pch_dma.c 26 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046
  1. /*
  2. * Topcliff PCH DMA controller driver
  3. * Copyright (c) 2010 Intel Corporation
  4. * Copyright (C) 2011 OKI SEMICONDUCTOR CO., LTD.
  5. *
  6. * This program is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License version 2 as
  8. * published by the Free Software Foundation.
  9. *
  10. * This program is distributed in the hope that it will be useful,
  11. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  13. * GNU General Public License for more details.
  14. *
  15. * You should have received a copy of the GNU General Public License
  16. * along with this program; if not, write to the Free Software
  17. * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  18. */
  19. #include <linux/dmaengine.h>
  20. #include <linux/dma-mapping.h>
  21. #include <linux/init.h>
  22. #include <linux/pci.h>
  23. #include <linux/interrupt.h>
  24. #include <linux/module.h>
  25. #include <linux/pch_dma.h>
  26. #define DRV_NAME "pch-dma"
  27. #define DMA_CTL0_DISABLE 0x0
  28. #define DMA_CTL0_SG 0x1
  29. #define DMA_CTL0_ONESHOT 0x2
  30. #define DMA_CTL0_MODE_MASK_BITS 0x3
  31. #define DMA_CTL0_DIR_SHIFT_BITS 2
  32. #define DMA_CTL0_BITS_PER_CH 4
  33. #define DMA_CTL2_START_SHIFT_BITS 8
  34. #define DMA_CTL2_IRQ_ENABLE_MASK ((1UL << DMA_CTL2_START_SHIFT_BITS) - 1)
  35. #define DMA_STATUS_IDLE 0x0
  36. #define DMA_STATUS_DESC_READ 0x1
  37. #define DMA_STATUS_WAIT 0x2
  38. #define DMA_STATUS_ACCESS 0x3
  39. #define DMA_STATUS_BITS_PER_CH 2
  40. #define DMA_STATUS_MASK_BITS 0x3
  41. #define DMA_STATUS_SHIFT_BITS 16
  42. #define DMA_STATUS_IRQ(x) (0x1 << (x))
  43. #define DMA_STATUS0_ERR(x) (0x1 << ((x) + 8))
  44. #define DMA_STATUS2_ERR(x) (0x1 << (x))
  45. #define DMA_DESC_WIDTH_SHIFT_BITS 12
  46. #define DMA_DESC_WIDTH_1_BYTE (0x3 << DMA_DESC_WIDTH_SHIFT_BITS)
  47. #define DMA_DESC_WIDTH_2_BYTES (0x2 << DMA_DESC_WIDTH_SHIFT_BITS)
  48. #define DMA_DESC_WIDTH_4_BYTES (0x0 << DMA_DESC_WIDTH_SHIFT_BITS)
  49. #define DMA_DESC_MAX_COUNT_1_BYTE 0x3FF
  50. #define DMA_DESC_MAX_COUNT_2_BYTES 0x3FF
  51. #define DMA_DESC_MAX_COUNT_4_BYTES 0x7FF
  52. #define DMA_DESC_END_WITHOUT_IRQ 0x0
  53. #define DMA_DESC_END_WITH_IRQ 0x1
  54. #define DMA_DESC_FOLLOW_WITHOUT_IRQ 0x2
  55. #define DMA_DESC_FOLLOW_WITH_IRQ 0x3
  56. #define MAX_CHAN_NR 8
  57. static unsigned int init_nr_desc_per_channel = 64;
  58. module_param(init_nr_desc_per_channel, uint, 0644);
  59. MODULE_PARM_DESC(init_nr_desc_per_channel,
  60. "initial descriptors per channel (default: 64)");
  61. struct pch_dma_desc_regs {
  62. u32 dev_addr;
  63. u32 mem_addr;
  64. u32 size;
  65. u32 next;
  66. };
  67. struct pch_dma_regs {
  68. u32 dma_ctl0;
  69. u32 dma_ctl1;
  70. u32 dma_ctl2;
  71. u32 dma_ctl3;
  72. u32 dma_sts0;
  73. u32 dma_sts1;
  74. u32 dma_sts2;
  75. u32 reserved3;
  76. struct pch_dma_desc_regs desc[MAX_CHAN_NR];
  77. };
  78. struct pch_dma_desc {
  79. struct pch_dma_desc_regs regs;
  80. struct dma_async_tx_descriptor txd;
  81. struct list_head desc_node;
  82. struct list_head tx_list;
  83. };
  84. struct pch_dma_chan {
  85. struct dma_chan chan;
  86. void __iomem *membase;
  87. enum dma_data_direction dir;
  88. struct tasklet_struct tasklet;
  89. unsigned long err_status;
  90. spinlock_t lock;
  91. dma_cookie_t completed_cookie;
  92. struct list_head active_list;
  93. struct list_head queue;
  94. struct list_head free_list;
  95. unsigned int descs_allocated;
  96. };
  97. #define PDC_DEV_ADDR 0x00
  98. #define PDC_MEM_ADDR 0x04
  99. #define PDC_SIZE 0x08
  100. #define PDC_NEXT 0x0C
  101. #define channel_readl(pdc, name) \
  102. readl((pdc)->membase + PDC_##name)
  103. #define channel_writel(pdc, name, val) \
  104. writel((val), (pdc)->membase + PDC_##name)
