common.c 30 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257
  1. #include <linux/bootmem.h>
  2. #include <linux/linkage.h>
  3. #include <linux/bitops.h>
  4. #include <linux/kernel.h>
  5. #include <linux/module.h>
  6. #include <linux/percpu.h>
  7. #include <linux/string.h>
  8. #include <linux/delay.h>
  9. #include <linux/sched.h>
  10. #include <linux/init.h>
  11. #include <linux/kgdb.h>
  12. #include <linux/smp.h>
  13. #include <linux/io.h>
  14. #include <asm/stackprotector.h>
  15. #include <asm/perf_event.h>
  16. #include <asm/mmu_context.h>
  17. #include <asm/hypervisor.h>
  18. #include <asm/processor.h>
  19. #include <asm/sections.h>
  20. #include <linux/topology.h>
  21. #include <linux/cpumask.h>
  22. #include <asm/pgtable.h>
  23. #include <asm/atomic.h>
  24. #include <asm/proto.h>
  25. #include <asm/setup.h>
  26. #include <asm/apic.h>
  27. #include <asm/desc.h>
  28. #include <asm/i387.h>
  29. #include <asm/mtrr.h>
  30. #include <linux/numa.h>
  31. #include <asm/asm.h>
  32. #include <asm/cpu.h>
  33. #include <asm/mce.h>
  34. #include <asm/msr.h>
  35. #include <asm/pat.h>
  36. #ifdef CONFIG_X86_LOCAL_APIC
  37. #include <asm/uv/uv.h>
  38. #endif
  39. #include "cpu.h"
  40. /* all of these masks are initialized in setup_cpu_local_masks() */
  41. cpumask_var_t cpu_initialized_mask;
  42. cpumask_var_t cpu_callout_mask;
  43. cpumask_var_t cpu_callin_mask;
  44. /* representing cpus for which sibling maps can be computed */
  45. cpumask_var_t cpu_sibling_setup_mask;
  46. /* correctly size the local cpu masks */
  47. void __init setup_cpu_local_masks(void)
  48. {
  49. alloc_bootmem_cpumask_var(&cpu_initialized_mask);
  50. alloc_bootmem_cpumask_var(&cpu_callin_mask);
  51. alloc_bootmem_cpumask_var(&cpu_callout_mask);
  52. alloc_bootmem_cpumask_var(&cpu_sibling_setup_mask);
  53. }
  54. static void __cpuinit default_init(struct cpuinfo_x86 *c)
  55. {
  56. #ifdef CONFIG_X86_64
  57. display_cacheinfo(c);
  58. #else
  59. /* Not much we can do here... */
  60. /* Check if at least it has cpuid */
  61. if (c->cpuid_level == -1) {
  62. /* No cpuid. It must be an ancient CPU */
  63. if (c->x86 == 4)
  64. strcpy(c->x86_model_id, "486");
  65. else if (c->x86 == 3)
  66. strcpy(c->x86_model_id, "386");
  67. }
  68. #endif
  69. }
  70. static const struct cpu_dev __cpuinitconst default_cpu = {
  71. .c_init = default_init,
  72. .c_vendor = "Unknown",
  73. .c_x86_vendor = X86_VENDOR_UNKNOWN,
  74. };
  75. static const struct cpu_dev *this_cpu __cpuinitdata = &default_cpu;
  76. DEFINE_PER_CPU_PAGE_ALIGNED(struct gdt_page, gdt_page) = { .gdt = {
  77. #ifdef CONFIG_X86_64
  78. /*
  79. * We need valid kernel segments for data and code in long mode too
  80. * IRET will check the segment types kkeil 2000/10/28
  81. * Also sysret mandates a special GDT layout
  82. *
  83. * TLS descriptors are currently at a different place compared to i386.
  84. * Hopefully nobody expects them at a fixed place (Wine?)
  85. */
  86. [GDT_ENTRY_KERNEL32_CS] = GDT_ENTRY_INIT(0xc09b, 0, 0xfffff),
  87. [GDT_ENTRY_KERNEL_CS] = GDT_ENTRY_INIT(0xa09b, 0, 0xfffff),
  88. [GDT_ENTRY_KERNEL_DS] = GDT_ENTRY_INIT(0xc093, 0, 0xfffff),
  89. [GDT_ENTRY_DEFAULT_USER32_CS] = GDT_ENTRY_INIT(0xc0fb, 0, 0xfffff),
  90. [GDT_ENTRY_DEFAULT_USER_DS] = GDT_ENTRY_INIT(0xc0f3, 0, 0xfffff),
  91. [GDT_ENTRY_DEFAULT_USER_CS] = GDT_ENTRY_INIT(0xa0fb, 0, 0xfffff),
  92. #else
  93. [GDT_ENTRY_KERNEL_CS] = GDT_ENTRY_INIT(0xc09a, 0, 0xfffff),
  94. [GDT_ENTRY_KERNEL_DS] = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
  95. [GDT_ENTRY_DEFAULT_USER_CS] = GDT_ENTRY_INIT(0xc0fa, 0, 0xfffff),
  96. [GDT_ENTRY_DEFAULT_USER_DS] = GDT_ENTRY_INIT(0xc0f2, 0, 0xfffff),
  97. /*
  98. * Segments used for calling PnP BIOS have byte granularity.
  99. * They code segments and data segments have fixed 64k limits,
  100. * the transfer segment sizes are set at run time.
  101. */
  102. /* 32-bit code */
  103. [GDT_ENTRY_PNPBIOS_CS32] = GDT_ENTRY_INIT(0x409a, 0, 0xffff),
  104. /* 16-bit code */
  105. [GDT_ENTRY_PNPBIOS_CS16] = GDT_ENTRY_INIT(0x009a, 0, 0xffff),
  106. /* 16-bit data */
  107. [GDT_ENTRY_PNPBIOS_DS] = GDT_ENTRY_INIT(0x0092, 0, 0xffff),
  108. /* 16-bit data */
  109. [GDT_ENTRY_PNPBIOS_TS1] = GDT_ENTRY_INIT(0x0092, 0, 0),
  110. /* 16-bit data */
  111. [GDT_ENTRY_PNPBIOS_TS2] = GDT_ENTRY_INIT(0x0092, 0, 0),
  112. /*
  113. * The APM segments have byte granularity and their bases
  114. * are set at run time. All have 64k limits.
