eeprom.c 48 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812
  1. /*
  2. * Copyright (c) 2004-2008 Reyk Floeter <reyk@openbsd.org>
  3. * Copyright (c) 2006-2009 Nick Kossifidis <mickflemm@gmail.com>
  4. * Copyright (c) 2008-2009 Felix Fietkau <nbd@openwrt.org>
  5. *
  6. * Permission to use, copy, modify, and distribute this software for any
  7. * purpose with or without fee is hereby granted, provided that the above
  8. * copyright notice and this permission notice appear in all copies.
  9. *
  10. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
  11. * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
  12. * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
  13. * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
  14. * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  15. * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  16. * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  17. *
  18. */
  19. /*************************************\
  20. * EEPROM access functions and helpers *
  21. \*************************************/
  22. #include "ath5k.h"
  23. #include "reg.h"
  24. #include "debug.h"
  25. #include "base.h"
  26. /*
  27. * Read from eeprom
  28. */
  29. static int ath5k_hw_eeprom_read(struct ath5k_hw *ah, u32 offset, u16 *data)
  30. {
  31. u32 status, timeout;
  32. ATH5K_TRACE(ah->ah_sc);
  33. /*
  34. * Initialize EEPROM access
  35. */
  36. if (ah->ah_version == AR5K_AR5210) {
  37. AR5K_REG_ENABLE_BITS(ah, AR5K_PCICFG, AR5K_PCICFG_EEAE);
  38. (void)ath5k_hw_reg_read(ah, AR5K_EEPROM_BASE + (4 * offset));
  39. } else {
  40. ath5k_hw_reg_write(ah, offset, AR5K_EEPROM_BASE);
  41. AR5K_REG_ENABLE_BITS(ah, AR5K_EEPROM_CMD,
  42. AR5K_EEPROM_CMD_READ);
  43. }
  44. for (timeout = AR5K_TUNE_REGISTER_TIMEOUT; timeout > 0; timeout--) {
  45. status = ath5k_hw_reg_read(ah, AR5K_EEPROM_STATUS);
  46. if (status & AR5K_EEPROM_STAT_RDDONE) {
  47. if (status & AR5K_EEPROM_STAT_RDERR)
  48. return -EIO;
  49. *data = (u16)(ath5k_hw_reg_read(ah, AR5K_EEPROM_DATA) &
  50. 0xffff);
  51. return 0;
  52. }
  53. udelay(15);
  54. }
  55. return -ETIMEDOUT;
  56. }
  57. /*
  58. * Translate binary channel representation in EEPROM to frequency
  59. */
  60. static u16 ath5k_eeprom_bin2freq(struct ath5k_eeprom_info *ee, u16 bin,
  61. unsigned int mode)
  62. {
  63. u16 val;
  64. if (bin == AR5K_EEPROM_CHANNEL_DIS)
  65. return bin;
  66. if (mode == AR5K_EEPROM_MODE_11A) {
  67. if (ee->ee_version > AR5K_EEPROM_VERSION_3_2)
  68. val = (5 * bin) + 4800;
  69. else
  70. val = bin > 62 ? (10 * 62) + (5 * (bin - 62)) + 5100 :
  71. (bin * 10) + 5100;
  72. } else {
  73. if (ee->ee_version > AR5K_EEPROM_VERSION_3_2)
  74. val = bin + 2300;
  75. else
  76. val = bin + 2400;
  77. }
  78. return val;
  79. }
  80. /*
  81. * Initialize eeprom & capabilities structs
  82. */
  83. static int
  84. ath5k_eeprom_init_header(struct ath5k_hw *ah)
  85. {
  86. struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
  87. int ret;
  88. u16 val;
  89. /*
  90. * Read values from EEPROM and store them in the capability structure
  91. */
  92. AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MAGIC, ee_magic);
  93. AR5K_EEPROM_READ_HDR(AR5K_EEPROM_PROTECT, ee_protect);
  94. AR5K_EEPROM_READ_HDR(AR5K_EEPROM_REG_DOMAIN, ee_regdomain);
  95. AR5K_EEPROM_READ_HDR(AR5K_EEPROM_VERSION, ee_version);
  96. AR5K_EEPROM_READ_HDR(AR5K_EEPROM_HDR, ee_header);
  97. /* Return if we have an old EEPROM */
  98. if (ah->ah_ee_version < AR5K_EEPROM_VERSION_3_0)
  99. return 0;
  100. #ifdef notyet
  101. /*
  102. * Validate the checksum of the EEPROM date. There are some
  103. * devices with invalid EEPROMs.
  104. */
  105. for (cksum = 0, offset = 0; offset < AR5K_EEPROM_INFO_MAX; offset++) {
  106. AR5K_EEPROM_READ(AR5K_EEPROM_INFO(offset), val);
  107. cksum ^= val;
  108. }
  109. if (cksum != AR5K_EEPROM_INFO_CKSUM) {
  110. ATH5K_ERR(ah->ah_sc, "Invalid EEPROM checksum 0x%04x\n", cksum);
  111. return -EIO;
  112. }
  113. #endif
  114. AR5K_EEPROM_READ_HDR(AR5K_EEPROM_ANT_GAIN(ah->ah_ee_version),
  115. ee_ant_gain);
  116. if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_0) {
  117. AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC0, ee_misc0);
  118. AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC1, ee_misc1);
  119. /* XXX: Don't know which versions include these two */
  120. AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC2, ee_misc2);
  121. if (ee->ee_version >= AR5K_EEPROM_VERSION_4_3)
  122. AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC3, ee_misc3);
  123. if (ee->ee_version >= AR5K_EEPROM_VERSION_5_0) {
  124. AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC4, ee_misc4);
  125. AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC5, ee_misc5);
  126. AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC6, ee_misc6);
  127. }
  128. }
  129. if (ah->ah_ee_version < AR5K_EEPROM_VERSION_3_3) {
  130. AR5K_EEPROM_READ(AR5K_EEPROM_OBDB0_2GHZ, val);
  131. ee->ee_ob[AR5K_EEPROM_MODE_11B][0] = val & 0x7;
  132. ee->ee_db[AR5K_EEPROM_MODE_11B][0] = (val >> 3) & 0x7;
  133. AR5K_EEPROM_READ(AR5K_EEPROM_OBDB1_2GHZ, val);
  134. ee->ee_ob[AR5K_EEPROM_MODE_11G][0] = val & 0x7;
  135. ee->ee_db[AR5K_EEPROM_MODE_11G][0] = (val >> 3) & 0x7;
  136. }
  137. AR5K_EEPROM_READ(AR5K_EEPROM_IS_HB63, val);
  138. if ((ah->ah_mac_version == (AR5K_SREV_AR2425 >> 4)) && val)
  139. ee->ee_is_hb63 = true;
  140. else
  141. ee->ee_is_hb63 = false;
  142. AR5K_EEPROM_READ(AR5K_EEPROM_RFKILL, val);
  143. ee->ee_rfkill_pin = (u8) AR5K_REG_MS(val, AR5K_EEPROM_RFKILL_GPIO_SEL);
  144. ee->ee_rfkill_pol = val & AR5K_EEPROM_RFKILL_POLARITY ? true : false;
  145. /* Check if PCIE_OFFSET points to PCIE_SERDES_SECTION
  146. * and enable serdes programming if needed.
  147. *
  148. * XXX: Serdes values seem to be fixed so
  149. * no need to read them here, we write them
  150. * during ath5k_hw_attach */
  151. AR5K_EEPROM_READ(AR5K_EEPROM_PCIE_OFFSET, val);
  152. ee->ee_serdes = (val == AR5K_EEPROM_PCIE_SERDES_SECTION) ?
