spi-bcm63xx.c 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587
  1. /*
  2. * Broadcom BCM63xx SPI controller support
  3. *
  4. * Copyright (C) 2009-2012 Florian Fainelli <florian@openwrt.org>
  5. * Copyright (C) 2010 Tanguy Bouzeloc <tanguy.bouzeloc@efixo.com>
  6. *
  7. * This program is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU General Public License
  9. * as published by the Free Software Foundation; either version 2
  10. * of the License, or (at your option) any later version.
  11. *
  12. * This program is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  15. * GNU General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU General Public License
  18. * along with this program; if not, write to the
  19. * Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
  20. */
  21. #include <linux/kernel.h>
  22. #include <linux/init.h>
  23. #include <linux/clk.h>
  24. #include <linux/io.h>
  25. #include <linux/module.h>
  26. #include <linux/platform_device.h>
  27. #include <linux/delay.h>
  28. #include <linux/interrupt.h>
  29. #include <linux/spi/spi.h>
  30. #include <linux/completion.h>
  31. #include <linux/err.h>
  32. #include <linux/workqueue.h>
  33. #include <linux/pm_runtime.h>
  34. #include <bcm63xx_dev_spi.h>
  35. #define PFX KBUILD_MODNAME
  36. #define BCM63XX_SPI_MAX_PREPEND 15
  37. struct bcm63xx_spi {
  38. struct completion done;
  39. void __iomem *regs;
  40. int irq;
  41. /* Platform data */
  42. u32 speed_hz;
  43. unsigned fifo_size;
  44. unsigned int msg_type_shift;
  45. unsigned int msg_ctl_width;
  46. /* data iomem */
  47. u8 __iomem *tx_io;
  48. const u8 __iomem *rx_io;
  49. struct clk *clk;
  50. struct platform_device *pdev;
  51. };
  52. static inline u8 bcm_spi_readb(struct bcm63xx_spi *bs,
  53. unsigned int offset)
  54. {
  55. return bcm_readb(bs->regs + bcm63xx_spireg(offset));
  56. }
  57. static inline u16 bcm_spi_readw(struct bcm63xx_spi *bs,
  58. unsigned int offset)
  59. {
  60. return bcm_readw(bs->regs + bcm63xx_spireg(offset));
  61. }
  62. static inline void bcm_spi_writeb(struct bcm63xx_spi *bs,
  63. u8 value, unsigned int offset)
  64. {
  65. bcm_writeb(value, bs->regs + bcm63xx_spireg(offset));
  66. }
  67. static inline void bcm_spi_writew(struct bcm63xx_spi *bs,
  68. u16 value, unsigned int offset)
  69. {
  70. bcm_writew(value, bs->regs + bcm63xx_spireg(offset));
  71. }
  72. static const unsigned bcm63xx_spi_freq_table[SPI_CLK_MASK][2] = {
  73. { 20000000, SPI_CLK_20MHZ },
  74. { 12500000, SPI_CLK_12_50MHZ },
  75. { 6250000, SPI_CLK_6_250MHZ },
  76. { 3125000, SPI_CLK_3_125MHZ },
  77. { 1563000, SPI_CLK_1_563MHZ },
  78. { 781000, SPI_CLK_0_781MHZ },
  79. { 391000, SPI_CLK_0_391MHZ }
  80. };
  81. static int bcm63xx_spi_check_transfer(struct spi_device *spi,
  82. struct spi_transfer *t)
  83. {
  84. u8 bits_per_word;
  85. bits_per_word = (t) ? t->bits_per_word : spi->bits_per_word;
  86. if (bits_per_word != 8) {
  87. dev_err(&spi->dev, "%s, unsupported bits_per_word=%d\n",
  88. __func__, bits_per_word);
  89. return -EINVAL;
  90. }
  91. if (spi->chip_select > spi->master->num_chipselect) {
  92. dev_err(&spi->dev, "%s, unsupported slave %d\n",
  93. __func__, spi->chip_select);
