xhci.c 143 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779
  1. /*
  2. * xHCI host controller driver
  3. *
  4. * Copyright (C) 2008 Intel Corp.
  5. *
  6. * Author: Sarah Sharp
  7. * Some code borrowed from the Linux EHCI driver.
  8. *
  9. * This program is free software; you can redistribute it and/or modify
  10. * it under the terms of the GNU General Public License version 2 as
  11. * published by the Free Software Foundation.
  12. *
  13. * This program is distributed in the hope that it will be useful, but
  14. * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
  15. * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
  16. * for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program; if not, write to the Free Software Foundation,
  20. * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  21. */
  22. #include <linux/pci.h>
  23. #include <linux/irq.h>
  24. #include <linux/log2.h>
  25. #include <linux/module.h>
  26. #include <linux/moduleparam.h>
  27. #include <linux/slab.h>
  28. #include <linux/dmi.h>
  29. #include "xhci.h"
  30. #define DRIVER_AUTHOR "Sarah Sharp"
  31. #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver"
  32. /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */
  33. static int link_quirk;
  34. module_param(link_quirk, int, S_IRUGO | S_IWUSR);
  35. MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB");
  36. /* TODO: copied from ehci-hcd.c - can this be refactored? */
  37. /*
  38. * xhci_handshake - spin reading hc until handshake completes or fails
  39. * @ptr: address of hc register to be read
  40. * @mask: bits to look at in result of read
  41. * @done: value of those bits when handshake succeeds
  42. * @usec: timeout in microseconds
  43. *
  44. * Returns negative errno, or zero on success
  45. *
  46. * Success happens when the "mask" bits have the specified value (hardware
  47. * handshake done). There are two failure modes: "usec" have passed (major
  48. * hardware flakeout), or the register reads as all-ones (hardware removed).
  49. */
  50. int xhci_handshake(struct xhci_hcd *xhci, void __iomem *ptr,
  51. u32 mask, u32 done, int usec)
  52. {
  53. u32 result;
  54. do {
  55. result = xhci_readl(xhci, ptr);
  56. if (result == ~(u32)0) /* card removed */
  57. return -ENODEV;
  58. result &= mask;
  59. if (result == done)
  60. return 0;
  61. udelay(1);
  62. usec--;
  63. } while (usec > 0);
  64. return -ETIMEDOUT;
  65. }
  66. /*
  67. * Disable interrupts and begin the xHCI halting process.
  68. */
  69. void xhci_quiesce(struct xhci_hcd *xhci)
  70. {
  71. u32 halted;
  72. u32 cmd;
  73. u32 mask;
  74. mask = ~(XHCI_IRQS);
  75. halted = xhci_readl(xhci, &xhci->op_regs->status) & STS_HALT;
  76. if (!halted)
  77. mask &= ~CMD_RUN;
  78. cmd = xhci_readl(xhci, &xhci->op_regs->command);
  79. cmd &= mask;
  80. xhci_writel(xhci, cmd, &xhci->op_regs->command);
  81. }
  82. /*
  83. * Force HC into halt state.
  84. *
  85. * Disable any IRQs and clear the run/stop bit.
  86. * HC will complete any current and actively pipelined transactions, and
  87. * should halt within 16 ms of the run/stop bit being cleared.
  88. * Read HC Halted bit in the status register to see when the HC is finished.
  89. */
  90. int xhci_halt(struct xhci_hcd *xhci)
  91. {
  92. int ret;
  93. xhci_dbg(xhci, "// Halt the HC\n");
  94. xhci_quiesce(xhci);
  95. ret = xhci_handshake(xhci, &xhci->op_regs->status,
  96. STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC);
  97. if (!ret) {
  98. xhci->xhc_state |= XHCI_STATE_HALTED;
  99. xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
  100. } else
  101. xhci_warn(xhci, "Host not halted after %u microseconds.\n",
  102. XHCI_MAX_HALT_USEC);
  103. return ret;
  104. }
  105. /*
  106. * Set the run bit and wait for the host to be running.
  107. */
  108. static int xhci_start(struct xhci_hcd *xhci)
  109. {
  110. u32 temp;
  111. int ret;
  112. temp = xhci_readl(xhci, &xhci->op_regs->command);
  113. temp |= (CMD_RUN);
  114. xhci_dbg(xhci, "// Turn on HC, cmd = 0x%x.\n",
  115. temp);
  116. xhci_writel(xhci, temp, &xhci->op_regs->command);
  117. /*
  118. * Wait for the HCHalted Status bit to be 0 to indicate the host is
  119. * running.
  120. */
  121. ret = xhci_handshake(xhci, &xhci->op_regs->status,
  122. STS_HALT, 0, XHCI_MAX_HALT_USEC);
  123. if (ret == -ETIMEDOUT)
  124. xhci_err(xhci, "Host took too long to start, "
  125. "waited %u microseconds.\n",
  126. XHCI_MAX_HALT_USEC);
  127. if (!ret)
  128. xhci->xhc_state &= ~XHCI_STATE_HALTED;
  129. return ret;
  130. }
  131. /*
  132. * Reset a halted HC.
  133. *
  134. * This resets pipelines, timers, counters, state machines, etc.
  135. * Transactions will be terminated immediately, and operational registers
  136. * will be set to their defaults.
  137. */
  138. int xhci_reset(struct xhci_hcd *xhci)
  139. {
  140. u32 command;
  141. u32 state;
  142. int ret, i;
  143. state = xhci_readl(xhci, &xhci->op_regs->status);
  144. if ((state & STS_HALT) == 0) {
  145. xhci_warn(xhci, "Host controller not halted, aborting reset.\n");
  146. return 0;
  147. }
  148. xhci_dbg(xhci, "// Reset the HC\n");
  149. command = xhci_readl(xhci, &xhci->op_regs->command);
  150. command |= CMD_RESET;
  151. xhci_writel(xhci, command, &xhci->op_regs->command);
  152. ret = xhci_handshake(xhci, &xhci->op_regs->command,
  153. CMD_RESET, 0, 10 * 1000 * 1000);
  154. if (ret)
  155. return ret;
  156. xhci_dbg(xhci, "Wait for controller to be ready for doorbell rings\n");
  157. /*
  158. * xHCI cannot write to any doorbells or operational registers other
  159. * than status until the "Controller Not Ready" flag is cleared.
