sock.c 69 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788
  1. /*
  2. * INET An implementation of the TCP/IP protocol suite for the LINUX
  3. * operating system. INET is implemented using the BSD Socket
  4. * interface as the means of communication with the user level.
  5. *
  6. * Generic socket support routines. Memory allocators, socket lock/release
  7. * handler for protocols to use and generic option handler.
  8. *
  9. *
  10. * Authors: Ross Biro
  11. * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
  12. * Florian La Roche, <flla@stud.uni-sb.de>
  13. * Alan Cox, <A.Cox@swansea.ac.uk>
  14. *
  15. * Fixes:
  16. * Alan Cox : Numerous verify_area() problems
  17. * Alan Cox : Connecting on a connecting socket
  18. * now returns an error for tcp.
  19. * Alan Cox : sock->protocol is set correctly.
  20. * and is not sometimes left as 0.
  21. * Alan Cox : connect handles icmp errors on a
  22. * connect properly. Unfortunately there
  23. * is a restart syscall nasty there. I
  24. * can't match BSD without hacking the C
  25. * library. Ideas urgently sought!
  26. * Alan Cox : Disallow bind() to addresses that are
  27. * not ours - especially broadcast ones!!
  28. * Alan Cox : Socket 1024 _IS_ ok for users. (fencepost)
  29. * Alan Cox : sock_wfree/sock_rfree don't destroy sockets,
  30. * instead they leave that for the DESTROY timer.
  31. * Alan Cox : Clean up error flag in accept
  32. * Alan Cox : TCP ack handling is buggy, the DESTROY timer
  33. * was buggy. Put a remove_sock() in the handler
  34. * for memory when we hit 0. Also altered the timer
  35. * code. The ACK stuff can wait and needs major
  36. * TCP layer surgery.
  37. * Alan Cox : Fixed TCP ack bug, removed remove sock
  38. * and fixed timer/inet_bh race.
  39. * Alan Cox : Added zapped flag for TCP
  40. * Alan Cox : Move kfree_skb into skbuff.c and tidied up surplus code
  41. * Alan Cox : for new sk_buff allocations wmalloc/rmalloc now call alloc_skb
  42. * Alan Cox : kfree_s calls now are kfree_skbmem so we can track skb resources
  43. * Alan Cox : Supports socket option broadcast now as does udp. Packet and raw need fixing.
  44. * Alan Cox : Added RCVBUF,SNDBUF size setting. It suddenly occurred to me how easy it was so...
  45. * Rick Sladkey : Relaxed UDP rules for matching packets.
  46. * C.E.Hawkins : IFF_PROMISC/SIOCGHWADDR support
  47. * Pauline Middelink : identd support
  48. * Alan Cox : Fixed connect() taking signals I think.
  49. * Alan Cox : SO_LINGER supported
  50. * Alan Cox : Error reporting fixes
  51. * Anonymous : inet_create tidied up (sk->reuse setting)
  52. * Alan Cox : inet sockets don't set sk->type!
  53. * Alan Cox : Split socket option code
  54. * Alan Cox : Callbacks
  55. * Alan Cox : Nagle flag for Charles & Johannes stuff
  56. * Alex : Removed restriction on inet fioctl
  57. * Alan Cox : Splitting INET from NET core
  58. * Alan Cox : Fixed bogus SO_TYPE handling in getsockopt()
  59. * Adam Caldwell : Missing return in SO_DONTROUTE/SO_DEBUG code
  60. * Alan Cox : Split IP from generic code
  61. * Alan Cox : New kfree_skbmem()
  62. * Alan Cox : Make SO_DEBUG superuser only.
  63. * Alan Cox : Allow anyone to clear SO_DEBUG
  64. * (compatibility fix)
  65. * Alan Cox : Added optimistic memory grabbing for AF_UNIX throughput.
  66. * Alan Cox : Allocator for a socket is settable.
  67. * Alan Cox : SO_ERROR includes soft errors.
  68. * Alan Cox : Allow NULL arguments on some SO_ opts
  69. * Alan Cox : Generic socket allocation to make hooks
  70. * easier (suggested by Craig Metz).
  71. * Michael Pall : SO_ERROR returns positive errno again
  72. * Steve Whitehouse: Added default destructor to free
  73. * protocol private data.
  74. * Steve Whitehouse: Added various other default routines
  75. * common to several socket families.
  76. * Chris Evans : Call suser() check last on F_SETOWN
  77. * Jay Schulist : Added SO_ATTACH_FILTER and SO_DETACH_FILTER.
  78. * Andi Kleen : Add sock_kmalloc()/sock_kfree_s()
  79. * Andi Kleen : Fix write_space callback
  80. * Chris Evans : Security fixes - signedness again
  81. * Arnaldo C. Melo : cleanups, use skb_queue_purge
  82. *
  83. * To Fix:
  84. *
  85. *
  86. * This program is free software; you can redistribute it and/or
  87. * modify it under the terms of the GNU General Public License
  88. * as published by the Free Software Foundation; either version
  89. * 2 of the License, or (at your option) any later version.
  90. */
  91. #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  92. #include <linux/capability.h>
  93. #include <linux/errno.h>
  94. #include <linux/types.h>
  95. #include <linux/socket.h>
  96. #include <linux/in.h>
  97. #include <linux/kernel.h>
  98. #include <linux/module.h>
  99. #include <linux/proc_fs.h>
  100. #include <linux/seq_file.h>
  101. #include <linux/sched.h>
  102. #include <linux/timer.h>
  103. #include <linux/string.h>
  104. #include <linux/sockios.h>
  105. #include <linux/net.h>
  106. #include <linux/mm.h>
  107. #include <linux/slab.h>
  108. #include <linux/interrupt.h>
  109. #include <linux/poll.h>
  110. #include <linux/tcp.h>
  111. #include <linux/init.h>
  112. #include <linux/highmem.h>
  113. #include <linux/user_namespace.h>
  114. #include <linux/static_key.h>
  115. #include <linux/memcontrol.h>
  116. #include <linux/prefetch.h>
  117. #include <asm/uaccess.h>
  118. #include <linux/netdevice.h>
  119. #include <net/protocol.h>
  120. #include <linux/skbuff.h>
  121. #include <net/net_namespace.h>
  122. #include <net/request_sock.h>
  123. #include <net/sock.h>
  124. #include <linux/net_tstamp.h>
  125. #include <net/xfrm.h>
  126. #include <linux/ipsec.h>
  127. #include <net/cls_cgroup.h>
  128. #include <net/netprio_cgroup.h>
  129. #include <linux/filter.h>
  130. #include <trace/events/sock.h>
  131. #ifdef CONFIG_INET
  132. #include <net/tcp.h>
  133. #endif
  134. static DEFINE_MUTEX(proto_list_mutex);
  135. static LIST_HEAD(proto_list);
  136. #ifdef CONFIG_MEMCG_KMEM
  137. int mem_cgroup_sockets_init(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
  138. {
  139. struct proto *proto;
  140. int ret = 0;
  141. mutex_lock(&proto_list_mutex);
  142. list_for_each_entry(proto, &proto_list, node) {
  143. if (proto->init_cgroup) {
  144. ret = proto->init_cgroup(memcg, ss);
  145. if (ret)
  146. goto out;
  147. }
  148. }
  149. mutex_unlock(&proto_list_mutex);
  150. return ret;
  151. out:
  152. list_for_each_entry_continue_reverse(proto, &proto_list, node)
  153. if (proto->destroy_cgroup)
  154. proto->destroy_cgroup(memcg);
  155. mutex_unlock(&proto_list_mutex);
  156. return ret;
  157. }
  158. void mem_cgroup_sockets_destroy(struct mem_cgroup *memcg)
  159. {
  160. struct proto *proto;
  161. mutex_lock(&proto_list_mutex);
  162. list_for_each_entry_reverse(proto, &proto_list, node)
  163. if (proto->destroy_cgroup)
  164. proto->destroy_cgroup(memcg);
  165. mutex_unlock(&proto_list_mutex);
  166. }
  167. #endif
  168. /*
  169. * Each address family might have different locking rules, so we have
  170. * one slock key per address family:
  171. */
  172. static struct lock_class_key af_family_keys[AF_MAX];
  173. static struct lock_class_key af_family_slock_keys[AF_MAX];
  174. struct static_key memcg_socket_limit_enabled;
  175. EXPORT_SYMBOL(memcg_socket_limit_enabled);
  176. /*
  177. * Make lock validator output more readable. (we pre-construct these
  178. * strings build-time, so that runtime initialization of socket
  179. * locks is fast):
  180. */
  181. static const char *const af_family_key_strings[AF_MAX+1] = {
  182. "sk_lock-AF_UNSPEC", "sk_lock-AF_UNIX" , "sk_lock-AF_INET" ,
  183. "sk_lock-AF_AX25" , "sk_lock-AF_IPX" , "sk_lock-AF_APPLETALK",
  184. "sk_lock-AF_NETROM", "sk_lock-AF_BRIDGE" , "sk_lock-AF_ATMPVC" ,
  185. "sk_lock-AF_X25" , "sk_lock-AF_INET6" , "sk_lock-AF_ROSE" ,
  186. "sk_lock-AF_DECnet", "sk_lock-AF_NETBEUI" , "sk_lock-AF_SECURITY" ,
  187. "sk_lock-AF_KEY" , "sk_lock-AF_NETLINK" , "sk_lock-AF_PACKET" ,
  188. "sk_lock-AF_ASH" , "sk_lock-AF_ECONET" , "sk_lock-AF_ATMSVC" ,
  189. "sk_lock-AF_RDS" , "sk_lock-AF_SNA" , "sk_lock-AF_IRDA" ,
  190. "sk_lock-AF_PPPOX" , "sk_lock-AF_WANPIPE" , "sk_lock-AF_LLC" ,
  191. "sk_lock-27" , "sk_lock-28" , "sk_lock-AF_CAN" ,
  192. "sk_lock-AF_TIPC" , "sk_lock-AF_BLUETOOTH", "sk_lock-IUCV" ,
  193. "sk_lock-AF_RXRPC" , "sk_lock-AF_ISDN" , "sk_lock-AF_PHONET" ,
  194. "sk_lock-AF_IEEE802154", "sk_lock-AF_CAIF" , "sk_lock-AF_ALG" ,
  195. "sk_lock-AF_NFC" , "sk_lock-AF_MAX"
  196. };
  197. static const char *const af_family_slock_key_strings[AF_MAX+1] = {
  198. "slock-AF_UNSPEC", "slock-AF_UNIX" , "slock-AF_INET" ,
  199. "slock-AF_AX25" , "slock-AF_IPX" , "slock-AF_APPLETALK",
  200. "slock-AF_NETROM", "slock-AF_BRIDGE" , "slock-AF_ATMPVC" ,
  201. "slock-AF_X25" , "slock-AF_INET6" , "slock-AF_ROSE" ,
  202. "slock-AF_DECnet", "slock-AF_NETBEUI" , "slock-AF_SECURITY" ,
  203. "slock-AF_KEY" , "slock-AF_NETLINK" , "slock-AF_PACKET" ,
  204. "slock-AF_ASH" , "slock-AF_ECONET" , "slock-AF_ATMSVC" ,
  205. "slock-AF_RDS" , "slock-AF_SNA" , "slock-AF_IRDA" ,
  206. "slock-AF_PPPOX" , "slock-AF_WANPIPE" , "slock-AF_LLC" ,
  207. "slock-27" , "slock-28" , "slock-AF_CAN" ,
  208. "slock-AF_TIPC" , "slock-AF_BLUETOOTH", "slock-AF_IUCV" ,
  209. "slock-AF_RXRPC" , "slock-AF_ISDN" , "slock-AF_PHONET" ,
  210. "slock-AF_IEEE802154", "slock-AF_CAIF" , "slock-AF_ALG" ,
  211. "slock-AF_NFC" , "slock-AF_MAX"
  212. };
  213. static const char *const af_family_clock_key_strings[AF_MAX+1] = {
  214. "clock-AF_UNSPEC", "clock-AF_UNIX" , "clock-AF_INET" ,
  215. "clock-AF_AX25" , "clock-AF_IPX" , "clock-AF_APPLETALK",
  216. "clock-AF_NETROM", "clock-AF_BRIDGE" , "clock-AF_ATMPVC" ,
  217. "clock-AF_X25" , "clock-AF_INET6" , "clock-AF_ROSE" ,
  218. "clock-AF_DECnet", "clock-AF_NETBEUI" , "clock-AF_SECURITY" ,
  219. "clock-AF_KEY" , "clock-AF_NETLINK" , "clock-AF_PACKET" ,
  220. "clock-AF_ASH" , "clock-AF_ECONET" , "clock-AF_ATMSVC" ,
  221. "clock-AF_RDS" , "clock-AF_SNA" , "clock-AF_IRDA" ,
  222. "clock-AF_PPPOX" , "clock-AF_WANPIPE" , "clock-AF_LLC" ,
  223. "clock-27" , "clock-28" , "clock-AF_CAN" ,
  224. "clock-AF_TIPC" , "clock-AF_BLUETOOTH", "clock-AF_IUCV" ,
  225. "clock-AF_RXRPC" , "clock-AF_ISDN" , "clock-AF_PHONET" ,
  226. "clock-AF_IEEE802154", "clock-AF_CAIF" , "clock-AF_ALG" ,
  227. "clock-AF_NFC" , "clock-AF_MAX"
  228. };
  229. /*
  230. * sk_callback_lock locking rules are per-address-family,
  231. * so split the lock classes by using a per-AF key:
  232. */
  233. static struct lock_class_key af_callback_keys[AF_MAX];
  234. /* Take into consideration the size of the struct sk_buff overhead in the
  235. * determination of these values, since that is non-constant across
  236. * platforms. This makes socket queueing behavior and performance
  237. * not depend upon such differences.
