clock.c 8.2 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319
  1. /*
  2. * arch/arm/mach-ep93xx/clock.c
  3. * Clock control for Cirrus EP93xx chips.
  4. *
  5. * Copyright (C) 2006 Lennert Buytenhek <buytenh@wantstofly.org>
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License as published by
  9. * the Free Software Foundation; either version 2 of the License, or (at
  10. * your option) any later version.
  11. */
  12. #include <linux/kernel.h>
  13. #include <linux/clk.h>
  14. #include <linux/err.h>
  15. #include <linux/module.h>
  16. #include <linux/string.h>
  17. #include <linux/io.h>
  18. #include <asm/clkdev.h>
  19. #include <asm/div64.h>
  20. #include <mach/hardware.h>
  21. struct clk {
  22. unsigned long rate;
  23. int users;
  24. int sw_locked;
  25. void __iomem *enable_reg;
  26. u32 enable_mask;
  27. unsigned long (*get_rate)(struct clk *clk);
  28. int (*set_rate)(struct clk *clk, unsigned long rate);
  29. };
  30. static unsigned long get_uart_rate(struct clk *clk);
  31. static int set_keytchclk_rate(struct clk *clk, unsigned long rate);
  32. static struct clk clk_uart1 = {
  33. .sw_locked = 1,
  34. .enable_reg = EP93XX_SYSCON_DEVCFG,
  35. .enable_mask = EP93XX_SYSCON_DEVCFG_U1EN,
  36. .get_rate = get_uart_rate,
  37. };
  38. static struct clk clk_uart2 = {
  39. .sw_locked = 1,
  40. .enable_reg = EP93XX_SYSCON_DEVCFG,
  41. .enable_mask = EP93XX_SYSCON_DEVCFG_U2EN,
  42. .get_rate = get_uart_rate,
  43. };
  44. static struct clk clk_uart3 = {
  45. .sw_locked = 1,
  46. .enable_reg = EP93XX_SYSCON_DEVCFG,
  47. .enable_mask = EP93XX_SYSCON_DEVCFG_U3EN,
  48. .get_rate = get_uart_rate,
  49. };
  50. static struct clk clk_pll1;
  51. static struct clk clk_f;
  52. static struct clk clk_h;
  53. static struct clk clk_p;
  54. static struct clk clk_pll2;
  55. static struct clk clk_usb_host = {
  56. .enable_reg = EP93XX_SYSCON_PWRCNT,
  57. .enable_mask = EP93XX_SYSCON_PWRCNT_USH_EN,
  58. };
  59. static struct clk clk_keypad = {
  60. .sw_locked = 1,
  61. .enable_reg = EP93XX_SYSCON_KEYTCHCLKDIV,
  62. .enable_mask = EP93XX_SYSCON_KEYTCHCLKDIV_KEN,
  63. .set_rate = set_keytchclk_rate,
  64. };
  65. /* DMA Clocks */
  66. static struct clk clk_m2p0 = {
  67. .enable_reg = EP93XX_SYSCON_PWRCNT,
  68. .enable_mask = EP93XX_SYSCON_PWRCNT_DMA_M2P0,
  69. };
  70. static struct clk clk_m2p1 = {
  71. .enable_reg = EP93XX_SYSCON_PWRCNT,
  72. .enable_mask = EP93XX_SYSCON_PWRCNT_DMA_M2P1,
  73. };
  74. static struct clk clk_m2p2 = {
  75. .enable_reg = EP93XX_SYSCON_PWRCNT,
  76. .enable_mask = EP93XX_SYSCON_PWRCNT_DMA_M2P2,
  77. };
  78. static struct clk clk_m2p3 = {
  79. .enable_reg = EP93XX_SYSCON_PWRCNT,
  80. .enable_mask = EP93XX_SYSCON_PWRCNT_DMA_M2P3,
  81. };
  82. static struct clk clk_m2p4 = {
  83. .enable_reg = EP93XX_SYSCON_PWRCNT,
  84. .enable_mask = EP93XX_SYSCON_PWRCNT_DMA_M2P4,
  85. };
  86. static struct clk clk_m2p5 = {
  87. .enable_reg = EP93XX_SYSCON_PWRCNT,
  88. .enable_mask = EP93XX_SYSCON_PWRCNT_DMA_M2P5,
  89. };
  90. static struct clk clk_m2p6 = {
  91. .enable_reg = EP93XX_SYSCON_PWRCNT,
  92. .enable_mask = EP93XX_SYSCON_PWRCNT_DMA_M2P6,
  93. };
  94. static struct clk clk_m2p7 = {
  95. .enable_reg = EP93XX_SYSCON_PWRCNT,
  96. .enable_mask = EP93XX_SYSCON_PWRCNT_DMA_M2P7,
  97. };
  98. static struct clk clk_m2p8 = {