  105. struct pch_dma {
  106. struct dma_device dma;
  107. void __iomem *membase;
  108. struct pci_pool *pool;
  109. struct pch_dma_regs regs;
  110. struct pch_dma_desc_regs ch_regs[MAX_CHAN_NR];
  111. struct pch_dma_chan channels[MAX_CHAN_NR];
  112. };
  113. #define PCH_DMA_CTL0 0x00
  114. #define PCH_DMA_CTL1 0x04
  115. #define PCH_DMA_CTL2 0x08
  116. #define PCH_DMA_CTL3 0x0C
  117. #define PCH_DMA_STS0 0x10
  118. #define PCH_DMA_STS1 0x14
  119. #define PCH_DMA_STS2 0x18
  120. #define dma_readl(pd, name) \
  121. readl((pd)->membase + PCH_DMA_##name)
  122. #define dma_writel(pd, name, val) \
  123. writel((val), (pd)->membase + PCH_DMA_##name)
  124. static inline
  125. struct pch_dma_desc *to_pd_desc(struct dma_async_tx_descriptor *txd)
  126. {
  127. return container_of(txd, struct pch_dma_desc, txd);
  128. }
  129. static inline struct pch_dma_chan *to_pd_chan(struct dma_chan *chan)
  130. {
  131. return container_of(chan, struct pch_dma_chan, chan);
  132. }
  133. static inline struct pch_dma *to_pd(struct dma_device *ddev)
  134. {
  135. return container_of(ddev, struct pch_dma, dma);
  136. }
  137. static inline struct device *chan2dev(struct dma_chan *chan)
  138. {
  139. return &chan->dev->device;
  140. }
  141. static inline struct device *chan2parent(struct dma_chan *chan)
  142. {
  143. return chan->dev->device.parent;
  144. }
  145. static inline
  146. struct pch_dma_desc *pdc_first_active(struct pch_dma_chan *pd_chan)
  147. {
  148. return list_first_entry(&pd_chan->active_list,
  149. struct pch_dma_desc, desc_node);
  150. }
  151. static inline
  152. struct pch_dma_desc *pdc_first_queued(struct pch_dma_chan *pd_chan)
  153. {
  154. return list_first_entry(&pd_chan->queue,
  155. struct pch_dma_desc, desc_node);
  156. }
  157. static void pdc_enable_irq(struct dma_chan *chan, int enable)
  158. {
  159. struct pch_dma *pd = to_pd(chan->device);
  160. u32 val;
  161. int pos;
  162. if (chan->chan_id < 8)
  163. pos = chan->chan_id;
  164. else
  165. pos = chan->chan_id + 8;
  166. val = dma_readl(pd, CTL2);
  167. if (enable)
  168. val |= 0x1 << pos;
  169. else
  170. val &= ~(0x1 << pos);
  171. dma_writel(pd, CTL2, val);
  172. dev_dbg(chan2dev(chan), "pdc_enable_irq: chan %d -> %x\n",
  173. chan->chan_id, val);
  174. }
  175. static void pdc_set_dir(struct dma_chan *chan)
  176. {
  177. struct pch_dma_chan *pd_chan = to_pd_chan(chan);
  178. struct pch_dma *pd = to_pd(chan->device);
  179. u32 val;
  180. if (chan->chan_id < 8) {
  181. val = dma_readl(pd, CTL0);
  182. if (pd_chan->dir == DMA_TO_DEVICE)
  183. val |= 0x1 << (DMA_CTL0_BITS_PER_CH * chan->chan_id +
  184. DMA_CTL0_DIR_SHIFT_BITS);
  185. else
  186. val &= ~(0x1 << (DMA_CTL0_BITS_PER_CH * chan->chan_id +
  187. DMA_CTL0_DIR_SHIFT_BITS));
  188. dma_writel(pd, CTL0, val);
  189. } else {
  190. int ch = chan->chan_id - 8; /* ch8-->0 ch9-->1 ... ch11->3 */
  191. val = dma_readl(pd, CTL3);
  192. if (pd_chan->dir == DMA_TO_DEVICE)
  193. val |= 0x1 << (DMA_CTL0_BITS_PER_CH * ch +
  194. DMA_CTL0_DIR_SHIFT_BITS);
  195. else
  196. val &= ~(0x1 << (DMA_CTL0_BITS_PER_CH * ch +
  197. DMA_CTL0_DIR_SHIFT_BITS));
  198. dma_writel(pd, CTL3, val);
  199. }
  200. dev_dbg(chan2dev(chan), "pdc_set_dir: chan %d -> %x\n",
  201. chan->chan_id, val);
  202. }
  203. static void pdc_set_mode(struct dma_chan *chan, u32 mode)
  204. {
  205. struct pch_dma *pd = to_pd(chan->device);
  206. u32 val;
  207. if (chan->chan_id < 8) {
  208. val = dma_readl(pd, CTL0);
  209. val &= ~(DMA_CTL0_MODE_MASK_BITS <<
  210. (DMA_CTL0_BITS_PER_CH * chan->chan_id));
  211. val |= mode << (DMA_CTL0_BITS_PER_CH * chan->chan_id);
  212. dma_writel(pd, CTL0, val);
  213. } else {
  214. int ch = chan->chan_id - 8; /* ch8-->0 ch9-->1 ... ch11->3 */
  215. val = dma_readl(pd, CTL3);