  94. return -EINVAL;
  95. }
  96. return 0;
  97. }
  98. static void bcm63xx_spi_setup_transfer(struct spi_device *spi,
  99. struct spi_transfer *t)
  100. {
  101. struct bcm63xx_spi *bs = spi_master_get_devdata(spi->master);
  102. u32 hz;
  103. u8 clk_cfg, reg;
  104. int i;
  105. hz = (t) ? t->speed_hz : spi->max_speed_hz;
  106. /* Find the closest clock configuration */
  107. for (i = 0; i < SPI_CLK_MASK; i++) {
  108. if (hz >= bcm63xx_spi_freq_table[i][0]) {
  109. clk_cfg = bcm63xx_spi_freq_table[i][1];
  110. break;
  111. }
  112. }
  113. /* No matching configuration found, default to lowest */
  114. if (i == SPI_CLK_MASK)
  115. clk_cfg = SPI_CLK_0_391MHZ;
  116. /* clear existing clock configuration bits of the register */
  117. reg = bcm_spi_readb(bs, SPI_CLK_CFG);
  118. reg &= ~SPI_CLK_MASK;
  119. reg |= clk_cfg;
  120. bcm_spi_writeb(bs, reg, SPI_CLK_CFG);
  121. dev_dbg(&spi->dev, "Setting clock register to %02x (hz %d)\n",
  122. clk_cfg, hz);
  123. }
  124. /* the spi->mode bits understood by this driver: */
  125. #define MODEBITS (SPI_CPOL | SPI_CPHA)
  126. static int bcm63xx_spi_setup(struct spi_device *spi)
  127. {
  128. struct bcm63xx_spi *bs;
  129. bs = spi_master_get_devdata(spi->master);
  130. if (!spi->bits_per_word)
  131. spi->bits_per_word = 8;
  132. return 0;
  133. }
  134. static int bcm63xx_txrx_bufs(struct spi_device *spi, struct spi_transfer *first,
  135. unsigned int num_transfers)
  136. {
  137. struct bcm63xx_spi *bs = spi_master_get_devdata(spi->master);
  138. u16 msg_ctl;
  139. u16 cmd;
  140. u8 rx_tail;
  141. unsigned int i, timeout = 0, prepend_len = 0, len = 0;
  142. struct spi_transfer *t = first;
  143. bool do_rx = false;
  144. bool do_tx = false;
  145. /* Disable the CMD_DONE interrupt */
  146. bcm_spi_writeb(bs, 0, SPI_INT_MASK);
  147. dev_dbg(&spi->dev, "txrx: tx %p, rx %p, len %d\n",
  148. t->tx_buf, t->rx_buf, t->len);
  149. if (num_transfers > 1 && t->tx_buf && t->len <= BCM63XX_SPI_MAX_PREPEND)
  150. prepend_len = t->len;
  151. /* prepare the buffer */
  152. for (i = 0; i < num_transfers; i++) {
  153. if (t->tx_buf) {
  154. do_tx = true;
  155. memcpy_toio(bs->tx_io + len, t->tx_buf, t->len);
  156. /* don't prepend more than one tx */
  157. if (t != first)
  158. prepend_len = 0;
  159. }
  160. if (t->rx_buf) {
  161. do_rx = true;
  162. /* prepend is half-duplex write only */
  163. if (t == first)
  164. prepend_len = 0;
  165. }
  166. len += t->len;
  167. t = list_entry(t->transfer_list.next, struct spi_transfer,
  168. transfer_list);
  169. }
  170. len -= prepend_len;
  171. init_completion(&bs->done);
  172. /* Fill in the Message control register */
  173. msg_ctl = (len << SPI_BYTE_CNT_SHIFT);
  174. if (do_rx && do_tx && prepend_len == 0)
  175. msg_ctl |= (SPI_FD_RW << bs->msg_type_shift);
  176. else if (do_rx)
  177. msg_ctl |= (SPI_HD_R << bs->msg_type_shift);
  178. else if (do_tx)
  179. msg_ctl |= (SPI_HD_W << bs->msg_type_shift);
  180. switch (bs->msg_ctl_width) {
  181. case 8:
  182. bcm_spi_writeb(bs, msg_ctl, SPI_MSG_CTL);
  183. break;
  184. case 16:
  185. bcm_spi_writew(bs, msg_ctl, SPI_MSG_CTL);
  186. break;
  187. }
  188. /* Issue the transfer */
  189. cmd = SPI_CMD_START_IMMEDIATE;