  99. .enable_reg = EP93XX_SYSCON_PWRCNT,
  100. .enable_mask = EP93XX_SYSCON_PWRCNT_DMA_M2P8,
  101. };
  102. static struct clk clk_m2p9 = {
  103. .enable_reg = EP93XX_SYSCON_PWRCNT,
  104. .enable_mask = EP93XX_SYSCON_PWRCNT_DMA_M2P9,
  105. };
  106. static struct clk clk_m2m0 = {
  107. .enable_reg = EP93XX_SYSCON_PWRCNT,
  108. .enable_mask = EP93XX_SYSCON_PWRCNT_DMA_M2M0,
  109. };
  110. static struct clk clk_m2m1 = {
  111. .enable_reg = EP93XX_SYSCON_PWRCNT,
  112. .enable_mask = EP93XX_SYSCON_PWRCNT_DMA_M2M1,
  113. };
  114. #define INIT_CK(dev,con,ck) \
  115. { .dev_id = dev, .con_id = con, .clk = ck }
  116. static struct clk_lookup clocks[] = {
  117. INIT_CK("apb:uart1", NULL, &clk_uart1),
  118. INIT_CK("apb:uart2", NULL, &clk_uart2),
  119. INIT_CK("apb:uart3", NULL, &clk_uart3),
  120. INIT_CK(NULL, "pll1", &clk_pll1),
  121. INIT_CK(NULL, "fclk", &clk_f),
  122. INIT_CK(NULL, "hclk", &clk_h),
  123. INIT_CK(NULL, "pclk", &clk_p),
  124. INIT_CK(NULL, "pll2", &clk_pll2),
  125. INIT_CK("ep93xx-ohci", NULL, &clk_usb_host),
  126. INIT_CK("ep93xx-keypad", NULL, &clk_keypad),
  127. INIT_CK(NULL, "m2p0", &clk_m2p0),
  128. INIT_CK(NULL, "m2p1", &clk_m2p1),
  129. INIT_CK(NULL, "m2p2", &clk_m2p2),
  130. INIT_CK(NULL, "m2p3", &clk_m2p3),
  131. INIT_CK(NULL, "m2p4", &clk_m2p4),
  132. INIT_CK(NULL, "m2p5", &clk_m2p5),
  133. INIT_CK(NULL, "m2p6", &clk_m2p6),
  134. INIT_CK(NULL, "m2p7", &clk_m2p7),
  135. INIT_CK(NULL, "m2p8", &clk_m2p8),
  136. INIT_CK(NULL, "m2p9", &clk_m2p9),
  137. INIT_CK(NULL, "m2m0", &clk_m2m0),
  138. INIT_CK(NULL, "m2m1", &clk_m2m1),
  139. };
  140. int clk_enable(struct clk *clk)
  141. {
  142. if (!clk->users++ && clk->enable_reg) {
  143. u32 value;
  144. value = __raw_readl(clk->enable_reg);
  145. value |= clk->enable_mask;
  146. if (clk->sw_locked)
  147. ep93xx_syscon_swlocked_write(value, clk->enable_reg);
  148. else
  149. __raw_writel(value, clk->enable_reg);
  150. }
  151. return 0;
  152. }
  153. EXPORT_SYMBOL(clk_enable);
  154. void clk_disable(struct clk *clk)
  155. {
  156. if (!--clk->users && clk->enable_reg) {
  157. u32 value;
  158. value = __raw_readl(clk->enable_reg);
  159. value &= ~clk->enable_mask;
  160. if (clk->sw_locked)
  161. ep93xx_syscon_swlocked_write(value, clk->enable_reg);
  162. else
  163. __raw_writel(value, clk->enable_reg);
  164. }
  165. }
  166. EXPORT_SYMBOL(clk_disable);
  167. static unsigned long get_uart_rate(struct clk *clk)
  168. {
  169. u32 value;
  170. value = __raw_readl(EP93XX_SYSCON_PWRCNT);
  171. if (value & EP93XX_SYSCON_PWRCNT_UARTBAUD)
  172. return EP93XX_EXT_CLK_RATE;
  173. else
  174. return EP93XX_EXT_CLK_RATE / 2;
  175. }
  176. unsigned long clk_get_rate(struct clk *clk)
  177. {
  178. if (clk->get_rate)
  179. return clk->get_rate(clk);
  180. return clk->rate;
  181. }
  182. EXPORT_SYMBOL(clk_get_rate);
  183. static int set_keytchclk_rate(struct clk *clk, unsigned long rate)
  184. {
  185. u32 val;
  186. u32 div_bit;
  187. val = __raw_readl(clk->enable_reg);
  188. /*
  189. * The Key Matrix and ADC clocks are configured using the same
  190. * System Controller register. The clock used will be either
  191. * 1/4 or 1/16 the external clock rate depending on the
  192. * EP93XX_SYSCON_KEYTCHCLKDIV_KDIV/EP93XX_SYSCON_KEYTCHCLKDIV_ADIV
  193. * bit being set or cleared.