  238. */
  239. #define _SK_MEM_PACKETS 256
  240. #define _SK_MEM_OVERHEAD SKB_TRUESIZE(256)
  241. #define SK_WMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
  242. #define SK_RMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
  243. /* Run time adjustable parameters. */
  244. __u32 sysctl_wmem_max __read_mostly = SK_WMEM_MAX;
  245. EXPORT_SYMBOL(sysctl_wmem_max);
  246. __u32 sysctl_rmem_max __read_mostly = SK_RMEM_MAX;
  247. EXPORT_SYMBOL(sysctl_rmem_max);
  248. __u32 sysctl_wmem_default __read_mostly = SK_WMEM_MAX;
  249. __u32 sysctl_rmem_default __read_mostly = SK_RMEM_MAX;
  250. /* Maximal space eaten by iovec or ancillary data plus some space */
  251. int sysctl_optmem_max __read_mostly = sizeof(unsigned long)*(2*UIO_MAXIOV+512);
  252. EXPORT_SYMBOL(sysctl_optmem_max);
  253. struct static_key memalloc_socks = STATIC_KEY_INIT_FALSE;
  254. EXPORT_SYMBOL_GPL(memalloc_socks);
  255. /**
  256. * sk_set_memalloc - sets %SOCK_MEMALLOC
  257. * @sk: socket to set it on
  258. *
  259. * Set %SOCK_MEMALLOC on a socket for access to emergency reserves.
  260. * It's the responsibility of the admin to adjust min_free_kbytes
  261. * to meet the requirements
  262. */
  263. void sk_set_memalloc(struct sock *sk)
  264. {
  265. sock_set_flag(sk, SOCK_MEMALLOC);
  266. sk->sk_allocation |= __GFP_MEMALLOC;
  267. static_key_slow_inc(&memalloc_socks);
  268. }
  269. EXPORT_SYMBOL_GPL(sk_set_memalloc);
  270. void sk_clear_memalloc(struct sock *sk)
  271. {
  272. sock_reset_flag(sk, SOCK_MEMALLOC);
  273. sk->sk_allocation &= ~__GFP_MEMALLOC;
  274. static_key_slow_dec(&memalloc_socks);
  275. /*
  276. * SOCK_MEMALLOC is allowed to ignore rmem limits to ensure forward
  277. * progress of swapping. However, if SOCK_MEMALLOC is cleared while
  278. * it has rmem allocations there is a risk that the user of the
  279. * socket cannot make forward progress due to exceeding the rmem
  280. * limits. By rights, sk_clear_memalloc() should only be called
  281. * on sockets being torn down but warn and reset the accounting if
  282. * that assumption breaks.
  283. */
  284. if (WARN_ON(sk->sk_forward_alloc))
  285. sk_mem_reclaim(sk);
  286. }
  287. EXPORT_SYMBOL_GPL(sk_clear_memalloc);
  288. int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
  289. {
  290. int ret;
  291. unsigned long pflags = current->flags;
  292. /* these should have been dropped before queueing */
  293. BUG_ON(!sock_flag(sk, SOCK_MEMALLOC));
  294. current->flags |= PF_MEMALLOC;
  295. ret = sk->sk_backlog_rcv(sk, skb);
  296. tsk_restore_flags(current, pflags, PF_MEMALLOC);
  297. return ret;
  298. }
  299. EXPORT_SYMBOL(__sk_backlog_rcv);
  300. static int sock_set_timeout(long *timeo_p, char __user *optval, int optlen)
  301. {
  302. struct timeval tv;
  303. if (optlen < sizeof(tv))
  304. return -EINVAL;
  305. if (copy_from_user(&tv, optval, sizeof(tv)))
  306. return -EFAULT;
  307. if (tv.tv_usec < 0 || tv.tv_usec >= USEC_PER_SEC)
  308. return -EDOM;
  309. if (tv.tv_sec < 0) {
  310. static int warned __read_mostly;
  311. *timeo_p = 0;
  312. if (warned < 10 && net_ratelimit()) {
  313. warned++;
  314. pr_info("%s: `%s' (pid %d) tries to set negative timeout\n",
  315. __func__, current->comm, task_pid_nr(current));
  316. }
  317. return 0;
  318. }
  319. *timeo_p = MAX_SCHEDULE_TIMEOUT;
  320. if (tv.tv_sec == 0 && tv.tv_usec == 0)
  321. return 0;
  322. if (tv.tv_sec < (MAX_SCHEDULE_TIMEOUT/HZ - 1))
  323. *timeo_p = tv.tv_sec*HZ + (tv.tv_usec+(1000000/HZ-1))/(1000000/HZ);
  324. return 0;
  325. }
  326. static void sock_warn_obsolete_bsdism(const char *name)
  327. {
  328. static int warned;
  329. static char warncomm[TASK_COMM_LEN];
  330. if (strcmp(warncomm, current->comm) && warned < 5) {
  331. strcpy(warncomm, current->comm);
  332. pr_warn("process `%s' is using obsolete %s SO_BSDCOMPAT\n",
  333. warncomm, name);
  334. warned++;
  335. }
  336. }
  337. #define SK_FLAGS_TIMESTAMP ((1UL << SOCK_TIMESTAMP) | (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE))
  338. static void sock_disable_timestamp(struct sock *sk, unsigned long flags)
  339. {
  340. if (sk->sk_flags & flags) {
  341. sk->sk_flags &= ~flags;
  342. if (!(sk->sk_flags & SK_FLAGS_TIMESTAMP))
  343. net_disable_timestamp();
  344. }
  345. }
  346. int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
  347. {
  348. int err;
  349. int skb_len;
  350. unsigned long flags;
  351. struct sk_buff_head *list = &sk->sk_receive_queue;
  352. if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) {
  353. atomic_inc(&sk->sk_drops);
  354. trace_sock_rcvqueue_full(sk, skb);
  355. return -ENOMEM;
  356. }
  357. err = sk_filter(sk, skb);
  358. if (err)
  359. return err;
  360. if (!sk_rmem_schedule(sk, skb, skb->truesize)) {
  361. atomic_inc(&sk->sk_drops);
  362. return -ENOBUFS;
  363. }
  364. skb->dev = NULL;
  365. skb_set_owner_r(skb, sk);
  366. /* Cache the SKB length before we tack it onto the receive
  367. * queue. Once it is added it no longer belongs to us and
  368. * may be freed by other threads of control pulling packets
  369. * from the queue.
  370. */
  371. skb_len = skb->len;
  372. /* we escape from rcu protected region, make sure we dont leak
  373. * a norefcounted dst
  374. */
  375. skb_dst_force(skb);
  376. spin_lock_irqsave(&list->lock, flags);
  377. skb->dropcount = atomic_read(&sk->sk_drops);
  378. __skb_queue_tail(list, skb);
  379. spin_unlock_irqrestore(&list->lock, flags);
  380. if (!sock_flag(sk, SOCK_DEAD))
  381. sk->sk_data_ready(sk, skb_len);
  382. return 0;
  383. }
  384. EXPORT_SYMBOL(sock_queue_rcv_skb);
  385. int sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested)
  386. {
  387. int rc = NET_RX_SUCCESS;
  388. if (sk_filter(sk, skb))
  389. goto discard_and_relse;
  390. skb->dev = NULL;
  391. if (sk_rcvqueues_full(sk, skb, sk->sk_rcvbuf)) {
  392. atomic_inc(&sk->sk_drops);
  393. goto discard_and_relse;
  394. }
  395. if (nested)
  396. bh_lock_sock_nested(sk);
  397. else
  398. bh_lock_sock(sk);
  399. if (!sock_owned_by_user(sk)) {
  400. /*
  401. * trylock + unlock semantics:
  402. */
  403. mutex_acquire(&sk->sk_lock.dep_map, 0, 1, _RET_IP_);
  404. rc = sk_backlog_rcv(sk, skb);
  405. mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
  406. } else if (sk_add_backlog(sk, skb, sk->sk_rcvbuf)) {
  407. bh_unlock_sock(sk);
  408. atomic_inc(&sk->sk_drops);
  409. goto discard_and_relse;
  410. }
  411. bh_unlock_sock(sk);
  412. out:
  413. sock_put(sk);
  414. return rc;
  415. discard_and_relse:
  416. kfree_skb(skb);
  417. goto out;
  418. }
  419. EXPORT_SYMBOL(sk_receive_skb);
  420. void sk_reset_txq(struct sock *sk)
  421. {
  422. sk_tx_queue_clear(sk);
  423. }
  424. EXPORT_SYMBOL(sk_reset_txq);
  425. struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie)
  426. {
  427. struct dst_entry *dst = __sk_dst_get(sk);
  428. if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
  429. sk_tx_queue_clear(sk);
  430. RCU_INIT_POINTER(sk->sk_dst_cache, NULL);
  431. dst_release(dst);
  432. return NULL;
  433. }
  434. return dst;
  435. }
  436. EXPORT_SYMBOL(__sk_dst_check);
  437. struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie)
  438. {
  439. struct dst_entry *dst = sk_dst_get(sk);
  440. if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
  441. sk_dst_reset(sk);
  442. dst_release(dst);
  443. return NULL;
  444. }
  445. return dst;
  446. }
  447. EXPORT_SYMBOL(sk_dst_check);
  448. static int sock_bindtodevice(struct sock *sk, char __user *optval, int optlen)
  449. {
  450. int ret = -ENOPROTOOPT;
  451. #ifdef CONFIG_NETDEVICES
  452. struct net *net = sock_net(sk);
  453. char devname[IFNAMSIZ];
  454. int index;
  455. /* Sorry... */
  456. ret = -EPERM;
  457. if (!capable(CAP_NET_RAW))
  458. goto out;
  459. ret = -EINVAL;
  460. if (optlen < 0)
  461. goto out;
  462. /* Bind this socket to a particular device like "eth0",
  463. * as specified in the passed interface name. If the
  464. * name is "" or the option length is zero the socket
  465. * is not bound.
  466. */
  467. if (optlen > IFNAMSIZ - 1)
  468. optlen = IFNAMSIZ - 1;
  469. memset(devname, 0, sizeof(devname));
  470. ret = -EFAULT;
  471. if (copy_from_user(devname, optval, optlen))
  472. goto out;
  473. index = 0;
  474. if (devname[0] != '\0') {
  475. struct net_device *dev;
  476. rcu_read_lock();
  477. dev = dev_get_by_name_rcu(net, devname);
  478. if (dev)
  479. index = dev->ifindex;
  480. rcu_read_unlock();
  481. ret = -ENODEV;
  482. if (!dev)
  483. goto out;
  484. }
  485. lock_sock(sk);
  486. sk->sk_bound_dev_if = index;
  487. sk_dst_reset(sk);
  488. release_sock(sk);
  489. ret = 0;
  490. out:
  491. #endif
  492. return ret;
  493. }
  494. static inline void sock_valbool_flag(struct sock *sk, int bit, int valbool)
  495. {
  496. if (valbool)
  497. sock_set_flag(sk, bit);
  498. else
  499. sock_reset_flag(sk, bit);
  500. }
  501. /*
  502. * This is meant for all protocols to use and covers goings on
  503. * at the socket level. Everything here is generic.
  504. */
  505. int sock_setsockopt(struct socket *sock, int level, int optname,
  506. char __user *optval, unsigned int optlen)
  507. {
  508. struct sock *sk = sock->sk;
  509. int val;
  510. int valbool;
  511. struct linger ling;
  512. int ret = 0;
  513. /*
  514. * Options without arguments
  515. */
  516. if (optname == SO_BINDTODEVICE)
  517. return sock_bindtodevice(sk, optval, optlen);
  518. if (optlen < sizeof(int))
  519. return -EINVAL;
  520. if (get_user(val, (int __user *)optval))
  521. return -EFAULT;
  522. valbool = val ? 1 : 0;
  523. lock_sock(sk);
  524. switch (optname) {
  525. case SO_DEBUG:
  526. if (val && !capable(CAP_NET_ADMIN))
  527. ret = -EACCES;
  528. else
  529. sock_valbool_flag(sk, SOCK_DBG, valbool);
  530. break;
  531. case SO_REUSEADDR:
  532. sk->sk_reuse = (valbool ? SK_CAN_REUSE : SK_NO_REUSE);
  533. break;
  534. case SO_TYPE:
  535. case SO_PROTOCOL:
  536. case SO_DOMAIN:
  537. case SO_ERROR:
  538. ret = -ENOPROTOOPT;
  539. break;
  540. case SO_DONTROUTE:
  541. sock_valbool_flag(sk, SOCK_LOCALROUTE, valbool);
  542. break;
  543. case SO_BROADCAST:
  544. sock_valbool_flag(sk, SOCK_BROADCAST, valbool);
  545. break;
  546. case SO_SNDBUF:
  547. /* Don't error on this BSD doesn't and if you think
  548. * about it this is right. Otherwise apps have to
  549. * play 'guess the biggest size' games. RCVBUF/SNDBUF
  550. * are treated in BSD as hints
  551. */
  552. val = min_t(u32, val, sysctl_wmem_max);
  553. set_sndbuf:
  554. sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
  555. sk->sk_sndbuf = max_t(u32, val * 2, SOCK_MIN_SNDBUF);
  556. /* Wake up sending tasks if we upped the value. */
  557. sk->sk_write_space(sk);
  558. break;
  559. case SO_SNDBUFFORCE:
  560. if (!capable(CAP_NET_ADMIN)) {
  561. ret = -EPERM;
  562. break;
  563. }
  564. goto set_sndbuf;
  565. case SO_RCVBUF:
  566. /* Don't error on this BSD doesn't and if you think
  567. * about it this is right. Otherwise apps have to
  568. * play 'guess the biggest size' games. RCVBUF/SNDBUF
  569. * are treated in BSD as hints
  570. */
  571. val = min_t(u32, val, sysctl_rmem_max);
  572. set_rcvbuf:
  573. sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
  574. /*
  575. * We double it on the way in to account for
  576. * "struct sk_buff" etc. overhead. Applications
  577. * assume that the SO_RCVBUF setting they make will
  578. * allow that much actual data to be received on that
  579. * socket.
