dma-mapping.c 51 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967
  1. /*
  2. * linux/arch/arm/mm/dma-mapping.c
  3. *
  4. * Copyright (C) 2000-2004 Russell King
  5. *
  6. * This program is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License version 2 as
  8. * published by the Free Software Foundation.
  9. *
  10. * DMA uncached mapping support.
  11. */
  12. #include <linux/module.h>
  13. #include <linux/mm.h>
  14. #include <linux/gfp.h>
  15. #include <linux/errno.h>
  16. #include <linux/list.h>
  17. #include <linux/init.h>
  18. #include <linux/device.h>
  19. #include <linux/dma-mapping.h>
  20. #include <linux/dma-contiguous.h>
  21. #include <linux/highmem.h>
  22. #include <linux/memblock.h>
  23. #include <linux/slab.h>
  24. #include <linux/iommu.h>
  25. #include <linux/io.h>
  26. #include <linux/vmalloc.h>
  27. #include <linux/sizes.h>
  28. #include <asm/memory.h>
  29. #include <asm/highmem.h>
  30. #include <asm/cacheflush.h>
  31. #include <asm/tlbflush.h>
  32. #include <asm/mach/arch.h>
  33. #include <asm/dma-iommu.h>
  34. #include <asm/mach/map.h>
  35. #include <asm/system_info.h>
  36. #include <asm/dma-contiguous.h>
  37. #include "mm.h"
  38. /*
  39. * The DMA API is built upon the notion of "buffer ownership". A buffer
  40. * is either exclusively owned by the CPU (and therefore may be accessed
  41. * by it) or exclusively owned by the DMA device. These helper functions
  42. * represent the transitions between these two ownership states.
  43. *
  44. * Note, however, that on later ARMs, this notion does not work due to
  45. * speculative prefetches. We model our approach on the assumption that
  46. * the CPU does do speculative prefetches, which means we clean caches
  47. * before transfers and delay cache invalidation until transfer completion.
  48. *
  49. */
  50. static void __dma_page_cpu_to_dev(struct page *, unsigned long,
  51. size_t, enum dma_data_direction);
  52. static void __dma_page_dev_to_cpu(struct page *, unsigned long,
  53. size_t, enum dma_data_direction);
  54. /**
  55. * arm_dma_map_page - map a portion of a page for streaming DMA
  56. * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
  57. * @page: page that buffer resides in
  58. * @offset: offset into page for start of buffer
  59. * @size: size of buffer to map
  60. * @dir: DMA transfer direction
  61. *
  62. * Ensure that any data held in the cache is appropriately discarded
  63. * or written back.
  64. *
  65. * The device owns this memory once this call has completed. The CPU
  66. * can regain ownership by calling dma_unmap_page().
  67. */
  68. static dma_addr_t arm_dma_map_page(struct device *dev, struct page *page,
  69. unsigned long offset, size_t size, enum dma_data_direction dir,
  70. struct dma_attrs *attrs)
  71. {
  72. if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
  73. __dma_page_cpu_to_dev(page, offset, size, dir);
  74. return pfn_to_dma(dev, page_to_pfn(page)) + offset;
  75. }
  76. static dma_addr_t arm_coherent_dma_map_page(struct device *dev, struct page *page,
  77. unsigned long offset, size_t size, enum dma_data_direction dir,
  78. struct dma_attrs *attrs)
  79. {
  80. return pfn_to_dma(dev, page_to_pfn(page)) + offset;
  81. }
  82. /**
  83. * arm_dma_unmap_page - unmap a buffer previously mapped through dma_map_page()
  84. * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
  85. * @handle: DMA address of buffer
  86. * @size: size of buffer (same as passed to dma_map_page)
  87. * @dir: DMA transfer direction (same as passed to dma_map_page)
  88. *
  89. * Unmap a page streaming mode DMA translation. The handle and size
  90. * must match what was provided in the previous dma_map_page() call.
  91. * All other usages are undefined.
  92. *
  93. * After this call, reads by the CPU to the buffer are guaranteed to see
  94. * whatever the device wrote there.
  95. */
  96. static void arm_dma_unmap_page(struct device *dev, dma_addr_t handle,
  97. size_t size, enum dma_data_direction dir,
  98. struct dma_attrs *attrs)
  99. {
  100. if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
  101. __dma_page_dev_to_cpu(pfn_to_page(dma_to_pfn(dev, handle)),
  102. handle & ~PAGE_MASK, size, dir);
  103. }
  104. static void arm_dma_sync_single_for_cpu(struct device *dev,
  105. dma_addr_t handle, size_t size, enum dma_data_direction dir)
  106. {
  107. unsigned int offset = handle & (PAGE_SIZE - 1);
  108. struct page *page = pfn_to_page(dma_to_pfn(dev, handle-offset));
  109. __dma_page_dev_to_cpu(page, offset, size, dir);
  110. }
  111. static void arm_dma_sync_single_for_device(struct device *dev,
  112. dma_addr_t handle, size_t size, enum dma_data_direction dir)
  113. {
  114. unsigned int offset = handle & (PAGE_SIZE - 1);
  115. struct page *page = pfn_to_page(dma_to_pfn(dev, handle-offset));
  116. __dma_page_cpu_to_dev(page, offset, size, dir);
  117. }
  118. struct dma_map_ops arm_dma_ops = {
  119. .alloc = arm_dma_alloc,
  120. .free = arm_dma_free,
  121. .mmap = arm_dma_mmap,
  122. .get_sgtable = arm_dma_get_sgtable,
  123. .map_page = arm_dma_map_page,
  124. .unmap_page = arm_dma_unmap_page,
  125. .map_sg = arm_dma_map_sg,
  126. .unmap_sg = arm_dma_unmap_sg,
  127. .sync_single_for_cpu = arm_dma_sync_single_for_cpu,
  128. .sync_single_for_device = arm_dma_sync_single_for_device,
  129. .sync_sg_for_cpu = arm_dma_sync_sg_for_cpu,
  130. .sync_sg_for_device = arm_dma_sync_sg_for_device,
  131. .set_dma_mask = arm_dma_set_mask,
  132. };
  133. EXPORT_SYMBOL(arm_dma_ops);
  134. static void *arm_coherent_dma_alloc(struct device *dev, size_t size,
  135. dma_addr_t *handle, gfp_t gfp, struct dma_attrs *attrs);
  136. static void arm_coherent_dma_free(struct device *dev, size_t size, void *cpu_addr,
  137. dma_addr_t handle, struct dma_attrs *attrs);
  138. struct dma_map_ops arm_coherent_dma_ops = {
  139. .alloc = arm_coherent_dma_alloc,
  140. .free = arm_coherent_dma_free,
  141. .mmap = arm_dma_mmap,
  142. .get_sgtable = arm_dma_get_sgtable,
  143. .map_page = arm_coherent_dma_map_page,
  144. .map_sg = arm_dma_map_sg,
  145. .set_dma_mask = arm_dma_set_mask,
  146. };
  147. EXPORT_SYMBOL(arm_coherent_dma_ops);
  148. static u64 get_coherent_dma_mask(struct device *dev)
  149. {
  150. u64 mask = (u64)arm_dma_limit;
  151. if (dev) {
  152. mask = dev->coherent_dma_mask;
  153. /*
  154. * Sanity check the DMA mask - it must be non-zero, and
  155. * must be able to be satisfied by a DMA allocation.
  156. */
  157. if (mask == 0) {
  158. dev_warn(dev, "coherent DMA mask is unset\n");
  159. return 0;
  160. }
  161. if ((~mask) & (u64)arm_dma_limit) {
  162. dev_warn(dev, "coherent DMA mask %#llx is smaller "
  163. "than system GFP_DMA mask %#llx\n",
  164. mask, (u64)arm_dma_limit);
  165. return 0;
  166. }
  167. }
  168. return mask;
  169. }
  170. static void __dma_clear_buffer(struct page *page, size_t size)
  171. {
  172. /*
  173. * Ensure that the allocated pages are zeroed, and that any data
  174. * lurking in the kernel direct-mapped region is invalidated.
  175. */
  176. if (PageHighMem(page)) {
  177. phys_addr_t base = __pfn_to_phys(page_to_pfn(page));
  178. phys_addr_t end = base + size;
  179. while (size > 0) {
  180. void *ptr = kmap_atomic(page);
  181. memset(ptr, 0, PAGE_SIZE);
  182. dmac_flush_range(ptr, ptr + PAGE_SIZE);
  183. kunmap_atomic(ptr);
  184. page++;
  185. size -= PAGE_SIZE;
  186. }
  187. outer_flush_range(base, end);
  188. } else {
  189. void *ptr = page_address(page);
  190. memset(ptr, 0, size);
  191. dmac_flush_range(ptr, ptr + size);
  192. outer_flush_range(__pa(ptr), __pa(ptr) + size);
  193. }
  194. }
  195. /*
  196. * Allocate a DMA buffer for 'dev' of size 'size' using the
  197. * specified gfp mask. Note that 'size' must be page aligned.