  153. true : false;
  154. return 0;
  155. }
  156. /*
  157. * Read antenna infos from eeprom
  158. */
  159. static int ath5k_eeprom_read_ants(struct ath5k_hw *ah, u32 *offset,
  160. unsigned int mode)
  161. {
  162. struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
  163. u32 o = *offset;
  164. u16 val;
  165. int ret, i = 0;
  166. AR5K_EEPROM_READ(o++, val);
  167. ee->ee_switch_settling[mode] = (val >> 8) & 0x7f;
  168. ee->ee_atn_tx_rx[mode] = (val >> 2) & 0x3f;
  169. ee->ee_ant_control[mode][i] = (val << 4) & 0x3f;
  170. AR5K_EEPROM_READ(o++, val);
  171. ee->ee_ant_control[mode][i++] |= (val >> 12) & 0xf;
  172. ee->ee_ant_control[mode][i++] = (val >> 6) & 0x3f;
  173. ee->ee_ant_control[mode][i++] = val & 0x3f;
  174. AR5K_EEPROM_READ(o++, val);
  175. ee->ee_ant_control[mode][i++] = (val >> 10) & 0x3f;
  176. ee->ee_ant_control[mode][i++] = (val >> 4) & 0x3f;
  177. ee->ee_ant_control[mode][i] = (val << 2) & 0x3f;
  178. AR5K_EEPROM_READ(o++, val);
  179. ee->ee_ant_control[mode][i++] |= (val >> 14) & 0x3;
  180. ee->ee_ant_control[mode][i++] = (val >> 8) & 0x3f;
  181. ee->ee_ant_control[mode][i++] = (val >> 2) & 0x3f;
  182. ee->ee_ant_control[mode][i] = (val << 4) & 0x3f;
  183. AR5K_EEPROM_READ(o++, val);
  184. ee->ee_ant_control[mode][i++] |= (val >> 12) & 0xf;
  185. ee->ee_ant_control[mode][i++] = (val >> 6) & 0x3f;
  186. ee->ee_ant_control[mode][i++] = val & 0x3f;
  187. /* Get antenna switch tables */
  188. ah->ah_ant_ctl[mode][AR5K_ANT_CTL] =
  189. (ee->ee_ant_control[mode][0] << 4);
  190. ah->ah_ant_ctl[mode][AR5K_ANT_SWTABLE_A] =
  191. ee->ee_ant_control[mode][1] |
  192. (ee->ee_ant_control[mode][2] << 6) |
  193. (ee->ee_ant_control[mode][3] << 12) |
  194. (ee->ee_ant_control[mode][4] << 18) |
  195. (ee->ee_ant_control[mode][5] << 24);
  196. ah->ah_ant_ctl[mode][AR5K_ANT_SWTABLE_B] =
  197. ee->ee_ant_control[mode][6] |
  198. (ee->ee_ant_control[mode][7] << 6) |
  199. (ee->ee_ant_control[mode][8] << 12) |
  200. (ee->ee_ant_control[mode][9] << 18) |
  201. (ee->ee_ant_control[mode][10] << 24);
  202. /* return new offset */
  203. *offset = o;
  204. return 0;
  205. }
  206. /*
  207. * Read supported modes and some mode-specific calibration data
  208. * from eeprom
  209. */
  210. static int ath5k_eeprom_read_modes(struct ath5k_hw *ah, u32 *offset,
  211. unsigned int mode)
  212. {
  213. struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
  214. u32 o = *offset;
  215. u16 val;
  216. int ret;
  217. ee->ee_n_piers[mode] = 0;
  218. AR5K_EEPROM_READ(o++, val);
  219. ee->ee_adc_desired_size[mode] = (s8)((val >> 8) & 0xff);
  220. switch(mode) {
  221. case AR5K_EEPROM_MODE_11A:
  222. ee->ee_ob[mode][3] = (val >> 5) & 0x7;
  223. ee->ee_db[mode][3] = (val >> 2) & 0x7;
  224. ee->ee_ob[mode][2] = (val << 1) & 0x7;
  225. AR5K_EEPROM_READ(o++, val);
  226. ee->ee_ob[mode][2] |= (val >> 15) & 0x1;
  227. ee->ee_db[mode][2] = (val >> 12) & 0x7;
  228. ee->ee_ob[mode][1] = (val >> 9) & 0x7;
  229. ee->ee_db[mode][1] = (val >> 6) & 0x7;
  230. ee->ee_ob[mode][0] = (val >> 3) & 0x7;
  231. ee->ee_db[mode][0] = val & 0x7;
  232. break;
  233. case AR5K_EEPROM_MODE_11G:
  234. case AR5K_EEPROM_MODE_11B:
  235. ee->ee_ob[mode][1] = (val >> 4) & 0x7;
  236. ee->ee_db[mode][1] = val & 0x7;
  237. break;
  238. }
  239. AR5K_EEPROM_READ(o++, val);
  240. ee->ee_tx_end2xlna_enable[mode] = (val >> 8) & 0xff;
  241. ee->ee_thr_62[mode] = val & 0xff;
  242. if (ah->ah_ee_version <= AR5K_EEPROM_VERSION_3_2)
  243. ee->ee_thr_62[mode] = mode == AR5K_EEPROM_MODE_11A ? 15 : 28;
  244. AR5K_EEPROM_READ(o++, val);
  245. ee->ee_tx_end2xpa_disable[mode] = (val >> 8) & 0xff;
  246. ee->ee_tx_frm2xpa_enable[mode] = val & 0xff;
  247. AR5K_EEPROM_READ(o++, val);
  248. ee->ee_pga_desired_size[mode] = (val >> 8) & 0xff;
  249. if ((val & 0xff) & 0x80)
  250. ee->ee_noise_floor_thr[mode] = -((((val & 0xff) ^ 0xff)) + 1);
  251. else
  252. ee->ee_noise_floor_thr[mode] = val & 0xff;
  253. if (ah->ah_ee_version <= AR5K_EEPROM_VERSION_3_2)
  254. ee->ee_noise_floor_thr[mode] =
  255. mode == AR5K_EEPROM_MODE_11A ? -54 : -1;
  256. AR5K_EEPROM_READ(o++, val);
  257. ee->ee_xlna_gain[mode] = (val >> 5) & 0xff;
  258. ee->ee_x_gain[mode] = (val >> 1) & 0xf;
  259. ee->ee_xpd[mode] = val & 0x1;
  260. if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_0)
  261. ee->ee_fixed_bias[mode] = (val >> 13) & 0x1;
  262. if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_3_3) {
  263. AR5K_EEPROM_READ(o++, val);
  264. ee->ee_false_detect[mode] = (val >> 6) & 0x7f;
  265. if (mode == AR5K_EEPROM_MODE_11A)
  266. ee->ee_xr_power[mode] = val & 0x3f;
  267. else {
  268. ee->ee_ob[mode][0] = val & 0x7;
  269. ee->ee_db[mode][0] = (val >> 3) & 0x7;
  270. }
  271. }
  272. if (ah->ah_ee_version < AR5K_EEPROM_VERSION_3_4) {
  273. ee->ee_i_gain[mode] = AR5K_EEPROM_I_GAIN;
  274. ee->ee_cck_ofdm_power_delta = AR5K_EEPROM_CCK_OFDM_DELTA;
  275. } else {
  276. ee->ee_i_gain[mode] = (val >> 13) & 0x7;
  277. AR5K_EEPROM_READ(o++, val);
  278. ee->ee_i_gain[mode] |= (val << 3) & 0x38;
  279. if (mode == AR5K_EEPROM_MODE_11G) {
  280. ee->ee_cck_ofdm_power_delta = (val >> 3) & 0xff;
  281. if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_6)
  282. ee->ee_scaled_cck_delta = (val >> 11) & 0x1f;
  283. }
  284. }
  285. if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_0 &&
  286. mode == AR5K_EEPROM_MODE_11A) {
  287. ee->ee_i_cal[mode] = (val >> 8) & 0x3f;
  288. ee->ee_q_cal[mode] = (val >> 3) & 0x1f;
  289. }
  290. if (ah->ah_ee_version < AR5K_EEPROM_VERSION_4_0)
  291. goto done;
  292. /* Note: >= v5 have bg freq piers on another location
  293. * so these freq piers are ignored for >= v5 (should be 0xff
  294. * anyway) */
  295. switch(mode) {
  296. case AR5K_EEPROM_MODE_11A:
  297. if (ah->ah_ee_version < AR5K_EEPROM_VERSION_4_1)
  298. break;
  299. AR5K_EEPROM_READ(o++, val);
  300. ee->ee_margin_tx_rx[mode] = val & 0x3f;
  301. break;
  302. case AR5K_EEPROM_MODE_11B:
  303. AR5K_EEPROM_READ(o++, val);
  304. ee->ee_pwr_cal_b[0].freq =
  305. ath5k_eeprom_bin2freq(ee, val & 0xff, mode);
  306. if (ee->ee_pwr_cal_b[0].freq != AR5K_EEPROM_CHANNEL_DIS)
  307. ee->ee_n_piers[mode]++;
  308. ee->ee_pwr_cal_b[1].freq =
  309. ath5k_eeprom_bin2freq(ee, (val >> 8) & 0xff, mode);
  310. if (ee->ee_pwr_cal_b[1].freq != AR5K_EEPROM_CHANNEL_DIS)
  311. ee->ee_n_piers[mode]++;
  312. AR5K_EEPROM_READ(o++, val);
  313. ee->ee_pwr_cal_b[2].freq =
  314. ath5k_eeprom_bin2freq(ee, val & 0xff, mode);
  315. if (ee->ee_pwr_cal_b[2].freq != AR5K_EEPROM_CHANNEL_DIS)
  316. ee->ee_n_piers[mode]++;
  317. if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_1)
  318. ee->ee_margin_tx_rx[mode] = (val >> 8) & 0x3f;
  319. break;
  320. case AR5K_EEPROM_MODE_11G:
  321. AR5K_EEPROM_READ(o++, val);
  322. ee->ee_pwr_cal_g[0].freq =
  323. ath5k_eeprom_bin2freq(ee, val & 0xff, mode);
  324. if (ee->ee_pwr_cal_g[0].freq != AR5K_EEPROM_CHANNEL_DIS)
  325. ee->ee_n_piers[mode]++;
  326. ee->ee_pwr_cal_g[1].freq =
  327. ath5k_eeprom_bin2freq(ee, (val >> 8) & 0xff, mode);
  328. if (ee->ee_pwr_cal_g[1].freq != AR5K_EEPROM_CHANNEL_DIS)
  329. ee->ee_n_piers[mode]++;
  330. AR5K_EEPROM_READ(o++, val);
  331. ee->ee_turbo_max_power[mode] = val & 0x7f;
  332. ee->ee_xr_power[mode] = (val >> 7) & 0x3f;
  333. AR5K_EEPROM_READ(o++, val);
  334. ee->ee_pwr_cal_g[2].freq =
  335. ath5k_eeprom_bin2freq(ee, val & 0xff, mode);
  336. if (ee->ee_pwr_cal_g[2].freq != AR5K_EEPROM_CHANNEL_DIS)
  337. ee->ee_n_piers[mode]++;
  338. if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_1)
  339. ee->ee_margin_tx_rx[mode] = (val >> 8) & 0x3f;
  340. AR5K_EEPROM_READ(o++, val);
