spi_s3c64xx.c 31 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190
  1. /* linux/drivers/spi/spi_s3c64xx.c
  2. *
  3. * Copyright (C) 2009 Samsung Electronics Ltd.
  4. * Jaswinder Singh <jassi.brar@samsung.com>
  5. *
  6. * This program is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License as published by
  8. * the Free Software Foundation; either version 2 of the License, or
  9. * (at your option) any later version.
  10. *
  11. * This program is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  14. * GNU General Public License for more details.
  15. *
  16. * You should have received a copy of the GNU General Public License
  17. * along with this program; if not, write to the Free Software
  18. * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  19. */
  20. #include <linux/init.h>
  21. #include <linux/module.h>
  22. #include <linux/workqueue.h>
  23. #include <linux/delay.h>
  24. #include <linux/clk.h>
  25. #include <linux/dma-mapping.h>
  26. #include <linux/platform_device.h>
  27. #include <linux/spi/spi.h>
  28. #include <mach/dma.h>
  29. #include <plat/s3c64xx-spi.h>
  30. /* Registers and bit-fields */
  31. #define S3C64XX_SPI_CH_CFG 0x00
  32. #define S3C64XX_SPI_CLK_CFG 0x04
  33. #define S3C64XX_SPI_MODE_CFG 0x08
  34. #define S3C64XX_SPI_SLAVE_SEL 0x0C
  35. #define S3C64XX_SPI_INT_EN 0x10
  36. #define S3C64XX_SPI_STATUS 0x14
  37. #define S3C64XX_SPI_TX_DATA 0x18
  38. #define S3C64XX_SPI_RX_DATA 0x1C
  39. #define S3C64XX_SPI_PACKET_CNT 0x20
  40. #define S3C64XX_SPI_PENDING_CLR 0x24
  41. #define S3C64XX_SPI_SWAP_CFG 0x28
  42. #define S3C64XX_SPI_FB_CLK 0x2C
  43. #define S3C64XX_SPI_CH_HS_EN (1<<6) /* High Speed Enable */
  44. #define S3C64XX_SPI_CH_SW_RST (1<<5)
  45. #define S3C64XX_SPI_CH_SLAVE (1<<4)
  46. #define S3C64XX_SPI_CPOL_L (1<<3)
  47. #define S3C64XX_SPI_CPHA_B (1<<2)
  48. #define S3C64XX_SPI_CH_RXCH_ON (1<<1)
  49. #define S3C64XX_SPI_CH_TXCH_ON (1<<0)
  50. #define S3C64XX_SPI_CLKSEL_SRCMSK (3<<9)
  51. #define S3C64XX_SPI_CLKSEL_SRCSHFT 9
  52. #define S3C64XX_SPI_ENCLK_ENABLE (1<<8)
  53. #define S3C64XX_SPI_PSR_MASK 0xff
  54. #define S3C64XX_SPI_MODE_CH_TSZ_BYTE (0<<29)
  55. #define S3C64XX_SPI_MODE_CH_TSZ_HALFWORD (1<<29)
  56. #define S3C64XX_SPI_MODE_CH_TSZ_WORD (2<<29)
  57. #define S3C64XX_SPI_MODE_CH_TSZ_MASK (3<<29)
  58. #define S3C64XX_SPI_MODE_BUS_TSZ_BYTE (0<<17)
  59. #define S3C64XX_SPI_MODE_BUS_TSZ_HALFWORD (1<<17)
  60. #define S3C64XX_SPI_MODE_BUS_TSZ_WORD (2<<17)
  61. #define S3C64XX_SPI_MODE_BUS_TSZ_MASK (3<<17)
  62. #define S3C64XX_SPI_MODE_RXDMA_ON (1<<2)
  63. #define S3C64XX_SPI_MODE_TXDMA_ON (1<<1)
  64. #define S3C64XX_SPI_MODE_4BURST (1<<0)
  65. #define S3C64XX_SPI_SLAVE_AUTO (1<<1)
  66. #define S3C64XX_SPI_SLAVE_SIG_INACT (1<<0)
  67. #define S3C64XX_SPI_ACT(c) writel(0, (c)->regs + S3C64XX_SPI_SLAVE_SEL)
  68. #define S3C64XX_SPI_DEACT(c) writel(S3C64XX_SPI_SLAVE_SIG_INACT, \
  69. (c)->regs + S3C64XX_SPI_SLAVE_SEL)
  70. #define S3C64XX_SPI_INT_TRAILING_EN (1<<6)
  71. #define S3C64XX_SPI_INT_RX_OVERRUN_EN (1<<5)
  72. #define S3C64XX_SPI_INT_RX_UNDERRUN_EN (1<<4)
  73. #define S3C64XX_SPI_INT_TX_OVERRUN_EN (1<<3)
  74. #define S3C64XX_SPI_INT_TX_UNDERRUN_EN (1<<2)
  75. #define S3C64XX_SPI_INT_RX_FIFORDY_EN (1<<1)
  76. #define S3C64XX_SPI_INT_TX_FIFORDY_EN (1<<0)
  77. #define S3C64XX_SPI_ST_RX_OVERRUN_ERR (1<<5)
  78. #define S3C64XX_SPI_ST_RX_UNDERRUN_ERR (1<<4)
  79. #define S3C64XX_SPI_ST_TX_OVERRUN_ERR (1<<3)
  80. #define S3C64XX_SPI_ST_TX_UNDERRUN_ERR (1<<2)
  81. #define S3C64XX_SPI_ST_RX_FIFORDY (1<<1)
  82. #define S3C64XX_SPI_ST_TX_FIFORDY (1<<0)
  83. #define S3C64XX_SPI_PACKET_CNT_EN (1<<16)
  84. #define S3C64XX_SPI_PND_TX_UNDERRUN_CLR (1<<4)
  85. #define S3C64XX_SPI_PND_TX_OVERRUN_CLR (1<<3)
  86. #define S3C64XX_SPI_PND_RX_UNDERRUN_CLR (1<<2)
  87. #define S3C64XX_SPI_PND_RX_OVERRUN_CLR (1<<1)
  88. #define S3C64XX_SPI_PND_TRAILING_CLR (1<<0)
  89. #define S3C64XX_SPI_SWAP_RX_HALF_WORD (1<<7)
  90. #define S3C64XX_SPI_SWAP_RX_BYTE (1<<6)
  91. #define S3C64XX_SPI_SWAP_RX_BIT (1<<5)
  92. #define S3C64XX_SPI_SWAP_RX_EN (1<<4)
  93. #define S3C64XX_SPI_SWAP_TX_HALF_WORD (1<<3)
  94. #define S3C64XX_SPI_SWAP_TX_BYTE (1<<2)
  95. #define S3C64XX_SPI_SWAP_TX_BIT (1<<1)
  96. #define S3C64XX_SPI_SWAP_TX_EN (1<<0)
  97. #define S3C64XX_SPI_FBCLK_MSK (3<<0)
  98. #define S3C64XX_SPI_ST_TRLCNTZ(v, i) ((((v) >> (i)->rx_lvl_offset) & \
  99. (((i)->fifo_lvl_mask + 1))) \
  100. ? 1 : 0)