  198. */
  199. static struct page *__dma_alloc_buffer(struct device *dev, size_t size, gfp_t gfp)
  200. {
  201. unsigned long order = get_order(size);
  202. struct page *page, *p, *e;
  203. page = alloc_pages(gfp, order);
  204. if (!page)
  205. return NULL;
  206. /*
  207. * Now split the huge page and free the excess pages
  208. */
  209. split_page(page, order);
  210. for (p = page + (size >> PAGE_SHIFT), e = page + (1 << order); p < e; p++)
  211. __free_page(p);
  212. __dma_clear_buffer(page, size);
  213. return page;
  214. }
  215. /*
  216. * Free a DMA buffer. 'size' must be page aligned.
  217. */
  218. static void __dma_free_buffer(struct page *page, size_t size)
  219. {
  220. struct page *e = page + (size >> PAGE_SHIFT);
  221. while (page < e) {
  222. __free_page(page);
  223. page++;
  224. }
  225. }
  226. #ifdef CONFIG_MMU
  227. #ifdef CONFIG_HUGETLB_PAGE
  228. #warning ARM Coherent DMA allocator does not (yet) support huge TLB
  229. #endif
  230. static void *__alloc_from_contiguous(struct device *dev, size_t size,
  231. pgprot_t prot, struct page **ret_page,
  232. const void *caller);
  233. static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp,
  234. pgprot_t prot, struct page **ret_page,
  235. const void *caller);
  236. static void *
  237. __dma_alloc_remap(struct page *page, size_t size, gfp_t gfp, pgprot_t prot,
  238. const void *caller)
  239. {
  240. struct vm_struct *area;
  241. unsigned long addr;
  242. /*
  243. * DMA allocation can be mapped to user space, so lets
  244. * set VM_USERMAP flags too.
  245. */
  246. area = get_vm_area_caller(size, VM_ARM_DMA_CONSISTENT | VM_USERMAP,
  247. caller);
  248. if (!area)
  249. return NULL;
  250. addr = (unsigned long)area->addr;
  251. area->phys_addr = __pfn_to_phys(page_to_pfn(page));
  252. if (ioremap_page_range(addr, addr + size, area->phys_addr, prot)) {
  253. vunmap((void *)addr);
  254. return NULL;
  255. }
  256. return (void *)addr;
  257. }
  258. static void __dma_free_remap(void *cpu_addr, size_t size)
  259. {
  260. unsigned int flags = VM_ARM_DMA_CONSISTENT | VM_USERMAP;
  261. struct vm_struct *area = find_vm_area(cpu_addr);
  262. if (!area || (area->flags & flags) != flags) {
  263. WARN(1, "trying to free invalid coherent area: %p\n", cpu_addr);
  264. return;
  265. }
  266. unmap_kernel_range((unsigned long)cpu_addr, size);
  267. vunmap(cpu_addr);
  268. }
  269. #define DEFAULT_DMA_COHERENT_POOL_SIZE SZ_256K
  270. struct dma_pool {
  271. size_t size;
  272. spinlock_t lock;
  273. unsigned long *bitmap;
  274. unsigned long nr_pages;
  275. void *vaddr;
  276. struct page **pages;
  277. };
  278. static struct dma_pool atomic_pool = {
  279. .size = DEFAULT_DMA_COHERENT_POOL_SIZE,
  280. };
  281. static int __init early_coherent_pool(char *p)
  282. {
  283. atomic_pool.size = memparse(p, &p);
  284. return 0;
  285. }
  286. early_param("coherent_pool", early_coherent_pool);
  287. void __init init_dma_coherent_pool_size(unsigned long size)
  288. {
  289. /*
  290. * Catch any attempt to set the pool size too late.
  291. */
  292. BUG_ON(atomic_pool.vaddr);
  293. /*
  294. * Set architecture specific coherent pool size only if
  295. * it has not been changed by kernel command line parameter.
  296. */
  297. if (atomic_pool.size == DEFAULT_DMA_COHERENT_POOL_SIZE)
  298. atomic_pool.size = size;
  299. }
  300. /*
  301. * Initialise the coherent pool for atomic allocations.
  302. */
  303. static int __init atomic_pool_init(void)
  304. {
  305. struct dma_pool *pool = &atomic_pool;
  306. pgprot_t prot = pgprot_dmacoherent(pgprot_kernel);
  307. gfp_t gfp = GFP_KERNEL | GFP_DMA;
  308. unsigned long nr_pages = pool->size >> PAGE_SHIFT;
  309. unsigned long *bitmap;
  310. struct page *page;
  311. struct page **pages;
  312. void *ptr;
  313. int bitmap_size = BITS_TO_LONGS(nr_pages) * sizeof(long);
  314. bitmap = kzalloc(bitmap_size, GFP_KERNEL);
  315. if (!bitmap)
  316. goto no_bitmap;
  317. pages = kzalloc(nr_pages * sizeof(struct page *), GFP_KERNEL);
  318. if (!pages)
  319. goto no_pages;
  320. if (IS_ENABLED(CONFIG_DMA_CMA))
  321. ptr = __alloc_from_contiguous(NULL, pool->size, prot, &page,
  322. atomic_pool_init);
  323. else
  324. ptr = __alloc_remap_buffer(NULL, pool->size, gfp, prot, &page,
  325. atomic_pool_init);
  326. if (ptr) {
  327. int i;
  328. for (i = 0; i < nr_pages; i++)
  329. pages[i] = page + i;
  330. spin_lock_init(&pool->lock);
  331. pool->vaddr = ptr;
  332. pool->pages = pages;
  333. pool->bitmap = bitmap;
  334. pool->nr_pages = nr_pages;
  335. pr_info("DMA: preallocated %u KiB pool for atomic coherent allocations\n",
  336. (unsigned)pool->size / 1024);
  337. return 0;
  338. }
  339. kfree(pages);
  340. no_pages:
  341. kfree(bitmap);
  342. no_bitmap:
  343. pr_err("DMA: failed to allocate %u KiB pool for atomic coherent allocation\n",
  344. (unsigned)pool->size / 1024);
  345. return -ENOMEM;
  346. }
  347. /*
  348. * CMA is activated by core_initcall, so we must be called after it.
  349. */
  350. postcore_initcall(atomic_pool_init);
  351. struct dma_contig_early_reserve {
  352. phys_addr_t base;
  353. unsigned long size;
  354. };
  355. static struct dma_contig_early_reserve dma_mmu_remap[MAX_CMA_AREAS] __initdata;
  356. static int dma_mmu_remap_num __initdata;
  357. void __init dma_contiguous_early_fixup(phys_addr_t base, unsigned long size)
  358. {
  359. dma_mmu_remap[dma_mmu_remap_num].base = base;
  360. dma_mmu_remap[dma_mmu_remap_num].size = size;
  361. dma_mmu_remap_num++;
  362. }
  363. void __init dma_contiguous_remap(void)
  364. {
  365. int i;
  366. for (i = 0; i < dma_mmu_remap_num; i++) {
  367. phys_addr_t start = dma_mmu_remap[i].base;
  368. phys_addr_t end = start + dma_mmu_remap[i].size;
  369. struct map_desc map;
  370. unsigned long addr;
  371. if (end > arm_lowmem_limit)
  372. end = arm_lowmem_limit;
  373. if (start >= end)
  374. continue;
  375. map.pfn = __phys_to_pfn(start);
  376. map.virtual = __phys_to_virt(start);
  377. map.length = end - start;
  378. map.type = MT_MEMORY_DMA_READY;
  379. /*
  380. * Clear previous low-memory mapping
  381. */
  382. for (addr = __phys_to_virt(start); addr < __phys_to_virt(end);
  383. addr += PMD_SIZE)
  384. pmd_clear(pmd_off_k(addr));
  385. iotable_init(&map, 1);
  386. }
  387. }
  388. static int __dma_update_pte(pte_t *pte, pgtable_t token, unsigned long addr,
  389. void *data)
  390. {
  391. struct page *page = virt_to_page(addr);
  392. pgprot_t prot = *(pgprot_t *)data;
  393. set_pte_ext(pte, mk_pte(page, prot), 0);
  394. return 0;
  395. }
  396. static void __dma_remap(struct page *page, size_t size, pgprot_t prot)
  397. {
  398. unsigned long start = (unsigned long) page_address(page);
  399. unsigned end = start + size;
  400. apply_to_page_range(&init_mm, start, size, __dma_update_pte, &prot);
  401. flush_tlb_kernel_range(start, end);
  402. }
  403. static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp,
  404. pgprot_t prot, struct page **ret_page,
  405. const void *caller)
  406. {
  407. struct page *page;
  408. void *ptr;
  409. page = __dma_alloc_buffer(dev, size, gfp);
  410. if (!page)
  411. return NULL;
  412. ptr = __dma_alloc_remap(page, size, gfp, prot, caller);
  413. if (!ptr) {
  414. __dma_free_buffer(page, size);
  415. return NULL;
  416. }
  417. *ret_page = page;
  418. return ptr;
  419. }
  420. static void *__alloc_from_pool(size_t size, struct page **ret_page)
  421. {
  422. struct dma_pool *pool = &atomic_pool;
  423. unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
  424. unsigned int pageno;
  425. unsigned long flags;
  426. void *ptr = NULL;
  427. unsigned long align_mask;
  428. if (!pool->vaddr) {
  429. WARN(1, "coherent pool not initialised!\n");
  430. return NULL;
  431. }
  432. /*
  433. * Align the region allocation - allocations from pool are rather
  434. * small, so align them to their order in pages, minimum is a page
  435. * size. This helps reduce fragmentation of the DMA space.
