vmx.c 67 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * Copyright (C) 2006 Qumranet, Inc.
  8. *
  9. * Authors:
  10. * Avi Kivity <avi@qumranet.com>
  11. * Yaniv Kamay <yaniv@qumranet.com>
  12. *
  13. * This work is licensed under the terms of the GNU GPL, version 2. See
  14. * the COPYING file in the top-level directory.
  15. *
  16. */
  17. #include "kvm.h"
  18. #include "x86.h"
  19. #include "x86_emulate.h"
  20. #include "irq.h"
  21. #include "vmx.h"
  22. #include "segment_descriptor.h"
  23. #include <linux/module.h>
  24. #include <linux/kernel.h>
  25. #include <linux/mm.h>
  26. #include <linux/highmem.h>
  27. #include <linux/sched.h>
  28. #include <linux/moduleparam.h>
  29. #include <asm/io.h>
  30. #include <asm/desc.h>
  31. MODULE_AUTHOR("Qumranet");
  32. MODULE_LICENSE("GPL");
  33. static int bypass_guest_pf = 1;
  34. module_param(bypass_guest_pf, bool, 0);
  35. struct vmcs {
  36. u32 revision_id;
  37. u32 abort;
  38. char data[0];
  39. };
  40. struct vcpu_vmx {
  41. struct kvm_vcpu vcpu;
  42. int launched;
  43. u8 fail;
  44. u32 idt_vectoring_info;
  45. struct kvm_msr_entry *guest_msrs;
  46. struct kvm_msr_entry *host_msrs;
  47. int nmsrs;
  48. int save_nmsrs;
  49. int msr_offset_efer;
  50. #ifdef CONFIG_X86_64
  51. int msr_offset_kernel_gs_base;
  52. #endif
  53. struct vmcs *vmcs;
  54. struct {
  55. int loaded;
  56. u16 fs_sel, gs_sel, ldt_sel;
  57. int gs_ldt_reload_needed;
  58. int fs_reload_needed;
  59. int guest_efer_loaded;
  60. } host_state;
  61. struct {
  62. struct {
  63. bool pending;
  64. u8 vector;
  65. unsigned rip;
  66. } irq;
  67. } rmode;
  68. };
  69. static inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu)
  70. {
  71. return container_of(vcpu, struct vcpu_vmx, vcpu);
  72. }
  73. static int init_rmode_tss(struct kvm *kvm);
  74. static DEFINE_PER_CPU(struct vmcs *, vmxarea);
  75. static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
  76. static struct page *vmx_io_bitmap_a;
  77. static struct page *vmx_io_bitmap_b;
  78. static struct vmcs_config {
  79. int size;
  80. int order;
  81. u32 revision_id;
  82. u32 pin_based_exec_ctrl;
  83. u32 cpu_based_exec_ctrl;
  84. u32 cpu_based_2nd_exec_ctrl;
  85. u32 vmexit_ctrl;
  86. u32 vmentry_ctrl;
  87. } vmcs_config;
  88. #define VMX_SEGMENT_FIELD(seg) \
  89. [VCPU_SREG_##seg] = { \
  90. .selector = GUEST_##seg##_SELECTOR, \
  91. .base = GUEST_##seg##_BASE, \
  92. .limit = GUEST_##seg##_LIMIT, \
  93. .ar_bytes = GUEST_##seg##_AR_BYTES, \
  94. }
  95. static struct kvm_vmx_segment_field {
  96. unsigned selector;
  97. unsigned base;
  98. unsigned limit;
  99. unsigned ar_bytes;
  100. } kvm_vmx_segment_fields[] = {
  101. VMX_SEGMENT_FIELD(CS),
  102. VMX_SEGMENT_FIELD(DS),
  103. VMX_SEGMENT_FIELD(ES),
  104. VMX_SEGMENT_FIELD(FS),
  105. VMX_SEGMENT_FIELD(GS),
  106. VMX_SEGMENT_FIELD(SS),
  107. VMX_SEGMENT_FIELD(TR),
  108. VMX_SEGMENT_FIELD(LDTR),
  109. };
  110. /*
  111. * Keep MSR_K6_STAR at the end, as setup_msrs() will try to optimize it
  112. * away by decrementing the array size.
  113. */
  114. static const u32 vmx_msr_index[] = {
  115. #ifdef CONFIG_X86_64
  116. MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR, MSR_KERNEL_GS_BASE,
  117. #endif
  118. MSR_EFER, MSR_K6_STAR,
  119. };
  120. #define NR_VMX_MSR ARRAY_SIZE(vmx_msr_index)
  121. static void load_msrs(struct kvm_msr_entry *e, int n)
  122. {
  123. int i;
  124. for (i = 0; i < n; ++i)
  125. wrmsrl(e[i].index, e[i].data);
  126. }
  127. static void save_msrs(struct kvm_msr_entry *e, int n)
  128. {
  129. int i;
  130. for (i = 0; i < n; ++i)
  131. rdmsrl(e[i].index, e[i].data);
  132. }
  133. static inline int is_page_fault(u32 intr_info)
  134. {
  135. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
  136. INTR_INFO_VALID_MASK)) ==
  137. (INTR_TYPE_EXCEPTION | PF_VECTOR | INTR_INFO_VALID_MASK);
  138. }
  139. static inline int is_no_device(u32 intr_info)
  140. {
  141. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
  142. INTR_INFO_VALID_MASK)) ==
  143. (INTR_TYPE_EXCEPTION | NM_VECTOR | INTR_INFO_VALID_MASK);
  144. }
  145. static inline int is_invalid_opcode(u32 intr_info)
  146. {
  147. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
  148. INTR_INFO_VALID_MASK)) ==
  149. (INTR_TYPE_EXCEPTION | UD_VECTOR | INTR_INFO_VALID_MASK);
  150. }
  151. static inline int is_external_interrupt(u32 intr_info)
  152. {
  153. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
  154. == (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
  155. }
  156. static inline int cpu_has_vmx_tpr_shadow(void)
  157. {
  158. return (vmcs_config.cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW);
  159. }
  160. static inline int vm_need_tpr_shadow(struct kvm *kvm)
  161. {
  162. return ((cpu_has_vmx_tpr_shadow()) && (irqchip_in_kernel(kvm)));
  163. }
  164. static inline int cpu_has_secondary_exec_ctrls(void)
  165. {
  166. return (vmcs_config.cpu_based_exec_ctrl &
  167. CPU_BASED_ACTIVATE_SECONDARY_CONTROLS);
  168. }
  169. static inline int cpu_has_vmx_virtualize_apic_accesses(void)
  170. {
  171. return (vmcs_config.cpu_based_2nd_exec_ctrl &
  172. SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES);
  173. }
  174. static inline int vm_need_virtualize_apic_accesses(struct kvm *kvm)
  175. {
  176. return ((cpu_has_vmx_virtualize_apic_accesses()) &&
  177. (irqchip_in_kernel(kvm)));
  178. }
  179. static int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
  180. {
  181. int i;
  182. for (i = 0; i < vmx->nmsrs; ++i)
  183. if (vmx->guest_msrs[i].index == msr)
  184. return i;
  185. return -1;
  186. }
  187. static struct kvm_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
  188. {
  189. int i;
  190. i = __find_msr_index(vmx, msr);
  191. if (i >= 0)
  192. return &vmx->guest_msrs[i];
  193. return NULL;
  194. }
  195. static void vmcs_clear(struct vmcs *vmcs)
  196. {
  197. u64 phys_addr = __pa(vmcs);
  198. u8 error;
  199. asm volatile (ASM_VMX_VMCLEAR_RAX "; setna %0"
  200. : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
  201. : "cc", "memory");
  202. if (error)
  203. printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
  204. vmcs, phys_addr);
  205. }
  206. static void __vcpu_clear(void *arg)
  207. {
  208. struct vcpu_vmx *vmx = arg;
  209. int cpu = raw_smp_processor_id();
  210. if (vmx->vcpu.cpu == cpu)
  211. vmcs_clear(vmx->vmcs);
  212. if (per_cpu(current_vmcs, cpu) == vmx->vmcs)
  213. per_cpu(current_vmcs, cpu) = NULL;
  214. rdtscll(vmx->vcpu.host_tsc);
  215. }
  216. static void vcpu_clear(struct vcpu_vmx *vmx)
  217. {
  218. if (vmx->vcpu.cpu == -1)
  219. return;
  220. smp_call_function_single(vmx->vcpu.cpu, __vcpu_clear, vmx, 0, 1);
  221. vmx->launched = 0;
  222. }
  223. static unsigned long vmcs_readl(unsigned long field)
  224. {
  225. unsigned long value;
  226. asm volatile (ASM_VMX_VMREAD_RDX_RAX
  227. : "=a"(value) : "d"(field) : "cc");
  228. return value;
  229. }
  230. static u16 vmcs_read16(unsigned long field)
  231. {
  232. return vmcs_readl(field);
  233. }
  234. static u32 vmcs_read32(unsigned long field)
  235. {
  236. return vmcs_readl(field);
  237. }
  238. static u64 vmcs_read64(unsigned long field)
  239. {
  240. #ifdef CONFIG_X86_64
  241. return vmcs_readl(field);
  242. #else
  243. return vmcs_readl(field) | ((u64)vmcs_readl(field+1) << 32);
  244. #endif
  245. }
  246. static noinline void vmwrite_error(unsigned long field, unsigned long value)
  247. {
  248. printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
  249. field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
  250. dump_stack();
  251. }
  252. static void vmcs_writel(unsigned long field, unsigned long value)
  253. {
  254. u8 error;
  255. asm volatile (ASM_VMX_VMWRITE_RAX_RDX "; setna %0"
  256. : "=q"(error) : "a"(value), "d"(field) : "cc");
  257. if (unlikely(error))
  258. vmwrite_error(field, value);
  259. }
  260. static void vmcs_write16(unsigned long field, u16 value)
  261. {
  262. vmcs_writel(field, value);
  263. }
  264. static void vmcs_write32(unsigned long field, u32 value)
  265. {
  266. vmcs_writel(field, value);
  267. }
  268. static void vmcs_write64(unsigned long field, u64 value)
  269. {
  270. #ifdef CONFIG_X86_64
  271. vmcs_writel(field, value);
  272. #else
  273. vmcs_writel(field, value);
  274. asm volatile ("");
  275. vmcs_writel(field+1, value >> 32);
  276. #endif
  277. }
  278. static void vmcs_clear_bits(unsigned long field, u32 mask)
  279. {
  280. vmcs_writel(field, vmcs_readl(field) & ~mask);
  281. }
  282. static void vmcs_set_bits(unsigned long field, u32 mask)
  283. {
  284. vmcs_writel(field, vmcs_readl(field) | mask);
  285. }
  286. static void update_exception_bitmap(struct kvm_vcpu *vcpu)
  287. {
  288. u32 eb;
  289. eb = (1u << PF_VECTOR) | (1u << UD_VECTOR);
  290. if (!vcpu->fpu_active)
  291. eb |= 1u << NM_VECTOR;
  292. if (vcpu->guest_debug.enabled)
  293. eb |= 1u << 1;
  294. if (vcpu->rmode.active)
  295. eb = ~0;
  296. vmcs_write32(EXCEPTION_BITMAP, eb);
  297. }
  298. static void reload_tss(void)
  299. {
  300. #ifndef CONFIG_X86_64
  301. /*
  302. * VT restores TR but not its size. Useless.
  303. */
  304. struct descriptor_table gdt;
  305. struct segment_descriptor *descs;
  306. get_gdt(&gdt);
  307. descs = (void *)gdt.base;
  308. descs[GDT_ENTRY_TSS].type = 9; /* available TSS */
  309. load_TR_desc();
  310. #endif
  311. }
  312. static void load_transition_efer(struct vcpu_vmx *vmx)
  313. {
  314. int efer_offset = vmx->msr_offset_efer;
  315. u64 host_efer = vmx->host_msrs[efer_offset].data;
  316. u64 guest_efer = vmx->guest_msrs[efer_offset].data;
  317. u64 ignore_bits;
  318. if (efer_offset < 0)
  319. return;
  320. /*
  321. * NX is emulated; LMA and LME handled by hardware; SCE meaninless
  322. * outside long mode
  323. */
  324. ignore_bits = EFER_NX | EFER_SCE;
  325. #ifdef CONFIG_X86_64
  326. ignore_bits |= EFER_LMA | EFER_LME;
  327. /* SCE is meaningful only in long mode on Intel */
  328. if (guest_efer & EFER_LMA)
  329. ignore_bits &= ~(u64)EFER_SCE;
  330. #endif
  331. if ((guest_efer & ~ignore_bits) == (host_efer & ~ignore_bits))
  332. return;
  333. vmx->host_state.guest_efer_loaded = 1;
  334. guest_efer &= ~ignore_bits;
  335. guest_efer |= host_efer & ignore_bits;
  336. wrmsrl(MSR_EFER, guest_efer);
  337. vmx->vcpu.stat.efer_reload++;
  338. }
  339. static void reload_host_efer(struct vcpu_vmx *vmx)
  340. {
  341. if (vmx->host_state.guest_efer_loaded) {
  342. vmx->host_state.guest_efer_loaded = 0;
  343. load_msrs(vmx->host_msrs + vmx->msr_offset_efer, 1);
  344. }
  345. }
  346. static void vmx_save_host_state(struct kvm_vcpu *vcpu)
  347. {
  348. struct vcpu_vmx *vmx = to_vmx(vcpu);
  349. if (vmx->host_state.loaded)
  350. return;
  351. vmx->host_state.loaded = 1;
  352. /*
  353. * Set host fs and gs selectors. Unfortunately, 22.2.3 does not
  354. * allow segment selectors with cpl > 0 or ti == 1.