  101. #define S3C64XX_SPI_ST_TX_DONE(v, i) ((((v) >> (i)->rx_lvl_offset) & \
  102. (((i)->fifo_lvl_mask + 1) << 1)) \
  103. ? 1 : 0)
  104. #define TX_FIFO_LVL(v, i) (((v) >> 6) & (i)->fifo_lvl_mask)
  105. #define RX_FIFO_LVL(v, i) (((v) >> (i)->rx_lvl_offset) & (i)->fifo_lvl_mask)
  106. #define S3C64XX_SPI_MAX_TRAILCNT 0x3ff
  107. #define S3C64XX_SPI_TRAILCNT_OFF 19
  108. #define S3C64XX_SPI_TRAILCNT S3C64XX_SPI_MAX_TRAILCNT
  109. #define msecs_to_loops(t) (loops_per_jiffy / 1000 * HZ * t)
  110. #define SUSPND (1<<0)
  111. #define SPIBUSY (1<<1)
  112. #define RXBUSY (1<<2)
  113. #define TXBUSY (1<<3)
  114. /**
  115. * struct s3c64xx_spi_driver_data - Runtime info holder for SPI driver.
  116. * @clk: Pointer to the spi clock.
  117. * @src_clk: Pointer to the clock used to generate SPI signals.
  118. * @master: Pointer to the SPI Protocol master.
  119. * @workqueue: Work queue for the SPI xfer requests.
  120. * @cntrlr_info: Platform specific data for the controller this driver manages.
  121. * @tgl_spi: Pointer to the last CS left untoggled by the cs_change hint.
  122. * @work: Work
  123. * @queue: To log SPI xfer requests.
  124. * @lock: Controller specific lock.
  125. * @state: Set of FLAGS to indicate status.
  126. * @rx_dmach: Controller's DMA channel for Rx.
  127. * @tx_dmach: Controller's DMA channel for Tx.
  128. * @sfr_start: BUS address of SPI controller regs.
  129. * @regs: Pointer to ioremap'ed controller registers.
  130. * @xfer_completion: To indicate completion of xfer task.
  131. * @cur_mode: Stores the active configuration of the controller.
  132. * @cur_bpw: Stores the active bits per word settings.
  133. * @cur_speed: Stores the active xfer clock speed.
  134. */
  135. struct s3c64xx_spi_driver_data {
  136. void __iomem *regs;
  137. struct clk *clk;
  138. struct clk *src_clk;
  139. struct platform_device *pdev;
  140. struct spi_master *master;
  141. struct workqueue_struct *workqueue;
  142. struct s3c64xx_spi_info *cntrlr_info;
  143. struct spi_device *tgl_spi;
  144. struct work_struct work;
  145. struct list_head queue;
  146. spinlock_t lock;
  147. enum dma_ch rx_dmach;
  148. enum dma_ch tx_dmach;
  149. unsigned long sfr_start;
  150. struct completion xfer_completion;
  151. unsigned state;
  152. unsigned cur_mode, cur_bpw;
  153. unsigned cur_speed;
  154. };
  155. static struct s3c2410_dma_client s3c64xx_spi_dma_client = {
  156. .name = "samsung-spi-dma",
  157. };
  158. static void flush_fifo(struct s3c64xx_spi_driver_data *sdd)
  159. {
  160. struct s3c64xx_spi_info *sci = sdd->cntrlr_info;
  161. void __iomem *regs = sdd->regs;
  162. unsigned long loops;
  163. u32 val;
  164. writel(0, regs + S3C64XX_SPI_PACKET_CNT);
  165. val = readl(regs + S3C64XX_SPI_CH_CFG);
  166. val |= S3C64XX_SPI_CH_SW_RST;
  167. val &= ~S3C64XX_SPI_CH_HS_EN;
  168. writel(val, regs + S3C64XX_SPI_CH_CFG);
  169. /* Flush TxFIFO*/
  170. loops = msecs_to_loops(1);
  171. do {
  172. val = readl(regs + S3C64XX_SPI_STATUS);
  173. } while (TX_FIFO_LVL(val, sci) && loops--);
  174. /* Flush RxFIFO*/
  175. loops = msecs_to_loops(1);
  176. do {
  177. val = readl(regs + S3C64XX_SPI_STATUS);
  178. if (RX_FIFO_LVL(val, sci))
  179. readl(regs + S3C64XX_SPI_RX_DATA);
  180. else
  181. break;
  182. } while (loops--);
  183. val = readl(regs + S3C64XX_SPI_CH_CFG);
  184. val &= ~S3C64XX_SPI_CH_SW_RST;
  185. writel(val, regs + S3C64XX_SPI_CH_CFG);
  186. val = readl(regs + S3C64XX_SPI_MODE_CFG);
  187. val &= ~(S3C64XX_SPI_MODE_TXDMA_ON | S3C64XX_SPI_MODE_RXDMA_ON);
  188. writel(val, regs + S3C64XX_SPI_MODE_CFG);
  189. val = readl(regs + S3C64XX_SPI_CH_CFG);
  190. val &= ~(S3C64XX_SPI_CH_RXCH_ON | S3C64XX_SPI_CH_TXCH_ON);
  191. writel(val, regs + S3C64XX_SPI_CH_CFG);
  192. }
  193. static void enable_datapath(struct s3c64xx_spi_driver_data *sdd,
  194. struct spi_device *spi,
  195. struct spi_transfer *xfer, int dma_mode)
  196. {
  197. struct s3c64xx_spi_info *sci = sdd->cntrlr_info;
  198. void __iomem *regs = sdd->regs;
  199. u32 modecfg, chcfg;
  200. modecfg = readl(regs + S3C64XX_SPI_MODE_CFG);
  201. modecfg &= ~(S3C64XX_SPI_MODE_TXDMA_ON | S3C64XX_SPI_MODE_RXDMA_ON);
  202. chcfg = readl(regs + S3C64XX_SPI_CH_CFG);
  203. chcfg &= ~S3C64XX_SPI_CH_TXCH_ON;
  204. if (dma_mode) {
  205. chcfg &= ~S3C64XX_SPI_CH_RXCH_ON;
  206. } else {
  207. /* Always shift in data in FIFO, even if xfer is Tx only,
  208. * this helps setting PCKT_CNT value for generating clocks
  209. * as exactly needed.
