slub.c 117 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002
  1. /*
  2. * SLUB: A slab allocator that limits cache line use instead of queuing
  3. * objects in per cpu and per node lists.
  4. *
  5. * The allocator synchronizes using per slab locks and only
  6. * uses a centralized lock to manage a pool of partial slabs.
  7. *
  8. * (C) 2007 SGI, Christoph Lameter
  9. */
  10. #include <linux/mm.h>
  11. #include <linux/swap.h> /* struct reclaim_state */
  12. #include <linux/module.h>
  13. #include <linux/bit_spinlock.h>
  14. #include <linux/interrupt.h>
  15. #include <linux/bitops.h>
  16. #include <linux/slab.h>
  17. #include <linux/proc_fs.h>
  18. #include <linux/seq_file.h>
  19. #include <linux/kmemcheck.h>
  20. #include <linux/cpu.h>
  21. #include <linux/cpuset.h>
  22. #include <linux/mempolicy.h>
  23. #include <linux/ctype.h>
  24. #include <linux/debugobjects.h>
  25. #include <linux/kallsyms.h>
  26. #include <linux/memory.h>
  27. #include <linux/math64.h>
  28. #include <linux/fault-inject.h>
  29. #include <linux/stacktrace.h>
  30. #include <trace/events/kmem.h>
  31. /*
  32. * Lock order:
  33. * 1. slab_lock(page)
  34. * 2. slab->list_lock
  35. *
  36. * The slab_lock protects operations on the object of a particular
  37. * slab and its metadata in the page struct. If the slab lock
  38. * has been taken then no allocations nor frees can be performed
  39. * on the objects in the slab nor can the slab be added or removed
  40. * from the partial or full lists since this would mean modifying
  41. * the page_struct of the slab.
  42. *
  43. * The list_lock protects the partial and full list on each node and
  44. * the partial slab counter. If taken then no new slabs may be added or
  45. * removed from the lists nor make the number of partial slabs be modified.
  46. * (Note that the total number of slabs is an atomic value that may be
  47. * modified without taking the list lock).
  48. *
  49. * The list_lock is a centralized lock and thus we avoid taking it as
  50. * much as possible. As long as SLUB does not have to handle partial
  51. * slabs, operations can continue without any centralized lock. F.e.
  52. * allocating a long series of objects that fill up slabs does not require
  53. * the list lock.
  54. *
  55. * The lock order is sometimes inverted when we are trying to get a slab
  56. * off a list. We take the list_lock and then look for a page on the list
  57. * to use. While we do that objects in the slabs may be freed. We can
  58. * only operate on the slab if we have also taken the slab_lock. So we use
  59. * a slab_trylock() on the slab. If trylock was successful then no frees
  60. * can occur anymore and we can use the slab for allocations etc. If the
  61. * slab_trylock() does not succeed then frees are in progress in the slab and
  62. * we must stay away from it for a while since we may cause a bouncing
  63. * cacheline if we try to acquire the lock. So go onto the next slab.
  64. * If all pages are busy then we may allocate a new slab instead of reusing
  65. * a partial slab. A new slab has no one operating on it and thus there is
  66. * no danger of cacheline contention.
  67. *
  68. * Interrupts are disabled during allocation and deallocation in order to
  69. * make the slab allocator safe to use in the context of an irq. In addition
  70. * interrupts are disabled to ensure that the processor does not change
  71. * while handling per_cpu slabs, due to kernel preemption.
  72. *
  73. * SLUB assigns one slab for allocation to each processor.
  74. * Allocations only occur from these slabs called cpu slabs.
  75. *
  76. * Slabs with free elements are kept on a partial list and during regular
  77. * operations no list for full slabs is used. If an object in a full slab is
  78. * freed then the slab will show up again on the partial lists.
  79. * We track full slabs for debugging purposes though because otherwise we
  80. * cannot scan all objects.
  81. *
  82. * Slabs are freed when they become empty. Teardown and setup is
  83. * minimal so we rely on the page allocators per cpu caches for
  84. * fast frees and allocs.
  85. *
  86. * Overloading of page flags that are otherwise used for LRU management.
  87. *
  88. * PageActive The slab is frozen and exempt from list processing.
  89. * This means that the slab is dedicated to a purpose
  90. * such as satisfying allocations for a specific
  91. * processor. Objects may be freed in the slab while
  92. * it is frozen but slab_free will then skip the usual
  93. * list operations. It is up to the processor holding
  94. * the slab to integrate the slab into the slab lists
  95. * when the slab is no longer needed.
  96. *
  97. * One use of this flag is to mark slabs that are
  98. * used for allocations. Then such a slab becomes a cpu
  99. * slab. The cpu slab may be equipped with an additional
  100. * freelist that allows lockless access to
  101. * free objects in addition to the regular freelist
  102. * that requires the slab lock.
  103. *
  104. * PageError Slab requires special handling due to debug
  105. * options set. This moves slab handling out of
  106. * the fast path and disables lockless freelists.
  107. */
  108. #define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
  109. SLAB_TRACE | SLAB_DEBUG_FREE)
  110. static inline int kmem_cache_debug(struct kmem_cache *s)
  111. {
  112. #ifdef CONFIG_SLUB_DEBUG
  113. return unlikely(s->flags & SLAB_DEBUG_FLAGS);
  114. #else
  115. return 0;
  116. #endif
  117. }
  118. /*
  119. * Issues still to be resolved:
  120. *
  121. * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
  122. *
  123. * - Variable sizing of the per node arrays
  124. */
  125. /* Enable to test recovery from slab corruption on boot */
  126. #undef SLUB_RESILIENCY_TEST
  127. /*
  128. * Mininum number of partial slabs. These will be left on the partial
  129. * lists even if they are empty. kmem_cache_shrink may reclaim them.
  130. */
  131. #define MIN_PARTIAL 5
  132. /*
  133. * Maximum number of desirable partial slabs.
  134. * The existence of more partial slabs makes kmem_cache_shrink
  135. * sort the partial list by the number of objects in the.
  136. */
  137. #define MAX_PARTIAL 10
  138. #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
  139. SLAB_POISON | SLAB_STORE_USER)
  140. /*
  141. * Debugging flags that require metadata to be stored in the slab. These get
  142. * disabled when slub_debug=O is used and a cache's min order increases with
  143. * metadata.
  144. */
  145. #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
  146. /*
  147. * Set of flags that will prevent slab merging
  148. */
  149. #define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
  150. SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE | \
  151. SLAB_FAILSLAB)
  152. #define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
  153. SLAB_CACHE_DMA | SLAB_NOTRACK)
  154. #define OO_SHIFT 16
  155. #define OO_MASK ((1 << OO_SHIFT) - 1)
  156. #define MAX_OBJS_PER_PAGE 65535 /* since page.objects is u16 */
  157. /* Internal SLUB flags */
  158. #define __OBJECT_POISON 0x80000000UL /* Poison object */
  159. static int kmem_size = sizeof(struct kmem_cache);
  160. #ifdef CONFIG_SMP
  161. static struct notifier_block slab_notifier;
  162. #endif
  163. static enum {
  164. DOWN, /* No slab functionality available */
  165. PARTIAL, /* Kmem_cache_node works */
  166. UP, /* Everything works but does not show up in sysfs */
  167. SYSFS /* Sysfs up */
  168. } slab_state = DOWN;
  169. /* A list of all slab caches on the system */
  170. static DECLARE_RWSEM(slub_lock);
  171. static LIST_HEAD(slab_caches);
  172. /*
  173. * Tracking user of a slab.
  174. */
  175. #define TRACK_ADDRS_COUNT 16
  176. struct track {
  177. unsigned long addr; /* Called from address */
  178. #ifdef CONFIG_STACKTRACE
  179. unsigned long addrs[TRACK_ADDRS_COUNT]; /* Called from address */
  180. #endif
  181. int cpu; /* Was running on cpu */
  182. int pid; /* Pid context */
  183. unsigned long when; /* When did the operation occur */
  184. };
  185. enum track_item { TRACK_ALLOC, TRACK_FREE };
  186. #ifdef CONFIG_SYSFS
  187. static int sysfs_slab_add(struct kmem_cache *);
  188. static int sysfs_slab_alias(struct kmem_cache *, const char *);
  189. static void sysfs_slab_remove(struct kmem_cache *);
  190. #else
  191. static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
  192. static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
  193. { return 0; }
  194. static inline void sysfs_slab_remove(struct kmem_cache *s)
  195. {
  196. kfree(s->name);
  197. kfree(s);
  198. }
  199. #endif
  200. static inline void stat(const struct kmem_cache *s, enum stat_item si)
  201. {
  202. #ifdef CONFIG_SLUB_STATS
  203. __this_cpu_inc(s->cpu_slab->stat[si]);
  204. #endif
  205. }
  206. /********************************************************************
  207. * Core slab cache functions
  208. *******************************************************************/
  209. int slab_is_available(void)
  210. {
  211. return slab_state >= UP;
  212. }
  213. static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
  214. {
  215. return s->node[node];
  216. }
  217. /* Verify that a pointer has an address that is valid within a slab page */
  218. static inline int check_valid_pointer(struct kmem_cache *s,
  219. struct page *page, const void *object)
  220. {
  221. void *base;
  222. if (!object)
  223. return 1;
  224. base = page_address(page);
  225. if (object < base || object >= base + page->objects * s->size ||
  226. (object - base) % s->size) {
  227. return 0;
  228. }
  229. return 1;
  230. }
  231. static inline void *get_freepointer(struct kmem_cache *s, void *object)
  232. {
  233. return *(void **)(object + s->offset);
  234. }
  235. static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
  236. {
  237. void *p;
  238. #ifdef CONFIG_DEBUG_PAGEALLOC
  239. probe_kernel_read(&p, (void **)(object + s->offset), sizeof(p));
  240. #else
  241. p = get_freepointer(s, object);
  242. #endif
  243. return p;
  244. }
  245. static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
  246. {
  247. *(void **)(object + s->offset) = fp;
  248. }
  249. /* Loop over all objects in a slab */
  250. #define for_each_object(__p, __s, __addr, __objects) \
  251. for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
  252. __p += (__s)->size)
  253. /* Determine object index from a given position */
  254. static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
  255. {
  256. return (p - addr) / s->size;
  257. }
  258. static inline size_t slab_ksize(const struct kmem_cache *s)
  259. {
  260. #ifdef CONFIG_SLUB_DEBUG
  261. /*
  262. * Debugging requires use of the padding between object
  263. * and whatever may come after it.
  264. */
  265. if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
  266. return s->objsize;
  267. #endif
  268. /*
  269. * If we have the need to store the freelist pointer
  270. * back there or track user information then we can
  271. * only use the space before that information.
  272. */
  273. if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
  274. return s->inuse;
  275. /*
  276. * Else we can use all the padding etc for the allocation
  277. */
  278. return s->size;
  279. }
  280. static inline int order_objects(int order, unsigned long size, int reserved)
  281. {
  282. return ((PAGE_SIZE << order) - reserved) / size;
  283. }
  284. static inline struct kmem_cache_order_objects oo_make(int order,
  285. unsigned long size, int reserved)
  286. {
  287. struct kmem_cache_order_objects x = {
  288. (order << OO_SHIFT) + order_objects(order, size, reserved)
  289. };
  290. return x;
  291. }
  292. static inline int oo_order(struct kmem_cache_order_objects x)
  293. {
  294. return x.x >> OO_SHIFT;
  295. }
  296. static inline int oo_objects(struct kmem_cache_order_objects x)
  297. {
  298. return x.x & OO_MASK;
  299. }
  300. #ifdef CONFIG_SLUB_DEBUG
  301. /*
  302. * Determine a map of object in use on a page.
  303. *
  304. * Slab lock or node listlock must be held to guarantee that the page does
  305. * not vanish from under us.
  306. */
  307. static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map)
  308. {
  309. void *p;
  310. void *addr = page_address(page);
  311. for (p = page->freelist; p; p = get_freepointer(s, p))
  312. set_bit(slab_index(p, s, addr), map);
  313. }
  314. /*
  315. * Debug settings:
  316. */
  317. #ifdef CONFIG_SLUB_DEBUG_ON
  318. static int slub_debug = DEBUG_DEFAULT_FLAGS;
  319. #else
  320. static int slub_debug;
  321. #endif
  322. static char *slub_debug_slabs;
  323. static int disable_higher_order_debug;
  324. /*
  325. * Object debugging
  326. */
  327. static void print_section(char *text, u8 *addr, unsigned int length)
  328. {
  329. int i, offset;
  330. int newline = 1;
  331. char ascii[17];
  332. ascii[16] = 0;
  333. for (i = 0; i < length; i++) {
  334. if (newline) {
  335. printk(KERN_ERR "%8s 0x%p: ", text, addr + i);
  336. newline = 0;
  337. }
  338. printk(KERN_CONT " %02x", addr[i]);
  339. offset = i % 16;
  340. ascii[offset] = isgraph(addr[i]) ? addr[i] : '.';
  341. if (offset == 15) {
  342. printk(KERN_CONT " %s\n", ascii);
  343. newline = 1;
  344. }
  345. }
  346. if (!newline) {
  347. i %= 16;
  348. while (i < 16) {
  349. printk(KERN_CONT " ");
  350. ascii[i] = ' ';
  351. i++;
  352. }
  353. printk(KERN_CONT " %s\n", ascii);
  354. }
  355. }
  356. static struct track *get_track(struct kmem_cache *s, void *object,
  357. enum track_item alloc)
  358. {
  359. struct track *p;
  360. if (s->offset)
  361. p = object + s->offset + sizeof(void *);
  362. else
  363. p = object + s->inuse;
  364. return p + alloc;
  365. }
  366. static void set_track(struct kmem_cache *s, void *object,
  367. enum track_item alloc, unsigned long addr)
  368. {
  369. struct track *p = get_track(s, object, alloc);
  370. if (addr) {
  371. #ifdef CONFIG_STACKTRACE
  372. struct stack_trace trace;
  373. int i;
  374. trace.nr_entries = 0;
  375. trace.max_entries = TRACK_ADDRS_COUNT;
  376. trace.entries = p->addrs;
  377. trace.skip = 3;
  378. save_stack_trace(&trace);
  379. /* See rant in lockdep.c */
  380. if (trace.nr_entries != 0 &&
  381. trace.entries[trace.nr_entries - 1] == ULONG_MAX)
  382. trace.nr_entries--;
  383. for (i = trace.nr_entries; i < TRACK_ADDRS_COUNT; i++)
  384. p->addrs[i] = 0;
  385. #endif
  386. p->addr = addr;
  387. p->cpu = smp_processor_id();
  388. p->pid = current->pid;
  389. p->when = jiffies;
  390. } else
  391. memset(p, 0, sizeof(struct track));
  392. }
  393. static void init_tracking(struct kmem_cache *s, void *object)
  394. {
  395. if (!(s->flags & SLAB_STORE_USER))
  396. return;
  397. set_track(s, object, TRACK_FREE, 0UL);
  398. set_track(s, object, TRACK_ALLOC, 0UL);
  399. }
  400. static void print_track(const char *s, struct track *t)
  401. {
  402. if (!t->addr)
  403. return;
  404. printk(KERN_ERR "INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
  405. s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
  406. #ifdef CONFIG_STACKTRACE
  407. {
  408. int i;
  409. for (i = 0; i < TRACK_ADDRS_COUNT; i++)
  410. if (t->addrs[i])
  411. printk(KERN_ERR "\t%pS\n", (void *)t->addrs[i]);
  412. else
  413. break;
  414. }
  415. #endif
  416. }
  417. static void print_tracking(struct kmem_cache *s, void *object)
  418. {
  419. if (!(s->flags & SLAB_STORE_USER))
  420. return;
  421. print_track("Allocated", get_track(s, object, TRACK_ALLOC));
  422. print_track("Freed", get_track(s, object, TRACK_FREE));
  423. }
  424. static void print_page_info(struct page *page)
  425. {
  426. printk(KERN_ERR "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
  427. page, page->objects, page->inuse, page->freelist, page->flags);
  428. }
  429. static void slab_bug(struct kmem_cache *s, char *fmt, ...)
  430. {
  431. va_list args;
  432. char buf[100];
  433. va_start(args, fmt);
  434. vsnprintf(buf, sizeof(buf), fmt, args);
  435. va_end(args);
  436. printk(KERN_ERR "========================================"
  437. "=====================================\n");
  438. printk(KERN_ERR "BUG %s: %s\n", s->name, buf);
  439. printk(KERN_ERR "----------------------------------------"
  440. "-------------------------------------\n\n");
  441. }
  442. static void slab_fix(struct kmem_cache *s, char *fmt, ...)
  443. {
  444. va_list args;
  445. char buf[100];
  446. va_start(args, fmt);
  447. vsnprintf(buf, sizeof(buf), fmt, args);
  448. va_end(args);
  449. printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
  450. }
  451. static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
  452. {
  453. unsigned int off; /* Offset of last byte */
  454. u8 *addr = page_address(page);
  455. print_tracking(s, p);
  456. print_page_info(page);
  457. printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
  458. p, p - addr, get_freepointer(s, p));
  459. if (p > addr + 16)
  460. print_section("Bytes b4", p - 16, 16);
  461. print_section("Object", p, min_t(unsigned long, s->objsize, PAGE_SIZE));
  462. if (s->flags & SLAB_RED_ZONE)
  463. print_section("Redzone", p + s->objsize,
  464. s->inuse - s->objsize);
  465. if (s->offset)
  466. off = s->offset + sizeof(void *);
  467. else
  468. off = s->inuse;
  469. if (s->flags & SLAB_STORE_USER)
  470. off += 2 * sizeof(struct track);
  471. if (off != s->size)
  472. /* Beginning of the filler is the free pointer */
  473. print_section("Padding", p + off, s->size - off);
  474. dump_stack();
  475. }
  476. static void object_err(struct kmem_cache *s, struct page *page,
  477. u8 *object, char *reason)
  478. {
  479. slab_bug(s, "%s", reason);
  480. print_trailer(s, page, object);
  481. }
  482. static void slab_err(struct kmem_cache *s, struct page *page, char *fmt, ...)
  483. {
  484. va_list args;
  485. char buf[100];
  486. va_start(args, fmt);
  487. vsnprintf(buf, sizeof(buf), fmt, args);
  488. va_end(args);
  489. slab_bug(s, "%s", buf);
  490. print_page_info(page);
  491. dump_stack();
  492. }
  493. static void init_object(struct kmem_cache *s, void *object, u8 val)
  494. {
  495. u8 *p = object;
  496. if (s->flags & __OBJECT_POISON) {
  497. memset(p, POISON_FREE, s->objsize - 1);
  498. p[s->objsize - 1] = POISON_END;
  499. }
  500. if (s->flags & SLAB_RED_ZONE)
  501. memset(p + s->objsize, val, s->inuse - s->objsize);
  502. }
  503. static u8 *check_bytes8(u8 *start, u8 value, unsigned int bytes)
  504. {
  505. while (bytes) {
  506. if (*start != value)
  507. return start;
  508. start++;
  509. bytes--;
  510. }
  511. return NULL;
  512. }
  513. static u8 *check_bytes(u8 *start, u8 value, unsigned int bytes)
  514. {
  515. u64 value64;
  516. unsigned int words, prefix;
  517. if (bytes <= 16)
  518. return check_bytes8(start, value, bytes);
  519. value64 = value | value << 8 | value << 16 | value << 24;
  520. value64 = value64 | value64 << 32;
  521. prefix = 8 - ((unsigned long)start) % 8;
  522. if (prefix) {
  523. u8 *r = check_bytes8(start, value, prefix);
  524. if (r)
  525. return r;
  526. start += prefix;
  527. bytes -= prefix;
  528. }
  529. words = bytes / 8;
  530. while (words) {
  531. if (*(u64 *)start != value64)
  532. return check_bytes8(start, value, 8);
  533. start += 8;
  534. words--;
  535. }
  536. return check_bytes8(start, value, bytes % 8);
  537. }
  538. static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
  539. void *from, void *to)
  540. {
  541. slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
  542. memset(from, data, to - from);
  543. }
  544. static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
  545. u8 *object, char *what,
  546. u8 *start, unsigned int value, unsigned int bytes)
  547. {
  548. u8 *fault;
  549. u8 *end;
  550. fault = check_bytes(start, value, bytes);
  551. if (!fault)
  552. return 1;
  553. end = start + bytes;
  554. while (end > fault && end[-1] == value)
  555. end--;
  556. slab_bug(s, "%s overwritten", what);
  557. printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
  558. fault, end - 1, fault[0], value);
  559. print_trailer(s, page, object);
  560. restore_bytes(s, what, value, fault, end);
  561. return 0;
  562. }
  563. /*
  564. * Object layout:
  565. *
  566. * object address
  567. * Bytes of the object to be managed.