  580. *
  581. * Applications are unaware that "struct sk_buff" and
  582. * other overheads allocate from the receive buffer
  583. * during socket buffer allocation.
  584. *
  585. * And after considering the possible alternatives,
  586. * returning the value we actually used in getsockopt
  587. * is the most desirable behavior.
  588. */
  589. sk->sk_rcvbuf = max_t(u32, val * 2, SOCK_MIN_RCVBUF);
  590. break;
  591. case SO_RCVBUFFORCE:
  592. if (!capable(CAP_NET_ADMIN)) {
  593. ret = -EPERM;
  594. break;
  595. }
  596. goto set_rcvbuf;
  597. case SO_KEEPALIVE:
  598. #ifdef CONFIG_INET
  599. if (sk->sk_protocol == IPPROTO_TCP &&
  600. sk->sk_type == SOCK_STREAM)
  601. tcp_set_keepalive(sk, valbool);
  602. #endif
  603. sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool);
  604. break;
  605. case SO_OOBINLINE:
  606. sock_valbool_flag(sk, SOCK_URGINLINE, valbool);
  607. break;
  608. case SO_NO_CHECK:
  609. sk->sk_no_check = valbool;
  610. break;
  611. case SO_PRIORITY:
  612. if ((val >= 0 && val <= 6) || capable(CAP_NET_ADMIN))
  613. sk->sk_priority = val;
  614. else
  615. ret = -EPERM;
  616. break;
  617. case SO_LINGER:
  618. if (optlen < sizeof(ling)) {
  619. ret = -EINVAL; /* 1003.1g */
  620. break;
  621. }
  622. if (copy_from_user(&ling, optval, sizeof(ling))) {
  623. ret = -EFAULT;
  624. break;
  625. }
  626. if (!ling.l_onoff)
  627. sock_reset_flag(sk, SOCK_LINGER);
  628. else {
  629. #if (BITS_PER_LONG == 32)
  630. if ((unsigned int)ling.l_linger >= MAX_SCHEDULE_TIMEOUT/HZ)
  631. sk->sk_lingertime = MAX_SCHEDULE_TIMEOUT;
  632. else
  633. #endif
  634. sk->sk_lingertime = (unsigned int)ling.l_linger * HZ;
  635. sock_set_flag(sk, SOCK_LINGER);
  636. }
  637. break;
  638. case SO_BSDCOMPAT:
  639. sock_warn_obsolete_bsdism("setsockopt");
  640. break;
  641. case SO_PASSCRED:
  642. if (valbool)
  643. set_bit(SOCK_PASSCRED, &sock->flags);
  644. else
  645. clear_bit(SOCK_PASSCRED, &sock->flags);
  646. break;
  647. case SO_TIMESTAMP:
  648. case SO_TIMESTAMPNS:
  649. if (valbool) {
  650. if (optname == SO_TIMESTAMP)
  651. sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
  652. else
  653. sock_set_flag(sk, SOCK_RCVTSTAMPNS);
  654. sock_set_flag(sk, SOCK_RCVTSTAMP);
  655. sock_enable_timestamp(sk, SOCK_TIMESTAMP);
  656. } else {
  657. sock_reset_flag(sk, SOCK_RCVTSTAMP);
  658. sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
  659. }
  660. break;
  661. case SO_TIMESTAMPING:
  662. if (val & ~SOF_TIMESTAMPING_MASK) {
  663. ret = -EINVAL;
  664. break;
  665. }
  666. sock_valbool_flag(sk, SOCK_TIMESTAMPING_TX_HARDWARE,
  667. val & SOF_TIMESTAMPING_TX_HARDWARE);
  668. sock_valbool_flag(sk, SOCK_TIMESTAMPING_TX_SOFTWARE,
  669. val & SOF_TIMESTAMPING_TX_SOFTWARE);
  670. sock_valbool_flag(sk, SOCK_TIMESTAMPING_RX_HARDWARE,
  671. val & SOF_TIMESTAMPING_RX_HARDWARE);
  672. if (val & SOF_TIMESTAMPING_RX_SOFTWARE)
  673. sock_enable_timestamp(sk,
  674. SOCK_TIMESTAMPING_RX_SOFTWARE);
  675. else
  676. sock_disable_timestamp(sk,
  677. (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE));
  678. sock_valbool_flag(sk, SOCK_TIMESTAMPING_SOFTWARE,
  679. val & SOF_TIMESTAMPING_SOFTWARE);
  680. sock_valbool_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE,
  681. val & SOF_TIMESTAMPING_SYS_HARDWARE);
  682. sock_valbool_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE,
  683. val & SOF_TIMESTAMPING_RAW_HARDWARE);
  684. break;
  685. case SO_RCVLOWAT:
  686. if (val < 0)
  687. val = INT_MAX;
  688. sk->sk_rcvlowat = val ? : 1;
  689. break;
  690. case SO_RCVTIMEO:
  691. ret = sock_set_timeout(&sk->sk_rcvtimeo, optval, optlen);
  692. break;
  693. case SO_SNDTIMEO:
  694. ret = sock_set_timeout(&sk->sk_sndtimeo, optval, optlen);
  695. break;
  696. case SO_ATTACH_FILTER:
  697. ret = -EINVAL;
  698. if (optlen == sizeof(struct sock_fprog)) {
  699. struct sock_fprog fprog;
  700. ret = -EFAULT;
  701. if (copy_from_user(&fprog, optval, sizeof(fprog)))
  702. break;
  703. ret = sk_attach_filter(&fprog, sk);
  704. }
  705. break;
  706. case SO_DETACH_FILTER:
  707. ret = sk_detach_filter(sk);
  708. break;
  709. case SO_PASSSEC:
  710. if (valbool)
  711. set_bit(SOCK_PASSSEC, &sock->flags);
  712. else
  713. clear_bit(SOCK_PASSSEC, &sock->flags);
  714. break;
  715. case SO_MARK:
  716. if (!capable(CAP_NET_ADMIN))
  717. ret = -EPERM;
  718. else
  719. sk->sk_mark = val;
  720. break;
  721. /* We implement the SO_SNDLOWAT etc to
  722. not be settable (1003.1g 5.3) */
  723. case SO_RXQ_OVFL:
  724. sock_valbool_flag(sk, SOCK_RXQ_OVFL, valbool);
  725. break;
  726. case SO_WIFI_STATUS:
  727. sock_valbool_flag(sk, SOCK_WIFI_STATUS, valbool);
  728. break;
  729. case SO_PEEK_OFF:
  730. if (sock->ops->set_peek_off)
  731. sock->ops->set_peek_off(sk, val);
  732. else
  733. ret = -EOPNOTSUPP;
  734. break;
  735. case SO_NOFCS:
  736. sock_valbool_flag(sk, SOCK_NOFCS, valbool);
  737. break;
  738. default:
  739. ret = -ENOPROTOOPT;
  740. break;
  741. }
  742. release_sock(sk);
  743. return ret;
  744. }
  745. EXPORT_SYMBOL(sock_setsockopt);
  746. void cred_to_ucred(struct pid *pid, const struct cred *cred,
  747. struct ucred *ucred)
  748. {
  749. ucred->pid = pid_vnr(pid);
  750. ucred->uid = ucred->gid = -1;
  751. if (cred) {
  752. struct user_namespace *current_ns = current_user_ns();
  753. ucred->uid = from_kuid_munged(current_ns, cred->euid);
  754. ucred->gid = from_kgid_munged(current_ns, cred->egid);
  755. }
  756. }
  757. EXPORT_SYMBOL_GPL(cred_to_ucred);
  758. int sock_getsockopt(struct socket *sock, int level, int optname,
  759. char __user *optval, int __user *optlen)
  760. {
  761. struct sock *sk = sock->sk;
  762. union {
  763. int val;
  764. struct linger ling;
  765. struct timeval tm;
  766. } v;
  767. int lv = sizeof(int);
  768. int len;
  769. if (get_user(len, optlen))
  770. return -EFAULT;
  771. if (len < 0)
  772. return -EINVAL;
  773. memset(&v, 0, sizeof(v));
  774. switch (optname) {
  775. case SO_DEBUG:
  776. v.val = sock_flag(sk, SOCK_DBG);
  777. break;
  778. case SO_DONTROUTE:
  779. v.val = sock_flag(sk, SOCK_LOCALROUTE);
  780. break;
  781. case SO_BROADCAST:
  782. v.val = sock_flag(sk, SOCK_BROADCAST);
  783. break;
  784. case SO_SNDBUF:
  785. v.val = sk->sk_sndbuf;
  786. break;
  787. case SO_RCVBUF:
  788. v.val = sk->sk_rcvbuf;
  789. break;
  790. case SO_REUSEADDR:
  791. v.val = sk->sk_reuse;
  792. break;
  793. case SO_KEEPALIVE:
  794. v.val = sock_flag(sk, SOCK_KEEPOPEN);
  795. break;
  796. case SO_TYPE:
  797. v.val = sk->sk_type;
  798. break;
  799. case SO_PROTOCOL:
  800. v.val = sk->sk_protocol;
  801. break;
  802. case SO_DOMAIN:
  803. v.val = sk->sk_family;
  804. break;
  805. case SO_ERROR:
  806. v.val = -sock_error(sk);
  807. if (v.val == 0)
  808. v.val = xchg(&sk->sk_err_soft, 0);
  809. break;
  810. case SO_OOBINLINE:
  811. v.val = sock_flag(sk, SOCK_URGINLINE);
  812. break;
  813. case SO_NO_CHECK:
  814. v.val = sk->sk_no_check;
  815. break;
  816. case SO_PRIORITY:
  817. v.val = sk->sk_priority;
  818. break;
  819. case SO_LINGER:
  820. lv = sizeof(v.ling);
  821. v.ling.l_onoff = sock_flag(sk, SOCK_LINGER);
  822. v.ling.l_linger = sk->sk_lingertime / HZ;
  823. break;
  824. case SO_BSDCOMPAT:
  825. sock_warn_obsolete_bsdism("getsockopt");
  826. break;
  827. case SO_TIMESTAMP:
  828. v.val = sock_flag(sk, SOCK_RCVTSTAMP) &&
  829. !sock_flag(sk, SOCK_RCVTSTAMPNS);
  830. break;
  831. case SO_TIMESTAMPNS:
  832. v.val = sock_flag(sk, SOCK_RCVTSTAMPNS);
  833. break;
  834. case SO_TIMESTAMPING:
  835. v.val = 0;
  836. if (sock_flag(sk, SOCK_TIMESTAMPING_TX_HARDWARE))
  837. v.val |= SOF_TIMESTAMPING_TX_HARDWARE;
  838. if (sock_flag(sk, SOCK_TIMESTAMPING_TX_SOFTWARE))
  839. v.val |= SOF_TIMESTAMPING_TX_SOFTWARE;
  840. if (sock_flag(sk, SOCK_TIMESTAMPING_RX_HARDWARE))
  841. v.val |= SOF_TIMESTAMPING_RX_HARDWARE;
  842. if (sock_flag(sk, SOCK_TIMESTAMPING_RX_SOFTWARE))
  843. v.val |= SOF_TIMESTAMPING_RX_SOFTWARE;
  844. if (sock_flag(sk, SOCK_TIMESTAMPING_SOFTWARE))
  845. v.val |= SOF_TIMESTAMPING_SOFTWARE;
  846. if (sock_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE))
  847. v.val |= SOF_TIMESTAMPING_SYS_HARDWARE;
  848. if (sock_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE))
  849. v.val |= SOF_TIMESTAMPING_RAW_HARDWARE;
  850. break;
  851. case SO_RCVTIMEO:
  852. lv = sizeof(struct timeval);
  853. if (sk->sk_rcvtimeo == MAX_SCHEDULE_TIMEOUT) {
  854. v.tm.tv_sec = 0;
  855. v.tm.tv_usec = 0;
  856. } else {
  857. v.tm.tv_sec = sk->sk_rcvtimeo / HZ;
  858. v.tm.tv_usec = ((sk->sk_rcvtimeo % HZ) * 1000000) / HZ;
  859. }
  860. break;
  861. case SO_SNDTIMEO:
  862. lv = sizeof(struct timeval);
  863. if (sk->sk_sndtimeo == MAX_SCHEDULE_TIMEOUT) {
  864. v.tm.tv_sec = 0;
  865. v.tm.tv_usec = 0;
  866. } else {
  867. v.tm.tv_sec = sk->sk_sndtimeo / HZ;
  868. v.tm.tv_usec = ((sk->sk_sndtimeo % HZ) * 1000000) / HZ;
  869. }
  870. break;
  871. case SO_RCVLOWAT:
  872. v.val = sk->sk_rcvlowat;
  873. break;
  874. case SO_SNDLOWAT:
  875. v.val = 1;
  876. break;
  877. case SO_PASSCRED:
  878. v.val = !!test_bit(SOCK_PASSCRED, &sock->flags);
  879. break;
  880. case SO_PEERCRED:
  881. {
  882. struct ucred peercred;
  883. if (len > sizeof(peercred))
  884. len = sizeof(peercred);
  885. cred_to_ucred(sk->sk_peer_pid, sk->sk_peer_cred, &peercred);
  886. if (copy_to_user(optval, &peercred, len))
  887. return -EFAULT;
  888. goto lenout;
  889. }
  890. case SO_PEERNAME:
  891. {
  892. char address[128];
  893. if (sock->ops->getname(sock, (struct sockaddr *)address, &lv, 2))
  894. return -ENOTCONN;
  895. if (lv < len)
  896. return -EINVAL;
  897. if (copy_to_user(optval, address, len))
  898. return -EFAULT;
  899. goto lenout;
  900. }
  901. /* Dubious BSD thing... Probably nobody even uses it, but
  902. * the UNIX standard wants it for whatever reason... -DaveM
  903. */
  904. case SO_ACCEPTCONN:
  905. v.val = sk->sk_state == TCP_LISTEN;
  906. break;
  907. case SO_PASSSEC:
  908. v.val = !!test_bit(SOCK_PASSSEC, &sock->flags);
  909. break;
  910. case SO_PEERSEC:
  911. return security_socket_getpeersec_stream(sock, optval, optlen, len);
  912. case SO_MARK:
  913. v.val = sk->sk_mark;
  914. break;
  915. case SO_RXQ_OVFL:
  916. v.val = sock_flag(sk, SOCK_RXQ_OVFL);
  917. break;
  918. case SO_WIFI_STATUS:
  919. v.val = sock_flag(sk, SOCK_WIFI_STATUS);
  920. break;
  921. case SO_PEEK_OFF:
  922. if (!sock->ops->set_peek_off)
  923. return -EOPNOTSUPP;
  924. v.val = sk->sk_peek_off;
  925. break;
  926. case SO_NOFCS:
  927. v.val = sock_flag(sk, SOCK_NOFCS);
  928. break;
  929. case SO_BINDTODEVICE:
  930. v.val = sk->sk_bound_dev_if;
  931. break;
  932. case SO_GET_FILTER:
  933. len = sk_get_filter(sk, (struct sock_filter __user *)optval, len);
  934. if (len < 0)
  935. return len;
  936. goto lenout;
  937. default:
  938. return -ENOPROTOOPT;
  939. }
  940. if (len > lv)
  941. len = lv;
  942. if (copy_to_user(optval, &v, len))
  943. return -EFAULT;
  944. lenout:
  945. if (put_user(len, optlen))
  946. return -EFAULT;
  947. return 0;
  948. }
  949. /*
  950. * Initialize an sk_lock.