  216. val &= ~(DMA_CTL0_MODE_MASK_BITS <<
  217. (DMA_CTL0_BITS_PER_CH * ch));
  218. val |= mode << (DMA_CTL0_BITS_PER_CH * ch);
  219. dma_writel(pd, CTL3, val);
  220. }
  221. dev_dbg(chan2dev(chan), "pdc_set_mode: chan %d -> %x\n",
  222. chan->chan_id, val);
  223. }
  224. static u32 pdc_get_status0(struct pch_dma_chan *pd_chan)
  225. {
  226. struct pch_dma *pd = to_pd(pd_chan->chan.device);
  227. u32 val;
  228. val = dma_readl(pd, STS0);
  229. return DMA_STATUS_MASK_BITS & (val >> (DMA_STATUS_SHIFT_BITS +
  230. DMA_STATUS_BITS_PER_CH * pd_chan->chan.chan_id));
  231. }
  232. static u32 pdc_get_status2(struct pch_dma_chan *pd_chan)
  233. {
  234. struct pch_dma *pd = to_pd(pd_chan->chan.device);
  235. u32 val;
  236. val = dma_readl(pd, STS2);
  237. return DMA_STATUS_MASK_BITS & (val >> (DMA_STATUS_SHIFT_BITS +
  238. DMA_STATUS_BITS_PER_CH * (pd_chan->chan.chan_id - 8)));
  239. }
  240. static bool pdc_is_idle(struct pch_dma_chan *pd_chan)
  241. {
  242. u32 sts;
  243. if (pd_chan->chan.chan_id < 8)
  244. sts = pdc_get_status0(pd_chan);
  245. else
  246. sts = pdc_get_status2(pd_chan);
  247. if (sts == DMA_STATUS_IDLE)
  248. return true;
  249. else
  250. return false;
  251. }
  252. static void pdc_dostart(struct pch_dma_chan *pd_chan, struct pch_dma_desc* desc)
  253. {
  254. if (!pdc_is_idle(pd_chan)) {
  255. dev_err(chan2dev(&pd_chan->chan),
  256. "BUG: Attempt to start non-idle channel\n");
  257. return;
  258. }
  259. dev_dbg(chan2dev(&pd_chan->chan), "chan %d -> dev_addr: %x\n",
  260. pd_chan->chan.chan_id, desc->regs.dev_addr);
  261. dev_dbg(chan2dev(&pd_chan->chan), "chan %d -> mem_addr: %x\n",
  262. pd_chan->chan.chan_id, desc->regs.mem_addr);
  263. dev_dbg(chan2dev(&pd_chan->chan), "chan %d -> size: %x\n",
  264. pd_chan->chan.chan_id, desc->regs.size);
  265. dev_dbg(chan2dev(&pd_chan->chan), "chan %d -> next: %x\n",
  266. pd_chan->chan.chan_id, desc->regs.next);
  267. if (list_empty(&desc->tx_list)) {
  268. channel_writel(pd_chan, DEV_ADDR, desc->regs.dev_addr);
  269. channel_writel(pd_chan, MEM_ADDR, desc->regs.mem_addr);
  270. channel_writel(pd_chan, SIZE, desc->regs.size);
  271. channel_writel(pd_chan, NEXT, desc->regs.next);
  272. pdc_set_mode(&pd_chan->chan, DMA_CTL0_ONESHOT);
  273. } else {
  274. channel_writel(pd_chan, NEXT, desc->txd.phys);
  275. pdc_set_mode(&pd_chan->chan, DMA_CTL0_SG);
  276. }
  277. }
  278. static void pdc_chain_complete(struct pch_dma_chan *pd_chan,
  279. struct pch_dma_desc *desc)
  280. {
  281. struct dma_async_tx_descriptor *txd = &desc->txd;
  282. dma_async_tx_callback callback = txd->callback;
  283. void *param = txd->callback_param;
  284. list_splice_init(&desc->tx_list, &pd_chan->free_list);
  285. list_move(&desc->desc_node, &pd_chan->free_list);
  286. if (callback)
  287. callback(param);
  288. }
  289. static void pdc_complete_all(struct pch_dma_chan *pd_chan)
  290. {
  291. struct pch_dma_desc *desc, *_d;
  292. LIST_HEAD(list);
  293. BUG_ON(!pdc_is_idle(pd_chan));
  294. if (!list_empty(&pd_chan->queue))
  295. pdc_dostart(pd_chan, pdc_first_queued(pd_chan));
  296. list_splice_init(&pd_chan->active_list, &list);
  297. list_splice_init(&pd_chan->queue, &pd_chan->active_list);
  298. list_for_each_entry_safe(desc, _d, &list, desc_node)
  299. pdc_chain_complete(pd_chan, desc);
  300. }
  301. static void pdc_handle_error(struct pch_dma_chan *pd_chan)
  302. {
  303. struct pch_dma_desc *bad_desc;
  304. bad_desc = pdc_first_active(pd_chan);
  305. list_del(&bad_desc->desc_node);
  306. list_splice_init(&pd_chan->queue, pd_chan->active_list.prev);
  307. if (!list_empty(&pd_chan->active_list))
  308. pdc_dostart(pd_chan, pdc_first_active(pd_chan));
  309. dev_crit(chan2dev(&pd_chan->chan), "Bad descriptor submitted\n");
  310. dev_crit(chan2dev(&pd_chan->chan), "descriptor cookie: %d\n",