  190. cmd |= (prepend_len << SPI_CMD_PREPEND_BYTE_CNT_SHIFT);
  191. cmd |= (spi->chip_select << SPI_CMD_DEVICE_ID_SHIFT);
  192. bcm_spi_writew(bs, cmd, SPI_CMD);
  193. /* Enable the CMD_DONE interrupt */
  194. bcm_spi_writeb(bs, SPI_INTR_CMD_DONE, SPI_INT_MASK);
  195. timeout = wait_for_completion_timeout(&bs->done, HZ);
  196. if (!timeout)
  197. return -ETIMEDOUT;
  198. /* read out all data */
  199. rx_tail = bcm_spi_readb(bs, SPI_RX_TAIL);
  200. if (do_rx && rx_tail != len)
  201. return -EIO;
  202. if (!rx_tail)
  203. return 0;
  204. len = 0;
  205. t = first;
  206. /* Read out all the data */
  207. for (i = 0; i < num_transfers; i++) {
  208. if (t->rx_buf)
  209. memcpy_fromio(t->rx_buf, bs->rx_io + len, t->len);
  210. if (t != first || prepend_len == 0)
  211. len += t->len;
  212. t = list_entry(t->transfer_list.next, struct spi_transfer,
  213. transfer_list);
  214. }
  215. return 0;
  216. }
  217. static int bcm63xx_spi_prepare_transfer(struct spi_master *master)
  218. {
  219. struct bcm63xx_spi *bs = spi_master_get_devdata(master);
  220. pm_runtime_get_sync(&bs->pdev->dev);
  221. return 0;
  222. }
  223. static int bcm63xx_spi_unprepare_transfer(struct spi_master *master)
  224. {
  225. struct bcm63xx_spi *bs = spi_master_get_devdata(master);
  226. pm_runtime_put(&bs->pdev->dev);
  227. return 0;
  228. }
  229. static int bcm63xx_spi_transfer_one(struct spi_master *master,
  230. struct spi_message *m)
  231. {
  232. struct bcm63xx_spi *bs = spi_master_get_devdata(master);
  233. struct spi_transfer *t, *first = NULL;
  234. struct spi_device *spi = m->spi;
  235. int status = 0;
  236. unsigned int n_transfers = 0, total_len = 0;
  237. bool can_use_prepend = false;
  238. /*
  239. * This SPI controller does not support keeping CS active after a
  240. * transfer.
  241. * Work around this by merging as many transfers we can into one big
  242. * full-duplex transfers.
  243. */
  244. list_for_each_entry(t, &m->transfers, transfer_list) {
  245. status = bcm63xx_spi_check_transfer(spi, t);
  246. if (status < 0)
  247. goto exit;
  248. if (!first)
  249. first = t;
  250. n_transfers++;
  251. total_len += t->len;
  252. if (n_transfers == 2 && !first->rx_buf && !t->tx_buf &&
  253. first->len <= BCM63XX_SPI_MAX_PREPEND)
  254. can_use_prepend = true;
  255. else if (can_use_prepend && t->tx_buf)
  256. can_use_prepend = false;
  257. /* we can only transfer one fifo worth of data */
  258. if ((can_use_prepend &&
  259. total_len > (bs->fifo_size + BCM63XX_SPI_MAX_PREPEND)) ||
  260. (!can_use_prepend && total_len > bs->fifo_size)) {
  261. dev_err(&spi->dev, "unable to do transfers larger than FIFO size (%i > %i)\n",
  262. total_len, bs->fifo_size);
  263. status = -EINVAL;
  264. goto exit;
  265. }
  266. /* all combined transfers have to have the same speed */
  267. if (t->speed_hz != first->speed_hz) {
  268. dev_err(&spi->dev, "unable to change speed between transfers\n");
  269. status = -EINVAL;
  270. goto exit;
  271. }
  272. /* CS will be deasserted directly after transfer */
  273. if (t->delay_usecs) {
  274. dev_err(&spi->dev, "unable to keep CS asserted after transfer\n");
  275. status = -EINVAL;
  276. goto exit;
  277. }
  278. if (t->cs_change ||