  436. */
  437. align_mask = (1 << get_order(size)) - 1;
  438. spin_lock_irqsave(&pool->lock, flags);
  439. pageno = bitmap_find_next_zero_area(pool->bitmap, pool->nr_pages,
  440. 0, count, align_mask);
  441. if (pageno < pool->nr_pages) {
  442. bitmap_set(pool->bitmap, pageno, count);
  443. ptr = pool->vaddr + PAGE_SIZE * pageno;
  444. *ret_page = pool->pages[pageno];
  445. } else {
  446. pr_err_once("ERROR: %u KiB atomic DMA coherent pool is too small!\n"
  447. "Please increase it with coherent_pool= kernel parameter!\n",
  448. (unsigned)pool->size / 1024);
  449. }
  450. spin_unlock_irqrestore(&pool->lock, flags);
  451. return ptr;
  452. }
  453. static bool __in_atomic_pool(void *start, size_t size)
  454. {
  455. struct dma_pool *pool = &atomic_pool;
  456. void *end = start + size;
  457. void *pool_start = pool->vaddr;
  458. void *pool_end = pool->vaddr + pool->size;
  459. if (start < pool_start || start >= pool_end)
  460. return false;
  461. if (end <= pool_end)
  462. return true;
  463. WARN(1, "Wrong coherent size(%p-%p) from atomic pool(%p-%p)\n",
  464. start, end - 1, pool_start, pool_end - 1);
  465. return false;
  466. }
  467. static int __free_from_pool(void *start, size_t size)
  468. {
  469. struct dma_pool *pool = &atomic_pool;
  470. unsigned long pageno, count;
  471. unsigned long flags;
  472. if (!__in_atomic_pool(start, size))
  473. return 0;
  474. pageno = (start - pool->vaddr) >> PAGE_SHIFT;
  475. count = size >> PAGE_SHIFT;
  476. spin_lock_irqsave(&pool->lock, flags);
  477. bitmap_clear(pool->bitmap, pageno, count);
  478. spin_unlock_irqrestore(&pool->lock, flags);
  479. return 1;
  480. }
  481. static void *__alloc_from_contiguous(struct device *dev, size_t size,
  482. pgprot_t prot, struct page **ret_page,
  483. const void *caller)
  484. {
  485. unsigned long order = get_order(size);
  486. size_t count = size >> PAGE_SHIFT;
  487. struct page *page;
  488. void *ptr;
  489. page = dma_alloc_from_contiguous(dev, count, order);
  490. if (!page)
  491. return NULL;
  492. __dma_clear_buffer(page, size);
  493. if (PageHighMem(page)) {
  494. ptr = __dma_alloc_remap(page, size, GFP_KERNEL, prot, caller);
  495. if (!ptr) {
  496. dma_release_from_contiguous(dev, page, count);
  497. return NULL;
  498. }
  499. } else {
  500. __dma_remap(page, size, prot);
  501. ptr = page_address(page);
  502. }
  503. *ret_page = page;
  504. return ptr;
  505. }
  506. static void __free_from_contiguous(struct device *dev, struct page *page,
  507. void *cpu_addr, size_t size)
  508. {
  509. if (PageHighMem(page))
  510. __dma_free_remap(cpu_addr, size);
  511. else
  512. __dma_remap(page, size, pgprot_kernel);
  513. dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT);
  514. }
  515. static inline pgprot_t __get_dma_pgprot(struct dma_attrs *attrs, pgprot_t prot)
  516. {
  517. prot = dma_get_attr(DMA_ATTR_WRITE_COMBINE, attrs) ?
  518. pgprot_writecombine(prot) :
  519. pgprot_dmacoherent(prot);
  520. return prot;
  521. }
  522. #define nommu() 0
  523. #else /* !CONFIG_MMU */
  524. #define nommu() 1
  525. #define __get_dma_pgprot(attrs, prot) __pgprot(0)
  526. #define __alloc_remap_buffer(dev, size, gfp, prot, ret, c) NULL
  527. #define __alloc_from_pool(size, ret_page) NULL
  528. #define __alloc_from_contiguous(dev, size, prot, ret, c) NULL
  529. #define __free_from_pool(cpu_addr, size) 0
  530. #define __free_from_contiguous(dev, page, cpu_addr, size) do { } while (0)
  531. #define __dma_free_remap(cpu_addr, size) do { } while (0)
  532. #endif /* CONFIG_MMU */
  533. static void *__alloc_simple_buffer(struct device *dev, size_t size, gfp_t gfp,
  534. struct page **ret_page)
  535. {
  536. struct page *page;
  537. page = __dma_alloc_buffer(dev, size, gfp);
  538. if (!page)
  539. return NULL;
  540. *ret_page = page;
  541. return page_address(page);
  542. }
  543. static void *__dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
  544. gfp_t gfp, pgprot_t prot, bool is_coherent, const void *caller)
  545. {
  546. u64 mask = get_coherent_dma_mask(dev);
  547. struct page *page = NULL;
  548. void *addr;
  549. #ifdef CONFIG_DMA_API_DEBUG
  550. u64 limit = (mask + 1) & ~mask;
  551. if (limit && size >= limit) {
  552. dev_warn(dev, "coherent allocation too big (requested %#x mask %#llx)\n",
  553. size, mask);
  554. return NULL;
  555. }
  556. #endif
  557. if (!mask)
  558. return NULL;
  559. if (mask < 0xffffffffULL)
  560. gfp |= GFP_DMA;
  561. /*
  562. * Following is a work-around (a.k.a. hack) to prevent pages
  563. * with __GFP_COMP being passed to split_page() which cannot
  564. * handle them. The real problem is that this flag probably
  565. * should be 0 on ARM as it is not supported on this
  566. * platform; see CONFIG_HUGETLBFS.
  567. */
  568. gfp &= ~(__GFP_COMP);
  569. *handle = DMA_ERROR_CODE;
  570. size = PAGE_ALIGN(size);
  571. if (is_coherent || nommu())
  572. addr = __alloc_simple_buffer(dev, size, gfp, &page);
  573. else if (!(gfp & __GFP_WAIT))
  574. addr = __alloc_from_pool(size, &page);
  575. else if (!IS_ENABLED(CONFIG_DMA_CMA))
  576. addr = __alloc_remap_buffer(dev, size, gfp, prot, &page, caller);
  577. else
  578. addr = __alloc_from_contiguous(dev, size, prot, &page, caller);
  579. if (addr)
  580. *handle = pfn_to_dma(dev, page_to_pfn(page));
  581. return addr;
  582. }
  583. /*
  584. * Allocate DMA-coherent memory space and return both the kernel remapped
  585. * virtual and bus address for that space.
  586. */
  587. void *arm_dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
  588. gfp_t gfp, struct dma_attrs *attrs)
  589. {
  590. pgprot_t prot = __get_dma_pgprot(attrs, pgprot_kernel);
  591. void *memory;
  592. if (dma_alloc_from_coherent(dev, size, handle, &memory))
  593. return memory;
  594. return __dma_alloc(dev, size, handle, gfp, prot, false,
  595. __builtin_return_address(0));
  596. }
  597. static void *arm_coherent_dma_alloc(struct device *dev, size_t size,
  598. dma_addr_t *handle, gfp_t gfp, struct dma_attrs *attrs)
  599. {
  600. pgprot_t prot = __get_dma_pgprot(attrs, pgprot_kernel);
  601. void *memory;
  602. if (dma_alloc_from_coherent(dev, size, handle, &memory))
  603. return memory;
  604. return __dma_alloc(dev, size, handle, gfp, prot, true,
  605. __builtin_return_address(0));
  606. }
  607. /*
  608. * Create userspace mapping for the DMA-coherent memory.
  609. */
  610. int arm_dma_mmap(struct device *dev, struct vm_area_struct *vma,
  611. void *cpu_addr, dma_addr_t dma_addr, size_t size,
  612. struct dma_attrs *attrs)
  613. {
  614. int ret = -ENXIO;
  615. #ifdef CONFIG_MMU
  616. unsigned long nr_vma_pages = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
  617. unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
  618. unsigned long pfn = dma_to_pfn(dev, dma_addr);
  619. unsigned long off = vma->vm_pgoff;
  620. vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot);
  621. if (dma_mmap_from_coherent(dev, vma, cpu_addr, size, &ret))
  622. return ret;
  623. if (off < nr_pages && nr_vma_pages <= (nr_pages - off)) {
  624. ret = remap_pfn_range(vma, vma->vm_start,
  625. pfn + off,
  626. vma->vm_end - vma->vm_start,
  627. vma->vm_page_prot);
  628. }
  629. #endif /* CONFIG_MMU */
  630. return ret;
  631. }
  632. /*
  633. * Free a buffer as defined by the above mapping.
