct cpumask *cpus)
  2984. {
  2985. struct rq *busiest = NULL, *rq;
  2986. unsigned long max_load = 0;
  2987. int i;
  2988. for_each_cpu(i, sched_group_cpus(group)) {
  2989. unsigned long wl;
  2990. if (!cpumask_test_cpu(i, cpus))
  2991. continue;
  2992. rq = cpu_rq(i);
  2993. wl = weighted_cpuload(i);
  2994. if (rq->nr_running == 1 && wl > imbalance)
  2995. continue;
  2996. if (wl > max_load) {
  2997. max_load = wl;
  2998. busiest = rq;
  2999. }
  3000. }
  3001. return busiest;
  3002. }
  3003. /*
  3004. * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
  3005. * so long as it is large enough.
  3006. */
  3007. #define MAX_PINNED_INTERVAL 512
  3008. /*
  3009. * Check this_cpu to ensure it is balanced within domain. Attempt to move
  3010. * tasks if there is an imbalance.
  3011. */
  3012. static int load_balance(int this_cpu, struct rq *this_rq,
  3013. struct sched_domain *sd, enum cpu_idle_type idle,
  3014. int *balance, struct cpumask *cpus)
  3015. {
  3016. int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
  3017. struct sched_group *group;
  3018. unsigned long imbalance;
  3019. struct rq *busiest;
  3020. unsigned long flags;
  3021. cpumask_setall(cpus);
  3022. /*
  3023. * When power savings policy is enabled for the parent domain, idle
  3024. * sibling can pick up load irrespective of busy siblings. In this case,
  3025. * let the state of idle sibling percolate up as CPU_IDLE, instead of
  3026. * portraying it as CPU_NOT_IDLE.
  3027. */
  3028. if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
  3029. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3030. sd_idle = 1;
  3031. schedstat_inc(sd, lb_count[idle]);
  3032. redo:
  3033. update_shares(sd);
  3034. group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
  3035. cpus, balance);
  3036. if (*balance == 0)
  3037. goto out_balanced;
  3038. if (!group) {
  3039. schedstat_inc(sd, lb_nobusyg[idle]);
  3040. goto out_balanced;
  3041. }
  3042. busiest = find_busiest_queue(group, idle, imbalance, cpus);
  3043. if (!busiest) {
  3044. schedstat_inc(sd, lb_nobusyq[idle]);
  3045. goto out_balanced;
  3046. }
  3047. BUG_ON(busiest == this_rq);
  3048. schedstat_add(sd, lb_imbalance[idle], imbalance);
  3049. ld_moved = 0;
  3050. if (busiest->nr_running > 1) {
  3051. /*
  3052. * Attempt to move tasks. If find_busiest_group has found
  3053. * an imbalance but busiest->nr_running <= 1, the group is
  3054. * still unbalanced. ld_moved simply stays zero, so it is
  3055. * correctly treated as an imbalance.
  3056. */
  3057. local_irq_save(flags);
  3058. double_rq_lock(this_rq, busiest);
  3059. ld_moved = move_tasks(this_rq, this_cpu, busiest,
  3060. imbalance, sd, idle, &all_pinned);
  3061. double_rq_unlock(this_rq, busiest);
  3062. local_irq_restore(flags);
  3063. /*
  3064. * some other cpu did the load balance for us.
  3065. */
  3066. if (ld_moved && this_cpu != smp_processor_id())
  3067. resched_cpu(this_cpu);
  3068. /* All tasks on this runqueue were pinned by CPU affinity */
  3069. if (unlikely(all_pinned)) {
  3070. cpumask_clear_cpu(cpu_of(busiest), cpus);
  3071. if (!cpumask_empty(cpus))
  3072. goto redo;
  3073. goto out_balanced;
  3074. }
  3075. }
  3076. if (!ld_moved) {
  3077. schedstat_inc(sd, lb_failed[idle]);
  3078. sd->nr_balance_failed++;
  3079. if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
  3080. spin_lock_irqsave(&busiest->lock, flags);
  3081. /* don't kick the migration_thread, if the curr
  3082. * task on busiest cpu can't be moved to this_cpu
  3083. */
  3084. if (!cpumask_test_cpu(this_cpu,
  3085. &busiest->curr->cpus_allowed)) {
  3086. spin_unlock_irqrestore(&busiest->lock, flags);
  3087. all_pinned = 1;
  3088. goto out_one_pinned;
  3089. }
  3090. if (!busiest->active_balance) {
  3091. busiest->active_balance = 1;
  3092. busiest->push_cpu = this_cpu;
  3093. active_balance = 1;
  3094. }
  3095. spin_unlock_irqrestore(&busiest->lock, flags);
  3096. if (active_balance)
  3097. wake_up_process(busiest->migration_thread);
  3098. /*
  3099. * We've kicked active balancing, reset the failure
  3100. * counter.
  3101. */
  3102. sd->nr_balance_failed = sd->cache_nice_tries+1;
  3103. }
  3104. } else
  3105. sd->nr_balance_failed = 0;
  3106. if (likely(!active_balance)) {
  3107. /* We were unbalanced, so reset the balancing interval */
  3108. sd->balance_interval = sd->min_interval;
  3109. } else {
  3110. /*
  3111. * If we've begun active balancing, start to back off. This
  3112. * case may not be covered by the all_pinned logic if there
  3113. * is only 1 task on the busy runqueue (because we don't call
  3114. * move_tasks).
  3115. */
  3116. if (sd->balance_interval < sd->max_interval)
  3117. sd->balance_interval *= 2;
  3118. }
  3119. if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  3120. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3121. ld_moved = -1;
  3122. goto out;
  3123. out_balanced:
  3124. schedstat_inc(sd, lb_balanced[idle]);
  3125. sd->nr_balance_failed = 0;
  3126. out_one_pinned:
  3127. /* tune up the balancing interval */
  3128. if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
  3129. (sd->balance_interval < sd->max_interval))
  3130. sd->balance_interval *= 2;
  3131. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  3132. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3133. ld_moved = -1;
  3134. else
  3135. ld_moved = 0;
  3136. out:
  3137. if (ld_moved)
  3138. update_shares(sd);
  3139. return ld_moved;
  3140. }
  3141. /*
  3142. * Check this_cpu to ensure it is balanced within domain. Attempt to move
  3143. * tasks if there is an imbalance.
  3144. *
  3145. * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
  3146. * this_rq is locked.
  3147. */
  3148. static int
  3149. load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd,
  3150. struct cpumask *cpus)
  3151. {
  3152. struct sched_group *group;
  3153. struct rq *busiest = NULL;
  3154. unsigned long imbalance;
  3155. int ld_moved = 0;
  3156. int sd_idle = 0;
  3157. int all_pinned = 0;
  3158. cpumask_setall(cpus);
  3159. /*
  3160. * When power savings policy is enabled for the parent domain, idle
  3161. * sibling can pick up load irrespective of busy siblings. In this case,
  3162. * let the state of idle sibling percolate up as IDLE, instead of
  3163. * portraying it as CPU_NOT_IDLE.
  3164. */
  3165. if (sd->flags & SD_SHARE_CPUPOWER &&
  3166. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3167. sd_idle = 1;
  3168. schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
  3169. redo:
  3170. update_shares_locked(this_rq, sd);
  3171. group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
  3172. &sd_idle, cpus, NULL);
  3173. if (!group) {
  3174. schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
  3175. goto out_balanced;
  3176. }
  3177. busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
  3178. if (!busiest) {
  3179. schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
  3180. goto out_balanced;
  3181. }
  3182. BUG_ON(busiest == this_rq);
  3183. schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
  3184. ld_moved = 0;
  3185. if (busiest->nr_running > 1) {
  3186. /* Attempt to move tasks */
  3187. double_lock_balance(this_rq, busiest);
  3188. /* this_rq->clock is already updated */
  3189. update_rq_clock(busiest);
  3190. ld_moved = move_tasks(this_rq, this_cpu, busiest,
  3191. imbalance, sd, CPU_NEWLY_IDLE,
  3192. &all_pinned);
  3193. double_unlock_balance(this_rq, busiest);
  3194. if (unlikely(all_pinned)) {
  3195. cpumask_clear_cpu(cpu_of(busiest), cpus);
  3196. if (!cpumask_empty(cpus))
  3197. goto redo;
  3198. }
  3199. }
  3200. if (!ld_moved) {
  3201. int active_balance = 0;
  3202. schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
  3203. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  3204. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3205. return -1;
  3206. if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
  3207. return -1;
  3208. if (sd->nr_balance_failed++ < 2)
  3209. return -1;
  3210. /*
  3211. * The only task running in a non-idle cpu can be moved to this
  3212. * cpu in an attempt to completely freeup the other CPU
  3213. * package. The same method used to move task in load_balance()
  3214. * have been extended for load_balance_newidle() to speedup
  3215. * consolidation at sched_mc=POWERSAVINGS_BALANCE_WAKEUP (2)
  3216. *
  3217. * The package power saving logic comes from
  3218. * find_busiest_group(). If there are no imbalance, then
  3219. * f_b_g() will return NULL. However when sched_mc={1,2} then
  3220. * f_b_g() will select a group from which a running task may be
  3221. * pulled to this cpu in order to make the other package idle.
  3222. * If there is no opportunity to make a package idle and if
  3223. * there are no imbalance, then f_b_g() will return NULL and no
  3224. * action will be taken in load_balance_newidle().
  3225. *
  3226. * Under normal task pull operation due to imbalance, there
  3227. * will be more than one task in the source run queue and
  3228. * move_tasks() will succeed. ld_moved will be true and this
  3229. * active balance code will not be triggered.
  3230. */
  3231. /* Lock busiest in correct order while this_rq is held */
  3232. double_lock_balance(this_rq, busiest);
  3233. /*
  3234. * don't kick the migration_thread, if the curr
  3235. * task on busiest cpu can't be moved to this_cpu
  3236. */
  3237. if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) {
  3238. double_unlock_balance(this_rq, busiest);
  3239. all_pinned = 1;
  3240. return ld_moved;
  3241. }
  3242. if (!busiest->active_balance) {
  3243. busiest->active_balance = 1;
  3244. busiest->push_cpu = this_cpu;
  3245. active_balance = 1;
  3246. }
  3247. double_unlock_balance(this_rq, busiest);
  3248. /*
  3249. * Should not call ttwu while holding a rq->lock
  3250. */
  3251. spin_unlock(&this_rq->lock);
  3252. if (active_balance)
  3253. wake_up_process(busiest->migration_thread);
  3254. spin_lock(&this_rq->lock);
  3255. } else
  3256. sd->nr_balance_failed = 0;
  3257. update_shares_locked(this_rq, sd);
  3258. return ld_moved;
  3259. out_balanced:
  3260. schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
  3261. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  3262. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3263. return -1;
  3264. sd->nr_balance_failed = 0;
  3265. return 0;
  3266. }
  3267. /*
  3268. * idle_balance is called by schedule() if this_cpu is about to become
  3269. * idle. Attempts to pull tasks from other CPUs.
  3270. */
  3271. static void idle_balance(int this_cpu, struct rq *this_rq)
  3272. {
  3273. struct sched_domain *sd;
  3274. int pulled_task = 0;
  3275. unsigned long next_balance = jiffies + HZ;
  3276. cpumask_var_t tmpmask;
  3277. if (!alloc_cpumask_var(&tmpmask, GFP_ATOMIC))
  3278. return;
  3279. for_each_domain(this_cpu, sd) {
  3280. unsigned long interval;
  3281. if (!(sd->flags & SD_LOAD_BALANCE))
  3282. continue;
  3283. if (sd->flags & SD_BALANCE_NEWIDLE)
  3284. /* If we've pulled tasks over stop searching: */
  3285. pulled_task = load_balance_newidle(this_cpu, this_rq,
  3286. sd, tmpmask);
  3287. interval = msecs_to_jiffies(sd->balance_interval);
  3288. if (time_after(next_balance, sd->last_balance + interval))
  3289. next_balance = sd->last_balance + interval;
  3290. if (pulled_task)
  3291. break;
  3292. }
  3293. if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
  3294. /*
  3295. * We are going idle. next_balance may be set based on
  3296. * a busy processor. So reset next_balance.
  3297. */
  3298. this_rq->next_balance = next_balance;
  3299. }
  3300. free_cpumask_var(tmpmask);
  3301. }
  3302. /*
  3303. * active_load_balance is run by migration threads. It pushes running tasks
  3304. * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
  3305. * running on each physical CPU where possible, and avoids physical /
  3306. * logical imbalances.
  3307. *
  3308. * Called with busiest_rq locked.
  3309. */
  3310. static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
  3311. {
  3312. int target_cpu = busiest_rq->push_cpu;
  3313. struct sched_domain *sd;
  3314. struct rq *target_rq;
  3315. /* Is there any task to move? */
  3316. if (busiest_rq->nr_running <= 1)
  3317. return;
  3318. target_rq = cpu_rq(target_cpu);
  3319. /*
  3320. * This condition is "impossible", if it occurs
  3321. * we need to fix it. Originally reported by
  3322. * Bjorn Helgaas on a 128-cpu setup.
  3323. */
  3324. BUG_ON(busiest_rq == target_rq);
  3325. /* move a task from busiest_rq to target_rq */
  3326. double_lock_balance(busiest_rq, target_rq);
  3327. update_rq_clock(busiest_rq);
  3328. update_rq_clock(target_rq);
  3329. /* Search for an sd spanning us and the target CPU. */
  3330. for_each_domain(target_cpu, sd) {
  3331. if ((sd->flags & SD_LOAD_BALANCE) &&
  3332. cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
  3333. break;
  3334. }
  3335. if (likely(sd)) {
  3336. schedstat_inc(sd, alb_count);
  3337. if (move_one_task(target_rq, target_cpu, busiest_rq,
  3338. sd, CPU_IDLE))
  3339. schedstat_inc(sd, alb_pushed);
  3340. else
  3341. schedstat_inc(sd, alb_failed);
  3342. }
  3343. double_unlock_balance(busiest_rq, target_rq);
  3344. }
  3345. #ifdef CONFIG_NO_HZ
  3346. static struct {
  3347. atomic_t load_balancer;
  3348. cpumask_var_t cpu_mask;
  3349. } nohz ____cacheline_aligned = {
  3350. .load_balancer = ATOMIC_INIT(-1),
  3351. };
  3352. /*
  3353. * This routine will try to nominate the ilb (idle load balancing)
  3354. * owner among the cpus whose ticks are stopped. ilb owner will do the idle
  3355. * load balancing on behalf of all those cpus. If all the cpus in the system
  3356. * go into this tickless mode, then there will be no ilb owner (as there is
  3357. * no need for one) and all the cpus will sleep till the next wakeup event
  3358. * arrives...
  3359. *
  3360. * For the ilb owner, tick is not stopped. And this tick will be used
  3361. * for idle load balancing. ilb owner will still be part of
  3362. * nohz.cpu_mask..
  3363. *
  3364. * While stopping the tick, this cpu will become the ilb owner if there
  3365. * is no other owner. And will be the owner till that cpu becomes busy
  3366. * or if all cpus in the system stop their ticks at which point
  3367. * there is no need for ilb owner.
  3368. *
  3369. * When the ilb owner becomes busy, it nominates another owner, during the
  3370. * next busy scheduler_tick()
  3371. */
  3372. int select_nohz_load_balancer(int stop_tick)
  3373. {
  3374. int cpu = smp_processor_id();
  3375. if (stop_tick) {
  3376. cpu_rq(cpu)->in_nohz_recently = 1;
  3377. if (!cpu_active(cpu)) {
  3378. if (atomic_read(&nohz.load_balancer) != cpu)
  3379. return 0;
  3380. /*
  3381. * If we are going offline and still the leader,
  3382. * give up!
  3383. */
  3384. if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
  3385. BUG();
  3386. return 0;
  3387. }
  3388. cpumask_set_cpu(cpu, nohz.cpu_mask);
  3389. /* time for ilb owner also to sleep */
  3390. if (cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
  3391. if (atomic_read(&nohz.load_balancer) == cpu)
  3392. atomic_set(&nohz.load_balancer, -1);
  3393. return 0;
  3394. }
  3395. if (atomic_read(&nohz.load_balancer) == -1) {
  3396. /* make me the ilb owner */
  3397. if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
  3398. return 1;
  3399. } else if (atomic_read(&nohz.load_balancer) == cpu)
  3400. return 1;
  3401. } else {
  3402. if (!cpumask_test_cpu(cpu, nohz.cpu_mask))
  3403. return 0;
  3404. cpumask_clear_cpu(cpu, nohz.cpu_mask);
  3405. if (atomic_read(&nohz.load_balancer) == cpu)
  3406. if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
  3407. BUG();
  3408. }
  3409. return 0;
  3410. }
  3411. #endif
  3412. static DEFINE_SPINLOCK(balancing);
  3413. /*
  3414. * It checks each scheduling domain to see if it is due to be balanced,
  3415. * and initiates a balancing operation if so.
  3416. *
  3417. * Balancing parameters are set up in arch_init_sched_domains.
  3418. */
  3419. static void rebalance_domains(int cpu, enum cpu_idle_type idle)
  3420. {
  3421. int balance = 1;
  3422. struct rq *rq = cpu_rq(cpu);
  3423. unsigned long interval;
  3424. struct sched_domain *sd;
  3425. /* Earliest time when we have to do rebalance again */
  3426. unsigned long next_balance = jiffies + 60*HZ;
  3427. int update_next_balance = 0;
  3428. int need_serialize;
  3429. cpumask_var_t tmp;
  3430. /* Fails alloc? Rebalancing probably not a priority right now. */
  3431. if (!alloc_cpumask_var(&tmp, GFP_ATOMIC))
  3432. return;
  3433. for_each_domain(cpu, sd) {
  3434. if (!(sd->flags & SD_LOAD_BALANCE))
  3435. continue;
  3436. interval = sd->balance_interval;
  3437. if (idle != CPU_IDLE)
  3438. interval *= sd->busy_factor;
  3439. /* scale ms to jiffies */
  3440. interval = msecs_to_jiffies(interval);
  3441. if (unlikely(!interval))
  3442. interval = 1;
  3443. if (interval > HZ*NR_CPUS/10)
  3444. interval = HZ*NR_CPUS/10;
  3445. need_serialize = sd->flags & SD_SERIALIZE;
  3446. if (need_serialize) {
  3447. if (!spin_trylock(&balancing))
  3448. goto out;
  3449. }
  3450. if (time_after_eq(jiffies, sd->last_balance + interval)) {
  3451. if (load_balance(cpu, rq, sd, idle, &balance, tmp)) {
  3452. /*
  3453. * We've pulled tasks over so either we're no
  3454. * longer idle, or one of our SMT siblings is
  3455. * not idle.
  3456. */
  3457. idle = CPU_NOT_IDLE;
  3458. }
  3459. sd->last_balance = jiffies;
  3460. }
  3461. if (need_serialize)
  3462. spin_unlock(&balancing);
  3463. out:
  3464. if (time_after(next_balance, sd->last_balance + interval)) {
  3465. next_balance = sd->last_balance + interval;
  3466. update_next_balance = 1;
  3467. }
  3468. /*
  3469. * Stop the load balance at this level. There is another
  3470. * CPU in our sched group which is doing load balancing more
  3471. * actively.
  3472. */
  3473. if (!balance)
  3474. break;
  3475. }
  3476. /*
  3477. * next_balance will be updated only when there is a need.
  3478. * When the cpu is attached to null domain for ex, it will not be
  3479. * updated.
  3480. */
  3481. if (likely(update_next_balance))
  3482. rq->next_balance = next_balance;
  3483. free_cpumask_var(tmp);
  3484. }
  3485. /*
  3486. * run_rebalance_domains is triggered when needed from the scheduler tick.
  3487. * In CONFIG_NO_HZ case, the idle load balance owner will do the
  3488. * rebalancing for all the cpus for whom scheduler ticks are stopped.
  3489. */
  3490. static void run_rebalance_domains(struct softirq_action *h)
  3491. {
  3492. int this_cpu = smp_processor_id();
  3493. struct rq *this_rq = cpu_rq(this_cpu);
  3494. enum cpu_idle_type idle = this_rq->idle_at_tick ?
  3495. CPU_IDLE : CPU_NOT_IDLE;
  3496. rebalance_domains(this_cpu, idle);
  3497. #ifdef CONFIG_NO_HZ
  3498. /*
  3499. * If this cpu is the owner for idle load balancing, then do the
  3500. * balancing on behalf of the other idle cpus whose ticks are
  3501. * stopped.
  3502. */
  3503. if (this_rq->idle_at_tick &&
  3504. atomic_read(&nohz.load_balancer) == this_cpu) {
  3505. struct rq *rq;
  3506. int balance_cpu;
  3507. for_each_cpu(balance_cpu, nohz.cpu_mask) {
  3508. if (balance_cpu == this_cpu)
  3509. continue;
  3510. /*
  3511. * If this cpu gets work to do, stop the load balancing
  3512. * work being done for other cpus. Next load
  3513. * balancing owner will pick it up.
  3514. */
  3515. if (need_resched())
  3516. break;
  3517. rebalance_domains(balance_cpu, CPU_IDLE);
  3518. rq = cpu_rq(balance_cpu);
  3519. if (time_after(this_rq->next_balance, rq->next_balance))
  3520. this_rq->next_balance = rq->next_balance;
  3521. }
  3522. }
  3523. #endif
  3524. }
  3525. /*
  3526. * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
  3527. *
  3528. * In case of CONFIG_NO_HZ, this is the place where we nominate a new
  3529. * idle load balancing owner or decide to stop the periodic load balancing,
  3530. * if the whole system is idle.
  3531. */
  3532. static inline void trigger_load_balance(struct rq *rq, int cpu)
  3533. {
  3534. #ifdef CONFIG_NO_HZ
  3535. /*
  3536. * If we were in the nohz mode recently and busy at the current
  3537. * scheduler tick, then check if we need to nominate new idle
  3538. * load balancer.
  3539. */
  3540. if (rq->in_nohz_recently && !rq->idle_at_tick) {
  3541. rq->in_nohz_recently = 0;
  3542. if (atomic_read(&nohz.load_balancer) == cpu) {
  3543. cpumask_clear_cpu(cpu, nohz.cpu_mask);
  3544. atomic_set(&nohz.load_balancer, -1);
  3545. }
  3546. if (atomic_read(&nohz.load_balancer) == -1) {
  3547. /*
  3548. * simple selection for now: Nominate the
  3549. * first cpu in the nohz list to be the next
  3550. * ilb owner.
  3551. *
  3552. * TBD: Traverse the sched domains and nominate
  3553. * the nearest cpu in the nohz.cpu_mask.
  3554. */
  3555. int ilb = cpumask_first(nohz.cpu_mask);
  3556. if (ilb < nr_cpu_ids)
  3557. resched_cpu(ilb);
  3558. }
  3559. }
  3560. /*
  3561. * If this cpu is idle and doing idle load balancing for all the
  3562. * cpus with ticks stopped, is it time for that to stop?
  3563. */
  3564. if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
  3565. cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
  3566. resched_cpu(cpu);
  3567. return;
  3568. }
  3569. /*
  3570. * If this cpu is idle and the idle load balancing is done by
  3571. * someone else, then no need raise the SCHED_SOFTIRQ
  3572. */
  3573. if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
  3574. cpumask_test_cpu(cpu, nohz.cpu_mask))
  3575. return;
  3576. #endif
  3577. if (time_after_eq(jiffies, rq->next_balance))
  3578. raise_softirq(SCHED_SOFTIRQ);
  3579. }
  3580. #else /* CONFIG_SMP */
  3581. /*
  3582. * on UP we do not need to balance between CPUs:
  3583. */
  3584. static inline void idle_balance(int cpu, struct rq *rq)
  3585. {
  3586. }
  3587. #endif
  3588. DEFINE_PER_CPU(struct kernel_stat, kstat);
  3589. EXPORT_PER_CPU_SYMBOL(kstat);
  3590. /*
  3591. * Return any ns on the sched_clock that have not yet been banked in
  3592. * @p in case that task is currently running.
  3593. */
  3594. unsigned long long task_delta_exec(struct task_struct *p)
  3595. {
  3596. unsigned long flags;
  3597. struct rq *rq;
  3598. u64 ns = 0;
  3599. rq = task_rq_lock(p, &flags);
  3600. if (task_current(rq, p)) {
  3601. u64 delta_exec;
  3602. update_rq_clock(rq);
  3603. delta_exec = rq->clock - p->se.exec_start;
  3604. if ((s64)delta_exec > 0)
  3605. ns = delta_exec;
  3606. }
  3607. task_rq_unlock(rq, &flags);
  3608. return ns;
  3609. }
  3610. /*
  3611. * Account user cpu time to a process.
  3612. * @p: the process that the cpu time gets accounted to
  3613. * @cputime: the cpu time spent in user space since the last update
  3614. * @cputime_scaled: cputime scaled by cpu frequency
  3615. */
  3616. void account_user_time(struct task_struct *p, cputime_t cputime,
  3617. cputime_t cputime_scaled)
  3618. {
  3619. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3620. cputime64_t tmp;
  3621. /* Add user time to process. */
  3622. p->utime = cputime_add(p->utime, cputime);
  3623. p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
  3624. account_group_user_time(p, cputime);
  3625. /* Add user time to cpustat. */
  3626. tmp = cputime_to_cputime64(cputime);
  3627. if (TASK_NICE(p) > 0)
  3628. cpustat->nice = cputime64_add(cpustat->nice, tmp);
  3629. else
  3630. cpustat->user = cputime64_add(cpustat->user, tmp);
  3631. /* Account for user time used */
  3632. acct_update_integrals(p);
  3633. }
  3634. /*
  3635. * Account guest cpu time to a process.