  355. */
  356. vmx->host_state.ldt_sel = read_ldt();
  357. vmx->host_state.gs_ldt_reload_needed = vmx->host_state.ldt_sel;
  358. vmx->host_state.fs_sel = read_fs();
  359. if (!(vmx->host_state.fs_sel & 7)) {
  360. vmcs_write16(HOST_FS_SELECTOR, vmx->host_state.fs_sel);
  361. vmx->host_state.fs_reload_needed = 0;
  362. } else {
  363. vmcs_write16(HOST_FS_SELECTOR, 0);
  364. vmx->host_state.fs_reload_needed = 1;
  365. }
  366. vmx->host_state.gs_sel = read_gs();
  367. if (!(vmx->host_state.gs_sel & 7))
  368. vmcs_write16(HOST_GS_SELECTOR, vmx->host_state.gs_sel);
  369. else {
  370. vmcs_write16(HOST_GS_SELECTOR, 0);
  371. vmx->host_state.gs_ldt_reload_needed = 1;
  372. }
  373. #ifdef CONFIG_X86_64
  374. vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE));
  375. vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE));
  376. #else
  377. vmcs_writel(HOST_FS_BASE, segment_base(vmx->host_state.fs_sel));
  378. vmcs_writel(HOST_GS_BASE, segment_base(vmx->host_state.gs_sel));
  379. #endif
  380. #ifdef CONFIG_X86_64
  381. if (is_long_mode(&vmx->vcpu))
  382. save_msrs(vmx->host_msrs +
  383. vmx->msr_offset_kernel_gs_base, 1);
  384. #endif
  385. load_msrs(vmx->guest_msrs, vmx->save_nmsrs);
  386. load_transition_efer(vmx);
  387. }
  388. static void vmx_load_host_state(struct vcpu_vmx *vmx)
  389. {
  390. unsigned long flags;
  391. if (!vmx->host_state.loaded)
  392. return;
  393. ++vmx->vcpu.stat.host_state_reload;
  394. vmx->host_state.loaded = 0;
  395. if (vmx->host_state.fs_reload_needed)
  396. load_fs(vmx->host_state.fs_sel);
  397. if (vmx->host_state.gs_ldt_reload_needed) {
  398. load_ldt(vmx->host_state.ldt_sel);
  399. /*
  400. * If we have to reload gs, we must take care to
  401. * preserve our gs base.
  402. */
  403. local_irq_save(flags);
  404. load_gs(vmx->host_state.gs_sel);
  405. #ifdef CONFIG_X86_64
  406. wrmsrl(MSR_GS_BASE, vmcs_readl(HOST_GS_BASE));
  407. #endif
  408. local_irq_restore(flags);
  409. }
  410. reload_tss();
  411. save_msrs(vmx->guest_msrs, vmx->save_nmsrs);
  412. load_msrs(vmx->host_msrs, vmx->save_nmsrs);
  413. reload_host_efer(vmx);
  414. }
  415. /*
  416. * Switches to specified vcpu, until a matching vcpu_put(), but assumes
  417. * vcpu mutex is already taken.
  418. */
  419. static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
  420. {
  421. struct vcpu_vmx *vmx = to_vmx(vcpu);
  422. u64 phys_addr = __pa(vmx->vmcs);
  423. u64 tsc_this, delta;
  424. if (vcpu->cpu != cpu) {
  425. vcpu_clear(vmx);
  426. kvm_migrate_apic_timer(vcpu);
  427. }
  428. if (per_cpu(current_vmcs, cpu) != vmx->vmcs) {
  429. u8 error;
  430. per_cpu(current_vmcs, cpu) = vmx->vmcs;
  431. asm volatile (ASM_VMX_VMPTRLD_RAX "; setna %0"
  432. : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
  433. : "cc");
  434. if (error)
  435. printk(KERN_ERR "kvm: vmptrld %p/%llx fail\n",
  436. vmx->vmcs, phys_addr);
  437. }
  438. if (vcpu->cpu != cpu) {
  439. struct descriptor_table dt;
  440. unsigned long sysenter_esp;
  441. vcpu->cpu = cpu;
  442. /*
  443. * Linux uses per-cpu TSS and GDT, so set these when switching
  444. * processors.
  445. */
  446. vmcs_writel(HOST_TR_BASE, read_tr_base()); /* 22.2.4 */
  447. get_gdt(&dt);
  448. vmcs_writel(HOST_GDTR_BASE, dt.base); /* 22.2.4 */
  449. rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
  450. vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
  451. /*
  452. * Make sure the time stamp counter is monotonous.
  453. */
  454. rdtscll(tsc_this);
  455. delta = vcpu->host_tsc - tsc_this;
  456. vmcs_write64(TSC_OFFSET, vmcs_read64(TSC_OFFSET) + delta);
  457. }
  458. }
  459. static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
  460. {
  461. vmx_load_host_state(to_vmx(vcpu));
  462. }
  463. static void vmx_fpu_activate(struct kvm_vcpu *vcpu)
  464. {
  465. if (vcpu->fpu_active)
  466. return;
  467. vcpu->fpu_active = 1;
  468. vmcs_clear_bits(GUEST_CR0, X86_CR0_TS);
  469. if (vcpu->cr0 & X86_CR0_TS)
  470. vmcs_set_bits(GUEST_CR0, X86_CR0_TS);
  471. update_exception_bitmap(vcpu);
  472. }
  473. static void vmx_fpu_deactivate(struct kvm_vcpu *vcpu)
  474. {
  475. if (!vcpu->fpu_active)
  476. return;
  477. vcpu->fpu_active = 0;
  478. vmcs_set_bits(GUEST_CR0, X86_CR0_TS);
  479. update_exception_bitmap(vcpu);
  480. }
  481. static void vmx_vcpu_decache(struct kvm_vcpu *vcpu)
  482. {
  483. vcpu_clear(to_vmx(vcpu));
  484. }
  485. static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
  486. {
  487. return vmcs_readl(GUEST_RFLAGS);
  488. }
  489. static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
  490. {
  491. if (vcpu->rmode.active)
  492. rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
  493. vmcs_writel(GUEST_RFLAGS, rflags);
  494. }
  495. static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
  496. {
  497. unsigned long rip;
  498. u32 interruptibility;
  499. rip = vmcs_readl(GUEST_RIP);
  500. rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
  501. vmcs_writel(GUEST_RIP, rip);
  502. /*
  503. * We emulated an instruction, so temporary interrupt blocking
  504. * should be removed, if set.
  505. */
  506. interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
  507. if (interruptibility & 3)
  508. vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
  509. interruptibility & ~3);
  510. vcpu->interrupt_window_open = 1;
  511. }
  512. static void vmx_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
  513. bool has_error_code, u32 error_code)
  514. {
  515. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  516. nr | INTR_TYPE_EXCEPTION
  517. | (has_error_code ? INTR_INFO_DELIEVER_CODE_MASK : 0)
  518. | INTR_INFO_VALID_MASK);
  519. if (has_error_code)
  520. vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
  521. }
  522. static bool vmx_exception_injected(struct kvm_vcpu *vcpu)
  523. {
  524. struct vcpu_vmx *vmx = to_vmx(vcpu);
  525. return !(vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
  526. }
  527. static void vmx_inject_gp(struct kvm_vcpu *vcpu, unsigned error_code)
  528. {
  529. printk(KERN_DEBUG "inject_general_protection: rip 0x%lx\n",
  530. vmcs_readl(GUEST_RIP));
  531. vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
  532. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  533. GP_VECTOR |
  534. INTR_TYPE_EXCEPTION |
  535. INTR_INFO_DELIEVER_CODE_MASK |
  536. INTR_INFO_VALID_MASK);
  537. }
  538. static void vmx_inject_ud(struct kvm_vcpu *vcpu)
  539. {
  540. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  541. UD_VECTOR |
  542. INTR_TYPE_EXCEPTION |
  543. INTR_INFO_VALID_MASK);
  544. }
  545. /*
  546. * Swap MSR entry in host/guest MSR entry array.
  547. */
  548. #ifdef CONFIG_X86_64
  549. static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
  550. {
  551. struct kvm_msr_entry tmp;
  552. tmp = vmx->guest_msrs[to];
  553. vmx->guest_msrs[to] = vmx->guest_msrs[from];
  554. vmx->guest_msrs[from] = tmp;
  555. tmp = vmx->host_msrs[to];
  556. vmx->host_msrs[to] = vmx->host_msrs[from];
  557. vmx->host_msrs[from] = tmp;
  558. }
  559. #endif
  560. /*
  561. * Set up the vmcs to automatically save and restore system
  562. * msrs. Don't touch the 64-bit msrs if the guest is in legacy
  563. * mode, as fiddling with msrs is very expensive.
  564. */
  565. static void setup_msrs(struct vcpu_vmx *vmx)
  566. {
  567. int save_nmsrs;
  568. save_nmsrs = 0;
  569. #ifdef CONFIG_X86_64
  570. if (is_long_mode(&vmx->vcpu)) {
  571. int index;
  572. index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
  573. if (index >= 0)
  574. move_msr_up(vmx, index, save_nmsrs++);
  575. index = __find_msr_index(vmx, MSR_LSTAR);
  576. if (index >= 0)
  577. move_msr_up(vmx, index, save_nmsrs++);
  578. index = __find_msr_index(vmx, MSR_CSTAR);
  579. if (index >= 0)
  580. move_msr_up(vmx, index, save_nmsrs++);
  581. index = __find_msr_index(vmx, MSR_KERNEL_GS_BASE);
  582. if (index >= 0)
  583. move_msr_up(vmx, index, save_nmsrs++);
  584. /*
  585. * MSR_K6_STAR is only needed on long mode guests, and only
  586. * if efer.sce is enabled.
  587. */
  588. index = __find_msr_index(vmx, MSR_K6_STAR);
  589. if ((index >= 0) && (vmx->vcpu.shadow_efer & EFER_SCE))
  590. move_msr_up(vmx, index, save_nmsrs++);
  591. }
  592. #endif
  593. vmx->save_nmsrs = save_nmsrs;
  594. #ifdef CONFIG_X86_64
  595. vmx->msr_offset_kernel_gs_base =
  596. __find_msr_index(vmx, MSR_KERNEL_GS_BASE);
  597. #endif
  598. vmx->msr_offset_efer = __find_msr_index(vmx, MSR_EFER);
  599. }
  600. /*
  601. * reads and returns guest's timestamp counter "register"
  602. * guest_tsc = host_tsc + tsc_offset -- 21.3
  603. */
  604. static u64 guest_read_tsc(void)
  605. {
  606. u64 host_tsc, tsc_offset;
  607. rdtscll(host_tsc);
  608. tsc_offset = vmcs_read64(TSC_OFFSET);
  609. return host_tsc + tsc_offset;
  610. }
  611. /*
  612. * writes 'guest_tsc' into guest's timestamp counter "register"
  613. * guest_tsc = host_tsc + tsc_offset ==> tsc_offset = guest_tsc - host_tsc
  614. */
  615. static void guest_write_tsc(u64 guest_tsc)
  616. {
  617. u64 host_tsc;
  618. rdtscll(host_tsc);
  619. vmcs_write64(TSC_OFFSET, guest_tsc - host_tsc);
  620. }
  621. /*
  622. * Reads an msr value (of 'msr_index') into 'pdata'.
  623. * Returns 0 on success, non-0 otherwise.
  624. * Assumes vcpu_load() was already called.