  634. */
  635. static void __arm_dma_free(struct device *dev, size_t size, void *cpu_addr,
  636. dma_addr_t handle, struct dma_attrs *attrs,
  637. bool is_coherent)
  638. {
  639. struct page *page = pfn_to_page(dma_to_pfn(dev, handle));
  640. if (dma_release_from_coherent(dev, get_order(size), cpu_addr))
  641. return;
  642. size = PAGE_ALIGN(size);
  643. if (is_coherent || nommu()) {
  644. __dma_free_buffer(page, size);
  645. } else if (__free_from_pool(cpu_addr, size)) {
  646. return;
  647. } else if (!IS_ENABLED(CONFIG_DMA_CMA)) {
  648. __dma_free_remap(cpu_addr, size);
  649. __dma_free_buffer(page, size);
  650. } else {
  651. /*
  652. * Non-atomic allocations cannot be freed with IRQs disabled
  653. */
  654. WARN_ON(irqs_disabled());
  655. __free_from_contiguous(dev, page, cpu_addr, size);
  656. }
  657. }
  658. void arm_dma_free(struct device *dev, size_t size, void *cpu_addr,
  659. dma_addr_t handle, struct dma_attrs *attrs)
  660. {
  661. __arm_dma_free(dev, size, cpu_addr, handle, attrs, false);
  662. }
  663. static void arm_coherent_dma_free(struct device *dev, size_t size, void *cpu_addr,
  664. dma_addr_t handle, struct dma_attrs *attrs)
  665. {
  666. __arm_dma_free(dev, size, cpu_addr, handle, attrs, true);
  667. }
  668. int arm_dma_get_sgtable(struct device *dev, struct sg_table *sgt,
  669. void *cpu_addr, dma_addr_t handle, size_t size,
  670. struct dma_attrs *attrs)
  671. {
  672. struct page *page = pfn_to_page(dma_to_pfn(dev, handle));
  673. int ret;
  674. ret = sg_alloc_table(sgt, 1, GFP_KERNEL);
  675. if (unlikely(ret))
  676. return ret;
  677. sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
  678. return 0;
  679. }
  680. static void dma_cache_maint_page(struct page *page, unsigned long offset,
  681. size_t size, enum dma_data_direction dir,
  682. void (*op)(const void *, size_t, int))
  683. {
  684. unsigned long pfn;
  685. size_t left = size;
  686. pfn = page_to_pfn(page) + offset / PAGE_SIZE;
  687. offset %= PAGE_SIZE;
  688. /*
  689. * A single sg entry may refer to multiple physically contiguous
  690. * pages. But we still need to process highmem pages individually.
  691. * If highmem is not configured then the bulk of this loop gets
  692. * optimized out.
  693. */
  694. do {
  695. size_t len = left;
  696. void *vaddr;
  697. page = pfn_to_page(pfn);
  698. if (PageHighMem(page)) {
  699. if (len + offset > PAGE_SIZE)
  700. len = PAGE_SIZE - offset;
  701. if (cache_is_vipt_nonaliasing()) {
  702. vaddr = kmap_atomic(page);
  703. op(vaddr + offset, len, dir);
  704. kunmap_atomic(vaddr);
  705. } else {
  706. vaddr = kmap_high_get(page);
  707. if (vaddr) {
  708. op(vaddr + offset, len, dir);
  709. kunmap_high(page);
  710. }
  711. }
  712. } else {
  713. vaddr = page_address(page) + offset;
  714. op(vaddr, len, dir);
  715. }
  716. offset = 0;
  717. pfn++;
  718. left -= len;
  719. } while (left);
  720. }
  721. /*
  722. * Make an area consistent for devices.
  723. * Note: Drivers should NOT use this function directly, as it will break
  724. * platforms with CONFIG_DMABOUNCE.
  725. * Use the driver DMA support - see dma-mapping.h (dma_sync_*)
  726. */
  727. static void __dma_page_cpu_to_dev(struct page *page, unsigned long off,
  728. size_t size, enum dma_data_direction dir)
  729. {
  730. unsigned long paddr;
  731. dma_cache_maint_page(page, off, size, dir, dmac_map_area);
  732. paddr = page_to_phys(page) + off;
  733. if (dir == DMA_FROM_DEVICE) {
  734. outer_inv_range(paddr, paddr + size);
  735. } else {
  736. outer_clean_range(paddr, paddr + size);
  737. }
  738. /* FIXME: non-speculating: flush on bidirectional mappings? */
  739. }
  740. static void __dma_page_dev_to_cpu(struct page *page, unsigned long off,
  741. size_t size, enum dma_data_direction dir)
  742. {
  743. unsigned long paddr = page_to_phys(page) + off;
  744. /* FIXME: non-speculating: not required */
  745. /* don't bother invalidating if DMA to device */
  746. if (dir != DMA_TO_DEVICE)
  747. outer_inv_range(paddr, paddr + size);
  748. dma_cache_maint_page(page, off, size, dir, dmac_unmap_area);
  749. /*
  750. * Mark the D-cache clean for these pages to avoid extra flushing.
  751. */
  752. if (dir != DMA_TO_DEVICE && size >= PAGE_SIZE) {
  753. unsigned long pfn;
  754. size_t left = size;
  755. pfn = page_to_pfn(page) + off / PAGE_SIZE;
  756. off %= PAGE_SIZE;
  757. if (off) {
  758. pfn++;
  759. left -= PAGE_SIZE - off;
  760. }
  761. while (left >= PAGE_SIZE) {
  762. page = pfn_to_page(pfn++);
  763. set_bit(PG_dcache_clean, &page->flags);
  764. left -= PAGE_SIZE;
  765. }
  766. }
  767. }
  768. /**
  769. * arm_dma_map_sg - map a set of SG buffers for streaming mode DMA
  770. * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
  771. * @sg: list of buffers
  772. * @nents: number of buffers to map
  773. * @dir: DMA transfer direction
  774. *
  775. * Map a set of buffers described by scatterlist in streaming mode for DMA.
  776. * This is the scatter-gather version of the dma_map_single interface.
  777. * Here the scatter gather list elements are each tagged with the
  778. * appropriate dma address and length. They are obtained via
  779. * sg_dma_{address,length}.
  780. *
  781. * Device ownership issues as mentioned for dma_map_single are the same
  782. * here.
  783. */
  784. int arm_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
  785. enum dma_data_direction dir, struct dma_attrs *attrs)
  786. {
  787. struct dma_map_ops *ops = get_dma_ops(dev);
  788. struct scatterlist *s;
  789. int i, j;
  790. for_each_sg(sg, s, nents, i) {
  791. #ifdef CONFIG_NEED_SG_DMA_LENGTH
  792. s->dma_length = s->length;
  793. #endif
  794. s->dma_address = ops->map_page(dev, sg_page(s), s->offset,
  795. s->length, dir, attrs);
  796. if (dma_mapping_error(dev, s->dma_address))
  797. goto bad_mapping;
  798. }
  799. return nents;
  800. bad_mapping:
  801. for_each_sg(sg, s, i, j)
  802. ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs);
  803. return 0;
  804. }
  805. /**
  806. * arm_dma_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
  807. * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
  808. * @sg: list of buffers
  809. * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
  810. * @dir: DMA transfer direction (same as was passed to dma_map_sg)
  811. *
  812. * Unmap a set of streaming mode DMA translations. Again, CPU access
  813. * rules concerning calls here are the same as for dma_unmap_single().
  814. */
  815. void arm_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
  816. enum dma_data_direction dir, struct dma_attrs *attrs)
  817. {
  818. struct dma_map_ops *ops = get_dma_ops(dev);
  819. struct scatterlist *s;
  820. int i;
  821. for_each_sg(sg, s, nents, i)
  822. ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs);
  823. }
  824. /**
  825. * arm_dma_sync_sg_for_cpu
  826. * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
  827. * @sg: list of buffers
  828. * @nents: number of buffers to map (returned from dma_map_sg)
  829. * @dir: DMA transfer direction (same as was passed to dma_map_sg)
  830. */
  831. void arm_dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
  832. int nents, enum dma_data_direction dir)
  833. {
  834. struct dma_map_ops *ops = get_dma_ops(dev);
  835. struct scatterlist *s;
  836. int i;
  837. for_each_sg(sg, s, nents, i)
  838. ops->sync_single_for_cpu(dev, sg_dma_address(s), s->length,
  839. dir);
  840. }
  841. /**
  842. * arm_dma_sync_sg_for_device
  843. * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
  844. * @sg: list of buffers
  845. * @nents: number of buffers to map (returned from dma_map_sg)
  846. * @dir: DMA transfer direction (same as was passed to dma_map_sg)
  847. */
  848. void arm_dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
  849. int nents, enum dma_data_direction dir)
  850. {
  851. struct dma_map_ops *ops = get_dma_ops(dev);
  852. struct scatterlist *s;
  853. int i;
  854. for_each_sg(sg, s, nents, i)
  855. ops->sync_single_for_device(dev, sg_dma_address(s), s->length,
  856. dir);
  857. }
  858. /*
  859. * Return whether the given device DMA address mask can be supported
  860. * properly. For example, if your device can only drive the low 24-bits
  861. * during bus mastering, then you would pass 0x00ffffff as the mask
  862. * to this function.