  3636. * @p: the process that the cpu time gets accounted to
  3637. * @cputime: the cpu time spent in virtual machine since the last update
  3638. * @cputime_scaled: cputime scaled by cpu frequency
  3639. */
  3640. static void account_guest_time(struct task_struct *p, cputime_t cputime,
  3641. cputime_t cputime_scaled)
  3642. {
  3643. cputime64_t tmp;
  3644. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3645. tmp = cputime_to_cputime64(cputime);
  3646. /* Add guest time to process. */
  3647. p->utime = cputime_add(p->utime, cputime);
  3648. p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
  3649. account_group_user_time(p, cputime);
  3650. p->gtime = cputime_add(p->gtime, cputime);
  3651. /* Add guest time to cpustat. */
  3652. cpustat->user = cputime64_add(cpustat->user, tmp);
  3653. cpustat->guest = cputime64_add(cpustat->guest, tmp);
  3654. }
  3655. /*
  3656. * Account system cpu time to a process.
  3657. * @p: the process that the cpu time gets accounted to
  3658. * @hardirq_offset: the offset to subtract from hardirq_count()
  3659. * @cputime: the cpu time spent in kernel space since the last update
  3660. * @cputime_scaled: cputime scaled by cpu frequency
  3661. */
  3662. void account_system_time(struct task_struct *p, int hardirq_offset,
  3663. cputime_t cputime, cputime_t cputime_scaled)
  3664. {
  3665. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3666. cputime64_t tmp;
  3667. if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
  3668. account_guest_time(p, cputime, cputime_scaled);
  3669. return;
  3670. }
  3671. /* Add system time to process. */
  3672. p->stime = cputime_add(p->stime, cputime);
  3673. p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
  3674. account_group_system_time(p, cputime);
  3675. /* Add system time to cpustat. */
  3676. tmp = cputime_to_cputime64(cputime);
  3677. if (hardirq_count() - hardirq_offset)
  3678. cpustat->irq = cputime64_add(cpustat->irq, tmp);
  3679. else if (softirq_count())
  3680. cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
  3681. else
  3682. cpustat->system = cputime64_add(cpustat->system, tmp);
  3683. /* Account for system time used */
  3684. acct_update_integrals(p);
  3685. }
  3686. /*
  3687. * Account for involuntary wait time.
  3688. * @steal: the cpu time spent in involuntary wait
  3689. */
  3690. void account_steal_time(cputime_t cputime)
  3691. {
  3692. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3693. cputime64_t cputime64 = cputime_to_cputime64(cputime);
  3694. cpustat->steal = cputime64_add(cpustat->steal, cputime64);
  3695. }
  3696. /*
  3697. * Account for idle time.
  3698. * @cputime: the cpu time spent in idle wait
  3699. */
  3700. void account_idle_time(cputime_t cputime)
  3701. {
  3702. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3703. cputime64_t cputime64 = cputime_to_cputime64(cputime);
  3704. struct rq *rq = this_rq();
  3705. if (atomic_read(&rq->nr_iowait) > 0)
  3706. cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
  3707. else
  3708. cpustat->idle = cputime64_add(cpustat->idle, cputime64);
  3709. }
  3710. #ifndef CONFIG_VIRT_CPU_ACCOUNTING
  3711. /*
  3712. * Account a single tick of cpu time.
  3713. * @p: the process that the cpu time gets accounted to
  3714. * @user_tick: indicates if the tick is a user or a system tick
  3715. */
  3716. void account_process_tick(struct task_struct *p, int user_tick)
  3717. {
  3718. cputime_t one_jiffy = jiffies_to_cputime(1);
  3719. cputime_t one_jiffy_scaled = cputime_to_scaled(one_jiffy);
  3720. struct rq *rq = this_rq();
  3721. if (user_tick)
  3722. account_user_time(p, one_jiffy, one_jiffy_scaled);
  3723. else if (p != rq->idle)
  3724. account_system_time(p, HARDIRQ_OFFSET, one_jiffy,
  3725. one_jiffy_scaled);
  3726. else
  3727. account_idle_time(one_jiffy);
  3728. }
  3729. /*
  3730. * Account multiple ticks of steal time.
  3731. * @p: the process from which the cpu time has been stolen
  3732. * @ticks: number of stolen ticks
  3733. */
  3734. void account_steal_ticks(unsigned long ticks)
  3735. {
  3736. account_steal_time(jiffies_to_cputime(ticks));
  3737. }
  3738. /*
  3739. * Account multiple ticks of idle time.
  3740. * @ticks: number of stolen ticks
  3741. */
  3742. void account_idle_ticks(unsigned long ticks)
  3743. {
  3744. account_idle_time(jiffies_to_cputime(ticks));
  3745. }
  3746. #endif
  3747. /*
  3748. * Use precise platform statistics if available:
  3749. */
  3750. #ifdef CONFIG_VIRT_CPU_ACCOUNTING
  3751. cputime_t task_utime(struct task_struct *p)
  3752. {
  3753. return p->utime;
  3754. }
  3755. cputime_t task_stime(struct task_struct *p)
  3756. {
  3757. return p->stime;
  3758. }
  3759. #else
  3760. cputime_t task_utime(struct task_struct *p)
  3761. {
  3762. clock_t utime = cputime_to_clock_t(p->utime),
  3763. total = utime + cputime_to_clock_t(p->stime);
  3764. u64 temp;
  3765. /*
  3766. * Use CFS's precise accounting:
  3767. */
  3768. temp = (u64)nsec_to_clock_t(p->se.sum_exec_runtime);
  3769. if (total) {
  3770. temp *= utime;
  3771. do_div(temp, total);
  3772. }
  3773. utime = (clock_t)temp;
  3774. p->prev_utime = max(p->prev_utime, clock_t_to_cputime(utime));
  3775. return p->prev_utime;
  3776. }
  3777. cputime_t task_stime(struct task_struct *p)
  3778. {
  3779. clock_t stime;
  3780. /*
  3781. * Use CFS's precise accounting. (we subtract utime from
  3782. * the total, to make sure the total observed by userspace
  3783. * grows monotonically - apps rely on that):
  3784. */
  3785. stime = nsec_to_clock_t(p->se.sum_exec_runtime) -
  3786. cputime_to_clock_t(task_utime(p));
  3787. if (stime >= 0)
  3788. p->prev_stime = max(p->prev_stime, clock_t_to_cputime(stime));
  3789. return p->prev_stime;
  3790. }
  3791. #endif
  3792. inline cputime_t task_gtime(struct task_struct *p)
  3793. {
  3794. return p->gtime;
  3795. }
  3796. /*
  3797. * This function gets called by the timer code, with HZ frequency.
  3798. * We call it with interrupts disabled.
  3799. *
  3800. * It also gets called by the fork code, when changing the parent's
  3801. * timeslices.
  3802. */
  3803. void scheduler_tick(void)
  3804. {
  3805. int cpu = smp_processor_id();
  3806. struct rq *rq = cpu_rq(cpu);
  3807. struct task_struct *curr = rq->curr;
  3808. sched_clock_tick();
  3809. spin_lock(&rq->lock);
  3810. update_rq_clock(rq);
  3811. update_cpu_load(rq);
  3812. curr->sched_class->task_tick(rq, curr, 0);
  3813. spin_unlock(&rq->lock);
  3814. #ifdef CONFIG_SMP
  3815. rq->idle_at_tick = idle_cpu(cpu);
  3816. trigger_load_balance(rq, cpu);
  3817. #endif
  3818. }
  3819. #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
  3820. defined(CONFIG_PREEMPT_TRACER))
  3821. static inline unsigned long get_parent_ip(unsigned long addr)
  3822. {
  3823. if (in_lock_functions(addr)) {
  3824. addr = CALLER_ADDR2;
  3825. if (in_lock_functions(addr))
  3826. addr = CALLER_ADDR3;
  3827. }
  3828. return addr;
  3829. }
  3830. void __kprobes add_preempt_count(int val)
  3831. {
  3832. #ifdef CONFIG_DEBUG_PREEMPT
  3833. /*
  3834. * Underflow?
  3835. */
  3836. if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
  3837. return;
  3838. #endif
  3839. preempt_count() += val;
  3840. #ifdef CONFIG_DEBUG_PREEMPT
  3841. /*
  3842. * Spinlock count overflowing soon?
  3843. */
  3844. DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
  3845. PREEMPT_MASK - 10);
  3846. #endif
  3847. if (preempt_count() == val)
  3848. trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
  3849. }
  3850. EXPORT_SYMBOL(add_preempt_count);
  3851. void __kprobes sub_preempt_count(int val)
  3852. {
  3853. #ifdef CONFIG_DEBUG_PREEMPT
  3854. /*
  3855. * Underflow?
  3856. */
  3857. if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
  3858. return;
  3859. /*
  3860. * Is the spinlock portion underflowing?
  3861. */
  3862. if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
  3863. !(preempt_count() & PREEMPT_MASK)))
  3864. return;
  3865. #endif
  3866. if (preempt_count() == val)
  3867. trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
  3868. preempt_count() -= val;
  3869. }
  3870. EXPORT_SYMBOL(sub_preempt_count);
  3871. #endif
  3872. /*
  3873. * Print scheduling while atomic bug:
  3874. */
  3875. static noinline void __schedule_bug(struct task_struct *prev)
  3876. {
  3877. struct pt_regs *regs = get_irq_regs();
  3878. printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
  3879. prev->comm, prev->pid, preempt_count());
  3880. debug_show_held_locks(prev);
  3881. print_modules();
  3882. if (irqs_disabled())
  3883. print_irqtrace_events(prev);
  3884. if (regs)
  3885. show_regs(regs);
  3886. else
  3887. dump_stack();
  3888. }
  3889. /*
  3890. * Various schedule()-time debugging checks and statistics:
  3891. */
  3892. static inline void schedule_debug(struct task_struct *prev)
  3893. {
  3894. /*
  3895. * Test if we are atomic. Since do_exit() needs to call into
  3896. * schedule() atomically, we ignore that path for now.
  3897. * Otherwise, whine if we are scheduling when we should not be.
  3898. */
  3899. if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
  3900. __schedule_bug(prev);
  3901. profile_hit(SCHED_PROFILING, __builtin_return_address(0));
  3902. schedstat_inc(this_rq(), sched_count);
  3903. #ifdef CONFIG_SCHEDSTATS
  3904. if (unlikely(prev->lock_depth >= 0)) {
  3905. schedstat_inc(this_rq(), bkl_count);
  3906. schedstat_inc(prev, sched_info.bkl_count);
  3907. }
  3908. #endif
  3909. }
  3910. /*
  3911. * Pick up the highest-prio task:
  3912. */
  3913. static inline struct task_struct *
  3914. pick_next_task(struct rq *rq, struct task_struct *prev)
  3915. {
  3916. const struct sched_class *class;
  3917. struct task_struct *p;
  3918. /*
  3919. * Optimization: we know that if all tasks are in
  3920. * the fair class we can call that function directly:
  3921. */
  3922. if (likely(rq->nr_running == rq->cfs.nr_running)) {
  3923. p = fair_sched_class.pick_next_task(rq);
  3924. if (likely(p))
  3925. return p;
  3926. }
  3927. class = sched_class_highest;
  3928. for ( ; ; ) {
  3929. p = class->pick_next_task(rq);
  3930. if (p)
  3931. return p;
  3932. /*
  3933. * Will never be NULL as the idle class always
  3934. * returns a non-NULL p:
  3935. */
  3936. class = class->next;
  3937. }
  3938. }
  3939. /*
  3940. * schedule() is the main scheduler function.
  3941. */
  3942. asmlinkage void __sched schedule(void)
  3943. {
  3944. struct task_struct *prev, *next;
  3945. unsigned long *switch_count;
  3946. struct rq *rq;
  3947. int cpu;
  3948. need_resched:
  3949. preempt_disable();
  3950. cpu = smp_processor_id();
  3951. rq = cpu_rq(cpu);
  3952. rcu_qsctr_inc(cpu);
  3953. prev = rq->curr;
  3954. switch_count = &prev->nivcsw;
  3955. release_kernel_lock(prev);
  3956. need_resched_nonpreemptible:
  3957. schedule_debug(prev);
  3958. if (sched_feat(HRTICK))
  3959. hrtick_clear(rq);
  3960. spin_lock_irq(&rq->lock);
  3961. update_rq_clock(rq);
  3962. clear_tsk_need_resched(prev);
  3963. if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
  3964. if (unlikely(signal_pending_state(prev->state, prev)))
  3965. prev->state = TASK_RUNNING;
  3966. else
  3967. deactivate_task(rq, prev, 1);
  3968. switch_count = &prev->nvcsw;
  3969. }
  3970. #ifdef CONFIG_SMP
  3971. if (prev->sched_class->pre_schedule)
  3972. prev->sched_class->pre_schedule(rq, prev);
  3973. #endif
  3974. if (unlikely(!rq->nr_running))
  3975. idle_balance(cpu, rq);
  3976. prev->sched_class->put_prev_task(rq, prev);
  3977. next = pick_next_task(rq, prev);
  3978. if (likely(prev != next)) {
  3979. sched_info_switch(prev, next);
  3980. rq->nr_switches++;
  3981. rq->curr = next;
  3982. ++*switch_count;
  3983. context_switch(rq, prev, next); /* unlocks the rq */
  3984. /*
  3985. * the context switch might have flipped the stack from under
  3986. * us, hence refresh the local variables.
  3987. */
  3988. cpu = smp_processor_id();
  3989. rq = cpu_rq(cpu);
  3990. } else
  3991. spin_unlock_irq(&rq->lock);
  3992. if (unlikely(reacquire_kernel_lock(current) < 0))
  3993. goto need_resched_nonpreemptible;
  3994. preempt_enable_no_resched();
  3995. if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
  3996. goto need_resched;
  3997. }
  3998. EXPORT_SYMBOL(schedule);
  3999. #ifdef CONFIG_PREEMPT
  4000. /*
  4001. * this is the entry point to schedule() from in-kernel preemption
  4002. * off of preempt_enable. Kernel preemptions off return from interrupt
  4003. * occur there and call schedule directly.
  4004. */
  4005. asmlinkage void __sched preempt_schedule(void)
  4006. {
  4007. struct thread_info *ti = current_thread_info();
  4008. /*
  4009. * If there is a non-zero preempt_count or interrupts are disabled,
  4010. * we do not want to preempt the current task. Just return..
  4011. */
  4012. if (likely(ti->preempt_count || irqs_disabled()))
  4013. return;
  4014. do {
  4015. add_preempt_count(PREEMPT_ACTIVE);
  4016. schedule();
  4017. sub_preempt_count(PREEMPT_ACTIVE);
  4018. /*
  4019. * Check again in case we missed a preemption opportunity
  4020. * between schedule and now.
  4021. */
  4022. barrier();
  4023. } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
  4024. }
  4025. EXPORT_SYMBOL(preempt_schedule);
  4026. /*
  4027. * this is the entry point to schedule() from kernel preemption
  4028. * off of irq context.
  4029. * Note, that this is called and return with irqs disabled. This will
  4030. * protect us against recursive calling from irq.
  4031. */
  4032. asmlinkage void __sched preempt_schedule_irq(void)
  4033. {
  4034. struct thread_info *ti = current_thread_info();
  4035. /* Catch callers which need to be fixed */
  4036. BUG_ON(ti->preempt_count || !irqs_disabled());
  4037. do {
  4038. add_preempt_count(PREEMPT_ACTIVE);
  4039. local_irq_enable();
  4040. schedule();
  4041. local_irq_disable();
  4042. sub_preempt_count(PREEMPT_ACTIVE);
  4043. /*
  4044. * Check again in case we missed a preemption opportunity
  4045. * between schedule and now.
  4046. */
  4047. barrier();
  4048. } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
  4049. }
  4050. #endif /* CONFIG_PREEMPT */
  4051. int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
  4052. void *key)
  4053. {
  4054. return try_to_wake_up(curr->private, mode, sync);
  4055. }
  4056. EXPORT_SYMBOL(default_wake_function);
  4057. /*
  4058. * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
  4059. * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
  4060. * number) then we wake all the non-exclusive tasks and one exclusive task.
  4061. *
  4062. * There are circumstances in which we can try to wake a task which has already
  4063. * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
  4064. * zero in this (rare) case, and we handle it by continuing to scan the queue.
  4065. */
  4066. void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
  4067. int nr_exclusive, int sync, void *key)
  4068. {
  4069. wait_queue_t *curr, *next;
  4070. list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
  4071. unsigned flags = curr->flags;
  4072. if (curr->func(curr, mode, sync, key) &&
  4073. (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
  4074. break;
  4075. }
  4076. }
  4077. /**
  4078. * __wake_up - wake up threads blocked on a waitqueue.
  4079. * @q: the waitqueue
  4080. * @mode: which threads
  4081. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  4082. * @key: is directly passed to the wakeup function
  4083. */
  4084. void __wake_up(wait_queue_head_t *q, unsigned int mode,
  4085. int nr_exclusive, void *key)
  4086. {
  4087. unsigned long flags;
  4088. spin_lock_irqsave(&q->lock, flags);
  4089. __wake_up_common(q, mode, nr_exclusive, 0, key);
  4090. spin_unlock_irqrestore(&q->lock, flags);
  4091. }
  4092. EXPORT_SYMBOL(__wake_up);
  4093. /*
  4094. * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
  4095. */
  4096. void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
  4097. {
  4098. __wake_up_common(q, mode, 1, 0, NULL);
  4099. }
  4100. /**
  4101. * __wake_up_sync - wake up threads blocked on a waitqueue.
  4102. * @q: the waitqueue
  4103. * @mode: which threads
  4104. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  4105. *
  4106. * The sync wakeup differs that the waker knows that it will schedule
  4107. * away soon, so while the target thread will be woken up, it will not
  4108. * be migrated to another CPU - ie. the two threads are 'synchronized'
  4109. * with each other. This can prevent needless bouncing between CPUs.
  4110. *
  4111. * On UP it can prevent extra preemption.
  4112. */
  4113. void
  4114. __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
  4115. {
  4116. unsigned long flags;
  4117. int sync = 1;
  4118. if (unlikely(!q))
  4119. return;
  4120. if (unlikely(!nr_exclusive))
  4121. sync = 0;
  4122. spin_lock_irqsave(&q->lock, flags);
  4123. __wake_up_common(q, mode, nr_exclusive, sync, NULL);
  4124. spin_unlock_irqrestore(&q->lock, flags);
  4125. }
  4126. EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
  4127. /**
  4128. * complete: - signals a single thread waiting on this completion
  4129. * @x: holds the state of this particular completion
  4130. *
  4131. * This will wake up a single thread waiting on this completion. Threads will be
  4132. * awakened in the same order in which they were queued.
  4133. *
  4134. * See also complete_all(), wait_for_completion() and related routines.
  4135. */
  4136. void complete(struct completion *x)
  4137. {
  4138. unsigned long flags;
  4139. spin_lock_irqsave(&x->wait.lock, flags);
  4140. x->done++;
  4141. __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
  4142. spin_unlock_irqrestore(&x->wait.lock, flags);
  4143. }
  4144. EXPORT_SYMBOL(complete);
  4145. /**
  4146. * complete_all: - signals all threads waiting on this completion
  4147. * @x: holds the state of this particular completion
  4148. *
  4149. * This will wake up all threads waiting on this particular completion event.
  4150. */
  4151. void complete_all(struct completion *x)
  4152. {
  4153. unsigned long flags;
  4154. spin_lock_irqsave(&x->wait.lock, flags);
  4155. x->done += UINT_MAX/2;
  4156. __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
  4157. spin_unlock_irqrestore(&x->wait.lock, flags);
  4158. }
  4159. EXPORT_SYMBOL(complete_all);
  4160. static inline long __sched
  4161. do_wait_for_common(struct completion *x, long timeout, int state)
  4162. {
  4163. if (!x->done) {
  4164. DECLARE_WAITQUEUE(wait, current);
  4165. wait.flags |= WQ_FLAG_EXCLUSIVE;
  4166. __add_wait_queue_tail(&x->wait, &wait);
  4167. do {
  4168. if (signal_pending_state(state, current)) {
  4169. timeout = -ERESTARTSYS;
  4170. break;
  4171. }
  4172. __set_current_state(state);
  4173. spin_unlock_irq(&x->wait.lock);
  4174. timeout = schedule_timeout(timeout);
  4175. spin_lock_irq(&x->wait.lock);
  4176. } while (!x->done && timeout);
  4177. __remove_wait_queue(&x->wait, &wait);
  4178. if (!x->done)
  4179. return timeout;
  4180. }
  4181. x->done--;
  4182. return timeout ?: 1;
  4183. }
  4184. static long __sched
  4185. wait_for_common(struct completion *x, long timeout, int state)
  4186. {
  4187. might_sleep();
  4188. spin_lock_irq(&x->wait.lock);
  4189. timeout = do_wait_for_common(x, timeout, state);
  4190. spin_unlock_irq(&x->wait.lock);
  4191. return timeout;
  4192. }
  4193. /**
  4194. * wait_for_completion: - waits for completion of a task
  4195. * @x: holds the state of this particular completion
  4196. *
  4197. * This waits to be signaled for completion of a specific task. It is NOT
  4198. * interruptible and there is no timeout.
  4199. *
  4200. * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
  4201. * and interrupt capability. Also see complete().
  4202. */
  4203. void __sched wait_for_completion(struct completion *x)
  4204. {
  4205. wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
  4206. }
  4207. EXPORT_SYMBOL(wait_for_completion);
  4208. /**
  4209. * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
  4210. * @x: holds the state of this particular completion
  4211. * @timeout: timeout value in jiffies
  4212. *
  4213. * This waits for either a completion of a specific task to be signaled or for a
  4214. * specified timeout to expire. The timeout is in jiffies. It is not
  4215. * interruptible.
  4216. */
  4217. unsigned long __sched
  4218. wait_for_completion_timeout(struct completion *x, unsigned long timeout)
  4219. {
  4220. return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
  4221. }
  4222. EXPORT_SYMBOL(wait_for_completion_timeout);
  4223. /**
  4224. * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
  4225. * @x: holds the state of this particular completion
  4226. *
  4227. * This waits for completion of a specific task to be signaled. It is
  4228. * interruptible.
  4229. */
  4230. int __sched wait_for_completion_interruptible(struct completion *x)
  4231. {
  4232. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
  4233. if (t == -ERESTARTSYS)
  4234. return t;
  4235. return 0;
  4236. }
  4237. EXPORT_SYMBOL(wait_for_completion_interruptible);
  4238. /**
  4239. * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
  4240. * @x: holds the state of this particular completion
  4241. * @timeout: timeout value in jiffies
  4242. *
  4243. * This waits for either a completion of a specific task to be signaled or for a
  4244. * specified timeout to expire. It is interruptible. The timeout is in jiffies.
  4245. */
  4246. unsigned long __sched
  4247. wait_for_completion_interruptible_timeout(struct completion *x,
  4248. unsigned long timeout)
  4249. {
  4250. return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
  4251. }
  4252. EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
  4253. /**
  4254. * wait_for_completion_killable: - waits for completion of a task (killable)
  4255. * @x: holds the state of this particular completion
  4256. *
  4257. * This waits to be signaled for completion of a specific task. It can be
  4258. * interrupted by a kill signal.
  4259. */
  4260. int __sched wait_for_completion_killable(struct completion *x)
  4261. {
  4262. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
  4263. if (t == -ERESTARTSYS)
  4264. return t;
  4265. return 0;
  4266. }
  4267. EXPORT_SYMBOL(wait_for_completion_killable);
  4268. /**
  4269. * try_wait_for_completion - try to decrement a completion without blocking
  4270. * @x: completion structure
  4271. *
  4272. * Returns: 0 if a decrement cannot be done without blocking
  4273. * 1 if a decrement succeeded.
  4274. *
  4275. * If a completion is being used as a counting completion,
  4276. * attempt to decrement the counter without blocking. This
  4277. * enables us to avoid waiting if the resource the completion
  4278. * is protecting is not available.
  4279. */
  4280. bool try_wait_for_completion(struct completion *x)
  4281. {
  4282. int ret = 1;
  4283. spin_lock_irq(&x->wait.lock);
  4284. if (!x->done)
  4285. ret = 0;
  4286. else
  4287. x->done--;
  4288. spin_unlock_irq(&x->wait.lock);
  4289. return ret;
  4290. }
  4291. EXPORT_SYMBOL(try_wait_for_completion);
  4292. /**
  4293. * completion_done - Test to see if a completion has any waiters
  4294. * @x: completion structure
  4295. *
  4296. * Returns: 0 if there are waiters (wait_for_completion() in progress)
  4297. * 1 if there are no waiters.