  160. */
  161. ret = xhci_handshake(xhci, &xhci->op_regs->status,
  162. STS_CNR, 0, 10 * 1000 * 1000);
  163. for (i = 0; i < 2; ++i) {
  164. xhci->bus_state[i].port_c_suspend = 0;
  165. xhci->bus_state[i].suspended_ports = 0;
  166. xhci->bus_state[i].resuming_ports = 0;
  167. }
  168. return ret;
  169. }
  170. #ifdef CONFIG_PCI
  171. static int xhci_free_msi(struct xhci_hcd *xhci)
  172. {
  173. int i;
  174. if (!xhci->msix_entries)
  175. return -EINVAL;
  176. for (i = 0; i < xhci->msix_count; i++)
  177. if (xhci->msix_entries[i].vector)
  178. free_irq(xhci->msix_entries[i].vector,
  179. xhci_to_hcd(xhci));
  180. return 0;
  181. }
  182. /*
  183. * Set up MSI
  184. */
  185. static int xhci_setup_msi(struct xhci_hcd *xhci)
  186. {
  187. int ret;
  188. struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
  189. ret = pci_enable_msi(pdev);
  190. if (ret) {
  191. xhci_dbg(xhci, "failed to allocate MSI entry\n");
  192. return ret;
  193. }
  194. ret = request_irq(pdev->irq, (irq_handler_t)xhci_msi_irq,
  195. 0, "xhci_hcd", xhci_to_hcd(xhci));
  196. if (ret) {
  197. xhci_dbg(xhci, "disable MSI interrupt\n");
  198. pci_disable_msi(pdev);
  199. }
  200. return ret;
  201. }
  202. /*
  203. * Free IRQs
  204. * free all IRQs request
  205. */
  206. static void xhci_free_irq(struct xhci_hcd *xhci)
  207. {
  208. struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
  209. int ret;
  210. /* return if using legacy interrupt */
  211. if (xhci_to_hcd(xhci)->irq > 0)
  212. return;
  213. ret = xhci_free_msi(xhci);
  214. if (!ret)
  215. return;
  216. if (pdev->irq > 0)
  217. free_irq(pdev->irq, xhci_to_hcd(xhci));
  218. return;
  219. }
  220. /*
  221. * Set up MSI-X
  222. */
  223. static int xhci_setup_msix(struct xhci_hcd *xhci)
  224. {
  225. int i, ret = 0;
  226. struct usb_hcd *hcd = xhci_to_hcd(xhci);
  227. struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
  228. /*
  229. * calculate number of msi-x vectors supported.
  230. * - HCS_MAX_INTRS: the max number of interrupts the host can handle,
  231. * with max number of interrupters based on the xhci HCSPARAMS1.
  232. * - num_online_cpus: maximum msi-x vectors per CPUs core.
  233. * Add additional 1 vector to ensure always available interrupt.
  234. */
  235. xhci->msix_count = min(num_online_cpus() + 1,
  236. HCS_MAX_INTRS(xhci->hcs_params1));
  237. xhci->msix_entries =
  238. kmalloc((sizeof(struct msix_entry))*xhci->msix_count,
  239. GFP_KERNEL);
  240. if (!xhci->msix_entries) {
  241. xhci_err(xhci, "Failed to allocate MSI-X entries\n");
  242. return -ENOMEM;
  243. }
  244. for (i = 0; i < xhci->msix_count; i++) {
  245. xhci->msix_entries[i].entry = i;
  246. xhci->msix_entries[i].vector = 0;
  247. }
  248. ret = pci_enable_msix(pdev, xhci->msix_entries, xhci->msix_count);
  249. if (ret) {
  250. xhci_dbg(xhci, "Failed to enable MSI-X\n");
  251. goto free_entries;
  252. }
  253. for (i = 0; i < xhci->msix_count; i++) {
  254. ret = request_irq(xhci->msix_entries[i].vector,
  255. (irq_handler_t)xhci_msi_irq,
  256. 0, "xhci_hcd", xhci_to_hcd(xhci));
  257. if (ret)
  258. goto disable_msix;
  259. }
  260. hcd->msix_enabled = 1;
  261. return ret;
  262. disable_msix:
  263. xhci_dbg(xhci, "disable MSI-X interrupt\n");
  264. xhci_free_irq(xhci);
  265. pci_disable_msix(pdev);
  266. free_entries:
  267. kfree(xhci->msix_entries);
  268. xhci->msix_entries = NULL;
  269. return ret;
  270. }
  271. /* Free any IRQs and disable MSI-X */
  272. static void xhci_cleanup_msix(struct xhci_hcd *xhci)
  273. {
  274. struct usb_hcd *hcd = xhci_to_hcd(xhci);
  275. struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
  276. xhci_free_irq(xhci);
  277. if (xhci->msix_entries) {
  278. pci_disable_msix(pdev);
  279. kfree(xhci->msix_entries);
  280. xhci->msix_entries = NULL;
  281. } else {
  282. pci_disable_msi(pdev);
  283. }
  284. hcd->msix_enabled = 0;
  285. return;
  286. }
  287. static void xhci_msix_sync_irqs(struct xhci_hcd *xhci)
  288. {
  289. int i;
  290. if (xhci->msix_entries) {
  291. for (i = 0; i < xhci->msix_count; i++)
  292. synchronize_irq(xhci->msix_entries[i].vector);
  293. }
  294. }
  295. static int xhci_try_enable_msi(struct usb_hcd *hcd)
  296. {
  297. struct xhci_hcd *xhci = hcd_to_xhci(hcd);
  298. struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
  299. int ret;
  300. /*
  301. * Some Fresco Logic host controllers advertise MSI, but fail to
  302. * generate interrupts. Don't even try to enable MSI.