  863. */
  864. int dma_supported(struct device *dev, u64 mask)
  865. {
  866. if (mask < (u64)arm_dma_limit)
  867. return 0;
  868. return 1;
  869. }
  870. EXPORT_SYMBOL(dma_supported);
  871. int arm_dma_set_mask(struct device *dev, u64 dma_mask)
  872. {
  873. if (!dev->dma_mask || !dma_supported(dev, dma_mask))
  874. return -EIO;
  875. *dev->dma_mask = dma_mask;
  876. return 0;
  877. }
  878. #define PREALLOC_DMA_DEBUG_ENTRIES 4096
  879. static int __init dma_debug_do_init(void)
  880. {
  881. dma_debug_init(PREALLOC_DMA_DEBUG_ENTRIES);
  882. return 0;
  883. }
  884. fs_initcall(dma_debug_do_init);
  885. #ifdef CONFIG_ARM_DMA_USE_IOMMU
  886. /* IOMMU */
  887. static inline dma_addr_t __alloc_iova(struct dma_iommu_mapping *mapping,
  888. size_t size)
  889. {
  890. unsigned int order = get_order(size);
  891. unsigned int align = 0;
  892. unsigned int count, start;
  893. unsigned long flags;
  894. if (order > CONFIG_ARM_DMA_IOMMU_ALIGNMENT)
  895. order = CONFIG_ARM_DMA_IOMMU_ALIGNMENT;
  896. count = ((PAGE_ALIGN(size) >> PAGE_SHIFT) +
  897. (1 << mapping->order) - 1) >> mapping->order;
  898. if (order > mapping->order)
  899. align = (1 << (order - mapping->order)) - 1;
  900. spin_lock_irqsave(&mapping->lock, flags);
  901. start = bitmap_find_next_zero_area(mapping->bitmap, mapping->bits, 0,
  902. count, align);
  903. if (start > mapping->bits) {
  904. spin_unlock_irqrestore(&mapping->lock, flags);
  905. return DMA_ERROR_CODE;
  906. }
  907. bitmap_set(mapping->bitmap, start, count);
  908. spin_unlock_irqrestore(&mapping->lock, flags);
  909. return mapping->base + (start << (mapping->order + PAGE_SHIFT));
  910. }
  911. static inline void __free_iova(struct dma_iommu_mapping *mapping,
  912. dma_addr_t addr, size_t size)
  913. {
  914. unsigned int start = (addr - mapping->base) >>
  915. (mapping->order + PAGE_SHIFT);
  916. unsigned int count = ((size >> PAGE_SHIFT) +
  917. (1 << mapping->order) - 1) >> mapping->order;
  918. unsigned long flags;
  919. spin_lock_irqsave(&mapping->lock, flags);
  920. bitmap_clear(mapping->bitmap, start, count);
  921. spin_unlock_irqrestore(&mapping->lock, flags);
  922. }
  923. static struct page **__iommu_alloc_buffer(struct device *dev, size_t size,
  924. gfp_t gfp, struct dma_attrs *attrs)
  925. {
  926. struct page **pages;
  927. int count = size >> PAGE_SHIFT;
  928. int array_size = count * sizeof(struct page *);
  929. int i = 0;
  930. if (array_size <= PAGE_SIZE)
  931. pages = kzalloc(array_size, gfp);
  932. else
  933. pages = vzalloc(array_size);
  934. if (!pages)
  935. return NULL;
  936. if (dma_get_attr(DMA_ATTR_FORCE_CONTIGUOUS, attrs))
  937. {
  938. unsigned long order = get_order(size);
  939. struct page *page;
  940. page = dma_alloc_from_contiguous(dev, count, order);
  941. if (!page)
  942. goto error;
  943. __dma_clear_buffer(page, size);
  944. for (i = 0; i < count; i++)
  945. pages[i] = page + i;
  946. return pages;
  947. }
  948. /*
  949. * IOMMU can map any pages, so himem can also be used here
  950. */
  951. gfp |= __GFP_NOWARN | __GFP_HIGHMEM;
  952. while (count) {
  953. int j, order = __fls(count);
  954. pages[i] = alloc_pages(gfp, order);
  955. while (!pages[i] && order)
  956. pages[i] = alloc_pages(gfp, --order);
  957. if (!pages[i])
  958. goto error;
  959. if (order) {
  960. split_page(pages[i], order);
  961. j = 1 << order;
  962. while (--j)
  963. pages[i + j] = pages[i] + j;
  964. }
  965. __dma_clear_buffer(pages[i], PAGE_SIZE << order);
  966. i += 1 << order;
  967. count -= 1 << order;
  968. }
  969. return pages;
  970. error:
  971. while (i--)
  972. if (pages[i])
  973. __free_pages(pages[i], 0);
  974. if (array_size <= PAGE_SIZE)
  975. kfree(pages);
  976. else
  977. vfree(pages);
  978. return NULL;
  979. }
  980. static int __iommu_free_buffer(struct device *dev, struct page **pages,
  981. size_t size, struct dma_attrs *attrs)
  982. {
  983. int count = size >> PAGE_SHIFT;
  984. int array_size = count * sizeof(struct page *);
  985. int i;
  986. if (dma_get_attr(DMA_ATTR_FORCE_CONTIGUOUS, attrs)) {
  987. dma_release_from_contiguous(dev, pages[0], count);
  988. } else {
  989. for (i = 0; i < count; i++)
  990. if (pages[i])
  991. __free_pages(pages[i], 0);
  992. }
  993. if (array_size <= PAGE_SIZE)
  994. kfree(pages);
  995. else
  996. vfree(pages);
  997. return 0;
  998. }
  999. /*
  1000. * Create a CPU mapping for a specified pages
  1001. */
  1002. static void *
  1003. __iommu_alloc_remap(struct page **pages, size_t size, gfp_t gfp, pgprot_t prot,
  1004. const void *caller)
  1005. {
  1006. unsigned int i, nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
  1007. struct vm_struct *area;
  1008. unsigned long p;
  1009. area = get_vm_area_caller(size, VM_ARM_DMA_CONSISTENT | VM_USERMAP,
  1010. caller);
  1011. if (!area)
  1012. return NULL;
  1013. area->pages = pages;
  1014. area->nr_pages = nr_pages;
  1015. p = (unsigned long)area->addr;
  1016. for (i = 0; i < nr_pages; i++) {
  1017. phys_addr_t phys = __pfn_to_phys(page_to_pfn(pages[i]));
  1018. if (ioremap_page_range(p, p + PAGE_SIZE, phys, prot))
  1019. goto err;
  1020. p += PAGE_SIZE;
  1021. }
  1022. return area->addr;
  1023. err:
  1024. unmap_kernel_range((unsigned long)area->addr, size);
  1025. vunmap(area->addr);
  1026. return NULL;
  1027. }
  1028. /*
  1029. * Create a mapping in device IO address space for specified pages
  1030. */
  1031. static dma_addr_t
  1032. __iommu_create_mapping(struct device *dev, struct page **pages, size_t size)
  1033. {
  1034. struct dma_iommu_mapping *mapping = dev->archdata.mapping;
  1035. unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
  1036. dma_addr_t dma_addr, iova;
  1037. int i, ret = DMA_ERROR_CODE;
  1038. dma_addr = __alloc_iova(mapping, size);
  1039. if (dma_addr == DMA_ERROR_CODE)
  1040. return dma_addr;
  1041. iova = dma_addr;
  1042. for (i = 0; i < count; ) {
  1043. unsigned int next_pfn = page_to_pfn(pages[i]) + 1;
  1044. phys_addr_t phys = page_to_phys(pages[i]);
  1045. unsigned int len, j;
  1046. for (j = i + 1; j < count; j++, next_pfn++)
  1047. if (page_to_pfn(pages[j]) != next_pfn)
  1048. break;
  1049. len = (j - i) << PAGE_SHIFT;
  1050. ret = iommu_map(mapping->domain, iova, phys, len,
  1051. IOMMU_READ|IOMMU_WRITE);
  1052. if (ret < 0)
  1053. goto fail;
  1054. iova += len;
  1055. i = j;
  1056. }
  1057. return dma_addr;
  1058. fail:
  1059. iommu_unmap(mapping->domain, dma_addr, iova-dma_addr);
  1060. __free_iova(mapping, dma_addr, size);
  1061. return DMA_ERROR_CODE;
  1062. }
  1063. static int __iommu_remove_mapping(struct device *dev, dma_addr_t iova, size_t size)
  1064. {
  1065. struct dma_iommu_mapping *mapping = dev->archdata.mapping;
  1066. /*
  1067. * add optional in-page offset from iova to size and align
  1068. * result to page size
  1069. */
  1070. size = PAGE_ALIGN((iova & ~PAGE_MASK) + size);
  1071. iova &= PAGE_MASK;
  1072. iommu_unmap(mapping->domain, iova, size);
  1073. __free_iova(mapping, iova, size);
  1074. return 0;
  1075. }
  1076. static struct page **__atomic_get_pages(void *addr)
  1077. {
  1078. struct dma_pool *pool = &atomic_pool;
  1079. struct page **pages = pool->pages;
  1080. int offs = (addr - pool->vaddr) >> PAGE_SHIFT;
  1081. return pages + offs;
  1082. }
  1083. static struct page **__iommu_get_pages(void *cpu_addr, struct dma_attrs *attrs)
  1084. {
  1085. struct vm_struct *area;
  1086. if (__in_atomic_pool(cpu_addr, PAGE_SIZE))
  1087. return __atomic_get_pages(cpu_addr);
  1088. if (dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs))
  1089. return cpu_addr;
  1090. area = find_vm_area(cpu_addr);
  1091. if (area && (area->flags & VM_ARM_DMA_CONSISTENT))
  1092. return area->pages;
  1093. return NULL;
  1094. }
  1095. static void *__iommu_alloc_atomic(struct device *dev, size_t size,
  1096. dma_addr_t *handle)
  1097. {