  210. */
  211. chcfg |= S3C64XX_SPI_CH_RXCH_ON;
  212. writel(((xfer->len * 8 / sdd->cur_bpw) & 0xffff)
  213. | S3C64XX_SPI_PACKET_CNT_EN,
  214. regs + S3C64XX_SPI_PACKET_CNT);
  215. }
  216. if (xfer->tx_buf != NULL) {
  217. sdd->state |= TXBUSY;
  218. chcfg |= S3C64XX_SPI_CH_TXCH_ON;
  219. if (dma_mode) {
  220. modecfg |= S3C64XX_SPI_MODE_TXDMA_ON;
  221. s3c2410_dma_config(sdd->tx_dmach, 1);
  222. s3c2410_dma_enqueue(sdd->tx_dmach, (void *)sdd,
  223. xfer->tx_dma, xfer->len);
  224. s3c2410_dma_ctrl(sdd->tx_dmach, S3C2410_DMAOP_START);
  225. } else {
  226. unsigned char *buf = (unsigned char *) xfer->tx_buf;
  227. int i = 0;
  228. while (i < xfer->len)
  229. writeb(buf[i++], regs + S3C64XX_SPI_TX_DATA);
  230. }
  231. }
  232. if (xfer->rx_buf != NULL) {
  233. sdd->state |= RXBUSY;
  234. if (sci->high_speed && sdd->cur_speed >= 30000000UL
  235. && !(sdd->cur_mode & SPI_CPHA))
  236. chcfg |= S3C64XX_SPI_CH_HS_EN;
  237. if (dma_mode) {
  238. modecfg |= S3C64XX_SPI_MODE_RXDMA_ON;
  239. chcfg |= S3C64XX_SPI_CH_RXCH_ON;
  240. writel(((xfer->len * 8 / sdd->cur_bpw) & 0xffff)
  241. | S3C64XX_SPI_PACKET_CNT_EN,
  242. regs + S3C64XX_SPI_PACKET_CNT);
  243. s3c2410_dma_config(sdd->rx_dmach, 1);
  244. s3c2410_dma_enqueue(sdd->rx_dmach, (void *)sdd,
  245. xfer->rx_dma, xfer->len);
  246. s3c2410_dma_ctrl(sdd->rx_dmach, S3C2410_DMAOP_START);
  247. }
  248. }
  249. writel(modecfg, regs + S3C64XX_SPI_MODE_CFG);
  250. writel(chcfg, regs + S3C64XX_SPI_CH_CFG);
  251. }
  252. static inline void enable_cs(struct s3c64xx_spi_driver_data *sdd,
  253. struct spi_device *spi)
  254. {
  255. struct s3c64xx_spi_csinfo *cs;
  256. if (sdd->tgl_spi != NULL) { /* If last device toggled after mssg */
  257. if (sdd->tgl_spi != spi) { /* if last mssg on diff device */
  258. /* Deselect the last toggled device */
  259. cs = sdd->tgl_spi->controller_data;
  260. cs->set_level(cs->line,
  261. spi->mode & SPI_CS_HIGH ? 0 : 1);
  262. }
  263. sdd->tgl_spi = NULL;
  264. }
  265. cs = spi->controller_data;
  266. cs->set_level(cs->line, spi->mode & SPI_CS_HIGH ? 1 : 0);
  267. }
  268. static int wait_for_xfer(struct s3c64xx_spi_driver_data *sdd,
  269. struct spi_transfer *xfer, int dma_mode)
  270. {
  271. struct s3c64xx_spi_info *sci = sdd->cntrlr_info;
  272. void __iomem *regs = sdd->regs;
  273. unsigned long val;
  274. int ms;
  275. /* millisecs to xfer 'len' bytes @ 'cur_speed' */
  276. ms = xfer->len * 8 * 1000 / sdd->cur_speed;
  277. ms += 10; /* some tolerance */
  278. if (dma_mode) {
  279. val = msecs_to_jiffies(ms) + 10;
  280. val = wait_for_completion_timeout(&sdd->xfer_completion, val);
  281. } else {
  282. u32 status;
  283. val = msecs_to_loops(ms);
  284. do {
  285. status = readl(regs + S3C64XX_SPI_STATUS);
  286. } while (RX_FIFO_LVL(status, sci) < xfer->len && --val);
  287. }
  288. if (!val)
  289. return -EIO;
  290. if (dma_mode) {
  291. u32 status;
  292. /*
  293. * DmaTx returns after simply writing data in the FIFO,
  294. * w/o waiting for real transmission on the bus to finish.
  295. * DmaRx returns only after Dma read data from FIFO which
  296. * needs bus transmission to finish, so we don't worry if
  297. * Xfer involved Rx(with or without Tx).