  311. bad_desc->txd.cookie);
  312. pdc_chain_complete(pd_chan, bad_desc);
  313. }
  314. static void pdc_advance_work(struct pch_dma_chan *pd_chan)
  315. {
  316. if (list_empty(&pd_chan->active_list) ||
  317. list_is_singular(&pd_chan->active_list)) {
  318. pdc_complete_all(pd_chan);
  319. } else {
  320. pdc_chain_complete(pd_chan, pdc_first_active(pd_chan));
  321. pdc_dostart(pd_chan, pdc_first_active(pd_chan));
  322. }
  323. }
  324. static dma_cookie_t pdc_assign_cookie(struct pch_dma_chan *pd_chan,
  325. struct pch_dma_desc *desc)
  326. {
  327. dma_cookie_t cookie = pd_chan->chan.cookie;
  328. if (++cookie < 0)
  329. cookie = 1;
  330. pd_chan->chan.cookie = cookie;
  331. desc->txd.cookie = cookie;
  332. return cookie;
  333. }
  334. static dma_cookie_t pd_tx_submit(struct dma_async_tx_descriptor *txd)
  335. {
  336. struct pch_dma_desc *desc = to_pd_desc(txd);
  337. struct pch_dma_chan *pd_chan = to_pd_chan(txd->chan);
  338. dma_cookie_t cookie;
  339. spin_lock(&pd_chan->lock);
  340. cookie = pdc_assign_cookie(pd_chan, desc);
  341. if (list_empty(&pd_chan->active_list)) {
  342. list_add_tail(&desc->desc_node, &pd_chan->active_list);
  343. pdc_dostart(pd_chan, desc);
  344. } else {
  345. list_add_tail(&desc->desc_node, &pd_chan->queue);
  346. }
  347. spin_unlock(&pd_chan->lock);
  348. return 0;
  349. }
  350. static struct pch_dma_desc *pdc_alloc_desc(struct dma_chan *chan, gfp_t flags)
  351. {
  352. struct pch_dma_desc *desc = NULL;
  353. struct pch_dma *pd = to_pd(chan->device);
  354. dma_addr_t addr;
  355. desc = pci_pool_alloc(pd->pool, flags, &addr);
  356. if (desc) {
  357. memset(desc, 0, sizeof(struct pch_dma_desc));
  358. INIT_LIST_HEAD(&desc->tx_list);
  359. dma_async_tx_descriptor_init(&desc->txd, chan);
  360. desc->txd.tx_submit = pd_tx_submit;
  361. desc->txd.flags = DMA_CTRL_ACK;
  362. desc->txd.phys = addr;
  363. }
  364. return desc;
  365. }
  366. static struct pch_dma_desc *pdc_desc_get(struct pch_dma_chan *pd_chan)
  367. {
  368. struct pch_dma_desc *desc, *_d;
  369. struct pch_dma_desc *ret = NULL;
  370. int i = 0;
  371. spin_lock(&pd_chan->lock);
  372. list_for_each_entry_safe(desc, _d, &pd_chan->free_list, desc_node) {
  373. i++;
  374. if (async_tx_test_ack(&desc->txd)) {
  375. list_del(&desc->desc_node);
  376. ret = desc;
  377. break;
  378. }
  379. dev_dbg(chan2dev(&pd_chan->chan), "desc %p not ACKed\n", desc);
  380. }
  381. spin_unlock(&pd_chan->lock);
  382. dev_dbg(chan2dev(&pd_chan->chan), "scanned %d descriptors\n", i);
  383. if (!ret) {
  384. ret = pdc_alloc_desc(&pd_chan->chan, GFP_NOIO);
  385. if (ret) {
  386. spin_lock(&pd_chan->lock);
  387. pd_chan->descs_allocated++;
  388. spin_unlock(&pd_chan->lock);
  389. } else {
  390. dev_err(chan2dev(&pd_chan->chan),
  391. "failed to alloc desc\n");
  392. }
  393. }
  394. return ret;
  395. }
  396. static void pdc_desc_put(struct pch_dma_chan *pd_chan,
  397. struct pch_dma_desc *desc)
  398. {
  399. if (desc) {
  400. spin_lock(&pd_chan->lock);
  401. list_splice_init(&desc->tx_list, &pd_chan->free_list);
  402. list_add(&desc->desc_node, &pd_chan->free_list);
  403. spin_unlock(&pd_chan->lock);
  404. }
  405. }
  406. static int pd_alloc_chan_resources(struct dma_chan *chan)
  407. {
  408. struct pch_dma_chan *pd_chan = to_pd_chan(chan);
  409. struct pch_dma_desc *desc;
  410. LIST_HEAD(tmp_list);
  411. int i;
  412. if (!pdc_is_idle(pd_chan)) {
  413. dev_dbg(chan2dev(chan), "DMA channel not idle ?\n");
  414. return -EIO;
  415. }
  416. if (!list_empty(&pd_chan->free_list))
  417. return pd_chan->descs_allocated;
  418. for (i = 0; i < init_nr_desc_per_channel; i++) {
  419. desc = pdc_alloc_desc(chan, GFP_KERNEL);
  420. if (!desc) {
  421. dev_warn(chan2dev(chan),
  422. "Only allocated %d initial descriptors\n", i);