  115. */
  116. /* 32-bit code */
  117. [GDT_ENTRY_APMBIOS_BASE] = GDT_ENTRY_INIT(0x409a, 0, 0xffff),
  118. /* 16-bit code */
  119. [GDT_ENTRY_APMBIOS_BASE+1] = GDT_ENTRY_INIT(0x009a, 0, 0xffff),
  120. /* data */
  121. [GDT_ENTRY_APMBIOS_BASE+2] = GDT_ENTRY_INIT(0x4092, 0, 0xffff),
  122. [GDT_ENTRY_ESPFIX_SS] = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
  123. [GDT_ENTRY_PERCPU] = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
  124. GDT_STACK_CANARY_INIT
  125. #endif
  126. } };
  127. EXPORT_PER_CPU_SYMBOL_GPL(gdt_page);
  128. static int __init x86_xsave_setup(char *s)
  129. {
  130. setup_clear_cpu_cap(X86_FEATURE_XSAVE);
  131. return 1;
  132. }
  133. __setup("noxsave", x86_xsave_setup);
  134. #ifdef CONFIG_X86_32
  135. static int cachesize_override __cpuinitdata = -1;
  136. static int disable_x86_serial_nr __cpuinitdata = 1;
  137. static int __init cachesize_setup(char *str)
  138. {
  139. get_option(&str, &cachesize_override);
  140. return 1;
  141. }
  142. __setup("cachesize=", cachesize_setup);
  143. static int __init x86_fxsr_setup(char *s)
  144. {
  145. setup_clear_cpu_cap(X86_FEATURE_FXSR);
  146. setup_clear_cpu_cap(X86_FEATURE_XMM);
  147. return 1;
  148. }
  149. __setup("nofxsr", x86_fxsr_setup);
  150. static int __init x86_sep_setup(char *s)
  151. {
  152. setup_clear_cpu_cap(X86_FEATURE_SEP);
  153. return 1;
  154. }
  155. __setup("nosep", x86_sep_setup);
  156. /* Standard macro to see if a specific flag is changeable */
  157. static inline int flag_is_changeable_p(u32 flag)
  158. {
  159. u32 f1, f2;
  160. /*
  161. * Cyrix and IDT cpus allow disabling of CPUID
  162. * so the code below may return different results
  163. * when it is executed before and after enabling
  164. * the CPUID. Add "volatile" to not allow gcc to
  165. * optimize the subsequent calls to this function.
  166. */
  167. asm volatile ("pushfl \n\t"
  168. "pushfl \n\t"
  169. "popl %0 \n\t"
  170. "movl %0, %1 \n\t"
  171. "xorl %2, %0 \n\t"
  172. "pushl %0 \n\t"
  173. "popfl \n\t"
  174. "pushfl \n\t"
  175. "popl %0 \n\t"
  176. "popfl \n\t"
  177. : "=&r" (f1), "=&r" (f2)
  178. : "ir" (flag));
  179. return ((f1^f2) & flag) != 0;
  180. }
  181. /* Probe for the CPUID instruction */
  182. static int __cpuinit have_cpuid_p(void)
  183. {
  184. return flag_is_changeable_p(X86_EFLAGS_ID);
  185. }
  186. static void __cpuinit squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
  187. {
  188. unsigned long lo, hi;
  189. if (!cpu_has(c, X86_FEATURE_PN) || !disable_x86_serial_nr)
  190. return;
  191. /* Disable processor serial number: */
  192. rdmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
  193. lo |= 0x200000;
  194. wrmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
  195. printk(KERN_NOTICE "CPU serial number disabled.\n");
  196. clear_cpu_cap(c, X86_FEATURE_PN);
  197. /* Disabling the serial number may affect the cpuid level */
  198. c->cpuid_level = cpuid_eax(0);
  199. }
  200. static int __init x86_serial_nr_setup(char *s)
  201. {
  202. disable_x86_serial_nr = 0;
  203. return 1;
  204. }
  205. __setup("serialnumber", x86_serial_nr_setup);
  206. #else
  207. static inline int flag_is_changeable_p(u32 flag)
  208. {
  209. return 1;
  210. }
  211. /* Probe for the CPUID instruction */
  212. static inline int have_cpuid_p(void)
  213. {
  214. return 1;
  215. }
  216. static inline void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
  217. {
  218. }
  219. #endif
  220. /*
  221. * Some CPU features depend on higher CPUID levels, which may not always
  222. * be available due to CPUID level capping or broken virtualization
  223. * software. Add those features to this table to auto-disable them.
  224. */
  225. struct cpuid_dependent_feature {
  226. u32 feature;
  227. u32 level;
  228. };
  229. static const struct cpuid_dependent_feature __cpuinitconst
  230. cpuid_dependent_features[] = {
  231. { X86_FEATURE_MWAIT, 0x00000005 },
  232. { X86_FEATURE_DCA, 0x00000009 },
  233. { X86_FEATURE_XSAVE, 0x0000000d },
  234. { 0, 0 }
  235. };
  236. static void __cpuinit filter_cpuid_features(struct cpuinfo_x86 *c, bool warn)
  237. {
  238. const struct cpuid_dependent_feature *df;
  239. for (df = cpuid_dependent_features; df->feature; df++) {
  240. if (!cpu_has(c, df->feature))
  241. continue;
  242. /*
  243. * Note: cpuid_level is set to -1 if unavailable, but
  244. * extended_extended_level is set to 0 if unavailable
  245. * and the legitimate extended levels are all negative
  246. * when signed; hence the weird messing around with
  247. * signs here...