  568. * If the freepointer may overlay the object then the free
  569. * pointer is the first word of the object.
  570. *
  571. * Poisoning uses 0x6b (POISON_FREE) and the last byte is
  572. * 0xa5 (POISON_END)
  573. *
  574. * object + s->objsize
  575. * Padding to reach word boundary. This is also used for Redzoning.
  576. * Padding is extended by another word if Redzoning is enabled and
  577. * objsize == inuse.
  578. *
  579. * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
  580. * 0xcc (RED_ACTIVE) for objects in use.
  581. *
  582. * object + s->inuse
  583. * Meta data starts here.
  584. *
  585. * A. Free pointer (if we cannot overwrite object on free)
  586. * B. Tracking data for SLAB_STORE_USER
  587. * C. Padding to reach required alignment boundary or at mininum
  588. * one word if debugging is on to be able to detect writes
  589. * before the word boundary.
  590. *
  591. * Padding is done using 0x5a (POISON_INUSE)
  592. *
  593. * object + s->size
  594. * Nothing is used beyond s->size.
  595. *
  596. * If slabcaches are merged then the objsize and inuse boundaries are mostly
  597. * ignored. And therefore no slab options that rely on these boundaries
  598. * may be used with merged slabcaches.
  599. */
  600. static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
  601. {
  602. unsigned long off = s->inuse; /* The end of info */
  603. if (s->offset)
  604. /* Freepointer is placed after the object. */
  605. off += sizeof(void *);
  606. if (s->flags & SLAB_STORE_USER)
  607. /* We also have user information there */
  608. off += 2 * sizeof(struct track);
  609. if (s->size == off)
  610. return 1;
  611. return check_bytes_and_report(s, page, p, "Object padding",
  612. p + off, POISON_INUSE, s->size - off);
  613. }
  614. /* Check the pad bytes at the end of a slab page */
  615. static int slab_pad_check(struct kmem_cache *s, struct page *page)
  616. {
  617. u8 *start;
  618. u8 *fault;
  619. u8 *end;
  620. int length;
  621. int remainder;
  622. if (!(s->flags & SLAB_POISON))
  623. return 1;
  624. start = page_address(page);
  625. length = (PAGE_SIZE << compound_order(page)) - s->reserved;
  626. end = start + length;
  627. remainder = length % s->size;
  628. if (!remainder)
  629. return 1;
  630. fault = check_bytes(end - remainder, POISON_INUSE, remainder);
  631. if (!fault)
  632. return 1;
  633. while (end > fault && end[-1] == POISON_INUSE)
  634. end--;
  635. slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
  636. print_section("Padding", end - remainder, remainder);
  637. restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end);
  638. return 0;
  639. }
  640. static int check_object(struct kmem_cache *s, struct page *page,
  641. void *object, u8 val)
  642. {
  643. u8 *p = object;
  644. u8 *endobject = object + s->objsize;
  645. if (s->flags & SLAB_RED_ZONE) {
  646. if (!check_bytes_and_report(s, page, object, "Redzone",
  647. endobject, val, s->inuse - s->objsize))
  648. return 0;
  649. } else {
  650. if ((s->flags & SLAB_POISON) && s->objsize < s->inuse) {
  651. check_bytes_and_report(s, page, p, "Alignment padding",
  652. endobject, POISON_INUSE, s->inuse - s->objsize);
  653. }
  654. }
  655. if (s->flags & SLAB_POISON) {
  656. if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
  657. (!check_bytes_and_report(s, page, p, "Poison", p,
  658. POISON_FREE, s->objsize - 1) ||
  659. !check_bytes_and_report(s, page, p, "Poison",
  660. p + s->objsize - 1, POISON_END, 1)))
  661. return 0;
  662. /*
  663. * check_pad_bytes cleans up on its own.
  664. */
  665. check_pad_bytes(s, page, p);
  666. }
  667. if (!s->offset && val == SLUB_RED_ACTIVE)
  668. /*
  669. * Object and freepointer overlap. Cannot check
  670. * freepointer while object is allocated.
  671. */
  672. return 1;
  673. /* Check free pointer validity */
  674. if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
  675. object_err(s, page, p, "Freepointer corrupt");
  676. /*
  677. * No choice but to zap it and thus lose the remainder
  678. * of the free objects in this slab. May cause
  679. * another error because the object count is now wrong.
  680. */
  681. set_freepointer(s, p, NULL);
  682. return 0;
  683. }
  684. return 1;
  685. }
  686. static int check_slab(struct kmem_cache *s, struct page *page)
  687. {
  688. int maxobj;
  689. VM_BUG_ON(!irqs_disabled());
  690. if (!PageSlab(page)) {
  691. slab_err(s, page, "Not a valid slab page");
  692. return 0;
  693. }
  694. maxobj = order_objects(compound_order(page), s->size, s->reserved);
  695. if (page->objects > maxobj) {
  696. slab_err(s, page, "objects %u > max %u",
  697. s->name, page->objects, maxobj);
  698. return 0;
  699. }
  700. if (page->inuse > page->objects) {
  701. slab_err(s, page, "inuse %u > max %u",
  702. s->name, page->inuse, page->objects);
  703. return 0;
  704. }
  705. /* Slab_pad_check fixes things up after itself */
  706. slab_pad_check(s, page);
  707. return 1;
  708. }
  709. /*
  710. * Determine if a certain object on a page is on the freelist. Must hold the
  711. * slab lock to guarantee that the chains are in a consistent state.
  712. */
  713. static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
  714. {
  715. int nr = 0;
  716. void *fp = page->freelist;
  717. void *object = NULL;
  718. unsigned long max_objects;
  719. while (fp && nr <= page->objects) {
  720. if (fp == search)
  721. return 1;
  722. if (!check_valid_pointer(s, page, fp)) {
  723. if (object) {
  724. object_err(s, page, object,
  725. "Freechain corrupt");
  726. set_freepointer(s, object, NULL);
  727. break;
  728. } else {
  729. slab_err(s, page, "Freepointer corrupt");
  730. page->freelist = NULL;
  731. page->inuse = page->objects;
  732. slab_fix(s, "Freelist cleared");
  733. return 0;
  734. }
  735. break;
  736. }
  737. object = fp;
  738. fp = get_freepointer(s, object);
  739. nr++;
  740. }
  741. max_objects = order_objects(compound_order(page), s->size, s->reserved);
  742. if (max_objects > MAX_OBJS_PER_PAGE)
  743. max_objects = MAX_OBJS_PER_PAGE;
  744. if (page->objects != max_objects) {
  745. slab_err(s, page, "Wrong number of objects. Found %d but "
  746. "should be %d", page->objects, max_objects);
  747. page->objects = max_objects;
  748. slab_fix(s, "Number of objects adjusted.");
  749. }
  750. if (page->inuse != page->objects - nr) {
  751. slab_err(s, page, "Wrong object count. Counter is %d but "
  752. "counted were %d", page->inuse, page->objects - nr);
  753. page->inuse = page->objects - nr;
  754. slab_fix(s, "Object count adjusted.");
  755. }
  756. return search == NULL;
  757. }
  758. static void trace(struct kmem_cache *s, struct page *page, void *object,
  759. int alloc)
  760. {
  761. if (s->flags & SLAB_TRACE) {
  762. printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
  763. s->name,
  764. alloc ? "alloc" : "free",
  765. object, page->inuse,
  766. page->freelist);
  767. if (!alloc)
  768. print_section("Object", (void *)object, s->objsize);
  769. dump_stack();
  770. }
  771. }
  772. /*
  773. * Hooks for other subsystems that check memory allocations. In a typical
  774. * production configuration these hooks all should produce no code at all.
  775. */
  776. static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
  777. {
  778. flags &= gfp_allowed_mask;
  779. lockdep_trace_alloc(flags);
  780. might_sleep_if(flags & __GFP_WAIT);
  781. return should_failslab(s->objsize, flags, s->flags);
  782. }
  783. static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags, void *object)
  784. {
  785. flags &= gfp_allowed_mask;
  786. kmemcheck_slab_alloc(s, flags, object, slab_ksize(s));
  787. kmemleak_alloc_recursive(object, s->objsize, 1, s->flags, flags);
  788. }
  789. static inline void slab_free_hook(struct kmem_cache *s, void *x)
  790. {
  791. kmemleak_free_recursive(x, s->flags);
  792. /*
  793. * Trouble is that we may no longer disable interupts in the fast path
  794. * So in order to make the debug calls that expect irqs to be
  795. * disabled we need to disable interrupts temporarily.
  796. */
  797. #if defined(CONFIG_KMEMCHECK) || defined(CONFIG_LOCKDEP)
  798. {
  799. unsigned long flags;
  800. local_irq_save(flags);
  801. kmemcheck_slab_free(s, x, s->objsize);
  802. debug_check_no_locks_freed(x, s->objsize);
  803. local_irq_restore(flags);
  804. }
  805. #endif
  806. if (!(s->flags & SLAB_DEBUG_OBJECTS))
  807. debug_check_no_obj_freed(x, s->objsize);
  808. }
  809. /*
  810. * Tracking of fully allocated slabs for debugging purposes.
  811. */
  812. static void add_full(struct kmem_cache_node *n, struct page *page)
  813. {
  814. spin_lock(&n->list_lock);
  815. list_add(&page->lru, &n->full);
  816. spin_unlock(&n->list_lock);
  817. }
  818. static void remove_full(struct kmem_cache *s, struct page *page)
  819. {
  820. struct kmem_cache_node *n;
  821. if (!(s->flags & SLAB_STORE_USER))
  822. return;
  823. n = get_node(s, page_to_nid(page));
  824. spin_lock(&n->list_lock);
  825. list_del(&page->lru);
  826. spin_unlock(&n->list_lock);
  827. }
  828. /* Tracking of the number of slabs for debugging purposes */
  829. static inline unsigned long slabs_node(struct kmem_cache *s, int node)
  830. {
  831. struct kmem_cache_node *n = get_node(s, node);
  832. return atomic_long_read(&n->nr_slabs);
  833. }
  834. static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
  835. {
  836. return atomic_long_read(&n->nr_slabs);
  837. }
  838. static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
  839. {
  840. struct kmem_cache_node *n = get_node(s, node);
  841. /*
  842. * May be called early in order to allocate a slab for the
  843. * kmem_cache_node structure. Solve the chicken-egg
  844. * dilemma by deferring the increment of the count during
  845. * bootstrap (see early_kmem_cache_node_alloc).
  846. */
  847. if (n) {
  848. atomic_long_inc(&n->nr_slabs);
  849. atomic_long_add(objects, &n->total_objects);
  850. }
  851. }
  852. static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
  853. {
  854. struct kmem_cache_node *n = get_node(s, node);
  855. atomic_long_dec(&n->nr_slabs);
  856. atomic_long_sub(objects, &n->total_objects);
  857. }
  858. /* Object debug checks for alloc/free paths */
  859. static void setup_object_debug(struct kmem_cache *s, struct page *page,
  860. void *object)
  861. {
  862. if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
  863. return;
  864. init_object(s, object, SLUB_RED_INACTIVE);
  865. init_tracking(s, object);
  866. }
  867. static noinline int alloc_debug_processing(struct kmem_cache *s, struct page *page,
  868. void *object, unsigned long addr)
  869. {
  870. if (!check_slab(s, page))
  871. goto bad;
  872. if (!on_freelist(s, page, object)) {
  873. object_err(s, page, object, "Object already allocated");
  874. goto bad;
  875. }
  876. if (!check_valid_pointer(s, page, object)) {
  877. object_err(s, page, object, "Freelist Pointer check fails");
  878. goto bad;
  879. }
  880. if (!check_object(s, page, object, SLUB_RED_INACTIVE))
  881. goto bad;
  882. /* Success perform special debug activities for allocs */
  883. if (s->flags & SLAB_STORE_USER)
  884. set_track(s, object, TRACK_ALLOC, addr);
  885. trace(s, page, object, 1);
  886. init_object(s, object, SLUB_RED_ACTIVE);
  887. return 1;
  888. bad:
  889. if (PageSlab(page)) {
  890. /*
  891. * If this is a slab page then lets do the best we can
  892. * to avoid issues in the future. Marking all objects
  893. * as used avoids touching the remaining objects.
  894. */
  895. slab_fix(s, "Marking all objects used");
  896. page->inuse = page->objects;
  897. page->freelist = NULL;
  898. }
  899. return 0;
  900. }
  901. static noinline int free_debug_processing(struct kmem_cache *s,
  902. struct page *page, void *object, unsigned long addr)
  903. {
  904. if (!check_slab(s, page))
  905. goto fail;
  906. if (!check_valid_pointer(s, page, object)) {
  907. slab_err(s, page, "Invalid object pointer 0x%p", object);
  908. goto fail;
  909. }
  910. if (on_freelist(s, page, object)) {
  911. object_err(s, page, object, "Object already free");
  912. goto fail;
  913. }
  914. if (!check_object(s, page, object, SLUB_RED_ACTIVE))
  915. return 0;
  916. if (unlikely(s != page->slab)) {
  917. if (!PageSlab(page)) {
  918. slab_err(s, page, "Attempt to free object(0x%p) "
  919. "outside of slab", object);
  920. } else if (!page->slab) {
  921. printk(KERN_ERR
  922. "SLUB <none>: no slab for object 0x%p.\n",
  923. object);
  924. dump_stack();
  925. } else
  926. object_err(s, page, object,
  927. "page slab pointer corrupt.");
  928. goto fail;
  929. }
  930. /* Special debug activities for freeing objects */
  931. if (!PageSlubFrozen(page) && !page->freelist)
  932. remove_full(s, page);
  933. if (s->flags & SLAB_STORE_USER)
  934. set_track(s, object, TRACK_FREE, addr);
  935. trace(s, page, object, 0);
  936. init_object(s, object, SLUB_RED_INACTIVE);
  937. return 1;
  938. fail:
  939. slab_fix(s, "Object at 0x%p not freed", object);
  940. return 0;
  941. }
  942. static int __init setup_slub_debug(char *str)
  943. {
  944. slub_debug = DEBUG_DEFAULT_FLAGS;
  945. if (*str++ != '=' || !*str)
  946. /*
  947. * No options specified. Switch on full debugging.
  948. */
  949. goto out;
  950. if (*str == ',')
  951. /*
  952. * No options but restriction on slabs. This means full
  953. * debugging for slabs matching a pattern.
  954. */
  955. goto check_slabs;
  956. if (tolower(*str) == 'o') {
  957. /*
  958. * Avoid enabling debugging on caches if its minimum order
  959. * would increase as a result.
  960. */
  961. disable_higher_order_debug = 1;
  962. goto out;
  963. }
  964. slub_debug = 0;
  965. if (*str == '-')
  966. /*
  967. * Switch off all debugging measures.
  968. */
  969. goto out;
  970. /*
  971. * Determine which debug features should be switched on
  972. */
  973. for (; *str && *str != ','; str++) {
  974. switch (tolower(*str)) {
  975. case 'f':
  976. slub_debug |= SLAB_DEBUG_FREE;
  977. break;
  978. case 'z':
  979. slub_debug |= SLAB_RED_ZONE;
  980. break;
  981. case 'p':
  982. slub_debug |= SLAB_POISON;
  983. break;
  984. case 'u':
  985. slub_debug |= SLAB_STORE_USER;
  986. break;
  987. case 't':
  988. slub_debug |= SLAB_TRACE;
  989. break;
  990. case 'a':
  991. slub_debug |= SLAB_FAILSLAB;
  992. break;
  993. default:
  994. printk(KERN_ERR "slub_debug option '%c' "
  995. "unknown. skipped\n", *str);
  996. }
  997. }
  998. check_slabs:
  999. if (*str == ',')
  1000. slub_debug_slabs = str + 1;
  1001. out:
  1002. return 1;
  1003. }
  1004. __setup("slub_debug", setup_slub_debug);
  1005. static unsigned long kmem_cache_flags(unsigned long objsize,
  1006. unsigned long flags, const char *name,
  1007. void (*ctor)(void *))
  1008. {
  1009. /*
  1010. * Enable debugging if selected on the kernel commandline.
  1011. */
  1012. if (slub_debug && (!slub_debug_slabs ||
  1013. !strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs))))
  1014. flags |= slub_debug;
  1015. return flags;
  1016. }
  1017. #else
  1018. static inline void setup_object_debug(struct kmem_cache *s,
  1019. struct page *page, void *object) {}
  1020. static inline int alloc_debug_processing(struct kmem_cache *s,
  1021. struct page *page, void *object, unsigned long addr) { return 0; }
  1022. static inline int free_debug_processing(struct kmem_cache *s,
  1023. struct page *page, void *object, unsigned long addr) { return 0; }
  1024. static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
  1025. { return 1; }
  1026. static inline int check_object(struct kmem_cache *s, struct page *page,
  1027. void *object, u8 val) { return 1; }
  1028. static inline void add_full(struct kmem_cache_node *n, struct page *page) {}
  1029. static inline unsigned long kmem_cache_flags(unsigned long objsize,
  1030. unsigned long flags, const char *name,
  1031. void (*ctor)(void *))
  1032. {
  1033. return flags;
  1034. }
  1035. #define slub_debug 0
  1036. #define disable_higher_order_debug 0
  1037. static inline unsigned long slabs_node(struct kmem_cache *s, int node)
  1038. { return 0; }
  1039. static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
  1040. { return 0; }
  1041. static inline void inc_slabs_node(struct kmem_cache *s, int node,
  1042. int objects) {}
  1043. static inline void dec_slabs_node(struct kmem_cache *s, int node,
  1044. int objects) {}
  1045. static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
  1046. { return 0; }
  1047. static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags,
  1048. void *object) {}
  1049. static inline void slab_free_hook(struct kmem_cache *s, void *x) {}
  1050. #endif /* CONFIG_SLUB_DEBUG */
  1051. /*
  1052. * Slab allocation and freeing
  1053. */
  1054. static inline struct page *alloc_slab_page(gfp_t flags, int node,
  1055. struct kmem_cache_order_objects oo)
  1056. {
  1057. int order = oo_order(oo);
  1058. flags |= __GFP_NOTRACK;
  1059. if (node == NUMA_NO_NODE)
  1060. return alloc_pages(flags, order);
  1061. else
  1062. return alloc_pages_exact_node(node, flags, order);
  1063. }
  1064. static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
  1065. {
  1066. struct page *page;
  1067. struct kmem_cache_order_objects oo = s->oo;
  1068. gfp_t alloc_gfp;
  1069. flags |= s->allocflags;
  1070. /*
  1071. * Let the initial higher-order allocation fail under memory pressure
  1072. * so we fall-back to the minimum order allocation.
  1073. */
  1074. alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
  1075. page = alloc_slab_page(alloc_gfp, node, oo);
  1076. if (unlikely(!page)) {
  1077. oo = s->min;
  1078. /*
  1079. * Allocation may have failed due to fragmentation.
  1080. * Try a lower order alloc if possible
  1081. */
  1082. page = alloc_slab_page(flags, node, oo);
  1083. if (!page)
  1084. return NULL;
  1085. stat(s, ORDER_FALLBACK);
  1086. }
  1087. if (kmemcheck_enabled
  1088. && !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) {
  1089. int pages = 1 << oo_order(oo);
  1090. kmemcheck_alloc_shadow(page, oo_order(oo), flags, node);
  1091. /*
  1092. * Objects from caches that have a constructor don't get
  1093. * cleared when they're allocated, so we need to do it here.