  423. break;
  424. }
  425. list_add_tail(&desc->desc_node, &tmp_list);
  426. }
  427. spin_lock_bh(&pd_chan->lock);
  428. list_splice(&tmp_list, &pd_chan->free_list);
  429. pd_chan->descs_allocated = i;
  430. pd_chan->completed_cookie = chan->cookie = 1;
  431. spin_unlock_bh(&pd_chan->lock);
  432. pdc_enable_irq(chan, 1);
  433. return pd_chan->descs_allocated;
  434. }
  435. static void pd_free_chan_resources(struct dma_chan *chan)
  436. {
  437. struct pch_dma_chan *pd_chan = to_pd_chan(chan);
  438. struct pch_dma *pd = to_pd(chan->device);
  439. struct pch_dma_desc *desc, *_d;
  440. LIST_HEAD(tmp_list);
  441. BUG_ON(!pdc_is_idle(pd_chan));
  442. BUG_ON(!list_empty(&pd_chan->active_list));
  443. BUG_ON(!list_empty(&pd_chan->queue));
  444. spin_lock_bh(&pd_chan->lock);
  445. list_splice_init(&pd_chan->free_list, &tmp_list);
  446. pd_chan->descs_allocated = 0;
  447. spin_unlock_bh(&pd_chan->lock);
  448. list_for_each_entry_safe(desc, _d, &tmp_list, desc_node)
  449. pci_pool_free(pd->pool, desc, desc->txd.phys);
  450. pdc_enable_irq(chan, 0);
  451. }
  452. static enum dma_status pd_tx_status(struct dma_chan *chan, dma_cookie_t cookie,
  453. struct dma_tx_state *txstate)
  454. {
  455. struct pch_dma_chan *pd_chan = to_pd_chan(chan);
  456. dma_cookie_t last_used;
  457. dma_cookie_t last_completed;
  458. int ret;
  459. spin_lock_bh(&pd_chan->lock);
  460. last_completed = pd_chan->completed_cookie;
  461. last_used = chan->cookie;
  462. spin_unlock_bh(&pd_chan->lock);
  463. ret = dma_async_is_complete(cookie, last_completed, last_used);
  464. dma_set_tx_state(txstate, last_completed, last_used, 0);
  465. return ret;
  466. }
  467. static void pd_issue_pending(struct dma_chan *chan)
  468. {
  469. struct pch_dma_chan *pd_chan = to_pd_chan(chan);
  470. if (pdc_is_idle(pd_chan)) {
  471. spin_lock(&pd_chan->lock);
  472. pdc_advance_work(pd_chan);
  473. spin_unlock(&pd_chan->lock);
  474. }
  475. }
  476. static struct dma_async_tx_descriptor *pd_prep_slave_sg(struct dma_chan *chan,
  477. struct scatterlist *sgl, unsigned int sg_len,
  478. enum dma_data_direction direction, unsigned long flags)
  479. {
  480. struct pch_dma_chan *pd_chan = to_pd_chan(chan);
  481. struct pch_dma_slave *pd_slave = chan->private;
  482. struct pch_dma_desc *first = NULL;
  483. struct pch_dma_desc *prev = NULL;
  484. struct pch_dma_desc *desc = NULL;
  485. struct scatterlist *sg;
  486. dma_addr_t reg;
  487. int i;
  488. if (unlikely(!sg_len)) {
  489. dev_info(chan2dev(chan), "prep_slave_sg: length is zero!\n");
  490. return NULL;
  491. }
  492. if (direction == DMA_FROM_DEVICE)
  493. reg = pd_slave->rx_reg;
  494. else if (direction == DMA_TO_DEVICE)
  495. reg = pd_slave->tx_reg;
  496. else
  497. return NULL;
  498. pd_chan->dir = direction;
  499. pdc_set_dir(chan);
  500. for_each_sg(sgl, sg, sg_len, i) {
  501. desc = pdc_desc_get(pd_chan);
  502. if (!desc)
  503. goto err_desc_get;
  504. desc->regs.dev_addr = reg;
  505. desc->regs.mem_addr = sg_phys(sg);
  506. desc->regs.size = sg_dma_len(sg);
  507. desc->regs.next = DMA_DESC_FOLLOW_WITHOUT_IRQ;
  508. switch (pd_slave->width) {
  509. case PCH_DMA_WIDTH_1_BYTE:
  510. if (desc->regs.size > DMA_DESC_MAX_COUNT_1_BYTE)
  511. goto err_desc_get;
  512. desc->regs.size |= DMA_DESC_WIDTH_1_BYTE;
  513. break;
  514. case PCH_DMA_WIDTH_2_BYTES:
  515. if (desc->regs.size > DMA_DESC_MAX_COUNT_2_BYTES)
  516. goto err_desc_get;
  517. desc->regs.size |= DMA_DESC_WIDTH_2_BYTES;
  518. break;
  519. case PCH_DMA_WIDTH_4_BYTES:
  520. if (desc->regs.size > DMA_DESC_MAX_COUNT_4_BYTES)
  521. goto err_desc_get;
  522. desc->regs.size |= DMA_DESC_WIDTH_4_BYTES;
  523. break;
  524. default:
  525. goto err_desc_get;
  526. }
  527. if (!first) {
  528. first = desc;
  529. } else {