  1098. struct page *page;
  1099. void *addr;
  1100. addr = __alloc_from_pool(size, &page);
  1101. if (!addr)
  1102. return NULL;
  1103. *handle = __iommu_create_mapping(dev, &page, size);
  1104. if (*handle == DMA_ERROR_CODE)
  1105. goto err_mapping;
  1106. return addr;
  1107. err_mapping:
  1108. __free_from_pool(addr, size);
  1109. return NULL;
  1110. }
  1111. static void __iommu_free_atomic(struct device *dev, void *cpu_addr,
  1112. dma_addr_t handle, size_t size)
  1113. {
  1114. __iommu_remove_mapping(dev, handle, size);
  1115. __free_from_pool(cpu_addr, size);
  1116. }
  1117. static void *arm_iommu_alloc_attrs(struct device *dev, size_t size,
  1118. dma_addr_t *handle, gfp_t gfp, struct dma_attrs *attrs)
  1119. {
  1120. pgprot_t prot = __get_dma_pgprot(attrs, pgprot_kernel);
  1121. struct page **pages;
  1122. void *addr = NULL;
  1123. *handle = DMA_ERROR_CODE;
  1124. size = PAGE_ALIGN(size);
  1125. if (gfp & GFP_ATOMIC)
  1126. return __iommu_alloc_atomic(dev, size, handle);
  1127. /*
  1128. * Following is a work-around (a.k.a. hack) to prevent pages
  1129. * with __GFP_COMP being passed to split_page() which cannot
  1130. * handle them. The real problem is that this flag probably
  1131. * should be 0 on ARM as it is not supported on this
  1132. * platform; see CONFIG_HUGETLBFS.
  1133. */
  1134. gfp &= ~(__GFP_COMP);
  1135. pages = __iommu_alloc_buffer(dev, size, gfp, attrs);
  1136. if (!pages)
  1137. return NULL;
  1138. *handle = __iommu_create_mapping(dev, pages, size);
  1139. if (*handle == DMA_ERROR_CODE)
  1140. goto err_buffer;
  1141. if (dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs))
  1142. return pages;
  1143. addr = __iommu_alloc_remap(pages, size, gfp, prot,
  1144. __builtin_return_address(0));
  1145. if (!addr)
  1146. goto err_mapping;
  1147. return addr;
  1148. err_mapping:
  1149. __iommu_remove_mapping(dev, *handle, size);
  1150. err_buffer:
  1151. __iommu_free_buffer(dev, pages, size, attrs);
  1152. return NULL;
  1153. }
  1154. static int arm_iommu_mmap_attrs(struct device *dev, struct vm_area_struct *vma,
  1155. void *cpu_addr, dma_addr_t dma_addr, size_t size,
  1156. struct dma_attrs *attrs)
  1157. {
  1158. unsigned long uaddr = vma->vm_start;
  1159. unsigned long usize = vma->vm_end - vma->vm_start;
  1160. struct page **pages = __iommu_get_pages(cpu_addr, attrs);
  1161. vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot);
  1162. if (!pages)
  1163. return -ENXIO;
  1164. do {
  1165. int ret = vm_insert_page(vma, uaddr, *pages++);
  1166. if (ret) {
  1167. pr_err("Remapping memory failed: %d\n", ret);
  1168. return ret;
  1169. }
  1170. uaddr += PAGE_SIZE;
  1171. usize -= PAGE_SIZE;
  1172. } while (usize > 0);
  1173. return 0;
  1174. }
  1175. /*
  1176. * free a page as defined by the above mapping.
  1177. * Must not be called with IRQs disabled.
  1178. */
  1179. void arm_iommu_free_attrs(struct device *dev, size_t size, void *cpu_addr,
  1180. dma_addr_t handle, struct dma_attrs *attrs)
  1181. {
  1182. struct page **pages;
  1183. size = PAGE_ALIGN(size);
  1184. if (__in_atomic_pool(cpu_addr, size)) {
  1185. __iommu_free_atomic(dev, cpu_addr, handle, size);
  1186. return;
  1187. }
  1188. pages = __iommu_get_pages(cpu_addr, attrs);
  1189. if (!pages) {
  1190. WARN(1, "trying to free invalid coherent area: %p\n", cpu_addr);
  1191. return;
  1192. }
  1193. if (!dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs)) {
  1194. unmap_kernel_range((unsigned long)cpu_addr, size);
  1195. vunmap(cpu_addr);
  1196. }
  1197. __iommu_remove_mapping(dev, handle, size);
  1198. __iommu_free_buffer(dev, pages, size, attrs);
  1199. }
  1200. static int arm_iommu_get_sgtable(struct device *dev, struct sg_table *sgt,
  1201. void *cpu_addr, dma_addr_t dma_addr,
  1202. size_t size, struct dma_attrs *attrs)
  1203. {
  1204. unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
  1205. struct page **pages = __iommu_get_pages(cpu_addr, attrs);
  1206. if (!pages)
  1207. return -ENXIO;
  1208. return sg_alloc_table_from_pages(sgt, pages, count, 0, size,
  1209. GFP_KERNEL);
  1210. }
  1211. static int __dma_direction_to_prot(enum dma_data_direction dir)
  1212. {
  1213. int prot;
  1214. switch (dir) {
  1215. case DMA_BIDIRECTIONAL:
  1216. prot = IOMMU_READ | IOMMU_WRITE;
  1217. break;
  1218. case DMA_TO_DEVICE:
  1219. prot = IOMMU_READ;
  1220. break;
  1221. case DMA_FROM_DEVICE:
  1222. prot = IOMMU_WRITE;
  1223. break;
  1224. default:
  1225. prot = 0;
  1226. }
  1227. return prot;
  1228. }
  1229. /*
  1230. * Map a part of the scatter-gather list into contiguous io address space
  1231. */
  1232. static int __map_sg_chunk(struct device *dev, struct scatterlist *sg,
  1233. size_t size, dma_addr_t *handle,
  1234. enum dma_data_direction dir, struct dma_attrs *attrs,
  1235. bool is_coherent)
  1236. {
  1237. struct dma_iommu_mapping *mapping = dev->archdata.mapping;
  1238. dma_addr_t iova, iova_base;
  1239. int ret = 0;
  1240. unsigned int count;
  1241. struct scatterlist *s;
  1242. int prot;
  1243. size = PAGE_ALIGN(size);
  1244. *handle = DMA_ERROR_CODE;
  1245. iova_base = iova = __alloc_iova(mapping, size);
  1246. if (iova == DMA_ERROR_CODE)
  1247. return -ENOMEM;
  1248. for (count = 0, s = sg; count < (size >> PAGE_SHIFT); s = sg_next(s)) {
  1249. phys_addr_t phys = page_to_phys(sg_page(s));
  1250. unsigned int len = PAGE_ALIGN(s->offset + s->length);
  1251. if (!is_coherent &&
  1252. !dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
  1253. __dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir);
  1254. prot = __dma_direction_to_prot(dir);
  1255. ret = iommu_map(mapping->domain, iova, phys, len, prot);
  1256. if (ret < 0)
  1257. goto fail;
  1258. count += len >> PAGE_SHIFT;
  1259. iova += len;
  1260. }
  1261. *handle = iova_base;
  1262. return 0;
  1263. fail:
  1264. iommu_unmap(mapping->domain, iova_base, count * PAGE_SIZE);
  1265. __free_iova(mapping, iova_base, size);
  1266. return ret;
  1267. }
  1268. static int __iommu_map_sg(struct device *dev, struct scatterlist *sg, int nents,
  1269. enum dma_data_direction dir, struct dma_attrs *attrs,
  1270. bool is_coherent)
  1271. {
  1272. struct scatterlist *s = sg, *dma = sg, *start = sg;
  1273. int i, count = 0;
  1274. unsigned int offset = s->offset;
  1275. unsigned int size = s->offset + s->length;
  1276. unsigned int max = dma_get_max_seg_size(dev);
  1277. for (i = 1; i < nents; i++) {
  1278. s = sg_next(s);
  1279. s->dma_address = DMA_ERROR_CODE;
  1280. s->dma_length = 0;
  1281. if (s->offset || (size & ~PAGE_MASK) || size + s->length > max) {
  1282. if (__map_sg_chunk(dev, start, size, &dma->dma_address,
  1283. dir, attrs, is_coherent) < 0)
  1284. goto bad_mapping;
  1285. dma->dma_address += offset;
  1286. dma->dma_length = size - offset;
  1287. size = offset = s->offset;
  1288. start = s;
  1289. dma = sg_next(dma);
  1290. count += 1;
  1291. }
  1292. size += s->length;
  1293. }
  1294. if (__map_sg_chunk(dev, start, size, &dma->dma_address, dir, attrs,
  1295. is_coherent) < 0)
  1296. goto bad_mapping;
  1297. dma->dma_address += offset;
  1298. dma->dma_length = size - offset;
  1299. return count+1;
  1300. bad_mapping:
  1301. for_each_sg(sg, s, count, i)
  1302. __iommu_remove_mapping(dev, sg_dma_address(s), sg_dma_len(s));
  1303. return 0;
  1304. }
  1305. /**
  1306. * arm_coherent_iommu_map_sg - map a set of SG buffers for streaming mode DMA
  1307. * @dev: valid struct device pointer
  1308. * @sg: list of buffers
  1309. * @nents: number of buffers to map
  1310. * @dir: DMA transfer direction
  1311. *
  1312. * Map a set of i/o coherent buffers described by scatterlist in streaming
  1313. * mode for DMA. The scatter gather list elements are merged together (if
  1314. * possible) and tagged with the appropriate dma address and length. They are
  1315. * obtained via sg_dma_{address,length}.