  951. *
  952. * (We also register the sk_lock with the lock validator.)
  953. */
  954. static inline void sock_lock_init(struct sock *sk)
  955. {
  956. sock_lock_init_class_and_name(sk,
  957. af_family_slock_key_strings[sk->sk_family],
  958. af_family_slock_keys + sk->sk_family,
  959. af_family_key_strings[sk->sk_family],
  960. af_family_keys + sk->sk_family);
  961. }
  962. /*
  963. * Copy all fields from osk to nsk but nsk->sk_refcnt must not change yet,
  964. * even temporarly, because of RCU lookups. sk_node should also be left as is.
  965. * We must not copy fields between sk_dontcopy_begin and sk_dontcopy_end
  966. */
  967. static void sock_copy(struct sock *nsk, const struct sock *osk)
  968. {
  969. #ifdef CONFIG_SECURITY_NETWORK
  970. void *sptr = nsk->sk_security;
  971. #endif
  972. memcpy(nsk, osk, offsetof(struct sock, sk_dontcopy_begin));
  973. memcpy(&nsk->sk_dontcopy_end, &osk->sk_dontcopy_end,
  974. osk->sk_prot->obj_size - offsetof(struct sock, sk_dontcopy_end));
  975. #ifdef CONFIG_SECURITY_NETWORK
  976. nsk->sk_security = sptr;
  977. security_sk_clone(osk, nsk);
  978. #endif
  979. }
  980. /*
  981. * caches using SLAB_DESTROY_BY_RCU should let .next pointer from nulls nodes
  982. * un-modified. Special care is taken when initializing object to zero.
  983. */
  984. static inline void sk_prot_clear_nulls(struct sock *sk, int size)
  985. {
  986. if (offsetof(struct sock, sk_node.next) != 0)
  987. memset(sk, 0, offsetof(struct sock, sk_node.next));
  988. memset(&sk->sk_node.pprev, 0,
  989. size - offsetof(struct sock, sk_node.pprev));
  990. }
  991. void sk_prot_clear_portaddr_nulls(struct sock *sk, int size)
  992. {
  993. unsigned long nulls1, nulls2;
  994. nulls1 = offsetof(struct sock, __sk_common.skc_node.next);
  995. nulls2 = offsetof(struct sock, __sk_common.skc_portaddr_node.next);
  996. if (nulls1 > nulls2)
  997. swap(nulls1, nulls2);
  998. if (nulls1 != 0)
  999. memset((char *)sk, 0, nulls1);
  1000. memset((char *)sk + nulls1 + sizeof(void *), 0,
  1001. nulls2 - nulls1 - sizeof(void *));
  1002. memset((char *)sk + nulls2 + sizeof(void *), 0,
  1003. size - nulls2 - sizeof(void *));
  1004. }
  1005. EXPORT_SYMBOL(sk_prot_clear_portaddr_nulls);
  1006. static struct sock *sk_prot_alloc(struct proto *prot, gfp_t priority,
  1007. int family)
  1008. {
  1009. struct sock *sk;
  1010. struct kmem_cache *slab;
  1011. slab = prot->slab;
  1012. if (slab != NULL) {
  1013. sk = kmem_cache_alloc(slab, priority & ~__GFP_ZERO);
  1014. if (!sk)
  1015. return sk;
  1016. if (priority & __GFP_ZERO) {
  1017. if (prot->clear_sk)
  1018. prot->clear_sk(sk, prot->obj_size);
  1019. else
  1020. sk_prot_clear_nulls(sk, prot->obj_size);
  1021. }
  1022. } else
  1023. sk = kmalloc(prot->obj_size, priority);
  1024. if (sk != NULL) {
  1025. kmemcheck_annotate_bitfield(sk, flags);
  1026. if (security_sk_alloc(sk, family, priority))
  1027. goto out_free;
  1028. if (!try_module_get(prot->owner))
  1029. goto out_free_sec;
  1030. sk_tx_queue_clear(sk);
  1031. }
  1032. return sk;
  1033. out_free_sec:
  1034. security_sk_free(sk);
  1035. out_free:
  1036. if (slab != NULL)
  1037. kmem_cache_free(slab, sk);
  1038. else
  1039. kfree(sk);
  1040. return NULL;
  1041. }
  1042. static void sk_prot_free(struct proto *prot, struct sock *sk)
  1043. {
  1044. struct kmem_cache *slab;
  1045. struct module *owner;
  1046. owner = prot->owner;
  1047. slab = prot->slab;
  1048. security_sk_free(sk);
  1049. if (slab != NULL)
  1050. kmem_cache_free(slab, sk);
  1051. else
  1052. kfree(sk);
  1053. module_put(owner);
  1054. }
  1055. #ifdef CONFIG_CGROUPS
  1056. #if IS_ENABLED(CONFIG_NET_CLS_CGROUP)
  1057. void sock_update_classid(struct sock *sk, struct task_struct *task)
  1058. {
  1059. u32 classid;
  1060. classid = task_cls_classid(task);
  1061. if (classid != sk->sk_classid)
  1062. sk->sk_classid = classid;
  1063. }
  1064. EXPORT_SYMBOL(sock_update_classid);
  1065. #endif
  1066. #if IS_ENABLED(CONFIG_NETPRIO_CGROUP)
  1067. void sock_update_netprioidx(struct sock *sk, struct task_struct *task)
  1068. {
  1069. if (in_interrupt())
  1070. return;
  1071. sk->sk_cgrp_prioidx = task_netprioidx(task);
  1072. }
  1073. EXPORT_SYMBOL_GPL(sock_update_netprioidx);
  1074. #endif
  1075. #endif
  1076. /**
  1077. * sk_alloc - All socket objects are allocated here
  1078. * @net: the applicable net namespace
  1079. * @family: protocol family
  1080. * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
  1081. * @prot: struct proto associated with this new sock instance
  1082. */
  1083. struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
  1084. struct proto *prot)
  1085. {
  1086. struct sock *sk;
  1087. sk = sk_prot_alloc(prot, priority | __GFP_ZERO, family);
  1088. if (sk) {
  1089. sk->sk_family = family;
  1090. /*
  1091. * See comment in struct sock definition to understand
  1092. * why we need sk_prot_creator -acme
  1093. */
  1094. sk->sk_prot = sk->sk_prot_creator = prot;
  1095. sock_lock_init(sk);
  1096. sock_net_set(sk, get_net(net));
  1097. atomic_set(&sk->sk_wmem_alloc, 1);
  1098. sock_update_classid(sk, current);
  1099. sock_update_netprioidx(sk, current);
  1100. }
  1101. return sk;
  1102. }
  1103. EXPORT_SYMBOL(sk_alloc);
  1104. static void __sk_free(struct sock *sk)
  1105. {
  1106. struct sk_filter *filter;
  1107. if (sk->sk_destruct)
  1108. sk->sk_destruct(sk);
  1109. filter = rcu_dereference_check(sk->sk_filter,
  1110. atomic_read(&sk->sk_wmem_alloc) == 0);
  1111. if (filter) {
  1112. sk_filter_uncharge(sk, filter);
  1113. RCU_INIT_POINTER(sk->sk_filter, NULL);
  1114. }
  1115. sock_disable_timestamp(sk, SK_FLAGS_TIMESTAMP);
  1116. if (atomic_read(&sk->sk_omem_alloc))
  1117. pr_debug("%s: optmem leakage (%d bytes) detected\n",
  1118. __func__, atomic_read(&sk->sk_omem_alloc));
  1119. if (sk->sk_peer_cred)
  1120. put_cred(sk->sk_peer_cred);
  1121. put_pid(sk->sk_peer_pid);
  1122. put_net(sock_net(sk));
  1123. sk_prot_free(sk->sk_prot_creator, sk);
  1124. }
  1125. void sk_free(struct sock *sk)
  1126. {
  1127. /*
  1128. * We subtract one from sk_wmem_alloc and can know if
  1129. * some packets are still in some tx queue.
  1130. * If not null, sock_wfree() will call __sk_free(sk) later
  1131. */
  1132. if (atomic_dec_and_test(&sk->sk_wmem_alloc))
  1133. __sk_free(sk);
  1134. }
  1135. EXPORT_SYMBOL(sk_free);
  1136. /*
  1137. * Last sock_put should drop reference to sk->sk_net. It has already
  1138. * been dropped in sk_change_net. Taking reference to stopping namespace
  1139. * is not an option.
  1140. * Take reference to a socket to remove it from hash _alive_ and after that
  1141. * destroy it in the context of init_net.