  530. prev->regs.next |= desc->txd.phys;
  531. list_add_tail(&desc->desc_node, &first->tx_list);
  532. }
  533. prev = desc;
  534. }
  535. if (flags & DMA_PREP_INTERRUPT)
  536. desc->regs.next = DMA_DESC_END_WITH_IRQ;
  537. else
  538. desc->regs.next = DMA_DESC_END_WITHOUT_IRQ;
  539. first->txd.cookie = -EBUSY;
  540. desc->txd.flags = flags;
  541. return &first->txd;
  542. err_desc_get:
  543. dev_err(chan2dev(chan), "failed to get desc or wrong parameters\n");
  544. pdc_desc_put(pd_chan, first);
  545. return NULL;
  546. }
  547. static int pd_device_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd,
  548. unsigned long arg)
  549. {
  550. struct pch_dma_chan *pd_chan = to_pd_chan(chan);
  551. struct pch_dma_desc *desc, *_d;
  552. LIST_HEAD(list);
  553. if (cmd != DMA_TERMINATE_ALL)
  554. return -ENXIO;
  555. spin_lock_bh(&pd_chan->lock);
  556. pdc_set_mode(&pd_chan->chan, DMA_CTL0_DISABLE);
  557. list_splice_init(&pd_chan->active_list, &list);
  558. list_splice_init(&pd_chan->queue, &list);
  559. list_for_each_entry_safe(desc, _d, &list, desc_node)
  560. pdc_chain_complete(pd_chan, desc);
  561. spin_unlock_bh(&pd_chan->lock);
  562. return 0;
  563. }
  564. static void pdc_tasklet(unsigned long data)
  565. {
  566. struct pch_dma_chan *pd_chan = (struct pch_dma_chan *)data;
  567. unsigned long flags;
  568. if (!pdc_is_idle(pd_chan)) {
  569. dev_err(chan2dev(&pd_chan->chan),
  570. "BUG: handle non-idle channel in tasklet\n");
  571. return;
  572. }
  573. spin_lock_irqsave(&pd_chan->lock, flags);
  574. if (test_and_clear_bit(0, &pd_chan->err_status))
  575. pdc_handle_error(pd_chan);
  576. else
  577. pdc_advance_work(pd_chan);
  578. spin_unlock_irqrestore(&pd_chan->lock, flags);
  579. }
  580. static irqreturn_t pd_irq(int irq, void *devid)
  581. {
  582. struct pch_dma *pd = (struct pch_dma *)devid;
  583. struct pch_dma_chan *pd_chan;
  584. u32 sts0;
  585. u32 sts2;
  586. int i;
  587. int ret0 = IRQ_NONE;
  588. int ret2 = IRQ_NONE;
  589. sts0 = dma_readl(pd, STS0);
  590. sts2 = dma_readl(pd, STS2);
  591. dev_dbg(pd->dma.dev, "pd_irq sts0: %x\n", sts0);
  592. for (i = 0; i < pd->dma.chancnt; i++) {
  593. pd_chan = &pd->channels[i];
  594. if (i < 8) {
  595. if (sts0 & DMA_STATUS_IRQ(i)) {
  596. if (sts0 & DMA_STATUS0_ERR(i))
  597. set_bit(0, &pd_chan->err_status);
  598. tasklet_schedule(&pd_chan->tasklet);
  599. ret0 = IRQ_HANDLED;
  600. }
  601. } else {
  602. if (sts2 & DMA_STATUS_IRQ(i - 8)) {
  603. if (sts2 & DMA_STATUS2_ERR(i))
  604. set_bit(0, &pd_chan->err_status);
  605. tasklet_schedule(&pd_chan->tasklet);
  606. ret2 = IRQ_HANDLED;
  607. }
  608. }
  609. }
  610. /* clear interrupt bits in status register */
  611. if (ret0)
  612. dma_writel(pd, STS0, sts0);
  613. if (ret2)
  614. dma_writel(pd, STS2, sts2);
  615. return ret0 | ret2;
  616. }
  617. #ifdef CONFIG_PM
  618. static void pch_dma_save_regs(struct pch_dma *pd)
  619. {
  620. struct pch_dma_chan *pd_chan;
  621. struct dma_chan *chan, *_c;
  622. int i = 0;
  623. pd->regs.dma_ctl0 = dma_readl(pd, CTL0);
  624. pd->regs.dma_ctl1 = dma_readl(pd, CTL1);
  625. pd->regs.dma_ctl2 = dma_readl(pd, CTL2);
  626. pd->regs.dma_ctl3 = dma_readl(pd, CTL3);
  627. list_for_each_entry_safe(chan, _c, &pd->dma.channels, device_node) {
  628. pd_chan = to_pd_chan(chan);
  629. pd->ch_regs[i].dev_addr = channel_readl(pd_chan, DEV_ADDR);
  630. pd->ch_regs[i].mem_addr = channel_readl(pd_chan, MEM_ADDR);
  631. pd->ch_regs[i].size = channel_readl(pd_chan, SIZE);
  632. pd->ch_regs[i].next = channel_readl(pd_chan, NEXT);
  633. i++;
  634. }
  635. }
  636. static void pch_dma_restore_regs(struct pch_dma *pd)
  637. {
  638. struct pch_dma_chan *pd_chan;
  639. struct dma_chan *chan, *_c;
  640. int i = 0;
  641. dma_writel(pd, CTL0, pd->regs.dma_ctl0);