  1094. */
  1095. if (s->ctor)
  1096. kmemcheck_mark_uninitialized_pages(page, pages);
  1097. else
  1098. kmemcheck_mark_unallocated_pages(page, pages);
  1099. }
  1100. page->objects = oo_objects(oo);
  1101. mod_zone_page_state(page_zone(page),
  1102. (s->flags & SLAB_RECLAIM_ACCOUNT) ?
  1103. NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
  1104. 1 << oo_order(oo));
  1105. return page;
  1106. }
  1107. static void setup_object(struct kmem_cache *s, struct page *page,
  1108. void *object)
  1109. {
  1110. setup_object_debug(s, page, object);
  1111. if (unlikely(s->ctor))
  1112. s->ctor(object);
  1113. }
  1114. static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
  1115. {
  1116. struct page *page;
  1117. void *start;
  1118. void *last;
  1119. void *p;
  1120. BUG_ON(flags & GFP_SLAB_BUG_MASK);
  1121. page = allocate_slab(s,
  1122. flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
  1123. if (!page)
  1124. goto out;
  1125. inc_slabs_node(s, page_to_nid(page), page->objects);
  1126. page->slab = s;
  1127. page->flags |= 1 << PG_slab;
  1128. start = page_address(page);
  1129. if (unlikely(s->flags & SLAB_POISON))
  1130. memset(start, POISON_INUSE, PAGE_SIZE << compound_order(page));
  1131. last = start;
  1132. for_each_object(p, s, start, page->objects) {
  1133. setup_object(s, page, last);
  1134. set_freepointer(s, last, p);
  1135. last = p;
  1136. }
  1137. setup_object(s, page, last);
  1138. set_freepointer(s, last, NULL);
  1139. page->freelist = start;
  1140. page->inuse = 0;
  1141. out:
  1142. return page;
  1143. }
  1144. static void __free_slab(struct kmem_cache *s, struct page *page)
  1145. {
  1146. int order = compound_order(page);
  1147. int pages = 1 << order;
  1148. if (kmem_cache_debug(s)) {
  1149. void *p;
  1150. slab_pad_check(s, page);
  1151. for_each_object(p, s, page_address(page),
  1152. page->objects)
  1153. check_object(s, page, p, SLUB_RED_INACTIVE);
  1154. }
  1155. kmemcheck_free_shadow(page, compound_order(page));
  1156. mod_zone_page_state(page_zone(page),
  1157. (s->flags & SLAB_RECLAIM_ACCOUNT) ?
  1158. NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
  1159. -pages);
  1160. __ClearPageSlab(page);
  1161. reset_page_mapcount(page);
  1162. if (current->reclaim_state)
  1163. current->reclaim_state->reclaimed_slab += pages;
  1164. __free_pages(page, order);
  1165. }
  1166. #define need_reserve_slab_rcu \
  1167. (sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head))
  1168. static void rcu_free_slab(struct rcu_head *h)
  1169. {
  1170. struct page *page;
  1171. if (need_reserve_slab_rcu)
  1172. page = virt_to_head_page(h);
  1173. else
  1174. page = container_of((struct list_head *)h, struct page, lru);
  1175. __free_slab(page->slab, page);
  1176. }
  1177. static void free_slab(struct kmem_cache *s, struct page *page)
  1178. {
  1179. if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
  1180. struct rcu_head *head;
  1181. if (need_reserve_slab_rcu) {
  1182. int order = compound_order(page);
  1183. int offset = (PAGE_SIZE << order) - s->reserved;
  1184. VM_BUG_ON(s->reserved != sizeof(*head));
  1185. head = page_address(page) + offset;
  1186. } else {
  1187. /*
  1188. * RCU free overloads the RCU head over the LRU
  1189. */
  1190. head = (void *)&page->lru;
  1191. }
  1192. call_rcu(head, rcu_free_slab);
  1193. } else
  1194. __free_slab(s, page);
  1195. }
  1196. static void discard_slab(struct kmem_cache *s, struct page *page)
  1197. {
  1198. dec_slabs_node(s, page_to_nid(page), page->objects);
  1199. free_slab(s, page);
  1200. }
  1201. /*
  1202. * Per slab locking using the pagelock
  1203. */
  1204. static __always_inline void slab_lock(struct page *page)
  1205. {
  1206. bit_spin_lock(PG_locked, &page->flags);
  1207. }
  1208. static __always_inline void slab_unlock(struct page *page)
  1209. {
  1210. __bit_spin_unlock(PG_locked, &page->flags);
  1211. }
  1212. static __always_inline int slab_trylock(struct page *page)
  1213. {
  1214. int rc = 1;
  1215. rc = bit_spin_trylock(PG_locked, &page->flags);
  1216. return rc;
  1217. }
  1218. /*
  1219. * Management of partially allocated slabs
  1220. */
  1221. static void add_partial(struct kmem_cache_node *n,
  1222. struct page *page, int tail)
  1223. {
  1224. spin_lock(&n->list_lock);
  1225. n->nr_partial++;
  1226. if (tail)
  1227. list_add_tail(&page->lru, &n->partial);
  1228. else
  1229. list_add(&page->lru, &n->partial);
  1230. spin_unlock(&n->list_lock);
  1231. }
  1232. static inline void __remove_partial(struct kmem_cache_node *n,
  1233. struct page *page)
  1234. {
  1235. list_del(&page->lru);
  1236. n->nr_partial--;
  1237. }
  1238. static void remove_partial(struct kmem_cache *s, struct page *page)
  1239. {
  1240. struct kmem_cache_node *n = get_node(s, page_to_nid(page));
  1241. spin_lock(&n->list_lock);
  1242. __remove_partial(n, page);
  1243. spin_unlock(&n->list_lock);
  1244. }
  1245. /*
  1246. * Lock slab and remove from the partial list.
  1247. *
  1248. * Must hold list_lock.
  1249. */
  1250. static inline int lock_and_freeze_slab(struct kmem_cache_node *n,
  1251. struct page *page)
  1252. {
  1253. if (slab_trylock(page)) {
  1254. __remove_partial(n, page);
  1255. __SetPageSlubFrozen(page);
  1256. return 1;
  1257. }
  1258. return 0;
  1259. }
  1260. /*
  1261. * Try to allocate a partial slab from a specific node.
  1262. */
  1263. static struct page *get_partial_node(struct kmem_cache_node *n)
  1264. {
  1265. struct page *page;
  1266. /*
  1267. * Racy check. If we mistakenly see no partial slabs then we
  1268. * just allocate an empty slab. If we mistakenly try to get a
  1269. * partial slab and there is none available then get_partials()
  1270. * will return NULL.
  1271. */
  1272. if (!n || !n->nr_partial)
  1273. return NULL;
  1274. spin_lock(&n->list_lock);
  1275. list_for_each_entry(page, &n->partial, lru)
  1276. if (lock_and_freeze_slab(n, page))
  1277. goto out;
  1278. page = NULL;
  1279. out:
  1280. spin_unlock(&n->list_lock);
  1281. return page;
  1282. }
  1283. /*
  1284. * Get a page from somewhere. Search in increasing NUMA distances.
  1285. */
  1286. static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags)
  1287. {
  1288. #ifdef CONFIG_NUMA
  1289. struct zonelist *zonelist;
  1290. struct zoneref *z;
  1291. struct zone *zone;
  1292. enum zone_type high_zoneidx = gfp_zone(flags);
  1293. struct page *page;
  1294. /*
  1295. * The defrag ratio allows a configuration of the tradeoffs between
  1296. * inter node defragmentation and node local allocations. A lower
  1297. * defrag_ratio increases the tendency to do local allocations
  1298. * instead of attempting to obtain partial slabs from other nodes.
  1299. *
  1300. * If the defrag_ratio is set to 0 then kmalloc() always
  1301. * returns node local objects. If the ratio is higher then kmalloc()
  1302. * may return off node objects because partial slabs are obtained
  1303. * from other nodes and filled up.
  1304. *
  1305. * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
  1306. * defrag_ratio = 1000) then every (well almost) allocation will
  1307. * first attempt to defrag slab caches on other nodes. This means
  1308. * scanning over all nodes to look for partial slabs which may be
  1309. * expensive if we do it every time we are trying to find a slab
  1310. * with available objects.
  1311. */
  1312. if (!s->remote_node_defrag_ratio ||
  1313. get_cycles() % 1024 > s->remote_node_defrag_ratio)
  1314. return NULL;
  1315. get_mems_allowed();
  1316. zonelist = node_zonelist(slab_node(current->mempolicy), flags);
  1317. for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
  1318. struct kmem_cache_node *n;
  1319. n = get_node(s, zone_to_nid(zone));
  1320. if (n && cpuset_zone_allowed_hardwall(zone, flags) &&
  1321. n->nr_partial > s->min_partial) {
  1322. page = get_partial_node(n);
  1323. if (page) {
  1324. put_mems_allowed();
  1325. return page;
  1326. }
  1327. }
  1328. }
  1329. put_mems_allowed();
  1330. #endif
  1331. return NULL;
  1332. }
  1333. /*
  1334. * Get a partial page, lock it and return it.
  1335. */
  1336. static struct page *get_partial(struct kmem_cache *s, gfp_t flags, int node)
  1337. {
  1338. struct page *page;
  1339. int searchnode = (node == NUMA_NO_NODE) ? numa_node_id() : node;
  1340. page = get_partial_node(get_node(s, searchnode));
  1341. if (page || node != NUMA_NO_NODE)
  1342. return page;
  1343. return get_any_partial(s, flags);
  1344. }
  1345. /*
  1346. * Move a page back to the lists.
  1347. *
  1348. * Must be called with the slab lock held.
  1349. *
  1350. * On exit the slab lock will have been dropped.
  1351. */
  1352. static void unfreeze_slab(struct kmem_cache *s, struct page *page, int tail)
  1353. __releases(bitlock)
  1354. {
  1355. struct kmem_cache_node *n = get_node(s, page_to_nid(page));
  1356. __ClearPageSlubFrozen(page);
  1357. if (page->inuse) {
  1358. if (page->freelist) {
  1359. add_partial(n, page, tail);
  1360. stat(s, tail ? DEACTIVATE_TO_TAIL : DEACTIVATE_TO_HEAD);
  1361. } else {
  1362. stat(s, DEACTIVATE_FULL);
  1363. if (kmem_cache_debug(s) && (s->flags & SLAB_STORE_USER))
  1364. add_full(n, page);
  1365. }
  1366. slab_unlock(page);
  1367. } else {
  1368. stat(s, DEACTIVATE_EMPTY);
  1369. if (n->nr_partial < s->min_partial) {
  1370. /*
  1371. * Adding an empty slab to the partial slabs in order
  1372. * to avoid page allocator overhead. This slab needs
  1373. * to come after the other slabs with objects in
  1374. * so that the others get filled first. That way the
  1375. * size of the partial list stays small.
  1376. *
  1377. * kmem_cache_shrink can reclaim any empty slabs from
  1378. * the partial list.
  1379. */
  1380. add_partial(n, page, 1);
  1381. slab_unlock(page);
  1382. } else {
  1383. slab_unlock(page);
  1384. stat(s, FREE_SLAB);
  1385. discard_slab(s, page);
  1386. }
  1387. }
  1388. }
  1389. #ifdef CONFIG_PREEMPT
  1390. /*
  1391. * Calculate the next globally unique transaction for disambiguiation
  1392. * during cmpxchg. The transactions start with the cpu number and are then
  1393. * incremented by CONFIG_NR_CPUS.
  1394. */
  1395. #define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
  1396. #else
  1397. /*
  1398. * No preemption supported therefore also no need to check for
  1399. * different cpus.
  1400. */
  1401. #define TID_STEP 1
  1402. #endif
  1403. static inline unsigned long next_tid(unsigned long tid)
  1404. {
  1405. return tid + TID_STEP;
  1406. }
  1407. static inline unsigned int tid_to_cpu(unsigned long tid)
  1408. {
  1409. return tid % TID_STEP;
  1410. }
  1411. static inline unsigned long tid_to_event(unsigned long tid)
  1412. {
  1413. return tid / TID_STEP;
  1414. }
  1415. static inline unsigned int init_tid(int cpu)
  1416. {
  1417. return cpu;
  1418. }
  1419. static inline void note_cmpxchg_failure(const char *n,
  1420. const struct kmem_cache *s, unsigned long tid)
  1421. {
  1422. #ifdef SLUB_DEBUG_CMPXCHG
  1423. unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
  1424. printk(KERN_INFO "%s %s: cmpxchg redo ", n, s->name);
  1425. #ifdef CONFIG_PREEMPT
  1426. if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
  1427. printk("due to cpu change %d -> %d\n",
  1428. tid_to_cpu(tid), tid_to_cpu(actual_tid));
  1429. else
  1430. #endif
  1431. if (tid_to_event(tid) != tid_to_event(actual_tid))
  1432. printk("due to cpu running other code. Event %ld->%ld\n",
  1433. tid_to_event(tid), tid_to_event(actual_tid));
  1434. else
  1435. printk("for unknown reason: actual=%lx was=%lx target=%lx\n",
  1436. actual_tid, tid, next_tid(tid));
  1437. #endif
  1438. stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
  1439. }
  1440. void init_kmem_cache_cpus(struct kmem_cache *s)
  1441. {
  1442. int cpu;
  1443. for_each_possible_cpu(cpu)
  1444. per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
  1445. }
  1446. /*
  1447. * Remove the cpu slab
  1448. */
  1449. static void deactivate_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
  1450. __releases(bitlock)
  1451. {
  1452. struct page *page = c->page;
  1453. int tail = 1;
  1454. if (page->freelist)
  1455. stat(s, DEACTIVATE_REMOTE_FREES);
  1456. /*
  1457. * Merge cpu freelist into slab freelist. Typically we get here
  1458. * because both freelists are empty. So this is unlikely
  1459. * to occur.
  1460. */
  1461. while (unlikely(c->freelist)) {
  1462. void **object;
  1463. tail = 0; /* Hot objects. Put the slab first */
  1464. /* Retrieve object from cpu_freelist */
  1465. object = c->freelist;
  1466. c->freelist = get_freepointer(s, c->freelist);
  1467. /* And put onto the regular freelist */
  1468. set_freepointer(s, object, page->freelist);
  1469. page->freelist = object;
  1470. page->inuse--;
  1471. }
  1472. c->page = NULL;
  1473. c->tid = next_tid(c->tid);
  1474. unfreeze_slab(s, page, tail);
  1475. }
  1476. static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
  1477. {
  1478. stat(s, CPUSLAB_FLUSH);
  1479. slab_lock(c->page);
  1480. deactivate_slab(s, c);
  1481. }
  1482. /*
  1483. * Flush cpu slab.
  1484. *
  1485. * Called from IPI handler with interrupts disabled.
  1486. */
  1487. static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
  1488. {
  1489. struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
  1490. if (likely(c && c->page))
  1491. flush_slab(s, c);
  1492. }
  1493. static void flush_cpu_slab(void *d)
  1494. {
  1495. struct kmem_cache *s = d;
  1496. __flush_cpu_slab(s, smp_processor_id());
  1497. }
  1498. static void flush_all(struct kmem_cache *s)
  1499. {
  1500. on_each_cpu(flush_cpu_slab, s, 1);
  1501. }
  1502. /*
  1503. * Check if the objects in a per cpu structure fit numa
  1504. * locality expectations.
  1505. */
  1506. static inline int node_match(struct kmem_cache_cpu *c, int node)
  1507. {
  1508. #ifdef CONFIG_NUMA
  1509. if (node != NUMA_NO_NODE && c->node != node)
  1510. return 0;
  1511. #endif
  1512. return 1;
  1513. }
  1514. static int count_free(struct page *page)
  1515. {
  1516. return page->objects - page->inuse;
  1517. }
  1518. static unsigned long count_partial(struct kmem_cache_node *n,
  1519. int (*get_count)(struct page *))
  1520. {
  1521. unsigned long flags;
  1522. unsigned long x = 0;
  1523. struct page *page;
  1524. spin_lock_irqsave(&n->list_lock, flags);
  1525. list_for_each_entry(page, &n->partial, lru)
  1526. x += get_count(page);
  1527. spin_unlock_irqrestore(&n->list_lock, flags);
  1528. return x;
  1529. }
  1530. static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
  1531. {
  1532. #ifdef CONFIG_SLUB_DEBUG
  1533. return atomic_long_read(&n->total_objects);
  1534. #else
  1535. return 0;
  1536. #endif
  1537. }
  1538. static noinline void
  1539. slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
  1540. {
  1541. int node;
  1542. printk(KERN_WARNING
  1543. "SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n",
  1544. nid, gfpflags);
  1545. printk(KERN_WARNING " cache: %s, object size: %d, buffer size: %d, "
  1546. "default order: %d, min order: %d\n", s->name, s->objsize,
  1547. s->size, oo_order(s->oo), oo_order(s->min));
  1548. if (oo_order(s->min) > get_order(s->objsize))
  1549. printk(KERN_WARNING " %s debugging increased min order, use "
  1550. "slub_debug=O to disable.\n", s->name);
  1551. for_each_online_node(node) {
  1552. struct kmem_cache_node *n = get_node(s, node);
  1553. unsigned long nr_slabs;
  1554. unsigned long nr_objs;
  1555. unsigned long nr_free;
  1556. if (!n)
  1557. continue;
  1558. nr_free = count_partial(n, count_free);
  1559. nr_slabs = node_nr_slabs(n);
  1560. nr_objs = node_nr_objs(n);
  1561. printk(KERN_WARNING
  1562. " node %d: slabs: %ld, objs: %ld, free: %ld\n",
  1563. node, nr_slabs, nr_objs, nr_free);
  1564. }
  1565. }
  1566. /*
  1567. * Slow path. The lockless freelist is empty or we need to perform
  1568. * debugging duties.
  1569. *
  1570. * Interrupts are disabled.
  1571. *
  1572. * Processing is still very fast if new objects have been freed to the
  1573. * regular freelist. In that case we simply take over the regular freelist
  1574. * as the lockless freelist and zap the regular freelist.
  1575. *
  1576. * If that is not working then we fall back to the partial lists. We take the
  1577. * first element of the freelist as the object to allocate now and move the
  1578. * rest of the freelist to the lockless freelist.
  1579. *
  1580. * And if we were unable to get a new slab from the partial slab lists then
  1581. * we need to allocate a new slab. This is the slowest path since it involves
  1582. * a call to the page allocator and the setup of a new slab.
  1583. */
  1584. static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
  1585. unsigned long addr, struct kmem_cache_cpu *c)
  1586. {
  1587. void **object;
  1588. struct page *page;
  1589. unsigned long flags;
  1590. local_irq_save(flags);
  1591. #ifdef CONFIG_PREEMPT
  1592. /*
  1593. * We may have been preempted and rescheduled on a different
  1594. * cpu before disabling interrupts. Need to reload cpu area
  1595. * pointer.