  4298. *
  4299. */
  4300. bool completion_done(struct completion *x)
  4301. {
  4302. int ret = 1;
  4303. spin_lock_irq(&x->wait.lock);
  4304. if (!x->done)
  4305. ret = 0;
  4306. spin_unlock_irq(&x->wait.lock);
  4307. return ret;
  4308. }
  4309. EXPORT_SYMBOL(completion_done);
  4310. static long __sched
  4311. sleep_on_common(wait_queue_head_t *q, int state, long timeout)
  4312. {
  4313. unsigned long flags;
  4314. wait_queue_t wait;
  4315. init_waitqueue_entry(&wait, current);
  4316. __set_current_state(state);
  4317. spin_lock_irqsave(&q->lock, flags);
  4318. __add_wait_queue(q, &wait);
  4319. spin_unlock(&q->lock);
  4320. timeout = schedule_timeout(timeout);
  4321. spin_lock_irq(&q->lock);
  4322. __remove_wait_queue(q, &wait);
  4323. spin_unlock_irqrestore(&q->lock, flags);
  4324. return timeout;
  4325. }
  4326. void __sched interruptible_sleep_on(wait_queue_head_t *q)
  4327. {
  4328. sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  4329. }
  4330. EXPORT_SYMBOL(interruptible_sleep_on);
  4331. long __sched
  4332. interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
  4333. {
  4334. return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
  4335. }
  4336. EXPORT_SYMBOL(interruptible_sleep_on_timeout);
  4337. void __sched sleep_on(wait_queue_head_t *q)
  4338. {
  4339. sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  4340. }
  4341. EXPORT_SYMBOL(sleep_on);
  4342. long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
  4343. {
  4344. return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
  4345. }
  4346. EXPORT_SYMBOL(sleep_on_timeout);
  4347. #ifdef CONFIG_RT_MUTEXES
  4348. /*
  4349. * rt_mutex_setprio - set the current priority of a task
  4350. * @p: task
  4351. * @prio: prio value (kernel-internal form)
  4352. *
  4353. * This function changes the 'effective' priority of a task. It does
  4354. * not touch ->normal_prio like __setscheduler().
  4355. *
  4356. * Used by the rt_mutex code to implement priority inheritance logic.
  4357. */
  4358. void rt_mutex_setprio(struct task_struct *p, int prio)
  4359. {
  4360. unsigned long flags;
  4361. int oldprio, on_rq, running;
  4362. struct rq *rq;
  4363. const struct sched_class *prev_class = p->sched_class;
  4364. BUG_ON(prio < 0 || prio > MAX_PRIO);
  4365. rq = task_rq_lock(p, &flags);
  4366. update_rq_clock(rq);
  4367. oldprio = p->prio;
  4368. on_rq = p->se.on_rq;
  4369. running = task_current(rq, p);
  4370. if (on_rq)
  4371. dequeue_task(rq, p, 0);
  4372. if (running)
  4373. p->sched_class->put_prev_task(rq, p);
  4374. if (rt_prio(prio))
  4375. p->sched_class = &rt_sched_class;
  4376. else
  4377. p->sched_class = &fair_sched_class;
  4378. p->prio = prio;
  4379. if (running)
  4380. p->sched_class->set_curr_task(rq);
  4381. if (on_rq) {
  4382. enqueue_task(rq, p, 0);
  4383. check_class_changed(rq, p, prev_class, oldprio, running);
  4384. }
  4385. task_rq_unlock(rq, &flags);
  4386. }
  4387. #endif
  4388. void set_user_nice(struct task_struct *p, long nice)
  4389. {
  4390. int old_prio, delta, on_rq;
  4391. unsigned long flags;
  4392. struct rq *rq;
  4393. if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
  4394. return;
  4395. /*
  4396. * We have to be careful, if called from sys_setpriority(),
  4397. * the task might be in the middle of scheduling on another CPU.
  4398. */
  4399. rq = task_rq_lock(p, &flags);
  4400. update_rq_clock(rq);
  4401. /*
  4402. * The RT priorities are set via sched_setscheduler(), but we still
  4403. * allow the 'normal' nice value to be set - but as expected
  4404. * it wont have any effect on scheduling until the task is
  4405. * SCHED_FIFO/SCHED_RR:
  4406. */
  4407. if (task_has_rt_policy(p)) {
  4408. p->static_prio = NICE_TO_PRIO(nice);
  4409. goto out_unlock;
  4410. }
  4411. on_rq = p->se.on_rq;
  4412. if (on_rq)
  4413. dequeue_task(rq, p, 0);
  4414. p->static_prio = NICE_TO_PRIO(nice);
  4415. set_load_weight(p);
  4416. old_prio = p->prio;
  4417. p->prio = effective_prio(p);
  4418. delta = p->prio - old_prio;
  4419. if (on_rq) {
  4420. enqueue_task(rq, p, 0);
  4421. /*
  4422. * If the task increased its priority or is running and
  4423. * lowered its priority, then reschedule its CPU:
  4424. */
  4425. if (delta < 0 || (delta > 0 && task_running(rq, p)))
  4426. resched_task(rq->curr);
  4427. }
  4428. out_unlock:
  4429. task_rq_unlock(rq, &flags);
  4430. }
  4431. EXPORT_SYMBOL(set_user_nice);
  4432. /*
  4433. * can_nice - check if a task can reduce its nice value
  4434. * @p: task
  4435. * @nice: nice value
  4436. */
  4437. int can_nice(const struct task_struct *p, const int nice)
  4438. {
  4439. /* convert nice value [19,-20] to rlimit style value [1,40] */
  4440. int nice_rlim = 20 - nice;
  4441. return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
  4442. capable(CAP_SYS_NICE));
  4443. }
  4444. #ifdef __ARCH_WANT_SYS_NICE
  4445. /*
  4446. * sys_nice - change the priority of the current process.
  4447. * @increment: priority increment
  4448. *
  4449. * sys_setpriority is a more generic, but much slower function that
  4450. * does similar things.
  4451. */
  4452. SYSCALL_DEFINE1(nice, int, increment)
  4453. {
  4454. long nice, retval;
  4455. /*
  4456. * Setpriority might change our priority at the same moment.
  4457. * We don't have to worry. Conceptually one call occurs first
  4458. * and we have a single winner.
  4459. */
  4460. if (increment < -40)
  4461. increment = -40;
  4462. if (increment > 40)
  4463. increment = 40;
  4464. nice = TASK_NICE(current) + increment;
  4465. if (nice < -20)
  4466. nice = -20;
  4467. if (nice > 19)
  4468. nice = 19;
  4469. if (increment < 0 && !can_nice(current, nice))
  4470. return -EPERM;
  4471. retval = security_task_setnice(current, nice);
  4472. if (retval)
  4473. return retval;
  4474. set_user_nice(current, nice);
  4475. return 0;
  4476. }
  4477. #endif
  4478. /**
  4479. * task_prio - return the priority value of a given task.
  4480. * @p: the task in question.
  4481. *
  4482. * This is the priority value as seen by users in /proc.
  4483. * RT tasks are offset by -200. Normal tasks are centered
  4484. * around 0, value goes from -16 to +15.
  4485. */
  4486. int task_prio(const struct task_struct *p)
  4487. {
  4488. return p->prio - MAX_RT_PRIO;
  4489. }
  4490. /**
  4491. * task_nice - return the nice value of a given task.
  4492. * @p: the task in question.
  4493. */
  4494. int task_nice(const struct task_struct *p)
  4495. {
  4496. return TASK_NICE(p);
  4497. }
  4498. EXPORT_SYMBOL(task_nice);
  4499. /**
  4500. * idle_cpu - is a given cpu idle currently?
  4501. * @cpu: the processor in question.
  4502. */
  4503. int idle_cpu(int cpu)
  4504. {
  4505. return cpu_curr(cpu) == cpu_rq(cpu)->idle;
  4506. }
  4507. /**
  4508. * idle_task - return the idle task for a given cpu.
  4509. * @cpu: the processor in question.
  4510. */
  4511. struct task_struct *idle_task(int cpu)
  4512. {
  4513. return cpu_rq(cpu)->idle;
  4514. }
  4515. /**
  4516. * find_process_by_pid - find a process with a matching PID value.
  4517. * @pid: the pid in question.
  4518. */
  4519. static struct task_struct *find_process_by_pid(pid_t pid)
  4520. {
  4521. return pid ? find_task_by_vpid(pid) : current;
  4522. }
  4523. /* Actually do priority change: must hold rq lock. */
  4524. static void
  4525. __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
  4526. {
  4527. BUG_ON(p->se.on_rq);
  4528. p->policy = policy;
  4529. switch (p->policy) {
  4530. case SCHED_NORMAL:
  4531. case SCHED_BATCH:
  4532. case SCHED_IDLE:
  4533. p->sched_class = &fair_sched_class;
  4534. break;
  4535. case SCHED_FIFO:
  4536. case SCHED_RR:
  4537. p->sched_class = &rt_sched_class;
  4538. break;
  4539. }
  4540. p->rt_priority = prio;
  4541. p->normal_prio = normal_prio(p);
  4542. /* we are holding p->pi_lock already */
  4543. p->prio = rt_mutex_getprio(p);
  4544. set_load_weight(p);
  4545. }
  4546. /*
  4547. * check the target process has a UID that matches the current process's
  4548. */
  4549. static bool check_same_owner(struct task_struct *p)
  4550. {
  4551. const struct cred *cred = current_cred(), *pcred;
  4552. bool match;
  4553. rcu_read_lock();
  4554. pcred = __task_cred(p);
  4555. match = (cred->euid == pcred->euid ||
  4556. cred->euid == pcred->uid);
  4557. rcu_read_unlock();
  4558. return match;
  4559. }
  4560. static int __sched_setscheduler(struct task_struct *p, int policy,
  4561. struct sched_param *param, bool user)
  4562. {
  4563. int retval, oldprio, oldpolicy = -1, on_rq, running;
  4564. unsigned long flags;
  4565. const struct sched_class *prev_class = p->sched_class;
  4566. struct rq *rq;
  4567. /* may grab non-irq protected spin_locks */
  4568. BUG_ON(in_interrupt());
  4569. recheck:
  4570. /* double check policy once rq lock held */
  4571. if (policy < 0)
  4572. policy = oldpolicy = p->policy;
  4573. else if (policy != SCHED_FIFO && policy != SCHED_RR &&
  4574. policy != SCHED_NORMAL && policy != SCHED_BATCH &&
  4575. policy != SCHED_IDLE)
  4576. return -EINVAL;
  4577. /*
  4578. * Valid priorities for SCHED_FIFO and SCHED_RR are
  4579. * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
  4580. * SCHED_BATCH and SCHED_IDLE is 0.
  4581. */
  4582. if (param->sched_priority < 0 ||
  4583. (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
  4584. (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
  4585. return -EINVAL;
  4586. if (rt_policy(policy) != (param->sched_priority != 0))
  4587. return -EINVAL;
  4588. /*
  4589. * Allow unprivileged RT tasks to decrease priority:
  4590. */
  4591. if (user && !capable(CAP_SYS_NICE)) {
  4592. if (rt_policy(policy)) {
  4593. unsigned long rlim_rtprio;
  4594. if (!lock_task_sighand(p, &flags))
  4595. return -ESRCH;
  4596. rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
  4597. unlock_task_sighand(p, &flags);
  4598. /* can't set/change the rt policy */
  4599. if (policy != p->policy && !rlim_rtprio)
  4600. return -EPERM;
  4601. /* can't increase priority */
  4602. if (param->sched_priority > p->rt_priority &&
  4603. param->sched_priority > rlim_rtprio)
  4604. return -EPERM;
  4605. }
  4606. /*
  4607. * Like positive nice levels, dont allow tasks to
  4608. * move out of SCHED_IDLE either:
  4609. */
  4610. if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
  4611. return -EPERM;
  4612. /* can't change other user's priorities */
  4613. if (!check_same_owner(p))
  4614. return -EPERM;
  4615. }
  4616. if (user) {
  4617. #ifdef CONFIG_RT_GROUP_SCHED
  4618. /*
  4619. * Do not allow realtime tasks into groups that have no runtime
  4620. * assigned.
  4621. */
  4622. if (rt_bandwidth_enabled() && rt_policy(policy) &&
  4623. task_group(p)->rt_bandwidth.rt_runtime == 0)
  4624. return -EPERM;
  4625. #endif
  4626. retval = security_task_setscheduler(p, policy, param);
  4627. if (retval)
  4628. return retval;
  4629. }
  4630. /*
  4631. * make sure no PI-waiters arrive (or leave) while we are
  4632. * changing the priority of the task:
  4633. */
  4634. spin_lock_irqsave(&p->pi_lock, flags);
  4635. /*
  4636. * To be able to change p->policy safely, the apropriate
  4637. * runqueue lock must be held.
  4638. */
  4639. rq = __task_rq_lock(p);
  4640. /* recheck policy now with rq lock held */
  4641. if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
  4642. policy = oldpolicy = -1;
  4643. __task_rq_unlock(rq);
  4644. spin_unlock_irqrestore(&p->pi_lock, flags);
  4645. goto recheck;
  4646. }
  4647. update_rq_clock(rq);
  4648. on_rq = p->se.on_rq;
  4649. running = task_current(rq, p);
  4650. if (on_rq)
  4651. deactivate_task(rq, p, 0);
  4652. if (running)
  4653. p->sched_class->put_prev_task(rq, p);
  4654. oldprio = p->prio;
  4655. __setscheduler(rq, p, policy, param->sched_priority);
  4656. if (running)
  4657. p->sched_class->set_curr_task(rq);
  4658. if (on_rq) {
  4659. activate_task(rq, p, 0);
  4660. check_class_changed(rq, p, prev_class, oldprio, running);
  4661. }
  4662. __task_rq_unlock(rq);
  4663. spin_unlock_irqrestore(&p->pi_lock, flags);
  4664. rt_mutex_adjust_pi(p);
  4665. return 0;
  4666. }
  4667. /**
  4668. * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
  4669. * @p: the task in question.
  4670. * @policy: new policy.
  4671. * @param: structure containing the new RT priority.
  4672. *
  4673. * NOTE that the task may be already dead.
  4674. */
  4675. int sched_setscheduler(struct task_struct *p, int policy,
  4676. struct sched_param *param)
  4677. {
  4678. return __sched_setscheduler(p, policy, param, true);
  4679. }
  4680. EXPORT_SYMBOL_GPL(sched_setscheduler);
  4681. /**
  4682. * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
  4683. * @p: the task in question.
  4684. * @policy: new policy.
  4685. * @param: structure containing the new RT priority.
  4686. *
  4687. * Just like sched_setscheduler, only don't bother checking if the
  4688. * current context has permission. For example, this is needed in
  4689. * stop_machine(): we create temporary high priority worker threads,
  4690. * but our caller might not have that capability.
  4691. */
  4692. int sched_setscheduler_nocheck(struct task_struct *p, int policy,
  4693. struct sched_param *param)
  4694. {
  4695. return __sched_setscheduler(p, policy, param, false);
  4696. }
  4697. static int
  4698. do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
  4699. {
  4700. struct sched_param lparam;
  4701. struct task_struct *p;
  4702. int retval;
  4703. if (!param || pid < 0)
  4704. return -EINVAL;
  4705. if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
  4706. return -EFAULT;
  4707. rcu_read_lock();
  4708. retval = -ESRCH;
  4709. p = find_process_by_pid(pid);
  4710. if (p != NULL)
  4711. retval = sched_setscheduler(p, policy, &lparam);
  4712. rcu_read_unlock();
  4713. return retval;
  4714. }
  4715. /**
  4716. * sys_sched_setscheduler - set/change the scheduler policy and RT priority
  4717. * @pid: the pid in question.
  4718. * @policy: new policy.
  4719. * @param: structure containing the new RT priority.
  4720. */
  4721. SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
  4722. struct sched_param __user *, param)
  4723. {
  4724. /* negative values for policy are not valid */
  4725. if (policy < 0)
  4726. return -EINVAL;
  4727. return do_sched_setscheduler(pid, policy, param);
  4728. }
  4729. /**
  4730. * sys_sched_setparam - set/change the RT priority of a thread
  4731. * @pid: the pid in question.
  4732. * @param: structure containing the new RT priority.
  4733. */
  4734. SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
  4735. {
  4736. return do_sched_setscheduler(pid, -1, param);
  4737. }
  4738. /**
  4739. * sys_sched_getscheduler - get the policy (scheduling class) of a thread
  4740. * @pid: the pid in question.
  4741. */
  4742. SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
  4743. {
  4744. struct task_struct *p;
  4745. int retval;
  4746. if (pid < 0)
  4747. return -EINVAL;
  4748. retval = -ESRCH;
  4749. read_lock(&tasklist_lock);
  4750. p = find_process_by_pid(pid);
  4751. if (p) {
  4752. retval = security_task_getscheduler(p);
  4753. if (!retval)
  4754. retval = p->policy;
  4755. }
  4756. read_unlock(&tasklist_lock);
  4757. return retval;
  4758. }
  4759. /**
  4760. * sys_sched_getscheduler - get the RT priority of a thread
  4761. * @pid: the pid in question.
  4762. * @param: structure containing the RT priority.
  4763. */
  4764. SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
  4765. {
  4766. struct sched_param lp;
  4767. struct task_struct *p;
  4768. int retval;
  4769. if (!param || pid < 0)
  4770. return -EINVAL;
  4771. read_lock(&tasklist_lock);
  4772. p = find_process_by_pid(pid);
  4773. retval = -ESRCH;
  4774. if (!p)
  4775. goto out_unlock;
  4776. retval = security_task_getscheduler(p);
  4777. if (retval)
  4778. goto out_unlock;
  4779. lp.sched_priority = p->rt_priority;
  4780. read_unlock(&tasklist_lock);
  4781. /*
  4782. * This one might sleep, we cannot do it with a spinlock held ...
  4783. */
  4784. retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
  4785. return retval;
  4786. out_unlock:
  4787. read_unlock(&tasklist_lock);
  4788. return retval;
  4789. }
  4790. long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
  4791. {
  4792. cpumask_var_t cpus_allowed, new_mask;
  4793. struct task_struct *p;
  4794. int retval;
  4795. get_online_cpus();
  4796. read_lock(&tasklist_lock);
  4797. p = find_process_by_pid(pid);
  4798. if (!p) {
  4799. read_unlock(&tasklist_lock);
  4800. put_online_cpus();
  4801. return -ESRCH;
  4802. }
  4803. /*
  4804. * It is not safe to call set_cpus_allowed with the
  4805. * tasklist_lock held. We will bump the task_struct's
  4806. * usage count and then drop tasklist_lock.
  4807. */
  4808. get_task_struct(p);
  4809. read_unlock(&tasklist_lock);
  4810. if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
  4811. retval = -ENOMEM;
  4812. goto out_put_task;
  4813. }
  4814. if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
  4815. retval = -ENOMEM;
  4816. goto out_free_cpus_allowed;
  4817. }
  4818. retval = -EPERM;
  4819. if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
  4820. goto out_unlock;
  4821. retval = security_task_setscheduler(p, 0, NULL);
  4822. if (retval)
  4823. goto out_unlock;
  4824. cpuset_cpus_allowed(p, cpus_allowed);
  4825. cpumask_and(new_mask, in_mask, cpus_allowed);
  4826. again:
  4827. retval = set_cpus_allowed_ptr(p, new_mask);
  4828. if (!retval) {
  4829. cpuset_cpus_allowed(p, cpus_allowed);
  4830. if (!cpumask_subset(new_mask, cpus_allowed)) {
  4831. /*
  4832. * We must have raced with a concurrent cpuset
  4833. * update. Just reset the cpus_allowed to the
  4834. * cpuset's cpus_allowed
  4835. */
  4836. cpumask_copy(new_mask, cpus_allowed);
  4837. goto again;
  4838. }
  4839. }
  4840. out_unlock:
  4841. free_cpumask_var(new_mask);
  4842. out_free_cpus_allowed:
  4843. free_cpumask_var(cpus_allowed);
  4844. out_put_task:
  4845. put_task_struct(p);
  4846. put_online_cpus();
  4847. return retval;
  4848. }
  4849. static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
  4850. struct cpumask *new_mask)
  4851. {
  4852. if (len < cpumask_size())
  4853. cpumask_clear(new_mask);
  4854. else if (len > cpumask_size())
  4855. len = cpumask_size();
  4856. return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
  4857. }
  4858. /**
  4859. * sys_sched_setaffinity - set the cpu affinity of a process
  4860. * @pid: pid of the process
  4861. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  4862. * @user_mask_ptr: user-space pointer to the new cpu mask
  4863. */
  4864. SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
  4865. unsigned long __user *, user_mask_ptr)
  4866. {
  4867. cpumask_var_t new_mask;
  4868. int retval;
  4869. if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
  4870. return -ENOMEM;
  4871. retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
  4872. if (retval == 0)
  4873. retval = sched_setaffinity(pid, new_mask);
  4874. free_cpumask_var(new_mask);
  4875. return retval;
  4876. }
  4877. long sched_getaffinity(pid_t pid, struct cpumask *mask)
  4878. {
  4879. struct task_struct *p;
  4880. int retval;
  4881. get_online_cpus();
  4882. read_lock(&tasklist_lock);
  4883. retval = -ESRCH;
  4884. p = find_process_by_pid(pid);
  4885. if (!p)
  4886. goto out_unlock;
  4887. retval = security_task_getscheduler(p);
  4888. if (retval)
  4889. goto out_unlock;
  4890. cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
  4891. out_unlock:
  4892. read_unlock(&tasklist_lock);
  4893. put_online_cpus();
  4894. return retval;
  4895. }
  4896. /**
  4897. * sys_sched_getaffinity - get the cpu affinity of a process
  4898. * @pid: pid of the process
  4899. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  4900. * @user_mask_ptr: user-space pointer to hold the current cpu mask
  4901. */
  4902. SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
  4903. unsigned long __user *, user_mask_ptr)
  4904. {
  4905. int ret;
  4906. cpumask_var_t mask;
  4907. if (len < cpumask_size())
  4908. return -EINVAL;
  4909. if (!alloc_cpumask_var(&mask, GFP_KERNEL))
  4910. return -ENOMEM;
  4911. ret = sched_getaffinity(pid, mask);
  4912. if (ret == 0) {
  4913. if (copy_to_user(user_mask_ptr, mask, cpumask_size()))
  4914. ret = -EFAULT;
  4915. else
  4916. ret = cpumask_size();
  4917. }
  4918. free_cpumask_var(mask);
  4919. return ret;
  4920. }
  4921. /**
  4922. * sys_sched_yield - yield the current processor to other threads.
  4923. *
  4924. * This function yields the current CPU to other tasks. If there are no
  4925. * other threads running on this CPU then this function will return.
  4926. */
  4927. SYSCALL_DEFINE0(sched_yield)
  4928. {
  4929. struct rq *rq = this_rq_lock();
  4930. schedstat_inc(rq, yld_count);
  4931. current->sched_class->yield_task(rq);
  4932. /*
  4933. * Since we are going to call schedule() anyway, there's
  4934. * no need to preempt or enable interrupts:
  4935. */
  4936. __release(rq->lock);
  4937. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  4938. _raw_spin_unlock(&rq->lock);
  4939. preempt_enable_no_resched();
  4940. schedule();
  4941. return 0;
  4942. }
  4943. static void __cond_resched(void)
  4944. {
  4945. #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
  4946. __might_sleep(__FILE__, __LINE__);
  4947. #endif
  4948. /*
  4949. * The BKS might be reacquired before we have dropped
  4950. * PREEMPT_ACTIVE, which could trigger a second
  4951. * cond_resched() call.
  4952. */
  4953. do {
  4954. add_preempt_count(PREEMPT_ACTIVE);
  4955. schedule();
  4956. sub_preempt_count(PREEMPT_ACTIVE);
  4957. } while (need_resched());
  4958. }
  4959. int __sched _cond_resched(void)
  4960. {
  4961. if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
  4962. system_state == SYSTEM_RUNNING) {
  4963. __cond_resched();
  4964. return 1;
  4965. }
  4966. return 0;
  4967. }
  4968. EXPORT_SYMBOL(_cond_resched);
  4969. /*
  4970. * cond_resched_lock() - if a reschedule is pending, drop the given lock,
  4971. * call schedule, and on return reacquire the lock.
  4972. *
  4973. * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
  4974. * operations here to prevent schedule() from being called twice (once via
  4975. * spin_unlock(), once by hand).
  4976. */
  4977. int cond_resched_lock(spinlock_t *lock)
  4978. {
  4979. int resched = need_resched() && system_state == SYSTEM_RUNNING;
  4980. int ret = 0;
  4981. if (spin_needbreak(lock) || resched) {
  4982. spin_unlock(lock);
  4983. if (resched && need_resched())
  4984. __cond_resched();
  4985. else
  4986. cpu_relax();
  4987. ret = 1;
  4988. spin_lock(lock);
  4989. }
  4990. return ret;
  4991. }
  4992. EXPORT_SYMBOL(cond_resched_lock);
  4993. int __sched cond_resched_softirq(void)
  4994. {
  4995. BUG_ON(!in_softirq());
  4996. if (need_resched() && system_state == SYSTEM_RUNNING) {
  4997. local_bh_enable();
  4998. __cond_resched();
  4999. local_bh_disable();
  5000. return 1;
  5001. }
  5002. return 0;
  5003. }
  5004. EXPORT_SYMBOL(cond_resched_softirq);
  5005. /**
  5006. * yield - yield the current processor to other threads.
  5007. *
  5008. * This is a shortcut for kernel-space yielding - it marks the
  5009. * thread runnable and calls sys_sched_yield().
  5010. */
  5011. void __sched yield(void)
  5012. {
  5013. set_current_state(TASK_RUNNING);
  5014. sys_sched_yield();
  5015. }
  5016. EXPORT_SYMBOL(yield);
  5017. /*
  5018. * This task is about to go to sleep on IO. Increment rq->nr_iowait so
  5019. * that process accounting knows that this is a task in IO wait state.