  625. */
  626. static int vmx_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
  627. {
  628. u64 data;
  629. struct kvm_msr_entry *msr;
  630. if (!pdata) {
  631. printk(KERN_ERR "BUG: get_msr called with NULL pdata\n");
  632. return -EINVAL;
  633. }
  634. switch (msr_index) {
  635. #ifdef CONFIG_X86_64
  636. case MSR_FS_BASE:
  637. data = vmcs_readl(GUEST_FS_BASE);
  638. break;
  639. case MSR_GS_BASE:
  640. data = vmcs_readl(GUEST_GS_BASE);
  641. break;
  642. case MSR_EFER:
  643. return kvm_get_msr_common(vcpu, msr_index, pdata);
  644. #endif
  645. case MSR_IA32_TIME_STAMP_COUNTER:
  646. data = guest_read_tsc();
  647. break;
  648. case MSR_IA32_SYSENTER_CS:
  649. data = vmcs_read32(GUEST_SYSENTER_CS);
  650. break;
  651. case MSR_IA32_SYSENTER_EIP:
  652. data = vmcs_readl(GUEST_SYSENTER_EIP);
  653. break;
  654. case MSR_IA32_SYSENTER_ESP:
  655. data = vmcs_readl(GUEST_SYSENTER_ESP);
  656. break;
  657. default:
  658. msr = find_msr_entry(to_vmx(vcpu), msr_index);
  659. if (msr) {
  660. data = msr->data;
  661. break;
  662. }
  663. return kvm_get_msr_common(vcpu, msr_index, pdata);
  664. }
  665. *pdata = data;
  666. return 0;
  667. }
  668. /*
  669. * Writes msr value into into the appropriate "register".
  670. * Returns 0 on success, non-0 otherwise.
  671. * Assumes vcpu_load() was already called.
  672. */
  673. static int vmx_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
  674. {
  675. struct vcpu_vmx *vmx = to_vmx(vcpu);
  676. struct kvm_msr_entry *msr;
  677. int ret = 0;
  678. switch (msr_index) {
  679. #ifdef CONFIG_X86_64
  680. case MSR_EFER:
  681. ret = kvm_set_msr_common(vcpu, msr_index, data);
  682. if (vmx->host_state.loaded) {
  683. reload_host_efer(vmx);
  684. load_transition_efer(vmx);
  685. }
  686. break;
  687. case MSR_FS_BASE:
  688. vmcs_writel(GUEST_FS_BASE, data);
  689. break;
  690. case MSR_GS_BASE:
  691. vmcs_writel(GUEST_GS_BASE, data);
  692. break;
  693. #endif
  694. case MSR_IA32_SYSENTER_CS:
  695. vmcs_write32(GUEST_SYSENTER_CS, data);
  696. break;
  697. case MSR_IA32_SYSENTER_EIP:
  698. vmcs_writel(GUEST_SYSENTER_EIP, data);
  699. break;
  700. case MSR_IA32_SYSENTER_ESP:
  701. vmcs_writel(GUEST_SYSENTER_ESP, data);
  702. break;
  703. case MSR_IA32_TIME_STAMP_COUNTER:
  704. guest_write_tsc(data);
  705. break;
  706. default:
  707. msr = find_msr_entry(vmx, msr_index);
  708. if (msr) {
  709. msr->data = data;
  710. if (vmx->host_state.loaded)
  711. load_msrs(vmx->guest_msrs, vmx->save_nmsrs);
  712. break;
  713. }
  714. ret = kvm_set_msr_common(vcpu, msr_index, data);
  715. }
  716. return ret;
  717. }
  718. /*
  719. * Sync the rsp and rip registers into the vcpu structure. This allows
  720. * registers to be accessed by indexing vcpu->regs.
  721. */
  722. static void vcpu_load_rsp_rip(struct kvm_vcpu *vcpu)
  723. {
  724. vcpu->regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
  725. vcpu->rip = vmcs_readl(GUEST_RIP);
  726. }
  727. /*
  728. * Syncs rsp and rip back into the vmcs. Should be called after possible
  729. * modification.
  730. */
  731. static void vcpu_put_rsp_rip(struct kvm_vcpu *vcpu)
  732. {
  733. vmcs_writel(GUEST_RSP, vcpu->regs[VCPU_REGS_RSP]);
  734. vmcs_writel(GUEST_RIP, vcpu->rip);
  735. }
  736. static int set_guest_debug(struct kvm_vcpu *vcpu, struct kvm_debug_guest *dbg)
  737. {
  738. unsigned long dr7 = 0x400;
  739. int old_singlestep;
  740. old_singlestep = vcpu->guest_debug.singlestep;
  741. vcpu->guest_debug.enabled = dbg->enabled;
  742. if (vcpu->guest_debug.enabled) {
  743. int i;
  744. dr7 |= 0x200; /* exact */
  745. for (i = 0; i < 4; ++i) {
  746. if (!dbg->breakpoints[i].enabled)
  747. continue;
  748. vcpu->guest_debug.bp[i] = dbg->breakpoints[i].address;
  749. dr7 |= 2 << (i*2); /* global enable */
  750. dr7 |= 0 << (i*4+16); /* execution breakpoint */
  751. }
  752. vcpu->guest_debug.singlestep = dbg->singlestep;
  753. } else
  754. vcpu->guest_debug.singlestep = 0;
  755. if (old_singlestep && !vcpu->guest_debug.singlestep) {
  756. unsigned long flags;
  757. flags = vmcs_readl(GUEST_RFLAGS);
  758. flags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
  759. vmcs_writel(GUEST_RFLAGS, flags);
  760. }
  761. update_exception_bitmap(vcpu);
  762. vmcs_writel(GUEST_DR7, dr7);
  763. return 0;
  764. }
  765. static int vmx_get_irq(struct kvm_vcpu *vcpu)
  766. {
  767. struct vcpu_vmx *vmx = to_vmx(vcpu);
  768. u32 idtv_info_field;
  769. idtv_info_field = vmx->idt_vectoring_info;
  770. if (idtv_info_field & INTR_INFO_VALID_MASK) {
  771. if (is_external_interrupt(idtv_info_field))
  772. return idtv_info_field & VECTORING_INFO_VECTOR_MASK;
  773. else
  774. printk(KERN_DEBUG "pending exception: not handled yet\n");
  775. }
  776. return -1;
  777. }
  778. static __init int cpu_has_kvm_support(void)
  779. {
  780. unsigned long ecx = cpuid_ecx(1);
  781. return test_bit(5, &ecx); /* CPUID.1:ECX.VMX[bit 5] -> VT */
  782. }
  783. static __init int vmx_disabled_by_bios(void)
  784. {
  785. u64 msr;
  786. rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
  787. return (msr & (MSR_IA32_FEATURE_CONTROL_LOCKED |
  788. MSR_IA32_FEATURE_CONTROL_VMXON_ENABLED))
  789. == MSR_IA32_FEATURE_CONTROL_LOCKED;
  790. /* locked but not enabled */
  791. }
  792. static void hardware_enable(void *garbage)
  793. {
  794. int cpu = raw_smp_processor_id();
  795. u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
  796. u64 old;
  797. rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
  798. if ((old & (MSR_IA32_FEATURE_CONTROL_LOCKED |
  799. MSR_IA32_FEATURE_CONTROL_VMXON_ENABLED))
  800. != (MSR_IA32_FEATURE_CONTROL_LOCKED |
  801. MSR_IA32_FEATURE_CONTROL_VMXON_ENABLED))
  802. /* enable and lock */
  803. wrmsrl(MSR_IA32_FEATURE_CONTROL, old |
  804. MSR_IA32_FEATURE_CONTROL_LOCKED |
  805. MSR_IA32_FEATURE_CONTROL_VMXON_ENABLED);
  806. write_cr4(read_cr4() | X86_CR4_VMXE); /* FIXME: not cpu hotplug safe */
  807. asm volatile (ASM_VMX_VMXON_RAX : : "a"(&phys_addr), "m"(phys_addr)
  808. : "memory", "cc");
  809. }
  810. static void hardware_disable(void *garbage)
  811. {
  812. asm volatile (ASM_VMX_VMXOFF : : : "cc");
  813. }
  814. static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
  815. u32 msr, u32 *result)
  816. {
  817. u32 vmx_msr_low, vmx_msr_high;
  818. u32 ctl = ctl_min | ctl_opt;
  819. rdmsr(msr, vmx_msr_low, vmx_msr_high);
  820. ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
  821. ctl |= vmx_msr_low; /* bit == 1 in low word ==> must be one */
  822. /* Ensure minimum (required) set of control bits are supported. */
  823. if (ctl_min & ~ctl)
  824. return -EIO;
  825. *result = ctl;
  826. return 0;
  827. }
  828. static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf)
  829. {
  830. u32 vmx_msr_low, vmx_msr_high;
  831. u32 min, opt;
  832. u32 _pin_based_exec_control = 0;
  833. u32 _cpu_based_exec_control = 0;
  834. u32 _cpu_based_2nd_exec_control = 0;
  835. u32 _vmexit_control = 0;
  836. u32 _vmentry_control = 0;
  837. min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
  838. opt = 0;
  839. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
  840. &_pin_based_exec_control) < 0)
  841. return -EIO;
  842. min = CPU_BASED_HLT_EXITING |
  843. #ifdef CONFIG_X86_64
  844. CPU_BASED_CR8_LOAD_EXITING |
  845. CPU_BASED_CR8_STORE_EXITING |
  846. #endif
  847. CPU_BASED_USE_IO_BITMAPS |
  848. CPU_BASED_MOV_DR_EXITING |
  849. CPU_BASED_USE_TSC_OFFSETING;
  850. opt = CPU_BASED_TPR_SHADOW |
  851. CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
  852. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
  853. &_cpu_based_exec_control) < 0)
  854. return -EIO;
  855. #ifdef CONFIG_X86_64
  856. if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
  857. _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
  858. ~CPU_BASED_CR8_STORE_EXITING;
  859. #endif
  860. if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
  861. min = 0;
  862. opt = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
  863. SECONDARY_EXEC_WBINVD_EXITING;
  864. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS2,
  865. &_cpu_based_2nd_exec_control) < 0)
  866. return -EIO;
  867. }
  868. #ifndef CONFIG_X86_64
  869. if (!(_cpu_based_2nd_exec_control &
  870. SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
  871. _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
  872. #endif
  873. min = 0;
  874. #ifdef CONFIG_X86_64
  875. min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
  876. #endif
  877. opt = 0;
  878. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
  879. &_vmexit_control) < 0)
  880. return -EIO;
  881. min = opt = 0;
  882. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
  883. &_vmentry_control) < 0)
  884. return -EIO;
  885. rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
  886. /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
  887. if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
  888. return -EIO;
  889. #ifdef CONFIG_X86_64
  890. /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
  891. if (vmx_msr_high & (1u<<16))
  892. return -EIO;
  893. #endif
  894. /* Require Write-Back (WB) memory type for VMCS accesses. */
  895. if (((vmx_msr_high >> 18) & 15) != 6)
  896. return -EIO;
  897. vmcs_conf->size = vmx_msr_high & 0x1fff;
  898. vmcs_conf->order = get_order(vmcs_config.size);
  899. vmcs_conf->revision_id = vmx_msr_low;
  900. vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
  901. vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
  902. vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
  903. vmcs_conf->vmexit_ctrl = _vmexit_control;
  904. vmcs_conf->vmentry_ctrl = _vmentry_control;
  905. return 0;
  906. }
  907. static struct vmcs *alloc_vmcs_cpu(int cpu)
  908. {
  909. int node = cpu_to_node(cpu);
  910. struct page *pages;
  911. struct vmcs *vmcs;
  912. pages = alloc_pages_node(node, GFP_KERNEL, vmcs_config.order);
  913. if (!pages)
  914. return NULL;
  915. vmcs = page_address(pages);
  916. memset(vmcs, 0, vmcs_config.size);
  917. vmcs->revision_id = vmcs_config.revision_id; /* vmcs revision id */
  918. return vmcs;