  341. ee->ee_i_cal[mode] = (val >> 8) & 0x3f;
  342. ee->ee_q_cal[mode] = (val >> 3) & 0x1f;
  343. if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_2) {
  344. AR5K_EEPROM_READ(o++, val);
  345. ee->ee_cck_ofdm_gain_delta = val & 0xff;
  346. }
  347. break;
  348. }
  349. done:
  350. /* return new offset */
  351. *offset = o;
  352. return 0;
  353. }
  354. /*
  355. * Read turbo mode information on newer EEPROM versions
  356. */
  357. static int
  358. ath5k_eeprom_read_turbo_modes(struct ath5k_hw *ah,
  359. u32 *offset, unsigned int mode)
  360. {
  361. struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
  362. u32 o = *offset;
  363. u16 val;
  364. int ret;
  365. if (ee->ee_version < AR5K_EEPROM_VERSION_5_0)
  366. return 0;
  367. switch (mode){
  368. case AR5K_EEPROM_MODE_11A:
  369. ee->ee_switch_settling_turbo[mode] = (val >> 6) & 0x7f;
  370. ee->ee_atn_tx_rx_turbo[mode] = (val >> 13) & 0x7;
  371. AR5K_EEPROM_READ(o++, val);
  372. ee->ee_atn_tx_rx_turbo[mode] |= (val & 0x7) << 3;
  373. ee->ee_margin_tx_rx_turbo[mode] = (val >> 3) & 0x3f;
  374. ee->ee_adc_desired_size_turbo[mode] = (val >> 9) & 0x7f;
  375. AR5K_EEPROM_READ(o++, val);
  376. ee->ee_adc_desired_size_turbo[mode] |= (val & 0x1) << 7;
  377. ee->ee_pga_desired_size_turbo[mode] = (val >> 1) & 0xff;
  378. if (AR5K_EEPROM_EEMAP(ee->ee_misc0) >=2)
  379. ee->ee_pd_gain_overlap = (val >> 9) & 0xf;
  380. break;
  381. case AR5K_EEPROM_MODE_11G:
  382. ee->ee_switch_settling_turbo[mode] = (val >> 8) & 0x7f;
  383. ee->ee_atn_tx_rx_turbo[mode] = (val >> 15) & 0x7;
  384. AR5K_EEPROM_READ(o++, val);
  385. ee->ee_atn_tx_rx_turbo[mode] |= (val & 0x1f) << 1;
  386. ee->ee_margin_tx_rx_turbo[mode] = (val >> 5) & 0x3f;
  387. ee->ee_adc_desired_size_turbo[mode] = (val >> 11) & 0x7f;
  388. AR5K_EEPROM_READ(o++, val);
  389. ee->ee_adc_desired_size_turbo[mode] |= (val & 0x7) << 5;
  390. ee->ee_pga_desired_size_turbo[mode] = (val >> 3) & 0xff;
  391. break;
  392. }
  393. /* return new offset */
  394. *offset = o;
  395. return 0;
  396. }
  397. /* Read mode-specific data (except power calibration data) */
  398. static int
  399. ath5k_eeprom_init_modes(struct ath5k_hw *ah)
  400. {
  401. struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
  402. u32 mode_offset[3];
  403. unsigned int mode;
  404. u32 offset;
  405. int ret;
  406. /*
  407. * Get values for all modes
  408. */
  409. mode_offset[AR5K_EEPROM_MODE_11A] = AR5K_EEPROM_MODES_11A(ah->ah_ee_version);
  410. mode_offset[AR5K_EEPROM_MODE_11B] = AR5K_EEPROM_MODES_11B(ah->ah_ee_version);
  411. mode_offset[AR5K_EEPROM_MODE_11G] = AR5K_EEPROM_MODES_11G(ah->ah_ee_version);
  412. ee->ee_turbo_max_power[AR5K_EEPROM_MODE_11A] =
  413. AR5K_EEPROM_HDR_T_5GHZ_DBM(ee->ee_header);
  414. for (mode = AR5K_EEPROM_MODE_11A; mode <= AR5K_EEPROM_MODE_11G; mode++) {
  415. offset = mode_offset[mode];
  416. ret = ath5k_eeprom_read_ants(ah, &offset, mode);
  417. if (ret)
  418. return ret;
  419. ret = ath5k_eeprom_read_modes(ah, &offset, mode);
  420. if (ret)
  421. return ret;
  422. ret = ath5k_eeprom_read_turbo_modes(ah, &offset, mode);
  423. if (ret)
  424. return ret;
  425. }
  426. /* override for older eeprom versions for better performance */
  427. if (ah->ah_ee_version <= AR5K_EEPROM_VERSION_3_2) {
  428. ee->ee_thr_62[AR5K_EEPROM_MODE_11A] = 15;
  429. ee->ee_thr_62[AR5K_EEPROM_MODE_11B] = 28;
  430. ee->ee_thr_62[AR5K_EEPROM_MODE_11G] = 28;
  431. }
  432. return 0;
  433. }
  434. /* Read the frequency piers for each mode (mostly used on newer eeproms with 0xff
  435. * frequency mask) */
  436. static inline int
  437. ath5k_eeprom_read_freq_list(struct ath5k_hw *ah, int *offset, int max,
  438. struct ath5k_chan_pcal_info *pc, unsigned int mode)
  439. {
  440. struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
  441. int o = *offset;
  442. int i = 0;
  443. u8 freq1, freq2;
  444. int ret;
  445. u16 val;
  446. ee->ee_n_piers[mode] = 0;
  447. while(i < max) {
  448. AR5K_EEPROM_READ(o++, val);
  449. freq1 = val & 0xff;
  450. if (!freq1)
  451. break;
  452. pc[i++].freq = ath5k_eeprom_bin2freq(ee,
  453. freq1, mode);
  454. ee->ee_n_piers[mode]++;
  455. freq2 = (val >> 8) & 0xff;
  456. if (!freq2)
  457. break;
  458. pc[i++].freq = ath5k_eeprom_bin2freq(ee,
  459. freq2, mode);
  460. ee->ee_n_piers[mode]++;
  461. }
  462. /* return new offset */
  463. *offset = o;
  464. return 0;
  465. }
  466. /* Read frequency piers for 802.11a */
  467. static int
  468. ath5k_eeprom_init_11a_pcal_freq(struct ath5k_hw *ah, int offset)
  469. {
  470. struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
  471. struct ath5k_chan_pcal_info *pcal = ee->ee_pwr_cal_a;
  472. int i, ret;
  473. u16 val;
  474. u8 mask;
  475. if (ee->ee_version >= AR5K_EEPROM_VERSION_3_3) {
  476. ath5k_eeprom_read_freq_list(ah, &offset,
  477. AR5K_EEPROM_N_5GHZ_CHAN, pcal,
  478. AR5K_EEPROM_MODE_11A);
  479. } else {
  480. mask = AR5K_EEPROM_FREQ_M(ah->ah_ee_version);
  481. AR5K_EEPROM_READ(offset++, val);
  482. pcal[0].freq = (val >> 9) & mask;
  483. pcal[1].freq = (val >> 2) & mask;
  484. pcal[2].freq = (val << 5) & mask;
  485. AR5K_EEPROM_READ(offset++, val);
  486. pcal[2].freq |= (val >> 11) & 0x1f;
  487. pcal[3].freq = (val >> 4) & mask;
  488. pcal[4].freq = (val << 3) & mask;
  489. AR5K_EEPROM_READ(offset++, val);
  490. pcal[4].freq |= (val >> 13) & 0x7;
  491. pcal[5].freq = (val >> 6) & mask;
  492. pcal[6].freq = (val << 1) & mask;
  493. AR5K_EEPROM_READ(offset++, val);
  494. pcal[6].freq |= (val >> 15) & 0x1;
  495. pcal[7].freq = (val >> 8) & mask;
  496. pcal[8].freq = (val >> 1) & mask;
  497. pcal[9].freq = (val << 6) & mask;
  498. AR5K_EEPROM_READ(offset++, val);
  499. pcal[9].freq |= (val >> 10) & 0x3f;
  500. /* Fixed number of piers */
  501. ee->ee_n_piers[AR5K_EEPROM_MODE_11A] = 10;
  502. for (i = 0; i < AR5K_EEPROM_N_5GHZ_CHAN; i++) {
  503. pcal[i].freq = ath5k_eeprom_bin2freq(ee,
  504. pcal[i].freq, AR5K_EEPROM_MODE_11A);
  505. }
  506. }
  507. return 0;
  508. }
  509. /* Read frequency piers for 802.11bg on eeprom versions >= 5 and eemap >= 2 */
  510. static inline int
  511. ath5k_eeprom_init_11bg_2413(struct ath5k_hw *ah, unsigned int mode, int offset)
  512. {
  513. struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
  514. struct ath5k_chan_pcal_info *pcal;
  515. switch(mode) {
  516. case AR5K_EEPROM_MODE_11B:
  517. pcal = ee->ee_pwr_cal_b;
  518. break;
  519. case AR5K_EEPROM_MODE_11G:
  520. pcal = ee->ee_pwr_cal_g;
  521. break;
  522. default:
  523. return -EINVAL;
  524. }
  525. ath5k_eeprom_read_freq_list(ah, &offset,
  526. AR5K_EEPROM_N_2GHZ_CHAN_2413, pcal,
  527. mode);
  528. return 0;
  529. }
  530. /*
  531. * Read power calibration for RF5111 chips
  532. *
  533. * For RF5111 we have an XPD -eXternal Power Detector- curve
  534. * for each calibrated channel. Each curve has 0,5dB Power steps
  535. * on x axis and PCDAC steps (offsets) on y axis and looks like an
  536. * exponential function. To recreate the curve we read 11 points
  537. * here and interpolate later.
  538. */
  539. /* Used to match PCDAC steps with power values on RF5111 chips
  540. * (eeprom versions < 4). For RF5111 we have 11 pre-defined PCDAC
  541. * steps that match with the power values we read from eeprom. On
  542. * older eeprom versions (< 3.2) these steps are equaly spaced at
  543. * 10% of the pcdac curve -until the curve reaches it's maximum-
  544. * (11 steps from 0 to 100%) but on newer eeprom versions (>= 3.2)
  545. * these 11 steps are spaced in a different way. This function returns
  546. * the pcdac steps based on eeprom version and curve min/max so that we
  547. * can have pcdac/pwr points.