  194. */
  195. div_bit = clk->enable_mask >> 15;
  196. if (rate == EP93XX_KEYTCHCLK_DIV4)
  197. val |= div_bit;
  198. else if (rate == EP93XX_KEYTCHCLK_DIV16)
  199. val &= ~div_bit;
  200. else
  201. return -EINVAL;
  202. ep93xx_syscon_swlocked_write(val, clk->enable_reg);
  203. clk->rate = rate;
  204. return 0;
  205. }
  206. int clk_set_rate(struct clk *clk, unsigned long rate)
  207. {
  208. if (clk->set_rate)
  209. return clk->set_rate(clk, rate);
  210. return -EINVAL;
  211. }
  212. EXPORT_SYMBOL(clk_set_rate);
  213. static char fclk_divisors[] = { 1, 2, 4, 8, 16, 1, 1, 1 };
  214. static char hclk_divisors[] = { 1, 2, 4, 5, 6, 8, 16, 32 };
  215. static char pclk_divisors[] = { 1, 2, 4, 8 };
  216. /*
  217. * PLL rate = 14.7456 MHz * (X1FBD + 1) * (X2FBD + 1) / (X2IPD + 1) / 2^PS
  218. */
  219. static unsigned long calc_pll_rate(u32 config_word)
  220. {
  221. unsigned long long rate;
  222. int i;
  223. rate = EP93XX_EXT_CLK_RATE;
  224. rate *= ((config_word >> 11) & 0x1f) + 1; /* X1FBD */
  225. rate *= ((config_word >> 5) & 0x3f) + 1; /* X2FBD */
  226. do_div(rate, (config_word & 0x1f) + 1); /* X2IPD */
  227. for (i = 0; i < ((config_word >> 16) & 3); i++) /* PS */
  228. rate >>= 1;
  229. return (unsigned long)rate;
  230. }
  231. static void __init ep93xx_dma_clock_init(void)
  232. {
  233. clk_m2p0.rate = clk_h.rate;
  234. clk_m2p1.rate = clk_h.rate;
  235. clk_m2p2.rate = clk_h.rate;
  236. clk_m2p3.rate = clk_h.rate;
  237. clk_m2p4.rate = clk_h.rate;
  238. clk_m2p5.rate = clk_h.rate;
  239. clk_m2p6.rate = clk_h.rate;
  240. clk_m2p7.rate = clk_h.rate;
  241. clk_m2p8.rate = clk_h.rate;
  242. clk_m2p9.rate = clk_h.rate;
  243. clk_m2m0.rate = clk_h.rate;
  244. clk_m2m1.rate = clk_h.rate;
  245. }
  246. static int __init ep93xx_clock_init(void)
  247. {
  248. u32 value;
  249. int i;
  250. value = __raw_readl(EP93XX_SYSCON_CLOCK_SET1);
  251. if (!(value & 0x00800000)) { /* PLL1 bypassed? */
  252. clk_pll1.rate = EP93XX_EXT_CLK_RATE;
  253. } else {
  254. clk_pll1.rate = calc_pll_rate(value);
  255. }
  256. clk_f.rate = clk_pll1.rate / fclk_divisors[(value >> 25) & 0x7];
  257. clk_h.rate = clk_pll1.rate / hclk_divisors[(value >> 20) & 0x7];
  258. clk_p.rate = clk_h.rate / pclk_divisors[(value >> 18) & 0x3];
  259. ep93xx_dma_clock_init();
  260. value = __raw_readl(EP93XX_SYSCON_CLOCK_SET2);
  261. if (!(value & 0x00080000)) { /* PLL2 bypassed? */
  262. clk_pll2.rate = EP93XX_EXT_CLK_RATE;
  263. } else if (value & 0x00040000) { /* PLL2 enabled? */
  264. clk_pll2.rate = calc_pll_rate(value);
  265. } else {
  266. clk_pll2.rate = 0;
  267. }
  268. clk_usb_host.rate = clk_pll2.rate / (((value >> 28) & 0xf) + 1);
  269. printk(KERN_INFO "ep93xx: PLL1 running at %ld MHz, PLL2 at %ld MHz\n",
  270. clk_pll1.rate / 1000000, clk_pll2.rate / 1000000);
  271. printk(KERN_INFO "ep93xx: FCLK %ld MHz, HCLK %ld MHz, PCLK %ld MHz\n",
  272. clk_f.rate / 1000000, clk_h.rate / 1000000,
  273. clk_p.rate / 1000000);
  274. for (i = 0; i < ARRAY_SIZE(clocks); i++)
  275. clkdev_add(&clocks[i]);
  276. return 0;
  277. }
  278. arch_initcall(ep93xx_clock_init);