  248. */
  249. if (!((s32)df->level < 0 ?
  250. (u32)df->level > (u32)c->extended_cpuid_level :
  251. (s32)df->level > (s32)c->cpuid_level))
  252. continue;
  253. clear_cpu_cap(c, df->feature);
  254. if (!warn)
  255. continue;
  256. printk(KERN_WARNING
  257. "CPU: CPU feature %s disabled, no CPUID level 0x%x\n",
  258. x86_cap_flags[df->feature], df->level);
  259. }
  260. }
  261. /*
  262. * Naming convention should be: <Name> [(<Codename>)]
  263. * This table only is used unless init_<vendor>() below doesn't set it;
  264. * in particular, if CPUID levels 0x80000002..4 are supported, this
  265. * isn't used
  266. */
  267. /* Look up CPU names by table lookup. */
  268. static const char *__cpuinit table_lookup_model(struct cpuinfo_x86 *c)
  269. {
  270. const struct cpu_model_info *info;
  271. if (c->x86_model >= 16)
  272. return NULL; /* Range check */
  273. if (!this_cpu)
  274. return NULL;
  275. info = this_cpu->c_models;
  276. while (info && info->family) {
  277. if (info->family == c->x86)
  278. return info->model_names[c->x86_model];
  279. info++;
  280. }
  281. return NULL; /* Not found */
  282. }
  283. __u32 cpu_caps_cleared[NCAPINTS] __cpuinitdata;
  284. __u32 cpu_caps_set[NCAPINTS] __cpuinitdata;
  285. void load_percpu_segment(int cpu)
  286. {
  287. #ifdef CONFIG_X86_32
  288. loadsegment(fs, __KERNEL_PERCPU);
  289. #else
  290. loadsegment(gs, 0);
  291. wrmsrl(MSR_GS_BASE, (unsigned long)per_cpu(irq_stack_union.gs_base, cpu));
  292. #endif
  293. load_stack_canary_segment();
  294. }
  295. /*
  296. * Current gdt points %fs at the "master" per-cpu area: after this,
  297. * it's on the real one.
  298. */
  299. void switch_to_new_gdt(int cpu)
  300. {
  301. struct desc_ptr gdt_descr;
  302. gdt_descr.address = (long)get_cpu_gdt_table(cpu);
  303. gdt_descr.size = GDT_SIZE - 1;
  304. load_gdt(&gdt_descr);
  305. /* Reload the per-cpu base */
  306. load_percpu_segment(cpu);
  307. }
  308. static const struct cpu_dev *__cpuinitdata cpu_devs[X86_VENDOR_NUM] = {};
  309. static void __cpuinit get_model_name(struct cpuinfo_x86 *c)
  310. {
  311. unsigned int *v;
  312. char *p, *q;
  313. if (c->extended_cpuid_level < 0x80000004)
  314. return;
  315. v = (unsigned int *)c->x86_model_id;
  316. cpuid(0x80000002, &v[0], &v[1], &v[2], &v[3]);
  317. cpuid(0x80000003, &v[4], &v[5], &v[6], &v[7]);
  318. cpuid(0x80000004, &v[8], &v[9], &v[10], &v[11]);
  319. c->x86_model_id[48] = 0;
  320. /*
  321. * Intel chips right-justify this string for some dumb reason;
  322. * undo that brain damage:
  323. */
  324. p = q = &c->x86_model_id[0];
  325. while (*p == ' ')
  326. p++;
  327. if (p != q) {
  328. while (*p)
  329. *q++ = *p++;
  330. while (q <= &c->x86_model_id[48])
  331. *q++ = '\0'; /* Zero-pad the rest */
  332. }
  333. }
  334. void __cpuinit display_cacheinfo(struct cpuinfo_x86 *c)
  335. {
  336. unsigned int n, dummy, ebx, ecx, edx, l2size;
  337. n = c->extended_cpuid_level;
  338. if (n >= 0x80000005) {
  339. cpuid(0x80000005, &dummy, &ebx, &ecx, &edx);
  340. printk(KERN_INFO "CPU: L1 I Cache: %dK (%d bytes/line), D cache %dK (%d bytes/line)\n",
  341. edx>>24, edx&0xFF, ecx>>24, ecx&0xFF);
  342. c->x86_cache_size = (ecx>>24) + (edx>>24);
  343. #ifdef CONFIG_X86_64
  344. /* On K8 L1 TLB is inclusive, so don't count it */
  345. c->x86_tlbsize = 0;
  346. #endif
  347. }
  348. if (n < 0x80000006) /* Some chips just has a large L1. */
  349. return;
  350. cpuid(0x80000006, &dummy, &ebx, &ecx, &edx);
  351. l2size = ecx >> 16;
  352. #ifdef CONFIG_X86_64
  353. c->x86_tlbsize += ((ebx >> 16) & 0xfff) + (ebx & 0xfff);
  354. #else
  355. /* do processor-specific cache resizing */
  356. if (this_cpu->c_size_cache)
  357. l2size = this_cpu->c_size_cache(c, l2size);
  358. /* Allow user to override all this if necessary. */
  359. if (cachesize_override != -1)
  360. l2size = cachesize_override;
  361. if (l2size == 0)
  362. return; /* Again, no L2 cache is possible */
  363. #endif
  364. c->x86_cache_size = l2size;
  365. printk(KERN_INFO "CPU: L2 Cache: %dK (%d bytes/line)\n",
  366. l2size, ecx & 0xFF);
  367. }
  368. void __cpuinit detect_ht(struct cpuinfo_x86 *c)
  369. {
  370. #ifdef CONFIG_X86_HT
  371. u32 eax, ebx, ecx, edx;
  372. int index_msb, core_bits;
  373. if (!cpu_has(c, X86_FEATURE_HT))
  374. return;
  375. if (cpu_has(c, X86_FEATURE_CMP_LEGACY))
  376. goto out;
  377. if (cpu_has(c, X86_FEATURE_XTOPOLOGY))
  378. return;