  1316. */
  1317. int arm_coherent_iommu_map_sg(struct device *dev, struct scatterlist *sg,
  1318. int nents, enum dma_data_direction dir, struct dma_attrs *attrs)
  1319. {
  1320. return __iommu_map_sg(dev, sg, nents, dir, attrs, true);
  1321. }
  1322. /**
  1323. * arm_iommu_map_sg - map a set of SG buffers for streaming mode DMA
  1324. * @dev: valid struct device pointer
  1325. * @sg: list of buffers
  1326. * @nents: number of buffers to map
  1327. * @dir: DMA transfer direction
  1328. *
  1329. * Map a set of buffers described by scatterlist in streaming mode for DMA.
  1330. * The scatter gather list elements are merged together (if possible) and
  1331. * tagged with the appropriate dma address and length. They are obtained via
  1332. * sg_dma_{address,length}.
  1333. */
  1334. int arm_iommu_map_sg(struct device *dev, struct scatterlist *sg,
  1335. int nents, enum dma_data_direction dir, struct dma_attrs *attrs)
  1336. {
  1337. return __iommu_map_sg(dev, sg, nents, dir, attrs, false);
  1338. }
  1339. static void __iommu_unmap_sg(struct device *dev, struct scatterlist *sg,
  1340. int nents, enum dma_data_direction dir, struct dma_attrs *attrs,
  1341. bool is_coherent)
  1342. {
  1343. struct scatterlist *s;
  1344. int i;
  1345. for_each_sg(sg, s, nents, i) {
  1346. if (sg_dma_len(s))
  1347. __iommu_remove_mapping(dev, sg_dma_address(s),
  1348. sg_dma_len(s));
  1349. if (!is_coherent &&
  1350. !dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
  1351. __dma_page_dev_to_cpu(sg_page(s), s->offset,
  1352. s->length, dir);
  1353. }
  1354. }
  1355. /**
  1356. * arm_coherent_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
  1357. * @dev: valid struct device pointer
  1358. * @sg: list of buffers
  1359. * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
  1360. * @dir: DMA transfer direction (same as was passed to dma_map_sg)
  1361. *
  1362. * Unmap a set of streaming mode DMA translations. Again, CPU access
  1363. * rules concerning calls here are the same as for dma_unmap_single().
  1364. */
  1365. void arm_coherent_iommu_unmap_sg(struct device *dev, struct scatterlist *sg,
  1366. int nents, enum dma_data_direction dir, struct dma_attrs *attrs)
  1367. {
  1368. __iommu_unmap_sg(dev, sg, nents, dir, attrs, true);
  1369. }
  1370. /**
  1371. * arm_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
  1372. * @dev: valid struct device pointer
  1373. * @sg: list of buffers
  1374. * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
  1375. * @dir: DMA transfer direction (same as was passed to dma_map_sg)
  1376. *
  1377. * Unmap a set of streaming mode DMA translations. Again, CPU access
  1378. * rules concerning calls here are the same as for dma_unmap_single().
  1379. */
  1380. void arm_iommu_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
  1381. enum dma_data_direction dir, struct dma_attrs *attrs)
  1382. {
  1383. __iommu_unmap_sg(dev, sg, nents, dir, attrs, false);
  1384. }
  1385. /**
  1386. * arm_iommu_sync_sg_for_cpu
  1387. * @dev: valid struct device pointer
  1388. * @sg: list of buffers
  1389. * @nents: number of buffers to map (returned from dma_map_sg)
  1390. * @dir: DMA transfer direction (same as was passed to dma_map_sg)
  1391. */
  1392. void arm_iommu_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
  1393. int nents, enum dma_data_direction dir)
  1394. {
  1395. struct scatterlist *s;
  1396. int i;
  1397. for_each_sg(sg, s, nents, i)
  1398. __dma_page_dev_to_cpu(sg_page(s), s->offset, s->length, dir);
  1399. }
  1400. /**
  1401. * arm_iommu_sync_sg_for_device
  1402. * @dev: valid struct device pointer
  1403. * @sg: list of buffers
  1404. * @nents: number of buffers to map (returned from dma_map_sg)
  1405. * @dir: DMA transfer direction (same as was passed to dma_map_sg)
  1406. */
  1407. void arm_iommu_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
  1408. int nents, enum dma_data_direction dir)
  1409. {
  1410. struct scatterlist *s;
  1411. int i;
  1412. for_each_sg(sg, s, nents, i)
  1413. __dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir);
  1414. }
  1415. /**
  1416. * arm_coherent_iommu_map_page
  1417. * @dev: valid struct device pointer
  1418. * @page: page that buffer resides in
  1419. * @offset: offset into page for start of buffer
  1420. * @size: size of buffer to map
  1421. * @dir: DMA transfer direction
  1422. *
  1423. * Coherent IOMMU aware version of arm_dma_map_page()
  1424. */
  1425. static dma_addr_t arm_coherent_iommu_map_page(struct device *dev, struct page *page,
  1426. unsigned long offset, size_t size, enum dma_data_direction dir,
  1427. struct dma_attrs *attrs)
  1428. {
  1429. struct dma_iommu_mapping *mapping = dev->archdata.mapping;
  1430. dma_addr_t dma_addr;
  1431. int ret, prot, len = PAGE_ALIGN(size + offset);
  1432. dma_addr = __alloc_iova(mapping, len);
  1433. if (dma_addr == DMA_ERROR_CODE)
  1434. return dma_addr;
  1435. prot = __dma_direction_to_prot(dir);
  1436. ret = iommu_map(mapping->domain, dma_addr, page_to_phys(page), len, prot);
  1437. if (ret < 0)
  1438. goto fail;
  1439. return dma_addr + offset;
  1440. fail:
  1441. __free_iova(mapping, dma_addr, len);
  1442. return DMA_ERROR_CODE;
  1443. }
  1444. /**
  1445. * arm_iommu_map_page
  1446. * @dev: valid struct device pointer
  1447. * @page: page that buffer resides in
  1448. * @offset: offset into page for start of buffer
  1449. * @size: size of buffer to map
  1450. * @dir: DMA transfer direction
  1451. *
  1452. * IOMMU aware version of arm_dma_map_page()
  1453. */
  1454. static dma_addr_t arm_iommu_map_page(struct device *dev, struct page *page,
  1455. unsigned long offset, size_t size, enum dma_data_direction dir,
  1456. struct dma_attrs *attrs)
  1457. {
  1458. if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
  1459. __dma_page_cpu_to_dev(page, offset, size, dir);
  1460. return arm_coherent_iommu_map_page(dev, page, offset, size, dir, attrs);
  1461. }
  1462. /**
  1463. * arm_coherent_iommu_unmap_page
  1464. * @dev: valid struct device pointer
  1465. * @handle: DMA address of buffer
  1466. * @size: size of buffer (same as passed to dma_map_page)
  1467. * @dir: DMA transfer direction (same as passed to dma_map_page)
  1468. *
  1469. * Coherent IOMMU aware version of arm_dma_unmap_page()
  1470. */
  1471. static void arm_coherent_iommu_unmap_page(struct device *dev, dma_addr_t handle,
  1472. size_t size, enum dma_data_direction dir,
  1473. struct dma_attrs *attrs)
  1474. {
  1475. struct dma_iommu_mapping *mapping = dev->archdata.mapping;
  1476. dma_addr_t iova = handle & PAGE_MASK;
  1477. int offset = handle & ~PAGE_MASK;
  1478. int len = PAGE_ALIGN(size + offset);
  1479. if (!iova)
  1480. return;
  1481. iommu_unmap(mapping->domain, iova, len);
  1482. __free_iova(mapping, iova, len);
  1483. }
  1484. /**
  1485. * arm_iommu_unmap_page
  1486. * @dev: valid struct device pointer
  1487. * @handle: DMA address of buffer