  1596. */
  1597. c = this_cpu_ptr(s->cpu_slab);
  1598. #endif
  1599. /* We handle __GFP_ZERO in the caller */
  1600. gfpflags &= ~__GFP_ZERO;
  1601. page = c->page;
  1602. if (!page)
  1603. goto new_slab;
  1604. slab_lock(page);
  1605. if (unlikely(!node_match(c, node)))
  1606. goto another_slab;
  1607. stat(s, ALLOC_REFILL);
  1608. load_freelist:
  1609. object = page->freelist;
  1610. if (unlikely(!object))
  1611. goto another_slab;
  1612. if (kmem_cache_debug(s))
  1613. goto debug;
  1614. c->freelist = get_freepointer(s, object);
  1615. page->inuse = page->objects;
  1616. page->freelist = NULL;
  1617. slab_unlock(page);
  1618. c->tid = next_tid(c->tid);
  1619. local_irq_restore(flags);
  1620. stat(s, ALLOC_SLOWPATH);
  1621. return object;
  1622. another_slab:
  1623. deactivate_slab(s, c);
  1624. new_slab:
  1625. page = get_partial(s, gfpflags, node);
  1626. if (page) {
  1627. stat(s, ALLOC_FROM_PARTIAL);
  1628. c->node = page_to_nid(page);
  1629. c->page = page;
  1630. goto load_freelist;
  1631. }
  1632. gfpflags &= gfp_allowed_mask;
  1633. if (gfpflags & __GFP_WAIT)
  1634. local_irq_enable();
  1635. page = new_slab(s, gfpflags, node);
  1636. if (gfpflags & __GFP_WAIT)
  1637. local_irq_disable();
  1638. if (page) {
  1639. c = __this_cpu_ptr(s->cpu_slab);
  1640. stat(s, ALLOC_SLAB);
  1641. if (c->page)
  1642. flush_slab(s, c);
  1643. slab_lock(page);
  1644. __SetPageSlubFrozen(page);
  1645. c->node = page_to_nid(page);
  1646. c->page = page;
  1647. goto load_freelist;
  1648. }
  1649. if (!(gfpflags & __GFP_NOWARN) && printk_ratelimit())
  1650. slab_out_of_memory(s, gfpflags, node);
  1651. local_irq_restore(flags);
  1652. return NULL;
  1653. debug:
  1654. if (!alloc_debug_processing(s, page, object, addr))
  1655. goto another_slab;
  1656. page->inuse++;
  1657. page->freelist = get_freepointer(s, object);
  1658. deactivate_slab(s, c);
  1659. c->page = NULL;
  1660. c->node = NUMA_NO_NODE;
  1661. local_irq_restore(flags);
  1662. return object;
  1663. }
  1664. /*
  1665. * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
  1666. * have the fastpath folded into their functions. So no function call
  1667. * overhead for requests that can be satisfied on the fastpath.
  1668. *
  1669. * The fastpath works by first checking if the lockless freelist can be used.
  1670. * If not then __slab_alloc is called for slow processing.
  1671. *
  1672. * Otherwise we can simply pick the next object from the lockless free list.
  1673. */
  1674. static __always_inline void *slab_alloc(struct kmem_cache *s,
  1675. gfp_t gfpflags, int node, unsigned long addr)
  1676. {
  1677. void **object;
  1678. struct kmem_cache_cpu *c;
  1679. unsigned long tid;
  1680. if (slab_pre_alloc_hook(s, gfpflags))
  1681. return NULL;
  1682. redo:
  1683. /*
  1684. * Must read kmem_cache cpu data via this cpu ptr. Preemption is
  1685. * enabled. We may switch back and forth between cpus while
  1686. * reading from one cpu area. That does not matter as long
  1687. * as we end up on the original cpu again when doing the cmpxchg.
  1688. */
  1689. c = __this_cpu_ptr(s->cpu_slab);
  1690. /*
  1691. * The transaction ids are globally unique per cpu and per operation on
  1692. * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
  1693. * occurs on the right processor and that there was no operation on the
  1694. * linked list in between.
  1695. */
  1696. tid = c->tid;
  1697. barrier();
  1698. object = c->freelist;
  1699. if (unlikely(!object || !node_match(c, node)))
  1700. object = __slab_alloc(s, gfpflags, node, addr, c);
  1701. else {
  1702. /*
  1703. * The cmpxchg will only match if there was no additional
  1704. * operation and if we are on the right processor.
  1705. *
  1706. * The cmpxchg does the following atomically (without lock semantics!)
  1707. * 1. Relocate first pointer to the current per cpu area.
  1708. * 2. Verify that tid and freelist have not been changed
  1709. * 3. If they were not changed replace tid and freelist
  1710. *
  1711. * Since this is without lock semantics the protection is only against
  1712. * code executing on this cpu *not* from access by other cpus.
  1713. */
  1714. if (unlikely(!irqsafe_cpu_cmpxchg_double(
  1715. s->cpu_slab->freelist, s->cpu_slab->tid,
  1716. object, tid,
  1717. get_freepointer_safe(s, object), next_tid(tid)))) {
  1718. note_cmpxchg_failure("slab_alloc", s, tid);
  1719. goto redo;
  1720. }
  1721. stat(s, ALLOC_FASTPATH);
  1722. }
  1723. if (unlikely(gfpflags & __GFP_ZERO) && object)
  1724. memset(object, 0, s->objsize);
  1725. slab_post_alloc_hook(s, gfpflags, object);
  1726. return object;
  1727. }
  1728. void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
  1729. {
  1730. void *ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, _RET_IP_);
  1731. trace_kmem_cache_alloc(_RET_IP_, ret, s->objsize, s->size, gfpflags);
  1732. return ret;
  1733. }
  1734. EXPORT_SYMBOL(kmem_cache_alloc);
  1735. #ifdef CONFIG_TRACING
  1736. void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
  1737. {
  1738. void *ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, _RET_IP_);
  1739. trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
  1740. return ret;
  1741. }
  1742. EXPORT_SYMBOL(kmem_cache_alloc_trace);
  1743. void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
  1744. {
  1745. void *ret = kmalloc_order(size, flags, order);
  1746. trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << order, flags);
  1747. return ret;
  1748. }
  1749. EXPORT_SYMBOL(kmalloc_order_trace);
  1750. #endif
  1751. #ifdef CONFIG_NUMA
  1752. void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
  1753. {
  1754. void *ret = slab_alloc(s, gfpflags, node, _RET_IP_);
  1755. trace_kmem_cache_alloc_node(_RET_IP_, ret,
  1756. s->objsize, s->size, gfpflags, node);
  1757. return ret;
  1758. }
  1759. EXPORT_SYMBOL(kmem_cache_alloc_node);
  1760. #ifdef CONFIG_TRACING
  1761. void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
  1762. gfp_t gfpflags,
  1763. int node, size_t size)
  1764. {
  1765. void *ret = slab_alloc(s, gfpflags, node, _RET_IP_);
  1766. trace_kmalloc_node(_RET_IP_, ret,
  1767. size, s->size, gfpflags, node);
  1768. return ret;
  1769. }
  1770. EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
  1771. #endif
  1772. #endif
  1773. /*
  1774. * Slow patch handling. This may still be called frequently since objects
  1775. * have a longer lifetime than the cpu slabs in most processing loads.
  1776. *
  1777. * So we still attempt to reduce cache line usage. Just take the slab
  1778. * lock and free the item. If there is no additional partial page
  1779. * handling required then we can return immediately.
  1780. */
  1781. static void __slab_free(struct kmem_cache *s, struct page *page,
  1782. void *x, unsigned long addr)
  1783. {
  1784. void *prior;
  1785. void **object = (void *)x;
  1786. unsigned long flags;
  1787. local_irq_save(flags);
  1788. slab_lock(page);
  1789. stat(s, FREE_SLOWPATH);
  1790. if (kmem_cache_debug(s) && !free_debug_processing(s, page, x, addr))
  1791. goto out_unlock;
  1792. prior = page->freelist;
  1793. set_freepointer(s, object, prior);
  1794. page->freelist = object;
  1795. page->inuse--;
  1796. if (unlikely(PageSlubFrozen(page))) {
  1797. stat(s, FREE_FROZEN);
  1798. goto out_unlock;
  1799. }
  1800. if (unlikely(!page->inuse))
  1801. goto slab_empty;
  1802. /*
  1803. * Objects left in the slab. If it was not on the partial list before
  1804. * then add it.
  1805. */
  1806. if (unlikely(!prior)) {
  1807. add_partial(get_node(s, page_to_nid(page)), page, 1);
  1808. stat(s, FREE_ADD_PARTIAL);
  1809. }
  1810. out_unlock:
  1811. slab_unlock(page);
  1812. local_irq_restore(flags);
  1813. return;
  1814. slab_empty:
  1815. if (prior) {
  1816. /*
  1817. * Slab still on the partial list.
  1818. */
  1819. remove_partial(s, page);
  1820. stat(s, FREE_REMOVE_PARTIAL);
  1821. }
  1822. slab_unlock(page);
  1823. local_irq_restore(flags);
  1824. stat(s, FREE_SLAB);
  1825. discard_slab(s, page);
  1826. }
  1827. /*
  1828. * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
  1829. * can perform fastpath freeing without additional function calls.
  1830. *
  1831. * The fastpath is only possible if we are freeing to the current cpu slab
  1832. * of this processor. This typically the case if we have just allocated
  1833. * the item before.
  1834. *
  1835. * If fastpath is not possible then fall back to __slab_free where we deal
  1836. * with all sorts of special processing.
  1837. */
  1838. static __always_inline void slab_free(struct kmem_cache *s,
  1839. struct page *page, void *x, unsigned long addr)
  1840. {
  1841. void **object = (void *)x;
  1842. struct kmem_cache_cpu *c;
  1843. unsigned long tid;
  1844. slab_free_hook(s, x);
  1845. redo:
  1846. /*
  1847. * Determine the currently cpus per cpu slab.
  1848. * The cpu may change afterward. However that does not matter since
  1849. * data is retrieved via this pointer. If we are on the same cpu
  1850. * during the cmpxchg then the free will succedd.
  1851. */
  1852. c = __this_cpu_ptr(s->cpu_slab);
  1853. tid = c->tid;
  1854. barrier();
  1855. if (likely(page == c->page)) {
  1856. set_freepointer(s, object, c->freelist);
  1857. if (unlikely(!irqsafe_cpu_cmpxchg_double(
  1858. s->cpu_slab->freelist, s->cpu_slab->tid,
  1859. c->freelist, tid,
  1860. object, next_tid(tid)))) {
  1861. note_cmpxchg_failure("slab_free", s, tid);
  1862. goto redo;
  1863. }
  1864. stat(s, FREE_FASTPATH);
  1865. } else
  1866. __slab_free(s, page, x, addr);
  1867. }
  1868. void kmem_cache_free(struct kmem_cache *s, void *x)
  1869. {
  1870. struct page *page;
  1871. page = virt_to_head_page(x);
  1872. slab_free(s, page, x, _RET_IP_);
  1873. trace_kmem_cache_free(_RET_IP_, x);
  1874. }
  1875. EXPORT_SYMBOL(kmem_cache_free);
  1876. /*
  1877. * Object placement in a slab is made very easy because we always start at
  1878. * offset 0. If we tune the size of the object to the alignment then we can
  1879. * get the required alignment by putting one properly sized object after
  1880. * another.
  1881. *
  1882. * Notice that the allocation order determines the sizes of the per cpu
  1883. * caches. Each processor has always one slab available for allocations.
  1884. * Increasing the allocation order reduces the number of times that slabs
  1885. * must be moved on and off the partial lists and is therefore a factor in
  1886. * locking overhead.
  1887. */
  1888. /*
  1889. * Mininum / Maximum order of slab pages. This influences locking overhead
  1890. * and slab fragmentation. A higher order reduces the number of partial slabs
  1891. * and increases the number of allocations possible without having to
  1892. * take the list_lock.
  1893. */
  1894. static int slub_min_order;
  1895. static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
  1896. static int slub_min_objects;
  1897. /*
  1898. * Merge control. If this is set then no merging of slab caches will occur.
  1899. * (Could be removed. This was introduced to pacify the merge skeptics.)
  1900. */
  1901. static int slub_nomerge;
  1902. /*
  1903. * Calculate the order of allocation given an slab object size.
  1904. *
  1905. * The order of allocation has significant impact on performance and other
  1906. * system components. Generally order 0 allocations should be preferred since
  1907. * order 0 does not cause fragmentation in the page allocator. Larger objects
  1908. * be problematic to put into order 0 slabs because there may be too much
  1909. * unused space left. We go to a higher order if more than 1/16th of the slab
  1910. * would be wasted.
  1911. *
  1912. * In order to reach satisfactory performance we must ensure that a minimum
  1913. * number of objects is in one slab. Otherwise we may generate too much
  1914. * activity on the partial lists which requires taking the list_lock. This is
  1915. * less a concern for large slabs though which are rarely used.
  1916. *
  1917. * slub_max_order specifies the order where we begin to stop considering the
  1918. * number of objects in a slab as critical. If we reach slub_max_order then
  1919. * we try to keep the page order as low as possible. So we accept more waste
  1920. * of space in favor of a small page order.
  1921. *
  1922. * Higher order allocations also allow the placement of more objects in a
  1923. * slab and thereby reduce object handling overhead. If the user has
  1924. * requested a higher mininum order then we start with that one instead of
  1925. * the smallest order which will fit the object.
  1926. */
  1927. static inline int slab_order(int size, int min_objects,
  1928. int max_order, int fract_leftover, int reserved)
  1929. {
  1930. int order;
  1931. int rem;
  1932. int min_order = slub_min_order;
  1933. if (order_objects(min_order, size, reserved) > MAX_OBJS_PER_PAGE)
  1934. return get_order(size * MAX_OBJS_PER_PAGE) - 1;
  1935. for (order = max(min_order,
  1936. fls(min_objects * size - 1) - PAGE_SHIFT);
  1937. order <= max_order; order++) {
  1938. unsigned long slab_size = PAGE_SIZE << order;
  1939. if (slab_size < min_objects * size + reserved)
  1940. continue;
  1941. rem = (slab_size - reserved) % size;
  1942. if (rem <= slab_size / fract_leftover)
  1943. break;
  1944. }
  1945. return order;
  1946. }
  1947. static inline int calculate_order(int size, int reserved)
  1948. {
  1949. int order;
  1950. int min_objects;
  1951. int fraction;
  1952. int max_objects;
  1953. /*
  1954. * Attempt to find best configuration for a slab. This
  1955. * works by first attempting to generate a layout with
  1956. * the best configuration and backing off gradually.
  1957. *
  1958. * First we reduce the acceptable waste in a slab. Then
  1959. * we reduce the minimum objects required in a slab.
  1960. */
  1961. min_objects = slub_min_objects;
  1962. if (!min_objects)
  1963. min_objects = 4 * (fls(nr_cpu_ids) + 1);
  1964. max_objects = order_objects(slub_max_order, size, reserved);
  1965. min_objects = min(min_objects, max_objects);
  1966. while (min_objects > 1) {
  1967. fraction = 16;
  1968. while (fraction >= 4) {
  1969. order = slab_order(size, min_objects,
  1970. slub_max_order, fraction, reserved);
  1971. if (order <= slub_max_order)
  1972. return order;
  1973. fraction /= 2;
  1974. }
  1975. min_objects--;
  1976. }
  1977. /*
  1978. * We were unable to place multiple objects in a slab. Now
  1979. * lets see if we can place a single object there.
  1980. */
  1981. order = slab_order(size, 1, slub_max_order, 1, reserved);
  1982. if (order <= slub_max_order)
  1983. return order;
  1984. /*
  1985. * Doh this slab cannot be placed using slub_max_order.
  1986. */
  1987. order = slab_order(size, 1, MAX_ORDER, 1, reserved);
  1988. if (order < MAX_ORDER)
  1989. return order;
  1990. return -ENOSYS;
  1991. }
  1992. /*
  1993. * Figure out what the alignment of the objects will be.
  1994. */
  1995. static unsigned long calculate_alignment(unsigned long flags,
  1996. unsigned long align, unsigned long size)
  1997. {
  1998. /*
  1999. * If the user wants hardware cache aligned objects then follow that
  2000. * suggestion if the object is sufficiently large.
  2001. *
  2002. * The hardware cache alignment cannot override the specified
  2003. * alignment though. If that is greater then use it.
  2004. */
  2005. if (flags & SLAB_HWCACHE_ALIGN) {
  2006. unsigned long ralign = cache_line_size();
  2007. while (size <= ralign / 2)
  2008. ralign /= 2;
  2009. align = max(align, ralign);
  2010. }
  2011. if (align < ARCH_SLAB_MINALIGN)
  2012. align = ARCH_SLAB_MINALIGN;
  2013. return ALIGN(align, sizeof(void *));
  2014. }
  2015. static void
  2016. init_kmem_cache_node(struct kmem_cache_node *n, struct kmem_cache *s)
  2017. {
  2018. n->nr_partial = 0;
  2019. spin_lock_init(&n->list_lock);
  2020. INIT_LIST_HEAD(&n->partial);
  2021. #ifdef CONFIG_SLUB_DEBUG
  2022. atomic_long_set(&n->nr_slabs, 0);
  2023. atomic_long_set(&n->total_objects, 0);
  2024. INIT_LIST_HEAD(&n->full);
  2025. #endif
  2026. }
  2027. static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
  2028. {
  2029. BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
  2030. SLUB_PAGE_SHIFT * sizeof(struct kmem_cache_cpu));
  2031. /*
  2032. * Must align to double word boundary for the double cmpxchg
  2033. * instructions to work; see __pcpu_double_call_return_bool().
  2034. */
  2035. s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
  2036. 2 * sizeof(void *));
  2037. if (!s->cpu_slab)
  2038. return 0;
  2039. init_kmem_cache_cpus(s);
  2040. return 1;
  2041. }
  2042. static struct kmem_cache *kmem_cache_node;
  2043. /*
  2044. * No kmalloc_node yet so do it by hand. We know that this is the first
  2045. * slab on the node for this slabcache. There are no concurrent accesses
  2046. * possible.
  2047. *
  2048. * Note that this function only works on the kmalloc_node_cache
  2049. * when allocating for the kmalloc_node_cache. This is used for bootstrapping
  2050. * memory on a fresh node that has no slab structures yet.
  2051. */
  2052. static void early_kmem_cache_node_alloc(int node)
  2053. {
  2054. struct page *page;
  2055. struct kmem_cache_node *n;
  2056. unsigned long flags;
  2057. BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
  2058. page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
  2059. BUG_ON(!page);
  2060. if (page_to_nid(page) != node) {
  2061. printk(KERN_ERR "SLUB: Unable to allocate memory from "
  2062. "node %d\n", node);
  2063. printk(KERN_ERR "SLUB: Allocating a useless per node structure "
  2064. "in order to be able to continue\n");
  2065. }
  2066. n = page->freelist;
  2067. BUG_ON(!n);
  2068. page->freelist = get_freepointer(kmem_cache_node, n);
  2069. page->inuse++;
  2070. kmem_cache_node->node[node] = n;
  2071. #ifdef CONFIG_SLUB_DEBUG
  2072. init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
  2073. init_tracking(kmem_cache_node, n);
  2074. #endif
  2075. init_kmem_cache_node(n, kmem_cache_node);
  2076. inc_slabs_node(kmem_cache_node, node, page->objects);
  2077. /*
  2078. * lockdep requires consistent irq usage for each lock
  2079. * so even though there cannot be a race this early in
  2080. * the boot sequence, we still disable irqs.
  2081. */
  2082. local_irq_save(flags);
  2083. add_partial(n, page, 0);
  2084. local_irq_restore(flags);
  2085. }
  2086. static void free_kmem_cache_nodes(struct kmem_cache *s)
  2087. {
  2088. int node;
  2089. for_each_node_state(node, N_NORMAL_MEMORY) {
  2090. struct kmem_cache_node *n = s->node[node];
  2091. if (n)
  2092. kmem_cache_free(kmem_cache_node, n);
  2093. s->node[node] = NULL;
  2094. }
  2095. }
  2096. static int init_kmem_cache_nodes(struct kmem_cache *s)
  2097. {
  2098. int node;
  2099. for_each_node_state(node, N_NORMAL_MEMORY) {
  2100. struct kmem_cache_node *n;
  2101. if (slab_state == DOWN) {
  2102. early_kmem_cache_node_alloc(node);
  2103. continue;
  2104. }
  2105. n = kmem_cache_alloc_node(kmem_cache_node,
  2106. GFP_KERNEL, node);
  2107. if (!n) {
  2108. free_kmem_cache_nodes(s);
  2109. return 0;
  2110. }
  2111. s->node[node] = n;
  2112. init_kmem_cache_node(n, s);
  2113. }
  2114. return 1;
  2115. }
  2116. static void set_min_partial(struct kmem_cache *s, unsigned long min)
  2117. {
  2118. if (min < MIN_PARTIAL)
  2119. min = MIN_PARTIAL;
  2120. else if (min > MAX_PARTIAL)
  2121. min = MAX_PARTIAL;
  2122. s->min_partial = min;
  2123. }
  2124. /*
  2125. * calculate_sizes() determines the order and the distribution of data within
  2126. * a slab object.