  5020. *
  5021. * But don't do that if it is a deliberate, throttling IO wait (this task
  5022. * has set its backing_dev_info: the queue against which it should throttle)
  5023. */
  5024. void __sched io_schedule(void)
  5025. {
  5026. struct rq *rq = &__raw_get_cpu_var(runqueues);
  5027. delayacct_blkio_start();
  5028. atomic_inc(&rq->nr_iowait);
  5029. schedule();
  5030. atomic_dec(&rq->nr_iowait);
  5031. delayacct_blkio_end();
  5032. }
  5033. EXPORT_SYMBOL(io_schedule);
  5034. long __sched io_schedule_timeout(long timeout)
  5035. {
  5036. struct rq *rq = &__raw_get_cpu_var(runqueues);
  5037. long ret;
  5038. delayacct_blkio_start();
  5039. atomic_inc(&rq->nr_iowait);
  5040. ret = schedule_timeout(timeout);
  5041. atomic_dec(&rq->nr_iowait);
  5042. delayacct_blkio_end();
  5043. return ret;
  5044. }
  5045. /**
  5046. * sys_sched_get_priority_max - return maximum RT priority.
  5047. * @policy: scheduling class.
  5048. *
  5049. * this syscall returns the maximum rt_priority that can be used
  5050. * by a given scheduling class.
  5051. */
  5052. SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
  5053. {
  5054. int ret = -EINVAL;
  5055. switch (policy) {
  5056. case SCHED_FIFO:
  5057. case SCHED_RR:
  5058. ret = MAX_USER_RT_PRIO-1;
  5059. break;
  5060. case SCHED_NORMAL:
  5061. case SCHED_BATCH:
  5062. case SCHED_IDLE:
  5063. ret = 0;
  5064. break;
  5065. }
  5066. return ret;
  5067. }
  5068. /**
  5069. * sys_sched_get_priority_min - return minimum RT priority.
  5070. * @policy: scheduling class.
  5071. *
  5072. * this syscall returns the minimum rt_priority that can be used
  5073. * by a given scheduling class.
  5074. */
  5075. SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
  5076. {
  5077. int ret = -EINVAL;
  5078. switch (policy) {
  5079. case SCHED_FIFO:
  5080. case SCHED_RR:
  5081. ret = 1;
  5082. break;
  5083. case SCHED_NORMAL:
  5084. case SCHED_BATCH:
  5085. case SCHED_IDLE:
  5086. ret = 0;
  5087. }
  5088. return ret;
  5089. }
  5090. /**
  5091. * sys_sched_rr_get_interval - return the default timeslice of a process.
  5092. * @pid: pid of the process.
  5093. * @interval: userspace pointer to the timeslice value.
  5094. *
  5095. * this syscall writes the default timeslice value of a given process
  5096. * into the user-space timespec buffer. A value of '0' means infinity.
  5097. */
  5098. SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
  5099. struct timespec __user *, interval)
  5100. {
  5101. struct task_struct *p;
  5102. unsigned int time_slice;
  5103. int retval;
  5104. struct timespec t;
  5105. if (pid < 0)
  5106. return -EINVAL;
  5107. retval = -ESRCH;
  5108. read_lock(&tasklist_lock);
  5109. p = find_process_by_pid(pid);
  5110. if (!p)
  5111. goto out_unlock;
  5112. retval = security_task_getscheduler(p);
  5113. if (retval)
  5114. goto out_unlock;
  5115. /*
  5116. * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
  5117. * tasks that are on an otherwise idle runqueue:
  5118. */
  5119. time_slice = 0;
  5120. if (p->policy == SCHED_RR) {
  5121. time_slice = DEF_TIMESLICE;
  5122. } else if (p->policy != SCHED_FIFO) {
  5123. struct sched_entity *se = &p->se;
  5124. unsigned long flags;
  5125. struct rq *rq;
  5126. rq = task_rq_lock(p, &flags);
  5127. if (rq->cfs.load.weight)
  5128. time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
  5129. task_rq_unlock(rq, &flags);
  5130. }
  5131. read_unlock(&tasklist_lock);
  5132. jiffies_to_timespec(time_slice, &t);
  5133. retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
  5134. return retval;
  5135. out_unlock:
  5136. read_unlock(&tasklist_lock);
  5137. return retval;
  5138. }
  5139. static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
  5140. void sched_show_task(struct task_struct *p)
  5141. {
  5142. unsigned long free = 0;
  5143. unsigned state;
  5144. state = p->state ? __ffs(p->state) + 1 : 0;
  5145. printk(KERN_INFO "%-13.13s %c", p->comm,
  5146. state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
  5147. #if BITS_PER_LONG == 32
  5148. if (state == TASK_RUNNING)
  5149. printk(KERN_CONT " running ");
  5150. else
  5151. printk(KERN_CONT " %08lx ", thread_saved_pc(p));
  5152. #else
  5153. if (state == TASK_RUNNING)
  5154. printk(KERN_CONT " running task ");
  5155. else
  5156. printk(KERN_CONT " %016lx ", thread_saved_pc(p));
  5157. #endif
  5158. #ifdef CONFIG_DEBUG_STACK_USAGE
  5159. {
  5160. unsigned long *n = end_of_stack(p);
  5161. while (!*n)
  5162. n++;
  5163. free = (unsigned long)n - (unsigned long)end_of_stack(p);
  5164. }
  5165. #endif
  5166. printk(KERN_CONT "%5lu %5d %6d\n", free,
  5167. task_pid_nr(p), task_pid_nr(p->real_parent));
  5168. show_stack(p, NULL);
  5169. }
  5170. void show_state_filter(unsigned long state_filter)
  5171. {
  5172. struct task_struct *g, *p;
  5173. #if BITS_PER_LONG == 32
  5174. printk(KERN_INFO
  5175. " task PC stack pid father\n");
  5176. #else
  5177. printk(KERN_INFO
  5178. " task PC stack pid father\n");
  5179. #endif
  5180. read_lock(&tasklist_lock);
  5181. do_each_thread(g, p) {
  5182. /*
  5183. * reset the NMI-timeout, listing all files on a slow
  5184. * console might take alot of time:
  5185. */
  5186. touch_nmi_watchdog();
  5187. if (!state_filter || (p->state & state_filter))
  5188. sched_show_task(p);
  5189. } while_each_thread(g, p);
  5190. touch_all_softlockup_watchdogs();
  5191. #ifdef CONFIG_SCHED_DEBUG
  5192. sysrq_sched_debug_show();
  5193. #endif
  5194. read_unlock(&tasklist_lock);
  5195. /*
  5196. * Only show locks if all tasks are dumped:
  5197. */
  5198. if (state_filter == -1)
  5199. debug_show_all_locks();
  5200. }
  5201. void __cpuinit init_idle_bootup_task(struct task_struct *idle)
  5202. {
  5203. idle->sched_class = &idle_sched_class;
  5204. }
  5205. /**
  5206. * init_idle - set up an idle thread for a given CPU
  5207. * @idle: task in question
  5208. * @cpu: cpu the idle task belongs to
  5209. *
  5210. * NOTE: this function does not set the idle thread's NEED_RESCHED
  5211. * flag, to make booting more robust.
  5212. */
  5213. void __cpuinit init_idle(struct task_struct *idle, int cpu)
  5214. {
  5215. struct rq *rq = cpu_rq(cpu);
  5216. unsigned long flags;
  5217. spin_lock_irqsave(&rq->lock, flags);
  5218. __sched_fork(idle);
  5219. idle->se.exec_start = sched_clock();
  5220. idle->prio = idle->normal_prio = MAX_PRIO;
  5221. cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
  5222. __set_task_cpu(idle, cpu);
  5223. rq->curr = rq->idle = idle;
  5224. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  5225. idle->oncpu = 1;
  5226. #endif
  5227. spin_unlock_irqrestore(&rq->lock, flags);
  5228. /* Set the preempt count _outside_ the spinlocks! */
  5229. #if defined(CONFIG_PREEMPT)
  5230. task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
  5231. #else
  5232. task_thread_info(idle)->preempt_count = 0;
  5233. #endif
  5234. /*
  5235. * The idle tasks have their own, simple scheduling class:
  5236. */
  5237. idle->sched_class = &idle_sched_class;
  5238. ftrace_graph_init_task(idle);
  5239. }
  5240. /*
  5241. * In a system that switches off the HZ timer nohz_cpu_mask
  5242. * indicates which cpus entered this state. This is used
  5243. * in the rcu update to wait only for active cpus. For system
  5244. * which do not switch off the HZ timer nohz_cpu_mask should
  5245. * always be CPU_BITS_NONE.
  5246. */
  5247. cpumask_var_t nohz_cpu_mask;
  5248. /*
  5249. * Increase the granularity value when there are more CPUs,
  5250. * because with more CPUs the 'effective latency' as visible
  5251. * to users decreases. But the relationship is not linear,
  5252. * so pick a second-best guess by going with the log2 of the
  5253. * number of CPUs.
  5254. *
  5255. * This idea comes from the SD scheduler of Con Kolivas:
  5256. */
  5257. static inline void sched_init_granularity(void)
  5258. {
  5259. unsigned int factor = 1 + ilog2(num_online_cpus());
  5260. const unsigned long limit = 200000000;
  5261. sysctl_sched_min_granularity *= factor;
  5262. if (sysctl_sched_min_granularity > limit)
  5263. sysctl_sched_min_granularity = limit;
  5264. sysctl_sched_latency *= factor;
  5265. if (sysctl_sched_latency > limit)
  5266. sysctl_sched_latency = limit;
  5267. sysctl_sched_wakeup_granularity *= factor;
  5268. sysctl_sched_shares_ratelimit *= factor;
  5269. }
  5270. #ifdef CONFIG_SMP
  5271. /*
  5272. * This is how migration works:
  5273. *
  5274. * 1) we queue a struct migration_req structure in the source CPU's
  5275. * runqueue and wake up that CPU's migration thread.
  5276. * 2) we down() the locked semaphore => thread blocks.
  5277. * 3) migration thread wakes up (implicitly it forces the migrated
  5278. * thread off the CPU)
  5279. * 4) it gets the migration request and checks whether the migrated
  5280. * task is still in the wrong runqueue.
  5281. * 5) if it's in the wrong runqueue then the migration thread removes
  5282. * it and puts it into the right queue.
  5283. * 6) migration thread up()s the semaphore.
  5284. * 7) we wake up and the migration is done.
  5285. */
  5286. /*
  5287. * Change a given task's CPU affinity. Migrate the thread to a
  5288. * proper CPU and schedule it away if the CPU it's executing on
  5289. * is removed from the allowed bitmask.
  5290. *
  5291. * NOTE: the caller must have a valid reference to the task, the
  5292. * task must not exit() & deallocate itself prematurely. The
  5293. * call is not atomic; no spinlocks may be held.
  5294. */
  5295. int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
  5296. {
  5297. struct migration_req req;
  5298. unsigned long flags;
  5299. struct rq *rq;
  5300. int ret = 0;
  5301. rq = task_rq_lock(p, &flags);
  5302. if (!cpumask_intersects(new_mask, cpu_online_mask)) {
  5303. ret = -EINVAL;
  5304. goto out;
  5305. }
  5306. if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
  5307. !cpumask_equal(&p->cpus_allowed, new_mask))) {
  5308. ret = -EINVAL;
  5309. goto out;
  5310. }
  5311. if (p->sched_class->set_cpus_allowed)
  5312. p->sched_class->set_cpus_allowed(p, new_mask);
  5313. else {
  5314. cpumask_copy(&p->cpus_allowed, new_mask);
  5315. p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
  5316. }
  5317. /* Can the task run on the task's current CPU? If so, we're done */
  5318. if (cpumask_test_cpu(task_cpu(p), new_mask))
  5319. goto out;
  5320. if (migrate_task(p, cpumask_any_and(cpu_online_mask, new_mask), &req)) {
  5321. /* Need help from migration thread: drop lock and wait. */
  5322. task_rq_unlock(rq, &flags);
  5323. wake_up_process(rq->migration_thread);
  5324. wait_for_completion(&req.done);
  5325. tlb_migrate_finish(p->mm);
  5326. return 0;
  5327. }
  5328. out:
  5329. task_rq_unlock(rq, &flags);
  5330. return ret;
  5331. }
  5332. EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
  5333. /*
  5334. * Move (not current) task off this cpu, onto dest cpu. We're doing
  5335. * this because either it can't run here any more (set_cpus_allowed()
  5336. * away from this CPU, or CPU going down), or because we're
  5337. * attempting to rebalance this task on exec (sched_exec).
  5338. *
  5339. * So we race with normal scheduler movements, but that's OK, as long
  5340. * as the task is no longer on this CPU.
  5341. *
  5342. * Returns non-zero if task was successfully migrated.
  5343. */
  5344. static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
  5345. {
  5346. struct rq *rq_dest, *rq_src;
  5347. int ret = 0, on_rq;
  5348. if (unlikely(!cpu_active(dest_cpu)))
  5349. return ret;
  5350. rq_src = cpu_rq(src_cpu);
  5351. rq_dest = cpu_rq(dest_cpu);
  5352. double_rq_lock(rq_src, rq_dest);
  5353. /* Already moved. */
  5354. if (task_cpu(p) != src_cpu)
  5355. goto done;
  5356. /* Affinity changed (again). */
  5357. if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
  5358. goto fail;
  5359. on_rq = p->se.on_rq;
  5360. if (on_rq)
  5361. deactivate_task(rq_src, p, 0);
  5362. set_task_cpu(p, dest_cpu);
  5363. if (on_rq) {
  5364. activate_task(rq_dest, p, 0);
  5365. check_preempt_curr(rq_dest, p, 0);
  5366. }
  5367. done:
  5368. ret = 1;
  5369. fail:
  5370. double_rq_unlock(rq_src, rq_dest);
  5371. return ret;
  5372. }
  5373. /*
  5374. * migration_thread - this is a highprio system thread that performs
  5375. * thread migration by bumping thread off CPU then 'pushing' onto
  5376. * another runqueue.
  5377. */
  5378. static int migration_thread(void *data)
  5379. {
  5380. int cpu = (long)data;
  5381. struct rq *rq;
  5382. rq = cpu_rq(cpu);
  5383. BUG_ON(rq->migration_thread != current);
  5384. set_current_state(TASK_INTERRUPTIBLE);
  5385. while (!kthread_should_stop()) {
  5386. struct migration_req *req;
  5387. struct list_head *head;
  5388. spin_lock_irq(&rq->lock);
  5389. if (cpu_is_offline(cpu)) {
  5390. spin_unlock_irq(&rq->lock);
  5391. goto wait_to_die;
  5392. }
  5393. if (rq->active_balance) {
  5394. active_load_balance(rq, cpu);
  5395. rq->active_balance = 0;
  5396. }
  5397. head = &rq->migration_queue;
  5398. if (list_empty(head)) {
  5399. spin_unlock_irq(&rq->lock);
  5400. schedule();
  5401. set_current_state(TASK_INTERRUPTIBLE);
  5402. continue;
  5403. }
  5404. req = list_entry(head->next, struct migration_req, list);
  5405. list_del_init(head->next);
  5406. spin_unlock(&rq->lock);
  5407. __migrate_task(req->task, cpu, req->dest_cpu);
  5408. local_irq_enable();
  5409. complete(&req->done);
  5410. }
  5411. __set_current_state(TASK_RUNNING);
  5412. return 0;
  5413. wait_to_die:
  5414. /* Wait for kthread_stop */
  5415. set_current_state(TASK_INTERRUPTIBLE);
  5416. while (!kthread_should_stop()) {
  5417. schedule();
  5418. set_current_state(TASK_INTERRUPTIBLE);
  5419. }
  5420. __set_current_state(TASK_RUNNING);
  5421. return 0;
  5422. }
  5423. #ifdef CONFIG_HOTPLUG_CPU
  5424. static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
  5425. {
  5426. int ret;
  5427. local_irq_disable();
  5428. ret = __migrate_task(p, src_cpu, dest_cpu);
  5429. local_irq_enable();
  5430. return ret;
  5431. }
  5432. /*
  5433. * Figure out where task on dead CPU should go, use force if necessary.
  5434. */
  5435. static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
  5436. {
  5437. int dest_cpu;
  5438. const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(dead_cpu));
  5439. again:
  5440. /* Look for allowed, online CPU in same node. */
  5441. for_each_cpu_and(dest_cpu, nodemask, cpu_online_mask)
  5442. if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
  5443. goto move;
  5444. /* Any allowed, online CPU? */
  5445. dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_online_mask);
  5446. if (dest_cpu < nr_cpu_ids)
  5447. goto move;
  5448. /* No more Mr. Nice Guy. */
  5449. if (dest_cpu >= nr_cpu_ids) {
  5450. cpuset_cpus_allowed_locked(p, &p->cpus_allowed);
  5451. dest_cpu = cpumask_any_and(cpu_online_mask, &p->cpus_allowed);
  5452. /*
  5453. * Don't tell them about moving exiting tasks or
  5454. * kernel threads (both mm NULL), since they never
  5455. * leave kernel.
  5456. */
  5457. if (p->mm && printk_ratelimit()) {
  5458. printk(KERN_INFO "process %d (%s) no "
  5459. "longer affine to cpu%d\n",
  5460. task_pid_nr(p), p->comm, dead_cpu);
  5461. }
  5462. }
  5463. move:
  5464. /* It can have affinity changed while we were choosing. */
  5465. if (unlikely(!__migrate_task_irq(p, dead_cpu, dest_cpu)))
  5466. goto again;
  5467. }
  5468. /*
  5469. * While a dead CPU has no uninterruptible tasks queued at this point,
  5470. * it might still have a nonzero ->nr_uninterruptible counter, because
  5471. * for performance reasons the counter is not stricly tracking tasks to
  5472. * their home CPUs. So we just add the counter to another CPU's counter,
  5473. * to keep the global sum constant after CPU-down:
  5474. */
  5475. static void migrate_nr_uninterruptible(struct rq *rq_src)
  5476. {
  5477. struct rq *rq_dest = cpu_rq(cpumask_any(cpu_online_mask));
  5478. unsigned long flags;
  5479. local_irq_save(flags);
  5480. double_rq_lock(rq_src, rq_dest);
  5481. rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
  5482. rq_src->nr_uninterruptible = 0;
  5483. double_rq_unlock(rq_src, rq_dest);
  5484. local_irq_restore(flags);
  5485. }
  5486. /* Run through task list and migrate tasks from the dead cpu. */
  5487. static void migrate_live_tasks(int src_cpu)
  5488. {
  5489. struct task_struct *p, *t;
  5490. read_lock(&tasklist_lock);
  5491. do_each_thread(t, p) {
  5492. if (p == current)
  5493. continue;
  5494. if (task_cpu(p) == src_cpu)
  5495. move_task_off_dead_cpu(src_cpu, p);
  5496. } while_each_thread(t, p);
  5497. read_unlock(&tasklist_lock);
  5498. }
  5499. /*
  5500. * Schedules idle task to be the next runnable task on current CPU.
  5501. * It does so by boosting its priority to highest possible.
  5502. * Used by CPU offline code.
  5503. */
  5504. void sched_idle_next(void)
  5505. {
  5506. int this_cpu = smp_processor_id();
  5507. struct rq *rq = cpu_rq(this_cpu);
  5508. struct task_struct *p = rq->idle;
  5509. unsigned long flags;
  5510. /* cpu has to be offline */
  5511. BUG_ON(cpu_online(this_cpu));
  5512. /*
  5513. * Strictly not necessary since rest of the CPUs are stopped by now
  5514. * and interrupts disabled on the current cpu.
  5515. */
  5516. spin_lock_irqsave(&rq->lock, flags);
  5517. __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
  5518. update_rq_clock(rq);
  5519. activate_task(rq, p, 0);
  5520. spin_unlock_irqrestore(&rq->lock, flags);
  5521. }
  5522. /*
  5523. * Ensures that the idle task is using init_mm right before its cpu goes
  5524. * offline.
  5525. */
  5526. void idle_task_exit(void)
  5527. {
  5528. struct mm_struct *mm = current->active_mm;
  5529. BUG_ON(cpu_online(smp_processor_id()));
  5530. if (mm != &init_mm)
  5531. switch_mm(mm, &init_mm, current);
  5532. mmdrop(mm);
  5533. }
  5534. /* called under rq->lock with disabled interrupts */
  5535. static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
  5536. {
  5537. struct rq *rq = cpu_rq(dead_cpu);
  5538. /* Must be exiting, otherwise would be on tasklist. */
  5539. BUG_ON(!p->exit_state);
  5540. /* Cannot have done final schedule yet: would have vanished. */
  5541. BUG_ON(p->state == TASK_DEAD);
  5542. get_task_struct(p);
  5543. /*
  5544. * Drop lock around migration; if someone else moves it,
  5545. * that's OK. No task can be added to this CPU, so iteration is
  5546. * fine.
  5547. */
  5548. spin_unlock_irq(&rq->lock);
  5549. move_task_off_dead_cpu(dead_cpu, p);
  5550. spin_lock_irq(&rq->lock);
  5551. put_task_struct(p);
  5552. }
  5553. /* release_task() removes task from tasklist, so we won't find dead tasks. */
  5554. static void migrate_dead_tasks(unsigned int dead_cpu)
  5555. {
  5556. struct rq *rq = cpu_rq(dead_cpu);
  5557. struct task_struct *next;
  5558. for ( ; ; ) {
  5559. if (!rq->nr_running)
  5560. break;
  5561. update_rq_clock(rq);
  5562. next = pick_next_task(rq, rq->curr);
  5563. if (!next)
  5564. break;
  5565. next->sched_class->put_prev_task(rq, next);
  5566. migrate_dead(dead_cpu, next);
  5567. }
  5568. }
  5569. #endif /* CONFIG_HOTPLUG_CPU */
  5570. #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
  5571. static struct ctl_table sd_ctl_dir[] = {
  5572. {
  5573. .procname = "sched_domain",
  5574. .mode = 0555,
  5575. },
  5576. {0, },
  5577. };
  5578. static struct ctl_table sd_ctl_root[] = {
  5579. {
  5580. .ctl_name = CTL_KERN,
  5581. .procname = "kernel",
  5582. .mode = 0555,
  5583. .child = sd_ctl_dir,
  5584. },
  5585. {0, },
  5586. };
  5587. static struct ctl_table *sd_alloc_ctl_entry(int n)
  5588. {
  5589. struct ctl_table *entry =
  5590. kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
  5591. return entry;
  5592. }
  5593. static void sd_free_ctl_entry(struct ctl_table **tablep)
  5594. {
  5595. struct ctl_table *entry;
  5596. /*
  5597. * In the intermediate directories, both the child directory and
  5598. * procname are dynamically allocated and could fail but the mode
  5599. * will always be set. In the lowest directory the names are
  5600. * static strings and all have proc handlers.
  5601. */
  5602. for (entry = *tablep; entry->mode; entry++) {
  5603. if (entry->child)
  5604. sd_free_ctl_entry(&entry->child);
  5605. if (entry->proc_handler == NULL)
  5606. kfree(entry->procname);
  5607. }
  5608. kfree(*tablep);
  5609. *tablep = NULL;
  5610. }
  5611. static void
  5612. set_table_entry(struct ctl_table *entry,
  5613. const char *procname, void *data, int maxlen,
  5614. mode_t mode, proc_handler *proc_handler)
  5615. {
  5616. entry->procname = procname;
  5617. entry->data = data;
  5618. entry->maxlen = maxlen;
  5619. entry->mode = mode;
  5620. entry->proc_handler = proc_handler;
  5621. }
  5622. static struct ctl_table *
  5623. sd_alloc_ctl_domain_table(struct sched_domain *sd)
  5624. {
  5625. struct ctl_table *table = sd_alloc_ctl_entry(13);
  5626. if (table == NULL)
  5627. return NULL;
  5628. set_table_entry(&table[0], "min_interval", &sd->min_interval,
  5629. sizeof(long), 0644, proc_doulongvec_minmax);
  5630. set_table_entry(&table[1], "max_interval", &sd->max_interval,
  5631. sizeof(long), 0644, proc_doulongvec_minmax);
  5632. set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
  5633. sizeof(int), 0644, proc_dointvec_minmax);
  5634. set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
  5635. sizeof(int), 0644, proc_dointvec_minmax);
  5636. set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
  5637. sizeof(int), 0644, proc_dointvec_minmax);
  5638. set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
  5639. sizeof(int), 0644, proc_dointvec_minmax);
  5640. set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
  5641. sizeof(int), 0644, proc_dointvec_minmax);
  5642. set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
  5643. sizeof(int), 0644, proc_dointvec_minmax);
  5644. set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
  5645. sizeof(int), 0644, proc_dointvec_minmax);
  5646. set_table_entry(&table[9], "cache_nice_tries",
  5647. &sd->cache_nice_tries,
  5648. sizeof(int), 0644, proc_dointvec_minmax);
  5649. set_table_entry(&table[10], "flags", &sd->flags,
  5650. sizeof(int), 0644, proc_dointvec_minmax);
  5651. set_table_entry(&table[11], "name", sd->name,
  5652. CORENAME_MAX_SIZE, 0444, proc_dostring);
  5653. /* &table[12] is terminator */
  5654. return table;
  5655. }
  5656. static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
  5657. {
  5658. struct ctl_table *entry, *table;
  5659. struct sched_domain *sd;
  5660. int domain_num = 0, i;
  5661. char buf[32];
  5662. for_each_domain(cpu, sd)
  5663. domain_num++;
  5664. entry = table = sd_alloc_ctl_entry(domain_num + 1);
  5665. if (table == NULL)
  5666. return NULL;
  5667. i = 0;
  5668. for_each_domain(cpu, sd) {
  5669. snprintf(buf, 32, "domain%d", i);
  5670. entry->procname = kstrdup(buf, GFP_KERNEL);
  5671. entry->mode = 0555;
  5672. entry->child = sd_alloc_ctl_domain_table(sd);
  5673. entry++;
  5674. i++;
  5675. }
  5676. return table;
  5677. }
  5678. static struct ctl_table_header *sd_sysctl_header;
  5679. static void register_sched_domain_sysctl(void)
  5680. {
  5681. int i, cpu_num = num_online_cpus();
  5682. struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
  5683. char buf[32];
  5684. WARN_ON(sd_ctl_dir[0].child);
  5685. sd_ctl_dir[0].child = entry;
  5686. if (entry == NULL)
  5687. return;
  5688. for_each_online_cpu(i) {
  5689. snprintf(buf, 32, "cpu%d", i);
  5690. entry->procname = kstrdup(buf, GFP_KERNEL);
  5691. entry->mode = 0555;
  5692. entry->child = sd_alloc_ctl_cpu_table(i);
  5693. entry++;
  5694. }
  5695. WARN_ON(sd_sysctl_header);
  5696. sd_sysctl_header = register_sysctl_table(sd_ctl_root);
  5697. }
  5698. /* may be called multiple times per register */
  5699. static void unregister_sched_domain_sysctl(void)
  5700. {
  5701. if (sd_sysctl_header)
  5702. unregister_sysctl_table(sd_sysctl_header);
  5703. sd_sysctl_header = NULL;
  5704. if (sd_ctl_dir[0].child)
  5705. sd_free_ctl_entry(&sd_ctl_dir[0].child);
  5706. }
  5707. #else
  5708. static void register_sched_domain_sysctl(void)
  5709. {
  5710. }
  5711. static void unregister_sched_domain_sysctl(void)
  5712. {
  5713. }
  5714. #endif
  5715. static void set_rq_online(struct rq *rq)
  5716. {
  5717. if (!rq->online) {
  5718. const struct sched_class *class;
  5719. cpumask_set_cpu(rq->cpu, rq->rd->online);
  5720. rq->online = 1;
  5721. for_each_class(class) {
  5722. if (class->rq_online)
  5723. class->rq_online(rq);
  5724. }
  5725. }
  5726. }
  5727. static void set_rq_offline(struct rq *rq)
  5728. {
  5729. if (rq->online) {
  5730. const struct sched_class *class;
  5731. for_each_class(class) {
  5732. if (class->rq_offline)
  5733. class->rq_offline(rq);
  5734. }
  5735. cpumask_clear_cpu(rq->cpu, rq->rd->online);
  5736. rq->online = 0;
  5737. }
  5738. }
  5739. /*
  5740. * migration_call - callback that gets triggered when a CPU is added.