  919. }
  920. static struct vmcs *alloc_vmcs(void)
  921. {
  922. return alloc_vmcs_cpu(raw_smp_processor_id());
  923. }
  924. static void free_vmcs(struct vmcs *vmcs)
  925. {
  926. free_pages((unsigned long)vmcs, vmcs_config.order);
  927. }
  928. static void free_kvm_area(void)
  929. {
  930. int cpu;
  931. for_each_online_cpu(cpu)
  932. free_vmcs(per_cpu(vmxarea, cpu));
  933. }
  934. static __init int alloc_kvm_area(void)
  935. {
  936. int cpu;
  937. for_each_online_cpu(cpu) {
  938. struct vmcs *vmcs;
  939. vmcs = alloc_vmcs_cpu(cpu);
  940. if (!vmcs) {
  941. free_kvm_area();
  942. return -ENOMEM;
  943. }
  944. per_cpu(vmxarea, cpu) = vmcs;
  945. }
  946. return 0;
  947. }
  948. static __init int hardware_setup(void)
  949. {
  950. if (setup_vmcs_config(&vmcs_config) < 0)
  951. return -EIO;
  952. return alloc_kvm_area();
  953. }
  954. static __exit void hardware_unsetup(void)
  955. {
  956. free_kvm_area();
  957. }
  958. static void fix_pmode_dataseg(int seg, struct kvm_save_segment *save)
  959. {
  960. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  961. if (vmcs_readl(sf->base) == save->base && (save->base & AR_S_MASK)) {
  962. vmcs_write16(sf->selector, save->selector);
  963. vmcs_writel(sf->base, save->base);
  964. vmcs_write32(sf->limit, save->limit);
  965. vmcs_write32(sf->ar_bytes, save->ar);
  966. } else {
  967. u32 dpl = (vmcs_read16(sf->selector) & SELECTOR_RPL_MASK)
  968. << AR_DPL_SHIFT;
  969. vmcs_write32(sf->ar_bytes, 0x93 | dpl);
  970. }
  971. }
  972. static void enter_pmode(struct kvm_vcpu *vcpu)
  973. {
  974. unsigned long flags;
  975. vcpu->rmode.active = 0;
  976. vmcs_writel(GUEST_TR_BASE, vcpu->rmode.tr.base);
  977. vmcs_write32(GUEST_TR_LIMIT, vcpu->rmode.tr.limit);
  978. vmcs_write32(GUEST_TR_AR_BYTES, vcpu->rmode.tr.ar);
  979. flags = vmcs_readl(GUEST_RFLAGS);
  980. flags &= ~(X86_EFLAGS_IOPL | X86_EFLAGS_VM);
  981. flags |= (vcpu->rmode.save_iopl << IOPL_SHIFT);
  982. vmcs_writel(GUEST_RFLAGS, flags);
  983. vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
  984. (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
  985. update_exception_bitmap(vcpu);
  986. fix_pmode_dataseg(VCPU_SREG_ES, &vcpu->rmode.es);
  987. fix_pmode_dataseg(VCPU_SREG_DS, &vcpu->rmode.ds);
  988. fix_pmode_dataseg(VCPU_SREG_GS, &vcpu->rmode.gs);
  989. fix_pmode_dataseg(VCPU_SREG_FS, &vcpu->rmode.fs);
  990. vmcs_write16(GUEST_SS_SELECTOR, 0);
  991. vmcs_write32(GUEST_SS_AR_BYTES, 0x93);
  992. vmcs_write16(GUEST_CS_SELECTOR,
  993. vmcs_read16(GUEST_CS_SELECTOR) & ~SELECTOR_RPL_MASK);
  994. vmcs_write32(GUEST_CS_AR_BYTES, 0x9b);
  995. }
  996. static gva_t rmode_tss_base(struct kvm *kvm)
  997. {
  998. if (!kvm->tss_addr) {
  999. gfn_t base_gfn = kvm->memslots[0].base_gfn +
  1000. kvm->memslots[0].npages - 3;
  1001. return base_gfn << PAGE_SHIFT;
  1002. }
  1003. return kvm->tss_addr;
  1004. }
  1005. static void fix_rmode_seg(int seg, struct kvm_save_segment *save)
  1006. {
  1007. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1008. save->selector = vmcs_read16(sf->selector);
  1009. save->base = vmcs_readl(sf->base);
  1010. save->limit = vmcs_read32(sf->limit);
  1011. save->ar = vmcs_read32(sf->ar_bytes);
  1012. vmcs_write16(sf->selector, save->base >> 4);
  1013. vmcs_write32(sf->base, save->base & 0xfffff);
  1014. vmcs_write32(sf->limit, 0xffff);
  1015. vmcs_write32(sf->ar_bytes, 0xf3);
  1016. }
  1017. static void enter_rmode(struct kvm_vcpu *vcpu)
  1018. {
  1019. unsigned long flags;
  1020. vcpu->rmode.active = 1;
  1021. vcpu->rmode.tr.base = vmcs_readl(GUEST_TR_BASE);
  1022. vmcs_writel(GUEST_TR_BASE, rmode_tss_base(vcpu->kvm));
  1023. vcpu->rmode.tr.limit = vmcs_read32(GUEST_TR_LIMIT);
  1024. vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
  1025. vcpu->rmode.tr.ar = vmcs_read32(GUEST_TR_AR_BYTES);
  1026. vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
  1027. flags = vmcs_readl(GUEST_RFLAGS);
  1028. vcpu->rmode.save_iopl = (flags & X86_EFLAGS_IOPL) >> IOPL_SHIFT;
  1029. flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
  1030. vmcs_writel(GUEST_RFLAGS, flags);
  1031. vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
  1032. update_exception_bitmap(vcpu);
  1033. vmcs_write16(GUEST_SS_SELECTOR, vmcs_readl(GUEST_SS_BASE) >> 4);
  1034. vmcs_write32(GUEST_SS_LIMIT, 0xffff);
  1035. vmcs_write32(GUEST_SS_AR_BYTES, 0xf3);
  1036. vmcs_write32(GUEST_CS_AR_BYTES, 0xf3);
  1037. vmcs_write32(GUEST_CS_LIMIT, 0xffff);
  1038. if (vmcs_readl(GUEST_CS_BASE) == 0xffff0000)
  1039. vmcs_writel(GUEST_CS_BASE, 0xf0000);
  1040. vmcs_write16(GUEST_CS_SELECTOR, vmcs_readl(GUEST_CS_BASE) >> 4);
  1041. fix_rmode_seg(VCPU_SREG_ES, &vcpu->rmode.es);
  1042. fix_rmode_seg(VCPU_SREG_DS, &vcpu->rmode.ds);
  1043. fix_rmode_seg(VCPU_SREG_GS, &vcpu->rmode.gs);
  1044. fix_rmode_seg(VCPU_SREG_FS, &vcpu->rmode.fs);
  1045. kvm_mmu_reset_context(vcpu);
  1046. init_rmode_tss(vcpu->kvm);
  1047. }
  1048. #ifdef CONFIG_X86_64
  1049. static void enter_lmode(struct kvm_vcpu *vcpu)
  1050. {
  1051. u32 guest_tr_ar;
  1052. guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
  1053. if ((guest_tr_ar & AR_TYPE_MASK) != AR_TYPE_BUSY_64_TSS) {
  1054. printk(KERN_DEBUG "%s: tss fixup for long mode. \n",
  1055. __FUNCTION__);
  1056. vmcs_write32(GUEST_TR_AR_BYTES,
  1057. (guest_tr_ar & ~AR_TYPE_MASK)
  1058. | AR_TYPE_BUSY_64_TSS);
  1059. }
  1060. vcpu->shadow_efer |= EFER_LMA;
  1061. find_msr_entry(to_vmx(vcpu), MSR_EFER)->data |= EFER_LMA | EFER_LME;
  1062. vmcs_write32(VM_ENTRY_CONTROLS,
  1063. vmcs_read32(VM_ENTRY_CONTROLS)
  1064. | VM_ENTRY_IA32E_MODE);
  1065. }
  1066. static void exit_lmode(struct kvm_vcpu *vcpu)
  1067. {
  1068. vcpu->shadow_efer &= ~EFER_LMA;
  1069. vmcs_write32(VM_ENTRY_CONTROLS,
  1070. vmcs_read32(VM_ENTRY_CONTROLS)
  1071. & ~VM_ENTRY_IA32E_MODE);
  1072. }
  1073. #endif
  1074. static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
  1075. {
  1076. vcpu->cr4 &= KVM_GUEST_CR4_MASK;
  1077. vcpu->cr4 |= vmcs_readl(GUEST_CR4) & ~KVM_GUEST_CR4_MASK;
  1078. }
  1079. static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
  1080. {
  1081. vmx_fpu_deactivate(vcpu);
  1082. if (vcpu->rmode.active && (cr0 & X86_CR0_PE))
  1083. enter_pmode(vcpu);
  1084. if (!vcpu->rmode.active && !(cr0 & X86_CR0_PE))
  1085. enter_rmode(vcpu);
  1086. #ifdef CONFIG_X86_64
  1087. if (vcpu->shadow_efer & EFER_LME) {
  1088. if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
  1089. enter_lmode(vcpu);
  1090. if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
  1091. exit_lmode(vcpu);
  1092. }
  1093. #endif
  1094. vmcs_writel(CR0_READ_SHADOW, cr0);
  1095. vmcs_writel(GUEST_CR0,
  1096. (cr0 & ~KVM_GUEST_CR0_MASK) | KVM_VM_CR0_ALWAYS_ON);
  1097. vcpu->cr0 = cr0;
  1098. if (!(cr0 & X86_CR0_TS) || !(cr0 & X86_CR0_PE))
  1099. vmx_fpu_activate(vcpu);
  1100. }
  1101. static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
  1102. {
  1103. vmcs_writel(GUEST_CR3, cr3);
  1104. if (vcpu->cr0 & X86_CR0_PE)
  1105. vmx_fpu_deactivate(vcpu);
  1106. }
  1107. static void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
  1108. {
  1109. vmcs_writel(CR4_READ_SHADOW, cr4);
  1110. vmcs_writel(GUEST_CR4, cr4 | (vcpu->rmode.active ?
  1111. KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON));
  1112. vcpu->cr4 = cr4;
  1113. }
  1114. #ifdef CONFIG_X86_64
  1115. static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
  1116. {
  1117. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1118. struct kvm_msr_entry *msr = find_msr_entry(vmx, MSR_EFER);
  1119. vcpu->shadow_efer = efer;
  1120. if (efer & EFER_LMA) {
  1121. vmcs_write32(VM_ENTRY_CONTROLS,
  1122. vmcs_read32(VM_ENTRY_CONTROLS) |
  1123. VM_ENTRY_IA32E_MODE);
  1124. msr->data = efer;
  1125. } else {
  1126. vmcs_write32(VM_ENTRY_CONTROLS,
  1127. vmcs_read32(VM_ENTRY_CONTROLS) &
  1128. ~VM_ENTRY_IA32E_MODE);
  1129. msr->data = efer & ~EFER_LME;
  1130. }
  1131. setup_msrs(vmx);
  1132. }
  1133. #endif
  1134. static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
  1135. {
  1136. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1137. return vmcs_readl(sf->base);
  1138. }
  1139. static void vmx_get_segment(struct kvm_vcpu *vcpu,
  1140. struct kvm_segment *var, int seg)
  1141. {
  1142. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1143. u32 ar;
  1144. var->base = vmcs_readl(sf->base);
  1145. var->limit = vmcs_read32(sf->limit);
  1146. var->selector = vmcs_read16(sf->selector);
  1147. ar = vmcs_read32(sf->ar_bytes);
  1148. if (ar & AR_UNUSABLE_MASK)
  1149. ar = 0;
  1150. var->type = ar & 15;
  1151. var->s = (ar >> 4) & 1;
  1152. var->dpl = (ar >> 5) & 3;
  1153. var->present = (ar >> 7) & 1;
  1154. var->avl = (ar >> 12) & 1;
  1155. var->l = (ar >> 13) & 1;
  1156. var->db = (ar >> 14) & 1;
  1157. var->g = (ar >> 15) & 1;
  1158. var->unusable = (ar >> 16) & 1;
  1159. }
  1160. static u32 vmx_segment_access_rights(struct kvm_segment *var)
  1161. {
  1162. u32 ar;
  1163. if (var->unusable)
  1164. ar = 1 << 16;
  1165. else {
  1166. ar = var->type & 15;
  1167. ar |= (var->s & 1) << 4;
  1168. ar |= (var->dpl & 3) << 5;
  1169. ar |= (var->present & 1) << 7;
  1170. ar |= (var->avl & 1) << 12;
  1171. ar |= (var->l & 1) << 13;
  1172. ar |= (var->db & 1) << 14;
  1173. ar |= (var->g & 1) << 15;
  1174. }
  1175. if (ar == 0) /* a 0 value means unusable */
  1176. ar = AR_UNUSABLE_MASK;
  1177. return ar;
  1178. }
  1179. static void vmx_set_segment(struct kvm_vcpu *vcpu,
  1180. struct kvm_segment *var, int seg)
  1181. {
  1182. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1183. u32 ar;
  1184. if (vcpu->rmode.active && seg == VCPU_SREG_TR) {
  1185. vcpu->rmode.tr.selector = var->selector;
  1186. vcpu->rmode.tr.base = var->base;
  1187. vcpu->rmode.tr.limit = var->limit;
  1188. vcpu->rmode.tr.ar = vmx_segment_access_rights(var);
  1189. return;
  1190. }
  1191. vmcs_writel(sf->base, var->base);
  1192. vmcs_write32(sf->limit, var->limit);
  1193. vmcs_write16(sf->selector, var->selector);
  1194. if (vcpu->rmode.active && var->s) {
  1195. /*
  1196. * Hack real-mode segments into vm86 compatibility.