  303. */
  304. if (xhci->quirks & XHCI_BROKEN_MSI)
  305. goto legacy_irq;
  306. /* unregister the legacy interrupt */
  307. if (hcd->irq)
  308. free_irq(hcd->irq, hcd);
  309. hcd->irq = 0;
  310. ret = xhci_setup_msix(xhci);
  311. if (ret)
  312. /* fall back to msi*/
  313. ret = xhci_setup_msi(xhci);
  314. if (!ret)
  315. /* hcd->irq is 0, we have MSI */
  316. return 0;
  317. if (!pdev->irq) {
  318. xhci_err(xhci, "No msi-x/msi found and no IRQ in BIOS\n");
  319. return -EINVAL;
  320. }
  321. legacy_irq:
  322. /* fall back to legacy interrupt*/
  323. ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED,
  324. hcd->irq_descr, hcd);
  325. if (ret) {
  326. xhci_err(xhci, "request interrupt %d failed\n",
  327. pdev->irq);
  328. return ret;
  329. }
  330. hcd->irq = pdev->irq;
  331. return 0;
  332. }
  333. #else
  334. static int xhci_try_enable_msi(struct usb_hcd *hcd)
  335. {
  336. return 0;
  337. }
  338. static void xhci_cleanup_msix(struct xhci_hcd *xhci)
  339. {
  340. }
  341. static void xhci_msix_sync_irqs(struct xhci_hcd *xhci)
  342. {
  343. }
  344. #endif
  345. static void compliance_mode_recovery(unsigned long arg)
  346. {
  347. struct xhci_hcd *xhci;
  348. struct usb_hcd *hcd;
  349. u32 temp;
  350. int i;
  351. xhci = (struct xhci_hcd *)arg;
  352. for (i = 0; i < xhci->num_usb3_ports; i++) {
  353. temp = xhci_readl(xhci, xhci->usb3_ports[i]);
  354. if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) {
  355. /*
  356. * Compliance Mode Detected. Letting USB Core
  357. * handle the Warm Reset
  358. */
  359. xhci_dbg(xhci, "Compliance mode detected->port %d\n",
  360. i + 1);
  361. xhci_dbg(xhci, "Attempting compliance mode recovery\n");
  362. hcd = xhci->shared_hcd;
  363. if (hcd->state == HC_STATE_SUSPENDED)
  364. usb_hcd_resume_root_hub(hcd);
  365. usb_hcd_poll_rh_status(hcd);
  366. }
  367. }
  368. if (xhci->port_status_u0 != ((1 << xhci->num_usb3_ports)-1))
  369. mod_timer(&xhci->comp_mode_recovery_timer,
  370. jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
  371. }
  372. /*
  373. * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver
  374. * that causes ports behind that hardware to enter compliance mode sometimes.
  375. * The quirk creates a timer that polls every 2 seconds the link state of
  376. * each host controller's port and recovers it by issuing a Warm reset
  377. * if Compliance mode is detected, otherwise the port will become "dead" (no
  378. * device connections or disconnections will be detected anymore). Becasue no
  379. * status event is generated when entering compliance mode (per xhci spec),
  380. * this quirk is needed on systems that have the failing hardware installed.
  381. */
  382. static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci)
  383. {
  384. xhci->port_status_u0 = 0;
  385. init_timer(&xhci->comp_mode_recovery_timer);
  386. xhci->comp_mode_recovery_timer.data = (unsigned long) xhci;
  387. xhci->comp_mode_recovery_timer.function = compliance_mode_recovery;
  388. xhci->comp_mode_recovery_timer.expires = jiffies +
  389. msecs_to_jiffies(COMP_MODE_RCVRY_MSECS);
  390. set_timer_slack(&xhci->comp_mode_recovery_timer,
  391. msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
  392. add_timer(&xhci->comp_mode_recovery_timer);
  393. xhci_dbg(xhci, "Compliance mode recovery timer initialized\n");
  394. }
  395. /*
  396. * This function identifies the systems that have installed the SN65LVPE502CP
  397. * USB3.0 re-driver and that need the Compliance Mode Quirk.
  398. * Systems:
  399. * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820
  400. */
  401. bool xhci_compliance_mode_recovery_timer_quirk_check(void)
  402. {
  403. const char *dmi_product_name, *dmi_sys_vendor;
  404. dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME);
  405. dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR);
  406. if (!dmi_product_name || !dmi_sys_vendor)
  407. return false;
  408. if (!(strstr(dmi_sys_vendor, "Hewlett-Packard")))
  409. return false;
  410. if (strstr(dmi_product_name, "Z420") ||
  411. strstr(dmi_product_name, "Z620") ||
  412. strstr(dmi_product_name, "Z820") ||
  413. strstr(dmi_product_name, "Z1 Workstation"))
  414. return true;
  415. return false;
  416. }
  417. static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci)
  418. {
  419. return (xhci->port_status_u0 == ((1 << xhci->num_usb3_ports)-1));
  420. }
  421. /*
  422. * Initialize memory for HCD and xHC (one-time init).
  423. *
  424. * Program the PAGESIZE register, initialize the device context array, create
  425. * device contexts (?), set up a command ring segment (or two?), create event
  426. * ring (one for now).
  427. */
  428. int xhci_init(struct usb_hcd *hcd)
  429. {
  430. struct xhci_hcd *xhci = hcd_to_xhci(hcd);
  431. int retval = 0;
  432. xhci_dbg(xhci, "xhci_init\n");
  433. spin_lock_init(&xhci->lock);
  434. if (xhci->hci_version == 0x95 && link_quirk) {
  435. xhci_dbg(xhci, "QUIRK: Not clearing Link TRB chain bits.\n");
  436. xhci->quirks |= XHCI_LINK_TRB_QUIRK;
  437. } else {
  438. xhci_dbg(xhci, "xHCI doesn't need link TRB QUIRK\n");
  439. }
  440. retval = xhci_mem_init(xhci, GFP_KERNEL);
  441. xhci_dbg(xhci, "Finished xhci_init\n");
  442. /* Initializing Compliance Mode Recovery Data If Needed */
  443. if (xhci_compliance_mode_recovery_timer_quirk_check()) {
  444. xhci->quirks |= XHCI_COMP_MODE_QUIRK;
  445. compliance_mode_recovery_timer_init(xhci);
  446. }
  447. return retval;
  448. }
  449. /*-------------------------------------------------------------------------*/
  450. #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
  451. static void xhci_event_ring_work(unsigned long arg)
  452. {
  453. unsigned long flags;
  454. int temp;
  455. u64 temp_64;
  456. struct xhci_hcd *xhci = (struct xhci_hcd *) arg;
  457. int i, j;
  458. xhci_dbg(xhci, "Poll event ring: %lu\n", jiffies);
  459. spin_lock_irqsave(&xhci->lock, flags);
  460. temp = xhci_readl(xhci, &xhci->op_regs->status);
  461. xhci_dbg(xhci, "op reg status = 0x%x\n", temp);
  462. if (temp == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
  463. (xhci->xhc_state & XHCI_STATE_HALTED)) {
  464. xhci_dbg(xhci, "HW died, polling stopped.\n");
  465. spin_unlock_irqrestore(&xhci->lock, flags);
  466. return;
  467. }
  468. temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
  469. xhci_dbg(xhci, "ir_set 0 pending = 0x%x\n", temp);
  470. xhci_dbg(xhci, "HC error bitmask = 0x%x\n", xhci->error_bitmask);
  471. xhci->error_bitmask = 0;
  472. xhci_dbg(xhci, "Event ring:\n");
  473. xhci_debug_segment(xhci, xhci->event_ring->deq_seg);
  474. xhci_dbg_ring_ptrs(xhci, xhci->event_ring);
  475. temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
  476. temp_64 &= ~ERST_PTR_MASK;
  477. xhci_dbg(xhci, "ERST deq = 64'h%0lx\n", (long unsigned int) temp_64);
  478. xhci_dbg(xhci, "Command ring:\n");
  479. xhci_debug_segment(xhci, xhci->cmd_ring->deq_seg);
  480. xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring);
  481. xhci_dbg_cmd_ptrs(xhci);
  482. for (i = 0; i < MAX_HC_SLOTS; ++i) {
  483. if (!xhci->devs[i])
  484. continue;
  485. for (j = 0; j < 31; ++j) {
  486. xhci_dbg_ep_rings(xhci, i, j, &xhci->devs[i]->eps[j]);
  487. }
  488. }
  489. spin_unlock_irqrestore(&xhci->lock, flags);
  490. if (!xhci->zombie)
  491. mod_timer(&xhci->event_ring_timer, jiffies + POLL_TIMEOUT * HZ);
  492. else
  493. xhci_dbg(xhci, "Quit polling the event ring.\n");
  494. }
  495. #endif
  496. static int xhci_run_finished(struct xhci_hcd *xhci)
  497. {
  498. if (xhci_start(xhci)) {
  499. xhci_halt(xhci);
  500. return -ENODEV;
  501. }
  502. xhci->shared_hcd->state = HC_STATE_RUNNING;
  503. xhci->cmd_ring_state = CMD_RING_STATE_RUNNING;
  504. if (xhci->quirks & XHCI_NEC_HOST)
  505. xhci_ring_cmd_db(xhci);
  506. xhci_dbg(xhci, "Finished xhci_run for USB3 roothub\n");
  507. return 0;
  508. }
  509. /*
  510. * Start the HC after it was halted.