  1488. * @size: size of buffer (same as passed to dma_map_page)
  1489. * @dir: DMA transfer direction (same as passed to dma_map_page)
  1490. *
  1491. * IOMMU aware version of arm_dma_unmap_page()
  1492. */
  1493. static void arm_iommu_unmap_page(struct device *dev, dma_addr_t handle,
  1494. size_t size, enum dma_data_direction dir,
  1495. struct dma_attrs *attrs)
  1496. {
  1497. struct dma_iommu_mapping *mapping = dev->archdata.mapping;
  1498. dma_addr_t iova = handle & PAGE_MASK;
  1499. struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
  1500. int offset = handle & ~PAGE_MASK;
  1501. int len = PAGE_ALIGN(size + offset);
  1502. if (!iova)
  1503. return;
  1504. if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
  1505. __dma_page_dev_to_cpu(page, offset, size, dir);
  1506. iommu_unmap(mapping->domain, iova, len);
  1507. __free_iova(mapping, iova, len);
  1508. }
  1509. static void arm_iommu_sync_single_for_cpu(struct device *dev,
  1510. dma_addr_t handle, size_t size, enum dma_data_direction dir)
  1511. {
  1512. struct dma_iommu_mapping *mapping = dev->archdata.mapping;
  1513. dma_addr_t iova = handle & PAGE_MASK;
  1514. struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
  1515. unsigned int offset = handle & ~PAGE_MASK;
  1516. if (!iova)
  1517. return;
  1518. __dma_page_dev_to_cpu(page, offset, size, dir);
  1519. }
  1520. static void arm_iommu_sync_single_for_device(struct device *dev,
  1521. dma_addr_t handle, size_t size, enum dma_data_direction dir)
  1522. {
  1523. struct dma_iommu_mapping *mapping = dev->archdata.mapping;
  1524. dma_addr_t iova = handle & PAGE_MASK;
  1525. struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
  1526. unsigned int offset = handle & ~PAGE_MASK;
  1527. if (!iova)
  1528. return;
  1529. __dma_page_cpu_to_dev(page, offset, size, dir);
  1530. }
  1531. struct dma_map_ops iommu_ops = {
  1532. .alloc = arm_iommu_alloc_attrs,
  1533. .free = arm_iommu_free_attrs,
  1534. .mmap = arm_iommu_mmap_attrs,
  1535. .get_sgtable = arm_iommu_get_sgtable,
  1536. .map_page = arm_iommu_map_page,
  1537. .unmap_page = arm_iommu_unmap_page,
  1538. .sync_single_for_cpu = arm_iommu_sync_single_for_cpu,
  1539. .sync_single_for_device = arm_iommu_sync_single_for_device,
  1540. .map_sg = arm_iommu_map_sg,
  1541. .unmap_sg = arm_iommu_unmap_sg,
  1542. .sync_sg_for_cpu = arm_iommu_sync_sg_for_cpu,
  1543. .sync_sg_for_device = arm_iommu_sync_sg_for_device,
  1544. .set_dma_mask = arm_dma_set_mask,
  1545. };
  1546. struct dma_map_ops iommu_coherent_ops = {
  1547. .alloc = arm_iommu_alloc_attrs,
  1548. .free = arm_iommu_free_attrs,
  1549. .mmap = arm_iommu_mmap_attrs,
  1550. .get_sgtable = arm_iommu_get_sgtable,
  1551. .map_page = arm_coherent_iommu_map_page,
  1552. .unmap_page = arm_coherent_iommu_unmap_page,
  1553. .map_sg = arm_coherent_iommu_map_sg,
  1554. .unmap_sg = arm_coherent_iommu_unmap_sg,
  1555. .set_dma_mask = arm_dma_set_mask,
  1556. };
  1557. /**
  1558. * arm_iommu_create_mapping
  1559. * @bus: pointer to the bus holding the client device (for IOMMU calls)
  1560. * @base: start address of the valid IO address space
  1561. * @size: size of the valid IO address space
  1562. * @order: accuracy of the IO addresses allocations
  1563. *
  1564. * Creates a mapping structure which holds information about used/unused
  1565. * IO address ranges, which is required to perform memory allocation and
  1566. * mapping with IOMMU aware functions.
  1567. *
  1568. * The client device need to be attached to the mapping with
  1569. * arm_iommu_attach_device function.
  1570. */
  1571. struct dma_iommu_mapping *
  1572. arm_iommu_create_mapping(struct bus_type *bus, dma_addr_t base, size_t size,
  1573. int order)
  1574. {
  1575. unsigned int count = size >> (PAGE_SHIFT + order);
  1576. unsigned int bitmap_size = BITS_TO_LONGS(count) * sizeof(long);
  1577. struct dma_iommu_mapping *mapping;
  1578. int err = -ENOMEM;
  1579. if (!count)
  1580. return ERR_PTR(-EINVAL);
  1581. mapping = kzalloc(sizeof(struct dma_iommu_mapping), GFP_KERNEL);
  1582. if (!mapping)
  1583. goto err;
  1584. mapping->bitmap = kzalloc(bitmap_size, GFP_KERNEL);
  1585. if (!mapping->bitmap)
  1586. goto err2;
  1587. mapping->base = base;
  1588. mapping->bits = BITS_PER_BYTE * bitmap_size;
  1589. mapping->order = order;
  1590. spin_lock_init(&mapping->lock);
  1591. mapping->domain = iommu_domain_alloc(bus);
  1592. if (!mapping->domain)
  1593. goto err3;
  1594. kref_init(&mapping->kref);
  1595. return mapping;
  1596. err3:
  1597. kfree(mapping->bitmap);
  1598. err2:
  1599. kfree(mapping);
  1600. err:
  1601. return ERR_PTR(err);
  1602. }
  1603. EXPORT_SYMBOL_GPL(arm_iommu_create_mapping);
  1604. static void release_iommu_mapping(struct kref *kref)
  1605. {
  1606. struct dma_iommu_mapping *mapping =
  1607. container_of(kref, struct dma_iommu_mapping, kref);
  1608. iommu_domain_free(mapping->domain);
  1609. kfree(mapping->bitmap);
  1610. kfree(mapping);
  1611. }
  1612. void arm_iommu_release_mapping(struct dma_iommu_mapping *mapping)
  1613. {
  1614. if (mapping)
  1615. kref_put(&mapping->kref, release_iommu_mapping);
  1616. }
  1617. EXPORT_SYMBOL_GPL(arm_iommu_release_mapping);
  1618. /**
  1619. * arm_iommu_attach_device
  1620. * @dev: valid struct device pointer
  1621. * @mapping: io address space mapping structure (returned from
  1622. * arm_iommu_create_mapping)
  1623. *
  1624. * Attaches specified io address space mapping to the provided device,
  1625. * this replaces the dma operations (dma_map_ops pointer) with the
  1626. * IOMMU aware version. More than one client might be attached to
  1627. * the same io address space mapping.
  1628. */
  1629. int arm_iommu_attach_device(struct device *dev,
  1630. struct dma_iommu_mapping *mapping)
  1631. {
  1632. int err;
  1633. err = iommu_attach_device(mapping->domain, dev);
  1634. if (err)
  1635. return err;
  1636. kref_get(&mapping->kref);
  1637. dev->archdata.mapping = mapping;
  1638. set_dma_ops(dev, &iommu_ops);
  1639. pr_debug("Attached IOMMU controller to %s device.\n", dev_name(dev));
  1640. return 0;
  1641. }
  1642. EXPORT_SYMBOL_GPL(arm_iommu_attach_device);
  1643. /**
  1644. * arm_iommu_detach_device
  1645. * @dev: valid struct device pointer
  1646. *
  1647. * Detaches the provided device from a previously attached map.
  1648. * This voids the dma operations (dma_map_ops pointer)
  1649. */
  1650. void arm_iommu_detach_device(struct device *dev)
  1651. {
  1652. struct dma_iommu_mapping *mapping;
  1653. mapping = to_dma_iommu_mapping(dev);
  1654. if (!mapping) {
  1655. dev_warn(dev, "Not attached\n");
  1656. return;
  1657. }
  1658. iommu_detach_device(mapping->domain, dev);
  1659. kref_put(&mapping->kref, release_iommu_mapping);
  1660. dev->archdata.mapping = NULL;
  1661. set_dma_ops(dev, NULL);
  1662. pr_debug("Detached IOMMU controller from %s device.\n", dev_name(dev));
  1663. }
  1664. EXPORT_SYMBOL_GPL(arm_iommu_detach_device);
  1665. #endif