  1197. */
  1198. if (var->base == 0xffff0000 && var->selector == 0xf000)
  1199. vmcs_writel(sf->base, 0xf0000);
  1200. ar = 0xf3;
  1201. } else
  1202. ar = vmx_segment_access_rights(var);
  1203. vmcs_write32(sf->ar_bytes, ar);
  1204. }
  1205. static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
  1206. {
  1207. u32 ar = vmcs_read32(GUEST_CS_AR_BYTES);
  1208. *db = (ar >> 14) & 1;
  1209. *l = (ar >> 13) & 1;
  1210. }
  1211. static void vmx_get_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  1212. {
  1213. dt->limit = vmcs_read32(GUEST_IDTR_LIMIT);
  1214. dt->base = vmcs_readl(GUEST_IDTR_BASE);
  1215. }
  1216. static void vmx_set_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  1217. {
  1218. vmcs_write32(GUEST_IDTR_LIMIT, dt->limit);
  1219. vmcs_writel(GUEST_IDTR_BASE, dt->base);
  1220. }
  1221. static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  1222. {
  1223. dt->limit = vmcs_read32(GUEST_GDTR_LIMIT);
  1224. dt->base = vmcs_readl(GUEST_GDTR_BASE);
  1225. }
  1226. static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  1227. {
  1228. vmcs_write32(GUEST_GDTR_LIMIT, dt->limit);
  1229. vmcs_writel(GUEST_GDTR_BASE, dt->base);
  1230. }
  1231. static int init_rmode_tss(struct kvm *kvm)
  1232. {
  1233. gfn_t fn = rmode_tss_base(kvm) >> PAGE_SHIFT;
  1234. u16 data = 0;
  1235. int r;
  1236. r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
  1237. if (r < 0)
  1238. return 0;
  1239. data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
  1240. r = kvm_write_guest_page(kvm, fn++, &data, 0x66, sizeof(u16));
  1241. if (r < 0)
  1242. return 0;
  1243. r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE);
  1244. if (r < 0)
  1245. return 0;
  1246. r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
  1247. if (r < 0)
  1248. return 0;
  1249. data = ~0;
  1250. r = kvm_write_guest_page(kvm, fn, &data, RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1,
  1251. sizeof(u8));
  1252. if (r < 0)
  1253. return 0;
  1254. return 1;
  1255. }
  1256. static void seg_setup(int seg)
  1257. {
  1258. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1259. vmcs_write16(sf->selector, 0);
  1260. vmcs_writel(sf->base, 0);
  1261. vmcs_write32(sf->limit, 0xffff);
  1262. vmcs_write32(sf->ar_bytes, 0x93);
  1263. }
  1264. static int alloc_apic_access_page(struct kvm *kvm)
  1265. {
  1266. struct kvm_userspace_memory_region kvm_userspace_mem;
  1267. int r = 0;
  1268. mutex_lock(&kvm->lock);
  1269. if (kvm->apic_access_page)
  1270. goto out;
  1271. kvm_userspace_mem.slot = APIC_ACCESS_PAGE_PRIVATE_MEMSLOT;
  1272. kvm_userspace_mem.flags = 0;
  1273. kvm_userspace_mem.guest_phys_addr = 0xfee00000ULL;
  1274. kvm_userspace_mem.memory_size = PAGE_SIZE;
  1275. r = __kvm_set_memory_region(kvm, &kvm_userspace_mem, 0);
  1276. if (r)
  1277. goto out;
  1278. kvm->apic_access_page = gfn_to_page(kvm, 0xfee00);
  1279. out:
  1280. mutex_unlock(&kvm->lock);
  1281. return r;
  1282. }
  1283. /*
  1284. * Sets up the vmcs for emulated real mode.
  1285. */
  1286. static int vmx_vcpu_setup(struct vcpu_vmx *vmx)
  1287. {
  1288. u32 host_sysenter_cs;
  1289. u32 junk;
  1290. unsigned long a;
  1291. struct descriptor_table dt;
  1292. int i;
  1293. unsigned long kvm_vmx_return;
  1294. u32 exec_control;
  1295. /* I/O */
  1296. vmcs_write64(IO_BITMAP_A, page_to_phys(vmx_io_bitmap_a));
  1297. vmcs_write64(IO_BITMAP_B, page_to_phys(vmx_io_bitmap_b));
  1298. vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
  1299. /* Control */
  1300. vmcs_write32(PIN_BASED_VM_EXEC_CONTROL,
  1301. vmcs_config.pin_based_exec_ctrl);
  1302. exec_control = vmcs_config.cpu_based_exec_ctrl;
  1303. if (!vm_need_tpr_shadow(vmx->vcpu.kvm)) {
  1304. exec_control &= ~CPU_BASED_TPR_SHADOW;
  1305. #ifdef CONFIG_X86_64
  1306. exec_control |= CPU_BASED_CR8_STORE_EXITING |
  1307. CPU_BASED_CR8_LOAD_EXITING;
  1308. #endif
  1309. }
  1310. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, exec_control);
  1311. if (cpu_has_secondary_exec_ctrls()) {
  1312. exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
  1313. if (!vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
  1314. exec_control &=
  1315. ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
  1316. vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
  1317. }
  1318. vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, !!bypass_guest_pf);
  1319. vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, !!bypass_guest_pf);
  1320. vmcs_write32(CR3_TARGET_COUNT, 0); /* 22.2.1 */
  1321. vmcs_writel(HOST_CR0, read_cr0()); /* 22.2.3 */
  1322. vmcs_writel(HOST_CR4, read_cr4()); /* 22.2.3, 22.2.5 */
  1323. vmcs_writel(HOST_CR3, read_cr3()); /* 22.2.3 FIXME: shadow tables */
  1324. vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS); /* 22.2.4 */
  1325. vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
  1326. vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS); /* 22.2.4 */
  1327. vmcs_write16(HOST_FS_SELECTOR, read_fs()); /* 22.2.4 */
  1328. vmcs_write16(HOST_GS_SELECTOR, read_gs()); /* 22.2.4 */
  1329. vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
  1330. #ifdef CONFIG_X86_64
  1331. rdmsrl(MSR_FS_BASE, a);
  1332. vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
  1333. rdmsrl(MSR_GS_BASE, a);
  1334. vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */
  1335. #else
  1336. vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
  1337. vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
  1338. #endif
  1339. vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8); /* 22.2.4 */
  1340. get_idt(&dt);
  1341. vmcs_writel(HOST_IDTR_BASE, dt.base); /* 22.2.4 */
  1342. asm("mov $.Lkvm_vmx_return, %0" : "=r"(kvm_vmx_return));
  1343. vmcs_writel(HOST_RIP, kvm_vmx_return); /* 22.2.5 */
  1344. vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
  1345. vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
  1346. vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
  1347. rdmsr(MSR_IA32_SYSENTER_CS, host_sysenter_cs, junk);
  1348. vmcs_write32(HOST_IA32_SYSENTER_CS, host_sysenter_cs);
  1349. rdmsrl(MSR_IA32_SYSENTER_ESP, a);
  1350. vmcs_writel(HOST_IA32_SYSENTER_ESP, a); /* 22.2.3 */
  1351. rdmsrl(MSR_IA32_SYSENTER_EIP, a);
  1352. vmcs_writel(HOST_IA32_SYSENTER_EIP, a); /* 22.2.3 */
  1353. for (i = 0; i < NR_VMX_MSR; ++i) {
  1354. u32 index = vmx_msr_index[i];
  1355. u32 data_low, data_high;
  1356. u64 data;
  1357. int j = vmx->nmsrs;
  1358. if (rdmsr_safe(index, &data_low, &data_high) < 0)
  1359. continue;
  1360. if (wrmsr_safe(index, data_low, data_high) < 0)
  1361. continue;
  1362. data = data_low | ((u64)data_high << 32);
  1363. vmx->host_msrs[j].index = index;
  1364. vmx->host_msrs[j].reserved = 0;
  1365. vmx->host_msrs[j].data = data;
  1366. vmx->guest_msrs[j] = vmx->host_msrs[j];
  1367. ++vmx->nmsrs;
  1368. }
  1369. vmcs_write32(VM_EXIT_CONTROLS, vmcs_config.vmexit_ctrl);
  1370. /* 22.2.1, 20.8.1 */
  1371. vmcs_write32(VM_ENTRY_CONTROLS, vmcs_config.vmentry_ctrl);
  1372. vmcs_writel(CR0_GUEST_HOST_MASK, ~0UL);
  1373. vmcs_writel(CR4_GUEST_HOST_MASK, KVM_GUEST_CR4_MASK);
  1374. if (vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
  1375. if (alloc_apic_access_page(vmx->vcpu.kvm) != 0)
  1376. return -ENOMEM;
  1377. return 0;
  1378. }
  1379. static int vmx_vcpu_reset(struct kvm_vcpu *vcpu)
  1380. {
  1381. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1382. u64 msr;
  1383. int ret;
  1384. if (!init_rmode_tss(vmx->vcpu.kvm)) {
  1385. ret = -ENOMEM;
  1386. goto out;
  1387. }
  1388. vmx->vcpu.rmode.active = 0;
  1389. vmx->vcpu.regs[VCPU_REGS_RDX] = get_rdx_init_val();
  1390. set_cr8(&vmx->vcpu, 0);
  1391. msr = 0xfee00000 | MSR_IA32_APICBASE_ENABLE;
  1392. if (vmx->vcpu.vcpu_id == 0)
  1393. msr |= MSR_IA32_APICBASE_BSP;
  1394. kvm_set_apic_base(&vmx->vcpu, msr);
  1395. fx_init(&vmx->vcpu);
  1396. /*
  1397. * GUEST_CS_BASE should really be 0xffff0000, but VT vm86 mode
  1398. * insists on having GUEST_CS_BASE == GUEST_CS_SELECTOR << 4. Sigh.
  1399. */
  1400. if (vmx->vcpu.vcpu_id == 0) {
  1401. vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
  1402. vmcs_writel(GUEST_CS_BASE, 0x000f0000);
  1403. } else {
  1404. vmcs_write16(GUEST_CS_SELECTOR, vmx->vcpu.sipi_vector << 8);
  1405. vmcs_writel(GUEST_CS_BASE, vmx->vcpu.sipi_vector << 12);
  1406. }
  1407. vmcs_write32(GUEST_CS_LIMIT, 0xffff);
  1408. vmcs_write32(GUEST_CS_AR_BYTES, 0x9b);
  1409. seg_setup(VCPU_SREG_DS);
  1410. seg_setup(VCPU_SREG_ES);
  1411. seg_setup(VCPU_SREG_FS);
  1412. seg_setup(VCPU_SREG_GS);
  1413. seg_setup(VCPU_SREG_SS);
  1414. vmcs_write16(GUEST_TR_SELECTOR, 0);
  1415. vmcs_writel(GUEST_TR_BASE, 0);
  1416. vmcs_write32(GUEST_TR_LIMIT, 0xffff);
  1417. vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
  1418. vmcs_write16(GUEST_LDTR_SELECTOR, 0);
  1419. vmcs_writel(GUEST_LDTR_BASE, 0);
  1420. vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
  1421. vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
  1422. vmcs_write32(GUEST_SYSENTER_CS, 0);
  1423. vmcs_writel(GUEST_SYSENTER_ESP, 0);
  1424. vmcs_writel(GUEST_SYSENTER_EIP, 0);
  1425. vmcs_writel(GUEST_RFLAGS, 0x02);
  1426. if (vmx->vcpu.vcpu_id == 0)
  1427. vmcs_writel(GUEST_RIP, 0xfff0);
  1428. else
  1429. vmcs_writel(GUEST_RIP, 0);
  1430. vmcs_writel(GUEST_RSP, 0);
  1431. /* todo: dr0 = dr1 = dr2 = dr3 = 0; dr6 = 0xffff0ff0 */
  1432. vmcs_writel(GUEST_DR7, 0x400);
  1433. vmcs_writel(GUEST_GDTR_BASE, 0);
  1434. vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
  1435. vmcs_writel(GUEST_IDTR_BASE, 0);
  1436. vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
  1437. vmcs_write32(GUEST_ACTIVITY_STATE, 0);
  1438. vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
  1439. vmcs_write32(GUEST_PENDING_DBG_EXCEPTIONS, 0);
  1440. guest_write_tsc(0);
  1441. /* Special registers */
  1442. vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
  1443. setup_msrs(vmx);
  1444. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); /* 22.2.1 */
  1445. if (cpu_has_vmx_tpr_shadow()) {
  1446. vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
  1447. if (vm_need_tpr_shadow(vmx->vcpu.kvm))
  1448. vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
  1449. page_to_phys(vmx->vcpu.apic->regs_page));
  1450. vmcs_write32(TPR_THRESHOLD, 0);
  1451. }
  1452. if (vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
  1453. vmcs_write64(APIC_ACCESS_ADDR,
  1454. page_to_phys(vmx->vcpu.kvm->apic_access_page));
  1455. vmx->vcpu.cr0 = 0x60000010;
  1456. vmx_set_cr0(&vmx->vcpu, vmx->vcpu.cr0); /* enter rmode */
  1457. vmx_set_cr4(&vmx->vcpu, 0);
  1458. #ifdef CONFIG_X86_64
  1459. vmx_set_efer(&vmx->vcpu, 0);
  1460. #endif
  1461. vmx_fpu_activate(&vmx->vcpu);
  1462. update_exception_bitmap(&vmx->vcpu);
  1463. return 0;
  1464. out:
  1465. return ret;
  1466. }
  1467. static void vmx_inject_irq(struct kvm_vcpu *vcpu, int irq)
  1468. {
  1469. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1470. if (vcpu->rmode.active) {
  1471. vmx->rmode.irq.pending = true;
  1472. vmx->rmode.irq.vector = irq;
  1473. vmx->rmode.irq.rip = vmcs_readl(GUEST_RIP);
  1474. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  1475. irq | INTR_TYPE_SOFT_INTR | INTR_INFO_VALID_MASK);
  1476. vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 1);
  1477. vmcs_writel(GUEST_RIP, vmx->rmode.irq.rip - 1);
  1478. return;
  1479. }
  1480. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  1481. irq | INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
  1482. }
  1483. static void kvm_do_inject_irq(struct kvm_vcpu *vcpu)
  1484. {
  1485. int word_index = __ffs(vcpu->irq_summary);
  1486. int bit_index = __ffs(vcpu->irq_pending[word_index]);
  1487. int irq = word_index * BITS_PER_LONG + bit_index;
  1488. clear_bit(bit_index, &vcpu->irq_pending[word_index]);
  1489. if (!vcpu->irq_pending[word_index])
  1490. clear_bit(word_index, &vcpu->irq_summary);
  1491. vmx_inject_irq(vcpu, irq);
  1492. }
  1493. static void do_interrupt_requests(struct kvm_vcpu *vcpu,
  1494. struct kvm_run *kvm_run)
  1495. {
  1496. u32 cpu_based_vm_exec_control;
  1497. vcpu->interrupt_window_open =
  1498. ((vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
  1499. (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & 3) == 0);
  1500. if (vcpu->interrupt_window_open &&
  1501. vcpu->irq_summary &&
  1502. !(vmcs_read32(VM_ENTRY_INTR_INFO_FIELD) & INTR_INFO_VALID_MASK))
  1503. /*
  1504. * If interrupts enabled, and not blocked by sti or mov ss. Good.