  511. *
  512. * This function is called by the USB core when the HC driver is added.
  513. * Its opposite is xhci_stop().
  514. *
  515. * xhci_init() must be called once before this function can be called.
  516. * Reset the HC, enable device slot contexts, program DCBAAP, and
  517. * set command ring pointer and event ring pointer.
  518. *
  519. * Setup MSI-X vectors and enable interrupts.
  520. */
  521. int xhci_run(struct usb_hcd *hcd)
  522. {
  523. u32 temp;
  524. u64 temp_64;
  525. int ret;
  526. struct xhci_hcd *xhci = hcd_to_xhci(hcd);
  527. /* Start the xHCI host controller running only after the USB 2.0 roothub
  528. * is setup.
  529. */
  530. hcd->uses_new_polling = 1;
  531. if (!usb_hcd_is_primary_hcd(hcd))
  532. return xhci_run_finished(xhci);
  533. xhci_dbg(xhci, "xhci_run\n");
  534. ret = xhci_try_enable_msi(hcd);
  535. if (ret)
  536. return ret;
  537. #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
  538. init_timer(&xhci->event_ring_timer);
  539. xhci->event_ring_timer.data = (unsigned long) xhci;
  540. xhci->event_ring_timer.function = xhci_event_ring_work;
  541. /* Poll the event ring */
  542. xhci->event_ring_timer.expires = jiffies + POLL_TIMEOUT * HZ;
  543. xhci->zombie = 0;
  544. xhci_dbg(xhci, "Setting event ring polling timer\n");
  545. add_timer(&xhci->event_ring_timer);
  546. #endif
  547. xhci_dbg(xhci, "Command ring memory map follows:\n");
  548. xhci_debug_ring(xhci, xhci->cmd_ring);
  549. xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring);
  550. xhci_dbg_cmd_ptrs(xhci);
  551. xhci_dbg(xhci, "ERST memory map follows:\n");
  552. xhci_dbg_erst(xhci, &xhci->erst);
  553. xhci_dbg(xhci, "Event ring:\n");
  554. xhci_debug_ring(xhci, xhci->event_ring);
  555. xhci_dbg_ring_ptrs(xhci, xhci->event_ring);
  556. temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
  557. temp_64 &= ~ERST_PTR_MASK;
  558. xhci_dbg(xhci, "ERST deq = 64'h%0lx\n", (long unsigned int) temp_64);
  559. xhci_dbg(xhci, "// Set the interrupt modulation register\n");
  560. temp = xhci_readl(xhci, &xhci->ir_set->irq_control);
  561. temp &= ~ER_IRQ_INTERVAL_MASK;
  562. temp |= (u32) 160;
  563. xhci_writel(xhci, temp, &xhci->ir_set->irq_control);
  564. /* Set the HCD state before we enable the irqs */
  565. temp = xhci_readl(xhci, &xhci->op_regs->command);
  566. temp |= (CMD_EIE);
  567. xhci_dbg(xhci, "// Enable interrupts, cmd = 0x%x.\n",
  568. temp);
  569. xhci_writel(xhci, temp, &xhci->op_regs->command);
  570. temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
  571. xhci_dbg(xhci, "// Enabling event ring interrupter %p by writing 0x%x to irq_pending\n",
  572. xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp));
  573. xhci_writel(xhci, ER_IRQ_ENABLE(temp),
  574. &xhci->ir_set->irq_pending);
  575. xhci_print_ir_set(xhci, 0);
  576. if (xhci->quirks & XHCI_NEC_HOST)
  577. xhci_queue_vendor_command(xhci, 0, 0, 0,
  578. TRB_TYPE(TRB_NEC_GET_FW));
  579. xhci_dbg(xhci, "Finished xhci_run for USB2 roothub\n");
  580. return 0;
  581. }
  582. static void xhci_only_stop_hcd(struct usb_hcd *hcd)
  583. {
  584. struct xhci_hcd *xhci = hcd_to_xhci(hcd);
  585. spin_lock_irq(&xhci->lock);
  586. xhci_halt(xhci);
  587. /* The shared_hcd is going to be deallocated shortly (the USB core only
  588. * calls this function when allocation fails in usb_add_hcd(), or
  589. * usb_remove_hcd() is called). So we need to unset xHCI's pointer.
  590. */
  591. xhci->shared_hcd = NULL;
  592. spin_unlock_irq(&xhci->lock);
  593. }
  594. /*
  595. * Stop xHCI driver.
  596. *
  597. * This function is called by the USB core when the HC driver is removed.
  598. * Its opposite is xhci_run().
  599. *
  600. * Disable device contexts, disable IRQs, and quiesce the HC.