  548. */
  549. static inline void
  550. ath5k_get_pcdac_intercepts(struct ath5k_hw *ah, u8 min, u8 max, u8 *vp)
  551. {
  552. static const u16 intercepts3[] =
  553. { 0, 5, 10, 20, 30, 50, 70, 85, 90, 95, 100 };
  554. static const u16 intercepts3_2[] =
  555. { 0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100 };
  556. const u16 *ip;
  557. int i;
  558. if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_3_2)
  559. ip = intercepts3_2;
  560. else
  561. ip = intercepts3;
  562. for (i = 0; i < ARRAY_SIZE(intercepts3); i++)
  563. vp[i] = (ip[i] * max + (100 - ip[i]) * min) / 100;
  564. }
  565. /* Convert RF5111 specific data to generic raw data
  566. * used by interpolation code */
  567. static int
  568. ath5k_eeprom_convert_pcal_info_5111(struct ath5k_hw *ah, int mode,
  569. struct ath5k_chan_pcal_info *chinfo)
  570. {
  571. struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
  572. struct ath5k_chan_pcal_info_rf5111 *pcinfo;
  573. struct ath5k_pdgain_info *pd;
  574. u8 pier, point, idx;
  575. u8 *pdgain_idx = ee->ee_pdc_to_idx[mode];
  576. /* Fill raw data for each calibration pier */
  577. for (pier = 0; pier < ee->ee_n_piers[mode]; pier++) {
  578. pcinfo = &chinfo[pier].rf5111_info;
  579. /* Allocate pd_curves for this cal pier */
  580. chinfo[pier].pd_curves =
  581. kcalloc(AR5K_EEPROM_N_PD_CURVES,
  582. sizeof(struct ath5k_pdgain_info),
  583. GFP_KERNEL);
  584. if (!chinfo[pier].pd_curves)
  585. return -ENOMEM;
  586. /* Only one curve for RF5111
  587. * find out which one and place
  588. * in in pd_curves.
  589. * Note: ee_x_gain is reversed here */
  590. for (idx = 0; idx < AR5K_EEPROM_N_PD_CURVES; idx++) {
  591. if (!((ee->ee_x_gain[mode] >> idx) & 0x1)) {
  592. pdgain_idx[0] = idx;
  593. break;
  594. }
  595. }
  596. ee->ee_pd_gains[mode] = 1;
  597. pd = &chinfo[pier].pd_curves[idx];
  598. pd->pd_points = AR5K_EEPROM_N_PWR_POINTS_5111;
  599. /* Allocate pd points for this curve */
  600. pd->pd_step = kcalloc(AR5K_EEPROM_N_PWR_POINTS_5111,
  601. sizeof(u8), GFP_KERNEL);
  602. if (!pd->pd_step)
  603. return -ENOMEM;
  604. pd->pd_pwr = kcalloc(AR5K_EEPROM_N_PWR_POINTS_5111,
  605. sizeof(s16), GFP_KERNEL);
  606. if (!pd->pd_pwr)
  607. return -ENOMEM;
  608. /* Fill raw dataset
  609. * (convert power to 0.25dB units
  610. * for RF5112 combatibility) */
  611. for (point = 0; point < pd->pd_points; point++) {
  612. /* Absolute values */
  613. pd->pd_pwr[point] = 2 * pcinfo->pwr[point];
  614. /* Already sorted */
  615. pd->pd_step[point] = pcinfo->pcdac[point];
  616. }
  617. /* Set min/max pwr */
  618. chinfo[pier].min_pwr = pd->pd_pwr[0];
  619. chinfo[pier].max_pwr = pd->pd_pwr[10];
  620. }
  621. return 0;
  622. }
  623. /* Parse EEPROM data */
  624. static int
  625. ath5k_eeprom_read_pcal_info_5111(struct ath5k_hw *ah, int mode)
  626. {
  627. struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
  628. struct ath5k_chan_pcal_info *pcal;
  629. int offset, ret;
  630. int i;
  631. u16 val;
  632. offset = AR5K_EEPROM_GROUPS_START(ee->ee_version);
  633. switch(mode) {
  634. case AR5K_EEPROM_MODE_11A:
  635. if (!AR5K_EEPROM_HDR_11A(ee->ee_header))
  636. return 0;
  637. ret = ath5k_eeprom_init_11a_pcal_freq(ah,
  638. offset + AR5K_EEPROM_GROUP1_OFFSET);
  639. if (ret < 0)
  640. return ret;
  641. offset += AR5K_EEPROM_GROUP2_OFFSET;
  642. pcal = ee->ee_pwr_cal_a;
  643. break;
  644. case AR5K_EEPROM_MODE_11B:
  645. if (!AR5K_EEPROM_HDR_11B(ee->ee_header) &&
  646. !AR5K_EEPROM_HDR_11G(ee->ee_header))
  647. return 0;
  648. pcal = ee->ee_pwr_cal_b;
  649. offset += AR5K_EEPROM_GROUP3_OFFSET;
  650. /* fixed piers */
  651. pcal[0].freq = 2412;
  652. pcal[1].freq = 2447;
  653. pcal[2].freq = 2484;
  654. ee->ee_n_piers[mode] = 3;
  655. break;
  656. case AR5K_EEPROM_MODE_11G:
  657. if (!AR5K_EEPROM_HDR_11G(ee->ee_header))
  658. return 0;
  659. pcal = ee->ee_pwr_cal_g;
  660. offset += AR5K_EEPROM_GROUP4_OFFSET;
  661. /* fixed piers */
  662. pcal[0].freq = 2312;
  663. pcal[1].freq = 2412;
  664. pcal[2].freq = 2484;
  665. ee->ee_n_piers[mode] = 3;
  666. break;
  667. default:
  668. return -EINVAL;
  669. }
  670. for (i = 0; i < ee->ee_n_piers[mode]; i++) {
  671. struct ath5k_chan_pcal_info_rf5111 *cdata =
  672. &pcal[i].rf5111_info;
  673. AR5K_EEPROM_READ(offset++, val);
  674. cdata->pcdac_max = ((val >> 10) & AR5K_EEPROM_PCDAC_M);
  675. cdata->pcdac_min = ((val >> 4) & AR5K_EEPROM_PCDAC_M);
  676. cdata->pwr[0] = ((val << 2) & AR5K_EEPROM_POWER_M);
  677. AR5K_EEPROM_READ(offset++, val);
  678. cdata->pwr[0] |= ((val >> 14) & 0x3);
  679. cdata->pwr[1] = ((val >> 8) & AR5K_EEPROM_POWER_M);
  680. cdata->pwr[2] = ((val >> 2) & AR5K_EEPROM_POWER_M);
  681. cdata->pwr[3] = ((val << 4) & AR5K_EEPROM_POWER_M);
  682. AR5K_EEPROM_READ(offset++, val);
  683. cdata->pwr[3] |= ((val >> 12) & 0xf);
  684. cdata->pwr[4] = ((val >> 6) & AR5K_EEPROM_POWER_M);
  685. cdata->pwr[5] = (val & AR5K_EEPROM_POWER_M);
  686. AR5K_EEPROM_READ(offset++, val);
  687. cdata->pwr[6] = ((val >> 10) & AR5K_EEPROM_POWER_M);
  688. cdata->pwr[7] = ((val >> 4) & AR5K_EEPROM_POWER_M);
  689. cdata->pwr[8] = ((val << 2) & AR5K_EEPROM_POWER_M);
  690. AR5K_EEPROM_READ(offset++, val);
  691. cdata->pwr[8] |= ((val >> 14) & 0x3);
  692. cdata->pwr[9] = ((val >> 8) & AR5K_EEPROM_POWER_M);
  693. cdata->pwr[10] = ((val >> 2) & AR5K_EEPROM_POWER_M);
  694. ath5k_get_pcdac_intercepts(ah, cdata->pcdac_min,
  695. cdata->pcdac_max, cdata->pcdac);
  696. }
  697. return ath5k_eeprom_convert_pcal_info_5111(ah, mode, pcal);
  698. }
  699. /*
  700. * Read power calibration for RF5112 chips
  701. *
  702. * For RF5112 we have 4 XPD -eXternal Power Detector- curves
  703. * for each calibrated channel on 0, -6, -12 and -18dbm but we only
  704. * use the higher (3) and the lower (0) curves. Each curve has 0.5dB
  705. * power steps on x axis and PCDAC steps on y axis and looks like a
  706. * linear function. To recreate the curve and pass the power values
  707. * on hw, we read 4 points for xpd 0 (lower gain -> max power)
  708. * and 3 points for xpd 3 (higher gain -> lower power) here and
  709. * interpolate later.
  710. *
  711. * Note: Many vendors just use xpd 0 so xpd 3 is zeroed.