  1505. */
  1506. kvm_do_inject_irq(vcpu);
  1507. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  1508. if (!vcpu->interrupt_window_open &&
  1509. (vcpu->irq_summary || kvm_run->request_interrupt_window))
  1510. /*
  1511. * Interrupts blocked. Wait for unblock.
  1512. */
  1513. cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
  1514. else
  1515. cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
  1516. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  1517. }
  1518. static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
  1519. {
  1520. int ret;
  1521. struct kvm_userspace_memory_region tss_mem = {
  1522. .slot = 8,
  1523. .guest_phys_addr = addr,
  1524. .memory_size = PAGE_SIZE * 3,
  1525. .flags = 0,
  1526. };
  1527. ret = kvm_set_memory_region(kvm, &tss_mem, 0);
  1528. if (ret)
  1529. return ret;
  1530. kvm->tss_addr = addr;
  1531. return 0;
  1532. }
  1533. static void kvm_guest_debug_pre(struct kvm_vcpu *vcpu)
  1534. {
  1535. struct kvm_guest_debug *dbg = &vcpu->guest_debug;
  1536. set_debugreg(dbg->bp[0], 0);
  1537. set_debugreg(dbg->bp[1], 1);
  1538. set_debugreg(dbg->bp[2], 2);
  1539. set_debugreg(dbg->bp[3], 3);
  1540. if (dbg->singlestep) {
  1541. unsigned long flags;
  1542. flags = vmcs_readl(GUEST_RFLAGS);
  1543. flags |= X86_EFLAGS_TF | X86_EFLAGS_RF;
  1544. vmcs_writel(GUEST_RFLAGS, flags);
  1545. }
  1546. }
  1547. static int handle_rmode_exception(struct kvm_vcpu *vcpu,
  1548. int vec, u32 err_code)
  1549. {
  1550. if (!vcpu->rmode.active)
  1551. return 0;
  1552. /*
  1553. * Instruction with address size override prefix opcode 0x67
  1554. * Cause the #SS fault with 0 error code in VM86 mode.
  1555. */
  1556. if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0)
  1557. if (emulate_instruction(vcpu, NULL, 0, 0, 0) == EMULATE_DONE)
  1558. return 1;
  1559. return 0;
  1560. }
  1561. static int handle_exception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1562. {
  1563. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1564. u32 intr_info, error_code;
  1565. unsigned long cr2, rip;
  1566. u32 vect_info;
  1567. enum emulation_result er;
  1568. vect_info = vmx->idt_vectoring_info;
  1569. intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
  1570. if ((vect_info & VECTORING_INFO_VALID_MASK) &&
  1571. !is_page_fault(intr_info))
  1572. printk(KERN_ERR "%s: unexpected, vectoring info 0x%x "
  1573. "intr info 0x%x\n", __FUNCTION__, vect_info, intr_info);
  1574. if (!irqchip_in_kernel(vcpu->kvm) && is_external_interrupt(vect_info)) {
  1575. int irq = vect_info & VECTORING_INFO_VECTOR_MASK;
  1576. set_bit(irq, vcpu->irq_pending);
  1577. set_bit(irq / BITS_PER_LONG, &vcpu->irq_summary);
  1578. }
  1579. if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == 0x200) /* nmi */
  1580. return 1; /* already handled by vmx_vcpu_run() */
  1581. if (is_no_device(intr_info)) {
  1582. vmx_fpu_activate(vcpu);
  1583. return 1;
  1584. }
  1585. if (is_invalid_opcode(intr_info)) {
  1586. er = emulate_instruction(vcpu, kvm_run, 0, 0, 0);
  1587. if (er != EMULATE_DONE)
  1588. vmx_inject_ud(vcpu);
  1589. return 1;
  1590. }
  1591. error_code = 0;
  1592. rip = vmcs_readl(GUEST_RIP);
  1593. if (intr_info & INTR_INFO_DELIEVER_CODE_MASK)
  1594. error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
  1595. if (is_page_fault(intr_info)) {
  1596. cr2 = vmcs_readl(EXIT_QUALIFICATION);
  1597. return kvm_mmu_page_fault(vcpu, cr2, error_code);
  1598. }
  1599. if (vcpu->rmode.active &&
  1600. handle_rmode_exception(vcpu, intr_info & INTR_INFO_VECTOR_MASK,
  1601. error_code)) {
  1602. if (vcpu->halt_request) {
  1603. vcpu->halt_request = 0;
  1604. return kvm_emulate_halt(vcpu);
  1605. }
  1606. return 1;
  1607. }
  1608. if ((intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK)) ==
  1609. (INTR_TYPE_EXCEPTION | 1)) {
  1610. kvm_run->exit_reason = KVM_EXIT_DEBUG;
  1611. return 0;
  1612. }
  1613. kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
  1614. kvm_run->ex.exception = intr_info & INTR_INFO_VECTOR_MASK;
  1615. kvm_run->ex.error_code = error_code;
  1616. return 0;
  1617. }
  1618. static int handle_external_interrupt(struct kvm_vcpu *vcpu,
  1619. struct kvm_run *kvm_run)
  1620. {
  1621. ++vcpu->stat.irq_exits;
  1622. return 1;
  1623. }
  1624. static int handle_triple_fault(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1625. {
  1626. kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
  1627. return 0;
  1628. }
  1629. static int handle_io(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1630. {
  1631. unsigned long exit_qualification;
  1632. int size, down, in, string, rep;
  1633. unsigned port;
  1634. ++vcpu->stat.io_exits;
  1635. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  1636. string = (exit_qualification & 16) != 0;
  1637. if (string) {
  1638. if (emulate_instruction(vcpu,
  1639. kvm_run, 0, 0, 0) == EMULATE_DO_MMIO)
  1640. return 0;
  1641. return 1;
  1642. }
  1643. size = (exit_qualification & 7) + 1;
  1644. in = (exit_qualification & 8) != 0;
  1645. down = (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_DF) != 0;
  1646. rep = (exit_qualification & 32) != 0;
  1647. port = exit_qualification >> 16;
  1648. return kvm_emulate_pio(vcpu, kvm_run, in, size, port);
  1649. }
  1650. static void
  1651. vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
  1652. {
  1653. /*
  1654. * Patch in the VMCALL instruction:
  1655. */
  1656. hypercall[0] = 0x0f;
  1657. hypercall[1] = 0x01;
  1658. hypercall[2] = 0xc1;
  1659. }
  1660. static int handle_cr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1661. {
  1662. unsigned long exit_qualification;
  1663. int cr;
  1664. int reg;
  1665. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  1666. cr = exit_qualification & 15;
  1667. reg = (exit_qualification >> 8) & 15;
  1668. switch ((exit_qualification >> 4) & 3) {
  1669. case 0: /* mov to cr */
  1670. switch (cr) {
  1671. case 0:
  1672. vcpu_load_rsp_rip(vcpu);
  1673. set_cr0(vcpu, vcpu->regs[reg]);
  1674. skip_emulated_instruction(vcpu);
  1675. return 1;
  1676. case 3:
  1677. vcpu_load_rsp_rip(vcpu);
  1678. set_cr3(vcpu, vcpu->regs[reg]);
  1679. skip_emulated_instruction(vcpu);
  1680. return 1;
  1681. case 4:
  1682. vcpu_load_rsp_rip(vcpu);
  1683. set_cr4(vcpu, vcpu->regs[reg]);
  1684. skip_emulated_instruction(vcpu);
  1685. return 1;
  1686. case 8:
  1687. vcpu_load_rsp_rip(vcpu);
  1688. set_cr8(vcpu, vcpu->regs[reg]);
  1689. skip_emulated_instruction(vcpu);
  1690. kvm_run->exit_reason = KVM_EXIT_SET_TPR;
  1691. return 0;
  1692. };
  1693. break;
  1694. case 2: /* clts */
  1695. vcpu_load_rsp_rip(vcpu);
  1696. vmx_fpu_deactivate(vcpu);
  1697. vcpu->cr0 &= ~X86_CR0_TS;
  1698. vmcs_writel(CR0_READ_SHADOW, vcpu->cr0);
  1699. vmx_fpu_activate(vcpu);
  1700. skip_emulated_instruction(vcpu);
  1701. return 1;
  1702. case 1: /*mov from cr*/
  1703. switch (cr) {
  1704. case 3:
  1705. vcpu_load_rsp_rip(vcpu);
  1706. vcpu->regs[reg] = vcpu->cr3;
  1707. vcpu_put_rsp_rip(vcpu);
  1708. skip_emulated_instruction(vcpu);
  1709. return 1;
  1710. case 8:
  1711. vcpu_load_rsp_rip(vcpu);
  1712. vcpu->regs[reg] = get_cr8(vcpu);
  1713. vcpu_put_rsp_rip(vcpu);
  1714. skip_emulated_instruction(vcpu);
  1715. return 1;
  1716. }
  1717. break;
  1718. case 3: /* lmsw */
  1719. lmsw(vcpu, (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f);
  1720. skip_emulated_instruction(vcpu);
  1721. return 1;
  1722. default:
  1723. break;
  1724. }
  1725. kvm_run->exit_reason = 0;
  1726. pr_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
  1727. (int)(exit_qualification >> 4) & 3, cr);
  1728. return 0;
  1729. }
  1730. static int handle_dr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1731. {
  1732. unsigned long exit_qualification;
  1733. unsigned long val;
  1734. int dr, reg;
  1735. /*
  1736. * FIXME: this code assumes the host is debugging the guest.
  1737. * need to deal with guest debugging itself too.