  601. * Reset the HC, finish any completed transactions, and cleanup memory.
  602. */
  603. void xhci_stop(struct usb_hcd *hcd)
  604. {
  605. u32 temp;
  606. struct xhci_hcd *xhci = hcd_to_xhci(hcd);
  607. if (!usb_hcd_is_primary_hcd(hcd)) {
  608. xhci_only_stop_hcd(xhci->shared_hcd);
  609. return;
  610. }
  611. spin_lock_irq(&xhci->lock);
  612. /* Make sure the xHC is halted for a USB3 roothub
  613. * (xhci_stop() could be called as part of failed init).
  614. */
  615. xhci_halt(xhci);
  616. xhci_reset(xhci);
  617. spin_unlock_irq(&xhci->lock);
  618. xhci_cleanup_msix(xhci);
  619. #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
  620. /* Tell the event ring poll function not to reschedule */
  621. xhci->zombie = 1;
  622. del_timer_sync(&xhci->event_ring_timer);
  623. #endif
  624. /* Deleting Compliance Mode Recovery Timer */
  625. if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
  626. (!(xhci_all_ports_seen_u0(xhci)))) {
  627. del_timer_sync(&xhci->comp_mode_recovery_timer);
  628. xhci_dbg(xhci, "%s: compliance mode recovery timer deleted\n",
  629. __func__);
  630. }
  631. if (xhci->quirks & XHCI_AMD_PLL_FIX)
  632. usb_amd_dev_put();
  633. xhci_dbg(xhci, "// Disabling event ring interrupts\n");
  634. temp = xhci_readl(xhci, &xhci->op_regs->status);
  635. xhci_writel(xhci, temp & ~STS_EINT, &xhci->op_regs->status);
  636. temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
  637. xhci_writel(xhci, ER_IRQ_DISABLE(temp),
  638. &xhci->ir_set->irq_pending);
  639. xhci_print_ir_set(xhci, 0);
  640. xhci_dbg(xhci, "cleaning up memory\n");
  641. xhci_mem_cleanup(xhci);
  642. xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
  643. xhci_readl(xhci, &xhci->op_regs->status));
  644. }
  645. /*
  646. * Shutdown HC (not bus-specific)
  647. *
  648. * This is called when the machine is rebooting or halting. We assume that the
  649. * machine will be powered off, and the HC's internal state will be reset.
  650. * Don't bother to free memory.
  651. *
  652. * This will only ever be called with the main usb_hcd (the USB3 roothub).
  653. */
  654. void xhci_shutdown(struct usb_hcd *hcd)
  655. {
  656. struct xhci_hcd *xhci = hcd_to_xhci(hcd);
  657. if (xhci->quirks & XHCI_SPURIOUS_REBOOT)
  658. usb_disable_xhci_ports(to_pci_dev(hcd->self.controller));
  659. spin_lock_irq(&xhci->lock);
  660. xhci_halt(xhci);
  661. spin_unlock_irq(&xhci->lock);
  662. xhci_cleanup_msix(xhci);
  663. xhci_dbg(xhci, "xhci_shutdown completed - status = %x\n",
  664. xhci_readl(xhci, &xhci->op_regs->status));
  665. }
  666. #ifdef CONFIG_PM
  667. static void xhci_save_registers(struct xhci_hcd *xhci)
  668. {
  669. xhci->s3.command = xhci_readl(xhci, &xhci->op_regs->command);
  670. xhci->s3.dev_nt = xhci_readl(xhci, &xhci->op_regs->dev_notification);
  671. xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
  672. xhci->s3.config_reg = xhci_readl(xhci, &xhci->op_regs->config_reg);
  673. xhci->s3.erst_size = xhci_readl(xhci, &xhci->ir_set->erst_size);
  674. xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base);
  675. xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
  676. xhci->s3.irq_pending = xhci_readl(xhci, &xhci->ir_set->irq_pending);
  677. xhci->s3.irq_control = xhci_readl(xhci, &xhci->ir_set->irq_control);
  678. }
  679. static void xhci_restore_registers(struct xhci_hcd *xhci)
  680. {
  681. xhci_writel(xhci, xhci->s3.command, &xhci->op_regs->command);
  682. xhci_writel(xhci, xhci->s3.dev_nt, &xhci->op_regs->dev_notification);
  683. xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr);
  684. xhci_writel(xhci, xhci->s3.config_reg, &xhci->op_regs->config_reg);
  685. xhci_writel(xhci, xhci->s3.erst_size, &xhci->ir_set->erst_size);
  686. xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base);
  687. xhci_write_64(xhci, xhci->s3.erst_dequeue, &xhci->ir_set->erst_dequeue);
  688. xhci_writel(xhci, xhci->s3.irq_pending, &xhci->ir_set->irq_pending);
  689. xhci_writel(xhci, xhci->s3.irq_control, &xhci->ir_set->irq_control);
  690. }
  691. static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci)
  692. {
  693. u64 val_64;
  694. /* step 2: initialize command ring buffer */
  695. val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
  696. val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
  697. (xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
  698. xhci->cmd_ring->dequeue) &
  699. (u64) ~CMD_RING_RSVD_BITS) |
  700. xhci->cmd_ring->cycle_state;
  701. xhci_dbg(xhci, "// Setting command ring address to 0x%llx\n",
  702. (long unsigned long) val_64);
  703. xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
  704. }
  705. /*
  706. * The whole command ring must be cleared to zero when we suspend the host.
  707. *
  708. * The host doesn't save the command ring pointer in the suspend well, so we
  709. * need to re-program it on resume. Unfortunately, the pointer must be 64-byte
  710. * aligned, because of the reserved bits in the command ring dequeue pointer
  711. * register. Therefore, we can't just set the dequeue pointer back in the
  712. * middle of the ring (TRBs are 16-byte aligned).
  713. */
  714. static void xhci_clear_command_ring(struct xhci_hcd *xhci)
  715. {
  716. struct xhci_ring *ring;
  717. struct xhci_segment *seg;
  718. ring = xhci->cmd_ring;
  719. seg = ring->deq_seg;
  720. do {
  721. memset(seg->trbs, 0,
  722. sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1));
  723. seg->trbs[TRBS_PER_SEGMENT - 1].link.control &=
  724. cpu_to_le32(~TRB_CYCLE);
  725. seg = seg->next;
  726. } while (seg != ring->deq_seg);
  727. /* Reset the software enqueue and dequeue pointers */
  728. ring->deq_seg = ring->first_seg;
  729. ring->dequeue = ring->first_seg->trbs;
  730. ring->enq_seg = ring->deq_seg;
  731. ring->enqueue = ring->dequeue;
  732. ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
  733. /*
  734. * Ring is now zeroed, so the HW should look for change of ownership
  735. * when the cycle bit is set to 1.