  2127. */
  2128. static int calculate_sizes(struct kmem_cache *s, int forced_order)
  2129. {
  2130. unsigned long flags = s->flags;
  2131. unsigned long size = s->objsize;
  2132. unsigned long align = s->align;
  2133. int order;
  2134. /*
  2135. * Round up object size to the next word boundary. We can only
  2136. * place the free pointer at word boundaries and this determines
  2137. * the possible location of the free pointer.
  2138. */
  2139. size = ALIGN(size, sizeof(void *));
  2140. #ifdef CONFIG_SLUB_DEBUG
  2141. /*
  2142. * Determine if we can poison the object itself. If the user of
  2143. * the slab may touch the object after free or before allocation
  2144. * then we should never poison the object itself.
  2145. */
  2146. if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
  2147. !s->ctor)
  2148. s->flags |= __OBJECT_POISON;
  2149. else
  2150. s->flags &= ~__OBJECT_POISON;
  2151. /*
  2152. * If we are Redzoning then check if there is some space between the
  2153. * end of the object and the free pointer. If not then add an
  2154. * additional word to have some bytes to store Redzone information.
  2155. */
  2156. if ((flags & SLAB_RED_ZONE) && size == s->objsize)
  2157. size += sizeof(void *);
  2158. #endif
  2159. /*
  2160. * With that we have determined the number of bytes in actual use
  2161. * by the object. This is the potential offset to the free pointer.
  2162. */
  2163. s->inuse = size;
  2164. if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
  2165. s->ctor)) {
  2166. /*
  2167. * Relocate free pointer after the object if it is not
  2168. * permitted to overwrite the first word of the object on
  2169. * kmem_cache_free.
  2170. *
  2171. * This is the case if we do RCU, have a constructor or
  2172. * destructor or are poisoning the objects.
  2173. */
  2174. s->offset = size;
  2175. size += sizeof(void *);
  2176. }
  2177. #ifdef CONFIG_SLUB_DEBUG
  2178. if (flags & SLAB_STORE_USER)
  2179. /*
  2180. * Need to store information about allocs and frees after
  2181. * the object.
  2182. */
  2183. size += 2 * sizeof(struct track);
  2184. if (flags & SLAB_RED_ZONE)
  2185. /*
  2186. * Add some empty padding so that we can catch
  2187. * overwrites from earlier objects rather than let
  2188. * tracking information or the free pointer be
  2189. * corrupted if a user writes before the start
  2190. * of the object.
  2191. */
  2192. size += sizeof(void *);
  2193. #endif
  2194. /*
  2195. * Determine the alignment based on various parameters that the
  2196. * user specified and the dynamic determination of cache line size
  2197. * on bootup.
  2198. */
  2199. align = calculate_alignment(flags, align, s->objsize);
  2200. s->align = align;
  2201. /*
  2202. * SLUB stores one object immediately after another beginning from
  2203. * offset 0. In order to align the objects we have to simply size
  2204. * each object to conform to the alignment.
  2205. */
  2206. size = ALIGN(size, align);
  2207. s->size = size;
  2208. if (forced_order >= 0)
  2209. order = forced_order;
  2210. else
  2211. order = calculate_order(size, s->reserved);
  2212. if (order < 0)
  2213. return 0;
  2214. s->allocflags = 0;
  2215. if (order)
  2216. s->allocflags |= __GFP_COMP;
  2217. if (s->flags & SLAB_CACHE_DMA)
  2218. s->allocflags |= SLUB_DMA;
  2219. if (s->flags & SLAB_RECLAIM_ACCOUNT)
  2220. s->allocflags |= __GFP_RECLAIMABLE;
  2221. /*
  2222. * Determine the number of objects per slab
  2223. */
  2224. s->oo = oo_make(order, size, s->reserved);
  2225. s->min = oo_make(get_order(size), size, s->reserved);
  2226. if (oo_objects(s->oo) > oo_objects(s->max))
  2227. s->max = s->oo;
  2228. return !!oo_objects(s->oo);
  2229. }
  2230. static int kmem_cache_open(struct kmem_cache *s,
  2231. const char *name, size_t size,
  2232. size_t align, unsigned long flags,
  2233. void (*ctor)(void *))
  2234. {
  2235. memset(s, 0, kmem_size);
  2236. s->name = name;
  2237. s->ctor = ctor;
  2238. s->objsize = size;
  2239. s->align = align;
  2240. s->flags = kmem_cache_flags(size, flags, name, ctor);
  2241. s->reserved = 0;
  2242. if (need_reserve_slab_rcu && (s->flags & SLAB_DESTROY_BY_RCU))
  2243. s->reserved = sizeof(struct rcu_head);
  2244. if (!calculate_sizes(s, -1))
  2245. goto error;
  2246. if (disable_higher_order_debug) {
  2247. /*
  2248. * Disable debugging flags that store metadata if the min slab
  2249. * order increased.
  2250. */
  2251. if (get_order(s->size) > get_order(s->objsize)) {
  2252. s->flags &= ~DEBUG_METADATA_FLAGS;
  2253. s->offset = 0;
  2254. if (!calculate_sizes(s, -1))
  2255. goto error;
  2256. }
  2257. }
  2258. /*
  2259. * The larger the object size is, the more pages we want on the partial
  2260. * list to avoid pounding the page allocator excessively.
  2261. */
  2262. set_min_partial(s, ilog2(s->size));
  2263. s->refcount = 1;
  2264. #ifdef CONFIG_NUMA
  2265. s->remote_node_defrag_ratio = 1000;
  2266. #endif
  2267. if (!init_kmem_cache_nodes(s))
  2268. goto error;
  2269. if (alloc_kmem_cache_cpus(s))
  2270. return 1;
  2271. free_kmem_cache_nodes(s);
  2272. error:
  2273. if (flags & SLAB_PANIC)
  2274. panic("Cannot create slab %s size=%lu realsize=%u "
  2275. "order=%u offset=%u flags=%lx\n",
  2276. s->name, (unsigned long)size, s->size, oo_order(s->oo),
  2277. s->offset, flags);
  2278. return 0;
  2279. }
  2280. /*
  2281. * Determine the size of a slab object
  2282. */
  2283. unsigned int kmem_cache_size(struct kmem_cache *s)
  2284. {
  2285. return s->objsize;
  2286. }
  2287. EXPORT_SYMBOL(kmem_cache_size);
  2288. static void list_slab_objects(struct kmem_cache *s, struct page *page,
  2289. const char *text)
  2290. {
  2291. #ifdef CONFIG_SLUB_DEBUG
  2292. void *addr = page_address(page);
  2293. void *p;
  2294. unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) *
  2295. sizeof(long), GFP_ATOMIC);
  2296. if (!map)
  2297. return;
  2298. slab_err(s, page, "%s", text);
  2299. slab_lock(page);
  2300. get_map(s, page, map);
  2301. for_each_object(p, s, addr, page->objects) {
  2302. if (!test_bit(slab_index(p, s, addr), map)) {
  2303. printk(KERN_ERR "INFO: Object 0x%p @offset=%tu\n",
  2304. p, p - addr);
  2305. print_tracking(s, p);
  2306. }
  2307. }
  2308. slab_unlock(page);
  2309. kfree(map);
  2310. #endif
  2311. }
  2312. /*
  2313. * Attempt to free all partial slabs on a node.
  2314. */
  2315. static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
  2316. {
  2317. unsigned long flags;
  2318. struct page *page, *h;
  2319. spin_lock_irqsave(&n->list_lock, flags);
  2320. list_for_each_entry_safe(page, h, &n->partial, lru) {
  2321. if (!page->inuse) {
  2322. __remove_partial(n, page);
  2323. discard_slab(s, page);
  2324. } else {
  2325. list_slab_objects(s, page,
  2326. "Objects remaining on kmem_cache_close()");
  2327. }
  2328. }
  2329. spin_unlock_irqrestore(&n->list_lock, flags);
  2330. }
  2331. /*
  2332. * Release all resources used by a slab cache.
  2333. */
  2334. static inline int kmem_cache_close(struct kmem_cache *s)
  2335. {
  2336. int node;
  2337. flush_all(s);
  2338. free_percpu(s->cpu_slab);
  2339. /* Attempt to free all objects */
  2340. for_each_node_state(node, N_NORMAL_MEMORY) {
  2341. struct kmem_cache_node *n = get_node(s, node);
  2342. free_partial(s, n);
  2343. if (n->nr_partial || slabs_node(s, node))
  2344. return 1;
  2345. }
  2346. free_kmem_cache_nodes(s);
  2347. return 0;
  2348. }
  2349. /*
  2350. * Close a cache and release the kmem_cache structure
  2351. * (must be used for caches created using kmem_cache_create)
  2352. */
  2353. void kmem_cache_destroy(struct kmem_cache *s)
  2354. {
  2355. down_write(&slub_lock);
  2356. s->refcount--;
  2357. if (!s->refcount) {
  2358. list_del(&s->list);
  2359. if (kmem_cache_close(s)) {
  2360. printk(KERN_ERR "SLUB %s: %s called for cache that "
  2361. "still has objects.\n", s->name, __func__);
  2362. dump_stack();
  2363. }
  2364. if (s->flags & SLAB_DESTROY_BY_RCU)
  2365. rcu_barrier();
  2366. sysfs_slab_remove(s);
  2367. }
  2368. up_write(&slub_lock);
  2369. }
  2370. EXPORT_SYMBOL(kmem_cache_destroy);
  2371. /********************************************************************
  2372. * Kmalloc subsystem
  2373. *******************************************************************/
  2374. struct kmem_cache *kmalloc_caches[SLUB_PAGE_SHIFT];
  2375. EXPORT_SYMBOL(kmalloc_caches);
  2376. static struct kmem_cache *kmem_cache;
  2377. #ifdef CONFIG_ZONE_DMA
  2378. static struct kmem_cache *kmalloc_dma_caches[SLUB_PAGE_SHIFT];
  2379. #endif
  2380. static int __init setup_slub_min_order(char *str)
  2381. {
  2382. get_option(&str, &slub_min_order);
  2383. return 1;
  2384. }
  2385. __setup("slub_min_order=", setup_slub_min_order);
  2386. static int __init setup_slub_max_order(char *str)
  2387. {
  2388. get_option(&str, &slub_max_order);
  2389. slub_max_order = min(slub_max_order, MAX_ORDER - 1);
  2390. return 1;
  2391. }
  2392. __setup("slub_max_order=", setup_slub_max_order);
  2393. static int __init setup_slub_min_objects(char *str)
  2394. {
  2395. get_option(&str, &slub_min_objects);
  2396. return 1;
  2397. }
  2398. __setup("slub_min_objects=", setup_slub_min_objects);
  2399. static int __init setup_slub_nomerge(char *str)
  2400. {
  2401. slub_nomerge = 1;
  2402. return 1;
  2403. }
  2404. __setup("slub_nomerge", setup_slub_nomerge);
  2405. static struct kmem_cache *__init create_kmalloc_cache(const char *name,
  2406. int size, unsigned int flags)
  2407. {
  2408. struct kmem_cache *s;
  2409. s = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
  2410. /*
  2411. * This function is called with IRQs disabled during early-boot on
  2412. * single CPU so there's no need to take slub_lock here.
  2413. */
  2414. if (!kmem_cache_open(s, name, size, ARCH_KMALLOC_MINALIGN,
  2415. flags, NULL))
  2416. goto panic;
  2417. list_add(&s->list, &slab_caches);
  2418. return s;
  2419. panic:
  2420. panic("Creation of kmalloc slab %s size=%d failed.\n", name, size);
  2421. return NULL;
  2422. }
  2423. /*
  2424. * Conversion table for small slabs sizes / 8 to the index in the
  2425. * kmalloc array. This is necessary for slabs < 192 since we have non power
  2426. * of two cache sizes there. The size of larger slabs can be determined using
  2427. * fls.
  2428. */
  2429. static s8 size_index[24] = {
  2430. 3, /* 8 */
  2431. 4, /* 16 */
  2432. 5, /* 24 */
  2433. 5, /* 32 */
  2434. 6, /* 40 */
  2435. 6, /* 48 */
  2436. 6, /* 56 */
  2437. 6, /* 64 */
  2438. 1, /* 72 */
  2439. 1, /* 80 */
  2440. 1, /* 88 */
  2441. 1, /* 96 */
  2442. 7, /* 104 */
  2443. 7, /* 112 */
  2444. 7, /* 120 */
  2445. 7, /* 128 */
  2446. 2, /* 136 */
  2447. 2, /* 144 */
  2448. 2, /* 152 */
  2449. 2, /* 160 */
  2450. 2, /* 168 */
  2451. 2, /* 176 */
  2452. 2, /* 184 */
  2453. 2 /* 192 */
  2454. };
  2455. static inline int size_index_elem(size_t bytes)
  2456. {
  2457. return (bytes - 1) / 8;
  2458. }
  2459. static struct kmem_cache *get_slab(size_t size, gfp_t flags)
  2460. {
  2461. int index;
  2462. if (size <= 192) {
  2463. if (!size)
  2464. return ZERO_SIZE_PTR;
  2465. index = size_index[size_index_elem(size)];
  2466. } else
  2467. index = fls(size - 1);
  2468. #ifdef CONFIG_ZONE_DMA
  2469. if (unlikely((flags & SLUB_DMA)))
  2470. return kmalloc_dma_caches[index];
  2471. #endif
  2472. return kmalloc_caches[index];
  2473. }
  2474. void *__kmalloc(size_t size, gfp_t flags)
  2475. {
  2476. struct kmem_cache *s;
  2477. void *ret;
  2478. if (unlikely(size > SLUB_MAX_SIZE))
  2479. return kmalloc_large(size, flags);
  2480. s = get_slab(size, flags);
  2481. if (unlikely(ZERO_OR_NULL_PTR(s)))
  2482. return s;
  2483. ret = slab_alloc(s, flags, NUMA_NO_NODE, _RET_IP_);
  2484. trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
  2485. return ret;
  2486. }
  2487. EXPORT_SYMBOL(__kmalloc);
  2488. #ifdef CONFIG_NUMA
  2489. static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
  2490. {
  2491. struct page *page;
  2492. void *ptr = NULL;
  2493. flags |= __GFP_COMP | __GFP_NOTRACK;
  2494. page = alloc_pages_node(node, flags, get_order(size));
  2495. if (page)
  2496. ptr = page_address(page);
  2497. kmemleak_alloc(ptr, size, 1, flags);
  2498. return ptr;
  2499. }
  2500. void *__kmalloc_node(size_t size, gfp_t flags, int node)
  2501. {
  2502. struct kmem_cache *s;
  2503. void *ret;
  2504. if (unlikely(size > SLUB_MAX_SIZE)) {
  2505. ret = kmalloc_large_node(size, flags, node);
  2506. trace_kmalloc_node(_RET_IP_, ret,
  2507. size, PAGE_SIZE << get_order(size),
  2508. flags, node);
  2509. return ret;
  2510. }
  2511. s = get_slab(size, flags);
  2512. if (unlikely(ZERO_OR_NULL_PTR(s)))
  2513. return s;
  2514. ret = slab_alloc(s, flags, node, _RET_IP_);
  2515. trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
  2516. return ret;
  2517. }
  2518. EXPORT_SYMBOL(__kmalloc_node);
  2519. #endif
  2520. size_t ksize(const void *object)
  2521. {
  2522. struct page *page;
  2523. if (unlikely(object == ZERO_SIZE_PTR))
  2524. return 0;
  2525. page = virt_to_head_page(object);
  2526. if (unlikely(!PageSlab(page))) {
  2527. WARN_ON(!PageCompound(page));
  2528. return PAGE_SIZE << compound_order(page);
  2529. }
  2530. return slab_ksize(page->slab);
  2531. }
  2532. EXPORT_SYMBOL(ksize);
  2533. #ifdef CONFIG_SLUB_DEBUG
  2534. bool verify_mem_not_deleted(const void *x)
  2535. {
  2536. struct page *page;
  2537. void *object = (void *)x;
  2538. unsigned long flags;
  2539. bool rv;
  2540. if (unlikely(ZERO_OR_NULL_PTR(x)))
  2541. return false;
  2542. local_irq_save(flags);
  2543. page = virt_to_head_page(x);
  2544. if (unlikely(!PageSlab(page))) {
  2545. /* maybe it was from stack? */
  2546. rv = true;
  2547. goto out_unlock;
  2548. }
  2549. slab_lock(page);
  2550. if (on_freelist(page->slab, page, object)) {
  2551. object_err(page->slab, page, object, "Object is on free-list");
  2552. rv = false;
  2553. } else {
  2554. rv = true;
  2555. }
  2556. slab_unlock(page);
  2557. out_unlock:
  2558. local_irq_restore(flags);
  2559. return rv;
  2560. }
  2561. EXPORT_SYMBOL(verify_mem_not_deleted);
  2562. #endif
  2563. void kfree(const void *x)
  2564. {
  2565. struct page *page;
  2566. void *object = (void *)x;
  2567. trace_kfree(_RET_IP_, x);
  2568. if (unlikely(ZERO_OR_NULL_PTR(x)))
  2569. return;
  2570. page = virt_to_head_page(x);
  2571. if (unlikely(!PageSlab(page))) {
  2572. BUG_ON(!PageCompound(page));
  2573. kmemleak_free(x);
  2574. put_page(page);
  2575. return;
  2576. }
  2577. slab_free(page->slab, page, object, _RET_IP_);
  2578. }
  2579. EXPORT_SYMBOL(kfree);
  2580. /*
  2581. * kmem_cache_shrink removes empty slabs from the partial lists and sorts
  2582. * the remaining slabs by the number of items in use. The slabs with the
  2583. * most items in use come first. New allocations will then fill those up
  2584. * and thus they can be removed from the partial lists.
  2585. *
  2586. * The slabs with the least items are placed last. This results in them
  2587. * being allocated from last increasing the chance that the last objects
  2588. * are freed in them.
  2589. */
  2590. int kmem_cache_shrink(struct kmem_cache *s)
  2591. {
  2592. int node;
  2593. int i;
  2594. struct kmem_cache_node *n;
  2595. struct page *page;
  2596. struct page *t;
  2597. int objects = oo_objects(s->max);
  2598. struct list_head *slabs_by_inuse =
  2599. kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL);
  2600. unsigned long flags;
  2601. if (!slabs_by_inuse)
  2602. return -ENOMEM;
  2603. flush_all(s);
  2604. for_each_node_state(node, N_NORMAL_MEMORY) {
  2605. n = get_node(s, node);
  2606. if (!n->nr_partial)
  2607. continue;
  2608. for (i = 0; i < objects; i++)
  2609. INIT_LIST_HEAD(slabs_by_inuse + i);
  2610. spin_lock_irqsave(&n->list_lock, flags);
  2611. /*
  2612. * Build lists indexed by the items in use in each slab.
  2613. *
  2614. * Note that concurrent frees may occur while we hold the
  2615. * list_lock. page->inuse here is the upper limit.
  2616. */
  2617. list_for_each_entry_safe(page, t, &n->partial, lru) {
  2618. if (!page->inuse && slab_trylock(page)) {
  2619. /*
  2620. * Must hold slab lock here because slab_free
  2621. * may have freed the last object and be
  2622. * waiting to release the slab.
  2623. */
  2624. __remove_partial(n, page);
  2625. slab_unlock(page);
  2626. discard_slab(s, page);
  2627. } else {
  2628. list_move(&page->lru,
  2629. slabs_by_inuse + page->inuse);
  2630. }
  2631. }
  2632. /*
  2633. * Rebuild the partial list with the slabs filled up most
  2634. * first and the least used slabs at the end.