  298. */
  299. if (xfer->rx_buf == NULL) {
  300. val = msecs_to_loops(10);
  301. status = readl(regs + S3C64XX_SPI_STATUS);
  302. while ((TX_FIFO_LVL(status, sci)
  303. || !S3C64XX_SPI_ST_TX_DONE(status, sci))
  304. && --val) {
  305. cpu_relax();
  306. status = readl(regs + S3C64XX_SPI_STATUS);
  307. }
  308. if (!val)
  309. return -EIO;
  310. }
  311. } else {
  312. unsigned char *buf;
  313. int i;
  314. /* If it was only Tx */
  315. if (xfer->rx_buf == NULL) {
  316. sdd->state &= ~TXBUSY;
  317. return 0;
  318. }
  319. i = 0;
  320. buf = xfer->rx_buf;
  321. while (i < xfer->len)
  322. buf[i++] = readb(regs + S3C64XX_SPI_RX_DATA);
  323. sdd->state &= ~RXBUSY;
  324. }
  325. return 0;
  326. }
  327. static inline void disable_cs(struct s3c64xx_spi_driver_data *sdd,
  328. struct spi_device *spi)
  329. {
  330. struct s3c64xx_spi_csinfo *cs = spi->controller_data;
  331. if (sdd->tgl_spi == spi)
  332. sdd->tgl_spi = NULL;
  333. cs->set_level(cs->line, spi->mode & SPI_CS_HIGH ? 0 : 1);
  334. }
  335. static void s3c64xx_spi_config(struct s3c64xx_spi_driver_data *sdd)
  336. {
  337. void __iomem *regs = sdd->regs;
  338. u32 val;
  339. /* Disable Clock */
  340. val = readl(regs + S3C64XX_SPI_CLK_CFG);
  341. val &= ~S3C64XX_SPI_ENCLK_ENABLE;
  342. writel(val, regs + S3C64XX_SPI_CLK_CFG);
  343. /* Set Polarity and Phase */
  344. val = readl(regs + S3C64XX_SPI_CH_CFG);
  345. val &= ~(S3C64XX_SPI_CH_SLAVE |
  346. S3C64XX_SPI_CPOL_L |
  347. S3C64XX_SPI_CPHA_B);
  348. if (sdd->cur_mode & SPI_CPOL)
  349. val |= S3C64XX_SPI_CPOL_L;
  350. if (sdd->cur_mode & SPI_CPHA)
  351. val |= S3C64XX_SPI_CPHA_B;
  352. writel(val, regs + S3C64XX_SPI_CH_CFG);
  353. /* Set Channel & DMA Mode */
  354. val = readl(regs + S3C64XX_SPI_MODE_CFG);
  355. val &= ~(S3C64XX_SPI_MODE_BUS_TSZ_MASK
  356. | S3C64XX_SPI_MODE_CH_TSZ_MASK);
  357. switch (sdd->cur_bpw) {
  358. case 32:
  359. val |= S3C64XX_SPI_MODE_BUS_TSZ_WORD;
  360. break;
  361. case 16:
  362. val |= S3C64XX_SPI_MODE_BUS_TSZ_HALFWORD;
  363. break;
  364. default:
  365. val |= S3C64XX_SPI_MODE_BUS_TSZ_BYTE;
  366. break;
  367. }
  368. val |= S3C64XX_SPI_MODE_CH_TSZ_BYTE; /* Always 8bits wide */
  369. writel(val, regs + S3C64XX_SPI_MODE_CFG);
  370. /* Configure Clock */
  371. val = readl(regs + S3C64XX_SPI_CLK_CFG);
  372. val &= ~S3C64XX_SPI_PSR_MASK;
  373. val |= ((clk_get_rate(sdd->src_clk) / sdd->cur_speed / 2 - 1)
  374. & S3C64XX_SPI_PSR_MASK);
  375. writel(val, regs + S3C64XX_SPI_CLK_CFG);
  376. /* Enable Clock */
  377. val = readl(regs + S3C64XX_SPI_CLK_CFG);
  378. val |= S3C64XX_SPI_ENCLK_ENABLE;
  379. writel(val, regs + S3C64XX_SPI_CLK_CFG);
  380. }
  381. static void s3c64xx_spi_dma_rxcb(struct s3c2410_dma_chan *chan, void *buf_id,
  382. int size, enum s3c2410_dma_buffresult res)
  383. {
  384. struct s3c64xx_spi_driver_data *sdd = buf_id;
  385. unsigned long flags;
  386. spin_lock_irqsave(&sdd->lock, flags);
  387. if (res == S3C2410_RES_OK)
  388. sdd->state &= ~RXBUSY;
  389. else
  390. dev_err(&sdd->pdev->dev, "DmaAbrtRx-%d\n", size);
  391. /* If the other done */
  392. if (!(sdd->state & TXBUSY))
  393. complete(&sdd->xfer_completion);
  394. spin_unlock_irqrestore(&sdd->lock, flags);
  395. }
  396. static void s3c64xx_spi_dma_txcb(struct s3c2410_dma_chan *chan, void *buf_id,
  397. int size, enum s3c2410_dma_buffresult res)
  398. {
  399. struct s3c64xx_spi_driver_data *sdd = buf_id;
  400. unsigned long flags;
  401. spin_lock_irqsave(&sdd->lock, flags);
  402. if (res == S3C2410_RES_OK)
  403. sdd->state &= ~TXBUSY;
  404. else
  405. dev_err(&sdd->pdev->dev, "DmaAbrtTx-%d \n", size);
  406. /* If the other done */
  407. if (!(sdd->state & RXBUSY))
  408. complete(&sdd->xfer_completion);
  409. spin_unlock_irqrestore(&sdd->lock, flags);
  410. }
  411. #define XFER_DMAADDR_INVALID DMA_BIT_MASK(32)
  412. static int s3c64xx_spi_map_mssg(struct s3c64xx_spi_driver_data *sdd,
  413. struct spi_message *msg)
  414. {
  415. struct device *dev = &sdd->pdev->dev;
  416. struct spi_transfer *xfer;
  417. if (msg->is_dma_mapped)
  418. return 0;
  419. /* First mark all xfer unmapped */
  420. list_for_each_entry(xfer, &msg->transfers, transfer_list) {
  421. xfer->rx_dma = XFER_DMAADDR_INVALID;
  422. xfer->tx_dma = XFER_DMAADDR_INVALID;
  423. }
  424. /* Map until end or first fail */
  425. list_for_each_entry(xfer, &msg->transfers, transfer_list) {
  426. if (xfer->tx_buf != NULL) {
  427. xfer->tx_dma = dma_map_single(dev,
  428. (void *)xfer->tx_buf, xfer->len,
  429. DMA_TO_DEVICE);
  430. if (dma_mapping_error(dev, xfer->tx_dma)) {
  431. dev_err(dev, "dma_map_single Tx failed\n");
  432. xfer->tx_dma = XFER_DMAADDR_INVALID;