  736. */
  737. ring->cycle_state = 1;
  738. /*
  739. * Reset the hardware dequeue pointer.
  740. * Yes, this will need to be re-written after resume, but we're paranoid
  741. * and want to make sure the hardware doesn't access bogus memory
  742. * because, say, the BIOS or an SMI started the host without changing
  743. * the command ring pointers.
  744. */
  745. xhci_set_cmd_ring_deq(xhci);
  746. }
  747. /*
  748. * Stop HC (not bus-specific)
  749. *
  750. * This is called when the machine transition into S3/S4 mode.
  751. *
  752. */
  753. int xhci_suspend(struct xhci_hcd *xhci)
  754. {
  755. int rc = 0;
  756. struct usb_hcd *hcd = xhci_to_hcd(xhci);
  757. u32 command;
  758. if (hcd->state != HC_STATE_SUSPENDED ||
  759. xhci->shared_hcd->state != HC_STATE_SUSPENDED)
  760. return -EINVAL;
  761. /* Don't poll the roothubs on bus suspend. */
  762. xhci_dbg(xhci, "%s: stopping port polling.\n", __func__);
  763. clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
  764. del_timer_sync(&hcd->rh_timer);
  765. spin_lock_irq(&xhci->lock);
  766. clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
  767. clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
  768. /* step 1: stop endpoint */
  769. /* skipped assuming that port suspend has done */
  770. /* step 2: clear Run/Stop bit */
  771. command = xhci_readl(xhci, &xhci->op_regs->command);
  772. command &= ~CMD_RUN;
  773. xhci_writel(xhci, command, &xhci->op_regs->command);
  774. if (xhci_handshake(xhci, &xhci->op_regs->status,
  775. STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC)) {
  776. xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n");
  777. spin_unlock_irq(&xhci->lock);
  778. return -ETIMEDOUT;
  779. }
  780. xhci_clear_command_ring(xhci);
  781. /* step 3: save registers */
  782. xhci_save_registers(xhci);
  783. /* step 4: set CSS flag */
  784. command = xhci_readl(xhci, &xhci->op_regs->command);
  785. command |= CMD_CSS;
  786. xhci_writel(xhci, command, &xhci->op_regs->command);
  787. if (xhci_handshake(xhci, &xhci->op_regs->status,
  788. STS_SAVE, 0, 10 * 1000)) {
  789. xhci_warn(xhci, "WARN: xHC save state timeout\n");
  790. spin_unlock_irq(&xhci->lock);
  791. return -ETIMEDOUT;
  792. }
  793. spin_unlock_irq(&xhci->lock);
  794. /*
  795. * Deleting Compliance Mode Recovery Timer because the xHCI Host
  796. * is about to be suspended.
  797. */
  798. if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
  799. (!(xhci_all_ports_seen_u0(xhci)))) {
  800. del_timer_sync(&xhci->comp_mode_recovery_timer);
  801. xhci_dbg(xhci, "%s: compliance mode recovery timer deleted\n",
  802. __func__);
  803. }
  804. /* step 5: remove core well power */
  805. /* synchronize irq when using MSI-X */
  806. xhci_msix_sync_irqs(xhci);
  807. return rc;
  808. }
  809. /*
  810. * start xHC (not bus-specific)
  811. *
  812. * This is called when the machine transition from S3/S4 mode.
  813. *
  814. */
  815. int xhci_resume(struct xhci_hcd *xhci, bool hibernated)
  816. {
  817. u32 command, temp = 0;
  818. struct usb_hcd *hcd = xhci_to_hcd(xhci);
  819. struct usb_hcd *secondary_hcd;
  820. int retval = 0;
  821. bool comp_timer_running = false;
  822. /* Wait a bit if either of the roothubs need to settle from the
  823. * transition into bus suspend.
  824. */
  825. if (time_before(jiffies, xhci->bus_state[0].next_statechange) ||
  826. time_before(jiffies,
  827. xhci->bus_state[1].next_statechange))
  828. msleep(100);
  829. set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
  830. set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
  831. spin_lock_irq(&xhci->lock);
  832. if (xhci->quirks & XHCI_RESET_ON_RESUME)
  833. hibernated = true;
  834. if (!hibernated) {
  835. /* step 1: restore register */
  836. xhci_restore_registers(xhci);
  837. /* step 2: initialize command ring buffer */
  838. xhci_set_cmd_ring_deq(xhci);
  839. /* step 3: restore state and start state*/
  840. /* step 3: set CRS flag */
  841. command = xhci_readl(xhci, &xhci->op_regs->command);
  842. command |= CMD_CRS;
  843. xhci_writel(xhci, command, &xhci->op_regs->command);
  844. if (xhci_handshake(xhci, &xhci->op_regs->status,
  845. STS_RESTORE, 0, 10 * 1000)) {
  846. xhci_warn(xhci, "WARN: xHC restore state timeout\n");
  847. spin_unlock_irq(&xhci->lock);
  848. return -ETIMEDOUT;
  849. }
  850. temp = xhci_readl(xhci, &xhci->op_regs->status);
  851. }
  852. /* If restore operation fails, re-initialize the HC during resume */
  853. if ((temp & STS_SRE) || hibernated) {
  854. if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
  855. !(xhci_all_ports_seen_u0(xhci))) {
  856. del_timer_sync(&xhci->comp_mode_recovery_timer);
  857. xhci_dbg(xhci, "Compliance Mode Recovery Timer deleted!\n");
  858. }
  859. /* Let the USB core know _both_ roothubs lost power. */
  860. usb_root_hub_lost_power(xhci->main_hcd->self.root_hub);
  861. usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub);
  862. xhci_dbg(xhci, "Stop HCD\n");
  863. xhci_halt(xhci);
  864. xhci_reset(xhci);
  865. spin_unlock_irq(&xhci->lock);
  866. xhci_cleanup_msix(xhci);
  867. #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
  868. /* Tell the event ring poll function not to reschedule */
  869. xhci->zombie = 1;
  870. del_timer_sync(&xhci->event_ring_timer);
  871. #endif
  872. xhci_dbg(xhci, "// Disabling event ring interrupts\n");
  873. temp = xhci_readl(xhci, &xhci->op_regs->status);
  874. xhci_writel(xhci, temp & ~STS_EINT, &xhci->op_regs->status);
  875. temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
  876. xhci_writel(xhci, ER_IRQ_DISABLE(temp),
  877. &xhci->ir_set->irq_pending);
  878. xhci_print_ir_set(xhci, 0);
  879. xhci_dbg(xhci, "cleaning up memory\n");
  880. xhci_mem_cleanup(xhci);
  881. xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
  882. xhci_readl(xhci, &xhci->op_regs->status));
  883. /* USB core calls the PCI reinit and start functions twice:
  884. * first with the primary HCD, and then with the secondary HCD.