  5741. * Here we can start up the necessary migration thread for the new CPU.
  5742. */
  5743. static int __cpuinit
  5744. migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
  5745. {
  5746. struct task_struct *p;
  5747. int cpu = (long)hcpu;
  5748. unsigned long flags;
  5749. struct rq *rq;
  5750. switch (action) {
  5751. case CPU_UP_PREPARE:
  5752. case CPU_UP_PREPARE_FROZEN:
  5753. p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
  5754. if (IS_ERR(p))
  5755. return NOTIFY_BAD;
  5756. kthread_bind(p, cpu);
  5757. /* Must be high prio: stop_machine expects to yield to it. */
  5758. rq = task_rq_lock(p, &flags);
  5759. __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
  5760. task_rq_unlock(rq, &flags);
  5761. cpu_rq(cpu)->migration_thread = p;
  5762. break;
  5763. case CPU_ONLINE:
  5764. case CPU_ONLINE_FROZEN:
  5765. /* Strictly unnecessary, as first user will wake it. */
  5766. wake_up_process(cpu_rq(cpu)->migration_thread);
  5767. /* Update our root-domain */
  5768. rq = cpu_rq(cpu);
  5769. spin_lock_irqsave(&rq->lock, flags);
  5770. if (rq->rd) {
  5771. BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
  5772. set_rq_online(rq);
  5773. }
  5774. spin_unlock_irqrestore(&rq->lock, flags);
  5775. break;
  5776. #ifdef CONFIG_HOTPLUG_CPU
  5777. case CPU_UP_CANCELED:
  5778. case CPU_UP_CANCELED_FROZEN:
  5779. if (!cpu_rq(cpu)->migration_thread)
  5780. break;
  5781. /* Unbind it from offline cpu so it can run. Fall thru. */
  5782. kthread_bind(cpu_rq(cpu)->migration_thread,
  5783. cpumask_any(cpu_online_mask));
  5784. kthread_stop(cpu_rq(cpu)->migration_thread);
  5785. cpu_rq(cpu)->migration_thread = NULL;
  5786. break;
  5787. case CPU_DEAD:
  5788. case CPU_DEAD_FROZEN:
  5789. cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
  5790. migrate_live_tasks(cpu);
  5791. rq = cpu_rq(cpu);
  5792. kthread_stop(rq->migration_thread);
  5793. rq->migration_thread = NULL;
  5794. /* Idle task back to normal (off runqueue, low prio) */
  5795. spin_lock_irq(&rq->lock);
  5796. update_rq_clock(rq);
  5797. deactivate_task(rq, rq->idle, 0);
  5798. rq->idle->static_prio = MAX_PRIO;
  5799. __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
  5800. rq->idle->sched_class = &idle_sched_class;
  5801. migrate_dead_tasks(cpu);
  5802. spin_unlock_irq(&rq->lock);
  5803. cpuset_unlock();
  5804. migrate_nr_uninterruptible(rq);
  5805. BUG_ON(rq->nr_running != 0);
  5806. /*
  5807. * No need to migrate the tasks: it was best-effort if
  5808. * they didn't take sched_hotcpu_mutex. Just wake up
  5809. * the requestors.
  5810. */
  5811. spin_lock_irq(&rq->lock);
  5812. while (!list_empty(&rq->migration_queue)) {
  5813. struct migration_req *req;
  5814. req = list_entry(rq->migration_queue.next,
  5815. struct migration_req, list);
  5816. list_del_init(&req->list);
  5817. spin_unlock_irq(&rq->lock);
  5818. complete(&req->done);
  5819. spin_lock_irq(&rq->lock);
  5820. }
  5821. spin_unlock_irq(&rq->lock);
  5822. break;
  5823. case CPU_DYING:
  5824. case CPU_DYING_FROZEN:
  5825. /* Update our root-domain */
  5826. rq = cpu_rq(cpu);
  5827. spin_lock_irqsave(&rq->lock, flags);
  5828. if (rq->rd) {
  5829. BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
  5830. set_rq_offline(rq);
  5831. }
  5832. spin_unlock_irqrestore(&rq->lock, flags);
  5833. break;
  5834. #endif
  5835. }
  5836. return NOTIFY_OK;
  5837. }
  5838. /* Register at highest priority so that task migration (migrate_all_tasks)
  5839. * happens before everything else.
  5840. */
  5841. static struct notifier_block __cpuinitdata migration_notifier = {
  5842. .notifier_call = migration_call,
  5843. .priority = 10
  5844. };
  5845. static int __init migration_init(void)
  5846. {
  5847. void *cpu = (void *)(long)smp_processor_id();
  5848. int err;
  5849. /* Start one for the boot CPU: */
  5850. err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
  5851. BUG_ON(err == NOTIFY_BAD);
  5852. migration_call(&migration_notifier, CPU_ONLINE, cpu);
  5853. register_cpu_notifier(&migration_notifier);
  5854. return err;
  5855. }
  5856. early_initcall(migration_init);
  5857. #endif
  5858. #ifdef CONFIG_SMP
  5859. #ifdef CONFIG_SCHED_DEBUG
  5860. static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
  5861. struct cpumask *groupmask)
  5862. {
  5863. struct sched_group *group = sd->groups;
  5864. char str[256];
  5865. cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
  5866. cpumask_clear(groupmask);
  5867. printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
  5868. if (!(sd->flags & SD_LOAD_BALANCE)) {
  5869. printk("does not load-balance\n");
  5870. if (sd->parent)
  5871. printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
  5872. " has parent");
  5873. return -1;
  5874. }
  5875. printk(KERN_CONT "span %s level %s\n", str, sd->name);
  5876. if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
  5877. printk(KERN_ERR "ERROR: domain->span does not contain "
  5878. "CPU%d\n", cpu);
  5879. }
  5880. if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
  5881. printk(KERN_ERR "ERROR: domain->groups does not contain"
  5882. " CPU%d\n", cpu);
  5883. }
  5884. printk(KERN_DEBUG "%*s groups:", level + 1, "");
  5885. do {
  5886. if (!group) {
  5887. printk("\n");
  5888. printk(KERN_ERR "ERROR: group is NULL\n");
  5889. break;
  5890. }
  5891. if (!group->__cpu_power) {
  5892. printk(KERN_CONT "\n");
  5893. printk(KERN_ERR "ERROR: domain->cpu_power not "
  5894. "set\n");
  5895. break;
  5896. }
  5897. if (!cpumask_weight(sched_group_cpus(group))) {
  5898. printk(KERN_CONT "\n");
  5899. printk(KERN_ERR "ERROR: empty group\n");
  5900. break;
  5901. }
  5902. if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
  5903. printk(KERN_CONT "\n");
  5904. printk(KERN_ERR "ERROR: repeated CPUs\n");
  5905. break;
  5906. }
  5907. cpumask_or(groupmask, groupmask, sched_group_cpus(group));
  5908. cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
  5909. printk(KERN_CONT " %s", str);
  5910. group = group->next;
  5911. } while (group != sd->groups);
  5912. printk(KERN_CONT "\n");
  5913. if (!cpumask_equal(sched_domain_span(sd), groupmask))
  5914. printk(KERN_ERR "ERROR: groups don't span domain->span\n");
  5915. if (sd->parent &&
  5916. !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
  5917. printk(KERN_ERR "ERROR: parent span is not a superset "
  5918. "of domain->span\n");
  5919. return 0;
  5920. }
  5921. static void sched_domain_debug(struct sched_domain *sd, int cpu)
  5922. {
  5923. cpumask_var_t groupmask;
  5924. int level = 0;
  5925. if (!sd) {
  5926. printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
  5927. return;
  5928. }
  5929. printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
  5930. if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
  5931. printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
  5932. return;
  5933. }
  5934. for (;;) {
  5935. if (sched_domain_debug_one(sd, cpu, level, groupmask))
  5936. break;
  5937. level++;
  5938. sd = sd->parent;
  5939. if (!sd)
  5940. break;
  5941. }
  5942. free_cpumask_var(groupmask);
  5943. }
  5944. #else /* !CONFIG_SCHED_DEBUG */
  5945. # define sched_domain_debug(sd, cpu) do { } while (0)
  5946. #endif /* CONFIG_SCHED_DEBUG */
  5947. static int sd_degenerate(struct sched_domain *sd)
  5948. {
  5949. if (cpumask_weight(sched_domain_span(sd)) == 1)
  5950. return 1;
  5951. /* Following flags need at least 2 groups */
  5952. if (sd->flags & (SD_LOAD_BALANCE |
  5953. SD_BALANCE_NEWIDLE |
  5954. SD_BALANCE_FORK |
  5955. SD_BALANCE_EXEC |
  5956. SD_SHARE_CPUPOWER |
  5957. SD_SHARE_PKG_RESOURCES)) {
  5958. if (sd->groups != sd->groups->next)
  5959. return 0;
  5960. }
  5961. /* Following flags don't use groups */
  5962. if (sd->flags & (SD_WAKE_IDLE |
  5963. SD_WAKE_AFFINE |
  5964. SD_WAKE_BALANCE))
  5965. return 0;
  5966. return 1;
  5967. }
  5968. static int
  5969. sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
  5970. {
  5971. unsigned long cflags = sd->flags, pflags = parent->flags;
  5972. if (sd_degenerate(parent))
  5973. return 1;
  5974. if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
  5975. return 0;
  5976. /* Does parent contain flags not in child? */
  5977. /* WAKE_BALANCE is a subset of WAKE_AFFINE */
  5978. if (cflags & SD_WAKE_AFFINE)
  5979. pflags &= ~SD_WAKE_BALANCE;
  5980. /* Flags needing groups don't count if only 1 group in parent */
  5981. if (parent->groups == parent->groups->next) {
  5982. pflags &= ~(SD_LOAD_BALANCE |
  5983. SD_BALANCE_NEWIDLE |
  5984. SD_BALANCE_FORK |
  5985. SD_BALANCE_EXEC |
  5986. SD_SHARE_CPUPOWER |
  5987. SD_SHARE_PKG_RESOURCES);
  5988. if (nr_node_ids == 1)
  5989. pflags &= ~SD_SERIALIZE;
  5990. }
  5991. if (~cflags & pflags)
  5992. return 0;
  5993. return 1;
  5994. }
  5995. static void free_rootdomain(struct root_domain *rd)
  5996. {
  5997. cpupri_cleanup(&rd->cpupri);
  5998. free_cpumask_var(rd->rto_mask);
  5999. free_cpumask_var(rd->online);
  6000. free_cpumask_var(rd->span);
  6001. kfree(rd);
  6002. }
  6003. static void rq_attach_root(struct rq *rq, struct root_domain *rd)
  6004. {
  6005. struct root_domain *old_rd = NULL;
  6006. unsigned long flags;
  6007. spin_lock_irqsave(&rq->lock, flags);
  6008. if (rq->rd) {
  6009. old_rd = rq->rd;
  6010. if (cpumask_test_cpu(rq->cpu, old_rd->online))
  6011. set_rq_offline(rq);
  6012. cpumask_clear_cpu(rq->cpu, old_rd->span);
  6013. /*
  6014. * If we dont want to free the old_rt yet then
  6015. * set old_rd to NULL to skip the freeing later
  6016. * in this function:
  6017. */
  6018. if (!atomic_dec_and_test(&old_rd->refcount))
  6019. old_rd = NULL;
  6020. }
  6021. atomic_inc(&rd->refcount);
  6022. rq->rd = rd;
  6023. cpumask_set_cpu(rq->cpu, rd->span);
  6024. if (cpumask_test_cpu(rq->cpu, cpu_online_mask))
  6025. set_rq_online(rq);
  6026. spin_unlock_irqrestore(&rq->lock, flags);
  6027. if (old_rd)
  6028. free_rootdomain(old_rd);
  6029. }
  6030. static int __init_refok init_rootdomain(struct root_domain *rd, bool bootmem)
  6031. {
  6032. memset(rd, 0, sizeof(*rd));
  6033. if (bootmem) {
  6034. alloc_bootmem_cpumask_var(&def_root_domain.span);
  6035. alloc_bootmem_cpumask_var(&def_root_domain.online);
  6036. alloc_bootmem_cpumask_var(&def_root_domain.rto_mask);
  6037. cpupri_init(&rd->cpupri, true);
  6038. return 0;
  6039. }
  6040. if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
  6041. goto out;
  6042. if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
  6043. goto free_span;
  6044. if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
  6045. goto free_online;
  6046. if (cpupri_init(&rd->cpupri, false) != 0)
  6047. goto free_rto_mask;
  6048. return 0;
  6049. free_rto_mask:
  6050. free_cpumask_var(rd->rto_mask);
  6051. free_online:
  6052. free_cpumask_var(rd->online);
  6053. free_span:
  6054. free_cpumask_var(rd->span);
  6055. out:
  6056. return -ENOMEM;
  6057. }
  6058. static void init_defrootdomain(void)
  6059. {
  6060. init_rootdomain(&def_root_domain, true);
  6061. atomic_set(&def_root_domain.refcount, 1);
  6062. }
  6063. static struct root_domain *alloc_rootdomain(void)
  6064. {
  6065. struct root_domain *rd;
  6066. rd = kmalloc(sizeof(*rd), GFP_KERNEL);
  6067. if (!rd)
  6068. return NULL;
  6069. if (init_rootdomain(rd, false) != 0) {
  6070. kfree(rd);
  6071. return NULL;
  6072. }
  6073. return rd;
  6074. }
  6075. /*
  6076. * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
  6077. * hold the hotplug lock.
  6078. */
  6079. static void
  6080. cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
  6081. {
  6082. struct rq *rq = cpu_rq(cpu);
  6083. struct sched_domain *tmp;
  6084. /* Remove the sched domains which do not contribute to scheduling. */
  6085. for (tmp = sd; tmp; ) {
  6086. struct sched_domain *parent = tmp->parent;
  6087. if (!parent)
  6088. break;
  6089. if (sd_parent_degenerate(tmp, parent)) {
  6090. tmp->parent = parent->parent;
  6091. if (parent->parent)
  6092. parent->parent->child = tmp;
  6093. } else
  6094. tmp = tmp->parent;
  6095. }
  6096. if (sd && sd_degenerate(sd)) {
  6097. sd = sd->parent;
  6098. if (sd)
  6099. sd->child = NULL;
  6100. }
  6101. sched_domain_debug(sd, cpu);
  6102. rq_attach_root(rq, rd);
  6103. rcu_assign_pointer(rq->sd, sd);
  6104. }
  6105. /* cpus with isolated domains */
  6106. static cpumask_var_t cpu_isolated_map;
  6107. /* Setup the mask of cpus configured for isolated domains */
  6108. static int __init isolated_cpu_setup(char *str)
  6109. {
  6110. cpulist_parse(str, cpu_isolated_map);
  6111. return 1;
  6112. }
  6113. __setup("isolcpus=", isolated_cpu_setup);
  6114. /*
  6115. * init_sched_build_groups takes the cpumask we wish to span, and a pointer
  6116. * to a function which identifies what group(along with sched group) a CPU
  6117. * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
  6118. * (due to the fact that we keep track of groups covered with a struct cpumask).
  6119. *
  6120. * init_sched_build_groups will build a circular linked list of the groups
  6121. * covered by the given span, and will set each group's ->cpumask correctly,
  6122. * and ->cpu_power to 0.
  6123. */
  6124. static void
  6125. init_sched_build_groups(const struct cpumask *span,
  6126. const struct cpumask *cpu_map,
  6127. int (*group_fn)(int cpu, const struct cpumask *cpu_map,
  6128. struct sched_group **sg,
  6129. struct cpumask *tmpmask),
  6130. struct cpumask *covered, struct cpumask *tmpmask)
  6131. {
  6132. struct sched_group *first = NULL, *last = NULL;
  6133. int i;
  6134. cpumask_clear(covered);
  6135. for_each_cpu(i, span) {
  6136. struct sched_group *sg;
  6137. int group = group_fn(i, cpu_map, &sg, tmpmask);
  6138. int j;
  6139. if (cpumask_test_cpu(i, covered))
  6140. continue;
  6141. cpumask_clear(sched_group_cpus(sg));
  6142. sg->__cpu_power = 0;
  6143. for_each_cpu(j, span) {
  6144. if (group_fn(j, cpu_map, NULL, tmpmask) != group)
  6145. continue;
  6146. cpumask_set_cpu(j, covered);
  6147. cpumask_set_cpu(j, sched_group_cpus(sg));
  6148. }
  6149. if (!first)
  6150. first = sg;
  6151. if (last)
  6152. last->next = sg;
  6153. last = sg;
  6154. }
  6155. last->next = first;
  6156. }
  6157. #define SD_NODES_PER_DOMAIN 16
  6158. #ifdef CONFIG_NUMA
  6159. /**
  6160. * find_next_best_node - find the next node to include in a sched_domain
  6161. * @node: node whose sched_domain we're building
  6162. * @used_nodes: nodes already in the sched_domain
  6163. *
  6164. * Find the next node to include in a given scheduling domain. Simply
  6165. * finds the closest node not already in the @used_nodes map.
  6166. *
  6167. * Should use nodemask_t.
  6168. */
  6169. static int find_next_best_node(int node, nodemask_t *used_nodes)
  6170. {
  6171. int i, n, val, min_val, best_node = 0;
  6172. min_val = INT_MAX;
  6173. for (i = 0; i < nr_node_ids; i++) {
  6174. /* Start at @node */
  6175. n = (node + i) % nr_node_ids;
  6176. if (!nr_cpus_node(n))
  6177. continue;
  6178. /* Skip already used nodes */
  6179. if (node_isset(n, *used_nodes))
  6180. continue;
  6181. /* Simple min distance search */
  6182. val = node_distance(node, n);
  6183. if (val < min_val) {
  6184. min_val = val;
  6185. best_node = n;
  6186. }
  6187. }
  6188. node_set(best_node, *used_nodes);
  6189. return best_node;
  6190. }
  6191. /**
  6192. * sched_domain_node_span - get a cpumask for a node's sched_domain
  6193. * @node: node whose cpumask we're constructing
  6194. * @span: resulting cpumask
  6195. *
  6196. * Given a node, construct a good cpumask for its sched_domain to span. It
  6197. * should be one that prevents unnecessary balancing, but also spreads tasks
  6198. * out optimally.
  6199. */
  6200. static void sched_domain_node_span(int node, struct cpumask *span)
  6201. {
  6202. nodemask_t used_nodes;
  6203. int i;
  6204. cpumask_clear(span);
  6205. nodes_clear(used_nodes);
  6206. cpumask_or(span, span, cpumask_of_node(node));
  6207. node_set(node, used_nodes);
  6208. for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
  6209. int next_node = find_next_best_node(node, &used_nodes);
  6210. cpumask_or(span, span, cpumask_of_node(next_node));
  6211. }
  6212. }
  6213. #endif /* CONFIG_NUMA */
  6214. int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
  6215. /*
  6216. * The cpus mask in sched_group and sched_domain hangs off the end.
  6217. * FIXME: use cpumask_var_t or dynamic percpu alloc to avoid wasting space
  6218. * for nr_cpu_ids < CONFIG_NR_CPUS.
  6219. */
  6220. struct static_sched_group {
  6221. struct sched_group sg;
  6222. DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
  6223. };
  6224. struct static_sched_domain {
  6225. struct sched_domain sd;
  6226. DECLARE_BITMAP(span, CONFIG_NR_CPUS);
  6227. };
  6228. /*
  6229. * SMT sched-domains:
  6230. */
  6231. #ifdef CONFIG_SCHED_SMT
  6232. static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
  6233. static DEFINE_PER_CPU(struct static_sched_group, sched_group_cpus);
  6234. static int
  6235. cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
  6236. struct sched_group **sg, struct cpumask *unused)
  6237. {
  6238. if (sg)
  6239. *sg = &per_cpu(sched_group_cpus, cpu).sg;
  6240. return cpu;
  6241. }
  6242. #endif /* CONFIG_SCHED_SMT */
  6243. /*
  6244. * multi-core sched-domains:
  6245. */
  6246. #ifdef CONFIG_SCHED_MC
  6247. static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
  6248. static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
  6249. #endif /* CONFIG_SCHED_MC */
  6250. #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
  6251. static int
  6252. cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
  6253. struct sched_group **sg, struct cpumask *mask)
  6254. {
  6255. int group;
  6256. cpumask_and(mask, &per_cpu(cpu_sibling_map, cpu), cpu_map);
  6257. group = cpumask_first(mask);
  6258. if (sg)
  6259. *sg = &per_cpu(sched_group_core, group).sg;
  6260. return group;
  6261. }
  6262. #elif defined(CONFIG_SCHED_MC)
  6263. static int
  6264. cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
  6265. struct sched_group **sg, struct cpumask *unused)
  6266. {
  6267. if (sg)
  6268. *sg = &per_cpu(sched_group_core, cpu).sg;
  6269. return cpu;
  6270. }
  6271. #endif
  6272. static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
  6273. static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
  6274. static int
  6275. cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
  6276. struct sched_group **sg, struct cpumask *mask)
  6277. {
  6278. int group;
  6279. #ifdef CONFIG_SCHED_MC
  6280. cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
  6281. group = cpumask_first(mask);
  6282. #elif defined(CONFIG_SCHED_SMT)
  6283. cpumask_and(mask, &per_cpu(cpu_sibling_map, cpu), cpu_map);
  6284. group = cpumask_first(mask);
  6285. #else
  6286. group = cpu;
  6287. #endif
  6288. if (sg)
  6289. *sg = &per_cpu(sched_group_phys, group).sg;
  6290. return group;
  6291. }
  6292. #ifdef CONFIG_NUMA
  6293. /*
  6294. * The init_sched_build_groups can't handle what we want to do with node
  6295. * groups, so roll our own. Now each node has its own list of groups which
  6296. * gets dynamically allocated.
  6297. */
  6298. static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
  6299. static struct sched_group ***sched_group_nodes_bycpu;
  6300. static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
  6301. static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
  6302. static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
  6303. struct sched_group **sg,
  6304. struct cpumask *nodemask)
  6305. {
  6306. int group;
  6307. cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
  6308. group = cpumask_first(nodemask);
  6309. if (sg)
  6310. *sg = &per_cpu(sched_group_allnodes, group).sg;
  6311. return group;
  6312. }
  6313. static void init_numa_sched_groups_power(struct sched_group *group_head)
  6314. {
  6315. struct sched_group *sg = group_head;
  6316. int j;
  6317. if (!sg)
  6318. return;
  6319. do {
  6320. for_each_cpu(j, sched_group_cpus(sg)) {
  6321. struct sched_domain *sd;
  6322. sd = &per_cpu(phys_domains, j).sd;
  6323. if (j != cpumask_first(sched_group_cpus(sd->groups))) {
  6324. /*
  6325. * Only add "power" once for each
  6326. * physical package.