  379. cpuid(1, &eax, &ebx, &ecx, &edx);
  380. smp_num_siblings = (ebx & 0xff0000) >> 16;
  381. if (smp_num_siblings == 1) {
  382. printk(KERN_INFO "CPU: Hyper-Threading is disabled\n");
  383. goto out;
  384. }
  385. if (smp_num_siblings <= 1)
  386. goto out;
  387. if (smp_num_siblings > nr_cpu_ids) {
  388. pr_warning("CPU: Unsupported number of siblings %d",
  389. smp_num_siblings);
  390. smp_num_siblings = 1;
  391. return;
  392. }
  393. index_msb = get_count_order(smp_num_siblings);
  394. c->phys_proc_id = apic->phys_pkg_id(c->initial_apicid, index_msb);
  395. smp_num_siblings = smp_num_siblings / c->x86_max_cores;
  396. index_msb = get_count_order(smp_num_siblings);
  397. core_bits = get_count_order(c->x86_max_cores);
  398. c->cpu_core_id = apic->phys_pkg_id(c->initial_apicid, index_msb) &
  399. ((1 << core_bits) - 1);
  400. out:
  401. if ((c->x86_max_cores * smp_num_siblings) > 1) {
  402. printk(KERN_INFO "CPU: Physical Processor ID: %d\n",
  403. c->phys_proc_id);
  404. printk(KERN_INFO "CPU: Processor Core ID: %d\n",
  405. c->cpu_core_id);
  406. }
  407. #endif
  408. }
  409. static void __cpuinit get_cpu_vendor(struct cpuinfo_x86 *c)
  410. {
  411. char *v = c->x86_vendor_id;
  412. int i;
  413. for (i = 0; i < X86_VENDOR_NUM; i++) {
  414. if (!cpu_devs[i])
  415. break;
  416. if (!strcmp(v, cpu_devs[i]->c_ident[0]) ||
  417. (cpu_devs[i]->c_ident[1] &&
  418. !strcmp(v, cpu_devs[i]->c_ident[1]))) {
  419. this_cpu = cpu_devs[i];
  420. c->x86_vendor = this_cpu->c_x86_vendor;
  421. return;
  422. }
  423. }
  424. printk_once(KERN_ERR
  425. "CPU: vendor_id '%s' unknown, using generic init.\n" \
  426. "CPU: Your system may be unstable.\n", v);
  427. c->x86_vendor = X86_VENDOR_UNKNOWN;
  428. this_cpu = &default_cpu;
  429. }
  430. void __cpuinit cpu_detect(struct cpuinfo_x86 *c)
  431. {
  432. /* Get vendor name */
  433. cpuid(0x00000000, (unsigned int *)&c->cpuid_level,
  434. (unsigned int *)&c->x86_vendor_id[0],
  435. (unsigned int *)&c->x86_vendor_id[8],
  436. (unsigned int *)&c->x86_vendor_id[4]);
  437. c->x86 = 4;
  438. /* Intel-defined flags: level 0x00000001 */
  439. if (c->cpuid_level >= 0x00000001) {
  440. u32 junk, tfms, cap0, misc;
  441. cpuid(0x00000001, &tfms, &misc, &junk, &cap0);
  442. c->x86 = (tfms >> 8) & 0xf;
  443. c->x86_model = (tfms >> 4) & 0xf;
  444. c->x86_mask = tfms & 0xf;
  445. if (c->x86 == 0xf)
  446. c->x86 += (tfms >> 20) & 0xff;
  447. if (c->x86 >= 0x6)
  448. c->x86_model += ((tfms >> 16) & 0xf) << 4;
  449. if (cap0 & (1<<19)) {
  450. c->x86_clflush_size = ((misc >> 8) & 0xff) * 8;
  451. c->x86_cache_alignment = c->x86_clflush_size;
  452. }
  453. }
  454. }
  455. static void __cpuinit get_cpu_cap(struct cpuinfo_x86 *c)
  456. {
  457. u32 tfms, xlvl;
  458. u32 ebx;
  459. /* Intel-defined flags: level 0x00000001 */
  460. if (c->cpuid_level >= 0x00000001) {
  461. u32 capability, excap;
  462. cpuid(0x00000001, &tfms, &ebx, &excap, &capability);
  463. c->x86_capability[0] = capability;
  464. c->x86_capability[4] = excap;
  465. }
  466. /* AMD-defined flags: level 0x80000001 */
  467. xlvl = cpuid_eax(0x80000000);
  468. c->extended_cpuid_level = xlvl;
  469. if ((xlvl & 0xffff0000) == 0x80000000) {
  470. if (xlvl >= 0x80000001) {
  471. c->x86_capability[1] = cpuid_edx(0x80000001);
  472. c->x86_capability[6] = cpuid_ecx(0x80000001);
  473. }
  474. }
  475. if (c->extended_cpuid_level >= 0x80000008) {
  476. u32 eax = cpuid_eax(0x80000008);
  477. c->x86_virt_bits = (eax >> 8) & 0xff;
  478. c->x86_phys_bits = eax & 0xff;
  479. }
  480. #ifdef CONFIG_X86_32
  481. else if (cpu_has(c, X86_FEATURE_PAE) || cpu_has(c, X86_FEATURE_PSE36))
  482. c->x86_phys_bits = 36;
  483. #endif
  484. if (c->extended_cpuid_level >= 0x80000007)
  485. c->x86_power = cpuid_edx(0x80000007);
  486. }
  487. static void __cpuinit identify_cpu_without_cpuid(struct cpuinfo_x86 *c)
  488. {
  489. #ifdef CONFIG_X86_32
  490. int i;
  491. /*
  492. * First of all, decide if this is a 486 or higher
  493. * It's a 486 if we can modify the AC flag
  494. */
  495. if (flag_is_changeable_p(X86_EFLAGS_AC))
  496. c->x86 = 4;
  497. else
  498. c->x86 = 3;
  499. for (i = 0; i < X86_VENDOR_NUM; i++)
  500. if (cpu_devs[i] && cpu_devs[i]->c_identify) {
  501. c->x86_vendor_id[0] = 0;
  502. cpu_devs[i]->c_identify(c);
  503. if (c->x86_vendor_id[0]) {
  504. get_cpu_vendor(c);
  505. break;
  506. }
  507. }
  508. #endif
  509. }
  510. /*
  511. * Do minimum CPU detection early.