  885. * If we don't do the same, the host will never be started.
  886. */
  887. if (!usb_hcd_is_primary_hcd(hcd))
  888. secondary_hcd = hcd;
  889. else
  890. secondary_hcd = xhci->shared_hcd;
  891. xhci_dbg(xhci, "Initialize the xhci_hcd\n");
  892. retval = xhci_init(hcd->primary_hcd);
  893. if (retval)
  894. return retval;
  895. comp_timer_running = true;
  896. xhci_dbg(xhci, "Start the primary HCD\n");
  897. retval = xhci_run(hcd->primary_hcd);
  898. if (!retval) {
  899. xhci_dbg(xhci, "Start the secondary HCD\n");
  900. retval = xhci_run(secondary_hcd);
  901. }
  902. hcd->state = HC_STATE_SUSPENDED;
  903. xhci->shared_hcd->state = HC_STATE_SUSPENDED;
  904. goto done;
  905. }
  906. /* step 4: set Run/Stop bit */
  907. command = xhci_readl(xhci, &xhci->op_regs->command);
  908. command |= CMD_RUN;
  909. xhci_writel(xhci, command, &xhci->op_regs->command);
  910. xhci_handshake(xhci, &xhci->op_regs->status, STS_HALT,
  911. 0, 250 * 1000);
  912. /* step 5: walk topology and initialize portsc,
  913. * portpmsc and portli
  914. */
  915. /* this is done in bus_resume */
  916. /* step 6: restart each of the previously
  917. * Running endpoints by ringing their doorbells
  918. */
  919. spin_unlock_irq(&xhci->lock);
  920. done:
  921. if (retval == 0) {
  922. usb_hcd_resume_root_hub(hcd);
  923. usb_hcd_resume_root_hub(xhci->shared_hcd);
  924. }
  925. /*
  926. * If system is subject to the Quirk, Compliance Mode Timer needs to
  927. * be re-initialized Always after a system resume. Ports are subject
  928. * to suffer the Compliance Mode issue again. It doesn't matter if
  929. * ports have entered previously to U0 before system's suspension.
  930. */
  931. if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running)
  932. compliance_mode_recovery_timer_init(xhci);
  933. /* Re-enable port polling. */
  934. xhci_dbg(xhci, "%s: starting port polling.\n", __func__);
  935. set_bit(HCD_FLAG_POLL_RH, &hcd->flags);
  936. usb_hcd_poll_rh_status(hcd);
  937. return retval;
  938. }
  939. #endif /* CONFIG_PM */
  940. /*-------------------------------------------------------------------------*/
  941. /**
  942. * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and
  943. * HCDs. Find the index for an endpoint given its descriptor. Use the return
  944. * value to right shift 1 for the bitmask.
  945. *
  946. * Index = (epnum * 2) + direction - 1,
  947. * where direction = 0 for OUT, 1 for IN.
  948. * For control endpoints, the IN index is used (OUT index is unused), so
  949. * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
  950. */
  951. unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc)
  952. {
  953. unsigned int index;
  954. if (usb_endpoint_xfer_control(desc))
  955. index = (unsigned int) (usb_endpoint_num(desc)*2);
  956. else
  957. index = (unsigned int) (usb_endpoint_num(desc)*2) +
  958. (usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
  959. return index;
  960. }
  961. /* Find the flag for this endpoint (for use in the control context). Use the
  962. * endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is
  963. * bit 1, etc.
  964. */
  965. unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc)
  966. {
  967. return 1 << (xhci_get_endpoint_index(desc) + 1);
  968. }
  969. /* Find the flag for this endpoint (for use in the control context). Use the
  970. * endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is
  971. * bit 1, etc.
  972. */
  973. unsigned int xhci_get_endpoint_flag_from_index(unsigned int ep_index)
  974. {
  975. return 1 << (ep_index + 1);
  976. }
  977. /* Compute the last valid endpoint context index. Basically, this is the
  978. * endpoint index plus one. For slot contexts with more than valid endpoint,
  979. * we find the most significant bit set in the added contexts flags.
  980. * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000
  981. * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one.
  982. */
  983. unsigned int xhci_last_valid_endpoint(u32 added_ctxs)
  984. {
  985. return fls(added_ctxs) - 1;
  986. }
  987. /* Returns 1 if the arguments are OK;
  988. * returns 0 this is a root hub; returns -EINVAL for NULL pointers.
  989. */
  990. static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev,
  991. struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev,
  992. const char *func) {
  993. struct xhci_hcd *xhci;
  994. struct xhci_virt_device *virt_dev;
  995. if (!hcd || (check_ep && !ep) || !udev) {
  996. printk(KERN_DEBUG "xHCI %s called with invalid args\n",
  997. func);
  998. return -EINVAL;
  999. }
  1000. if (!udev->parent) {
  1001. printk(KERN_DEBUG "xHCI %s called for root hub\n",
  1002. func);
  1003. return 0;
  1004. }
  1005. xhci = hcd_to_xhci(hcd);
  1006. if (xhci->xhc_state & XHCI_STATE_HALTED)
  1007. return -ENODEV;
  1008. if (check_virt_dev) {
  1009. if (!udev->slot_id || !xhci->devs[udev->slot_id]) {
  1010. printk(KERN_DEBUG "xHCI %s called with unaddressed "
  1011. "device\n", func);
  1012. return -EINVAL;
  1013. }
  1014. virt_dev = xhci->devs[udev->slot_id];
  1015. if (virt_dev->udev != udev) {
  1016. printk(KERN_DEBUG "xHCI %s called with udev and "
  1017. "virt_dev does not match\n", func);
  1018. return -EINVAL;
  1019. }
  1020. }
  1021. return 1;
  1022. }
  1023. static int xhci_configure_endpoint(struct xhci_hcd *xhci,
  1024. struct usb_device *udev, struct xhci_command *command,
  1025. bool ctx_change, bool must_succeed);
  1026. /*
  1027. * Full speed devices may have a max packet size greater than 8 bytes, but the
  1028. * USB core doesn't know that until it reads the first 8 bytes of the
  1029. * descriptor. If the usb_device's max packet size changes after that point,
  1030. * we need to issue an evaluate context command and wait on it.