  2635. */
  2636. for (i = objects - 1; i >= 0; i--)
  2637. list_splice(slabs_by_inuse + i, n->partial.prev);
  2638. spin_unlock_irqrestore(&n->list_lock, flags);
  2639. }
  2640. kfree(slabs_by_inuse);
  2641. return 0;
  2642. }
  2643. EXPORT_SYMBOL(kmem_cache_shrink);
  2644. #if defined(CONFIG_MEMORY_HOTPLUG)
  2645. static int slab_mem_going_offline_callback(void *arg)
  2646. {
  2647. struct kmem_cache *s;
  2648. down_read(&slub_lock);
  2649. list_for_each_entry(s, &slab_caches, list)
  2650. kmem_cache_shrink(s);
  2651. up_read(&slub_lock);
  2652. return 0;
  2653. }
  2654. static void slab_mem_offline_callback(void *arg)
  2655. {
  2656. struct kmem_cache_node *n;
  2657. struct kmem_cache *s;
  2658. struct memory_notify *marg = arg;
  2659. int offline_node;
  2660. offline_node = marg->status_change_nid;
  2661. /*
  2662. * If the node still has available memory. we need kmem_cache_node
  2663. * for it yet.
  2664. */
  2665. if (offline_node < 0)
  2666. return;
  2667. down_read(&slub_lock);
  2668. list_for_each_entry(s, &slab_caches, list) {
  2669. n = get_node(s, offline_node);
  2670. if (n) {
  2671. /*
  2672. * if n->nr_slabs > 0, slabs still exist on the node
  2673. * that is going down. We were unable to free them,
  2674. * and offline_pages() function shouldn't call this
  2675. * callback. So, we must fail.
  2676. */
  2677. BUG_ON(slabs_node(s, offline_node));
  2678. s->node[offline_node] = NULL;
  2679. kmem_cache_free(kmem_cache_node, n);
  2680. }
  2681. }
  2682. up_read(&slub_lock);
  2683. }
  2684. static int slab_mem_going_online_callback(void *arg)
  2685. {
  2686. struct kmem_cache_node *n;
  2687. struct kmem_cache *s;
  2688. struct memory_notify *marg = arg;
  2689. int nid = marg->status_change_nid;
  2690. int ret = 0;
  2691. /*
  2692. * If the node's memory is already available, then kmem_cache_node is
  2693. * already created. Nothing to do.
  2694. */
  2695. if (nid < 0)
  2696. return 0;
  2697. /*
  2698. * We are bringing a node online. No memory is available yet. We must
  2699. * allocate a kmem_cache_node structure in order to bring the node
  2700. * online.
  2701. */
  2702. down_read(&slub_lock);
  2703. list_for_each_entry(s, &slab_caches, list) {
  2704. /*
  2705. * XXX: kmem_cache_alloc_node will fallback to other nodes
  2706. * since memory is not yet available from the node that
  2707. * is brought up.
  2708. */
  2709. n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
  2710. if (!n) {
  2711. ret = -ENOMEM;
  2712. goto out;
  2713. }
  2714. init_kmem_cache_node(n, s);
  2715. s->node[nid] = n;
  2716. }
  2717. out:
  2718. up_read(&slub_lock);
  2719. return ret;
  2720. }
  2721. static int slab_memory_callback(struct notifier_block *self,
  2722. unsigned long action, void *arg)
  2723. {
  2724. int ret = 0;
  2725. switch (action) {
  2726. case MEM_GOING_ONLINE:
  2727. ret = slab_mem_going_online_callback(arg);
  2728. break;
  2729. case MEM_GOING_OFFLINE:
  2730. ret = slab_mem_going_offline_callback(arg);
  2731. break;
  2732. case MEM_OFFLINE:
  2733. case MEM_CANCEL_ONLINE:
  2734. slab_mem_offline_callback(arg);
  2735. break;
  2736. case MEM_ONLINE:
  2737. case MEM_CANCEL_OFFLINE:
  2738. break;
  2739. }
  2740. if (ret)
  2741. ret = notifier_from_errno(ret);
  2742. else
  2743. ret = NOTIFY_OK;
  2744. return ret;
  2745. }
  2746. #endif /* CONFIG_MEMORY_HOTPLUG */
  2747. /********************************************************************
  2748. * Basic setup of slabs
  2749. *******************************************************************/
  2750. /*
  2751. * Used for early kmem_cache structures that were allocated using
  2752. * the page allocator
  2753. */
  2754. static void __init kmem_cache_bootstrap_fixup(struct kmem_cache *s)
  2755. {
  2756. int node;
  2757. list_add(&s->list, &slab_caches);
  2758. s->refcount = -1;
  2759. for_each_node_state(node, N_NORMAL_MEMORY) {
  2760. struct kmem_cache_node *n = get_node(s, node);
  2761. struct page *p;
  2762. if (n) {
  2763. list_for_each_entry(p, &n->partial, lru)
  2764. p->slab = s;
  2765. #ifdef CONFIG_SLUB_DEBUG
  2766. list_for_each_entry(p, &n->full, lru)
  2767. p->slab = s;
  2768. #endif
  2769. }
  2770. }
  2771. }
  2772. void __init kmem_cache_init(void)
  2773. {
  2774. int i;
  2775. int caches = 0;
  2776. struct kmem_cache *temp_kmem_cache;
  2777. int order;
  2778. struct kmem_cache *temp_kmem_cache_node;
  2779. unsigned long kmalloc_size;
  2780. kmem_size = offsetof(struct kmem_cache, node) +
  2781. nr_node_ids * sizeof(struct kmem_cache_node *);
  2782. /* Allocate two kmem_caches from the page allocator */
  2783. kmalloc_size = ALIGN(kmem_size, cache_line_size());
  2784. order = get_order(2 * kmalloc_size);
  2785. kmem_cache = (void *)__get_free_pages(GFP_NOWAIT, order);
  2786. /*
  2787. * Must first have the slab cache available for the allocations of the
  2788. * struct kmem_cache_node's. There is special bootstrap code in
  2789. * kmem_cache_open for slab_state == DOWN.
  2790. */
  2791. kmem_cache_node = (void *)kmem_cache + kmalloc_size;
  2792. kmem_cache_open(kmem_cache_node, "kmem_cache_node",
  2793. sizeof(struct kmem_cache_node),
  2794. 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
  2795. hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
  2796. /* Able to allocate the per node structures */
  2797. slab_state = PARTIAL;
  2798. temp_kmem_cache = kmem_cache;
  2799. kmem_cache_open(kmem_cache, "kmem_cache", kmem_size,
  2800. 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
  2801. kmem_cache = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
  2802. memcpy(kmem_cache, temp_kmem_cache, kmem_size);
  2803. /*
  2804. * Allocate kmem_cache_node properly from the kmem_cache slab.
  2805. * kmem_cache_node is separately allocated so no need to
  2806. * update any list pointers.
  2807. */
  2808. temp_kmem_cache_node = kmem_cache_node;
  2809. kmem_cache_node = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
  2810. memcpy(kmem_cache_node, temp_kmem_cache_node, kmem_size);
  2811. kmem_cache_bootstrap_fixup(kmem_cache_node);
  2812. caches++;
  2813. kmem_cache_bootstrap_fixup(kmem_cache);
  2814. caches++;
  2815. /* Free temporary boot structure */
  2816. free_pages((unsigned long)temp_kmem_cache, order);
  2817. /* Now we can use the kmem_cache to allocate kmalloc slabs */
  2818. /*
  2819. * Patch up the size_index table if we have strange large alignment
  2820. * requirements for the kmalloc array. This is only the case for
  2821. * MIPS it seems. The standard arches will not generate any code here.
  2822. *
  2823. * Largest permitted alignment is 256 bytes due to the way we
  2824. * handle the index determination for the smaller caches.
  2825. *
  2826. * Make sure that nothing crazy happens if someone starts tinkering
  2827. * around with ARCH_KMALLOC_MINALIGN
  2828. */
  2829. BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
  2830. (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
  2831. for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
  2832. int elem = size_index_elem(i);
  2833. if (elem >= ARRAY_SIZE(size_index))
  2834. break;
  2835. size_index[elem] = KMALLOC_SHIFT_LOW;
  2836. }
  2837. if (KMALLOC_MIN_SIZE == 64) {
  2838. /*
  2839. * The 96 byte size cache is not used if the alignment
  2840. * is 64 byte.
  2841. */
  2842. for (i = 64 + 8; i <= 96; i += 8)
  2843. size_index[size_index_elem(i)] = 7;
  2844. } else if (KMALLOC_MIN_SIZE == 128) {
  2845. /*
  2846. * The 192 byte sized cache is not used if the alignment
  2847. * is 128 byte. Redirect kmalloc to use the 256 byte cache
  2848. * instead.
  2849. */
  2850. for (i = 128 + 8; i <= 192; i += 8)
  2851. size_index[size_index_elem(i)] = 8;
  2852. }
  2853. /* Caches that are not of the two-to-the-power-of size */
  2854. if (KMALLOC_MIN_SIZE <= 32) {
  2855. kmalloc_caches[1] = create_kmalloc_cache("kmalloc-96", 96, 0);
  2856. caches++;
  2857. }
  2858. if (KMALLOC_MIN_SIZE <= 64) {
  2859. kmalloc_caches[2] = create_kmalloc_cache("kmalloc-192", 192, 0);
  2860. caches++;
  2861. }
  2862. for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
  2863. kmalloc_caches[i] = create_kmalloc_cache("kmalloc", 1 << i, 0);
  2864. caches++;
  2865. }
  2866. slab_state = UP;
  2867. /* Provide the correct kmalloc names now that the caches are up */
  2868. if (KMALLOC_MIN_SIZE <= 32) {
  2869. kmalloc_caches[1]->name = kstrdup(kmalloc_caches[1]->name, GFP_NOWAIT);
  2870. BUG_ON(!kmalloc_caches[1]->name);
  2871. }
  2872. if (KMALLOC_MIN_SIZE <= 64) {
  2873. kmalloc_caches[2]->name = kstrdup(kmalloc_caches[2]->name, GFP_NOWAIT);
  2874. BUG_ON(!kmalloc_caches[2]->name);
  2875. }
  2876. for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
  2877. char *s = kasprintf(GFP_NOWAIT, "kmalloc-%d", 1 << i);
  2878. BUG_ON(!s);
  2879. kmalloc_caches[i]->name = s;
  2880. }
  2881. #ifdef CONFIG_SMP
  2882. register_cpu_notifier(&slab_notifier);
  2883. #endif
  2884. #ifdef CONFIG_ZONE_DMA
  2885. for (i = 0; i < SLUB_PAGE_SHIFT; i++) {
  2886. struct kmem_cache *s = kmalloc_caches[i];
  2887. if (s && s->size) {
  2888. char *name = kasprintf(GFP_NOWAIT,
  2889. "dma-kmalloc-%d", s->objsize);
  2890. BUG_ON(!name);
  2891. kmalloc_dma_caches[i] = create_kmalloc_cache(name,
  2892. s->objsize, SLAB_CACHE_DMA);
  2893. }
  2894. }
  2895. #endif
  2896. printk(KERN_INFO
  2897. "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
  2898. " CPUs=%d, Nodes=%d\n",
  2899. caches, cache_line_size(),
  2900. slub_min_order, slub_max_order, slub_min_objects,
  2901. nr_cpu_ids, nr_node_ids);
  2902. }
  2903. void __init kmem_cache_init_late(void)
  2904. {
  2905. }
  2906. /*
  2907. * Find a mergeable slab cache
  2908. */
  2909. static int slab_unmergeable(struct kmem_cache *s)
  2910. {
  2911. if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
  2912. return 1;
  2913. if (s->ctor)
  2914. return 1;
  2915. /*
  2916. * We may have set a slab to be unmergeable during bootstrap.
  2917. */
  2918. if (s->refcount < 0)
  2919. return 1;
  2920. return 0;
  2921. }
  2922. static struct kmem_cache *find_mergeable(size_t size,
  2923. size_t align, unsigned long flags, const char *name,
  2924. void (*ctor)(void *))
  2925. {
  2926. struct kmem_cache *s;
  2927. if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
  2928. return NULL;
  2929. if (ctor)
  2930. return NULL;
  2931. size = ALIGN(size, sizeof(void *));
  2932. align = calculate_alignment(flags, align, size);
  2933. size = ALIGN(size, align);
  2934. flags = kmem_cache_flags(size, flags, name, NULL);
  2935. list_for_each_entry(s, &slab_caches, list) {
  2936. if (slab_unmergeable(s))
  2937. continue;
  2938. if (size > s->size)
  2939. continue;
  2940. if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
  2941. continue;
  2942. /*
  2943. * Check if alignment is compatible.
  2944. * Courtesy of Adrian Drzewiecki
  2945. */
  2946. if ((s->size & ~(align - 1)) != s->size)
  2947. continue;
  2948. if (s->size - size >= sizeof(void *))
  2949. continue;
  2950. return s;
  2951. }
  2952. return NULL;
  2953. }
  2954. struct kmem_cache *kmem_cache_create(const char *name, size_t size,
  2955. size_t align, unsigned long flags, void (*ctor)(void *))
  2956. {
  2957. struct kmem_cache *s;
  2958. char *n;
  2959. if (WARN_ON(!name))
  2960. return NULL;
  2961. down_write(&slub_lock);
  2962. s = find_mergeable(size, align, flags, name, ctor);
  2963. if (s) {
  2964. s->refcount++;
  2965. /*
  2966. * Adjust the object sizes so that we clear
  2967. * the complete object on kzalloc.
  2968. */
  2969. s->objsize = max(s->objsize, (int)size);
  2970. s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
  2971. if (sysfs_slab_alias(s, name)) {
  2972. s->refcount--;
  2973. goto err;
  2974. }
  2975. up_write(&slub_lock);
  2976. return s;
  2977. }
  2978. n = kstrdup(name, GFP_KERNEL);
  2979. if (!n)
  2980. goto err;
  2981. s = kmalloc(kmem_size, GFP_KERNEL);
  2982. if (s) {
  2983. if (kmem_cache_open(s, n,
  2984. size, align, flags, ctor)) {
  2985. list_add(&s->list, &slab_caches);
  2986. if (sysfs_slab_add(s)) {
  2987. list_del(&s->list);
  2988. kfree(n);
  2989. kfree(s);
  2990. goto err;
  2991. }
  2992. up_write(&slub_lock);
  2993. return s;
  2994. }
  2995. kfree(n);
  2996. kfree(s);
  2997. }
  2998. err:
  2999. up_write(&slub_lock);
  3000. if (flags & SLAB_PANIC)
  3001. panic("Cannot create slabcache %s\n", name);
  3002. else
  3003. s = NULL;
  3004. return s;
  3005. }
  3006. EXPORT_SYMBOL(kmem_cache_create);
  3007. #ifdef CONFIG_SMP
  3008. /*
  3009. * Use the cpu notifier to insure that the cpu slabs are flushed when
  3010. * necessary.
  3011. */
  3012. static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
  3013. unsigned long action, void *hcpu)
  3014. {
  3015. long cpu = (long)hcpu;
  3016. struct kmem_cache *s;
  3017. unsigned long flags;
  3018. switch (action) {
  3019. case CPU_UP_CANCELED:
  3020. case CPU_UP_CANCELED_FROZEN:
  3021. case CPU_DEAD:
  3022. case CPU_DEAD_FROZEN:
  3023. down_read(&slub_lock);
  3024. list_for_each_entry(s, &slab_caches, list) {
  3025. local_irq_save(flags);
  3026. __flush_cpu_slab(s, cpu);
  3027. local_irq_restore(flags);
  3028. }
  3029. up_read(&slub_lock);
  3030. break;
  3031. default:
  3032. break;
  3033. }
  3034. return NOTIFY_OK;
  3035. }
  3036. static struct notifier_block __cpuinitdata slab_notifier = {
  3037. .notifier_call = slab_cpuup_callback
  3038. };
  3039. #endif
  3040. void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
  3041. {
  3042. struct kmem_cache *s;
  3043. void *ret;
  3044. if (unlikely(size > SLUB_MAX_SIZE))
  3045. return kmalloc_large(size, gfpflags);
  3046. s = get_slab(size, gfpflags);
  3047. if (unlikely(ZERO_OR_NULL_PTR(s)))
  3048. return s;
  3049. ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, caller);
  3050. /* Honor the call site pointer we received. */
  3051. trace_kmalloc(caller, ret, size, s->size, gfpflags);
  3052. return ret;
  3053. }
  3054. #ifdef CONFIG_NUMA
  3055. void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
  3056. int node, unsigned long caller)
  3057. {
  3058. struct kmem_cache *s;
  3059. void *ret;
  3060. if (unlikely(size > SLUB_MAX_SIZE)) {
  3061. ret = kmalloc_large_node(size, gfpflags, node);
  3062. trace_kmalloc_node(caller, ret,
  3063. size, PAGE_SIZE << get_order(size),
  3064. gfpflags, node);
  3065. return ret;
  3066. }
  3067. s = get_slab(size, gfpflags);
  3068. if (unlikely(ZERO_OR_NULL_PTR(s)))
  3069. return s;
  3070. ret = slab_alloc(s, gfpflags, node, caller);
  3071. /* Honor the call site pointer we received. */
  3072. trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
  3073. return ret;
  3074. }
  3075. #endif
  3076. #ifdef CONFIG_SYSFS
  3077. static int count_inuse(struct page *page)
  3078. {
  3079. return page->inuse;
  3080. }
  3081. static int count_total(struct page *page)
  3082. {
  3083. return page->objects;
  3084. }
  3085. #endif
  3086. #ifdef CONFIG_SLUB_DEBUG
  3087. static int validate_slab(struct kmem_cache *s, struct page *page,
  3088. unsigned long *map)
  3089. {
  3090. void *p;
  3091. void *addr = page_address(page);
  3092. if (!check_slab(s, page) ||
  3093. !on_freelist(s, page, NULL))
  3094. return 0;
  3095. /* Now we know that a valid freelist exists */
  3096. bitmap_zero(map, page->objects);
  3097. get_map(s, page, map);
  3098. for_each_object(p, s, addr, page->objects) {
  3099. if (test_bit(slab_index(p, s, addr), map))
  3100. if (!check_object(s, page, p, SLUB_RED_INACTIVE))
  3101. return 0;
  3102. }
  3103. for_each_object(p, s, addr, page->objects)
  3104. if (!test_bit(slab_index(p, s, addr), map))
  3105. if (!check_object(s, page, p, SLUB_RED_ACTIVE))
  3106. return 0;
  3107. return 1;
  3108. }
  3109. static void validate_slab_slab(struct kmem_cache *s, struct page *page,
  3110. unsigned long *map)
  3111. {
  3112. if (slab_trylock(page)) {
  3113. validate_slab(s, page, map);
  3114. slab_unlock(page);
  3115. } else
  3116. printk(KERN_INFO "SLUB %s: Skipped busy slab 0x%p\n",
  3117. s->name, page);
  3118. }
  3119. static int validate_slab_node(struct kmem_cache *s,
  3120. struct kmem_cache_node *n, unsigned long *map)
  3121. {
  3122. unsigned long count = 0;
  3123. struct page *page;
  3124. unsigned long flags;
  3125. spin_lock_irqsave(&n->list_lock, flags);
  3126. list_for_each_entry(page, &n->partial, lru) {
  3127. validate_slab_slab(s, page, map);
  3128. count++;
  3129. }
  3130. if (count != n->nr_partial)
  3131. printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
  3132. "counter=%ld\n", s->name, count, n->nr_partial);
  3133. if (!(s->flags & SLAB_STORE_USER))
  3134. goto out;
  3135. list_for_each_entry(page, &n->full, lru) {
  3136. validate_slab_slab(s, page, map);
  3137. count++;
  3138. }
  3139. if (count != atomic_long_read(&n->nr_slabs))
  3140. printk(KERN_ERR "SLUB: %s %ld slabs counted but "
  3141. "counter=%ld\n", s->name, count,
  3142. atomic_long_read(&n->nr_slabs));
  3143. out:
  3144. spin_unlock_irqrestore(&n->list_lock, flags);
  3145. return count;
  3146. }
  3147. static long validate_slab_cache(struct kmem_cache *s)
  3148. {
  3149. int node;
  3150. unsigned long count = 0;
  3151. unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
  3152. sizeof(unsigned long), GFP_KERNEL);
  3153. if (!map)
  3154. return -ENOMEM;
  3155. flush_all(s);
  3156. for_each_node_state(node, N_NORMAL_MEMORY) {
  3157. struct kmem_cache_node *n = get_node(s, node);
  3158. count += validate_slab_node(s, n, map);
  3159. }
  3160. kfree(map);
  3161. return count;
  3162. }
  3163. /*
  3164. * Generate lists of code addresses where slabcache objects are allocated
  3165. * and freed.