  642. dma_writel(pd, CTL1, pd->regs.dma_ctl1);
  643. dma_writel(pd, CTL2, pd->regs.dma_ctl2);
  644. dma_writel(pd, CTL3, pd->regs.dma_ctl3);
  645. list_for_each_entry_safe(chan, _c, &pd->dma.channels, device_node) {
  646. pd_chan = to_pd_chan(chan);
  647. channel_writel(pd_chan, DEV_ADDR, pd->ch_regs[i].dev_addr);
  648. channel_writel(pd_chan, MEM_ADDR, pd->ch_regs[i].mem_addr);
  649. channel_writel(pd_chan, SIZE, pd->ch_regs[i].size);
  650. channel_writel(pd_chan, NEXT, pd->ch_regs[i].next);
  651. i++;
  652. }
  653. }
  654. static int pch_dma_suspend(struct pci_dev *pdev, pm_message_t state)
  655. {
  656. struct pch_dma *pd = pci_get_drvdata(pdev);
  657. if (pd)
  658. pch_dma_save_regs(pd);
  659. pci_save_state(pdev);
  660. pci_disable_device(pdev);
  661. pci_set_power_state(pdev, pci_choose_state(pdev, state));
  662. return 0;
  663. }
  664. static int pch_dma_resume(struct pci_dev *pdev)
  665. {
  666. struct pch_dma *pd = pci_get_drvdata(pdev);
  667. int err;
  668. pci_set_power_state(pdev, PCI_D0);
  669. pci_restore_state(pdev);
  670. err = pci_enable_device(pdev);
  671. if (err) {
  672. dev_dbg(&pdev->dev, "failed to enable device\n");
  673. return err;
  674. }
  675. if (pd)
  676. pch_dma_restore_regs(pd);
  677. return 0;
  678. }
  679. #endif
  680. static int __devinit pch_dma_probe(struct pci_dev *pdev,
  681. const struct pci_device_id *id)
  682. {
  683. struct pch_dma *pd;
  684. struct pch_dma_regs *regs;
  685. unsigned int nr_channels;
  686. int err;
  687. int i;
  688. nr_channels = id->driver_data;
  689. pd = kzalloc(sizeof(struct pch_dma)+
  690. sizeof(struct pch_dma_chan) * nr_channels, GFP_KERNEL);
  691. if (!pd)
  692. return -ENOMEM;
  693. pci_set_drvdata(pdev, pd);
  694. err = pci_enable_device(pdev);
  695. if (err) {
  696. dev_err(&pdev->dev, "Cannot enable PCI device\n");
  697. goto err_free_mem;
  698. }
  699. if (!(pci_resource_flags(pdev, 1) & IORESOURCE_MEM)) {
  700. dev_err(&pdev->dev, "Cannot find proper base address\n");
  701. goto err_disable_pdev;
  702. }
  703. err = pci_request_regions(pdev, DRV_NAME);
  704. if (err) {
  705. dev_err(&pdev->dev, "Cannot obtain PCI resources\n");
  706. goto err_disable_pdev;
  707. }
  708. err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
  709. if (err) {
  710. dev_err(&pdev->dev, "Cannot set proper DMA config\n");
  711. goto err_free_res;
  712. }
  713. regs = pd->membase = pci_iomap(pdev, 1, 0);
  714. if (!pd->membase) {
  715. dev_err(&pdev->dev, "Cannot map MMIO registers\n");
  716. err = -ENOMEM;
  717. goto err_free_res;
  718. }
  719. pci_set_master(pdev);
  720. err = request_irq(pdev->irq, pd_irq, IRQF_SHARED, DRV_NAME, pd);
  721. if (err) {
  722. dev_err(&pdev->dev, "Failed to request IRQ\n");
  723. goto err_iounmap;
  724. }
  725. pd->pool = pci_pool_create("pch_dma_desc_pool", pdev,
  726. sizeof(struct pch_dma_desc), 4, 0);
  727. if (!pd->pool) {
  728. dev_err(&pdev->dev, "Failed to alloc DMA descriptors\n");
  729. err = -ENOMEM;
  730. goto err_free_irq;
  731. }
  732. pd->dma.dev = &pdev->dev;
  733. pd->dma.chancnt = nr_channels;
  734. INIT_LIST_HEAD(&pd->dma.channels);
  735. for (i = 0; i < nr_channels; i++) {
  736. struct pch_dma_chan *pd_chan = &pd->channels[i];
  737. pd_chan->chan.device = &pd->dma;
  738. pd_chan->chan.cookie = 1;
  739. pd_chan->chan.chan_id = i;
  740. pd_chan->membase = &regs->desc[i];
  741. spin_lock_init(&pd_chan->lock);
  742. INIT_LIST_HEAD(&pd_chan->active_list);
  743. INIT_LIST_HEAD(&pd_chan->queue);
  744. INIT_LIST_HEAD(&pd_chan->free_list);
  745. tasklet_init(&pd_chan->tasklet, pdc_tasklet,
  746. (unsigned long)pd_chan);
  747. list_add_tail(&pd_chan->chan.device_node, &pd->dma.channels);
  748. }
  749. dma_cap_zero(pd->dma.cap_mask);
  750. dma_cap_set(DMA_PRIVATE, pd->dma.cap_mask);