  433. return -ENOMEM;
  434. }
  435. }
  436. if (xfer->rx_buf != NULL) {
  437. xfer->rx_dma = dma_map_single(dev, xfer->rx_buf,
  438. xfer->len, DMA_FROM_DEVICE);
  439. if (dma_mapping_error(dev, xfer->rx_dma)) {
  440. dev_err(dev, "dma_map_single Rx failed\n");
  441. dma_unmap_single(dev, xfer->tx_dma,
  442. xfer->len, DMA_TO_DEVICE);
  443. xfer->tx_dma = XFER_DMAADDR_INVALID;
  444. xfer->rx_dma = XFER_DMAADDR_INVALID;
  445. return -ENOMEM;
  446. }
  447. }
  448. }
  449. return 0;
  450. }
  451. static void s3c64xx_spi_unmap_mssg(struct s3c64xx_spi_driver_data *sdd,
  452. struct spi_message *msg)
  453. {
  454. struct device *dev = &sdd->pdev->dev;
  455. struct spi_transfer *xfer;
  456. if (msg->is_dma_mapped)
  457. return;
  458. list_for_each_entry(xfer, &msg->transfers, transfer_list) {
  459. if (xfer->rx_buf != NULL
  460. && xfer->rx_dma != XFER_DMAADDR_INVALID)
  461. dma_unmap_single(dev, xfer->rx_dma,
  462. xfer->len, DMA_FROM_DEVICE);
  463. if (xfer->tx_buf != NULL
  464. && xfer->tx_dma != XFER_DMAADDR_INVALID)
  465. dma_unmap_single(dev, xfer->tx_dma,
  466. xfer->len, DMA_TO_DEVICE);
  467. }
  468. }
  469. static void handle_msg(struct s3c64xx_spi_driver_data *sdd,
  470. struct spi_message *msg)
  471. {
  472. struct s3c64xx_spi_info *sci = sdd->cntrlr_info;
  473. struct spi_device *spi = msg->spi;
  474. struct s3c64xx_spi_csinfo *cs = spi->controller_data;
  475. struct spi_transfer *xfer;
  476. int status = 0, cs_toggle = 0;
  477. u32 speed;
  478. u8 bpw;
  479. /* If Master's(controller) state differs from that needed by Slave */
  480. if (sdd->cur_speed != spi->max_speed_hz
  481. || sdd->cur_mode != spi->mode
  482. || sdd->cur_bpw != spi->bits_per_word) {
  483. sdd->cur_bpw = spi->bits_per_word;
  484. sdd->cur_speed = spi->max_speed_hz;
  485. sdd->cur_mode = spi->mode;
  486. s3c64xx_spi_config(sdd);
  487. }
  488. /* Map all the transfers if needed */
  489. if (s3c64xx_spi_map_mssg(sdd, msg)) {
  490. dev_err(&spi->dev,
  491. "Xfer: Unable to map message buffers!\n");
  492. status = -ENOMEM;
  493. goto out;
  494. }
  495. /* Configure feedback delay */
  496. writel(cs->fb_delay & 0x3, sdd->regs + S3C64XX_SPI_FB_CLK);
  497. list_for_each_entry(xfer, &msg->transfers, transfer_list) {
  498. unsigned long flags;
  499. int use_dma;
  500. INIT_COMPLETION(sdd->xfer_completion);
  501. /* Only BPW and Speed may change across transfers */
  502. bpw = xfer->bits_per_word ? : spi->bits_per_word;
  503. speed = xfer->speed_hz ? : spi->max_speed_hz;
  504. if (bpw != sdd->cur_bpw || speed != sdd->cur_speed) {
  505. sdd->cur_bpw = bpw;
  506. sdd->cur_speed = speed;
  507. s3c64xx_spi_config(sdd);
  508. }
  509. /* Polling method for xfers not bigger than FIFO capacity */
  510. if (xfer->len <= ((sci->fifo_lvl_mask >> 1) + 1))
  511. use_dma = 0;
  512. else
  513. use_dma = 1;
  514. spin_lock_irqsave(&sdd->lock, flags);
  515. /* Pending only which is to be done */
  516. sdd->state &= ~RXBUSY;
  517. sdd->state &= ~TXBUSY;
  518. enable_datapath(sdd, spi, xfer, use_dma);
  519. /* Slave Select */
  520. enable_cs(sdd, spi);
  521. /* Start the signals */
  522. S3C64XX_SPI_ACT(sdd);
  523. spin_unlock_irqrestore(&sdd->lock, flags);
  524. status = wait_for_xfer(sdd, xfer, use_dma);
  525. /* Quiese the signals */
  526. S3C64XX_SPI_DEACT(sdd);
  527. if (status) {
  528. dev_err(&spi->dev, "I/O Error: "
  529. "rx-%d tx-%d res:rx-%c tx-%c len-%d\n",
  530. xfer->rx_buf ? 1 : 0, xfer->tx_buf ? 1 : 0,
  531. (sdd->state & RXBUSY) ? 'f' : 'p',
  532. (sdd->state & TXBUSY) ? 'f' : 'p',
  533. xfer->len);
  534. if (use_dma) {
  535. if (xfer->tx_buf != NULL
  536. && (sdd->state & TXBUSY))
  537. s3c2410_dma_ctrl(sdd->tx_dmach,
  538. S3C2410_DMAOP_FLUSH);
  539. if (xfer->rx_buf != NULL
  540. && (sdd->state & RXBUSY))
  541. s3c2410_dma_ctrl(sdd->rx_dmach,
  542. S3C2410_DMAOP_FLUSH);
  543. }
  544. goto out;
  545. }
  546. if (xfer->delay_usecs)
  547. udelay(xfer->delay_usecs);
  548. if (xfer->cs_change) {
  549. /* Hint that the next mssg is gonna be
  550. for the same device */
  551. if (list_is_last(&xfer->transfer_list,
  552. &msg->transfers))
  553. cs_toggle = 1;
  554. else
  555. disable_cs(sdd, spi);
  556. }
  557. msg->actual_length += xfer->len;
  558. flush_fifo(sdd);
  559. }
  560. out:
  561. if (!cs_toggle || status)
  562. disable_cs(sdd, spi);
  563. else
  564. sdd->tgl_spi = spi;
  565. s3c64xx_spi_unmap_mssg(sdd, msg);
  566. msg->status = status;
  567. if (msg->complete)
  568. msg->complete(msg->context);
  569. }
  570. static int acquire_dma(struct s3c64xx_spi_driver_data *sdd)
  571. {
  572. if (s3c2410_dma_request(sdd->rx_dmach,
  573. &s3c64xx_spi_dma_client, NULL) < 0) {