  6327. */
  6328. continue;
  6329. }
  6330. sg_inc_cpu_power(sg, sd->groups->__cpu_power);
  6331. }
  6332. sg = sg->next;
  6333. } while (sg != group_head);
  6334. }
  6335. #endif /* CONFIG_NUMA */
  6336. #ifdef CONFIG_NUMA
  6337. /* Free memory allocated for various sched_group structures */
  6338. static void free_sched_groups(const struct cpumask *cpu_map,
  6339. struct cpumask *nodemask)
  6340. {
  6341. int cpu, i;
  6342. for_each_cpu(cpu, cpu_map) {
  6343. struct sched_group **sched_group_nodes
  6344. = sched_group_nodes_bycpu[cpu];
  6345. if (!sched_group_nodes)
  6346. continue;
  6347. for (i = 0; i < nr_node_ids; i++) {
  6348. struct sched_group *oldsg, *sg = sched_group_nodes[i];
  6349. cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
  6350. if (cpumask_empty(nodemask))
  6351. continue;
  6352. if (sg == NULL)
  6353. continue;
  6354. sg = sg->next;
  6355. next_sg:
  6356. oldsg = sg;
  6357. sg = sg->next;
  6358. kfree(oldsg);
  6359. if (oldsg != sched_group_nodes[i])
  6360. goto next_sg;
  6361. }
  6362. kfree(sched_group_nodes);
  6363. sched_group_nodes_bycpu[cpu] = NULL;
  6364. }
  6365. }
  6366. #else /* !CONFIG_NUMA */
  6367. static void free_sched_groups(const struct cpumask *cpu_map,
  6368. struct cpumask *nodemask)
  6369. {
  6370. }
  6371. #endif /* CONFIG_NUMA */
  6372. /*
  6373. * Initialize sched groups cpu_power.
  6374. *
  6375. * cpu_power indicates the capacity of sched group, which is used while
  6376. * distributing the load between different sched groups in a sched domain.
  6377. * Typically cpu_power for all the groups in a sched domain will be same unless
  6378. * there are asymmetries in the topology. If there are asymmetries, group
  6379. * having more cpu_power will pickup more load compared to the group having
  6380. * less cpu_power.
  6381. *
  6382. * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
  6383. * the maximum number of tasks a group can handle in the presence of other idle
  6384. * or lightly loaded groups in the same sched domain.
  6385. */
  6386. static void init_sched_groups_power(int cpu, struct sched_domain *sd)
  6387. {
  6388. struct sched_domain *child;
  6389. struct sched_group *group;
  6390. WARN_ON(!sd || !sd->groups);
  6391. if (cpu != cpumask_first(sched_group_cpus(sd->groups)))
  6392. return;
  6393. child = sd->child;
  6394. sd->groups->__cpu_power = 0;
  6395. /*
  6396. * For perf policy, if the groups in child domain share resources
  6397. * (for example cores sharing some portions of the cache hierarchy
  6398. * or SMT), then set this domain groups cpu_power such that each group
  6399. * can handle only one task, when there are other idle groups in the
  6400. * same sched domain.
  6401. */
  6402. if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
  6403. (child->flags &
  6404. (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
  6405. sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
  6406. return;
  6407. }
  6408. /*
  6409. * add cpu_power of each child group to this groups cpu_power
  6410. */
  6411. group = child->groups;
  6412. do {
  6413. sg_inc_cpu_power(sd->groups, group->__cpu_power);
  6414. group = group->next;
  6415. } while (group != child->groups);
  6416. }
  6417. /*
  6418. * Initializers for schedule domains
  6419. * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
  6420. */
  6421. #ifdef CONFIG_SCHED_DEBUG
  6422. # define SD_INIT_NAME(sd, type) sd->name = #type
  6423. #else
  6424. # define SD_INIT_NAME(sd, type) do { } while (0)
  6425. #endif
  6426. #define SD_INIT(sd, type) sd_init_##type(sd)
  6427. #define SD_INIT_FUNC(type) \
  6428. static noinline void sd_init_##type(struct sched_domain *sd) \
  6429. { \
  6430. memset(sd, 0, sizeof(*sd)); \
  6431. *sd = SD_##type##_INIT; \
  6432. sd->level = SD_LV_##type; \
  6433. SD_INIT_NAME(sd, type); \
  6434. }
  6435. SD_INIT_FUNC(CPU)
  6436. #ifdef CONFIG_NUMA
  6437. SD_INIT_FUNC(ALLNODES)
  6438. SD_INIT_FUNC(NODE)
  6439. #endif
  6440. #ifdef CONFIG_SCHED_SMT
  6441. SD_INIT_FUNC(SIBLING)
  6442. #endif
  6443. #ifdef CONFIG_SCHED_MC
  6444. SD_INIT_FUNC(MC)
  6445. #endif
  6446. static int default_relax_domain_level = -1;
  6447. static int __init setup_relax_domain_level(char *str)
  6448. {
  6449. unsigned long val;
  6450. val = simple_strtoul(str, NULL, 0);
  6451. if (val < SD_LV_MAX)
  6452. default_relax_domain_level = val;
  6453. return 1;
  6454. }
  6455. __setup("relax_domain_level=", setup_relax_domain_level);
  6456. static void set_domain_attribute(struct sched_domain *sd,
  6457. struct sched_domain_attr *attr)
  6458. {
  6459. int request;
  6460. if (!attr || attr->relax_domain_level < 0) {
  6461. if (default_relax_domain_level < 0)
  6462. return;
  6463. else
  6464. request = default_relax_domain_level;
  6465. } else
  6466. request = attr->relax_domain_level;
  6467. if (request < sd->level) {
  6468. /* turn off idle balance on this domain */
  6469. sd->flags &= ~(SD_WAKE_IDLE|SD_BALANCE_NEWIDLE);
  6470. } else {
  6471. /* turn on idle balance on this domain */
  6472. sd->flags |= (SD_WAKE_IDLE_FAR|SD_BALANCE_NEWIDLE);
  6473. }
  6474. }
  6475. /*
  6476. * Build sched domains for a given set of cpus and attach the sched domains
  6477. * to the individual cpus
  6478. */
  6479. static int __build_sched_domains(const struct cpumask *cpu_map,
  6480. struct sched_domain_attr *attr)
  6481. {
  6482. int i, err = -ENOMEM;
  6483. struct root_domain *rd;
  6484. cpumask_var_t nodemask, this_sibling_map, this_core_map, send_covered,
  6485. tmpmask;
  6486. #ifdef CONFIG_NUMA
  6487. cpumask_var_t domainspan, covered, notcovered;
  6488. struct sched_group **sched_group_nodes = NULL;
  6489. int sd_allnodes = 0;
  6490. if (!alloc_cpumask_var(&domainspan, GFP_KERNEL))
  6491. goto out;
  6492. if (!alloc_cpumask_var(&covered, GFP_KERNEL))
  6493. goto free_domainspan;
  6494. if (!alloc_cpumask_var(&notcovered, GFP_KERNEL))
  6495. goto free_covered;
  6496. #endif
  6497. if (!alloc_cpumask_var(&nodemask, GFP_KERNEL))
  6498. goto free_notcovered;
  6499. if (!alloc_cpumask_var(&this_sibling_map, GFP_KERNEL))
  6500. goto free_nodemask;
  6501. if (!alloc_cpumask_var(&this_core_map, GFP_KERNEL))
  6502. goto free_this_sibling_map;
  6503. if (!alloc_cpumask_var(&send_covered, GFP_KERNEL))
  6504. goto free_this_core_map;
  6505. if (!alloc_cpumask_var(&tmpmask, GFP_KERNEL))
  6506. goto free_send_covered;
  6507. #ifdef CONFIG_NUMA
  6508. /*
  6509. * Allocate the per-node list of sched groups
  6510. */
  6511. sched_group_nodes = kcalloc(nr_node_ids, sizeof(struct sched_group *),
  6512. GFP_KERNEL);
  6513. if (!sched_group_nodes) {
  6514. printk(KERN_WARNING "Can not alloc sched group node list\n");
  6515. goto free_tmpmask;
  6516. }
  6517. #endif
  6518. rd = alloc_rootdomain();
  6519. if (!rd) {
  6520. printk(KERN_WARNING "Cannot alloc root domain\n");
  6521. goto free_sched_groups;
  6522. }
  6523. #ifdef CONFIG_NUMA
  6524. sched_group_nodes_bycpu[cpumask_first(cpu_map)] = sched_group_nodes;
  6525. #endif
  6526. /*
  6527. * Set up domains for cpus specified by the cpu_map.
  6528. */
  6529. for_each_cpu(i, cpu_map) {
  6530. struct sched_domain *sd = NULL, *p;
  6531. cpumask_and(nodemask, cpumask_of_node(cpu_to_node(i)), cpu_map);
  6532. #ifdef CONFIG_NUMA
  6533. if (cpumask_weight(cpu_map) >
  6534. SD_NODES_PER_DOMAIN*cpumask_weight(nodemask)) {
  6535. sd = &per_cpu(allnodes_domains, i).sd;
  6536. SD_INIT(sd, ALLNODES);
  6537. set_domain_attribute(sd, attr);
  6538. cpumask_copy(sched_domain_span(sd), cpu_map);
  6539. cpu_to_allnodes_group(i, cpu_map, &sd->groups, tmpmask);
  6540. p = sd;
  6541. sd_allnodes = 1;
  6542. } else
  6543. p = NULL;
  6544. sd = &per_cpu(node_domains, i).sd;
  6545. SD_INIT(sd, NODE);
  6546. set_domain_attribute(sd, attr);
  6547. sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
  6548. sd->parent = p;
  6549. if (p)
  6550. p->child = sd;
  6551. cpumask_and(sched_domain_span(sd),
  6552. sched_domain_span(sd), cpu_map);
  6553. #endif
  6554. p = sd;
  6555. sd = &per_cpu(phys_domains, i).sd;
  6556. SD_INIT(sd, CPU);
  6557. set_domain_attribute(sd, attr);
  6558. cpumask_copy(sched_domain_span(sd), nodemask);
  6559. sd->parent = p;
  6560. if (p)
  6561. p->child = sd;
  6562. cpu_to_phys_group(i, cpu_map, &sd->groups, tmpmask);
  6563. #ifdef CONFIG_SCHED_MC
  6564. p = sd;
  6565. sd = &per_cpu(core_domains, i).sd;
  6566. SD_INIT(sd, MC);
  6567. set_domain_attribute(sd, attr);
  6568. cpumask_and(sched_domain_span(sd), cpu_map,
  6569. cpu_coregroup_mask(i));
  6570. sd->parent = p;
  6571. p->child = sd;
  6572. cpu_to_core_group(i, cpu_map, &sd->groups, tmpmask);
  6573. #endif
  6574. #ifdef CONFIG_SCHED_SMT
  6575. p = sd;
  6576. sd = &per_cpu(cpu_domains, i).sd;
  6577. SD_INIT(sd, SIBLING);
  6578. set_domain_attribute(sd, attr);
  6579. cpumask_and(sched_domain_span(sd),
  6580. &per_cpu(cpu_sibling_map, i), cpu_map);
  6581. sd->parent = p;
  6582. p->child = sd;
  6583. cpu_to_cpu_group(i, cpu_map, &sd->groups, tmpmask);
  6584. #endif
  6585. }
  6586. #ifdef CONFIG_SCHED_SMT
  6587. /* Set up CPU (sibling) groups */
  6588. for_each_cpu(i, cpu_map) {
  6589. cpumask_and(this_sibling_map,
  6590. &per_cpu(cpu_sibling_map, i), cpu_map);
  6591. if (i != cpumask_first(this_sibling_map))
  6592. continue;
  6593. init_sched_build_groups(this_sibling_map, cpu_map,
  6594. &cpu_to_cpu_group,
  6595. send_covered, tmpmask);
  6596. }
  6597. #endif
  6598. #ifdef CONFIG_SCHED_MC
  6599. /* Set up multi-core groups */
  6600. for_each_cpu(i, cpu_map) {
  6601. cpumask_and(this_core_map, cpu_coregroup_mask(i), cpu_map);
  6602. if (i != cpumask_first(this_core_map))
  6603. continue;
  6604. init_sched_build_groups(this_core_map, cpu_map,
  6605. &cpu_to_core_group,
  6606. send_covered, tmpmask);
  6607. }
  6608. #endif
  6609. /* Set up physical groups */
  6610. for (i = 0; i < nr_node_ids; i++) {
  6611. cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
  6612. if (cpumask_empty(nodemask))
  6613. continue;
  6614. init_sched_build_groups(nodemask, cpu_map,
  6615. &cpu_to_phys_group,
  6616. send_covered, tmpmask);
  6617. }
  6618. #ifdef CONFIG_NUMA
  6619. /* Set up node groups */
  6620. if (sd_allnodes) {
  6621. init_sched_build_groups(cpu_map, cpu_map,
  6622. &cpu_to_allnodes_group,
  6623. send_covered, tmpmask);
  6624. }
  6625. for (i = 0; i < nr_node_ids; i++) {
  6626. /* Set up node groups */
  6627. struct sched_group *sg, *prev;
  6628. int j;
  6629. cpumask_clear(covered);
  6630. cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
  6631. if (cpumask_empty(nodemask)) {
  6632. sched_group_nodes[i] = NULL;
  6633. continue;
  6634. }
  6635. sched_domain_node_span(i, domainspan);
  6636. cpumask_and(domainspan, domainspan, cpu_map);
  6637. sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
  6638. GFP_KERNEL, i);
  6639. if (!sg) {
  6640. printk(KERN_WARNING "Can not alloc domain group for "
  6641. "node %d\n", i);
  6642. goto error;
  6643. }
  6644. sched_group_nodes[i] = sg;
  6645. for_each_cpu(j, nodemask) {
  6646. struct sched_domain *sd;
  6647. sd = &per_cpu(node_domains, j).sd;
  6648. sd->groups = sg;
  6649. }
  6650. sg->__cpu_power = 0;
  6651. cpumask_copy(sched_group_cpus(sg), nodemask);
  6652. sg->next = sg;
  6653. cpumask_or(covered, covered, nodemask);
  6654. prev = sg;
  6655. for (j = 0; j < nr_node_ids; j++) {
  6656. int n = (i + j) % nr_node_ids;
  6657. cpumask_complement(notcovered, covered);
  6658. cpumask_and(tmpmask, notcovered, cpu_map);
  6659. cpumask_and(tmpmask, tmpmask, domainspan);
  6660. if (cpumask_empty(tmpmask))
  6661. break;
  6662. cpumask_and(tmpmask, tmpmask, cpumask_of_node(n));
  6663. if (cpumask_empty(tmpmask))
  6664. continue;
  6665. sg = kmalloc_node(sizeof(struct sched_group) +
  6666. cpumask_size(),
  6667. GFP_KERNEL, i);
  6668. if (!sg) {
  6669. printk(KERN_WARNING
  6670. "Can not alloc domain group for node %d\n", j);
  6671. goto error;
  6672. }
  6673. sg->__cpu_power = 0;
  6674. cpumask_copy(sched_group_cpus(sg), tmpmask);
  6675. sg->next = prev->next;
  6676. cpumask_or(covered, covered, tmpmask);
  6677. prev->next = sg;
  6678. prev = sg;
  6679. }
  6680. }
  6681. #endif
  6682. /* Calculate CPU power for physical packages and nodes */
  6683. #ifdef CONFIG_SCHED_SMT
  6684. for_each_cpu(i, cpu_map) {
  6685. struct sched_domain *sd = &per_cpu(cpu_domains, i).sd;
  6686. init_sched_groups_power(i, sd);
  6687. }
  6688. #endif
  6689. #ifdef CONFIG_SCHED_MC
  6690. for_each_cpu(i, cpu_map) {
  6691. struct sched_domain *sd = &per_cpu(core_domains, i).sd;
  6692. init_sched_groups_power(i, sd);
  6693. }
  6694. #endif
  6695. for_each_cpu(i, cpu_map) {
  6696. struct sched_domain *sd = &per_cpu(phys_domains, i).sd;
  6697. init_sched_groups_power(i, sd);
  6698. }
  6699. #ifdef CONFIG_NUMA
  6700. for (i = 0; i < nr_node_ids; i++)
  6701. init_numa_sched_groups_power(sched_group_nodes[i]);
  6702. if (sd_allnodes) {
  6703. struct sched_group *sg;
  6704. cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
  6705. tmpmask);
  6706. init_numa_sched_groups_power(sg);
  6707. }
  6708. #endif
  6709. /* Attach the domains */
  6710. for_each_cpu(i, cpu_map) {
  6711. struct sched_domain *sd;
  6712. #ifdef CONFIG_SCHED_SMT
  6713. sd = &per_cpu(cpu_domains, i).sd;
  6714. #elif defined(CONFIG_SCHED_MC)
  6715. sd = &per_cpu(core_domains, i).sd;
  6716. #else
  6717. sd = &per_cpu(phys_domains, i).sd;
  6718. #endif
  6719. cpu_attach_domain(sd, rd, i);
  6720. }
  6721. err = 0;
  6722. free_tmpmask:
  6723. free_cpumask_var(tmpmask);
  6724. free_send_covered:
  6725. free_cpumask_var(send_covered);
  6726. free_this_core_map:
  6727. free_cpumask_var(this_core_map);
  6728. free_this_sibling_map:
  6729. free_cpumask_var(this_sibling_map);
  6730. free_nodemask:
  6731. free_cpumask_var(nodemask);
  6732. free_notcovered:
  6733. #ifdef CONFIG_NUMA
  6734. free_cpumask_var(notcovered);
  6735. free_covered:
  6736. free_cpumask_var(covered);
  6737. free_domainspan:
  6738. free_cpumask_var(domainspan);
  6739. out:
  6740. #endif
  6741. return err;
  6742. free_sched_groups:
  6743. #ifdef CONFIG_NUMA
  6744. kfree(sched_group_nodes);
  6745. #endif
  6746. goto free_tmpmask;
  6747. #ifdef CONFIG_NUMA
  6748. error:
  6749. free_sched_groups(cpu_map, tmpmask);
  6750. free_rootdomain(rd);
  6751. goto free_tmpmask;
  6752. #endif
  6753. }
  6754. static int build_sched_domains(const struct cpumask *cpu_map)
  6755. {
  6756. return __build_sched_domains(cpu_map, NULL);
  6757. }
  6758. static struct cpumask *doms_cur; /* current sched domains */
  6759. static int ndoms_cur; /* number of sched domains in 'doms_cur' */
  6760. static struct sched_domain_attr *dattr_cur;
  6761. /* attribues of custom domains in 'doms_cur' */
  6762. /*
  6763. * Special case: If a kmalloc of a doms_cur partition (array of
  6764. * cpumask) fails, then fallback to a single sched domain,
  6765. * as determined by the single cpumask fallback_doms.
  6766. */
  6767. static cpumask_var_t fallback_doms;
  6768. /*
  6769. * arch_update_cpu_topology lets virtualized architectures update the
  6770. * cpu core maps. It is supposed to return 1 if the topology changed
  6771. * or 0 if it stayed the same.
  6772. */
  6773. int __attribute__((weak)) arch_update_cpu_topology(void)
  6774. {
  6775. return 0;
  6776. }
  6777. /*
  6778. * Set up scheduler domains and groups. Callers must hold the hotplug lock.
  6779. * For now this just excludes isolated cpus, but could be used to
  6780. * exclude other special cases in the future.
  6781. */
  6782. static int arch_init_sched_domains(const struct cpumask *cpu_map)
  6783. {
  6784. int err;
  6785. arch_update_cpu_topology();
  6786. ndoms_cur = 1;
  6787. doms_cur = kmalloc(cpumask_size(), GFP_KERNEL);
  6788. if (!doms_cur)
  6789. doms_cur = fallback_doms;
  6790. cpumask_andnot(doms_cur, cpu_map, cpu_isolated_map);
  6791. dattr_cur = NULL;
  6792. err = build_sched_domains(doms_cur);
  6793. register_sched_domain_sysctl();
  6794. return err;
  6795. }
  6796. static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
  6797. struct cpumask *tmpmask)
  6798. {
  6799. free_sched_groups(cpu_map, tmpmask);
  6800. }
  6801. /*
  6802. * Detach sched domains from a group of cpus specified in cpu_map
  6803. * These cpus will now be attached to the NULL domain
  6804. */
  6805. static void detach_destroy_domains(const struct cpumask *cpu_map)
  6806. {
  6807. /* Save because hotplug lock held. */
  6808. static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
  6809. int i;
  6810. for_each_cpu(i, cpu_map)
  6811. cpu_attach_domain(NULL, &def_root_domain, i);
  6812. synchronize_sched();
  6813. arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
  6814. }
  6815. /* handle null as "default" */
  6816. static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
  6817. struct sched_domain_attr *new, int idx_new)
  6818. {
  6819. struct sched_domain_attr tmp;
  6820. /* fast path */
  6821. if (!new && !cur)
  6822. return 1;
  6823. tmp = SD_ATTR_INIT;
  6824. return !memcmp(cur ? (cur + idx_cur) : &tmp,
  6825. new ? (new + idx_new) : &tmp,
  6826. sizeof(struct sched_domain_attr));
  6827. }
  6828. /*
  6829. * Partition sched domains as specified by the 'ndoms_new'
  6830. * cpumasks in the array doms_new[] of cpumasks. This compares
  6831. * doms_new[] to the current sched domain partitioning, doms_cur[].
  6832. * It destroys each deleted domain and builds each new domain.
  6833. *
  6834. * 'doms_new' is an array of cpumask's of length 'ndoms_new'.
  6835. * The masks don't intersect (don't overlap.) We should setup one
  6836. * sched domain for each mask. CPUs not in any of the cpumasks will
  6837. * not be load balanced. If the same cpumask appears both in the
  6838. * current 'doms_cur' domains and in the new 'doms_new', we can leave
  6839. * it as it is.
  6840. *
  6841. * The passed in 'doms_new' should be kmalloc'd. This routine takes
  6842. * ownership of it and will kfree it when done with it. If the caller
  6843. * failed the kmalloc call, then it can pass in doms_new == NULL &&
  6844. * ndoms_new == 1, and partition_sched_domains() will fallback to
  6845. * the single partition 'fallback_doms', it also forces the domains
  6846. * to be rebuilt.
  6847. *
  6848. * If doms_new == NULL it will be replaced with cpu_online_mask.
  6849. * ndoms_new == 0 is a special case for destroying existing domains,
  6850. * and it will not create the default domain.
  6851. *
  6852. * Call with hotplug lock held
  6853. */
  6854. /* FIXME: Change to struct cpumask *doms_new[] */
  6855. void partition_sched_domains(int ndoms_new, struct cpumask *doms_new,
  6856. struct sched_domain_attr *dattr_new)
  6857. {
  6858. int i, j, n;
  6859. int new_topology;
  6860. mutex_lock(&sched_domains_mutex);
  6861. /* always unregister in case we don't destroy any domains */
  6862. unregister_sched_domain_sysctl();
  6863. /* Let architecture update cpu core mappings. */
  6864. new_topology = arch_update_cpu_topology();
  6865. n = doms_new ? ndoms_new : 0;
  6866. /* Destroy deleted domains */
  6867. for (i = 0; i < ndoms_cur; i++) {
  6868. for (j = 0; j < n && !new_topology; j++) {
  6869. if (cpumask_equal(&doms_cur[i], &doms_new[j])
  6870. && dattrs_equal(dattr_cur, i, dattr_new, j))
  6871. goto match1;
  6872. }
  6873. /* no match - a current sched domain not in new doms_new[] */
  6874. detach_destroy_domains(doms_cur + i);
  6875. match1:
  6876. ;
  6877. }
  6878. if (doms_new == NULL) {
  6879. ndoms_cur = 0;
  6880. doms_new = fallback_doms;
  6881. cpumask_andnot(&doms_new[0], cpu_online_mask, cpu_isolated_map);
  6882. WARN_ON_ONCE(dattr_new);
  6883. }
  6884. /* Build new domains */
  6885. for (i = 0; i < ndoms_new; i++) {
  6886. for (j = 0; j < ndoms_cur && !new_topology; j++) {
  6887. if (cpumask_equal(&doms_new[i], &doms_cur[j])
  6888. && dattrs_equal(dattr_new, i, dattr_cur, j))
  6889. goto match2;
  6890. }
  6891. /* no match - add a new doms_new */
  6892. __build_sched_domains(doms_new + i,
  6893. dattr_new ? dattr_new + i : NULL);
  6894. match2:
  6895. ;
  6896. }
  6897. /* Remember the new sched domains */
  6898. if (doms_cur != fallback_doms)
  6899. kfree(doms_cur);
  6900. kfree(dattr_cur); /* kfree(NULL) is safe */
  6901. doms_cur = doms_new;
  6902. dattr_cur = dattr_new;
  6903. ndoms_cur = ndoms_new;
  6904. register_sched_domain_sysctl();
  6905. mutex_unlock(&sched_domains_mutex);
  6906. }
  6907. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  6908. static void arch_reinit_sched_domains(void)
  6909. {
  6910. get_online_cpus();
  6911. /* Destroy domains first to force the rebuild */
  6912. partition_sched_domains(0, NULL, NULL);
  6913. rebuild_sched_domains();
  6914. put_online_cpus();
  6915. }
  6916. static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
  6917. {
  6918. unsigned int level = 0;
  6919. if (sscanf(buf, "%u", &level) != 1)
  6920. return -EINVAL;
  6921. /*
  6922. * level is always be positive so don't check for
  6923. * level < POWERSAVINGS_BALANCE_NONE which is 0
  6924. * What happens on 0 or 1 byte write,
  6925. * need to check for count as well?