  751. dma_cap_set(DMA_SLAVE, pd->dma.cap_mask);
  752. pd->dma.device_alloc_chan_resources = pd_alloc_chan_resources;
  753. pd->dma.device_free_chan_resources = pd_free_chan_resources;
  754. pd->dma.device_tx_status = pd_tx_status;
  755. pd->dma.device_issue_pending = pd_issue_pending;
  756. pd->dma.device_prep_slave_sg = pd_prep_slave_sg;
  757. pd->dma.device_control = pd_device_control;
  758. err = dma_async_device_register(&pd->dma);
  759. if (err) {
  760. dev_err(&pdev->dev, "Failed to register DMA device\n");
  761. goto err_free_pool;
  762. }
  763. return 0;
  764. err_free_pool:
  765. pci_pool_destroy(pd->pool);
  766. err_free_irq:
  767. free_irq(pdev->irq, pd);
  768. err_iounmap:
  769. pci_iounmap(pdev, pd->membase);
  770. err_free_res:
  771. pci_release_regions(pdev);
  772. err_disable_pdev:
  773. pci_disable_device(pdev);
  774. err_free_mem:
  775. return err;
  776. }
  777. static void __devexit pch_dma_remove(struct pci_dev *pdev)
  778. {
  779. struct pch_dma *pd = pci_get_drvdata(pdev);
  780. struct pch_dma_chan *pd_chan;
  781. struct dma_chan *chan, *_c;
  782. if (pd) {
  783. dma_async_device_unregister(&pd->dma);
  784. list_for_each_entry_safe(chan, _c, &pd->dma.channels,
  785. device_node) {
  786. pd_chan = to_pd_chan(chan);
  787. tasklet_disable(&pd_chan->tasklet);
  788. tasklet_kill(&pd_chan->tasklet);
  789. }
  790. pci_pool_destroy(pd->pool);
  791. free_irq(pdev->irq, pd);
  792. pci_iounmap(pdev, pd->membase);
  793. pci_release_regions(pdev);
  794. pci_disable_device(pdev);
  795. kfree(pd);
  796. }
  797. }
  798. /* PCI Device ID of DMA device */
  799. #define PCI_VENDOR_ID_ROHM 0x10DB
  800. #define PCI_DEVICE_ID_EG20T_PCH_DMA_8CH 0x8810
  801. #define PCI_DEVICE_ID_EG20T_PCH_DMA_4CH 0x8815
  802. #define PCI_DEVICE_ID_ML7213_DMA1_8CH 0x8026
  803. #define PCI_DEVICE_ID_ML7213_DMA2_8CH 0x802B
  804. #define PCI_DEVICE_ID_ML7213_DMA3_4CH 0x8034
  805. #define PCI_DEVICE_ID_ML7213_DMA4_12CH 0x8032
  806. #define PCI_DEVICE_ID_ML7223_DMA1_4CH 0x800B
  807. #define PCI_DEVICE_ID_ML7223_DMA2_4CH 0x800E
  808. #define PCI_DEVICE_ID_ML7223_DMA3_4CH 0x8017
  809. #define PCI_DEVICE_ID_ML7223_DMA4_4CH 0x803B
  810. DEFINE_PCI_DEVICE_TABLE(pch_dma_id_table) = {
  811. { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_EG20T_PCH_DMA_8CH), 8 },
  812. { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_EG20T_PCH_DMA_4CH), 4 },
  813. { PCI_VDEVICE(ROHM, PCI_DEVICE_ID_ML7213_DMA1_8CH), 8}, /* UART Video */
  814. { PCI_VDEVICE(ROHM, PCI_DEVICE_ID_ML7213_DMA2_8CH), 8}, /* PCMIF SPI */
  815. { PCI_VDEVICE(ROHM, PCI_DEVICE_ID_ML7213_DMA3_4CH), 4}, /* FPGA */
  816. { PCI_VDEVICE(ROHM, PCI_DEVICE_ID_ML7213_DMA4_12CH), 12}, /* I2S */
  817. { PCI_VDEVICE(ROHM, PCI_DEVICE_ID_ML7223_DMA1_4CH), 4}, /* UART */
  818. { PCI_VDEVICE(ROHM, PCI_DEVICE_ID_ML7223_DMA2_4CH), 4}, /* Video SPI */
  819. { PCI_VDEVICE(ROHM, PCI_DEVICE_ID_ML7223_DMA3_4CH), 4}, /* Security */
  820. { PCI_VDEVICE(ROHM, PCI_DEVICE_ID_ML7223_DMA4_4CH), 4}, /* FPGA */
  821. { 0, },
  822. };
  823. static struct pci_driver pch_dma_driver = {
  824. .name = DRV_NAME,
  825. .id_table = pch_dma_id_table,
  826. .probe = pch_dma_probe,
  827. .remove = __devexit_p(pch_dma_remove),
  828. #ifdef CONFIG_PM
  829. .suspend = pch_dma_suspend,
  830. .resume = pch_dma_resume,
  831. #endif
  832. };
  833. static int __init pch_dma_init(void)
  834. {
  835. return pci_register_driver(&pch_dma_driver);
  836. }
  837. static void __exit pch_dma_exit(void)
  838. {
  839. pci_unregister_driver(&pch_dma_driver);
  840. }
  841. module_init(pch_dma_init);
  842. module_exit(pch_dma_exit);
  843. MODULE_DESCRIPTION("Intel EG20T PCH / OKI SEMICONDUCTOR ML7213 IOH "
  844. "DMA controller driver");
  845. MODULE_AUTHOR("Yong Wang <yong.y.wang@intel.com>");
  846. MODULE_LICENSE("GPL v2");