  512. * Fields really needed: vendor, cpuid_level, family, model, mask,
  513. * cache alignment.
  514. * The others are not touched to avoid unwanted side effects.
  515. *
  516. * WARNING: this function is only called on the BP. Don't add code here
  517. * that is supposed to run on all CPUs.
  518. */
  519. static void __init early_identify_cpu(struct cpuinfo_x86 *c)
  520. {
  521. #ifdef CONFIG_X86_64
  522. c->x86_clflush_size = 64;
  523. c->x86_phys_bits = 36;
  524. c->x86_virt_bits = 48;
  525. #else
  526. c->x86_clflush_size = 32;
  527. c->x86_phys_bits = 32;
  528. c->x86_virt_bits = 32;
  529. #endif
  530. c->x86_cache_alignment = c->x86_clflush_size;
  531. memset(&c->x86_capability, 0, sizeof c->x86_capability);
  532. c->extended_cpuid_level = 0;
  533. if (!have_cpuid_p())
  534. identify_cpu_without_cpuid(c);
  535. /* cyrix could have cpuid enabled via c_identify()*/
  536. if (!have_cpuid_p())
  537. return;
  538. cpu_detect(c);
  539. get_cpu_vendor(c);
  540. get_cpu_cap(c);
  541. if (this_cpu->c_early_init)
  542. this_cpu->c_early_init(c);
  543. #ifdef CONFIG_SMP
  544. c->cpu_index = boot_cpu_id;
  545. #endif
  546. filter_cpuid_features(c, false);
  547. }
  548. void __init early_cpu_init(void)
  549. {
  550. const struct cpu_dev *const *cdev;
  551. int count = 0;
  552. printk(KERN_INFO "KERNEL supported cpus:\n");
  553. for (cdev = __x86_cpu_dev_start; cdev < __x86_cpu_dev_end; cdev++) {
  554. const struct cpu_dev *cpudev = *cdev;
  555. unsigned int j;
  556. if (count >= X86_VENDOR_NUM)
  557. break;
  558. cpu_devs[count] = cpudev;
  559. count++;
  560. for (j = 0; j < 2; j++) {
  561. if (!cpudev->c_ident[j])
  562. continue;
  563. printk(KERN_INFO " %s %s\n", cpudev->c_vendor,
  564. cpudev->c_ident[j]);
  565. }
  566. }
  567. early_identify_cpu(&boot_cpu_data);
  568. }
  569. /*
  570. * The NOPL instruction is supposed to exist on all CPUs with
  571. * family >= 6; unfortunately, that's not true in practice because
  572. * of early VIA chips and (more importantly) broken virtualizers that
  573. * are not easy to detect. In the latter case it doesn't even *fail*
  574. * reliably, so probing for it doesn't even work. Disable it completely
  575. * unless we can find a reliable way to detect all the broken cases.
  576. */
  577. static void __cpuinit detect_nopl(struct cpuinfo_x86 *c)
  578. {
  579. clear_cpu_cap(c, X86_FEATURE_NOPL);
  580. }
  581. static void __cpuinit generic_identify(struct cpuinfo_x86 *c)
  582. {
  583. c->extended_cpuid_level = 0;
  584. if (!have_cpuid_p())
  585. identify_cpu_without_cpuid(c);
  586. /* cyrix could have cpuid enabled via c_identify()*/
  587. if (!have_cpuid_p())
  588. return;
  589. cpu_detect(c);
  590. get_cpu_vendor(c);
  591. get_cpu_cap(c);
  592. if (c->cpuid_level >= 0x00000001) {
  593. c->initial_apicid = (cpuid_ebx(1) >> 24) & 0xFF;
  594. #ifdef CONFIG_X86_32
  595. # ifdef CONFIG_X86_HT
  596. c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
  597. # else
  598. c->apicid = c->initial_apicid;
  599. # endif
  600. #endif
  601. #ifdef CONFIG_X86_HT
  602. c->phys_proc_id = c->initial_apicid;
  603. #endif
  604. }
  605. get_model_name(c); /* Default name */
  606. init_scattered_cpuid_features(c);
  607. detect_nopl(c);
  608. }
  609. /*
  610. * This does the hard work of actually picking apart the CPU stuff...
  611. */
  612. static void __cpuinit identify_cpu(struct cpuinfo_x86 *c)
  613. {
  614. int i;
  615. c->loops_per_jiffy = loops_per_jiffy;
  616. c->x86_cache_size = -1;
  617. c->x86_vendor = X86_VENDOR_UNKNOWN;
  618. c->x86_model = c->x86_mask = 0; /* So far unknown... */
  619. c->x86_vendor_id[0] = '\0'; /* Unset */
  620. c->x86_model_id[0] = '\0'; /* Unset */
  621. c->x86_max_cores = 1;
  622. c->x86_coreid_bits = 0;
  623. #ifdef CONFIG_X86_64
  624. c->x86_clflush_size = 64;
  625. c->x86_phys_bits = 36;
  626. c->x86_virt_bits = 48;
  627. #else
  628. c->cpuid_level = -1; /* CPUID not detected */
  629. c->x86_clflush_size = 32;
  630. c->x86_phys_bits = 32;
  631. c->x86_virt_bits = 32;
  632. #endif
  633. c->x86_cache_alignment = c->x86_clflush_size;
  634. memset(&c->x86_capability, 0, sizeof c->x86_capability);
  635. generic_identify(c);
  636. if (this_cpu->c_identify)
  637. this_cpu->c_identify(c);
  638. /* Clear/Set all flags overriden by options, after probe */
  639. for (i = 0; i < NCAPINTS; i++) {
  640. c->x86_capability[i] &= ~cpu_caps_cleared[i];
  641. c->x86_capability[i] |= cpu_caps_set[i];
  642. }
  643. #ifdef CONFIG_X86_64
  644. c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
  645. #endif
  646. /*
  647. * Vendor-specific initialization. In this section we
  648. * canonicalize the feature flags, meaning if there are
  649. * features a certain CPU supports which CPUID doesn't
  650. * tell us, CPUID claiming incorrect flags, or other bugs,
  651. * we handle them here.