  6926. */
  6927. if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
  6928. return -EINVAL;
  6929. if (smt)
  6930. sched_smt_power_savings = level;
  6931. else
  6932. sched_mc_power_savings = level;
  6933. arch_reinit_sched_domains();
  6934. return count;
  6935. }
  6936. #ifdef CONFIG_SCHED_MC
  6937. static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
  6938. char *page)
  6939. {
  6940. return sprintf(page, "%u\n", sched_mc_power_savings);
  6941. }
  6942. static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
  6943. const char *buf, size_t count)
  6944. {
  6945. return sched_power_savings_store(buf, count, 0);
  6946. }
  6947. static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
  6948. sched_mc_power_savings_show,
  6949. sched_mc_power_savings_store);
  6950. #endif
  6951. #ifdef CONFIG_SCHED_SMT
  6952. static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
  6953. char *page)
  6954. {
  6955. return sprintf(page, "%u\n", sched_smt_power_savings);
  6956. }
  6957. static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
  6958. const char *buf, size_t count)
  6959. {
  6960. return sched_power_savings_store(buf, count, 1);
  6961. }
  6962. static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
  6963. sched_smt_power_savings_show,
  6964. sched_smt_power_savings_store);
  6965. #endif
  6966. int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
  6967. {
  6968. int err = 0;
  6969. #ifdef CONFIG_SCHED_SMT
  6970. if (smt_capable())
  6971. err = sysfs_create_file(&cls->kset.kobj,
  6972. &attr_sched_smt_power_savings.attr);
  6973. #endif
  6974. #ifdef CONFIG_SCHED_MC
  6975. if (!err && mc_capable())
  6976. err = sysfs_create_file(&cls->kset.kobj,
  6977. &attr_sched_mc_power_savings.attr);
  6978. #endif
  6979. return err;
  6980. }
  6981. #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
  6982. #ifndef CONFIG_CPUSETS
  6983. /*
  6984. * Add online and remove offline CPUs from the scheduler domains.
  6985. * When cpusets are enabled they take over this function.
  6986. */
  6987. static int update_sched_domains(struct notifier_block *nfb,
  6988. unsigned long action, void *hcpu)
  6989. {
  6990. switch (action) {
  6991. case CPU_ONLINE:
  6992. case CPU_ONLINE_FROZEN:
  6993. case CPU_DEAD:
  6994. case CPU_DEAD_FROZEN:
  6995. partition_sched_domains(1, NULL, NULL);
  6996. return NOTIFY_OK;
  6997. default:
  6998. return NOTIFY_DONE;
  6999. }
  7000. }
  7001. #endif
  7002. static int update_runtime(struct notifier_block *nfb,
  7003. unsigned long action, void *hcpu)
  7004. {
  7005. int cpu = (int)(long)hcpu;
  7006. switch (action) {
  7007. case CPU_DOWN_PREPARE:
  7008. case CPU_DOWN_PREPARE_FROZEN:
  7009. disable_runtime(cpu_rq(cpu));
  7010. return NOTIFY_OK;
  7011. case CPU_DOWN_FAILED:
  7012. case CPU_DOWN_FAILED_FROZEN:
  7013. case CPU_ONLINE:
  7014. case CPU_ONLINE_FROZEN:
  7015. enable_runtime(cpu_rq(cpu));
  7016. return NOTIFY_OK;
  7017. default:
  7018. return NOTIFY_DONE;
  7019. }
  7020. }
  7021. void __init sched_init_smp(void)
  7022. {
  7023. cpumask_var_t non_isolated_cpus;
  7024. alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
  7025. #if defined(CONFIG_NUMA)
  7026. sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
  7027. GFP_KERNEL);
  7028. BUG_ON(sched_group_nodes_bycpu == NULL);
  7029. #endif
  7030. get_online_cpus();
  7031. mutex_lock(&sched_domains_mutex);
  7032. arch_init_sched_domains(cpu_online_mask);
  7033. cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
  7034. if (cpumask_empty(non_isolated_cpus))
  7035. cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
  7036. mutex_unlock(&sched_domains_mutex);
  7037. put_online_cpus();
  7038. #ifndef CONFIG_CPUSETS
  7039. /* XXX: Theoretical race here - CPU may be hotplugged now */
  7040. hotcpu_notifier(update_sched_domains, 0);
  7041. #endif
  7042. /* RT runtime code needs to handle some hotplug events */
  7043. hotcpu_notifier(update_runtime, 0);
  7044. init_hrtick();
  7045. /* Move init over to a non-isolated CPU */
  7046. if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
  7047. BUG();
  7048. sched_init_granularity();
  7049. free_cpumask_var(non_isolated_cpus);
  7050. alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
  7051. init_sched_rt_class();
  7052. }
  7053. #else
  7054. void __init sched_init_smp(void)
  7055. {
  7056. sched_init_granularity();
  7057. }
  7058. #endif /* CONFIG_SMP */
  7059. int in_sched_functions(unsigned long addr)
  7060. {
  7061. return in_lock_functions(addr) ||
  7062. (addr >= (unsigned long)__sched_text_start
  7063. && addr < (unsigned long)__sched_text_end);
  7064. }
  7065. static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
  7066. {
  7067. cfs_rq->tasks_timeline = RB_ROOT;
  7068. INIT_LIST_HEAD(&cfs_rq->tasks);
  7069. #ifdef CONFIG_FAIR_GROUP_SCHED
  7070. cfs_rq->rq = rq;
  7071. #endif
  7072. cfs_rq->min_vruntime = (u64)(-(1LL << 20));
  7073. }
  7074. static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
  7075. {
  7076. struct rt_prio_array *array;
  7077. int i;
  7078. array = &rt_rq->active;
  7079. for (i = 0; i < MAX_RT_PRIO; i++) {
  7080. INIT_LIST_HEAD(array->queue + i);
  7081. __clear_bit(i, array->bitmap);
  7082. }
  7083. /* delimiter for bitsearch: */
  7084. __set_bit(MAX_RT_PRIO, array->bitmap);
  7085. #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
  7086. rt_rq->highest_prio.curr = MAX_RT_PRIO;
  7087. #ifdef CONFIG_SMP
  7088. rt_rq->highest_prio.next = MAX_RT_PRIO;
  7089. #endif
  7090. #endif
  7091. #ifdef CONFIG_SMP
  7092. rt_rq->rt_nr_migratory = 0;
  7093. rt_rq->overloaded = 0;
  7094. plist_head_init(&rq->rt.pushable_tasks, &rq->lock);
  7095. #endif
  7096. rt_rq->rt_time = 0;
  7097. rt_rq->rt_throttled = 0;
  7098. rt_rq->rt_runtime = 0;
  7099. spin_lock_init(&rt_rq->rt_runtime_lock);
  7100. #ifdef CONFIG_RT_GROUP_SCHED
  7101. rt_rq->rt_nr_boosted = 0;
  7102. rt_rq->rq = rq;
  7103. #endif
  7104. }
  7105. #ifdef CONFIG_FAIR_GROUP_SCHED
  7106. static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
  7107. struct sched_entity *se, int cpu, int add,
  7108. struct sched_entity *parent)
  7109. {
  7110. struct rq *rq = cpu_rq(cpu);
  7111. tg->cfs_rq[cpu] = cfs_rq;
  7112. init_cfs_rq(cfs_rq, rq);
  7113. cfs_rq->tg = tg;
  7114. if (add)
  7115. list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
  7116. tg->se[cpu] = se;
  7117. /* se could be NULL for init_task_group */
  7118. if (!se)
  7119. return;
  7120. if (!parent)
  7121. se->cfs_rq = &rq->cfs;
  7122. else
  7123. se->cfs_rq = parent->my_q;
  7124. se->my_q = cfs_rq;
  7125. se->load.weight = tg->shares;
  7126. se->load.inv_weight = 0;
  7127. se->parent = parent;
  7128. }
  7129. #endif
  7130. #ifdef CONFIG_RT_GROUP_SCHED
  7131. static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
  7132. struct sched_rt_entity *rt_se, int cpu, int add,
  7133. struct sched_rt_entity *parent)
  7134. {
  7135. struct rq *rq = cpu_rq(cpu);
  7136. tg->rt_rq[cpu] = rt_rq;
  7137. init_rt_rq(rt_rq, rq);
  7138. rt_rq->tg = tg;
  7139. rt_rq->rt_se = rt_se;
  7140. rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
  7141. if (add)
  7142. list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
  7143. tg->rt_se[cpu] = rt_se;
  7144. if (!rt_se)
  7145. return;
  7146. if (!parent)
  7147. rt_se->rt_rq = &rq->rt;
  7148. else
  7149. rt_se->rt_rq = parent->my_q;
  7150. rt_se->my_q = rt_rq;
  7151. rt_se->parent = parent;
  7152. INIT_LIST_HEAD(&rt_se->run_list);
  7153. }
  7154. #endif
  7155. void __init sched_init(void)
  7156. {
  7157. int i, j;
  7158. unsigned long alloc_size = 0, ptr;
  7159. #ifdef CONFIG_FAIR_GROUP_SCHED
  7160. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  7161. #endif
  7162. #ifdef CONFIG_RT_GROUP_SCHED
  7163. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  7164. #endif
  7165. #ifdef CONFIG_USER_SCHED
  7166. alloc_size *= 2;
  7167. #endif
  7168. /*
  7169. * As sched_init() is called before page_alloc is setup,
  7170. * we use alloc_bootmem().
  7171. */
  7172. if (alloc_size) {
  7173. ptr = (unsigned long)alloc_bootmem(alloc_size);
  7174. #ifdef CONFIG_FAIR_GROUP_SCHED
  7175. init_task_group.se = (struct sched_entity **)ptr;
  7176. ptr += nr_cpu_ids * sizeof(void **);
  7177. init_task_group.cfs_rq = (struct cfs_rq **)ptr;
  7178. ptr += nr_cpu_ids * sizeof(void **);
  7179. #ifdef CONFIG_USER_SCHED
  7180. root_task_group.se = (struct sched_entity **)ptr;
  7181. ptr += nr_cpu_ids * sizeof(void **);
  7182. root_task_group.cfs_rq = (struct cfs_rq **)ptr;
  7183. ptr += nr_cpu_ids * sizeof(void **);
  7184. #endif /* CONFIG_USER_SCHED */
  7185. #endif /* CONFIG_FAIR_GROUP_SCHED */
  7186. #ifdef CONFIG_RT_GROUP_SCHED
  7187. init_task_group.rt_se = (struct sched_rt_entity **)ptr;
  7188. ptr += nr_cpu_ids * sizeof(void **);
  7189. init_task_group.rt_rq = (struct rt_rq **)ptr;
  7190. ptr += nr_cpu_ids * sizeof(void **);
  7191. #ifdef CONFIG_USER_SCHED
  7192. root_task_group.rt_se = (struct sched_rt_entity **)ptr;
  7193. ptr += nr_cpu_ids * sizeof(void **);
  7194. root_task_group.rt_rq = (struct rt_rq **)ptr;
  7195. ptr += nr_cpu_ids * sizeof(void **);
  7196. #endif /* CONFIG_USER_SCHED */
  7197. #endif /* CONFIG_RT_GROUP_SCHED */
  7198. }
  7199. #ifdef CONFIG_SMP
  7200. init_defrootdomain();
  7201. #endif
  7202. init_rt_bandwidth(&def_rt_bandwidth,
  7203. global_rt_period(), global_rt_runtime());
  7204. #ifdef CONFIG_RT_GROUP_SCHED
  7205. init_rt_bandwidth(&init_task_group.rt_bandwidth,
  7206. global_rt_period(), global_rt_runtime());
  7207. #ifdef CONFIG_USER_SCHED
  7208. init_rt_bandwidth(&root_task_group.rt_bandwidth,
  7209. global_rt_period(), RUNTIME_INF);
  7210. #endif /* CONFIG_USER_SCHED */
  7211. #endif /* CONFIG_RT_GROUP_SCHED */
  7212. #ifdef CONFIG_GROUP_SCHED
  7213. list_add(&init_task_group.list, &task_groups);
  7214. INIT_LIST_HEAD(&init_task_group.children);
  7215. #ifdef CONFIG_USER_SCHED
  7216. INIT_LIST_HEAD(&root_task_group.children);
  7217. init_task_group.parent = &root_task_group;
  7218. list_add(&init_task_group.siblings, &root_task_group.children);
  7219. #endif /* CONFIG_USER_SCHED */
  7220. #endif /* CONFIG_GROUP_SCHED */
  7221. for_each_possible_cpu(i) {
  7222. struct rq *rq;
  7223. rq = cpu_rq(i);
  7224. spin_lock_init(&rq->lock);
  7225. rq->nr_running = 0;
  7226. init_cfs_rq(&rq->cfs, rq);
  7227. init_rt_rq(&rq->rt, rq);
  7228. #ifdef CONFIG_FAIR_GROUP_SCHED
  7229. init_task_group.shares = init_task_group_load;
  7230. INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
  7231. #ifdef CONFIG_CGROUP_SCHED
  7232. /*
  7233. * How much cpu bandwidth does init_task_group get?
  7234. *
  7235. * In case of task-groups formed thr' the cgroup filesystem, it
  7236. * gets 100% of the cpu resources in the system. This overall
  7237. * system cpu resource is divided among the tasks of
  7238. * init_task_group and its child task-groups in a fair manner,
  7239. * based on each entity's (task or task-group's) weight
  7240. * (se->load.weight).
  7241. *
  7242. * In other words, if init_task_group has 10 tasks of weight
  7243. * 1024) and two child groups A0 and A1 (of weight 1024 each),
  7244. * then A0's share of the cpu resource is:
  7245. *
  7246. * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
  7247. *
  7248. * We achieve this by letting init_task_group's tasks sit
  7249. * directly in rq->cfs (i.e init_task_group->se[] = NULL).
  7250. */
  7251. init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
  7252. #elif defined CONFIG_USER_SCHED
  7253. root_task_group.shares = NICE_0_LOAD;
  7254. init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
  7255. /*
  7256. * In case of task-groups formed thr' the user id of tasks,
  7257. * init_task_group represents tasks belonging to root user.
  7258. * Hence it forms a sibling of all subsequent groups formed.
  7259. * In this case, init_task_group gets only a fraction of overall
  7260. * system cpu resource, based on the weight assigned to root
  7261. * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
  7262. * by letting tasks of init_task_group sit in a separate cfs_rq
  7263. * (init_cfs_rq) and having one entity represent this group of
  7264. * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
  7265. */
  7266. init_tg_cfs_entry(&init_task_group,
  7267. &per_cpu(init_cfs_rq, i),
  7268. &per_cpu(init_sched_entity, i), i, 1,
  7269. root_task_group.se[i]);
  7270. #endif
  7271. #endif /* CONFIG_FAIR_GROUP_SCHED */
  7272. rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
  7273. #ifdef CONFIG_RT_GROUP_SCHED
  7274. INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
  7275. #ifdef CONFIG_CGROUP_SCHED
  7276. init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
  7277. #elif defined CONFIG_USER_SCHED
  7278. init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
  7279. init_tg_rt_entry(&init_task_group,
  7280. &per_cpu(init_rt_rq, i),
  7281. &per_cpu(init_sched_rt_entity, i), i, 1,
  7282. root_task_group.rt_se[i]);
  7283. #endif
  7284. #endif
  7285. for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
  7286. rq->cpu_load[j] = 0;
  7287. #ifdef CONFIG_SMP
  7288. rq->sd = NULL;
  7289. rq->rd = NULL;
  7290. rq->active_balance = 0;
  7291. rq->next_balance = jiffies;
  7292. rq->push_cpu = 0;
  7293. rq->cpu = i;
  7294. rq->online = 0;
  7295. rq->migration_thread = NULL;
  7296. INIT_LIST_HEAD(&rq->migration_queue);
  7297. rq_attach_root(rq, &def_root_domain);
  7298. #endif
  7299. init_rq_hrtick(rq);
  7300. atomic_set(&rq->nr_iowait, 0);
  7301. }
  7302. set_load_weight(&init_task);
  7303. #ifdef CONFIG_PREEMPT_NOTIFIERS
  7304. INIT_HLIST_HEAD(&init_task.preempt_notifiers);
  7305. #endif
  7306. #ifdef CONFIG_SMP
  7307. open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
  7308. #endif
  7309. #ifdef CONFIG_RT_MUTEXES
  7310. plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
  7311. #endif
  7312. /*
  7313. * The boot idle thread does lazy MMU switching as well:
  7314. */
  7315. atomic_inc(&init_mm.mm_count);
  7316. enter_lazy_tlb(&init_mm, current);
  7317. /*
  7318. * Make us the idle thread. Technically, schedule() should not be
  7319. * called from this thread, however somewhere below it might be,
  7320. * but because we are the idle thread, we just pick up running again
  7321. * when this runqueue becomes "idle".
  7322. */
  7323. init_idle(current, smp_processor_id());
  7324. /*
  7325. * During early bootup we pretend to be a normal task:
  7326. */
  7327. current->sched_class = &fair_sched_class;
  7328. /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
  7329. alloc_bootmem_cpumask_var(&nohz_cpu_mask);
  7330. #ifdef CONFIG_SMP
  7331. #ifdef CONFIG_NO_HZ
  7332. alloc_bootmem_cpumask_var(&nohz.cpu_mask);
  7333. #endif
  7334. alloc_bootmem_cpumask_var(&cpu_isolated_map);
  7335. #endif /* SMP */
  7336. scheduler_running = 1;
  7337. }
  7338. #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
  7339. void __might_sleep(char *file, int line)
  7340. {
  7341. #ifdef in_atomic
  7342. static unsigned long prev_jiffy; /* ratelimiting */
  7343. if ((!in_atomic() && !irqs_disabled()) ||
  7344. system_state != SYSTEM_RUNNING || oops_in_progress)
  7345. return;
  7346. if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
  7347. return;
  7348. prev_jiffy = jiffies;
  7349. printk(KERN_ERR
  7350. "BUG: sleeping function called from invalid context at %s:%d\n",
  7351. file, line);
  7352. printk(KERN_ERR
  7353. "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
  7354. in_atomic(), irqs_disabled(),
  7355. current->pid, current->comm);
  7356. debug_show_held_locks(current);
  7357. if (irqs_disabled())
  7358. print_irqtrace_events(current);
  7359. dump_stack();
  7360. #endif
  7361. }
  7362. EXPORT_SYMBOL(__might_sleep);
  7363. #endif
  7364. #ifdef CONFIG_MAGIC_SYSRQ
  7365. static void normalize_task(struct rq *rq, struct task_struct *p)
  7366. {
  7367. int on_rq;
  7368. update_rq_clock(rq);
  7369. on_rq = p->se.on_rq;
  7370. if (on_rq)
  7371. deactivate_task(rq, p, 0);
  7372. __setscheduler(rq, p, SCHED_NORMAL, 0);
  7373. if (on_rq) {
  7374. activate_task(rq, p, 0);
  7375. resched_task(rq->curr);
  7376. }
  7377. }
  7378. void normalize_rt_tasks(void)
  7379. {
  7380. struct task_struct *g, *p;
  7381. unsigned long flags;
  7382. struct rq *rq;
  7383. read_lock_irqsave(&tasklist_lock, flags);
  7384. do_each_thread(g, p) {
  7385. /*
  7386. * Only normalize user tasks:
  7387. */
  7388. if (!p->mm)
  7389. continue;
  7390. p->se.exec_start = 0;
  7391. #ifdef CONFIG_SCHEDSTATS
  7392. p->se.wait_start = 0;
  7393. p->se.sleep_start = 0;
  7394. p->se.block_start = 0;
  7395. #endif
  7396. if (!rt_task(p)) {
  7397. /*
  7398. * Renice negative nice level userspace
  7399. * tasks back to 0:
  7400. */
  7401. if (TASK_NICE(p) < 0 && p->mm)
  7402. set_user_nice(p, 0);
  7403. continue;
  7404. }
  7405. spin_lock(&p->pi_lock);
  7406. rq = __task_rq_lock(p);
  7407. normalize_task(rq, p);
  7408. __task_rq_unlock(rq);
  7409. spin_unlock(&p->pi_lock);
  7410. } while_each_thread(g, p);
  7411. read_unlock_irqrestore(&tasklist_lock, flags);
  7412. }
  7413. #endif /* CONFIG_MAGIC_SYSRQ */
  7414. #ifdef CONFIG_IA64
  7415. /*
  7416. * These functions are only useful for the IA64 MCA handling.
  7417. *
  7418. * They can only be called when the whole system has been
  7419. * stopped - every CPU needs to be quiescent, and no scheduling
  7420. * activity can take place. Using them for anything else would
  7421. * be a serious bug, and as a result, they aren't even visible
  7422. * under any other configuration.
  7423. */
  7424. /**
  7425. * curr_task - return the current task for a given cpu.
  7426. * @cpu: the processor in question.
  7427. *
  7428. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  7429. */
  7430. struct task_struct *curr_task(int cpu)
  7431. {
  7432. return cpu_curr(cpu);
  7433. }
  7434. /**
  7435. * set_curr_task - set the current task for a given cpu.
  7436. * @cpu: the processor in question.
  7437. * @p: the task pointer to set.
  7438. *
  7439. * Description: This function must only be used when non-maskable interrupts
  7440. * are serviced on a separate stack. It allows the architecture to switch the
  7441. * notion of the current task on a cpu in a non-blocking manner. This function
  7442. * must be called with all CPU's synchronized, and interrupts disabled, the
  7443. * and caller must save the original value of the current task (see
  7444. * curr_task() above) and restore that value before reenabling interrupts and
  7445. * re-starting the system.
  7446. *
  7447. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  7448. */
  7449. void set_curr_task(int cpu, struct task_struct *p)
  7450. {
  7451. cpu_curr(cpu) = p;
  7452. }
  7453. #endif
  7454. #ifdef CONFIG_FAIR_GROUP_SCHED
  7455. static void free_fair_sched_group(struct task_group *tg)
  7456. {
  7457. int i;
  7458. for_each_possible_cpu(i) {
  7459. if (tg->cfs_rq)
  7460. kfree(tg->cfs_rq[i]);
  7461. if (tg->se)
  7462. kfree(tg->se[i]);
  7463. }
  7464. kfree(tg->cfs_rq);
  7465. kfree(tg->se);
  7466. }
  7467. static
  7468. int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
  7469. {
  7470. struct cfs_rq *cfs_rq;
  7471. struct sched_entity *se;
  7472. struct rq *rq;
  7473. int i;
  7474. tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
  7475. if (!tg->cfs_rq)
  7476. goto err;
  7477. tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
  7478. if (!tg->se)
  7479. goto err;
  7480. tg->shares = NICE_0_LOAD;
  7481. for_each_possible_cpu(i) {
  7482. rq = cpu_rq(i);
  7483. cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
  7484. GFP_KERNEL, cpu_to_node(i));
  7485. if (!cfs_rq)
  7486. goto err;
  7487. se = kzalloc_node(sizeof(struct sched_entity),
  7488. GFP_KERNEL, cpu_to_node(i));
  7489. if (!se)
  7490. goto err;
  7491. init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
  7492. }
  7493. return 1;
  7494. err:
  7495. return 0;
  7496. }
  7497. static inline void register_fair_sched_group(struct task_group *tg, int cpu)
  7498. {
  7499. list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
  7500. &cpu_rq(cpu)->leaf_cfs_rq_list);
  7501. }
  7502. static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
  7503. {
  7504. list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
  7505. }
  7506. #else /* !CONFG_FAIR_GROUP_SCHED */
  7507. static inline void free_fair_sched_group(struct task_group *tg)
  7508. {
  7509. }
  7510. static inline
  7511. int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
  7512. {
  7513. return 1;
  7514. }
  7515. static inline void register_fair_sched_group(struct task_group *tg, int cpu)
  7516. {
  7517. }
  7518. static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
  7519. {
  7520. }
  7521. #endif /* CONFIG_FAIR_GROUP_SCHED */
  7522. #ifdef CONFIG_RT_GROUP_SCHED
  7523. static void free_rt_sched_group(struct task_group *tg)
  7524. {
  7525. int i;
  7526. destroy_rt_bandwidth(&tg->rt_bandwidth);
  7527. for_each_possible_cpu(i) {
  7528. if (tg->rt_rq)
  7529. kfree(tg->rt_rq[i]);
  7530. if (tg->rt_se)
  7531. kfree(tg->rt_se[i]);
  7532. }
  7533. kfree(tg->rt_rq);
  7534. kfree(tg->rt_se);
  7535. }
  7536. static
  7537. int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
  7538. {
  7539. struct rt_rq *rt_rq;
  7540. struct sched_rt_entity *rt_se;
  7541. struct rq *rq;
  7542. int i;
  7543. tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
  7544. if (!tg->rt_rq)
  7545. goto err;
  7546. tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
  7547. if (!tg->rt_se)
  7548. goto err;
  7549. init_rt_bandwidth(&tg->rt_bandwidth,
  7550. ktime_to_ns(def_rt_bandwidth.rt_period), 0);
  7551. for_each_possible_cpu(i) {
  7552. rq = cpu_rq(i);
  7553. rt_rq = kzalloc_node(sizeof(struct rt_rq),
  7554. GFP_KERNEL, cpu_to_node(i));
  7555. if (!rt_rq)
  7556. goto err;
  7557. rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
  7558. GFP_KERNEL, cpu_to_node(i));
  7559. if (!rt_se)
  7560. goto err;
  7561. init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
  7562. }
  7563. return 1;
  7564. err:
  7565. return 0;
  7566. }
  7567. static inline void register_rt_sched_group(struct task_group *tg, int cpu)
  7568. {
  7569. list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
  7570. &cpu_rq(cpu)->leaf_rt_rq_list);
  7571. }
  7572. static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
  7573. {
  7574. list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
  7575. }
  7576. #else /* !CONFIG_RT_GROUP_SCHED */
  7577. static inline void free_rt_sched_group(struct task_group *tg)
  7578. {
  7579. }
  7580. static inline
  7581. int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
  7582. {
  7583. return 1;
  7584. }
  7585. static inline void register_rt_sched_group(struct task_group *tg, int cpu)
  7586. {
  7587. }
  7588. static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
  7589. {
  7590. }
  7591. #endif /* CONFIG_RT_GROUP_SCHED */
  7592. #ifdef CONFIG_GROUP_SCHED
  7593. static void free_sched_group(struct task_group *tg)
  7594. {
  7595. free_fair_sched_group(tg);
  7596. free_rt_sched_group(tg);
  7597. kfree(tg);
  7598. }
  7599. /* allocate runqueue etc for a new task group */
  7600. struct task_group *sched_create_group(struct task_group *parent)
  7601. {
  7602. struct task_group *tg;
  7603. unsigned long flags;
  7604. int i;
  7605. tg = kzalloc(sizeof(*tg), GFP_KERNEL);
  7606. if (!tg)
  7607. return ERR_PTR(-ENOMEM);
  7608. if (!alloc_fair_sched_group(tg, parent))
  7609. goto err;
  7610. if (!alloc_rt_sched_group(tg, parent))
  7611. goto err;
  7612. spin_lock_irqsave(&task_group_lock, flags);
  7613. for_each_possible_cpu(i) {
  7614. register_fair_sched_group(tg, i);
  7615. register_rt_sched_group(tg, i);
  7616. }
  7617. list_add_rcu(&tg->list, &task_groups);
  7618. WARN_ON(!parent); /* root should already exist */
  7619. tg->parent = parent;
  7620. INIT_LIST_HEAD(&tg->children);
  7621. list_add_rcu(&tg->siblings, &parent->children);
  7622. spin_unlock_irqrestore(&task_group_lock, flags);
  7623. return tg;
  7624. err:
  7625. free_sched_group(tg);
  7626. return ERR_PTR(-ENOMEM);
  7627. }
  7628. /* rcu callback to free various structures associated with a task group */
  7629. static void free_sched_group_rcu(struct rcu_head *rhp)
  7630. {
  7631. /* now it should be safe to free those cfs_rqs */
  7632. free_sched_group(container_of(rhp, struct task_group, rcu));
  7633. }
  7634. /* Destroy runqueue etc associated with a task group */
  7635. void sched_destroy_group(struct task_group *tg)
  7636. {
  7637. unsigned long flags;
  7638. int i;
  7639. spin_lock_irqsave(&task_group_lock, flags);
  7640. for_each_possible_cpu(i) {
  7641. unregister_fair_sched_group(tg, i);
  7642. unregister_rt_sched_group(tg, i);
  7643. }
  7644. list_del_rcu(&tg->list);
  7645. list_del_rcu(&tg->siblings);
  7646. spin_unlock_irqrestore(&task_group_lock, flags);
  7647. /* wait for possible concurrent references to cfs_rqs complete */
  7648. call_rcu(&tg->rcu, free_sched_group_rcu);
  7649. }
  7650. /* change task's runqueue when it moves between groups.