  1738. */
  1739. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  1740. dr = exit_qualification & 7;
  1741. reg = (exit_qualification >> 8) & 15;
  1742. vcpu_load_rsp_rip(vcpu);
  1743. if (exit_qualification & 16) {
  1744. /* mov from dr */
  1745. switch (dr) {
  1746. case 6:
  1747. val = 0xffff0ff0;
  1748. break;
  1749. case 7:
  1750. val = 0x400;
  1751. break;
  1752. default:
  1753. val = 0;
  1754. }
  1755. vcpu->regs[reg] = val;
  1756. } else {
  1757. /* mov to dr */
  1758. }
  1759. vcpu_put_rsp_rip(vcpu);
  1760. skip_emulated_instruction(vcpu);
  1761. return 1;
  1762. }
  1763. static int handle_cpuid(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1764. {
  1765. kvm_emulate_cpuid(vcpu);
  1766. return 1;
  1767. }
  1768. static int handle_rdmsr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1769. {
  1770. u32 ecx = vcpu->regs[VCPU_REGS_RCX];
  1771. u64 data;
  1772. if (vmx_get_msr(vcpu, ecx, &data)) {
  1773. vmx_inject_gp(vcpu, 0);
  1774. return 1;
  1775. }
  1776. /* FIXME: handling of bits 32:63 of rax, rdx */
  1777. vcpu->regs[VCPU_REGS_RAX] = data & -1u;
  1778. vcpu->regs[VCPU_REGS_RDX] = (data >> 32) & -1u;
  1779. skip_emulated_instruction(vcpu);
  1780. return 1;
  1781. }
  1782. static int handle_wrmsr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1783. {
  1784. u32 ecx = vcpu->regs[VCPU_REGS_RCX];
  1785. u64 data = (vcpu->regs[VCPU_REGS_RAX] & -1u)
  1786. | ((u64)(vcpu->regs[VCPU_REGS_RDX] & -1u) << 32);
  1787. if (vmx_set_msr(vcpu, ecx, data) != 0) {
  1788. vmx_inject_gp(vcpu, 0);
  1789. return 1;
  1790. }
  1791. skip_emulated_instruction(vcpu);
  1792. return 1;
  1793. }
  1794. static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu,
  1795. struct kvm_run *kvm_run)
  1796. {
  1797. return 1;
  1798. }
  1799. static int handle_interrupt_window(struct kvm_vcpu *vcpu,
  1800. struct kvm_run *kvm_run)
  1801. {
  1802. u32 cpu_based_vm_exec_control;
  1803. /* clear pending irq */
  1804. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  1805. cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
  1806. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  1807. /*
  1808. * If the user space waits to inject interrupts, exit as soon as
  1809. * possible
  1810. */
  1811. if (kvm_run->request_interrupt_window &&
  1812. !vcpu->irq_summary) {
  1813. kvm_run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
  1814. ++vcpu->stat.irq_window_exits;
  1815. return 0;
  1816. }
  1817. return 1;
  1818. }
  1819. static int handle_halt(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1820. {
  1821. skip_emulated_instruction(vcpu);
  1822. return kvm_emulate_halt(vcpu);
  1823. }
  1824. static int handle_vmcall(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1825. {
  1826. skip_emulated_instruction(vcpu);
  1827. kvm_emulate_hypercall(vcpu);
  1828. return 1;
  1829. }
  1830. static int handle_wbinvd(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1831. {
  1832. skip_emulated_instruction(vcpu);
  1833. /* TODO: Add support for VT-d/pass-through device */
  1834. return 1;
  1835. }
  1836. static int handle_apic_access(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1837. {
  1838. u64 exit_qualification;
  1839. enum emulation_result er;
  1840. unsigned long offset;
  1841. exit_qualification = vmcs_read64(EXIT_QUALIFICATION);
  1842. offset = exit_qualification & 0xffful;
  1843. er = emulate_instruction(vcpu, kvm_run, 0, 0, 0);
  1844. if (er != EMULATE_DONE) {
  1845. printk(KERN_ERR
  1846. "Fail to handle apic access vmexit! Offset is 0x%lx\n",
  1847. offset);
  1848. return -ENOTSUPP;
  1849. }
  1850. return 1;
  1851. }
  1852. /*
  1853. * The exit handlers return 1 if the exit was handled fully and guest execution
  1854. * may resume. Otherwise they set the kvm_run parameter to indicate what needs
  1855. * to be done to userspace and return 0.
  1856. */
  1857. static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu,
  1858. struct kvm_run *kvm_run) = {
  1859. [EXIT_REASON_EXCEPTION_NMI] = handle_exception,
  1860. [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt,
  1861. [EXIT_REASON_TRIPLE_FAULT] = handle_triple_fault,
  1862. [EXIT_REASON_IO_INSTRUCTION] = handle_io,
  1863. [EXIT_REASON_CR_ACCESS] = handle_cr,
  1864. [EXIT_REASON_DR_ACCESS] = handle_dr,
  1865. [EXIT_REASON_CPUID] = handle_cpuid,
  1866. [EXIT_REASON_MSR_READ] = handle_rdmsr,
  1867. [EXIT_REASON_MSR_WRITE] = handle_wrmsr,
  1868. [EXIT_REASON_PENDING_INTERRUPT] = handle_interrupt_window,
  1869. [EXIT_REASON_HLT] = handle_halt,
  1870. [EXIT_REASON_VMCALL] = handle_vmcall,
  1871. [EXIT_REASON_TPR_BELOW_THRESHOLD] = handle_tpr_below_threshold,
  1872. [EXIT_REASON_APIC_ACCESS] = handle_apic_access,
  1873. [EXIT_REASON_WBINVD] = handle_wbinvd,
  1874. };
  1875. static const int kvm_vmx_max_exit_handlers =
  1876. ARRAY_SIZE(kvm_vmx_exit_handlers);
  1877. /*
  1878. * The guest has exited. See if we can fix it or if we need userspace
  1879. * assistance.
  1880. */
  1881. static int kvm_handle_exit(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
  1882. {
  1883. u32 exit_reason = vmcs_read32(VM_EXIT_REASON);
  1884. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1885. u32 vectoring_info = vmx->idt_vectoring_info;
  1886. if (unlikely(vmx->fail)) {
  1887. kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
  1888. kvm_run->fail_entry.hardware_entry_failure_reason
  1889. = vmcs_read32(VM_INSTRUCTION_ERROR);
  1890. return 0;
  1891. }
  1892. if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
  1893. exit_reason != EXIT_REASON_EXCEPTION_NMI)
  1894. printk(KERN_WARNING "%s: unexpected, valid vectoring info and "
  1895. "exit reason is 0x%x\n", __FUNCTION__, exit_reason);
  1896. if (exit_reason < kvm_vmx_max_exit_handlers
  1897. && kvm_vmx_exit_handlers[exit_reason])
  1898. return kvm_vmx_exit_handlers[exit_reason](vcpu, kvm_run);
  1899. else {
  1900. kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
  1901. kvm_run->hw.hardware_exit_reason = exit_reason;
  1902. }
  1903. return 0;
  1904. }
  1905. static void vmx_flush_tlb(struct kvm_vcpu *vcpu)
  1906. {
  1907. }
  1908. static void update_tpr_threshold(struct kvm_vcpu *vcpu)
  1909. {
  1910. int max_irr, tpr;
  1911. if (!vm_need_tpr_shadow(vcpu->kvm))
  1912. return;
  1913. if (!kvm_lapic_enabled(vcpu) ||
  1914. ((max_irr = kvm_lapic_find_highest_irr(vcpu)) == -1)) {
  1915. vmcs_write32(TPR_THRESHOLD, 0);
  1916. return;
  1917. }
  1918. tpr = (kvm_lapic_get_cr8(vcpu) & 0x0f) << 4;
  1919. vmcs_write32(TPR_THRESHOLD, (max_irr > tpr) ? tpr >> 4 : max_irr >> 4);
  1920. }
  1921. static void enable_irq_window(struct kvm_vcpu *vcpu)
  1922. {
  1923. u32 cpu_based_vm_exec_control;
  1924. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  1925. cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
  1926. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  1927. }
  1928. static void vmx_intr_assist(struct kvm_vcpu *vcpu)
  1929. {
  1930. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1931. u32 idtv_info_field, intr_info_field;
  1932. int has_ext_irq, interrupt_window_open;
  1933. int vector;
  1934. update_tpr_threshold(vcpu);
  1935. has_ext_irq = kvm_cpu_has_interrupt(vcpu);
  1936. intr_info_field = vmcs_read32(VM_ENTRY_INTR_INFO_FIELD);
  1937. idtv_info_field = vmx->idt_vectoring_info;
  1938. if (intr_info_field & INTR_INFO_VALID_MASK) {
  1939. if (idtv_info_field & INTR_INFO_VALID_MASK) {
  1940. /* TODO: fault when IDT_Vectoring */
  1941. printk(KERN_ERR "Fault when IDT_Vectoring\n");
  1942. }
  1943. if (has_ext_irq)
  1944. enable_irq_window(vcpu);
  1945. return;
  1946. }
  1947. if (unlikely(idtv_info_field & INTR_INFO_VALID_MASK)) {
  1948. if ((idtv_info_field & VECTORING_INFO_TYPE_MASK)
  1949. == INTR_TYPE_EXT_INTR
  1950. && vcpu->rmode.active) {
  1951. u8 vect = idtv_info_field & VECTORING_INFO_VECTOR_MASK;
  1952. vmx_inject_irq(vcpu, vect);
  1953. if (unlikely(has_ext_irq))
  1954. enable_irq_window(vcpu);
  1955. return;
  1956. }
  1957. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, idtv_info_field);
  1958. vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
  1959. vmcs_read32(VM_EXIT_INSTRUCTION_LEN));
  1960. if (unlikely(idtv_info_field & INTR_INFO_DELIEVER_CODE_MASK))
  1961. vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE,
  1962. vmcs_read32(IDT_VECTORING_ERROR_CODE));
  1963. if (unlikely(has_ext_irq))
  1964. enable_irq_window(vcpu);
  1965. return;
  1966. }
  1967. if (!has_ext_irq)
  1968. return;
  1969. interrupt_window_open =
  1970. ((vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
  1971. (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & 3) == 0);
  1972. if (interrupt_window_open) {
  1973. vector = kvm_cpu_get_interrupt(vcpu);
  1974. vmx_inject_irq(vcpu, vector);
  1975. kvm_timer_intr_post(vcpu, vector);
  1976. } else
  1977. enable_irq_window(vcpu);
  1978. }
  1979. /*
  1980. * Failure to inject an interrupt should give us the information
  1981. * in IDT_VECTORING_INFO_FIELD. However, if the failure occurs
  1982. * when fetching the interrupt redirection bitmap in the real-mode
  1983. * tss, this doesn't happen. So we do it ourselves.