  1142. */
  1143. void sk_release_kernel(struct sock *sk)
  1144. {
  1145. if (sk == NULL || sk->sk_socket == NULL)
  1146. return;
  1147. sock_hold(sk);
  1148. sock_release(sk->sk_socket);
  1149. release_net(sock_net(sk));
  1150. sock_net_set(sk, get_net(&init_net));
  1151. sock_put(sk);
  1152. }
  1153. EXPORT_SYMBOL(sk_release_kernel);
  1154. static void sk_update_clone(const struct sock *sk, struct sock *newsk)
  1155. {
  1156. if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
  1157. sock_update_memcg(newsk);
  1158. }
  1159. /**
  1160. * sk_clone_lock - clone a socket, and lock its clone
  1161. * @sk: the socket to clone
  1162. * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
  1163. *
  1164. * Caller must unlock socket even in error path (bh_unlock_sock(newsk))
  1165. */
  1166. struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority)
  1167. {
  1168. struct sock *newsk;
  1169. newsk = sk_prot_alloc(sk->sk_prot, priority, sk->sk_family);
  1170. if (newsk != NULL) {
  1171. struct sk_filter *filter;
  1172. sock_copy(newsk, sk);
  1173. /* SANITY */
  1174. get_net(sock_net(newsk));
  1175. sk_node_init(&newsk->sk_node);
  1176. sock_lock_init(newsk);
  1177. bh_lock_sock(newsk);
  1178. newsk->sk_backlog.head = newsk->sk_backlog.tail = NULL;
  1179. newsk->sk_backlog.len = 0;
  1180. atomic_set(&newsk->sk_rmem_alloc, 0);
  1181. /*
  1182. * sk_wmem_alloc set to one (see sk_free() and sock_wfree())
  1183. */
  1184. atomic_set(&newsk->sk_wmem_alloc, 1);
  1185. atomic_set(&newsk->sk_omem_alloc, 0);
  1186. skb_queue_head_init(&newsk->sk_receive_queue);
  1187. skb_queue_head_init(&newsk->sk_write_queue);
  1188. #ifdef CONFIG_NET_DMA
  1189. skb_queue_head_init(&newsk->sk_async_wait_queue);
  1190. #endif
  1191. spin_lock_init(&newsk->sk_dst_lock);
  1192. rwlock_init(&newsk->sk_callback_lock);
  1193. lockdep_set_class_and_name(&newsk->sk_callback_lock,
  1194. af_callback_keys + newsk->sk_family,
  1195. af_family_clock_key_strings[newsk->sk_family]);
  1196. newsk->sk_dst_cache = NULL;
  1197. newsk->sk_wmem_queued = 0;
  1198. newsk->sk_forward_alloc = 0;
  1199. newsk->sk_send_head = NULL;
  1200. newsk->sk_userlocks = sk->sk_userlocks & ~SOCK_BINDPORT_LOCK;
  1201. sock_reset_flag(newsk, SOCK_DONE);
  1202. skb_queue_head_init(&newsk->sk_error_queue);
  1203. filter = rcu_dereference_protected(newsk->sk_filter, 1);
  1204. if (filter != NULL)
  1205. sk_filter_charge(newsk, filter);
  1206. if (unlikely(xfrm_sk_clone_policy(newsk))) {
  1207. /* It is still raw copy of parent, so invalidate
  1208. * destructor and make plain sk_free() */
  1209. newsk->sk_destruct = NULL;
  1210. bh_unlock_sock(newsk);
  1211. sk_free(newsk);
  1212. newsk = NULL;
  1213. goto out;
  1214. }
  1215. newsk->sk_err = 0;
  1216. newsk->sk_priority = 0;
  1217. /*
  1218. * Before updating sk_refcnt, we must commit prior changes to memory
  1219. * (Documentation/RCU/rculist_nulls.txt for details)
  1220. */
  1221. smp_wmb();
  1222. atomic_set(&newsk->sk_refcnt, 2);
  1223. /*
  1224. * Increment the counter in the same struct proto as the master
  1225. * sock (sk_refcnt_debug_inc uses newsk->sk_prot->socks, that
  1226. * is the same as sk->sk_prot->socks, as this field was copied
  1227. * with memcpy).
  1228. *
  1229. * This _changes_ the previous behaviour, where
  1230. * tcp_create_openreq_child always was incrementing the
  1231. * equivalent to tcp_prot->socks (inet_sock_nr), so this have
  1232. * to be taken into account in all callers. -acme
  1233. */
  1234. sk_refcnt_debug_inc(newsk);
  1235. sk_set_socket(newsk, NULL);
  1236. newsk->sk_wq = NULL;
  1237. sk_update_clone(sk, newsk);
  1238. if (newsk->sk_prot->sockets_allocated)
  1239. sk_sockets_allocated_inc(newsk);
  1240. if (newsk->sk_flags & SK_FLAGS_TIMESTAMP)
  1241. net_enable_timestamp();
  1242. }
  1243. out:
  1244. return newsk;
  1245. }
  1246. EXPORT_SYMBOL_GPL(sk_clone_lock);
  1247. void sk_setup_caps(struct sock *sk, struct dst_entry *dst)
  1248. {
  1249. __sk_dst_set(sk, dst);
  1250. sk->sk_route_caps = dst->dev->features;
  1251. if (sk->sk_route_caps & NETIF_F_GSO)
  1252. sk->sk_route_caps |= NETIF_F_GSO_SOFTWARE;
  1253. sk->sk_route_caps &= ~sk->sk_route_nocaps;
  1254. if (sk_can_gso(sk)) {
  1255. if (dst->header_len) {
  1256. sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
  1257. } else {
  1258. sk->sk_route_caps |= NETIF_F_SG | NETIF_F_HW_CSUM;
  1259. sk->sk_gso_max_size = dst->dev->gso_max_size;
  1260. sk->sk_gso_max_segs = dst->dev->gso_max_segs;
  1261. }
  1262. }
  1263. }
  1264. EXPORT_SYMBOL_GPL(sk_setup_caps);
  1265. /*
  1266. * Simple resource managers for sockets.
  1267. */
  1268. /*
  1269. * Write buffer destructor automatically called from kfree_skb.
  1270. */
  1271. void sock_wfree(struct sk_buff *skb)
  1272. {
  1273. struct sock *sk = skb->sk;
  1274. unsigned int len = skb->truesize;
  1275. if (!sock_flag(sk, SOCK_USE_WRITE_QUEUE)) {
  1276. /*
  1277. * Keep a reference on sk_wmem_alloc, this will be released
  1278. * after sk_write_space() call
  1279. */
  1280. atomic_sub(len - 1, &sk->sk_wmem_alloc);
  1281. sk->sk_write_space(sk);
  1282. len = 1;
  1283. }
  1284. /*
  1285. * if sk_wmem_alloc reaches 0, we must finish what sk_free()
  1286. * could not do because of in-flight packets
  1287. */
  1288. if (atomic_sub_and_test(len, &sk->sk_wmem_alloc))
  1289. __sk_free(sk);
  1290. }
  1291. EXPORT_SYMBOL(sock_wfree);
  1292. /*
  1293. * Read buffer destructor automatically called from kfree_skb.
  1294. */
  1295. void sock_rfree(struct sk_buff *skb)
  1296. {
  1297. struct sock *sk = skb->sk;
  1298. unsigned int len = skb->truesize;
  1299. atomic_sub(len, &sk->sk_rmem_alloc);
  1300. sk_mem_uncharge(sk, len);
  1301. }
  1302. EXPORT_SYMBOL(sock_rfree);
  1303. void sock_edemux(struct sk_buff *skb)
  1304. {
  1305. struct sock *sk = skb->sk;
  1306. #ifdef CONFIG_INET
  1307. if (sk->sk_state == TCP_TIME_WAIT)
  1308. inet_twsk_put(inet_twsk(sk));
  1309. else
  1310. #endif
  1311. sock_put(sk);
  1312. }
  1313. EXPORT_SYMBOL(sock_edemux);
  1314. kuid_t sock_i_uid(struct sock *sk)
  1315. {
  1316. kuid_t uid;
  1317. read_lock_bh(&sk->sk_callback_lock);
  1318. uid = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_uid : GLOBAL_ROOT_UID;
  1319. read_unlock_bh(&sk->sk_callback_lock);
  1320. return uid;
  1321. }
  1322. EXPORT_SYMBOL(sock_i_uid);
  1323. unsigned long sock_i_ino(struct sock *sk)
  1324. {
  1325. unsigned long ino;
  1326. read_lock_bh(&sk->sk_callback_lock);
  1327. ino = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_ino : 0;
  1328. read_unlock_bh(&sk->sk_callback_lock);
  1329. return ino;
  1330. }
  1331. EXPORT_SYMBOL(sock_i_ino);
  1332. /*
  1333. * Allocate a skb from the socket's send buffer.
  1334. */
  1335. struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
  1336. gfp_t priority)
  1337. {
  1338. if (force || atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) {
  1339. struct sk_buff *skb = alloc_skb(size, priority);
  1340. if (skb) {
  1341. skb_set_owner_w(skb, sk);
  1342. return skb;
  1343. }
  1344. }
  1345. return NULL;
  1346. }
  1347. EXPORT_SYMBOL(sock_wmalloc);
  1348. /*
  1349. * Allocate a skb from the socket's receive buffer.
  1350. */
  1351. struct sk_buff *sock_rmalloc(struct sock *sk, unsigned long size, int force,
  1352. gfp_t priority)
  1353. {
  1354. if (force || atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf) {
  1355. struct sk_buff *skb = alloc_skb(size, priority);
  1356. if (skb) {
  1357. skb_set_owner_r(skb, sk);
  1358. return skb;
  1359. }
  1360. }
  1361. return NULL;
  1362. }
  1363. /*
  1364. * Allocate a memory block from the socket's option memory buffer.
  1365. */
  1366. void *sock_kmalloc(struct sock *sk, int size, gfp_t priority)
  1367. {
  1368. if ((unsigned int)size <= sysctl_optmem_max &&
  1369. atomic_read(&sk->sk_omem_alloc) + size < sysctl_optmem_max) {
  1370. void *mem;
  1371. /* First do the add, to avoid the race if kmalloc
  1372. * might sleep.
  1373. */
  1374. atomic_add(size, &sk->sk_omem_alloc);
  1375. mem = kmalloc(size, priority);
  1376. if (mem)
  1377. return mem;
  1378. atomic_sub(size, &sk->sk_omem_alloc);
  1379. }
  1380. return NULL;
  1381. }
  1382. EXPORT_SYMBOL(sock_kmalloc);
  1383. /*
  1384. * Free an option memory block.
  1385. */
  1386. void sock_kfree_s(struct sock *sk, void *mem, int size)
  1387. {
  1388. kfree(mem);
  1389. atomic_sub(size, &sk->sk_omem_alloc);
  1390. }
  1391. EXPORT_SYMBOL(sock_kfree_s);
  1392. /* It is almost wait_for_tcp_memory minus release_sock/lock_sock.
  1393. I think, these locks should be removed for datagram sockets.
  1394. */
  1395. static long sock_wait_for_wmem(struct sock *sk, long timeo)
  1396. {
  1397. DEFINE_WAIT(wait);
  1398. clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
  1399. for (;;) {
  1400. if (!timeo)
  1401. break;
  1402. if (signal_pending(current))
  1403. break;
  1404. set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
  1405. prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
  1406. if (atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf)
  1407. break;
  1408. if (sk->sk_shutdown & SEND_SHUTDOWN)
  1409. break;
  1410. if (sk->sk_err)
  1411. break;
  1412. timeo = schedule_timeout(timeo);
  1413. }
  1414. finish_wait(sk_sleep(sk), &wait);
  1415. return timeo;
  1416. }
  1417. /*
  1418. * Generic send/receive buffer handlers
  1419. */
  1420. struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
  1421. unsigned long data_len, int noblock,
  1422. int *errcode)
  1423. {
  1424. struct sk_buff *skb;
  1425. gfp_t gfp_mask;
  1426. long timeo;
  1427. int err;
  1428. int npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT;
  1429. err = -EMSGSIZE;
  1430. if (npages > MAX_SKB_FRAGS)
  1431. goto failure;
  1432. gfp_mask = sk->sk_allocation;
  1433. if (gfp_mask & __GFP_WAIT)
  1434. gfp_mask |= __GFP_REPEAT;
  1435. timeo = sock_sndtimeo(sk, noblock);
  1436. while (1) {
  1437. err = sock_error(sk);
  1438. if (err != 0)
  1439. goto failure;
  1440. err = -EPIPE;
  1441. if (sk->sk_shutdown & SEND_SHUTDOWN)
  1442. goto failure;
  1443. if (atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) {
  1444. skb = alloc_skb(header_len, gfp_mask);
  1445. if (skb) {
  1446. int i;
  1447. /* No pages, we're done... */
  1448. if (!data_len)
  1449. break;
  1450. skb->truesize += data_len;
  1451. skb_shinfo(skb)->nr_frags = npages;
  1452. for (i = 0; i < npages; i++) {
  1453. struct page *page;
  1454. page = alloc_pages(sk->sk_allocation, 0);
  1455. if (!page) {
  1456. err = -ENOBUFS;
  1457. skb_shinfo(skb)->nr_frags = i;
  1458. kfree_skb(skb);
  1459. goto failure;
  1460. }
  1461. __skb_fill_page_desc(skb, i,
  1462. page, 0,
  1463. (data_len >= PAGE_SIZE ?