  712. */
  713. /* Convert RF5112 specific data to generic raw data
  714. * used by interpolation code */
  715. static int
  716. ath5k_eeprom_convert_pcal_info_5112(struct ath5k_hw *ah, int mode,
  717. struct ath5k_chan_pcal_info *chinfo)
  718. {
  719. struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
  720. struct ath5k_chan_pcal_info_rf5112 *pcinfo;
  721. u8 *pdgain_idx = ee->ee_pdc_to_idx[mode];
  722. unsigned int pier, pdg, point;
  723. /* Fill raw data for each calibration pier */
  724. for (pier = 0; pier < ee->ee_n_piers[mode]; pier++) {
  725. pcinfo = &chinfo[pier].rf5112_info;
  726. /* Allocate pd_curves for this cal pier */
  727. chinfo[pier].pd_curves =
  728. kcalloc(AR5K_EEPROM_N_PD_CURVES,
  729. sizeof(struct ath5k_pdgain_info),
  730. GFP_KERNEL);
  731. if (!chinfo[pier].pd_curves)
  732. return -ENOMEM;
  733. /* Fill pd_curves */
  734. for (pdg = 0; pdg < ee->ee_pd_gains[mode]; pdg++) {
  735. u8 idx = pdgain_idx[pdg];
  736. struct ath5k_pdgain_info *pd =
  737. &chinfo[pier].pd_curves[idx];
  738. /* Lowest gain curve (max power) */
  739. if (pdg == 0) {
  740. /* One more point for better accuracy */
  741. pd->pd_points = AR5K_EEPROM_N_XPD0_POINTS;
  742. /* Allocate pd points for this curve */
  743. pd->pd_step = kcalloc(pd->pd_points,
  744. sizeof(u8), GFP_KERNEL);
  745. if (!pd->pd_step)
  746. return -ENOMEM;
  747. pd->pd_pwr = kcalloc(pd->pd_points,
  748. sizeof(s16), GFP_KERNEL);
  749. if (!pd->pd_pwr)
  750. return -ENOMEM;
  751. /* Fill raw dataset
  752. * (all power levels are in 0.25dB units) */
  753. pd->pd_step[0] = pcinfo->pcdac_x0[0];
  754. pd->pd_pwr[0] = pcinfo->pwr_x0[0];
  755. for (point = 1; point < pd->pd_points;
  756. point++) {
  757. /* Absolute values */
  758. pd->pd_pwr[point] =
  759. pcinfo->pwr_x0[point];
  760. /* Deltas */
  761. pd->pd_step[point] =
  762. pd->pd_step[point - 1] +
  763. pcinfo->pcdac_x0[point];
  764. }
  765. /* Set min power for this frequency */
  766. chinfo[pier].min_pwr = pd->pd_pwr[0];
  767. /* Highest gain curve (min power) */
  768. } else if (pdg == 1) {
  769. pd->pd_points = AR5K_EEPROM_N_XPD3_POINTS;
  770. /* Allocate pd points for this curve */
  771. pd->pd_step = kcalloc(pd->pd_points,
  772. sizeof(u8), GFP_KERNEL);
  773. if (!pd->pd_step)
  774. return -ENOMEM;
  775. pd->pd_pwr = kcalloc(pd->pd_points,
  776. sizeof(s16), GFP_KERNEL);
  777. if (!pd->pd_pwr)
  778. return -ENOMEM;
  779. /* Fill raw dataset
  780. * (all power levels are in 0.25dB units) */
  781. for (point = 0; point < pd->pd_points;
  782. point++) {
  783. /* Absolute values */
  784. pd->pd_pwr[point] =
  785. pcinfo->pwr_x3[point];
  786. /* Fixed points */
  787. pd->pd_step[point] =
  788. pcinfo->pcdac_x3[point];
  789. }
  790. /* Since we have a higher gain curve
  791. * override min power */
  792. chinfo[pier].min_pwr = pd->pd_pwr[0];
  793. }
  794. }
  795. }
  796. return 0;
  797. }
  798. /* Parse EEPROM data */
  799. static int
  800. ath5k_eeprom_read_pcal_info_5112(struct ath5k_hw *ah, int mode)
  801. {
  802. struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
  803. struct ath5k_chan_pcal_info_rf5112 *chan_pcal_info;
  804. struct ath5k_chan_pcal_info *gen_chan_info;
  805. u8 *pdgain_idx = ee->ee_pdc_to_idx[mode];
  806. u32 offset;
  807. u8 i, c;
  808. u16 val;
  809. int ret;
  810. u8 pd_gains = 0;
  811. /* Count how many curves we have and
  812. * identify them (which one of the 4
  813. * available curves we have on each count).
  814. * Curves are stored from lower (x0) to
  815. * higher (x3) gain */
  816. for (i = 0; i < AR5K_EEPROM_N_PD_CURVES; i++) {
  817. /* ee_x_gain[mode] is x gain mask */
  818. if ((ee->ee_x_gain[mode] >> i) & 0x1)
  819. pdgain_idx[pd_gains++] = i;
  820. }
  821. ee->ee_pd_gains[mode] = pd_gains;
  822. if (pd_gains == 0 || pd_gains > 2)
  823. return -EINVAL;
  824. switch (mode) {
  825. case AR5K_EEPROM_MODE_11A:
  826. /*
  827. * Read 5GHz EEPROM channels
  828. */
  829. offset = AR5K_EEPROM_GROUPS_START(ee->ee_version);
  830. ath5k_eeprom_init_11a_pcal_freq(ah, offset);
  831. offset += AR5K_EEPROM_GROUP2_OFFSET;
  832. gen_chan_info = ee->ee_pwr_cal_a;
  833. break;
  834. case AR5K_EEPROM_MODE_11B:
  835. offset = AR5K_EEPROM_GROUPS_START(ee->ee_version);
  836. if (AR5K_EEPROM_HDR_11A(ee->ee_header))
  837. offset += AR5K_EEPROM_GROUP3_OFFSET;
  838. /* NB: frequency piers parsed during mode init */
  839. gen_chan_info = ee->ee_pwr_cal_b;
  840. break;
  841. case AR5K_EEPROM_MODE_11G:
  842. offset = AR5K_EEPROM_GROUPS_START(ee->ee_version);
  843. if (AR5K_EEPROM_HDR_11A(ee->ee_header))
  844. offset += AR5K_EEPROM_GROUP4_OFFSET;
  845. else if (AR5K_EEPROM_HDR_11B(ee->ee_header))
  846. offset += AR5K_EEPROM_GROUP2_OFFSET;
  847. /* NB: frequency piers parsed during mode init */
  848. gen_chan_info = ee->ee_pwr_cal_g;
  849. break;
  850. default:
  851. return -EINVAL;
  852. }
  853. for (i = 0; i < ee->ee_n_piers[mode]; i++) {
  854. chan_pcal_info = &gen_chan_info[i].rf5112_info;
  855. /* Power values in quarter dB
  856. * for the lower xpd gain curve
  857. * (0 dBm -> higher output power) */
  858. for (c = 0; c < AR5K_EEPROM_N_XPD0_POINTS; c++) {
  859. AR5K_EEPROM_READ(offset++, val);
  860. chan_pcal_info->pwr_x0[c] = (s8) (val & 0xff);
  861. chan_pcal_info->pwr_x0[++c] = (s8) ((val >> 8) & 0xff);
  862. }
  863. /* PCDAC steps
  864. * corresponding to the above power
  865. * measurements */
  866. AR5K_EEPROM_READ(offset++, val);
  867. chan_pcal_info->pcdac_x0[1] = (val & 0x1f);
  868. chan_pcal_info->pcdac_x0[2] = ((val >> 5) & 0x1f);
  869. chan_pcal_info->pcdac_x0[3] = ((val >> 10) & 0x1f);
  870. /* Power values in quarter dB
  871. * for the higher xpd gain curve
  872. * (18 dBm -> lower output power) */
  873. AR5K_EEPROM_READ(offset++, val);
  874. chan_pcal_info->pwr_x3[0] = (s8) (val & 0xff);
  875. chan_pcal_info->pwr_x3[1] = (s8) ((val >> 8) & 0xff);
  876. AR5K_EEPROM_READ(offset++, val);
  877. chan_pcal_info->pwr_x3[2] = (val & 0xff);
  878. /* PCDAC steps
  879. * corresponding to the above power
  880. * measurements (fixed) */
  881. chan_pcal_info->pcdac_x3[0] = 20;
  882. chan_pcal_info->pcdac_x3[1] = 35;
  883. chan_pcal_info->pcdac_x3[2] = 63;
  884. if (ee->ee_version >= AR5K_EEPROM_VERSION_4_3) {
  885. chan_pcal_info->pcdac_x0[0] = ((val >> 8) & 0x3f);
  886. /* Last xpd0 power level is also channel maximum */
  887. gen_chan_info[i].max_pwr = chan_pcal_info->pwr_x0[3];
  888. } else {
  889. chan_pcal_info->pcdac_x0[0] = 1;
  890. gen_chan_info[i].max_pwr = (s8) ((val >> 8) & 0xff);
  891. }
  892. }
  893. return ath5k_eeprom_convert_pcal_info_5112(ah, mode, gen_chan_info);
  894. }
  895. /*
  896. * Read power calibration for RF2413 chips
  897. *
  898. * For RF2413 we have a Power to PDDAC table (Power Detector)
  899. * instead of a PCDAC and 4 pd gain curves for each calibrated channel.
  900. * Each curve has power on x axis in 0.5 db steps and PDDADC steps on y
  901. * axis and looks like an exponential function like the RF5111 curve.
  902. *
  903. * To recreate the curves we read here the points and interpolate
  904. * later. Note that in most cases only 2 (higher and lower) curves are
  905. * used (like RF5112) but vendors have the oportunity to include all
  906. * 4 curves on eeprom. The final curve (higher power) has an extra
  907. * point for better accuracy like RF5112.
  908. */
  909. /* For RF2413 power calibration data doesn't start on a fixed location and
  910. * if a mode is not supported, it's section is missing -not zeroed-.