  1984. */
  1985. static void fixup_rmode_irq(struct vcpu_vmx *vmx)
  1986. {
  1987. vmx->rmode.irq.pending = 0;
  1988. if (vmcs_readl(GUEST_RIP) + 1 != vmx->rmode.irq.rip)
  1989. return;
  1990. vmcs_writel(GUEST_RIP, vmx->rmode.irq.rip);
  1991. if (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK) {
  1992. vmx->idt_vectoring_info &= ~VECTORING_INFO_TYPE_MASK;
  1993. vmx->idt_vectoring_info |= INTR_TYPE_EXT_INTR;
  1994. return;
  1995. }
  1996. vmx->idt_vectoring_info =
  1997. VECTORING_INFO_VALID_MASK
  1998. | INTR_TYPE_EXT_INTR
  1999. | vmx->rmode.irq.vector;
  2000. }
  2001. static void vmx_vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2002. {
  2003. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2004. u32 intr_info;
  2005. /*
  2006. * Loading guest fpu may have cleared host cr0.ts
  2007. */
  2008. vmcs_writel(HOST_CR0, read_cr0());
  2009. asm(
  2010. /* Store host registers */
  2011. #ifdef CONFIG_X86_64
  2012. "push %%rdx; push %%rbp;"
  2013. "push %%rcx \n\t"
  2014. #else
  2015. "push %%edx; push %%ebp;"
  2016. "push %%ecx \n\t"
  2017. #endif
  2018. ASM_VMX_VMWRITE_RSP_RDX "\n\t"
  2019. /* Check if vmlaunch of vmresume is needed */
  2020. "cmpl $0, %c[launched](%0) \n\t"
  2021. /* Load guest registers. Don't clobber flags. */
  2022. #ifdef CONFIG_X86_64
  2023. "mov %c[cr2](%0), %%rax \n\t"
  2024. "mov %%rax, %%cr2 \n\t"
  2025. "mov %c[rax](%0), %%rax \n\t"
  2026. "mov %c[rbx](%0), %%rbx \n\t"
  2027. "mov %c[rdx](%0), %%rdx \n\t"
  2028. "mov %c[rsi](%0), %%rsi \n\t"
  2029. "mov %c[rdi](%0), %%rdi \n\t"
  2030. "mov %c[rbp](%0), %%rbp \n\t"
  2031. "mov %c[r8](%0), %%r8 \n\t"
  2032. "mov %c[r9](%0), %%r9 \n\t"
  2033. "mov %c[r10](%0), %%r10 \n\t"
  2034. "mov %c[r11](%0), %%r11 \n\t"
  2035. "mov %c[r12](%0), %%r12 \n\t"
  2036. "mov %c[r13](%0), %%r13 \n\t"
  2037. "mov %c[r14](%0), %%r14 \n\t"
  2038. "mov %c[r15](%0), %%r15 \n\t"
  2039. "mov %c[rcx](%0), %%rcx \n\t" /* kills %0 (rcx) */
  2040. #else
  2041. "mov %c[cr2](%0), %%eax \n\t"
  2042. "mov %%eax, %%cr2 \n\t"
  2043. "mov %c[rax](%0), %%eax \n\t"
  2044. "mov %c[rbx](%0), %%ebx \n\t"
  2045. "mov %c[rdx](%0), %%edx \n\t"
  2046. "mov %c[rsi](%0), %%esi \n\t"
  2047. "mov %c[rdi](%0), %%edi \n\t"
  2048. "mov %c[rbp](%0), %%ebp \n\t"
  2049. "mov %c[rcx](%0), %%ecx \n\t" /* kills %0 (ecx) */
  2050. #endif
  2051. /* Enter guest mode */
  2052. "jne .Llaunched \n\t"
  2053. ASM_VMX_VMLAUNCH "\n\t"
  2054. "jmp .Lkvm_vmx_return \n\t"
  2055. ".Llaunched: " ASM_VMX_VMRESUME "\n\t"
  2056. ".Lkvm_vmx_return: "
  2057. /* Save guest registers, load host registers, keep flags */
  2058. #ifdef CONFIG_X86_64
  2059. "xchg %0, (%%rsp) \n\t"
  2060. "mov %%rax, %c[rax](%0) \n\t"
  2061. "mov %%rbx, %c[rbx](%0) \n\t"
  2062. "pushq (%%rsp); popq %c[rcx](%0) \n\t"
  2063. "mov %%rdx, %c[rdx](%0) \n\t"
  2064. "mov %%rsi, %c[rsi](%0) \n\t"
  2065. "mov %%rdi, %c[rdi](%0) \n\t"
  2066. "mov %%rbp, %c[rbp](%0) \n\t"
  2067. "mov %%r8, %c[r8](%0) \n\t"
  2068. "mov %%r9, %c[r9](%0) \n\t"
  2069. "mov %%r10, %c[r10](%0) \n\t"
  2070. "mov %%r11, %c[r11](%0) \n\t"
  2071. "mov %%r12, %c[r12](%0) \n\t"
  2072. "mov %%r13, %c[r13](%0) \n\t"
  2073. "mov %%r14, %c[r14](%0) \n\t"
  2074. "mov %%r15, %c[r15](%0) \n\t"
  2075. "mov %%cr2, %%rax \n\t"
  2076. "mov %%rax, %c[cr2](%0) \n\t"
  2077. "pop %%rbp; pop %%rbp; pop %%rdx \n\t"
  2078. #else
  2079. "xchg %0, (%%esp) \n\t"
  2080. "mov %%eax, %c[rax](%0) \n\t"
  2081. "mov %%ebx, %c[rbx](%0) \n\t"
  2082. "pushl (%%esp); popl %c[rcx](%0) \n\t"
  2083. "mov %%edx, %c[rdx](%0) \n\t"
  2084. "mov %%esi, %c[rsi](%0) \n\t"
  2085. "mov %%edi, %c[rdi](%0) \n\t"
  2086. "mov %%ebp, %c[rbp](%0) \n\t"
  2087. "mov %%cr2, %%eax \n\t"
  2088. "mov %%eax, %c[cr2](%0) \n\t"
  2089. "pop %%ebp; pop %%ebp; pop %%edx \n\t"
  2090. #endif
  2091. "setbe %c[fail](%0) \n\t"
  2092. : : "c"(vmx), "d"((unsigned long)HOST_RSP),
  2093. [launched]"i"(offsetof(struct vcpu_vmx, launched)),
  2094. [fail]"i"(offsetof(struct vcpu_vmx, fail)),
  2095. [rax]"i"(offsetof(struct vcpu_vmx, vcpu.regs[VCPU_REGS_RAX])),
  2096. [rbx]"i"(offsetof(struct vcpu_vmx, vcpu.regs[VCPU_REGS_RBX])),
  2097. [rcx]"i"(offsetof(struct vcpu_vmx, vcpu.regs[VCPU_REGS_RCX])),
  2098. [rdx]"i"(offsetof(struct vcpu_vmx, vcpu.regs[VCPU_REGS_RDX])),
  2099. [rsi]"i"(offsetof(struct vcpu_vmx, vcpu.regs[VCPU_REGS_RSI])),
  2100. [rdi]"i"(offsetof(struct vcpu_vmx, vcpu.regs[VCPU_REGS_RDI])),
  2101. [rbp]"i"(offsetof(struct vcpu_vmx, vcpu.regs[VCPU_REGS_RBP])),
  2102. #ifdef CONFIG_X86_64
  2103. [r8]"i"(offsetof(struct vcpu_vmx, vcpu.regs[VCPU_REGS_R8])),
  2104. [r9]"i"(offsetof(struct vcpu_vmx, vcpu.regs[VCPU_REGS_R9])),
  2105. [r10]"i"(offsetof(struct vcpu_vmx, vcpu.regs[VCPU_REGS_R10])),
  2106. [r11]"i"(offsetof(struct vcpu_vmx, vcpu.regs[VCPU_REGS_R11])),
  2107. [r12]"i"(offsetof(struct vcpu_vmx, vcpu.regs[VCPU_REGS_R12])),
  2108. [r13]"i"(offsetof(struct vcpu_vmx, vcpu.regs[VCPU_REGS_R13])),
  2109. [r14]"i"(offsetof(struct vcpu_vmx, vcpu.regs[VCPU_REGS_R14])),
  2110. [r15]"i"(offsetof(struct vcpu_vmx, vcpu.regs[VCPU_REGS_R15])),
  2111. #endif
  2112. [cr2]"i"(offsetof(struct vcpu_vmx, vcpu.cr2))
  2113. : "cc", "memory"
  2114. #ifdef CONFIG_X86_64
  2115. , "rbx", "rdi", "rsi"
  2116. , "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
  2117. #else
  2118. , "ebx", "edi", "rsi"
  2119. #endif
  2120. );
  2121. vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
  2122. if (vmx->rmode.irq.pending)
  2123. fixup_rmode_irq(vmx);
  2124. vcpu->interrupt_window_open =
  2125. (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & 3) == 0;
  2126. asm("mov %0, %%ds; mov %0, %%es" : : "r"(__USER_DS));
  2127. vmx->launched = 1;
  2128. intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
  2129. /* We need to handle NMIs before interrupts are enabled */
  2130. if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == 0x200) /* nmi */
  2131. asm("int $2");
  2132. }
  2133. static void vmx_free_vmcs(struct kvm_vcpu *vcpu)
  2134. {
  2135. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2136. if (vmx->vmcs) {
  2137. on_each_cpu(__vcpu_clear, vmx, 0, 1);
  2138. free_vmcs(vmx->vmcs);
  2139. vmx->vmcs = NULL;
  2140. }
  2141. }
  2142. static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
  2143. {
  2144. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2145. vmx_free_vmcs(vcpu);
  2146. kfree(vmx->host_msrs);
  2147. kfree(vmx->guest_msrs);
  2148. kvm_vcpu_uninit(vcpu);
  2149. kmem_cache_free(kvm_vcpu_cache, vmx);
  2150. }
  2151. static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id)
  2152. {
  2153. int err;
  2154. struct vcpu_vmx *vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
  2155. int cpu;
  2156. if (!vmx)
  2157. return ERR_PTR(-ENOMEM);
  2158. err = kvm_vcpu_init(&vmx->vcpu, kvm, id);
  2159. if (err)
  2160. goto free_vcpu;
  2161. vmx->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
  2162. if (!vmx->guest_msrs) {
  2163. err = -ENOMEM;
  2164. goto uninit_vcpu;
  2165. }
  2166. vmx->host_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
  2167. if (!vmx->host_msrs)
  2168. goto free_guest_msrs;
  2169. vmx->vmcs = alloc_vmcs();
  2170. if (!vmx->vmcs)
  2171. goto free_msrs;
  2172. vmcs_clear(vmx->vmcs);
  2173. cpu = get_cpu();
  2174. vmx_vcpu_load(&vmx->vcpu, cpu);
  2175. err = vmx_vcpu_setup(vmx);
  2176. vmx_vcpu_put(&vmx->vcpu);
  2177. put_cpu();
  2178. if (err)
  2179. goto free_vmcs;
  2180. return &vmx->vcpu;
  2181. free_vmcs:
  2182. free_vmcs(vmx->vmcs);
  2183. free_msrs:
  2184. kfree(vmx->host_msrs);
  2185. free_guest_msrs:
  2186. kfree(vmx->guest_msrs);
  2187. uninit_vcpu:
  2188. kvm_vcpu_uninit(&vmx->vcpu);
  2189. free_vcpu:
  2190. kmem_cache_free(kvm_vcpu_cache, vmx);
  2191. return ERR_PTR(err);
  2192. }
  2193. static void __init vmx_check_processor_compat(void *rtn)
  2194. {
  2195. struct vmcs_config vmcs_conf;
  2196. *(int *)rtn = 0;
  2197. if (setup_vmcs_config(&vmcs_conf) < 0)
  2198. *(int *)rtn = -EIO;
  2199. if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
  2200. printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
  2201. smp_processor_id());
  2202. *(int *)rtn = -EIO;
  2203. }
  2204. }
  2205. static struct kvm_x86_ops vmx_x86_ops = {
  2206. .cpu_has_kvm_support = cpu_has_kvm_support,
  2207. .disabled_by_bios = vmx_disabled_by_bios,
  2208. .hardware_setup = hardware_setup,
  2209. .hardware_unsetup = hardware_unsetup,
  2210. .check_processor_compatibility = vmx_check_processor_compat,
  2211. .hardware_enable = hardware_enable,
  2212. .hardware_disable = hardware_disable,
  2213. .vcpu_create = vmx_create_vcpu,
  2214. .vcpu_free = vmx_free_vcpu,
  2215. .vcpu_reset = vmx_vcpu_reset,
  2216. .prepare_guest_switch = vmx_save_host_state,
  2217. .vcpu_load = vmx_vcpu_load,
  2218. .vcpu_put = vmx_vcpu_put,
  2219. .vcpu_decache = vmx_vcpu_decache,
  2220. .set_guest_debug = set_guest_debug,
  2221. .guest_debug_pre = kvm_guest_debug_pre,
  2222. .get_msr = vmx_get_msr,
  2223. .set_msr = vmx_set_msr,
  2224. .get_segment_base = vmx_get_segment_base,
  2225. .get_segment = vmx_get_segment,
  2226. .set_segment = vmx_set_segment,
  2227. .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
  2228. .decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
  2229. .set_cr0 = vmx_set_cr0,
  2230. .set_cr3 = vmx_set_cr3,
  2231. .set_cr4 = vmx_set_cr4,
  2232. #ifdef CONFIG_X86_64
  2233. .set_efer = vmx_set_efer,
  2234. #endif
  2235. .get_idt = vmx_get_idt,
  2236. .set_idt = vmx_set_idt,
  2237. .get_gdt = vmx_get_gdt,
  2238. .set_gdt = vmx_set_gdt,
  2239. .cache_regs = vcpu_load_rsp_rip,
  2240. .decache_regs = vcpu_put_rsp_rip,
  2241. .get_rflags = vmx_get_rflags,
  2242. .set_rflags = vmx_set_rflags,
  2243. .tlb_flush = vmx_flush_tlb,
  2244. .inject_gp = vmx_inject_gp,
  2245. .run = vmx_vcpu_run,
  2246. .handle_exit = kvm_handle_exit,
  2247. .skip_emulated_instruction = skip_emulated_instruction,
  2248. .patch_hypercall = vmx_patch_hypercall,
  2249. .get_irq = vmx_get_irq,
  2250. .set_irq = vmx_inject_irq,
  2251. .queue_exception = vmx_queue_exception,
  2252. .exception_injected = vmx_exception_injected,
  2253. .inject_pending_irq = vmx_intr_assist,
  2254. .inject_pending_vectors = do_interrupt_requests,
  2255. .set_tss_addr = vmx_set_tss_addr,
  2256. };
  2257. static int __init vmx_init(void)
  2258. {
  2259. void *iova;
  2260. int r;
  2261. vmx_io_bitmap_a = alloc_page(GFP_KERNEL | __GFP_HIGHMEM);
  2262. if (!vmx_io_bitmap_a)
  2263. return -ENOMEM;
  2264. vmx_io_bitmap_b = alloc_page(GFP_KERNEL | __GFP_HIGHMEM);
  2265. if (!vmx_io_bitmap_b) {
  2266. r = -ENOMEM;
  2267. goto out;
  2268. }
  2269. /*
  2270. * Allow direct access to the PC debug port (it is often used for I/O
  2271. * delays, but the vmexits simply slow things down).
  2272. */
  2273. iova = kmap(vmx_io_bitmap_a);
  2274. memset(iova, 0xff, PAGE_SIZE);
  2275. clear_bit(0x80, iova);
  2276. kunmap(vmx_io_bitmap_a);
  2277. iova = kmap(vmx_io_bitmap_b);
  2278. memset(iova, 0xff, PAGE_SIZE);
  2279. kunmap(vmx_io_bitmap_b);
  2280. r = kvm_init(&vmx_x86_ops, sizeof(struct vcpu_vmx), THIS_MODULE);
  2281. if (r)
  2282. goto out1;
  2283. if (bypass_guest_pf)
  2284. kvm_mmu_set_nonpresent_ptes(~0xffeull, 0ull);
  2285. return 0;
  2286. out1:
  2287. __free_page(vmx_io_bitmap_b);
  2288. out:
  2289. __free_page(vmx_io_bitmap_a);
  2290. return r;
  2291. }
  2292. static void __exit vmx_exit(void)
  2293. {
  2294. __free_page(vmx_io_bitmap_b);
  2295. __free_page(vmx_io_bitmap_a);
  2296. kvm_exit();
  2297. }
  2298. module_init(vmx_init)
  2299. module_exit(vmx_exit)