  652. *
  653. * At the end of this section, c->x86_capability better
  654. * indicate the features this CPU genuinely supports!
  655. */
  656. if (this_cpu->c_init)
  657. this_cpu->c_init(c);
  658. /* Disable the PN if appropriate */
  659. squash_the_stupid_serial_number(c);
  660. /*
  661. * The vendor-specific functions might have changed features.
  662. * Now we do "generic changes."
  663. */
  664. /* Filter out anything that depends on CPUID levels we don't have */
  665. filter_cpuid_features(c, true);
  666. /* If the model name is still unset, do table lookup. */
  667. if (!c->x86_model_id[0]) {
  668. const char *p;
  669. p = table_lookup_model(c);
  670. if (p)
  671. strcpy(c->x86_model_id, p);
  672. else
  673. /* Last resort... */
  674. sprintf(c->x86_model_id, "%02x/%02x",
  675. c->x86, c->x86_model);
  676. }
  677. #ifdef CONFIG_X86_64
  678. detect_ht(c);
  679. #endif
  680. init_hypervisor(c);
  681. /*
  682. * Clear/Set all flags overriden by options, need do it
  683. * before following smp all cpus cap AND.
  684. */
  685. for (i = 0; i < NCAPINTS; i++) {
  686. c->x86_capability[i] &= ~cpu_caps_cleared[i];
  687. c->x86_capability[i] |= cpu_caps_set[i];
  688. }
  689. /*
  690. * On SMP, boot_cpu_data holds the common feature set between
  691. * all CPUs; so make sure that we indicate which features are
  692. * common between the CPUs. The first time this routine gets
  693. * executed, c == &boot_cpu_data.
  694. */
  695. if (c != &boot_cpu_data) {
  696. /* AND the already accumulated flags with these */
  697. for (i = 0; i < NCAPINTS; i++)
  698. boot_cpu_data.x86_capability[i] &= c->x86_capability[i];
  699. }
  700. /* Init Machine Check Exception if available. */
  701. mcheck_cpu_init(c);
  702. select_idle_routine(c);
  703. #if defined(CONFIG_NUMA) && defined(CONFIG_X86_64)
  704. numa_add_cpu(smp_processor_id());
  705. #endif
  706. }
  707. #ifdef CONFIG_X86_64
  708. static void vgetcpu_set_mode(void)
  709. {
  710. if (cpu_has(&boot_cpu_data, X86_FEATURE_RDTSCP))
  711. vgetcpu_mode = VGETCPU_RDTSCP;
  712. else
  713. vgetcpu_mode = VGETCPU_LSL;
  714. }
  715. #endif
  716. void __init identify_boot_cpu(void)
  717. {
  718. identify_cpu(&boot_cpu_data);
  719. init_c1e_mask();
  720. #ifdef CONFIG_X86_32
  721. sysenter_setup();
  722. enable_sep_cpu();
  723. #else
  724. vgetcpu_set_mode();
  725. #endif
  726. init_hw_perf_events();
  727. }
  728. void __cpuinit identify_secondary_cpu(struct cpuinfo_x86 *c)
  729. {
  730. BUG_ON(c == &boot_cpu_data);
  731. identify_cpu(c);
  732. #ifdef CONFIG_X86_32
  733. enable_sep_cpu();
  734. #endif
  735. mtrr_ap_init();
  736. }
  737. struct msr_range {
  738. unsigned min;
  739. unsigned max;
  740. };
  741. static const struct msr_range msr_range_array[] __cpuinitconst = {
  742. { 0x00000000, 0x00000418},
  743. { 0xc0000000, 0xc000040b},
  744. { 0xc0010000, 0xc0010142},
  745. { 0xc0011000, 0xc001103b},
  746. };
  747. static void __cpuinit print_cpu_msr(void)
  748. {
  749. unsigned index_min, index_max;
  750. unsigned index;
  751. u64 val;
  752. int i;
  753. for (i = 0; i < ARRAY_SIZE(msr_range_array); i++) {
  754. index_min = msr_range_array[i].min;
  755. index_max = msr_range_array[i].max;
  756. for (index = index_min; index < index_max; index++) {
  757. if (rdmsrl_amd_safe(index, &val))
  758. continue;
  759. printk(KERN_INFO " MSR%08x: %016llx\n", index, val);
  760. }
  761. }
  762. }
  763. static int show_msr __cpuinitdata;
  764. static __init int setup_show_msr(char *arg)
  765. {
  766. int num;
  767. get_option(&arg, &num);
  768. if (num > 0)
  769. show_msr = num;
  770. return 1;
  771. }
  772. __setup("show_msr=", setup_show_msr);
  773. static __init int setup_noclflush(char *arg)
  774. {
  775. setup_clear_cpu_cap(X86_FEATURE_CLFLSH);
  776. return 1;
  777. }
  778. __setup("noclflush", setup_noclflush);
  779. void __cpuinit print_cpu_info(struct cpuinfo_x86 *c)
  780. {
  781. const char *vendor = NULL;
  782. if (c->x86_vendor < X86_VENDOR_NUM) {
  783. vendor = this_cpu->c_vendor;
  784. } else {
  785. if (c->cpuid_level >= 0)
  786. vendor = c->x86_vendor_id;
  787. }
  788. if (vendor && !strstr(c->x86_model_id, vendor))
  789. printk(KERN_CONT "%s ", vendor);
  790. if (c->x86_model_id[0])
  791. printk(KERN_CONT "%s", c->x86_model_id);
  792. else
  793. printk(KERN_CONT "%d86", c->x86);
  794. if (c->x86_mask || c->cpuid_level >= 0)
  795. printk(KERN_CONT " stepping %02x\n", c->x86_mask);
  796. else
  797. printk(KERN_CONT "\n");
  798. #ifdef CONFIG_SMP
  799. if (c->cpu_index < show_msr)
  800. print_cpu_msr();
  801. #else
  802. if (show_msr)
  803. print_cpu_msr();
  804. #endif
  805. }
  806. static __init int setup_disablecpuid(char *arg)
  807. {
  808. int bit;
  809. if (get_option(&arg, &bit) && bit < NCAPINTS*32)
  810. setup_clear_cpu_cap(bit);
  811. else
  812. return 0;
  813. return 1;
  814. }
  815. __setup("clearcpuid=", setup_disablecpuid);
  816. #ifdef CONFIG_X86_64
  817. struct desc_ptr idt_descr = { NR_VECTORS * 16 - 1, (unsigned long) idt_table };
  818. DEFINE_PER_CPU_FIRST(union irq_stack_union,
  819. irq_stack_union) __aligned(PAGE_SIZE);
  820. /*
  821. * The following four percpu variables are hot. Align current_task to
  822. * cacheline size such that all four fall in the same cacheline.