  911. * So we need to calculate the starting offset for each section by using
  912. * these two functions */
  913. /* Return the size of each section based on the mode and the number of pd
  914. * gains available (maximum 4). */
  915. static inline unsigned int
  916. ath5k_pdgains_size_2413(struct ath5k_eeprom_info *ee, unsigned int mode)
  917. {
  918. static const unsigned int pdgains_size[] = { 4, 6, 9, 12 };
  919. unsigned int sz;
  920. sz = pdgains_size[ee->ee_pd_gains[mode] - 1];
  921. sz *= ee->ee_n_piers[mode];
  922. return sz;
  923. }
  924. /* Return the starting offset for a section based on the modes supported
  925. * and each section's size. */
  926. static unsigned int
  927. ath5k_cal_data_offset_2413(struct ath5k_eeprom_info *ee, int mode)
  928. {
  929. u32 offset = AR5K_EEPROM_CAL_DATA_START(ee->ee_misc4);
  930. switch(mode) {
  931. case AR5K_EEPROM_MODE_11G:
  932. if (AR5K_EEPROM_HDR_11B(ee->ee_header))
  933. offset += ath5k_pdgains_size_2413(ee,
  934. AR5K_EEPROM_MODE_11B) +
  935. AR5K_EEPROM_N_2GHZ_CHAN_2413 / 2;
  936. /* fall through */
  937. case AR5K_EEPROM_MODE_11B:
  938. if (AR5K_EEPROM_HDR_11A(ee->ee_header))
  939. offset += ath5k_pdgains_size_2413(ee,
  940. AR5K_EEPROM_MODE_11A) +
  941. AR5K_EEPROM_N_5GHZ_CHAN / 2;
  942. /* fall through */
  943. case AR5K_EEPROM_MODE_11A:
  944. break;
  945. default:
  946. break;
  947. }
  948. return offset;
  949. }
  950. /* Convert RF2413 specific data to generic raw data
  951. * used by interpolation code */
  952. static int
  953. ath5k_eeprom_convert_pcal_info_2413(struct ath5k_hw *ah, int mode,
  954. struct ath5k_chan_pcal_info *chinfo)
  955. {
  956. struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
  957. struct ath5k_chan_pcal_info_rf2413 *pcinfo;
  958. u8 *pdgain_idx = ee->ee_pdc_to_idx[mode];
  959. unsigned int pier, pdg, point;
  960. /* Fill raw data for each calibration pier */
  961. for (pier = 0; pier < ee->ee_n_piers[mode]; pier++) {
  962. pcinfo = &chinfo[pier].rf2413_info;
  963. /* Allocate pd_curves for this cal pier */
  964. chinfo[pier].pd_curves =
  965. kcalloc(AR5K_EEPROM_N_PD_CURVES,
  966. sizeof(struct ath5k_pdgain_info),
  967. GFP_KERNEL);
  968. if (!chinfo[pier].pd_curves)
  969. return -ENOMEM;
  970. /* Fill pd_curves */
  971. for (pdg = 0; pdg < ee->ee_pd_gains[mode]; pdg++) {
  972. u8 idx = pdgain_idx[pdg];
  973. struct ath5k_pdgain_info *pd =
  974. &chinfo[pier].pd_curves[idx];
  975. /* One more point for the highest power
  976. * curve (lowest gain) */
  977. if (pdg == ee->ee_pd_gains[mode] - 1)
  978. pd->pd_points = AR5K_EEPROM_N_PD_POINTS;
  979. else
  980. pd->pd_points = AR5K_EEPROM_N_PD_POINTS - 1;
  981. /* Allocate pd points for this curve */
  982. pd->pd_step = kcalloc(pd->pd_points,
  983. sizeof(u8), GFP_KERNEL);
  984. if (!pd->pd_step)
  985. return -ENOMEM;
  986. pd->pd_pwr = kcalloc(pd->pd_points,
  987. sizeof(s16), GFP_KERNEL);
  988. if (!pd->pd_pwr)
  989. return -ENOMEM;
  990. /* Fill raw dataset
  991. * convert all pwr levels to
  992. * quarter dB for RF5112 combatibility */
  993. pd->pd_step[0] = pcinfo->pddac_i[pdg];
  994. pd->pd_pwr[0] = 4 * pcinfo->pwr_i[pdg];
  995. for (point = 1; point < pd->pd_points; point++) {
  996. pd->pd_pwr[point] = pd->pd_pwr[point - 1] +
  997. 2 * pcinfo->pwr[pdg][point - 1];
  998. pd->pd_step[point] = pd->pd_step[point - 1] +
  999. pcinfo->pddac[pdg][point - 1];
  1000. }
  1001. /* Highest gain curve -> min power */
  1002. if (pdg == 0)
  1003. chinfo[pier].min_pwr = pd->pd_pwr[0];
  1004. /* Lowest gain curve -> max power */
  1005. if (pdg == ee->ee_pd_gains[mode] - 1)
  1006. chinfo[pier].max_pwr =
  1007. pd->pd_pwr[pd->pd_points - 1];
  1008. }
  1009. }
  1010. return 0;
  1011. }
  1012. /* Parse EEPROM data */
  1013. static int
  1014. ath5k_eeprom_read_pcal_info_2413(struct ath5k_hw *ah, int mode)
  1015. {
  1016. struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
  1017. struct ath5k_chan_pcal_info_rf2413 *pcinfo;
  1018. struct ath5k_chan_pcal_info *chinfo;
  1019. u8 *pdgain_idx = ee->ee_pdc_to_idx[mode];
  1020. u32 offset;
  1021. int idx, i, ret;
  1022. u16 val;
  1023. u8 pd_gains = 0;
  1024. /* Count how many curves we have and
  1025. * identify them (which one of the 4
  1026. * available curves we have on each count).
  1027. * Curves are stored from higher to
  1028. * lower gain so we go backwards */
  1029. for (idx = AR5K_EEPROM_N_PD_CURVES - 1; idx >= 0; idx--) {
  1030. /* ee_x_gain[mode] is x gain mask */
  1031. if ((ee->ee_x_gain[mode] >> idx) & 0x1)
  1032. pdgain_idx[pd_gains++] = idx;
  1033. }
  1034. ee->ee_pd_gains[mode] = pd_gains;
  1035. if (pd_gains == 0)
  1036. return -EINVAL;
  1037. offset = ath5k_cal_data_offset_2413(ee, mode);
  1038. switch (mode) {
  1039. case AR5K_EEPROM_MODE_11A:
  1040. if (!AR5K_EEPROM_HDR_11A(ee->ee_header))
  1041. return 0;
  1042. ath5k_eeprom_init_11a_pcal_freq(ah, offset);
  1043. offset += AR5K_EEPROM_N_5GHZ_CHAN / 2;
  1044. chinfo = ee->ee_pwr_cal_a;
  1045. break;
  1046. case AR5K_EEPROM_MODE_11B:
  1047. if (!AR5K_EEPROM_HDR_11B(ee->ee_header))
  1048. return 0;
  1049. ath5k_eeprom_init_11bg_2413(ah, mode, offset);
  1050. offset += AR5K_EEPROM_N_2GHZ_CHAN_2413 / 2;
  1051. chinfo = ee->ee_pwr_cal_b;
  1052. break;
  1053. case AR5K_EEPROM_MODE_11G:
  1054. if (!AR5K_EEPROM_HDR_11G(ee->ee_header))
  1055. return 0;
  1056. ath5k_eeprom_init_11bg_2413(ah, mode, offset);
  1057. offset += AR5K_EEPROM_N_2GHZ_CHAN_2413 / 2;
  1058. chinfo = ee->ee_pwr_cal_g;
  1059. break;
  1060. default:
  1061. return -EINVAL;
  1062. }
  1063. for (i = 0; i < ee->ee_n_piers[mode]; i++) {
  1064. pcinfo = &chinfo[i].rf2413_info;
  1065. /*
  1066. * Read pwr_i, pddac_i and the first
  1067. * 2 pd points (pwr, pddac)
  1068. */
  1069. AR5K_EEPROM_READ(offset++, val);
  1070. pcinfo->pwr_i[0] = val & 0x1f;
  1071. pcinfo->pddac_i[0] = (val >> 5) & 0x7f;
  1072. pcinfo->pwr[0][0] = (val >> 12) & 0xf;
  1073. AR5K_EEPROM_READ(offset++, val);
  1074. pcinfo->pddac[0][0] = val & 0x3f;
  1075. pcinfo->pwr[0][1] = (val >> 6) & 0xf;
  1076. pcinfo->pddac[0][1] = (val >> 10) & 0x3f;
  1077. AR5K_EEPROM_READ(offset++, val);
  1078. pcinfo->pwr[0][2] = val & 0xf;
  1079. pcinfo->pddac[0][2] = (val >> 4) & 0x3f;
  1080. pcinfo->pwr[0][3] = 0;
  1081. pcinfo->pddac[0][3] = 0;
  1082. if (pd_gains > 1) {
  1083. /*
  1084. * Pd gain 0 is not the last pd gain
  1085. * so it only has 2 pd points.
  1086. * Continue wih pd gain 1.
  1087. */
  1088. pcinfo->pwr_i[1] = (val >> 10) & 0x1f;
  1089. pcinfo->pddac_i[1] = (val >> 15) & 0x1;
  1090. AR5K_EEPROM_READ(offset++, val);
  1091. pcinfo->pddac_i[1] |= (val & 0x3F) << 1;
  1092. pcinfo->pwr[1][0] = (val >> 6) & 0xf;
  1093. pcinfo->pddac[1][0] = (val >> 10) & 0x3f;
  1094. AR5K_EEPROM_READ(offset++, val);
  1095. pcinfo->pwr[1][1] = val & 0xf;
  1096. pcinfo->pddac[1][1] = (val >> 4) & 0x3f;
  1097. pcinfo->pwr[1][2] = (val >> 10) & 0xf;
  1098. pcinfo->pddac[1][2] = (val >> 14) & 0x3;
  1099. AR5K_EEPROM_READ(offset++, val);
  1100. pcinfo->pddac[1][2] |= (val & 0xF) << 2;
  1101. pcinfo->pwr[1][3] = 0;
  1102. pcinfo->pddac[1][3] = 0;
  1103. } else if (pd_gains == 1) {
  1104. /*
  1105. * Pd gain 0 is the last one so
  1106. * read the extra point.
  1107. */
  1108. pcinfo->pwr[0][3] = (val >> 10) & 0xf;
  1109. pcinfo->pddac[0][3] = (val >> 14) & 0x3;
  1110. AR5K_EEPROM_READ(offset++, val);
  1111. pcinfo->pddac[0][3] |= (val & 0xF) << 2;
  1112. }
  1113. /*
  1114. * Proceed with the other pd_gains
  1115. * as above.