  574. dev_err(&sdd->pdev->dev, "cannot get RxDMA\n");
  575. return 0;
  576. }
  577. s3c2410_dma_set_buffdone_fn(sdd->rx_dmach, s3c64xx_spi_dma_rxcb);
  578. s3c2410_dma_devconfig(sdd->rx_dmach, S3C2410_DMASRC_HW,
  579. sdd->sfr_start + S3C64XX_SPI_RX_DATA);
  580. if (s3c2410_dma_request(sdd->tx_dmach,
  581. &s3c64xx_spi_dma_client, NULL) < 0) {
  582. dev_err(&sdd->pdev->dev, "cannot get TxDMA\n");
  583. s3c2410_dma_free(sdd->rx_dmach, &s3c64xx_spi_dma_client);
  584. return 0;
  585. }
  586. s3c2410_dma_set_buffdone_fn(sdd->tx_dmach, s3c64xx_spi_dma_txcb);
  587. s3c2410_dma_devconfig(sdd->tx_dmach, S3C2410_DMASRC_MEM,
  588. sdd->sfr_start + S3C64XX_SPI_TX_DATA);
  589. return 1;
  590. }
  591. static void s3c64xx_spi_work(struct work_struct *work)
  592. {
  593. struct s3c64xx_spi_driver_data *sdd = container_of(work,
  594. struct s3c64xx_spi_driver_data, work);
  595. unsigned long flags;
  596. /* Acquire DMA channels */
  597. while (!acquire_dma(sdd))
  598. msleep(10);
  599. spin_lock_irqsave(&sdd->lock, flags);
  600. while (!list_empty(&sdd->queue)
  601. && !(sdd->state & SUSPND)) {
  602. struct spi_message *msg;
  603. msg = container_of(sdd->queue.next, struct spi_message, queue);
  604. list_del_init(&msg->queue);
  605. /* Set Xfer busy flag */
  606. sdd->state |= SPIBUSY;
  607. spin_unlock_irqrestore(&sdd->lock, flags);
  608. handle_msg(sdd, msg);
  609. spin_lock_irqsave(&sdd->lock, flags);
  610. sdd->state &= ~SPIBUSY;
  611. }
  612. spin_unlock_irqrestore(&sdd->lock, flags);
  613. /* Free DMA channels */
  614. s3c2410_dma_free(sdd->tx_dmach, &s3c64xx_spi_dma_client);
  615. s3c2410_dma_free(sdd->rx_dmach, &s3c64xx_spi_dma_client);
  616. }
  617. static int s3c64xx_spi_transfer(struct spi_device *spi,
  618. struct spi_message *msg)
  619. {
  620. struct s3c64xx_spi_driver_data *sdd;
  621. unsigned long flags;
  622. sdd = spi_master_get_devdata(spi->master);
  623. spin_lock_irqsave(&sdd->lock, flags);
  624. if (sdd->state & SUSPND) {
  625. spin_unlock_irqrestore(&sdd->lock, flags);
  626. return -ESHUTDOWN;
  627. }
  628. msg->status = -EINPROGRESS;
  629. msg->actual_length = 0;
  630. list_add_tail(&msg->queue, &sdd->queue);
  631. queue_work(sdd->workqueue, &sdd->work);
  632. spin_unlock_irqrestore(&sdd->lock, flags);
  633. return 0;
  634. }
  635. /*
  636. * Here we only check the validity of requested configuration
  637. * and save the configuration in a local data-structure.
  638. * The controller is actually configured only just before we
  639. * get a message to transfer.
  640. */
  641. static int s3c64xx_spi_setup(struct spi_device *spi)
  642. {
  643. struct s3c64xx_spi_csinfo *cs = spi->controller_data;
  644. struct s3c64xx_spi_driver_data *sdd;
  645. struct s3c64xx_spi_info *sci;
  646. struct spi_message *msg;
  647. u32 psr, speed;
  648. unsigned long flags;
  649. int err = 0;
  650. if (cs == NULL || cs->set_level == NULL) {
  651. dev_err(&spi->dev, "No CS for SPI(%d)\n", spi->chip_select);
  652. return -ENODEV;
  653. }
  654. sdd = spi_master_get_devdata(spi->master);
  655. sci = sdd->cntrlr_info;
  656. spin_lock_irqsave(&sdd->lock, flags);
  657. list_for_each_entry(msg, &sdd->queue, queue) {
  658. /* Is some mssg is already queued for this device */
  659. if (msg->spi == spi) {
  660. dev_err(&spi->dev,
  661. "setup: attempt while mssg in queue!\n");
  662. spin_unlock_irqrestore(&sdd->lock, flags);
  663. return -EBUSY;
  664. }
  665. }
  666. if (sdd->state & SUSPND) {
  667. spin_unlock_irqrestore(&sdd->lock, flags);
  668. dev_err(&spi->dev,
  669. "setup: SPI-%d not active!\n", spi->master->bus_num);
  670. return -ESHUTDOWN;
  671. }
  672. spin_unlock_irqrestore(&sdd->lock, flags);
  673. if (spi->bits_per_word != 8
  674. && spi->bits_per_word != 16
  675. && spi->bits_per_word != 32) {
  676. dev_err(&spi->dev, "setup: %dbits/wrd not supported!\n",
  677. spi->bits_per_word);
  678. err = -EINVAL;
  679. goto setup_exit;
  680. }
  681. /* Check if we can provide the requested rate */
  682. speed = clk_get_rate(sdd->src_clk) / 2 / (0 + 1); /* Max possible */
  683. if (spi->max_speed_hz > speed)
  684. spi->max_speed_hz = speed;
  685. psr = clk_get_rate(sdd->src_clk) / 2 / spi->max_speed_hz - 1;
  686. psr &= S3C64XX_SPI_PSR_MASK;
  687. if (psr == S3C64XX_SPI_PSR_MASK)
  688. psr--;
  689. speed = clk_get_rate(sdd->src_clk) / 2 / (psr + 1);
  690. if (spi->max_speed_hz < speed) {
  691. if (psr+1 < S3C64XX_SPI_PSR_MASK) {
  692. psr++;
  693. } else {
  694. err = -EINVAL;
  695. goto setup_exit;
  696. }
  697. }
  698. speed = clk_get_rate(sdd->src_clk) / 2 / (psr + 1);
  699. if (spi->max_speed_hz >= speed)