  1464. PAGE_SIZE :
  1465. data_len));
  1466. data_len -= PAGE_SIZE;
  1467. }
  1468. /* Full success... */
  1469. break;
  1470. }
  1471. err = -ENOBUFS;
  1472. goto failure;
  1473. }
  1474. set_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
  1475. set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
  1476. err = -EAGAIN;
  1477. if (!timeo)
  1478. goto failure;
  1479. if (signal_pending(current))
  1480. goto interrupted;
  1481. timeo = sock_wait_for_wmem(sk, timeo);
  1482. }
  1483. skb_set_owner_w(skb, sk);
  1484. return skb;
  1485. interrupted:
  1486. err = sock_intr_errno(timeo);
  1487. failure:
  1488. *errcode = err;
  1489. return NULL;
  1490. }
  1491. EXPORT_SYMBOL(sock_alloc_send_pskb);
  1492. struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
  1493. int noblock, int *errcode)
  1494. {
  1495. return sock_alloc_send_pskb(sk, size, 0, noblock, errcode);
  1496. }
  1497. EXPORT_SYMBOL(sock_alloc_send_skb);
  1498. /* On 32bit arches, an skb frag is limited to 2^15 */
  1499. #define SKB_FRAG_PAGE_ORDER get_order(32768)
  1500. bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag)
  1501. {
  1502. int order;
  1503. if (pfrag->page) {
  1504. if (atomic_read(&pfrag->page->_count) == 1) {
  1505. pfrag->offset = 0;
  1506. return true;
  1507. }
  1508. if (pfrag->offset < pfrag->size)
  1509. return true;
  1510. put_page(pfrag->page);
  1511. }
  1512. /* We restrict high order allocations to users that can afford to wait */
  1513. order = (sk->sk_allocation & __GFP_WAIT) ? SKB_FRAG_PAGE_ORDER : 0;
  1514. do {
  1515. gfp_t gfp = sk->sk_allocation;
  1516. if (order)
  1517. gfp |= __GFP_COMP | __GFP_NOWARN;
  1518. pfrag->page = alloc_pages(gfp, order);
  1519. if (likely(pfrag->page)) {
  1520. pfrag->offset = 0;
  1521. pfrag->size = PAGE_SIZE << order;
  1522. return true;
  1523. }
  1524. } while (--order >= 0);
  1525. sk_enter_memory_pressure(sk);
  1526. sk_stream_moderate_sndbuf(sk);
  1527. return false;
  1528. }
  1529. EXPORT_SYMBOL(sk_page_frag_refill);
  1530. static void __lock_sock(struct sock *sk)
  1531. __releases(&sk->sk_lock.slock)
  1532. __acquires(&sk->sk_lock.slock)
  1533. {
  1534. DEFINE_WAIT(wait);
  1535. for (;;) {
  1536. prepare_to_wait_exclusive(&sk->sk_lock.wq, &wait,
  1537. TASK_UNINTERRUPTIBLE);
  1538. spin_unlock_bh(&sk->sk_lock.slock);
  1539. schedule();
  1540. spin_lock_bh(&sk->sk_lock.slock);
  1541. if (!sock_owned_by_user(sk))
  1542. break;
  1543. }
  1544. finish_wait(&sk->sk_lock.wq, &wait);
  1545. }
  1546. static void __release_sock(struct sock *sk)
  1547. __releases(&sk->sk_lock.slock)
  1548. __acquires(&sk->sk_lock.slock)
  1549. {
  1550. struct sk_buff *skb = sk->sk_backlog.head;
  1551. do {
  1552. sk->sk_backlog.head = sk->sk_backlog.tail = NULL;
  1553. bh_unlock_sock(sk);
  1554. do {
  1555. struct sk_buff *next = skb->next;
  1556. prefetch(next);
  1557. WARN_ON_ONCE(skb_dst_is_noref(skb));
  1558. skb->next = NULL;
  1559. sk_backlog_rcv(sk, skb);
  1560. /*
  1561. * We are in process context here with softirqs
  1562. * disabled, use cond_resched_softirq() to preempt.
  1563. * This is safe to do because we've taken the backlog
  1564. * queue private:
  1565. */
  1566. cond_resched_softirq();
  1567. skb = next;
  1568. } while (skb != NULL);
  1569. bh_lock_sock(sk);
  1570. } while ((skb = sk->sk_backlog.head) != NULL);
  1571. /*
  1572. * Doing the zeroing here guarantee we can not loop forever
  1573. * while a wild producer attempts to flood us.
  1574. */
  1575. sk->sk_backlog.len = 0;
  1576. }
  1577. /**
  1578. * sk_wait_data - wait for data to arrive at sk_receive_queue
  1579. * @sk: sock to wait on
  1580. * @timeo: for how long
  1581. *
  1582. * Now socket state including sk->sk_err is changed only under lock,
  1583. * hence we may omit checks after joining wait queue.
  1584. * We check receive queue before schedule() only as optimization;
  1585. * it is very likely that release_sock() added new data.
  1586. */
  1587. int sk_wait_data(struct sock *sk, long *timeo)
  1588. {
  1589. int rc;
  1590. DEFINE_WAIT(wait);
  1591. prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
  1592. set_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags);
  1593. rc = sk_wait_event(sk, timeo, !skb_queue_empty(&sk->sk_receive_queue));
  1594. clear_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags);
  1595. finish_wait(sk_sleep(sk), &wait);
  1596. return rc;
  1597. }
  1598. EXPORT_SYMBOL(sk_wait_data);
  1599. /**
  1600. * __sk_mem_schedule - increase sk_forward_alloc and memory_allocated
  1601. * @sk: socket
  1602. * @size: memory size to allocate
  1603. * @kind: allocation type
  1604. *
  1605. * If kind is SK_MEM_SEND, it means wmem allocation. Otherwise it means
  1606. * rmem allocation. This function assumes that protocols which have
  1607. * memory_pressure use sk_wmem_queued as write buffer accounting.
  1608. */
  1609. int __sk_mem_schedule(struct sock *sk, int size, int kind)
  1610. {
  1611. struct proto *prot = sk->sk_prot;
  1612. int amt = sk_mem_pages(size);
  1613. long allocated;
  1614. int parent_status = UNDER_LIMIT;
  1615. sk->sk_forward_alloc += amt * SK_MEM_QUANTUM;
  1616. allocated = sk_memory_allocated_add(sk, amt, &parent_status);
  1617. /* Under limit. */
  1618. if (parent_status == UNDER_LIMIT &&
  1619. allocated <= sk_prot_mem_limits(sk, 0)) {
  1620. sk_leave_memory_pressure(sk);
  1621. return 1;
  1622. }
  1623. /* Under pressure. (we or our parents) */
  1624. if ((parent_status > SOFT_LIMIT) ||
  1625. allocated > sk_prot_mem_limits(sk, 1))
  1626. sk_enter_memory_pressure(sk);
  1627. /* Over hard limit (we or our parents) */
  1628. if ((parent_status == OVER_LIMIT) ||
  1629. (allocated > sk_prot_mem_limits(sk, 2)))
  1630. goto suppress_allocation;
  1631. /* guarantee minimum buffer size under pressure */
  1632. if (kind == SK_MEM_RECV) {
  1633. if (atomic_read(&sk->sk_rmem_alloc) < prot->sysctl_rmem[0])
  1634. return 1;
  1635. } else { /* SK_MEM_SEND */
  1636. if (sk->sk_type == SOCK_STREAM) {
  1637. if (sk->sk_wmem_queued < prot->sysctl_wmem[0])
  1638. return 1;
  1639. } else if (atomic_read(&sk->sk_wmem_alloc) <
  1640. prot->sysctl_wmem[0])
  1641. return 1;
  1642. }
  1643. if (sk_has_memory_pressure(sk)) {
  1644. int alloc;
  1645. if (!sk_under_memory_pressure(sk))
  1646. return 1;
  1647. alloc = sk_sockets_allocated_read_positive(sk);
  1648. if (sk_prot_mem_limits(sk, 2) > alloc *
  1649. sk_mem_pages(sk->sk_wmem_queued +
  1650. atomic_read(&sk->sk_rmem_alloc) +
  1651. sk->sk_forward_alloc))
  1652. return 1;
  1653. }
  1654. suppress_allocation:
  1655. if (kind == SK_MEM_SEND && sk->sk_type == SOCK_STREAM) {
  1656. sk_stream_moderate_sndbuf(sk);
  1657. /* Fail only if socket is _under_ its sndbuf.
  1658. * In this case we cannot block, so that we have to fail.
  1659. */
  1660. if (sk->sk_wmem_queued + size >= sk->sk_sndbuf)
  1661. return 1;
  1662. }
  1663. trace_sock_exceed_buf_limit(sk, prot, allocated);
  1664. /* Alas. Undo changes. */
  1665. sk->sk_forward_alloc -= amt * SK_MEM_QUANTUM;
  1666. sk_memory_allocated_sub(sk, amt);
  1667. return 0;
  1668. }
  1669. EXPORT_SYMBOL(__sk_mem_schedule);
  1670. /**
  1671. * __sk_reclaim - reclaim memory_allocated
  1672. * @sk: socket
  1673. */
  1674. void __sk_mem_reclaim(struct sock *sk)
  1675. {
  1676. sk_memory_allocated_sub(sk,
  1677. sk->sk_forward_alloc >> SK_MEM_QUANTUM_SHIFT);
  1678. sk->sk_forward_alloc &= SK_MEM_QUANTUM - 1;
  1679. if (sk_under_memory_pressure(sk) &&
  1680. (sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)))
  1681. sk_leave_memory_pressure(sk);
  1682. }
  1683. EXPORT_SYMBOL(__sk_mem_reclaim);
  1684. /*
  1685. * Set of default routines for initialising struct proto_ops when
  1686. * the protocol does not support a particular function. In certain
  1687. * cases where it makes no sense for a protocol to have a "do nothing"
  1688. * function, some default processing is provided.
  1689. */
  1690. int sock_no_bind(struct socket *sock, struct sockaddr *saddr, int len)
  1691. {
  1692. return -EOPNOTSUPP;
  1693. }
  1694. EXPORT_SYMBOL(sock_no_bind);
  1695. int sock_no_connect(struct socket *sock, struct sockaddr *saddr,
  1696. int len, int flags)
  1697. {
  1698. return -EOPNOTSUPP;
  1699. }
  1700. EXPORT_SYMBOL(sock_no_connect);
  1701. int sock_no_socketpair(struct socket *sock1, struct socket *sock2)
  1702. {
  1703. return -EOPNOTSUPP;
  1704. }
  1705. EXPORT_SYMBOL(sock_no_socketpair);
  1706. int sock_no_accept(struct socket *sock, struct socket *newsock, int flags)
  1707. {
  1708. return -EOPNOTSUPP;
  1709. }
  1710. EXPORT_SYMBOL(sock_no_accept);
  1711. int sock_no_getname(struct socket *sock, struct sockaddr *saddr,
  1712. int *len, int peer)
  1713. {
  1714. return -EOPNOTSUPP;
  1715. }
  1716. EXPORT_SYMBOL(sock_no_getname);
  1717. unsigned int sock_no_poll(struct file *file, struct socket *sock, poll_table *pt)
  1718. {
  1719. return 0;
  1720. }
  1721. EXPORT_SYMBOL(sock_no_poll);
  1722. int sock_no_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
  1723. {
  1724. return -EOPNOTSUPP;
  1725. }
  1726. EXPORT_SYMBOL(sock_no_ioctl);
  1727. int sock_no_listen(struct socket *sock, int backlog)
  1728. {
  1729. return -EOPNOTSUPP;
  1730. }
  1731. EXPORT_SYMBOL(sock_no_listen);
  1732. int sock_no_shutdown(struct socket *sock, int how)
  1733. {
  1734. return -EOPNOTSUPP;
  1735. }
  1736. EXPORT_SYMBOL(sock_no_shutdown);
  1737. int sock_no_setsockopt(struct socket *sock, int level, int optname,
  1738. char __user *optval, unsigned int optlen)
  1739. {
  1740. return -EOPNOTSUPP;
  1741. }
  1742. EXPORT_SYMBOL(sock_no_setsockopt);
  1743. int sock_no_getsockopt(struct socket *sock, int level, int optname,
  1744. char __user *optval, int __user *optlen)
  1745. {
  1746. return -EOPNOTSUPP;
  1747. }
  1748. EXPORT_SYMBOL(sock_no_getsockopt);
  1749. int sock_no_sendmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *m,
  1750. size_t len)
  1751. {
  1752. return -EOPNOTSUPP;
  1753. }
  1754. EXPORT_SYMBOL(sock_no_sendmsg);
  1755. int sock_no_recvmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *m,
  1756. size_t len, int flags)
  1757. {
  1758. return -EOPNOTSUPP;
  1759. }
  1760. EXPORT_SYMBOL(sock_no_recvmsg);
  1761. int sock_no_mmap(struct file *file, struct socket *sock, struct vm_area_struct *vma)
  1762. {
  1763. /* Mirror missing mmap method error code */
  1764. return -ENODEV;
  1765. }
  1766. EXPORT_SYMBOL(sock_no_mmap);
  1767. ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset, size_t size, int flags)
  1768. {
  1769. ssize_t res;
  1770. struct msghdr msg = {.msg_flags = flags};
  1771. struct kvec iov;
  1772. char *kaddr = kmap(page);
  1773. iov.iov_base = kaddr + offset;
  1774. iov.iov_len = size;
  1775. res = kernel_sendmsg(sock, &msg, &iov, 1, size);
  1776. kunmap(page);
  1777. return res;
  1778. }
  1779. EXPORT_SYMBOL(sock_no_sendpage);
  1780. /*
  1781. * Default Socket Callbacks
  1782. */
  1783. static void sock_def_wakeup(struct sock *sk)