  1116. */
  1117. if (pd_gains > 2) {
  1118. pcinfo->pwr_i[2] = (val >> 4) & 0x1f;
  1119. pcinfo->pddac_i[2] = (val >> 9) & 0x7f;
  1120. AR5K_EEPROM_READ(offset++, val);
  1121. pcinfo->pwr[2][0] = (val >> 0) & 0xf;
  1122. pcinfo->pddac[2][0] = (val >> 4) & 0x3f;
  1123. pcinfo->pwr[2][1] = (val >> 10) & 0xf;
  1124. pcinfo->pddac[2][1] = (val >> 14) & 0x3;
  1125. AR5K_EEPROM_READ(offset++, val);
  1126. pcinfo->pddac[2][1] |= (val & 0xF) << 2;
  1127. pcinfo->pwr[2][2] = (val >> 4) & 0xf;
  1128. pcinfo->pddac[2][2] = (val >> 8) & 0x3f;
  1129. pcinfo->pwr[2][3] = 0;
  1130. pcinfo->pddac[2][3] = 0;
  1131. } else if (pd_gains == 2) {
  1132. pcinfo->pwr[1][3] = (val >> 4) & 0xf;
  1133. pcinfo->pddac[1][3] = (val >> 8) & 0x3f;
  1134. }
  1135. if (pd_gains > 3) {
  1136. pcinfo->pwr_i[3] = (val >> 14) & 0x3;
  1137. AR5K_EEPROM_READ(offset++, val);
  1138. pcinfo->pwr_i[3] |= ((val >> 0) & 0x7) << 2;
  1139. pcinfo->pddac_i[3] = (val >> 3) & 0x7f;
  1140. pcinfo->pwr[3][0] = (val >> 10) & 0xf;
  1141. pcinfo->pddac[3][0] = (val >> 14) & 0x3;
  1142. AR5K_EEPROM_READ(offset++, val);
  1143. pcinfo->pddac[3][0] |= (val & 0xF) << 2;
  1144. pcinfo->pwr[3][1] = (val >> 4) & 0xf;
  1145. pcinfo->pddac[3][1] = (val >> 8) & 0x3f;
  1146. pcinfo->pwr[3][2] = (val >> 14) & 0x3;
  1147. AR5K_EEPROM_READ(offset++, val);
  1148. pcinfo->pwr[3][2] |= ((val >> 0) & 0x3) << 2;
  1149. pcinfo->pddac[3][2] = (val >> 2) & 0x3f;
  1150. pcinfo->pwr[3][3] = (val >> 8) & 0xf;
  1151. pcinfo->pddac[3][3] = (val >> 12) & 0xF;
  1152. AR5K_EEPROM_READ(offset++, val);
  1153. pcinfo->pddac[3][3] |= ((val >> 0) & 0x3) << 4;
  1154. } else if (pd_gains == 3) {
  1155. pcinfo->pwr[2][3] = (val >> 14) & 0x3;
  1156. AR5K_EEPROM_READ(offset++, val);
  1157. pcinfo->pwr[2][3] |= ((val >> 0) & 0x3) << 2;
  1158. pcinfo->pddac[2][3] = (val >> 2) & 0x3f;
  1159. }
  1160. }
  1161. return ath5k_eeprom_convert_pcal_info_2413(ah, mode, chinfo);
  1162. }
  1163. /*
  1164. * Read per rate target power (this is the maximum tx power
  1165. * supported by the card). This info is used when setting
  1166. * tx power, no matter the channel.
  1167. *
  1168. * This also works for v5 EEPROMs.
  1169. */
  1170. static int
  1171. ath5k_eeprom_read_target_rate_pwr_info(struct ath5k_hw *ah, unsigned int mode)
  1172. {
  1173. struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
  1174. struct ath5k_rate_pcal_info *rate_pcal_info;
  1175. u8 *rate_target_pwr_num;
  1176. u32 offset;
  1177. u16 val;
  1178. int ret, i;
  1179. offset = AR5K_EEPROM_TARGET_PWRSTART(ee->ee_misc1);
  1180. rate_target_pwr_num = &ee->ee_rate_target_pwr_num[mode];
  1181. switch (mode) {
  1182. case AR5K_EEPROM_MODE_11A:
  1183. offset += AR5K_EEPROM_TARGET_PWR_OFF_11A(ee->ee_version);
  1184. rate_pcal_info = ee->ee_rate_tpwr_a;
  1185. ee->ee_rate_target_pwr_num[mode] = AR5K_EEPROM_N_5GHZ_CHAN;
  1186. break;
  1187. case AR5K_EEPROM_MODE_11B:
  1188. offset += AR5K_EEPROM_TARGET_PWR_OFF_11B(ee->ee_version);
  1189. rate_pcal_info = ee->ee_rate_tpwr_b;
  1190. ee->ee_rate_target_pwr_num[mode] = 2; /* 3rd is g mode's 1st */
  1191. break;
  1192. case AR5K_EEPROM_MODE_11G:
  1193. offset += AR5K_EEPROM_TARGET_PWR_OFF_11G(ee->ee_version);
  1194. rate_pcal_info = ee->ee_rate_tpwr_g;
  1195. ee->ee_rate_target_pwr_num[mode] = AR5K_EEPROM_N_2GHZ_CHAN;
  1196. break;
  1197. default:
  1198. return -EINVAL;
  1199. }
  1200. /* Different freq mask for older eeproms (<= v3.2) */
  1201. if (ee->ee_version <= AR5K_EEPROM_VERSION_3_2) {
  1202. for (i = 0; i < (*rate_target_pwr_num); i++) {
  1203. AR5K_EEPROM_READ(offset++, val);
  1204. rate_pcal_info[i].freq =
  1205. ath5k_eeprom_bin2freq(ee, (val >> 9) & 0x7f, mode);
  1206. rate_pcal_info[i].target_power_6to24 = ((val >> 3) & 0x3f);
  1207. rate_pcal_info[i].target_power_36 = (val << 3) & 0x3f;
  1208. AR5K_EEPROM_READ(offset++, val);
  1209. if (rate_pcal_info[i].freq == AR5K_EEPROM_CHANNEL_DIS ||
  1210. val == 0) {
  1211. (*rate_target_pwr_num) = i;
  1212. break;
  1213. }
  1214. rate_pcal_info[i].target_power_36 |= ((val >> 13) & 0x7);
  1215. rate_pcal_info[i].target_power_48 = ((val >> 7) & 0x3f);
  1216. rate_pcal_info[i].target_power_54 = ((val >> 1) & 0x3f);
  1217. }
  1218. } else {
  1219. for (i = 0; i < (*rate_target_pwr_num); i++) {
  1220. AR5K_EEPROM_READ(offset++, val);
  1221. rate_pcal_info[i].freq =
  1222. ath5k_eeprom_bin2freq(ee, (val >> 8) & 0xff, mode);
  1223. rate_pcal_info[i].target_power_6to24 = ((val >> 2) & 0x3f);
  1224. rate_pcal_info[i].target_power_36 = (val << 4) & 0x3f;
  1225. AR5K_EEPROM_READ(offset++, val);
  1226. if (rate_pcal_info[i].freq == AR5K_EEPROM_CHANNEL_DIS ||
  1227. val == 0) {
  1228. (*rate_target_pwr_num) = i;
  1229. break;
  1230. }
  1231. rate_pcal_info[i].target_power_36 |= (val >> 12) & 0xf;
  1232. rate_pcal_info[i].target_power_48 = ((val >> 6) & 0x3f);
  1233. rate_pcal_info[i].target_power_54 = (val & 0x3f);
  1234. }
  1235. }
  1236. return 0;
  1237. }
  1238. /*
  1239. * Read per channel calibration info from EEPROM
  1240. *
  1241. * This info is used to calibrate the baseband power table. Imagine
  1242. * that for each channel there is a power curve that's hw specific
  1243. * (depends on amplifier etc) and we try to "correct" this curve using
  1244. * offests we pass on to phy chip (baseband -> before amplifier) so that
  1245. * it can use accurate power values when setting tx power (takes amplifier's
  1246. * performance on each channel into account).
  1247. *
  1248. * EEPROM provides us with the offsets for some pre-calibrated channels
  1249. * and we have to interpolate to create the full table for these channels and
  1250. * also the table for any channel.