  700. spi->max_speed_hz = speed;
  701. else
  702. err = -EINVAL;
  703. setup_exit:
  704. /* setup() returns with device de-selected */
  705. disable_cs(sdd, spi);
  706. return err;
  707. }
  708. static void s3c64xx_spi_hwinit(struct s3c64xx_spi_driver_data *sdd, int channel)
  709. {
  710. struct s3c64xx_spi_info *sci = sdd->cntrlr_info;
  711. void __iomem *regs = sdd->regs;
  712. unsigned int val;
  713. sdd->cur_speed = 0;
  714. S3C64XX_SPI_DEACT(sdd);
  715. /* Disable Interrupts - we use Polling if not DMA mode */
  716. writel(0, regs + S3C64XX_SPI_INT_EN);
  717. writel(sci->src_clk_nr << S3C64XX_SPI_CLKSEL_SRCSHFT,
  718. regs + S3C64XX_SPI_CLK_CFG);
  719. writel(0, regs + S3C64XX_SPI_MODE_CFG);
  720. writel(0, regs + S3C64XX_SPI_PACKET_CNT);
  721. /* Clear any irq pending bits */
  722. writel(readl(regs + S3C64XX_SPI_PENDING_CLR),
  723. regs + S3C64XX_SPI_PENDING_CLR);
  724. writel(0, regs + S3C64XX_SPI_SWAP_CFG);
  725. val = readl(regs + S3C64XX_SPI_MODE_CFG);
  726. val &= ~S3C64XX_SPI_MODE_4BURST;
  727. val &= ~(S3C64XX_SPI_MAX_TRAILCNT << S3C64XX_SPI_TRAILCNT_OFF);
  728. val |= (S3C64XX_SPI_TRAILCNT << S3C64XX_SPI_TRAILCNT_OFF);
  729. writel(val, regs + S3C64XX_SPI_MODE_CFG);
  730. flush_fifo(sdd);
  731. }
  732. static int __init s3c64xx_spi_probe(struct platform_device *pdev)
  733. {
  734. struct resource *mem_res, *dmatx_res, *dmarx_res;
  735. struct s3c64xx_spi_driver_data *sdd;
  736. struct s3c64xx_spi_info *sci;
  737. struct spi_master *master;
  738. int ret;
  739. if (pdev->id < 0) {
  740. dev_err(&pdev->dev,
  741. "Invalid platform device id-%d\n", pdev->id);
  742. return -ENODEV;
  743. }
  744. if (pdev->dev.platform_data == NULL) {
  745. dev_err(&pdev->dev, "platform_data missing!\n");
  746. return -ENODEV;
  747. }
  748. sci = pdev->dev.platform_data;
  749. if (!sci->src_clk_name) {
  750. dev_err(&pdev->dev,
  751. "Board init must call s3c64xx_spi_set_info()\n");
  752. return -EINVAL;
  753. }
  754. /* Check for availability of necessary resource */
  755. dmatx_res = platform_get_resource(pdev, IORESOURCE_DMA, 0);
  756. if (dmatx_res == NULL) {
  757. dev_err(&pdev->dev, "Unable to get SPI-Tx dma resource\n");
  758. return -ENXIO;
  759. }
  760. dmarx_res = platform_get_resource(pdev, IORESOURCE_DMA, 1);
  761. if (dmarx_res == NULL) {
  762. dev_err(&pdev->dev, "Unable to get SPI-Rx dma resource\n");
  763. return -ENXIO;
  764. }
  765. mem_res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  766. if (mem_res == NULL) {
  767. dev_err(&pdev->dev, "Unable to get SPI MEM resource\n");
  768. return -ENXIO;
  769. }
  770. master = spi_alloc_master(&pdev->dev,
  771. sizeof(struct s3c64xx_spi_driver_data));
  772. if (master == NULL) {
  773. dev_err(&pdev->dev, "Unable to allocate SPI Master\n");
  774. return -ENOMEM;
  775. }
  776. platform_set_drvdata(pdev, master);
  777. sdd = spi_master_get_devdata(master);
  778. sdd->master = master;
  779. sdd->cntrlr_info = sci;
  780. sdd->pdev = pdev;
  781. sdd->sfr_start = mem_res->start;
  782. sdd->tx_dmach = dmatx_res->start;
  783. sdd->rx_dmach = dmarx_res->start;
  784. sdd->cur_bpw = 8;
  785. master->bus_num = pdev->id;
  786. master->setup = s3c64xx_spi_setup;
  787. master->transfer = s3c64xx_spi_transfer;
  788. master->num_chipselect = sci->num_cs;
  789. master->dma_alignment = 8;
  790. /* the spi->mode bits understood by this driver: */
  791. master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
  792. if (request_mem_region(mem_res->start,
  793. resource_size(mem_res), pdev->name) == NULL) {
  794. dev_err(&pdev->dev, "Req mem region failed\n");
  795. ret = -ENXIO;
  796. goto err0;
  797. }
  798. sdd->regs = ioremap(mem_res->start, resource_size(mem_res));
  799. if (sdd->regs == NULL) {
  800. dev_err(&pdev->dev, "Unable to remap IO\n");
  801. ret = -ENXIO;
  802. goto err1;
  803. }
  804. if (sci->cfg_gpio == NULL || sci->cfg_gpio(pdev)) {
  805. dev_err(&pdev->dev, "Unable to config gpio\n");
  806. ret = -EBUSY;
  807. goto err2;
  808. }
  809. /* Setup clocks */
  810. sdd->clk = clk_get(&pdev->dev, "spi");
  811. if (IS_ERR(sdd->clk)) {
  812. dev_err(&pdev->dev, "Unable to acquire clock 'spi'\n");
  813. ret = PTR_ERR(sdd->clk);
  814. goto err3;
  815. }
  816. if (clk_enable(sdd->clk)) {
  817. dev_err(&pdev->dev, "Couldn't enable clock 'spi'\n");
  818. ret = -EBUSY;
  819. goto err4;
  820. }
  821. sdd->src_clk = clk_get(&pdev->dev, sci->src_clk_name);
  822. if (IS_ERR(sdd->src_clk)) {
  823. dev_err(&pdev->dev,
  824. "Unable to acquire clock '%s'\n", sci->src_clk_name);
  825. ret = PTR_ERR(sdd->src_clk);
  826. goto err5;
  827. }
  828. if (clk_enable(sdd->src_clk)) {