  279. list_is_last(&t->transfer_list, &m->transfers)) {
  280. /* configure adapter for a new transfer */
  281. bcm63xx_spi_setup_transfer(spi, first);
  282. /* send the data */
  283. status = bcm63xx_txrx_bufs(spi, first, n_transfers);
  284. if (status)
  285. goto exit;
  286. m->actual_length += total_len;
  287. first = NULL;
  288. n_transfers = 0;
  289. total_len = 0;
  290. can_use_prepend = false;
  291. }
  292. }
  293. exit:
  294. m->status = status;
  295. spi_finalize_current_message(master);
  296. return 0;
  297. }
  298. /* This driver supports single master mode only. Hence
  299. * CMD_DONE is the only interrupt we care about
  300. */
  301. static irqreturn_t bcm63xx_spi_interrupt(int irq, void *dev_id)
  302. {
  303. struct spi_master *master = (struct spi_master *)dev_id;
  304. struct bcm63xx_spi *bs = spi_master_get_devdata(master);
  305. u8 intr;
  306. /* Read interupts and clear them immediately */
  307. intr = bcm_spi_readb(bs, SPI_INT_STATUS);
  308. bcm_spi_writeb(bs, SPI_INTR_CLEAR_ALL, SPI_INT_STATUS);
  309. bcm_spi_writeb(bs, 0, SPI_INT_MASK);
  310. /* A transfer completed */
  311. if (intr & SPI_INTR_CMD_DONE)
  312. complete(&bs->done);
  313. return IRQ_HANDLED;
  314. }
  315. static int bcm63xx_spi_probe(struct platform_device *pdev)
  316. {
  317. struct resource *r;
  318. struct device *dev = &pdev->dev;
  319. struct bcm63xx_spi_pdata *pdata = pdev->dev.platform_data;
  320. int irq;
  321. struct spi_master *master;
  322. struct clk *clk;
  323. struct bcm63xx_spi *bs;
  324. int ret;
  325. r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  326. if (!r) {
  327. dev_err(dev, "no iomem\n");
  328. ret = -ENXIO;
  329. goto out;
  330. }
  331. irq = platform_get_irq(pdev, 0);
  332. if (irq < 0) {
  333. dev_err(dev, "no irq\n");
  334. ret = -ENXIO;
  335. goto out;
  336. }
  337. clk = clk_get(dev, "spi");
  338. if (IS_ERR(clk)) {
  339. dev_err(dev, "no clock for device\n");
  340. ret = PTR_ERR(clk);
  341. goto out;
  342. }
  343. master = spi_alloc_master(dev, sizeof(*bs));
  344. if (!master) {
  345. dev_err(dev, "out of memory\n");
  346. ret = -ENOMEM;
  347. goto out_clk;
  348. }
  349. bs = spi_master_get_devdata(master);
  350. platform_set_drvdata(pdev, master);
  351. bs->pdev = pdev;
  352. if (!devm_request_mem_region(&pdev->dev, r->start,
  353. resource_size(r), PFX)) {
  354. dev_err(dev, "iomem request failed\n");
  355. ret = -ENXIO;
  356. goto out_err;
  357. }
  358. bs->regs = devm_ioremap_nocache(&pdev->dev, r->start,
  359. resource_size(r));
  360. if (!bs->regs) {
  361. dev_err(dev, "unable to ioremap regs\n");
  362. ret = -ENOMEM;
  363. goto out_err;
  364. }
  365. bs->irq = irq;
  366. bs->clk = clk;
  367. bs->fifo_size = pdata->fifo_size;
  368. ret = devm_request_irq(&pdev->dev, irq, bcm63xx_spi_interrupt, 0,
  369. pdev->name, master);
  370. if (ret) {
  371. dev_err(dev, "unable to request irq\n");
  372. goto out_err;
  373. }
  374. master->bus_num = pdata->bus_num;
  375. master->num_chipselect = pdata->num_chipselect;
  376. master->setup = bcm63xx_spi_setup;
  377. master->prepare_transfer_hardware = bcm63xx_spi_prepare_transfer;
  378. master->unprepare_transfer_hardware = bcm63xx_spi_unprepare_transfer;