  3166. */
  3167. struct location {
  3168. unsigned long count;
  3169. unsigned long addr;
  3170. long long sum_time;
  3171. long min_time;
  3172. long max_time;
  3173. long min_pid;
  3174. long max_pid;
  3175. DECLARE_BITMAP(cpus, NR_CPUS);
  3176. nodemask_t nodes;
  3177. };
  3178. struct loc_track {
  3179. unsigned long max;
  3180. unsigned long count;
  3181. struct location *loc;
  3182. };
  3183. static void free_loc_track(struct loc_track *t)
  3184. {
  3185. if (t->max)
  3186. free_pages((unsigned long)t->loc,
  3187. get_order(sizeof(struct location) * t->max));
  3188. }
  3189. static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
  3190. {
  3191. struct location *l;
  3192. int order;
  3193. order = get_order(sizeof(struct location) * max);
  3194. l = (void *)__get_free_pages(flags, order);
  3195. if (!l)
  3196. return 0;
  3197. if (t->count) {
  3198. memcpy(l, t->loc, sizeof(struct location) * t->count);
  3199. free_loc_track(t);
  3200. }
  3201. t->max = max;
  3202. t->loc = l;
  3203. return 1;
  3204. }
  3205. static int add_location(struct loc_track *t, struct kmem_cache *s,
  3206. const struct track *track)
  3207. {
  3208. long start, end, pos;
  3209. struct location *l;
  3210. unsigned long caddr;
  3211. unsigned long age = jiffies - track->when;
  3212. start = -1;
  3213. end = t->count;
  3214. for ( ; ; ) {
  3215. pos = start + (end - start + 1) / 2;
  3216. /*
  3217. * There is nothing at "end". If we end up there
  3218. * we need to add something to before end.
  3219. */
  3220. if (pos == end)
  3221. break;
  3222. caddr = t->loc[pos].addr;
  3223. if (track->addr == caddr) {
  3224. l = &t->loc[pos];
  3225. l->count++;
  3226. if (track->when) {
  3227. l->sum_time += age;
  3228. if (age < l->min_time)
  3229. l->min_time = age;
  3230. if (age > l->max_time)
  3231. l->max_time = age;
  3232. if (track->pid < l->min_pid)
  3233. l->min_pid = track->pid;
  3234. if (track->pid > l->max_pid)
  3235. l->max_pid = track->pid;
  3236. cpumask_set_cpu(track->cpu,
  3237. to_cpumask(l->cpus));
  3238. }
  3239. node_set(page_to_nid(virt_to_page(track)), l->nodes);
  3240. return 1;
  3241. }
  3242. if (track->addr < caddr)
  3243. end = pos;
  3244. else
  3245. start = pos;
  3246. }
  3247. /*
  3248. * Not found. Insert new tracking element.
  3249. */
  3250. if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
  3251. return 0;
  3252. l = t->loc + pos;
  3253. if (pos < t->count)
  3254. memmove(l + 1, l,
  3255. (t->count - pos) * sizeof(struct location));
  3256. t->count++;
  3257. l->count = 1;
  3258. l->addr = track->addr;
  3259. l->sum_time = age;
  3260. l->min_time = age;
  3261. l->max_time = age;
  3262. l->min_pid = track->pid;
  3263. l->max_pid = track->pid;
  3264. cpumask_clear(to_cpumask(l->cpus));
  3265. cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
  3266. nodes_clear(l->nodes);
  3267. node_set(page_to_nid(virt_to_page(track)), l->nodes);
  3268. return 1;
  3269. }
  3270. static void process_slab(struct loc_track *t, struct kmem_cache *s,
  3271. struct page *page, enum track_item alloc,
  3272. unsigned long *map)
  3273. {
  3274. void *addr = page_address(page);
  3275. void *p;
  3276. bitmap_zero(map, page->objects);
  3277. get_map(s, page, map);
  3278. for_each_object(p, s, addr, page->objects)
  3279. if (!test_bit(slab_index(p, s, addr), map))
  3280. add_location(t, s, get_track(s, p, alloc));
  3281. }
  3282. static int list_locations(struct kmem_cache *s, char *buf,
  3283. enum track_item alloc)
  3284. {
  3285. int len = 0;
  3286. unsigned long i;
  3287. struct loc_track t = { 0, 0, NULL };
  3288. int node;
  3289. unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
  3290. sizeof(unsigned long), GFP_KERNEL);
  3291. if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
  3292. GFP_TEMPORARY)) {
  3293. kfree(map);
  3294. return sprintf(buf, "Out of memory\n");
  3295. }
  3296. /* Push back cpu slabs */
  3297. flush_all(s);
  3298. for_each_node_state(node, N_NORMAL_MEMORY) {
  3299. struct kmem_cache_node *n = get_node(s, node);
  3300. unsigned long flags;
  3301. struct page *page;
  3302. if (!atomic_long_read(&n->nr_slabs))
  3303. continue;
  3304. spin_lock_irqsave(&n->list_lock, flags);
  3305. list_for_each_entry(page, &n->partial, lru)
  3306. process_slab(&t, s, page, alloc, map);
  3307. list_for_each_entry(page, &n->full, lru)
  3308. process_slab(&t, s, page, alloc, map);
  3309. spin_unlock_irqrestore(&n->list_lock, flags);
  3310. }
  3311. for (i = 0; i < t.count; i++) {
  3312. struct location *l = &t.loc[i];
  3313. if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
  3314. break;
  3315. len += sprintf(buf + len, "%7ld ", l->count);
  3316. if (l->addr)
  3317. len += sprintf(buf + len, "%pS", (void *)l->addr);
  3318. else
  3319. len += sprintf(buf + len, "<not-available>");
  3320. if (l->sum_time != l->min_time) {
  3321. len += sprintf(buf + len, " age=%ld/%ld/%ld",
  3322. l->min_time,
  3323. (long)div_u64(l->sum_time, l->count),
  3324. l->max_time);
  3325. } else
  3326. len += sprintf(buf + len, " age=%ld",
  3327. l->min_time);
  3328. if (l->min_pid != l->max_pid)
  3329. len += sprintf(buf + len, " pid=%ld-%ld",
  3330. l->min_pid, l->max_pid);
  3331. else
  3332. len += sprintf(buf + len, " pid=%ld",
  3333. l->min_pid);
  3334. if (num_online_cpus() > 1 &&
  3335. !cpumask_empty(to_cpumask(l->cpus)) &&
  3336. len < PAGE_SIZE - 60) {
  3337. len += sprintf(buf + len, " cpus=");
  3338. len += cpulist_scnprintf(buf + len, PAGE_SIZE - len - 50,
  3339. to_cpumask(l->cpus));
  3340. }
  3341. if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
  3342. len < PAGE_SIZE - 60) {
  3343. len += sprintf(buf + len, " nodes=");
  3344. len += nodelist_scnprintf(buf + len, PAGE_SIZE - len - 50,
  3345. l->nodes);
  3346. }
  3347. len += sprintf(buf + len, "\n");
  3348. }
  3349. free_loc_track(&t);
  3350. kfree(map);
  3351. if (!t.count)
  3352. len += sprintf(buf, "No data\n");
  3353. return len;
  3354. }
  3355. #endif
  3356. #ifdef SLUB_RESILIENCY_TEST
  3357. static void resiliency_test(void)
  3358. {
  3359. u8 *p;
  3360. BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || SLUB_PAGE_SHIFT < 10);
  3361. printk(KERN_ERR "SLUB resiliency testing\n");
  3362. printk(KERN_ERR "-----------------------\n");
  3363. printk(KERN_ERR "A. Corruption after allocation\n");
  3364. p = kzalloc(16, GFP_KERNEL);
  3365. p[16] = 0x12;
  3366. printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
  3367. " 0x12->0x%p\n\n", p + 16);
  3368. validate_slab_cache(kmalloc_caches[4]);
  3369. /* Hmmm... The next two are dangerous */
  3370. p = kzalloc(32, GFP_KERNEL);
  3371. p[32 + sizeof(void *)] = 0x34;
  3372. printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
  3373. " 0x34 -> -0x%p\n", p);
  3374. printk(KERN_ERR
  3375. "If allocated object is overwritten then not detectable\n\n");
  3376. validate_slab_cache(kmalloc_caches[5]);
  3377. p = kzalloc(64, GFP_KERNEL);
  3378. p += 64 + (get_cycles() & 0xff) * sizeof(void *);
  3379. *p = 0x56;
  3380. printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
  3381. p);
  3382. printk(KERN_ERR
  3383. "If allocated object is overwritten then not detectable\n\n");
  3384. validate_slab_cache(kmalloc_caches[6]);
  3385. printk(KERN_ERR "\nB. Corruption after free\n");
  3386. p = kzalloc(128, GFP_KERNEL);
  3387. kfree(p);
  3388. *p = 0x78;
  3389. printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
  3390. validate_slab_cache(kmalloc_caches[7]);
  3391. p = kzalloc(256, GFP_KERNEL);
  3392. kfree(p);
  3393. p[50] = 0x9a;
  3394. printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
  3395. p);
  3396. validate_slab_cache(kmalloc_caches[8]);
  3397. p = kzalloc(512, GFP_KERNEL);
  3398. kfree(p);
  3399. p[512] = 0xab;
  3400. printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
  3401. validate_slab_cache(kmalloc_caches[9]);
  3402. }
  3403. #else
  3404. #ifdef CONFIG_SYSFS
  3405. static void resiliency_test(void) {};
  3406. #endif
  3407. #endif
  3408. #ifdef CONFIG_SYSFS
  3409. enum slab_stat_type {
  3410. SL_ALL, /* All slabs */
  3411. SL_PARTIAL, /* Only partially allocated slabs */
  3412. SL_CPU, /* Only slabs used for cpu caches */
  3413. SL_OBJECTS, /* Determine allocated objects not slabs */
  3414. SL_TOTAL /* Determine object capacity not slabs */
  3415. };
  3416. #define SO_ALL (1 << SL_ALL)
  3417. #define SO_PARTIAL (1 << SL_PARTIAL)
  3418. #define SO_CPU (1 << SL_CPU)
  3419. #define SO_OBJECTS (1 << SL_OBJECTS)
  3420. #define SO_TOTAL (1 << SL_TOTAL)
  3421. static ssize_t show_slab_objects(struct kmem_cache *s,
  3422. char *buf, unsigned long flags)
  3423. {
  3424. unsigned long total = 0;
  3425. int node;
  3426. int x;
  3427. unsigned long *nodes;
  3428. unsigned long *per_cpu;
  3429. nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
  3430. if (!nodes)
  3431. return -ENOMEM;
  3432. per_cpu = nodes + nr_node_ids;
  3433. if (flags & SO_CPU) {
  3434. int cpu;
  3435. for_each_possible_cpu(cpu) {
  3436. struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
  3437. if (!c || c->node < 0)
  3438. continue;
  3439. if (c->page) {
  3440. if (flags & SO_TOTAL)
  3441. x = c->page->objects;
  3442. else if (flags & SO_OBJECTS)
  3443. x = c->page->inuse;
  3444. else
  3445. x = 1;
  3446. total += x;
  3447. nodes[c->node] += x;
  3448. }
  3449. per_cpu[c->node]++;
  3450. }
  3451. }
  3452. lock_memory_hotplug();
  3453. #ifdef CONFIG_SLUB_DEBUG
  3454. if (flags & SO_ALL) {
  3455. for_each_node_state(node, N_NORMAL_MEMORY) {
  3456. struct kmem_cache_node *n = get_node(s, node);
  3457. if (flags & SO_TOTAL)
  3458. x = atomic_long_read(&n->total_objects);
  3459. else if (flags & SO_OBJECTS)
  3460. x = atomic_long_read(&n->total_objects) -
  3461. count_partial(n, count_free);
  3462. else
  3463. x = atomic_long_read(&n->nr_slabs);
  3464. total += x;
  3465. nodes[node] += x;
  3466. }
  3467. } else
  3468. #endif
  3469. if (flags & SO_PARTIAL) {
  3470. for_each_node_state(node, N_NORMAL_MEMORY) {
  3471. struct kmem_cache_node *n = get_node(s, node);
  3472. if (flags & SO_TOTAL)
  3473. x = count_partial(n, count_total);
  3474. else if (flags & SO_OBJECTS)
  3475. x = count_partial(n, count_inuse);
  3476. else
  3477. x = n->nr_partial;
  3478. total += x;
  3479. nodes[node] += x;
  3480. }
  3481. }
  3482. x = sprintf(buf, "%lu", total);
  3483. #ifdef CONFIG_NUMA
  3484. for_each_node_state(node, N_NORMAL_MEMORY)
  3485. if (nodes[node])
  3486. x += sprintf(buf + x, " N%d=%lu",
  3487. node, nodes[node]);
  3488. #endif
  3489. unlock_memory_hotplug();
  3490. kfree(nodes);
  3491. return x + sprintf(buf + x, "\n");
  3492. }
  3493. #ifdef CONFIG_SLUB_DEBUG
  3494. static int any_slab_objects(struct kmem_cache *s)
  3495. {
  3496. int node;
  3497. for_each_online_node(node) {
  3498. struct kmem_cache_node *n = get_node(s, node);
  3499. if (!n)
  3500. continue;
  3501. if (atomic_long_read(&n->total_objects))
  3502. return 1;
  3503. }
  3504. return 0;
  3505. }
  3506. #endif
  3507. #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
  3508. #define to_slab(n) container_of(n, struct kmem_cache, kobj)
  3509. struct slab_attribute {
  3510. struct attribute attr;
  3511. ssize_t (*show)(struct kmem_cache *s, char *buf);
  3512. ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
  3513. };
  3514. #define SLAB_ATTR_RO(_name) \
  3515. static struct slab_attribute _name##_attr = __ATTR_RO(_name)
  3516. #define SLAB_ATTR(_name) \
  3517. static struct slab_attribute _name##_attr = \
  3518. __ATTR(_name, 0644, _name##_show, _name##_store)
  3519. static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
  3520. {
  3521. return sprintf(buf, "%d\n", s->size);
  3522. }
  3523. SLAB_ATTR_RO(slab_size);
  3524. static ssize_t align_show(struct kmem_cache *s, char *buf)
  3525. {
  3526. return sprintf(buf, "%d\n", s->align);
  3527. }
  3528. SLAB_ATTR_RO(align);
  3529. static ssize_t object_size_show(struct kmem_cache *s, char *buf)
  3530. {
  3531. return sprintf(buf, "%d\n", s->objsize);
  3532. }
  3533. SLAB_ATTR_RO(object_size);
  3534. static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
  3535. {
  3536. return sprintf(buf, "%d\n", oo_objects(s->oo));
  3537. }
  3538. SLAB_ATTR_RO(objs_per_slab);
  3539. static ssize_t order_store(struct kmem_cache *s,
  3540. const char *buf, size_t length)
  3541. {
  3542. unsigned long order;
  3543. int err;
  3544. err = strict_strtoul(buf, 10, &order);
  3545. if (err)
  3546. return err;
  3547. if (order > slub_max_order || order < slub_min_order)
  3548. return -EINVAL;
  3549. calculate_sizes(s, order);
  3550. return length;
  3551. }
  3552. static ssize_t order_show(struct kmem_cache *s, char *buf)
  3553. {
  3554. return sprintf(buf, "%d\n", oo_order(s->oo));
  3555. }
  3556. SLAB_ATTR(order);
  3557. static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
  3558. {
  3559. return sprintf(buf, "%lu\n", s->min_partial);
  3560. }
  3561. static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
  3562. size_t length)
  3563. {
  3564. unsigned long min;
  3565. int err;
  3566. err = strict_strtoul(buf, 10, &min);
  3567. if (err)
  3568. return err;
  3569. set_min_partial(s, min);
  3570. return length;
  3571. }
  3572. SLAB_ATTR(min_partial);
  3573. static ssize_t ctor_show(struct kmem_cache *s, char *buf)
  3574. {
  3575. if (!s->ctor)
  3576. return 0;
  3577. return sprintf(buf, "%pS\n", s->ctor);
  3578. }
  3579. SLAB_ATTR_RO(ctor);
  3580. static ssize_t aliases_show(struct kmem_cache *s, char *buf)
  3581. {
  3582. return sprintf(buf, "%d\n", s->refcount - 1);
  3583. }
  3584. SLAB_ATTR_RO(aliases);
  3585. static ssize_t partial_show(struct kmem_cache *s, char *buf)
  3586. {
  3587. return show_slab_objects(s, buf, SO_PARTIAL);
  3588. }
  3589. SLAB_ATTR_RO(partial);
  3590. static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
  3591. {
  3592. return show_slab_objects(s, buf, SO_CPU);
  3593. }
  3594. SLAB_ATTR_RO(cpu_slabs);
  3595. static ssize_t objects_show(struct kmem_cache *s, char *buf)
  3596. {
  3597. return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
  3598. }
  3599. SLAB_ATTR_RO(objects);
  3600. static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
  3601. {
  3602. return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
  3603. }
  3604. SLAB_ATTR_RO(objects_partial);
  3605. static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
  3606. {
  3607. return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
  3608. }
  3609. static ssize_t reclaim_account_store(struct kmem_cache *s,
  3610. const char *buf, size_t length)
  3611. {
  3612. s->flags &= ~SLAB_RECLAIM_ACCOUNT;
  3613. if (buf[0] == '1')
  3614. s->flags |= SLAB_RECLAIM_ACCOUNT;
  3615. return length;
  3616. }
  3617. SLAB_ATTR(reclaim_account);
  3618. static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
  3619. {
  3620. return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
  3621. }
  3622. SLAB_ATTR_RO(hwcache_align);
  3623. #ifdef CONFIG_ZONE_DMA
  3624. static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
  3625. {
  3626. return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
  3627. }
  3628. SLAB_ATTR_RO(cache_dma);
  3629. #endif
  3630. static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
  3631. {
  3632. return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
  3633. }
  3634. SLAB_ATTR_RO(destroy_by_rcu);
  3635. static ssize_t reserved_show(struct kmem_cache *s, char *buf)
  3636. {
  3637. return sprintf(buf, "%d\n", s->reserved);
  3638. }
  3639. SLAB_ATTR_RO(reserved);
  3640. #ifdef CONFIG_SLUB_DEBUG
  3641. static ssize_t slabs_show(struct kmem_cache *s, char *buf)
  3642. {
  3643. return show_slab_objects(s, buf, SO_ALL);
  3644. }
  3645. SLAB_ATTR_RO(slabs);
  3646. static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
  3647. {
  3648. return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
  3649. }
  3650. SLAB_ATTR_RO(total_objects);
  3651. static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
  3652. {
  3653. return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
  3654. }
  3655. static ssize_t sanity_checks_store(struct kmem_cache *s,
  3656. const char *buf, size_t length)
  3657. {
  3658. s->flags &= ~SLAB_DEBUG_FREE;
  3659. if (buf[0] == '1')
  3660. s->flags |= SLAB_DEBUG_FREE;
  3661. return length;
  3662. }
  3663. SLAB_ATTR(sanity_checks);
  3664. static ssize_t trace_show(struct kmem_cache *s, char *buf)
  3665. {
  3666. return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
  3667. }
  3668. static ssize_t trace_store(struct kmem_cache *s, const char *buf,
  3669. size_t length)
  3670. {
  3671. s->flags &= ~SLAB_TRACE;
  3672. if (buf[0] == '1')
  3673. s->flags |= SLAB_TRACE;
  3674. return length;
  3675. }
  3676. SLAB_ATTR(trace);
  3677. static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
  3678. {
  3679. return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
  3680. }