  829. dev_err(&pdev->dev, "Couldn't enable clock '%s'\n",
  830. sci->src_clk_name);
  831. ret = -EBUSY;
  832. goto err6;
  833. }
  834. sdd->workqueue = create_singlethread_workqueue(
  835. dev_name(master->dev.parent));
  836. if (sdd->workqueue == NULL) {
  837. dev_err(&pdev->dev, "Unable to create workqueue\n");
  838. ret = -ENOMEM;
  839. goto err7;
  840. }
  841. /* Setup Deufult Mode */
  842. s3c64xx_spi_hwinit(sdd, pdev->id);
  843. spin_lock_init(&sdd->lock);
  844. init_completion(&sdd->xfer_completion);
  845. INIT_WORK(&sdd->work, s3c64xx_spi_work);
  846. INIT_LIST_HEAD(&sdd->queue);
  847. if (spi_register_master(master)) {
  848. dev_err(&pdev->dev, "cannot register SPI master\n");
  849. ret = -EBUSY;
  850. goto err8;
  851. }
  852. dev_dbg(&pdev->dev, "Samsung SoC SPI Driver loaded for Bus SPI-%d "
  853. "with %d Slaves attached\n",
  854. pdev->id, master->num_chipselect);
  855. dev_dbg(&pdev->dev, "\tIOmem=[0x%x-0x%x]\tDMA=[Rx-%d, Tx-%d]\n",
  856. mem_res->end, mem_res->start,
  857. sdd->rx_dmach, sdd->tx_dmach);
  858. return 0;
  859. err8:
  860. destroy_workqueue(sdd->workqueue);
  861. err7:
  862. clk_disable(sdd->src_clk);
  863. err6:
  864. clk_put(sdd->src_clk);
  865. err5:
  866. clk_disable(sdd->clk);
  867. err4:
  868. clk_put(sdd->clk);
  869. err3:
  870. err2:
  871. iounmap((void *) sdd->regs);
  872. err1:
  873. release_mem_region(mem_res->start, resource_size(mem_res));
  874. err0:
  875. platform_set_drvdata(pdev, NULL);
  876. spi_master_put(master);
  877. return ret;
  878. }
  879. static int s3c64xx_spi_remove(struct platform_device *pdev)
  880. {
  881. struct spi_master *master = spi_master_get(platform_get_drvdata(pdev));
  882. struct s3c64xx_spi_driver_data *sdd = spi_master_get_devdata(master);
  883. struct resource *mem_res;
  884. unsigned long flags;
  885. spin_lock_irqsave(&sdd->lock, flags);
  886. sdd->state |= SUSPND;
  887. spin_unlock_irqrestore(&sdd->lock, flags);
  888. while (sdd->state & SPIBUSY)
  889. msleep(10);
  890. spi_unregister_master(master);
  891. destroy_workqueue(sdd->workqueue);
  892. clk_disable(sdd->src_clk);
  893. clk_put(sdd->src_clk);
  894. clk_disable(sdd->clk);
  895. clk_put(sdd->clk);
  896. iounmap((void *) sdd->regs);
  897. mem_res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  898. if (mem_res != NULL)
  899. release_mem_region(mem_res->start, resource_size(mem_res));
  900. platform_set_drvdata(pdev, NULL);
  901. spi_master_put(master);
  902. return 0;
  903. }
  904. #ifdef CONFIG_PM
  905. static int s3c64xx_spi_suspend(struct platform_device *pdev, pm_message_t state)
  906. {
  907. struct spi_master *master = spi_master_get(platform_get_drvdata(pdev));
  908. struct s3c64xx_spi_driver_data *sdd = spi_master_get_devdata(master);
  909. unsigned long flags;
  910. spin_lock_irqsave(&sdd->lock, flags);
  911. sdd->state |= SUSPND;
  912. spin_unlock_irqrestore(&sdd->lock, flags);
  913. while (sdd->state & SPIBUSY)
  914. msleep(10);
  915. /* Disable the clock */
  916. clk_disable(sdd->src_clk);
  917. clk_disable(sdd->clk);
  918. sdd->cur_speed = 0; /* Output Clock is stopped */
  919. return 0;
  920. }
  921. static int s3c64xx_spi_resume(struct platform_device *pdev)
  922. {
  923. struct spi_master *master = spi_master_get(platform_get_drvdata(pdev));
  924. struct s3c64xx_spi_driver_data *sdd = spi_master_get_devdata(master);
  925. struct s3c64xx_spi_info *sci = sdd->cntrlr_info;
  926. unsigned long flags;
  927. sci->cfg_gpio(pdev);
  928. /* Enable the clock */
  929. clk_enable(sdd->src_clk);
  930. clk_enable(sdd->clk);
  931. s3c64xx_spi_hwinit(sdd, pdev->id);
  932. spin_lock_irqsave(&sdd->lock, flags);
  933. sdd->state &= ~SUSPND;
  934. spin_unlock_irqrestore(&sdd->lock, flags);
  935. return 0;
  936. }
  937. #else
  938. #define s3c64xx_spi_suspend NULL
  939. #define s3c64xx_spi_resume NULL
  940. #endif /* CONFIG_PM */
  941. static struct platform_driver s3c64xx_spi_driver = {
  942. .driver = {
  943. .name = "s3c64xx-spi",
  944. .owner = THIS_MODULE,
  945. },
  946. .remove = s3c64xx_spi_remove,
  947. .suspend = s3c64xx_spi_suspend,
  948. .resume = s3c64xx_spi_resume,
  949. };
  950. MODULE_ALIAS("platform:s3c64xx-spi");
  951. static int __init s3c64xx_spi_init(void)
  952. {
  953. return platform_driver_probe(&s3c64xx_spi_driver, s3c64xx_spi_probe);
  954. }
  955. subsys_initcall(s3c64xx_spi_init);
  956. static void __exit s3c64xx_spi_exit(void)
  957. {
  958. platform_driver_unregister(&s3c64xx_spi_driver);
  959. }
  960. module_exit(s3c64xx_spi_exit);
  961. MODULE_AUTHOR("Jaswinder Singh <jassi.brar@samsung.com>");
  962. MODULE_DESCRIPTION("S3C64XX SPI Controller Driver");
  963. MODULE_LICENSE("GPL");