  7651. * The caller of this function should have put the task in its new group
  7652. * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
  7653. * reflect its new group.
  7654. */
  7655. void sched_move_task(struct task_struct *tsk)
  7656. {
  7657. int on_rq, running;
  7658. unsigned long flags;
  7659. struct rq *rq;
  7660. rq = task_rq_lock(tsk, &flags);
  7661. update_rq_clock(rq);
  7662. running = task_current(rq, tsk);
  7663. on_rq = tsk->se.on_rq;
  7664. if (on_rq)
  7665. dequeue_task(rq, tsk, 0);
  7666. if (unlikely(running))
  7667. tsk->sched_class->put_prev_task(rq, tsk);
  7668. set_task_rq(tsk, task_cpu(tsk));
  7669. #ifdef CONFIG_FAIR_GROUP_SCHED
  7670. if (tsk->sched_class->moved_group)
  7671. tsk->sched_class->moved_group(tsk);
  7672. #endif
  7673. if (unlikely(running))
  7674. tsk->sched_class->set_curr_task(rq);
  7675. if (on_rq)
  7676. enqueue_task(rq, tsk, 0);
  7677. task_rq_unlock(rq, &flags);
  7678. }
  7679. #endif /* CONFIG_GROUP_SCHED */
  7680. #ifdef CONFIG_FAIR_GROUP_SCHED
  7681. static void __set_se_shares(struct sched_entity *se, unsigned long shares)
  7682. {
  7683. struct cfs_rq *cfs_rq = se->cfs_rq;
  7684. int on_rq;
  7685. on_rq = se->on_rq;
  7686. if (on_rq)
  7687. dequeue_entity(cfs_rq, se, 0);
  7688. se->load.weight = shares;
  7689. se->load.inv_weight = 0;
  7690. if (on_rq)
  7691. enqueue_entity(cfs_rq, se, 0);
  7692. }
  7693. static void set_se_shares(struct sched_entity *se, unsigned long shares)
  7694. {
  7695. struct cfs_rq *cfs_rq = se->cfs_rq;
  7696. struct rq *rq = cfs_rq->rq;
  7697. unsigned long flags;
  7698. spin_lock_irqsave(&rq->lock, flags);
  7699. __set_se_shares(se, shares);
  7700. spin_unlock_irqrestore(&rq->lock, flags);
  7701. }
  7702. static DEFINE_MUTEX(shares_mutex);
  7703. int sched_group_set_shares(struct task_group *tg, unsigned long shares)
  7704. {
  7705. int i;
  7706. unsigned long flags;
  7707. /*
  7708. * We can't change the weight of the root cgroup.
  7709. */
  7710. if (!tg->se[0])
  7711. return -EINVAL;
  7712. if (shares < MIN_SHARES)
  7713. shares = MIN_SHARES;
  7714. else if (shares > MAX_SHARES)
  7715. shares = MAX_SHARES;
  7716. mutex_lock(&shares_mutex);
  7717. if (tg->shares == shares)
  7718. goto done;
  7719. spin_lock_irqsave(&task_group_lock, flags);
  7720. for_each_possible_cpu(i)
  7721. unregister_fair_sched_group(tg, i);
  7722. list_del_rcu(&tg->siblings);
  7723. spin_unlock_irqrestore(&task_group_lock, flags);
  7724. /* wait for any ongoing reference to this group to finish */
  7725. synchronize_sched();
  7726. /*
  7727. * Now we are free to modify the group's share on each cpu
  7728. * w/o tripping rebalance_share or load_balance_fair.
  7729. */
  7730. tg->shares = shares;
  7731. for_each_possible_cpu(i) {
  7732. /*
  7733. * force a rebalance
  7734. */
  7735. cfs_rq_set_shares(tg->cfs_rq[i], 0);
  7736. set_se_shares(tg->se[i], shares);
  7737. }
  7738. /*
  7739. * Enable load balance activity on this group, by inserting it back on
  7740. * each cpu's rq->leaf_cfs_rq_list.
  7741. */
  7742. spin_lock_irqsave(&task_group_lock, flags);
  7743. for_each_possible_cpu(i)
  7744. register_fair_sched_group(tg, i);
  7745. list_add_rcu(&tg->siblings, &tg->parent->children);
  7746. spin_unlock_irqrestore(&task_group_lock, flags);
  7747. done:
  7748. mutex_unlock(&shares_mutex);
  7749. return 0;
  7750. }
  7751. unsigned long sched_group_shares(struct task_group *tg)
  7752. {
  7753. return tg->shares;
  7754. }
  7755. #endif
  7756. #ifdef CONFIG_RT_GROUP_SCHED
  7757. /*
  7758. * Ensure that the real time constraints are schedulable.
  7759. */
  7760. static DEFINE_MUTEX(rt_constraints_mutex);
  7761. static unsigned long to_ratio(u64 period, u64 runtime)
  7762. {
  7763. if (runtime == RUNTIME_INF)
  7764. return 1ULL << 20;
  7765. return div64_u64(runtime << 20, period);
  7766. }
  7767. /* Must be called with tasklist_lock held */
  7768. static inline int tg_has_rt_tasks(struct task_group *tg)
  7769. {
  7770. struct task_struct *g, *p;
  7771. do_each_thread(g, p) {
  7772. if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
  7773. return 1;
  7774. } while_each_thread(g, p);
  7775. return 0;
  7776. }
  7777. struct rt_schedulable_data {
  7778. struct task_group *tg;
  7779. u64 rt_period;
  7780. u64 rt_runtime;
  7781. };
  7782. static int tg_schedulable(struct task_group *tg, void *data)
  7783. {
  7784. struct rt_schedulable_data *d = data;
  7785. struct task_group *child;
  7786. unsigned long total, sum = 0;
  7787. u64 period, runtime;
  7788. period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  7789. runtime = tg->rt_bandwidth.rt_runtime;
  7790. if (tg == d->tg) {
  7791. period = d->rt_period;
  7792. runtime = d->rt_runtime;
  7793. }
  7794. #ifdef CONFIG_USER_SCHED
  7795. if (tg == &root_task_group) {
  7796. period = global_rt_period();
  7797. runtime = global_rt_runtime();
  7798. }
  7799. #endif
  7800. /*
  7801. * Cannot have more runtime than the period.
  7802. */
  7803. if (runtime > period && runtime != RUNTIME_INF)
  7804. return -EINVAL;
  7805. /*
  7806. * Ensure we don't starve existing RT tasks.
  7807. */
  7808. if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
  7809. return -EBUSY;
  7810. total = to_ratio(period, runtime);
  7811. /*
  7812. * Nobody can have more than the global setting allows.
  7813. */
  7814. if (total > to_ratio(global_rt_period(), global_rt_runtime()))
  7815. return -EINVAL;
  7816. /*
  7817. * The sum of our children's runtime should not exceed our own.
  7818. */
  7819. list_for_each_entry_rcu(child, &tg->children, siblings) {
  7820. period = ktime_to_ns(child->rt_bandwidth.rt_period);
  7821. runtime = child->rt_bandwidth.rt_runtime;
  7822. if (child == d->tg) {
  7823. period = d->rt_period;
  7824. runtime = d->rt_runtime;
  7825. }
  7826. sum += to_ratio(period, runtime);
  7827. }
  7828. if (sum > total)
  7829. return -EINVAL;
  7830. return 0;
  7831. }
  7832. static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
  7833. {
  7834. struct rt_schedulable_data data = {
  7835. .tg = tg,
  7836. .rt_period = period,
  7837. .rt_runtime = runtime,
  7838. };
  7839. return walk_tg_tree(tg_schedulable, tg_nop, &data);
  7840. }
  7841. static int tg_set_bandwidth(struct task_group *tg,
  7842. u64 rt_period, u64 rt_runtime)
  7843. {
  7844. int i, err = 0;
  7845. mutex_lock(&rt_constraints_mutex);
  7846. read_lock(&tasklist_lock);
  7847. err = __rt_schedulable(tg, rt_period, rt_runtime);
  7848. if (err)
  7849. goto unlock;
  7850. spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  7851. tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
  7852. tg->rt_bandwidth.rt_runtime = rt_runtime;
  7853. for_each_possible_cpu(i) {
  7854. struct rt_rq *rt_rq = tg->rt_rq[i];
  7855. spin_lock(&rt_rq->rt_runtime_lock);
  7856. rt_rq->rt_runtime = rt_runtime;
  7857. spin_unlock(&rt_rq->rt_runtime_lock);
  7858. }
  7859. spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  7860. unlock:
  7861. read_unlock(&tasklist_lock);
  7862. mutex_unlock(&rt_constraints_mutex);
  7863. return err;
  7864. }
  7865. int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
  7866. {
  7867. u64 rt_runtime, rt_period;
  7868. rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  7869. rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
  7870. if (rt_runtime_us < 0)
  7871. rt_runtime = RUNTIME_INF;
  7872. return tg_set_bandwidth(tg, rt_period, rt_runtime);
  7873. }
  7874. long sched_group_rt_runtime(struct task_group *tg)
  7875. {
  7876. u64 rt_runtime_us;
  7877. if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
  7878. return -1;
  7879. rt_runtime_us = tg->rt_bandwidth.rt_runtime;
  7880. do_div(rt_runtime_us, NSEC_PER_USEC);
  7881. return rt_runtime_us;
  7882. }
  7883. int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
  7884. {
  7885. u64 rt_runtime, rt_period;
  7886. rt_period = (u64)rt_period_us * NSEC_PER_USEC;
  7887. rt_runtime = tg->rt_bandwidth.rt_runtime;
  7888. if (rt_period == 0)
  7889. return -EINVAL;
  7890. return tg_set_bandwidth(tg, rt_period, rt_runtime);
  7891. }
  7892. long sched_group_rt_period(struct task_group *tg)
  7893. {
  7894. u64 rt_period_us;
  7895. rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
  7896. do_div(rt_period_us, NSEC_PER_USEC);
  7897. return rt_period_us;
  7898. }
  7899. static int sched_rt_global_constraints(void)
  7900. {
  7901. u64 runtime, period;
  7902. int ret = 0;
  7903. if (sysctl_sched_rt_period <= 0)
  7904. return -EINVAL;
  7905. runtime = global_rt_runtime();
  7906. period = global_rt_period();
  7907. /*
  7908. * Sanity check on the sysctl variables.
  7909. */
  7910. if (runtime > period && runtime != RUNTIME_INF)
  7911. return -EINVAL;
  7912. mutex_lock(&rt_constraints_mutex);
  7913. read_lock(&tasklist_lock);
  7914. ret = __rt_schedulable(NULL, 0, 0);
  7915. read_unlock(&tasklist_lock);
  7916. mutex_unlock(&rt_constraints_mutex);
  7917. return ret;
  7918. }
  7919. #else /* !CONFIG_RT_GROUP_SCHED */
  7920. static int sched_rt_global_constraints(void)
  7921. {
  7922. unsigned long flags;
  7923. int i;
  7924. if (sysctl_sched_rt_period <= 0)
  7925. return -EINVAL;
  7926. spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
  7927. for_each_possible_cpu(i) {
  7928. struct rt_rq *rt_rq = &cpu_rq(i)->rt;
  7929. spin_lock(&rt_rq->rt_runtime_lock);
  7930. rt_rq->rt_runtime = global_rt_runtime();
  7931. spin_unlock(&rt_rq->rt_runtime_lock);
  7932. }
  7933. spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
  7934. return 0;
  7935. }
  7936. #endif /* CONFIG_RT_GROUP_SCHED */
  7937. int sched_rt_handler(struct ctl_table *table, int write,
  7938. struct file *filp, void __user *buffer, size_t *lenp,
  7939. loff_t *ppos)
  7940. {
  7941. int ret;
  7942. int old_period, old_runtime;
  7943. static DEFINE_MUTEX(mutex);
  7944. mutex_lock(&mutex);
  7945. old_period = sysctl_sched_rt_period;
  7946. old_runtime = sysctl_sched_rt_runtime;
  7947. ret = proc_dointvec(table, write, filp, buffer, lenp, ppos);
  7948. if (!ret && write) {
  7949. ret = sched_rt_global_constraints();
  7950. if (ret) {
  7951. sysctl_sched_rt_period = old_period;
  7952. sysctl_sched_rt_runtime = old_runtime;
  7953. } else {
  7954. def_rt_bandwidth.rt_runtime = global_rt_runtime();
  7955. def_rt_bandwidth.rt_period =
  7956. ns_to_ktime(global_rt_period());
  7957. }
  7958. }
  7959. mutex_unlock(&mutex);
  7960. return ret;
  7961. }
  7962. #ifdef CONFIG_CGROUP_SCHED
  7963. /* return corresponding task_group object of a cgroup */
  7964. static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
  7965. {
  7966. return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
  7967. struct task_group, css);
  7968. }
  7969. static struct cgroup_subsys_state *
  7970. cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7971. {
  7972. struct task_group *tg, *parent;
  7973. if (!cgrp->parent) {
  7974. /* This is early initialization for the top cgroup */
  7975. return &init_task_group.css;
  7976. }
  7977. parent = cgroup_tg(cgrp->parent);
  7978. tg = sched_create_group(parent);
  7979. if (IS_ERR(tg))
  7980. return ERR_PTR(-ENOMEM);
  7981. return &tg->css;
  7982. }
  7983. static void
  7984. cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7985. {
  7986. struct task_group *tg = cgroup_tg(cgrp);
  7987. sched_destroy_group(tg);
  7988. }
  7989. static int
  7990. cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
  7991. struct task_struct *tsk)
  7992. {
  7993. #ifdef CONFIG_RT_GROUP_SCHED
  7994. /* Don't accept realtime tasks when there is no way for them to run */
  7995. if (rt_task(tsk) && cgroup_tg(cgrp)->rt_bandwidth.rt_runtime == 0)
  7996. return -EINVAL;
  7997. #else
  7998. /* We don't support RT-tasks being in separate groups */
  7999. if (tsk->sched_class != &fair_sched_class)
  8000. return -EINVAL;
  8001. #endif
  8002. return 0;
  8003. }
  8004. static void
  8005. cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
  8006. struct cgroup *old_cont, struct task_struct *tsk)
  8007. {
  8008. sched_move_task(tsk);
  8009. }
  8010. #ifdef CONFIG_FAIR_GROUP_SCHED
  8011. static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
  8012. u64 shareval)
  8013. {
  8014. return sched_group_set_shares(cgroup_tg(cgrp), shareval);
  8015. }
  8016. static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
  8017. {
  8018. struct task_group *tg = cgroup_tg(cgrp);
  8019. return (u64) tg->shares;
  8020. }
  8021. #endif /* CONFIG_FAIR_GROUP_SCHED */
  8022. #ifdef CONFIG_RT_GROUP_SCHED
  8023. static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
  8024. s64 val)
  8025. {
  8026. return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
  8027. }
  8028. static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
  8029. {
  8030. return sched_group_rt_runtime(cgroup_tg(cgrp));
  8031. }
  8032. static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
  8033. u64 rt_period_us)
  8034. {
  8035. return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
  8036. }
  8037. static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
  8038. {
  8039. return sched_group_rt_period(cgroup_tg(cgrp));
  8040. }
  8041. #endif /* CONFIG_RT_GROUP_SCHED */
  8042. static struct cftype cpu_files[] = {
  8043. #ifdef CONFIG_FAIR_GROUP_SCHED
  8044. {
  8045. .name = "shares",
  8046. .read_u64 = cpu_shares_read_u64,
  8047. .write_u64 = cpu_shares_write_u64,
  8048. },
  8049. #endif
  8050. #ifdef CONFIG_RT_GROUP_SCHED
  8051. {
  8052. .name = "rt_runtime_us",
  8053. .read_s64 = cpu_rt_runtime_read,
  8054. .write_s64 = cpu_rt_runtime_write,
  8055. },
  8056. {
  8057. .name = "rt_period_us",
  8058. .read_u64 = cpu_rt_period_read_uint,
  8059. .write_u64 = cpu_rt_period_write_uint,
  8060. },
  8061. #endif
  8062. };
  8063. static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
  8064. {
  8065. return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
  8066. }
  8067. struct cgroup_subsys cpu_cgroup_subsys = {
  8068. .name = "cpu",
  8069. .create = cpu_cgroup_create,
  8070. .destroy = cpu_cgroup_destroy,
  8071. .can_attach = cpu_cgroup_can_attach,
  8072. .attach = cpu_cgroup_attach,
  8073. .populate = cpu_cgroup_populate,
  8074. .subsys_id = cpu_cgroup_subsys_id,
  8075. .early_init = 1,
  8076. };
  8077. #endif /* CONFIG_CGROUP_SCHED */
  8078. #ifdef CONFIG_CGROUP_CPUACCT
  8079. /*
  8080. * CPU accounting code for task groups.
  8081. *
  8082. * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
  8083. * (balbir@in.ibm.com).
  8084. */
  8085. /* track cpu usage of a group of tasks and its child groups */
  8086. struct cpuacct {
  8087. struct cgroup_subsys_state css;
  8088. /* cpuusage holds pointer to a u64-type object on every cpu */
  8089. u64 *cpuusage;
  8090. struct cpuacct *parent;
  8091. };
  8092. struct cgroup_subsys cpuacct_subsys;
  8093. /* return cpu accounting group corresponding to this container */
  8094. static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
  8095. {
  8096. return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
  8097. struct cpuacct, css);
  8098. }
  8099. /* return cpu accounting group to which this task belongs */
  8100. static inline struct cpuacct *task_ca(struct task_struct *tsk)
  8101. {
  8102. return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
  8103. struct cpuacct, css);
  8104. }
  8105. /* create a new cpu accounting group */
  8106. static struct cgroup_subsys_state *cpuacct_create(
  8107. struct cgroup_subsys *ss, struct cgroup *cgrp)
  8108. {
  8109. struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
  8110. if (!ca)
  8111. return ERR_PTR(-ENOMEM);
  8112. ca->cpuusage = alloc_percpu(u64);
  8113. if (!ca->cpuusage) {
  8114. kfree(ca);
  8115. return ERR_PTR(-ENOMEM);
  8116. }
  8117. if (cgrp->parent)
  8118. ca->parent = cgroup_ca(cgrp->parent);
  8119. return &ca->css;
  8120. }
  8121. /* destroy an existing cpu accounting group */
  8122. static void
  8123. cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
  8124. {
  8125. struct cpuacct *ca = cgroup_ca(cgrp);
  8126. free_percpu(ca->cpuusage);
  8127. kfree(ca);
  8128. }
  8129. static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
  8130. {
  8131. u64 *cpuusage = percpu_ptr(ca->cpuusage, cpu);
  8132. u64 data;
  8133. #ifndef CONFIG_64BIT
  8134. /*
  8135. * Take rq->lock to make 64-bit read safe on 32-bit platforms.
  8136. */
  8137. spin_lock_irq(&cpu_rq(cpu)->lock);
  8138. data = *cpuusage;
  8139. spin_unlock_irq(&cpu_rq(cpu)->lock);
  8140. #else
  8141. data = *cpuusage;
  8142. #endif
  8143. return data;
  8144. }
  8145. static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
  8146. {
  8147. u64 *cpuusage = percpu_ptr(ca->cpuusage, cpu);
  8148. #ifndef CONFIG_64BIT
  8149. /*
  8150. * Take rq->lock to make 64-bit write safe on 32-bit platforms.
  8151. */
  8152. spin_lock_irq(&cpu_rq(cpu)->lock);
  8153. *cpuusage = val;
  8154. spin_unlock_irq(&cpu_rq(cpu)->lock);
  8155. #else
  8156. *cpuusage = val;
  8157. #endif
  8158. }
  8159. /* return total cpu usage (in nanoseconds) of a group */
  8160. static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
  8161. {
  8162. struct cpuacct *ca = cgroup_ca(cgrp);
  8163. u64 totalcpuusage = 0;
  8164. int i;
  8165. for_each_present_cpu(i)
  8166. totalcpuusage += cpuacct_cpuusage_read(ca, i);
  8167. return totalcpuusage;
  8168. }
  8169. static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
  8170. u64 reset)
  8171. {
  8172. struct cpuacct *ca = cgroup_ca(cgrp);
  8173. int err = 0;
  8174. int i;
  8175. if (reset) {
  8176. err = -EINVAL;
  8177. goto out;
  8178. }
  8179. for_each_present_cpu(i)
  8180. cpuacct_cpuusage_write(ca, i, 0);
  8181. out:
  8182. return err;
  8183. }
  8184. static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
  8185. struct seq_file *m)
  8186. {
  8187. struct cpuacct *ca = cgroup_ca(cgroup);
  8188. u64 percpu;
  8189. int i;
  8190. for_each_present_cpu(i) {
  8191. percpu = cpuacct_cpuusage_read(ca, i);
  8192. seq_printf(m, "%llu ", (unsigned long long) percpu);
  8193. }
  8194. seq_printf(m, "\n");
  8195. return 0;
  8196. }
  8197. static struct cftype files[] = {
  8198. {
  8199. .name = "usage",
  8200. .read_u64 = cpuusage_read,
  8201. .write_u64 = cpuusage_write,
  8202. },
  8203. {
  8204. .name = "usage_percpu",
  8205. .read_seq_string = cpuacct_percpu_seq_read,
  8206. },
  8207. };
  8208. static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
  8209. {
  8210. return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
  8211. }
  8212. /*
  8213. * charge this task's execution time to its accounting group.
  8214. *
  8215. * called with rq->lock held.
  8216. */
  8217. static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
  8218. {
  8219. struct cpuacct *ca;
  8220. int cpu;
  8221. if (unlikely(!cpuacct_subsys.active))
  8222. return;
  8223. cpu = task_cpu(tsk);
  8224. ca = task_ca(tsk);
  8225. for (; ca; ca = ca->parent) {
  8226. u64 *cpuusage = percpu_ptr(ca->cpuusage, cpu);
  8227. *cpuusage += cputime;
  8228. }
  8229. }
  8230. struct cgroup_subsys cpuacct_subsys = {
  8231. .name = "cpuacct",
  8232. .create = cpuacct_create,
  8233. .destroy = cpuacct_destroy,
  8234. .populate = cpuacct_populate,
  8235. .subsys_id = cpuacct_subsys_id,
  8236. };
  8237. #endif /* CONFIG_CGROUP_CPUACCT */