  823. */
  824. DEFINE_PER_CPU(struct task_struct *, current_task) ____cacheline_aligned =
  825. &init_task;
  826. EXPORT_PER_CPU_SYMBOL(current_task);
  827. DEFINE_PER_CPU(unsigned long, kernel_stack) =
  828. (unsigned long)&init_thread_union - KERNEL_STACK_OFFSET + THREAD_SIZE;
  829. EXPORT_PER_CPU_SYMBOL(kernel_stack);
  830. DEFINE_PER_CPU(char *, irq_stack_ptr) =
  831. init_per_cpu_var(irq_stack_union.irq_stack) + IRQ_STACK_SIZE - 64;
  832. DEFINE_PER_CPU(unsigned int, irq_count) = -1;
  833. /*
  834. * Special IST stacks which the CPU switches to when it calls
  835. * an IST-marked descriptor entry. Up to 7 stacks (hardware
  836. * limit), all of them are 4K, except the debug stack which
  837. * is 8K.
  838. */
  839. static const unsigned int exception_stack_sizes[N_EXCEPTION_STACKS] = {
  840. [0 ... N_EXCEPTION_STACKS - 1] = EXCEPTION_STKSZ,
  841. [DEBUG_STACK - 1] = DEBUG_STKSZ
  842. };
  843. static DEFINE_PER_CPU_PAGE_ALIGNED(char, exception_stacks
  844. [(N_EXCEPTION_STACKS - 1) * EXCEPTION_STKSZ + DEBUG_STKSZ]);
  845. /* May not be marked __init: used by software suspend */
  846. void syscall_init(void)
  847. {
  848. /*
  849. * LSTAR and STAR live in a bit strange symbiosis.
  850. * They both write to the same internal register. STAR allows to
  851. * set CS/DS but only a 32bit target. LSTAR sets the 64bit rip.
  852. */
  853. wrmsrl(MSR_STAR, ((u64)__USER32_CS)<<48 | ((u64)__KERNEL_CS)<<32);
  854. wrmsrl(MSR_LSTAR, system_call);
  855. wrmsrl(MSR_CSTAR, ignore_sysret);
  856. #ifdef CONFIG_IA32_EMULATION
  857. syscall32_cpu_init();
  858. #endif
  859. /* Flags to clear on syscall */
  860. wrmsrl(MSR_SYSCALL_MASK,
  861. X86_EFLAGS_TF|X86_EFLAGS_DF|X86_EFLAGS_IF|X86_EFLAGS_IOPL);
  862. }
  863. unsigned long kernel_eflags;
  864. /*
  865. * Copies of the original ist values from the tss are only accessed during
  866. * debugging, no special alignment required.
  867. */
  868. DEFINE_PER_CPU(struct orig_ist, orig_ist);
  869. #else /* CONFIG_X86_64 */
  870. DEFINE_PER_CPU(struct task_struct *, current_task) = &init_task;
  871. EXPORT_PER_CPU_SYMBOL(current_task);
  872. #ifdef CONFIG_CC_STACKPROTECTOR
  873. DEFINE_PER_CPU_ALIGNED(struct stack_canary, stack_canary);
  874. #endif
  875. /* Make sure %fs and %gs are initialized properly in idle threads */
  876. struct pt_regs * __cpuinit idle_regs(struct pt_regs *regs)
  877. {
  878. memset(regs, 0, sizeof(struct pt_regs));
  879. regs->fs = __KERNEL_PERCPU;
  880. regs->gs = __KERNEL_STACK_CANARY;
  881. return regs;
  882. }
  883. #endif /* CONFIG_X86_64 */
  884. /*
  885. * Clear all 6 debug registers:
  886. */
  887. static void clear_all_debug_regs(void)
  888. {
  889. int i;
  890. for (i = 0; i < 8; i++) {
  891. /* Ignore db4, db5 */
  892. if ((i == 4) || (i == 5))
  893. continue;
  894. set_debugreg(0, i);
  895. }
  896. }
  897. /*
  898. * cpu_init() initializes state that is per-CPU. Some data is already
  899. * initialized (naturally) in the bootstrap process, such as the GDT
  900. * and IDT. We reload them nevertheless, this function acts as a
  901. * 'CPU state barrier', nothing should get across.