  1251. */
  1252. static int
  1253. ath5k_eeprom_read_pcal_info(struct ath5k_hw *ah)
  1254. {
  1255. struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
  1256. int (*read_pcal)(struct ath5k_hw *hw, int mode);
  1257. int mode;
  1258. int err;
  1259. if ((ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_0) &&
  1260. (AR5K_EEPROM_EEMAP(ee->ee_misc0) == 1))
  1261. read_pcal = ath5k_eeprom_read_pcal_info_5112;
  1262. else if ((ah->ah_ee_version >= AR5K_EEPROM_VERSION_5_0) &&
  1263. (AR5K_EEPROM_EEMAP(ee->ee_misc0) == 2))
  1264. read_pcal = ath5k_eeprom_read_pcal_info_2413;
  1265. else
  1266. read_pcal = ath5k_eeprom_read_pcal_info_5111;
  1267. for (mode = AR5K_EEPROM_MODE_11A; mode <= AR5K_EEPROM_MODE_11G;
  1268. mode++) {
  1269. err = read_pcal(ah, mode);
  1270. if (err)
  1271. return err;
  1272. err = ath5k_eeprom_read_target_rate_pwr_info(ah, mode);
  1273. if (err < 0)
  1274. return err;
  1275. }
  1276. return 0;
  1277. }
  1278. static int
  1279. ath5k_eeprom_free_pcal_info(struct ath5k_hw *ah, int mode)
  1280. {
  1281. struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
  1282. struct ath5k_chan_pcal_info *chinfo;
  1283. u8 pier, pdg;
  1284. switch (mode) {
  1285. case AR5K_EEPROM_MODE_11A:
  1286. if (!AR5K_EEPROM_HDR_11A(ee->ee_header))
  1287. return 0;
  1288. chinfo = ee->ee_pwr_cal_a;
  1289. break;
  1290. case AR5K_EEPROM_MODE_11B:
  1291. if (!AR5K_EEPROM_HDR_11B(ee->ee_header))
  1292. return 0;
  1293. chinfo = ee->ee_pwr_cal_b;
  1294. break;
  1295. case AR5K_EEPROM_MODE_11G:
  1296. if (!AR5K_EEPROM_HDR_11G(ee->ee_header))
  1297. return 0;
  1298. chinfo = ee->ee_pwr_cal_g;
  1299. break;
  1300. default:
  1301. return -EINVAL;
  1302. }
  1303. for (pier = 0; pier < ee->ee_n_piers[mode]; pier++) {
  1304. if (!chinfo[pier].pd_curves)
  1305. continue;
  1306. for (pdg = 0; pdg < ee->ee_pd_gains[mode]; pdg++) {
  1307. struct ath5k_pdgain_info *pd =
  1308. &chinfo[pier].pd_curves[pdg];
  1309. if (pd != NULL) {
  1310. kfree(pd->pd_step);
  1311. kfree(pd->pd_pwr);
  1312. }
  1313. }
  1314. kfree(chinfo[pier].pd_curves);
  1315. }
  1316. return 0;
  1317. }
  1318. void
  1319. ath5k_eeprom_detach(struct ath5k_hw *ah)
  1320. {
  1321. u8 mode;
  1322. for (mode = AR5K_EEPROM_MODE_11A; mode <= AR5K_EEPROM_MODE_11G; mode++)
  1323. ath5k_eeprom_free_pcal_info(ah, mode);
  1324. }
  1325. /* Read conformance test limits used for regulatory control */
  1326. static int
  1327. ath5k_eeprom_read_ctl_info(struct ath5k_hw *ah)
  1328. {
  1329. struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
  1330. struct ath5k_edge_power *rep;
  1331. unsigned int fmask, pmask;
  1332. unsigned int ctl_mode;
  1333. int ret, i, j;
  1334. u32 offset;
  1335. u16 val;
  1336. pmask = AR5K_EEPROM_POWER_M;
  1337. fmask = AR5K_EEPROM_FREQ_M(ee->ee_version);
  1338. offset = AR5K_EEPROM_CTL(ee->ee_version);
  1339. ee->ee_ctls = AR5K_EEPROM_N_CTLS(ee->ee_version);
  1340. for (i = 0; i < ee->ee_ctls; i += 2) {
  1341. AR5K_EEPROM_READ(offset++, val);
  1342. ee->ee_ctl[i] = (val >> 8) & 0xff;
  1343. ee->ee_ctl[i + 1] = val & 0xff;
  1344. }
  1345. offset = AR5K_EEPROM_GROUP8_OFFSET;
  1346. if (ee->ee_version >= AR5K_EEPROM_VERSION_4_0)
  1347. offset += AR5K_EEPROM_TARGET_PWRSTART(ee->ee_misc1) -
  1348. AR5K_EEPROM_GROUP5_OFFSET;
  1349. else
  1350. offset += AR5K_EEPROM_GROUPS_START(ee->ee_version);
  1351. rep = ee->ee_ctl_pwr;
  1352. for(i = 0; i < ee->ee_ctls; i++) {
  1353. switch(ee->ee_ctl[i] & AR5K_CTL_MODE_M) {
  1354. case AR5K_CTL_11A:
  1355. case AR5K_CTL_TURBO:
  1356. ctl_mode = AR5K_EEPROM_MODE_11A;
  1357. break;
  1358. default:
  1359. ctl_mode = AR5K_EEPROM_MODE_11G;
  1360. break;
  1361. }
  1362. if (ee->ee_ctl[i] == 0) {
  1363. if (ee->ee_version >= AR5K_EEPROM_VERSION_3_3)
  1364. offset += 8;
  1365. else
  1366. offset += 7;
  1367. rep += AR5K_EEPROM_N_EDGES;
  1368. continue;
  1369. }
  1370. if (ee->ee_version >= AR5K_EEPROM_VERSION_3_3) {
  1371. for (j = 0; j < AR5K_EEPROM_N_EDGES; j += 2) {
  1372. AR5K_EEPROM_READ(offset++, val);
  1373. rep[j].freq = (val >> 8) & fmask;
  1374. rep[j + 1].freq = val & fmask;
  1375. }
  1376. for (j = 0; j < AR5K_EEPROM_N_EDGES; j += 2) {
  1377. AR5K_EEPROM_READ(offset++, val);
  1378. rep[j].edge = (val >> 8) & pmask;
  1379. rep[j].flag = (val >> 14) & 1;
  1380. rep[j + 1].edge = val & pmask;
  1381. rep[j + 1].flag = (val >> 6) & 1;
  1382. }
  1383. } else {
  1384. AR5K_EEPROM_READ(offset++, val);
  1385. rep[0].freq = (val >> 9) & fmask;
  1386. rep[1].freq = (val >> 2) & fmask;
  1387. rep[2].freq = (val << 5) & fmask;
  1388. AR5K_EEPROM_READ(offset++, val);
  1389. rep[2].freq |= (val >> 11) & 0x1f;
  1390. rep[3].freq = (val >> 4) & fmask;
  1391. rep[4].freq = (val << 3) & fmask;
  1392. AR5K_EEPROM_READ(offset++, val);
  1393. rep[4].freq |= (val >> 13) & 0x7;
  1394. rep[5].freq = (val >> 6) & fmask;
  1395. rep[6].freq = (val << 1) & fmask;
  1396. AR5K_EEPROM_READ(offset++, val);
  1397. rep[6].freq |= (val >> 15) & 0x1;
  1398. rep[7].freq = (val >> 8) & fmask;
  1399. rep[0].edge = (val >> 2) & pmask;
  1400. rep[1].edge = (val << 4) & pmask;
  1401. AR5K_EEPROM_READ(offset++, val);
  1402. rep[1].edge |= (val >> 12) & 0xf;
  1403. rep[2].edge = (val >> 6) & pmask;
  1404. rep[3].edge = val & pmask;
  1405. AR5K_EEPROM_READ(offset++, val);
  1406. rep[4].edge = (val >> 10) & pmask;
  1407. rep[5].edge = (val >> 4) & pmask;
  1408. rep[6].edge = (val << 2) & pmask;
  1409. AR5K_EEPROM_READ(offset++, val);
  1410. rep[6].edge |= (val >> 14) & 0x3;
  1411. rep[7].edge = (val >> 8) & pmask;
  1412. }
  1413. for (j = 0; j < AR5K_EEPROM_N_EDGES; j++) {
  1414. rep[j].freq = ath5k_eeprom_bin2freq(ee,
  1415. rep[j].freq, ctl_mode);
  1416. }
  1417. rep += AR5K_EEPROM_N_EDGES;
  1418. }
  1419. return 0;
  1420. }
  1421. static int
  1422. ath5k_eeprom_read_spur_chans(struct ath5k_hw *ah)
  1423. {
  1424. struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
  1425. u32 offset;
  1426. u16 val;
  1427. int ret = 0, i;
  1428. offset = AR5K_EEPROM_CTL(ee->ee_version) +
  1429. AR5K_EEPROM_N_CTLS(ee->ee_version);
  1430. if (ee->ee_version < AR5K_EEPROM_VERSION_5_3) {
  1431. /* No spur info for 5GHz */
  1432. ee->ee_spur_chans[0][0] = AR5K_EEPROM_NO_SPUR;
  1433. /* 2 channels for 2GHz (2464/2420) */
  1434. ee->ee_spur_chans[0][1] = AR5K_EEPROM_5413_SPUR_CHAN_1;
  1435. ee->ee_spur_chans[1][1] = AR5K_EEPROM_5413_SPUR_CHAN_2;
  1436. ee->ee_spur_chans[2][1] = AR5K_EEPROM_NO_SPUR;
  1437. } else if (ee->ee_version >= AR5K_EEPROM_VERSION_5_3) {
  1438. for (i = 0; i < AR5K_EEPROM_N_SPUR_CHANS; i++) {
  1439. AR5K_EEPROM_READ(offset, val);
  1440. ee->ee_spur_chans[i][0] = val;
  1441. AR5K_EEPROM_READ(offset + AR5K_EEPROM_N_SPUR_CHANS,
  1442. val);
  1443. ee->ee_spur_chans[i][1] = val;
  1444. offset++;
  1445. }
  1446. }
  1447. return ret;
  1448. }
  1449. /*
  1450. * Initialize eeprom data structure
  1451. */
  1452. int
  1453. ath5k_eeprom_init(struct ath5k_hw *ah)
  1454. {
  1455. int err;
  1456. err = ath5k_eeprom_init_header(ah);
  1457. if (err < 0)
  1458. return err;
  1459. err = ath5k_eeprom_init_modes(ah);
  1460. if (err < 0)
  1461. return err;
  1462. err = ath5k_eeprom_read_pcal_info(ah);
  1463. if (err < 0)
  1464. return err;
  1465. err = ath5k_eeprom_read_ctl_info(ah);
  1466. if (err < 0)
  1467. return err;
  1468. err = ath5k_eeprom_read_spur_chans(ah);
  1469. if (err < 0)
  1470. return err;
  1471. return 0;
  1472. }
  1473. /*
  1474. * Read the MAC address from eeprom
  1475. */
  1476. int ath5k_eeprom_read_mac(struct ath5k_hw *ah, u8 *mac)
  1477. {
  1478. u8 mac_d[ETH_ALEN] = {};
  1479. u32 total, offset;
  1480. u16 data;
  1481. int octet, ret;
  1482. ret = ath5k_hw_eeprom_read(ah, 0x20, &data);
  1483. if (ret)
  1484. return ret;
  1485. for (offset = 0x1f, octet = 0, total = 0; offset >= 0x1d; offset--) {
  1486. ret = ath5k_hw_eeprom_read(ah, offset, &data);
  1487. if (ret)
  1488. return ret;
  1489. total += data;
  1490. mac_d[octet + 1] = data & 0xff;
  1491. mac_d[octet] = data >> 8;
  1492. octet += 2;
  1493. }
  1494. if (!total || total == 3 * 0xffff)
  1495. return -EINVAL;
  1496. memcpy(mac, mac_d, ETH_ALEN);
  1497. return 0;
  1498. }