  379. master->transfer_one_message = bcm63xx_spi_transfer_one;
  380. master->mode_bits = MODEBITS;
  381. bs->speed_hz = pdata->speed_hz;
  382. bs->msg_type_shift = pdata->msg_type_shift;
  383. bs->msg_ctl_width = pdata->msg_ctl_width;
  384. bs->tx_io = (u8 *)(bs->regs + bcm63xx_spireg(SPI_MSG_DATA));
  385. bs->rx_io = (const u8 *)(bs->regs + bcm63xx_spireg(SPI_RX_DATA));
  386. switch (bs->msg_ctl_width) {
  387. case 8:
  388. case 16:
  389. break;
  390. default:
  391. dev_err(dev, "unsupported MSG_CTL width: %d\n",
  392. bs->msg_ctl_width);
  393. goto out_err;
  394. }
  395. /* Initialize hardware */
  396. clk_prepare_enable(bs->clk);
  397. bcm_spi_writeb(bs, SPI_INTR_CLEAR_ALL, SPI_INT_STATUS);
  398. /* register and we are done */
  399. ret = spi_register_master(master);
  400. if (ret) {
  401. dev_err(dev, "spi register failed\n");
  402. goto out_clk_disable;
  403. }
  404. dev_info(dev, "at 0x%08x (irq %d, FIFOs size %d)\n",
  405. r->start, irq, bs->fifo_size);
  406. return 0;
  407. out_clk_disable:
  408. clk_disable_unprepare(clk);
  409. out_err:
  410. platform_set_drvdata(pdev, NULL);
  411. spi_master_put(master);
  412. out_clk:
  413. clk_put(clk);
  414. out:
  415. return ret;
  416. }
  417. static int bcm63xx_spi_remove(struct platform_device *pdev)
  418. {
  419. struct spi_master *master = spi_master_get(platform_get_drvdata(pdev));
  420. struct bcm63xx_spi *bs = spi_master_get_devdata(master);
  421. spi_unregister_master(master);
  422. /* reset spi block */
  423. bcm_spi_writeb(bs, 0, SPI_INT_MASK);
  424. /* HW shutdown */
  425. clk_disable_unprepare(bs->clk);
  426. clk_put(bs->clk);
  427. platform_set_drvdata(pdev, 0);
  428. spi_master_put(master);
  429. return 0;
  430. }
  431. #ifdef CONFIG_PM
  432. static int bcm63xx_spi_suspend(struct device *dev)
  433. {
  434. struct spi_master *master =
  435. platform_get_drvdata(to_platform_device(dev));
  436. struct bcm63xx_spi *bs = spi_master_get_devdata(master);
  437. spi_master_suspend(master);
  438. clk_disable_unprepare(bs->clk);
  439. return 0;
  440. }
  441. static int bcm63xx_spi_resume(struct device *dev)
  442. {
  443. struct spi_master *master =
  444. platform_get_drvdata(to_platform_device(dev));
  445. struct bcm63xx_spi *bs = spi_master_get_devdata(master);
  446. clk_prepare_enable(bs->clk);
  447. spi_master_resume(master);
  448. return 0;
  449. }
  450. static const struct dev_pm_ops bcm63xx_spi_pm_ops = {
  451. .suspend = bcm63xx_spi_suspend,
  452. .resume = bcm63xx_spi_resume,
  453. };
  454. #define BCM63XX_SPI_PM_OPS (&bcm63xx_spi_pm_ops)
  455. #else
  456. #define BCM63XX_SPI_PM_OPS NULL
  457. #endif
  458. static struct platform_driver bcm63xx_spi_driver = {
  459. .driver = {
  460. .name = "bcm63xx-spi",
  461. .owner = THIS_MODULE,
  462. .pm = BCM63XX_SPI_PM_OPS,
  463. },
  464. .probe = bcm63xx_spi_probe,
  465. .remove = bcm63xx_spi_remove,
  466. };
  467. module_platform_driver(bcm63xx_spi_driver);
  468. MODULE_ALIAS("platform:bcm63xx_spi");
  469. MODULE_AUTHOR("Florian Fainelli <florian@openwrt.org>");
  470. MODULE_AUTHOR("Tanguy Bouzeloc <tanguy.bouzeloc@efixo.com>");
  471. MODULE_DESCRIPTION("Broadcom BCM63xx SPI Controller driver");
  472. MODULE_LICENSE("GPL");