  902. * A lot of state is already set up in PDA init for 64 bit
  903. */
  904. #ifdef CONFIG_X86_64
  905. void __cpuinit cpu_init(void)
  906. {
  907. struct orig_ist *orig_ist;
  908. struct task_struct *me;
  909. struct tss_struct *t;
  910. unsigned long v;
  911. int cpu;
  912. int i;
  913. cpu = stack_smp_processor_id();
  914. t = &per_cpu(init_tss, cpu);
  915. orig_ist = &per_cpu(orig_ist, cpu);
  916. #ifdef CONFIG_NUMA
  917. if (cpu != 0 && percpu_read(node_number) == 0 &&
  918. cpu_to_node(cpu) != NUMA_NO_NODE)
  919. percpu_write(node_number, cpu_to_node(cpu));
  920. #endif
  921. me = current;
  922. if (cpumask_test_and_set_cpu(cpu, cpu_initialized_mask))
  923. panic("CPU#%d already initialized!\n", cpu);
  924. printk(KERN_INFO "Initializing CPU#%d\n", cpu);
  925. clear_in_cr4(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
  926. /*
  927. * Initialize the per-CPU GDT with the boot GDT,
  928. * and set up the GDT descriptor:
  929. */
  930. switch_to_new_gdt(cpu);
  931. loadsegment(fs, 0);
  932. load_idt((const struct desc_ptr *)&idt_descr);
  933. memset(me->thread.tls_array, 0, GDT_ENTRY_TLS_ENTRIES * 8);
  934. syscall_init();
  935. wrmsrl(MSR_FS_BASE, 0);
  936. wrmsrl(MSR_KERNEL_GS_BASE, 0);
  937. barrier();
  938. check_efer();
  939. if (cpu != 0)
  940. enable_x2apic();
  941. /*
  942. * set up and load the per-CPU TSS
  943. */
  944. if (!orig_ist->ist[0]) {
  945. char *estacks = per_cpu(exception_stacks, cpu);
  946. for (v = 0; v < N_EXCEPTION_STACKS; v++) {
  947. estacks += exception_stack_sizes[v];
  948. orig_ist->ist[v] = t->x86_tss.ist[v] =
  949. (unsigned long)estacks;
  950. }
  951. }
  952. t->x86_tss.io_bitmap_base = offsetof(struct tss_struct, io_bitmap);
  953. /*
  954. * <= is required because the CPU will access up to
  955. * 8 bits beyond the end of the IO permission bitmap.
  956. */
  957. for (i = 0; i <= IO_BITMAP_LONGS; i++)
  958. t->io_bitmap[i] = ~0UL;
  959. atomic_inc(&init_mm.mm_count);
  960. me->active_mm = &init_mm;
  961. BUG_ON(me->mm);
  962. enter_lazy_tlb(&init_mm, me);
  963. load_sp0(t, &current->thread);
  964. set_tss_desc(cpu, t);
  965. load_TR_desc();
  966. load_LDT(&init_mm.context);
  967. #ifdef CONFIG_KGDB
  968. /*
  969. * If the kgdb is connected no debug regs should be altered. This
  970. * is only applicable when KGDB and a KGDB I/O module are built
  971. * into the kernel and you are using early debugging with
  972. * kgdbwait. KGDB will control the kernel HW breakpoint registers.
  973. */
  974. if (kgdb_connected && arch_kgdb_ops.correct_hw_break)
  975. arch_kgdb_ops.correct_hw_break();
  976. else
  977. #endif
  978. clear_all_debug_regs();
  979. fpu_init();
  980. raw_local_save_flags(kernel_eflags);
  981. if (is_uv_system())
  982. uv_cpu_init();
  983. }
  984. #else
  985. void __cpuinit cpu_init(void)
  986. {
  987. int cpu = smp_processor_id();
  988. struct task_struct *curr = current;
  989. struct tss_struct *t = &per_cpu(init_tss, cpu);
  990. struct thread_struct *thread = &curr->thread;
  991. if (cpumask_test_and_set_cpu(cpu, cpu_initialized_mask)) {
  992. printk(KERN_WARNING "CPU#%d already initialized!\n", cpu);
  993. for (;;)
  994. local_irq_enable();
  995. }
  996. printk(KERN_INFO "Initializing CPU#%d\n", cpu);
  997. if (cpu_has_vme || cpu_has_tsc || cpu_has_de)
  998. clear_in_cr4(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
  999. load_idt(&idt_descr);
  1000. switch_to_new_gdt(cpu);
  1001. /*
  1002. * Set up and load the per-CPU TSS and LDT
  1003. */
  1004. atomic_inc(&init_mm.mm_count);
  1005. curr->active_mm = &init_mm;
  1006. BUG_ON(curr->mm);
  1007. enter_lazy_tlb(&init_mm, curr);
  1008. load_sp0(t, thread);
  1009. set_tss_desc(cpu, t);
  1010. load_TR_desc();
  1011. load_LDT(&init_mm.context);
  1012. t->x86_tss.io_bitmap_base = offsetof(struct tss_struct, io_bitmap);
  1013. #ifdef CONFIG_DOUBLEFAULT
  1014. /* Set up doublefault TSS pointer in the GDT */
  1015. __set_tss_desc(cpu, GDT_ENTRY_DOUBLEFAULT_TSS, &doublefault_tss);
  1016. #endif
  1017. clear_all_debug_regs();
  1018. /*
  1019. * Force FPU initialization:
  1020. */
  1021. if (cpu_has_xsave)
  1022. current_thread_info()->status = TS_XSAVE;
  1023. else
  1024. current_thread_info()->status = 0;
  1025. clear_used_math();
  1026. mxcsr_feature_mask_init();
  1027. /*
  1028. * Boot processor to setup the FP and extended state context info.
  1029. */
  1030. if (smp_processor_id() == boot_cpu_id)
  1031. init_thread_xstate();
  1032. xsave_init();
  1033. }
  1034. #endif