  1784. {
  1785. struct socket_wq *wq;
  1786. rcu_read_lock();
  1787. wq = rcu_dereference(sk->sk_wq);
  1788. if (wq_has_sleeper(wq))
  1789. wake_up_interruptible_all(&wq->wait);
  1790. rcu_read_unlock();
  1791. }
  1792. static void sock_def_error_report(struct sock *sk)
  1793. {
  1794. struct socket_wq *wq;
  1795. rcu_read_lock();
  1796. wq = rcu_dereference(sk->sk_wq);
  1797. if (wq_has_sleeper(wq))
  1798. wake_up_interruptible_poll(&wq->wait, POLLERR);
  1799. sk_wake_async(sk, SOCK_WAKE_IO, POLL_ERR);
  1800. rcu_read_unlock();
  1801. }
  1802. static void sock_def_readable(struct sock *sk, int len)
  1803. {
  1804. struct socket_wq *wq;
  1805. rcu_read_lock();
  1806. wq = rcu_dereference(sk->sk_wq);
  1807. if (wq_has_sleeper(wq))
  1808. wake_up_interruptible_sync_poll(&wq->wait, POLLIN | POLLPRI |
  1809. POLLRDNORM | POLLRDBAND);
  1810. sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
  1811. rcu_read_unlock();
  1812. }
  1813. static void sock_def_write_space(struct sock *sk)
  1814. {
  1815. struct socket_wq *wq;
  1816. rcu_read_lock();
  1817. /* Do not wake up a writer until he can make "significant"
  1818. * progress. --DaveM
  1819. */
  1820. if ((atomic_read(&sk->sk_wmem_alloc) << 1) <= sk->sk_sndbuf) {
  1821. wq = rcu_dereference(sk->sk_wq);
  1822. if (wq_has_sleeper(wq))
  1823. wake_up_interruptible_sync_poll(&wq->wait, POLLOUT |
  1824. POLLWRNORM | POLLWRBAND);
  1825. /* Should agree with poll, otherwise some programs break */
  1826. if (sock_writeable(sk))
  1827. sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT);
  1828. }
  1829. rcu_read_unlock();
  1830. }
  1831. static void sock_def_destruct(struct sock *sk)
  1832. {
  1833. kfree(sk->sk_protinfo);
  1834. }
  1835. void sk_send_sigurg(struct sock *sk)
  1836. {
  1837. if (sk->sk_socket && sk->sk_socket->file)
  1838. if (send_sigurg(&sk->sk_socket->file->f_owner))
  1839. sk_wake_async(sk, SOCK_WAKE_URG, POLL_PRI);
  1840. }
  1841. EXPORT_SYMBOL(sk_send_sigurg);
  1842. void sk_reset_timer(struct sock *sk, struct timer_list* timer,
  1843. unsigned long expires)
  1844. {
  1845. if (!mod_timer(timer, expires))
  1846. sock_hold(sk);
  1847. }
  1848. EXPORT_SYMBOL(sk_reset_timer);
  1849. void sk_stop_timer(struct sock *sk, struct timer_list* timer)
  1850. {
  1851. if (timer_pending(timer) && del_timer(timer))
  1852. __sock_put(sk);
  1853. }
  1854. EXPORT_SYMBOL(sk_stop_timer);
  1855. void sock_init_data(struct socket *sock, struct sock *sk)
  1856. {
  1857. skb_queue_head_init(&sk->sk_receive_queue);
  1858. skb_queue_head_init(&sk->sk_write_queue);
  1859. skb_queue_head_init(&sk->sk_error_queue);
  1860. #ifdef CONFIG_NET_DMA
  1861. skb_queue_head_init(&sk->sk_async_wait_queue);
  1862. #endif
  1863. sk->sk_send_head = NULL;
  1864. init_timer(&sk->sk_timer);
  1865. sk->sk_allocation = GFP_KERNEL;
  1866. sk->sk_rcvbuf = sysctl_rmem_default;
  1867. sk->sk_sndbuf = sysctl_wmem_default;
  1868. sk->sk_state = TCP_CLOSE;
  1869. sk_set_socket(sk, sock);
  1870. sock_set_flag(sk, SOCK_ZAPPED);
  1871. if (sock) {
  1872. sk->sk_type = sock->type;
  1873. sk->sk_wq = sock->wq;
  1874. sock->sk = sk;
  1875. } else
  1876. sk->sk_wq = NULL;
  1877. spin_lock_init(&sk->sk_dst_lock);
  1878. rwlock_init(&sk->sk_callback_lock);
  1879. lockdep_set_class_and_name(&sk->sk_callback_lock,
  1880. af_callback_keys + sk->sk_family,
  1881. af_family_clock_key_strings[sk->sk_family]);
  1882. sk->sk_state_change = sock_def_wakeup;
  1883. sk->sk_data_ready = sock_def_readable;
  1884. sk->sk_write_space = sock_def_write_space;
  1885. sk->sk_error_report = sock_def_error_report;
  1886. sk->sk_destruct = sock_def_destruct;
  1887. sk->sk_frag.page = NULL;
  1888. sk->sk_frag.offset = 0;
  1889. sk->sk_peek_off = -1;
  1890. sk->sk_peer_pid = NULL;
  1891. sk->sk_peer_cred = NULL;
  1892. sk->sk_write_pending = 0;
  1893. sk->sk_rcvlowat = 1;
  1894. sk->sk_rcvtimeo = MAX_SCHEDULE_TIMEOUT;
  1895. sk->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT;
  1896. sk->sk_stamp = ktime_set(-1L, 0);
  1897. /*
  1898. * Before updating sk_refcnt, we must commit prior changes to memory
  1899. * (Documentation/RCU/rculist_nulls.txt for details)
  1900. */
  1901. smp_wmb();
  1902. atomic_set(&sk->sk_refcnt, 1);
  1903. atomic_set(&sk->sk_drops, 0);
  1904. }
  1905. EXPORT_SYMBOL(sock_init_data);
  1906. void lock_sock_nested(struct sock *sk, int subclass)
  1907. {
  1908. might_sleep();
  1909. spin_lock_bh(&sk->sk_lock.slock);
  1910. if (sk->sk_lock.owned)
  1911. __lock_sock(sk);
  1912. sk->sk_lock.owned = 1;
  1913. spin_unlock(&sk->sk_lock.slock);
  1914. /*
  1915. * The sk_lock has mutex_lock() semantics here:
  1916. */
  1917. mutex_acquire(&sk->sk_lock.dep_map, subclass, 0, _RET_IP_);
  1918. local_bh_enable();
  1919. }
  1920. EXPORT_SYMBOL(lock_sock_nested);
  1921. void release_sock(struct sock *sk)
  1922. {
  1923. /*
  1924. * The sk_lock has mutex_unlock() semantics:
  1925. */
  1926. mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
  1927. spin_lock_bh(&sk->sk_lock.slock);
  1928. if (sk->sk_backlog.tail)
  1929. __release_sock(sk);
  1930. if (sk->sk_prot->release_cb)
  1931. sk->sk_prot->release_cb(sk);
  1932. sk->sk_lock.owned = 0;
  1933. if (waitqueue_active(&sk->sk_lock.wq))
  1934. wake_up(&sk->sk_lock.wq);
  1935. spin_unlock_bh(&sk->sk_lock.slock);
  1936. }
  1937. EXPORT_SYMBOL(release_sock);
  1938. /**
  1939. * lock_sock_fast - fast version of lock_sock
  1940. * @sk: socket
  1941. *
  1942. * This version should be used for very small section, where process wont block
  1943. * return false if fast path is taken
  1944. * sk_lock.slock locked, owned = 0, BH disabled
  1945. * return true if slow path is taken
  1946. * sk_lock.slock unlocked, owned = 1, BH enabled
  1947. */
  1948. bool lock_sock_fast(struct sock *sk)
  1949. {
  1950. might_sleep();
  1951. spin_lock_bh(&sk->sk_lock.slock);
  1952. if (!sk->sk_lock.owned)
  1953. /*
  1954. * Note : We must disable BH
  1955. */
  1956. return false;
  1957. __lock_sock(sk);
  1958. sk->sk_lock.owned = 1;
  1959. spin_unlock(&sk->sk_lock.slock);
  1960. /*
  1961. * The sk_lock has mutex_lock() semantics here:
  1962. */
  1963. mutex_acquire(&sk->sk_lock.dep_map, 0, 0, _RET_IP_);
  1964. local_bh_enable();
  1965. return true;
  1966. }
  1967. EXPORT_SYMBOL(lock_sock_fast);
  1968. int sock_get_timestamp(struct sock *sk, struct timeval __user *userstamp)
  1969. {
  1970. struct timeval tv;
  1971. if (!sock_flag(sk, SOCK_TIMESTAMP))
  1972. sock_enable_timestamp(sk, SOCK_TIMESTAMP);
  1973. tv = ktime_to_timeval(sk->sk_stamp);
  1974. if (tv.tv_sec == -1)
  1975. return -ENOENT;
  1976. if (tv.tv_sec == 0) {
  1977. sk->sk_stamp = ktime_get_real();
  1978. tv = ktime_to_timeval(sk->sk_stamp);
  1979. }
  1980. return copy_to_user(userstamp, &tv, sizeof(tv)) ? -EFAULT : 0;
  1981. }
  1982. EXPORT_SYMBOL(sock_get_timestamp);
  1983. int sock_get_timestampns(struct sock *sk, struct timespec __user *userstamp)
  1984. {
  1985. struct timespec ts;
  1986. if (!sock_flag(sk, SOCK_TIMESTAMP))
  1987. sock_enable_timestamp(sk, SOCK_TIMESTAMP);
  1988. ts = ktime_to_timespec(sk->sk_stamp);
  1989. if (ts.tv_sec == -1)
  1990. return -ENOENT;
  1991. if (ts.tv_sec == 0) {
  1992. sk->sk_stamp = ktime_get_real();
  1993. ts = ktime_to_timespec(sk->sk_stamp);
  1994. }
  1995. return copy_to_user(userstamp, &ts, sizeof(ts)) ? -EFAULT : 0;
  1996. }
  1997. EXPORT_SYMBOL(sock_get_timestampns);
  1998. void sock_enable_timestamp(struct sock *sk, int flag)
  1999. {
  2000. if (!sock_flag(sk, flag)) {
  2001. unsigned long previous_flags = sk->sk_flags;
  2002. sock_set_flag(sk, flag);
  2003. /*
  2004. * we just set one of the two flags which require net
  2005. * time stamping, but time stamping might have been on
  2006. * already because of the other one
  2007. */
  2008. if (!(previous_flags & SK_FLAGS_TIMESTAMP))
  2009. net_enable_timestamp();
  2010. }
  2011. }
  2012. /*
  2013. * Get a socket option on an socket.
  2014. *
  2015. * FIX: POSIX 1003.1g is very ambiguous here. It states that
  2016. * asynchronous errors should be reported by getsockopt. We assume
  2017. * this means if you specify SO_ERROR (otherwise whats the point of it).
  2018. */
  2019. int sock_common_getsockopt(struct socket *sock, int level, int optname,
  2020. char __user *optval, int __user *optlen)
  2021. {
  2022. struct sock *sk = sock->sk;
  2023. return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
  2024. }
  2025. EXPORT_SYMBOL(sock_common_getsockopt);
  2026. #ifdef CONFIG_COMPAT
  2027. int compat_sock_common_getsockopt(struct socket *sock, int level, int optname,
  2028. char __user *optval, int __user *optlen)
  2029. {
  2030. struct sock *sk = sock->sk;
  2031. if (sk->sk_prot->compat_getsockopt != NULL)
  2032. return sk->sk_prot->compat_getsockopt(sk, level, optname,
  2033. optval, optlen);
  2034. return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
  2035. }
  2036. EXPORT_SYMBOL(compat_sock_common_getsockopt);
  2037. #endif
  2038. int sock_common_recvmsg(struct kiocb *iocb, struct socket *sock,
  2039. struct msghdr *msg, size_t size, int flags)
  2040. {
  2041. struct sock *sk = sock->sk;
  2042. int addr_len = 0;
  2043. int err;
  2044. err = sk->sk_prot->recvmsg(iocb, sk, msg, size, flags & MSG_DONTWAIT,
  2045. flags & ~MSG_DONTWAIT, &addr_len);
  2046. if (err >= 0)
  2047. msg->msg_namelen = addr_len;
  2048. return err;
  2049. }
  2050. EXPORT_SYMBOL(sock_common_recvmsg);
  2051. /*
  2052. * Set socket options on an inet socket.
  2053. */
  2054. int sock_common_setsockopt(struct socket *sock, int level, int optname,
  2055. char __user *optval, unsigned int optlen)
  2056. {
  2057. struct sock *sk = sock->sk;
  2058. return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
  2059. }
  2060. EXPORT_SYMBOL(sock_common_setsockopt);
  2061. #ifdef CONFIG_COMPAT
  2062. int compat_sock_common_setsockopt(struct socket *sock, int level, int optname,
  2063. char __user *optval, unsigned int optlen)
  2064. {
  2065. struct sock *sk = sock->sk;
  2066. if (sk->sk_prot->compat_setsockopt != NULL)
  2067. return sk->sk_prot->compat_setsockopt(sk, level, optname,
  2068. optval, optlen);
  2069. return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
  2070. }
  2071. EXPORT_SYMBOL(compat_sock_common_setsockopt);
  2072. #endif
  2073. void sk_common_release(struct sock *sk)
  2074. {
  2075. if (sk->sk_prot->destroy)
  2076. sk->sk_prot->destroy(sk);
  2077. /*
  2078. * Observation: when sock_common_release is called, processes have
  2079. * no access to socket. But net still has.
  2080. * Step one, detach it from networking:
  2081. *
  2082. * A. Remove from hash tables.
  2083. */
  2084. sk->sk_prot->unhash(sk);
  2085. /*
  2086. * In this point socket cannot receive new packets, but it is possible
  2087. * that some packets are in flight because some CPU runs receiver and
  2088. * did hash table lookup before we unhashed socket. They will achieve
  2089. * receive queue and will be purged by socket destructor.