  3681. static ssize_t red_zone_store(struct kmem_cache *s,
  3682. const char *buf, size_t length)
  3683. {
  3684. if (any_slab_objects(s))
  3685. return -EBUSY;
  3686. s->flags &= ~SLAB_RED_ZONE;
  3687. if (buf[0] == '1')
  3688. s->flags |= SLAB_RED_ZONE;
  3689. calculate_sizes(s, -1);
  3690. return length;
  3691. }
  3692. SLAB_ATTR(red_zone);
  3693. static ssize_t poison_show(struct kmem_cache *s, char *buf)
  3694. {
  3695. return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
  3696. }
  3697. static ssize_t poison_store(struct kmem_cache *s,
  3698. const char *buf, size_t length)
  3699. {
  3700. if (any_slab_objects(s))
  3701. return -EBUSY;
  3702. s->flags &= ~SLAB_POISON;
  3703. if (buf[0] == '1')
  3704. s->flags |= SLAB_POISON;
  3705. calculate_sizes(s, -1);
  3706. return length;
  3707. }
  3708. SLAB_ATTR(poison);
  3709. static ssize_t store_user_show(struct kmem_cache *s, char *buf)
  3710. {
  3711. return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
  3712. }
  3713. static ssize_t store_user_store(struct kmem_cache *s,
  3714. const char *buf, size_t length)
  3715. {
  3716. if (any_slab_objects(s))
  3717. return -EBUSY;
  3718. s->flags &= ~SLAB_STORE_USER;
  3719. if (buf[0] == '1')
  3720. s->flags |= SLAB_STORE_USER;
  3721. calculate_sizes(s, -1);
  3722. return length;
  3723. }
  3724. SLAB_ATTR(store_user);
  3725. static ssize_t validate_show(struct kmem_cache *s, char *buf)
  3726. {
  3727. return 0;
  3728. }
  3729. static ssize_t validate_store(struct kmem_cache *s,
  3730. const char *buf, size_t length)
  3731. {
  3732. int ret = -EINVAL;
  3733. if (buf[0] == '1') {
  3734. ret = validate_slab_cache(s);
  3735. if (ret >= 0)
  3736. ret = length;
  3737. }
  3738. return ret;
  3739. }
  3740. SLAB_ATTR(validate);
  3741. static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
  3742. {
  3743. if (!(s->flags & SLAB_STORE_USER))
  3744. return -ENOSYS;
  3745. return list_locations(s, buf, TRACK_ALLOC);
  3746. }
  3747. SLAB_ATTR_RO(alloc_calls);
  3748. static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
  3749. {
  3750. if (!(s->flags & SLAB_STORE_USER))
  3751. return -ENOSYS;
  3752. return list_locations(s, buf, TRACK_FREE);
  3753. }
  3754. SLAB_ATTR_RO(free_calls);
  3755. #endif /* CONFIG_SLUB_DEBUG */
  3756. #ifdef CONFIG_FAILSLAB
  3757. static ssize_t failslab_show(struct kmem_cache *s, char *buf)
  3758. {
  3759. return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
  3760. }
  3761. static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
  3762. size_t length)
  3763. {
  3764. s->flags &= ~SLAB_FAILSLAB;
  3765. if (buf[0] == '1')
  3766. s->flags |= SLAB_FAILSLAB;
  3767. return length;
  3768. }
  3769. SLAB_ATTR(failslab);
  3770. #endif
  3771. static ssize_t shrink_show(struct kmem_cache *s, char *buf)
  3772. {
  3773. return 0;
  3774. }
  3775. static ssize_t shrink_store(struct kmem_cache *s,
  3776. const char *buf, size_t length)
  3777. {
  3778. if (buf[0] == '1') {
  3779. int rc = kmem_cache_shrink(s);
  3780. if (rc)
  3781. return rc;
  3782. } else
  3783. return -EINVAL;
  3784. return length;
  3785. }
  3786. SLAB_ATTR(shrink);
  3787. #ifdef CONFIG_NUMA
  3788. static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
  3789. {
  3790. return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
  3791. }
  3792. static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
  3793. const char *buf, size_t length)
  3794. {
  3795. unsigned long ratio;
  3796. int err;
  3797. err = strict_strtoul(buf, 10, &ratio);
  3798. if (err)
  3799. return err;
  3800. if (ratio <= 100)
  3801. s->remote_node_defrag_ratio = ratio * 10;
  3802. return length;
  3803. }
  3804. SLAB_ATTR(remote_node_defrag_ratio);
  3805. #endif
  3806. #ifdef CONFIG_SLUB_STATS
  3807. static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
  3808. {
  3809. unsigned long sum = 0;
  3810. int cpu;
  3811. int len;
  3812. int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
  3813. if (!data)
  3814. return -ENOMEM;
  3815. for_each_online_cpu(cpu) {
  3816. unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
  3817. data[cpu] = x;
  3818. sum += x;
  3819. }
  3820. len = sprintf(buf, "%lu", sum);
  3821. #ifdef CONFIG_SMP
  3822. for_each_online_cpu(cpu) {
  3823. if (data[cpu] && len < PAGE_SIZE - 20)
  3824. len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
  3825. }
  3826. #endif
  3827. kfree(data);
  3828. return len + sprintf(buf + len, "\n");
  3829. }
  3830. static void clear_stat(struct kmem_cache *s, enum stat_item si)
  3831. {
  3832. int cpu;
  3833. for_each_online_cpu(cpu)
  3834. per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
  3835. }
  3836. #define STAT_ATTR(si, text) \
  3837. static ssize_t text##_show(struct kmem_cache *s, char *buf) \
  3838. { \
  3839. return show_stat(s, buf, si); \
  3840. } \
  3841. static ssize_t text##_store(struct kmem_cache *s, \
  3842. const char *buf, size_t length) \
  3843. { \
  3844. if (buf[0] != '0') \
  3845. return -EINVAL; \
  3846. clear_stat(s, si); \
  3847. return length; \
  3848. } \
  3849. SLAB_ATTR(text); \
  3850. STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
  3851. STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
  3852. STAT_ATTR(FREE_FASTPATH, free_fastpath);
  3853. STAT_ATTR(FREE_SLOWPATH, free_slowpath);
  3854. STAT_ATTR(FREE_FROZEN, free_frozen);
  3855. STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
  3856. STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
  3857. STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
  3858. STAT_ATTR(ALLOC_SLAB, alloc_slab);
  3859. STAT_ATTR(ALLOC_REFILL, alloc_refill);
  3860. STAT_ATTR(FREE_SLAB, free_slab);
  3861. STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
  3862. STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
  3863. STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
  3864. STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
  3865. STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
  3866. STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
  3867. STAT_ATTR(ORDER_FALLBACK, order_fallback);
  3868. #endif
  3869. static struct attribute *slab_attrs[] = {
  3870. &slab_size_attr.attr,
  3871. &object_size_attr.attr,
  3872. &objs_per_slab_attr.attr,
  3873. &order_attr.attr,
  3874. &min_partial_attr.attr,
  3875. &objects_attr.attr,
  3876. &objects_partial_attr.attr,
  3877. &partial_attr.attr,
  3878. &cpu_slabs_attr.attr,
  3879. &ctor_attr.attr,
  3880. &aliases_attr.attr,
  3881. &align_attr.attr,
  3882. &hwcache_align_attr.attr,
  3883. &reclaim_account_attr.attr,
  3884. &destroy_by_rcu_attr.attr,
  3885. &shrink_attr.attr,
  3886. &reserved_attr.attr,
  3887. #ifdef CONFIG_SLUB_DEBUG
  3888. &total_objects_attr.attr,
  3889. &slabs_attr.attr,
  3890. &sanity_checks_attr.attr,
  3891. &trace_attr.attr,
  3892. &red_zone_attr.attr,
  3893. &poison_attr.attr,
  3894. &store_user_attr.attr,
  3895. &validate_attr.attr,
  3896. &alloc_calls_attr.attr,
  3897. &free_calls_attr.attr,
  3898. #endif
  3899. #ifdef CONFIG_ZONE_DMA
  3900. &cache_dma_attr.attr,
  3901. #endif
  3902. #ifdef CONFIG_NUMA
  3903. &remote_node_defrag_ratio_attr.attr,
  3904. #endif
  3905. #ifdef CONFIG_SLUB_STATS
  3906. &alloc_fastpath_attr.attr,
  3907. &alloc_slowpath_attr.attr,
  3908. &free_fastpath_attr.attr,
  3909. &free_slowpath_attr.attr,
  3910. &free_frozen_attr.attr,
  3911. &free_add_partial_attr.attr,
  3912. &free_remove_partial_attr.attr,
  3913. &alloc_from_partial_attr.attr,
  3914. &alloc_slab_attr.attr,
  3915. &alloc_refill_attr.attr,
  3916. &free_slab_attr.attr,
  3917. &cpuslab_flush_attr.attr,
  3918. &deactivate_full_attr.attr,
  3919. &deactivate_empty_attr.attr,
  3920. &deactivate_to_head_attr.attr,
  3921. &deactivate_to_tail_attr.attr,
  3922. &deactivate_remote_frees_attr.attr,
  3923. &order_fallback_attr.attr,
  3924. #endif
  3925. #ifdef CONFIG_FAILSLAB
  3926. &failslab_attr.attr,
  3927. #endif
  3928. NULL
  3929. };
  3930. static struct attribute_group slab_attr_group = {
  3931. .attrs = slab_attrs,
  3932. };
  3933. static ssize_t slab_attr_show(struct kobject *kobj,
  3934. struct attribute *attr,
  3935. char *buf)
  3936. {
  3937. struct slab_attribute *attribute;
  3938. struct kmem_cache *s;
  3939. int err;
  3940. attribute = to_slab_attr(attr);
  3941. s = to_slab(kobj);
  3942. if (!attribute->show)
  3943. return -EIO;
  3944. err = attribute->show(s, buf);
  3945. return err;
  3946. }
  3947. static ssize_t slab_attr_store(struct kobject *kobj,
  3948. struct attribute *attr,
  3949. const char *buf, size_t len)
  3950. {
  3951. struct slab_attribute *attribute;
  3952. struct kmem_cache *s;
  3953. int err;
  3954. attribute = to_slab_attr(attr);
  3955. s = to_slab(kobj);
  3956. if (!attribute->store)
  3957. return -EIO;
  3958. err = attribute->store(s, buf, len);
  3959. return err;
  3960. }
  3961. static void kmem_cache_release(struct kobject *kobj)
  3962. {
  3963. struct kmem_cache *s = to_slab(kobj);
  3964. kfree(s->name);
  3965. kfree(s);
  3966. }
  3967. static const struct sysfs_ops slab_sysfs_ops = {
  3968. .show = slab_attr_show,
  3969. .store = slab_attr_store,
  3970. };
  3971. static struct kobj_type slab_ktype = {
  3972. .sysfs_ops = &slab_sysfs_ops,
  3973. .release = kmem_cache_release
  3974. };
  3975. static int uevent_filter(struct kset *kset, struct kobject *kobj)
  3976. {
  3977. struct kobj_type *ktype = get_ktype(kobj);
  3978. if (ktype == &slab_ktype)
  3979. return 1;
  3980. return 0;
  3981. }
  3982. static const struct kset_uevent_ops slab_uevent_ops = {
  3983. .filter = uevent_filter,
  3984. };
  3985. static struct kset *slab_kset;
  3986. #define ID_STR_LENGTH 64
  3987. /* Create a unique string id for a slab cache:
  3988. *
  3989. * Format :[flags-]size
  3990. */
  3991. static char *create_unique_id(struct kmem_cache *s)
  3992. {
  3993. char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
  3994. char *p = name;
  3995. BUG_ON(!name);
  3996. *p++ = ':';
  3997. /*
  3998. * First flags affecting slabcache operations. We will only
  3999. * get here for aliasable slabs so we do not need to support
  4000. * too many flags. The flags here must cover all flags that
  4001. * are matched during merging to guarantee that the id is
  4002. * unique.
  4003. */
  4004. if (s->flags & SLAB_CACHE_DMA)
  4005. *p++ = 'd';
  4006. if (s->flags & SLAB_RECLAIM_ACCOUNT)
  4007. *p++ = 'a';
  4008. if (s->flags & SLAB_DEBUG_FREE)
  4009. *p++ = 'F';
  4010. if (!(s->flags & SLAB_NOTRACK))
  4011. *p++ = 't';
  4012. if (p != name + 1)
  4013. *p++ = '-';
  4014. p += sprintf(p, "%07d", s->size);
  4015. BUG_ON(p > name + ID_STR_LENGTH - 1);
  4016. return name;
  4017. }
  4018. static int sysfs_slab_add(struct kmem_cache *s)
  4019. {
  4020. int err;
  4021. const char *name;
  4022. int unmergeable;
  4023. if (slab_state < SYSFS)
  4024. /* Defer until later */
  4025. return 0;
  4026. unmergeable = slab_unmergeable(s);
  4027. if (unmergeable) {
  4028. /*
  4029. * Slabcache can never be merged so we can use the name proper.
  4030. * This is typically the case for debug situations. In that
  4031. * case we can catch duplicate names easily.
  4032. */
  4033. sysfs_remove_link(&slab_kset->kobj, s->name);
  4034. name = s->name;
  4035. } else {
  4036. /*
  4037. * Create a unique name for the slab as a target
  4038. * for the symlinks.
  4039. */
  4040. name = create_unique_id(s);
  4041. }
  4042. s->kobj.kset = slab_kset;
  4043. err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name);
  4044. if (err) {
  4045. kobject_put(&s->kobj);
  4046. return err;
  4047. }
  4048. err = sysfs_create_group(&s->kobj, &slab_attr_group);
  4049. if (err) {
  4050. kobject_del(&s->kobj);
  4051. kobject_put(&s->kobj);
  4052. return err;
  4053. }
  4054. kobject_uevent(&s->kobj, KOBJ_ADD);
  4055. if (!unmergeable) {
  4056. /* Setup first alias */
  4057. sysfs_slab_alias(s, s->name);
  4058. kfree(name);
  4059. }
  4060. return 0;
  4061. }
  4062. static void sysfs_slab_remove(struct kmem_cache *s)
  4063. {
  4064. if (slab_state < SYSFS)
  4065. /*
  4066. * Sysfs has not been setup yet so no need to remove the
  4067. * cache from sysfs.
  4068. */
  4069. return;
  4070. kobject_uevent(&s->kobj, KOBJ_REMOVE);
  4071. kobject_del(&s->kobj);
  4072. kobject_put(&s->kobj);
  4073. }
  4074. /*
  4075. * Need to buffer aliases during bootup until sysfs becomes
  4076. * available lest we lose that information.
  4077. */
  4078. struct saved_alias {
  4079. struct kmem_cache *s;
  4080. const char *name;
  4081. struct saved_alias *next;
  4082. };
  4083. static struct saved_alias *alias_list;
  4084. static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
  4085. {
  4086. struct saved_alias *al;
  4087. if (slab_state == SYSFS) {
  4088. /*
  4089. * If we have a leftover link then remove it.
  4090. */
  4091. sysfs_remove_link(&slab_kset->kobj, name);
  4092. return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
  4093. }
  4094. al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
  4095. if (!al)
  4096. return -ENOMEM;
  4097. al->s = s;
  4098. al->name = name;
  4099. al->next = alias_list;
  4100. alias_list = al;
  4101. return 0;
  4102. }
  4103. static int __init slab_sysfs_init(void)
  4104. {
  4105. struct kmem_cache *s;
  4106. int err;
  4107. down_write(&slub_lock);
  4108. slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
  4109. if (!slab_kset) {
  4110. up_write(&slub_lock);
  4111. printk(KERN_ERR "Cannot register slab subsystem.\n");
  4112. return -ENOSYS;
  4113. }
  4114. slab_state = SYSFS;
  4115. list_for_each_entry(s, &slab_caches, list) {
  4116. err = sysfs_slab_add(s);
  4117. if (err)
  4118. printk(KERN_ERR "SLUB: Unable to add boot slab %s"
  4119. " to sysfs\n", s->name);
  4120. }
  4121. while (alias_list) {
  4122. struct saved_alias *al = alias_list;
  4123. alias_list = alias_list->next;
  4124. err = sysfs_slab_alias(al->s, al->name);
  4125. if (err)
  4126. printk(KERN_ERR "SLUB: Unable to add boot slab alias"
  4127. " %s to sysfs\n", s->name);
  4128. kfree(al);
  4129. }
  4130. up_write(&slub_lock);
  4131. resiliency_test();
  4132. return 0;
  4133. }
  4134. __initcall(slab_sysfs_init);
  4135. #endif /* CONFIG_SYSFS */
  4136. /*
  4137. * The /proc/slabinfo ABI
  4138. */
  4139. #ifdef CONFIG_SLABINFO
  4140. static void print_slabinfo_header(struct seq_file *m)
  4141. {
  4142. seq_puts(m, "slabinfo - version: 2.1\n");
  4143. seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
  4144. "<objperslab> <pagesperslab>");
  4145. seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
  4146. seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
  4147. seq_putc(m, '\n');
  4148. }
  4149. static void *s_start(struct seq_file *m, loff_t *pos)
  4150. {
  4151. loff_t n = *pos;
  4152. down_read(&slub_lock);
  4153. if (!n)
  4154. print_slabinfo_header(m);
  4155. return seq_list_start(&slab_caches, *pos);
  4156. }
  4157. static void *s_next(struct seq_file *m, void *p, loff_t *pos)
  4158. {
  4159. return seq_list_next(p, &slab_caches, pos);
  4160. }
  4161. static void s_stop(struct seq_file *m, void *p)
  4162. {
  4163. up_read(&slub_lock);
  4164. }
  4165. static int s_show(struct seq_file *m, void *p)
  4166. {
  4167. unsigned long nr_partials = 0;
  4168. unsigned long nr_slabs = 0;
  4169. unsigned long nr_inuse = 0;
  4170. unsigned long nr_objs = 0;
  4171. unsigned long nr_free = 0;
  4172. struct kmem_cache *s;
  4173. int node;
  4174. s = list_entry(p, struct kmem_cache, list);
  4175. for_each_online_node(node) {
  4176. struct kmem_cache_node *n = get_node(s, node);
  4177. if (!n)
  4178. continue;
  4179. nr_partials += n->nr_partial;
  4180. nr_slabs += atomic_long_read(&n->nr_slabs);
  4181. nr_objs += atomic_long_read(&n->total_objects);
  4182. nr_free += count_partial(n, count_free);
  4183. }
  4184. nr_inuse = nr_objs - nr_free;
  4185. seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", s->name, nr_inuse,
  4186. nr_objs, s->size, oo_objects(s->oo),
  4187. (1 << oo_order(s->oo)));
  4188. seq_printf(m, " : tunables %4u %4u %4u", 0, 0, 0);
  4189. seq_printf(m, " : slabdata %6lu %6lu %6lu", nr_slabs, nr_slabs,
  4190. 0UL);
  4191. seq_putc(m, '\n');
  4192. return 0;
  4193. }
  4194. static const struct seq_operations slabinfo_op = {
  4195. .start = s_start,
  4196. .next = s_next,
  4197. .stop = s_stop,
  4198. .show = s_show,
  4199. };
  4200. static int slabinfo_open(struct inode *inode, struct file *file)
  4201. {
  4202. return seq_open(file, &slabinfo_op);
  4203. }
  4204. static const struct file_operations proc_slabinfo_operations = {
  4205. .open = slabinfo_open,
  4206. .read = seq_read,
  4207. .llseek = seq_lseek,
  4208. .release = seq_release,
  4209. };
  4210. static int __init slab_proc_init(void)
  4211. {
  4212. proc_create("slabinfo", S_IRUGO, NULL, &proc_slabinfo_operations);
  4213. return 0;
  4214. }
  4215. module_init(slab_proc_init);
  4216. #endif /* CONFIG_SLABINFO */