  2090. *
  2091. * Also we still have packets pending on receive queue and probably,
  2092. * our own packets waiting in device queues. sock_destroy will drain
  2093. * receive queue, but transmitted packets will delay socket destruction
  2094. * until the last reference will be released.
  2095. */
  2096. sock_orphan(sk);
  2097. xfrm_sk_free_policy(sk);
  2098. sk_refcnt_debug_release(sk);
  2099. if (sk->sk_frag.page) {
  2100. put_page(sk->sk_frag.page);
  2101. sk->sk_frag.page = NULL;
  2102. }
  2103. sock_put(sk);
  2104. }
  2105. EXPORT_SYMBOL(sk_common_release);
  2106. #ifdef CONFIG_PROC_FS
  2107. #define PROTO_INUSE_NR 64 /* should be enough for the first time */
  2108. struct prot_inuse {
  2109. int val[PROTO_INUSE_NR];
  2110. };
  2111. static DECLARE_BITMAP(proto_inuse_idx, PROTO_INUSE_NR);
  2112. #ifdef CONFIG_NET_NS
  2113. void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
  2114. {
  2115. __this_cpu_add(net->core.inuse->val[prot->inuse_idx], val);
  2116. }
  2117. EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
  2118. int sock_prot_inuse_get(struct net *net, struct proto *prot)
  2119. {
  2120. int cpu, idx = prot->inuse_idx;
  2121. int res = 0;
  2122. for_each_possible_cpu(cpu)
  2123. res += per_cpu_ptr(net->core.inuse, cpu)->val[idx];
  2124. return res >= 0 ? res : 0;
  2125. }
  2126. EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
  2127. static int __net_init sock_inuse_init_net(struct net *net)
  2128. {
  2129. net->core.inuse = alloc_percpu(struct prot_inuse);
  2130. return net->core.inuse ? 0 : -ENOMEM;
  2131. }
  2132. static void __net_exit sock_inuse_exit_net(struct net *net)
  2133. {
  2134. free_percpu(net->core.inuse);
  2135. }
  2136. static struct pernet_operations net_inuse_ops = {
  2137. .init = sock_inuse_init_net,
  2138. .exit = sock_inuse_exit_net,
  2139. };
  2140. static __init int net_inuse_init(void)
  2141. {
  2142. if (register_pernet_subsys(&net_inuse_ops))
  2143. panic("Cannot initialize net inuse counters");
  2144. return 0;
  2145. }
  2146. core_initcall(net_inuse_init);
  2147. #else
  2148. static DEFINE_PER_CPU(struct prot_inuse, prot_inuse);
  2149. void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
  2150. {
  2151. __this_cpu_add(prot_inuse.val[prot->inuse_idx], val);
  2152. }
  2153. EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
  2154. int sock_prot_inuse_get(struct net *net, struct proto *prot)
  2155. {
  2156. int cpu, idx = prot->inuse_idx;
  2157. int res = 0;
  2158. for_each_possible_cpu(cpu)
  2159. res += per_cpu(prot_inuse, cpu).val[idx];
  2160. return res >= 0 ? res : 0;
  2161. }
  2162. EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
  2163. #endif
  2164. static void assign_proto_idx(struct proto *prot)
  2165. {
  2166. prot->inuse_idx = find_first_zero_bit(proto_inuse_idx, PROTO_INUSE_NR);
  2167. if (unlikely(prot->inuse_idx == PROTO_INUSE_NR - 1)) {
  2168. pr_err("PROTO_INUSE_NR exhausted\n");
  2169. return;
  2170. }
  2171. set_bit(prot->inuse_idx, proto_inuse_idx);
  2172. }
  2173. static void release_proto_idx(struct proto *prot)
  2174. {
  2175. if (prot->inuse_idx != PROTO_INUSE_NR - 1)
  2176. clear_bit(prot->inuse_idx, proto_inuse_idx);
  2177. }
  2178. #else
  2179. static inline void assign_proto_idx(struct proto *prot)
  2180. {
  2181. }
  2182. static inline void release_proto_idx(struct proto *prot)
  2183. {
  2184. }
  2185. #endif
  2186. int proto_register(struct proto *prot, int alloc_slab)
  2187. {
  2188. if (alloc_slab) {
  2189. prot->slab = kmem_cache_create(prot->name, prot->obj_size, 0,
  2190. SLAB_HWCACHE_ALIGN | prot->slab_flags,
  2191. NULL);
  2192. if (prot->slab == NULL) {
  2193. pr_crit("%s: Can't create sock SLAB cache!\n",
  2194. prot->name);
  2195. goto out;
  2196. }
  2197. if (prot->rsk_prot != NULL) {
  2198. prot->rsk_prot->slab_name = kasprintf(GFP_KERNEL, "request_sock_%s", prot->name);
  2199. if (prot->rsk_prot->slab_name == NULL)
  2200. goto out_free_sock_slab;
  2201. prot->rsk_prot->slab = kmem_cache_create(prot->rsk_prot->slab_name,
  2202. prot->rsk_prot->obj_size, 0,
  2203. SLAB_HWCACHE_ALIGN, NULL);
  2204. if (prot->rsk_prot->slab == NULL) {
  2205. pr_crit("%s: Can't create request sock SLAB cache!\n",
  2206. prot->name);
  2207. goto out_free_request_sock_slab_name;
  2208. }
  2209. }
  2210. if (prot->twsk_prot != NULL) {
  2211. prot->twsk_prot->twsk_slab_name = kasprintf(GFP_KERNEL, "tw_sock_%s", prot->name);
  2212. if (prot->twsk_prot->twsk_slab_name == NULL)
  2213. goto out_free_request_sock_slab;
  2214. prot->twsk_prot->twsk_slab =
  2215. kmem_cache_create(prot->twsk_prot->twsk_slab_name,
  2216. prot->twsk_prot->twsk_obj_size,
  2217. 0,
  2218. SLAB_HWCACHE_ALIGN |
  2219. prot->slab_flags,
  2220. NULL);
  2221. if (prot->twsk_prot->twsk_slab == NULL)
  2222. goto out_free_timewait_sock_slab_name;
  2223. }
  2224. }
  2225. mutex_lock(&proto_list_mutex);
  2226. list_add(&prot->node, &proto_list);
  2227. assign_proto_idx(prot);
  2228. mutex_unlock(&proto_list_mutex);
  2229. return 0;
  2230. out_free_timewait_sock_slab_name:
  2231. kfree(prot->twsk_prot->twsk_slab_name);
  2232. out_free_request_sock_slab:
  2233. if (prot->rsk_prot && prot->rsk_prot->slab) {
  2234. kmem_cache_destroy(prot->rsk_prot->slab);
  2235. prot->rsk_prot->slab = NULL;
  2236. }
  2237. out_free_request_sock_slab_name:
  2238. if (prot->rsk_prot)
  2239. kfree(prot->rsk_prot->slab_name);
  2240. out_free_sock_slab:
  2241. kmem_cache_destroy(prot->slab);
  2242. prot->slab = NULL;
  2243. out:
  2244. return -ENOBUFS;
  2245. }
  2246. EXPORT_SYMBOL(proto_register);
  2247. void proto_unregister(struct proto *prot)
  2248. {
  2249. mutex_lock(&proto_list_mutex);
  2250. release_proto_idx(prot);
  2251. list_del(&prot->node);
  2252. mutex_unlock(&proto_list_mutex);
  2253. if (prot->slab != NULL) {
  2254. kmem_cache_destroy(prot->slab);
  2255. prot->slab = NULL;
  2256. }
  2257. if (prot->rsk_prot != NULL && prot->rsk_prot->slab != NULL) {
  2258. kmem_cache_destroy(prot->rsk_prot->slab);
  2259. kfree(prot->rsk_prot->slab_name);
  2260. prot->rsk_prot->slab = NULL;
  2261. }
  2262. if (prot->twsk_prot != NULL && prot->twsk_prot->twsk_slab != NULL) {
  2263. kmem_cache_destroy(prot->twsk_prot->twsk_slab);
  2264. kfree(prot->twsk_prot->twsk_slab_name);
  2265. prot->twsk_prot->twsk_slab = NULL;
  2266. }
  2267. }
  2268. EXPORT_SYMBOL(proto_unregister);
  2269. #ifdef CONFIG_PROC_FS
  2270. static void *proto_seq_start(struct seq_file *seq, loff_t *pos)
  2271. __acquires(proto_list_mutex)
  2272. {
  2273. mutex_lock(&proto_list_mutex);
  2274. return seq_list_start_head(&proto_list, *pos);
  2275. }
  2276. static void *proto_seq_next(struct seq_file *seq, void *v, loff_t *pos)
  2277. {
  2278. return seq_list_next(v, &proto_list, pos);
  2279. }
  2280. static void proto_seq_stop(struct seq_file *seq, void *v)
  2281. __releases(proto_list_mutex)
  2282. {
  2283. mutex_unlock(&proto_list_mutex);
  2284. }
  2285. static char proto_method_implemented(const void *method)
  2286. {
  2287. return method == NULL ? 'n' : 'y';
  2288. }
  2289. static long sock_prot_memory_allocated(struct proto *proto)
  2290. {
  2291. return proto->memory_allocated != NULL ? proto_memory_allocated(proto) : -1L;
  2292. }
  2293. static char *sock_prot_memory_pressure(struct proto *proto)
  2294. {
  2295. return proto->memory_pressure != NULL ?
  2296. proto_memory_pressure(proto) ? "yes" : "no" : "NI";
  2297. }
  2298. static void proto_seq_printf(struct seq_file *seq, struct proto *proto)
  2299. {
  2300. seq_printf(seq, "%-9s %4u %6d %6ld %-3s %6u %-3s %-10s "
  2301. "%2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c\n",
  2302. proto->name,
  2303. proto->obj_size,
  2304. sock_prot_inuse_get(seq_file_net(seq), proto),
  2305. sock_prot_memory_allocated(proto),
  2306. sock_prot_memory_pressure(proto),
  2307. proto->max_header,
  2308. proto->slab == NULL ? "no" : "yes",
  2309. module_name(proto->owner),
  2310. proto_method_implemented(proto->close),
  2311. proto_method_implemented(proto->connect),
  2312. proto_method_implemented(proto->disconnect),
  2313. proto_method_implemented(proto->accept),
  2314. proto_method_implemented(proto->ioctl),
  2315. proto_method_implemented(proto->init),
  2316. proto_method_implemented(proto->destroy),
  2317. proto_method_implemented(proto->shutdown),
  2318. proto_method_implemented(proto->setsockopt),
  2319. proto_method_implemented(proto->getsockopt),
  2320. proto_method_implemented(proto->sendmsg),
  2321. proto_method_implemented(proto->recvmsg),
  2322. proto_method_implemented(proto->sendpage),
  2323. proto_method_implemented(proto->bind),
  2324. proto_method_implemented(proto->backlog_rcv),
  2325. proto_method_implemented(proto->hash),
  2326. proto_method_implemented(proto->unhash),
  2327. proto_method_implemented(proto->get_port),
  2328. proto_method_implemented(proto->enter_memory_pressure));
  2329. }
  2330. static int proto_seq_show(struct seq_file *seq, void *v)
  2331. {
  2332. if (v == &proto_list)
  2333. seq_printf(seq, "%-9s %-4s %-8s %-6s %-5s %-7s %-4s %-10s %s",
  2334. "protocol",
  2335. "size",
  2336. "sockets",
  2337. "memory",
  2338. "press",
  2339. "maxhdr",
  2340. "slab",
  2341. "module",
  2342. "cl co di ac io in de sh ss gs se re sp bi br ha uh gp em\n");
  2343. else
  2344. proto_seq_printf(seq, list_entry(v, struct proto, node));
  2345. return 0;
  2346. }
  2347. static const struct seq_operations proto_seq_ops = {
  2348. .start = proto_seq_start,
  2349. .next = proto_seq_next,
  2350. .stop = proto_seq_stop,
  2351. .show = proto_seq_show,
  2352. };
  2353. static int proto_seq_open(struct inode *inode, struct file *file)
  2354. {
  2355. return seq_open_net(inode, file, &proto_seq_ops,
  2356. sizeof(struct seq_net_private));
  2357. }
  2358. static const struct file_operations proto_seq_fops = {
  2359. .owner = THIS_MODULE,
  2360. .open = proto_seq_open,
  2361. .read = seq_read,
  2362. .llseek = seq_lseek,
  2363. .release = seq_release_net,
  2364. };
  2365. static __net_init int proto_init_net(struct net *net)
  2366. {
  2367. if (!proc_net_fops_create(net, "protocols", S_IRUGO, &proto_seq_fops))
  2368. return -ENOMEM;
  2369. return 0;
  2370. }
  2371. static __net_exit void proto_exit_net(struct net *net)
  2372. {
  2373. proc_net_remove(net, "protocols");
  2374. }
  2375. static __net_initdata struct pernet_operations proto_net_ops = {
  2376. .init = proto_init_net,
  2377. .exit = proto_exit_net,
  2378. };
  2379. static int __init proto_init(void)
  2380. {
  2381. return register_pernet_subsys(&proto_net_ops);
  2382. }
  2383. subsys_initcall(proto_init);
  2384. #endif /* PROC_FS */