  1031. */
  1032. static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id,
  1033. unsigned int ep_index, struct urb *urb)
  1034. {
  1035. struct xhci_container_ctx *in_ctx;
  1036. struct xhci_container_ctx *out_ctx;
  1037. struct xhci_input_control_ctx *ctrl_ctx;
  1038. struct xhci_ep_ctx *ep_ctx;
  1039. int max_packet_size;
  1040. int hw_max_packet_size;
  1041. int ret = 0;
  1042. out_ctx = xhci->devs[slot_id]->out_ctx;
  1043. ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
  1044. hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2));
  1045. max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc);
  1046. if (hw_max_packet_size != max_packet_size) {
  1047. xhci_dbg(xhci, "Max Packet Size for ep 0 changed.\n");
  1048. xhci_dbg(xhci, "Max packet size in usb_device = %d\n",
  1049. max_packet_size);
  1050. xhci_dbg(xhci, "Max packet size in xHCI HW = %d\n",
  1051. hw_max_packet_size);
  1052. xhci_dbg(xhci, "Issuing evaluate context command.\n");
  1053. /* Set up the modified control endpoint 0 */
  1054. xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
  1055. xhci->devs[slot_id]->out_ctx, ep_index);
  1056. in_ctx = xhci->devs[slot_id]->in_ctx;
  1057. ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
  1058. ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK);
  1059. ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size));
  1060. /* Set up the input context flags for the command */
  1061. /* FIXME: This won't work if a non-default control endpoint
  1062. * changes max packet sizes.
  1063. */
  1064. ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
  1065. ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG);
  1066. ctrl_ctx->drop_flags = 0;
  1067. xhci_dbg(xhci, "Slot %d input context\n", slot_id);
  1068. xhci_dbg_ctx(xhci, in_ctx, ep_index);
  1069. xhci_dbg(xhci, "Slot %d output context\n", slot_id);
  1070. xhci_dbg_ctx(xhci, out_ctx, ep_index);
  1071. ret = xhci_configure_endpoint(xhci, urb->dev, NULL,
  1072. true, false);
  1073. /* Clean up the input context for later use by bandwidth
  1074. * functions.
  1075. */
  1076. ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG);
  1077. }
  1078. return ret;
  1079. }
  1080. /*
  1081. * non-error returns are a promise to giveback() the urb later
  1082. * we drop ownership so next owner (or urb unlink) can get it
  1083. */
  1084. int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags)
  1085. {
  1086. struct xhci_hcd *xhci = hcd_to_xhci(hcd);
  1087. struct xhci_td *buffer;
  1088. unsigned long flags;
  1089. int ret = 0;
  1090. unsigned int slot_id, ep_index;
  1091. struct urb_priv *urb_priv;
  1092. int size, i;
  1093. if (!urb || xhci_check_args(hcd, urb->dev, urb->ep,
  1094. true, true, __func__) <= 0)
  1095. return -EINVAL;
  1096. slot_id = urb->dev->slot_id;
  1097. ep_index = xhci_get_endpoint_index(&urb->ep->desc);
  1098. if (!HCD_HW_ACCESSIBLE(hcd)) {
  1099. if (!in_interrupt())
  1100. xhci_dbg(xhci, "urb submitted during PCI suspend\n");
  1101. ret = -ESHUTDOWN;
  1102. goto exit;
  1103. }
  1104. if (usb_endpoint_xfer_isoc(&urb->ep->desc))
  1105. size = urb->number_of_packets;
  1106. else
  1107. size = 1;
  1108. urb_priv = kzalloc(sizeof(struct urb_priv) +
  1109. size * sizeof(struct xhci_td *), mem_flags);
  1110. if (!urb_priv)
  1111. return -ENOMEM;
  1112. buffer = kzalloc(size * sizeof(struct xhci_td), mem_flags);
  1113. if (!buffer) {
  1114. kfree(urb_priv);
  1115. return -ENOMEM;
  1116. }
  1117. for (i = 0; i < size; i++) {
  1118. urb_priv->td[i] = buffer;
  1119. buffer++;
  1120. }
  1121. urb_priv->length = size;
  1122. urb_priv->td_cnt = 0;
  1123. urb->hcpriv = urb_priv;
  1124. if (usb_endpoint_xfer_control(&urb->ep->desc)) {
  1125. /* Check to see if the max packet size for the default control
  1126. * endpoint changed during FS device enumeration
  1127. */
  1128. if (urb->dev->speed == USB_SPEED_FULL) {
  1129. ret = xhci_check_maxpacket(xhci, slot_id,
  1130. ep_index, urb);
  1131. if (ret < 0) {
  1132. xhci_urb_free_priv(xhci, urb_priv);
  1133. urb->hcpriv = NULL;
  1134. return ret;
  1135. }
  1136. }
  1137. /* We have a spinlock and interrupts disabled, so we must pass
  1138. * atomic context to this function, which may allocate memory.
  1139. */
  1140. spin_lock_irqsave(&xhci->lock, flags);
  1141. if (xhci->xhc_state & XHCI_STATE_DYING)
  1142. goto dying;
  1143. ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb,
  1144. slot_id, ep_index);
  1145. if (ret)
  1146. goto free_priv;
  1147. spin_unlock_irqrestore(&xhci->lock, flags);
  1148. } else if (usb_endpoint_xfer_bulk(&urb->ep->desc)) {
  1149. spin_lock_irqsave(&xhci->lock, flags);
  1150. if (xhci->xhc_state & XHCI_STATE_DYING)
  1151. goto dying;
  1152. if (xhci->devs[slot_id]->eps[ep_index].ep_state &
  1153. EP_GETTING_STREAMS) {
  1154. xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep "
  1155. "is transitioning to using streams.\n");
  1156. ret = -EINVAL;
  1157. } else if (xhci->devs[slot_id]->eps[ep_index].ep_state &
  1158. EP_GETTING_NO_STREAMS) {
  1159. xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep "
  1160. "is transitioning to "
  1161. "not having streams.\n");
  1162. ret = -EINVAL;
  1163. } else {
  1164. ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb,
  1165. slot_id, ep_index);
  1166. }
  1167. if (ret)
  1168. goto free_priv;
  1169. spin_unlock_irqrestore(&xhci->lock, flags);
  1170. } else if (usb_endpoint_xfer_int(&urb->ep->desc)) {
  1171. spin_lock_irqsave(&xhci->lock, flags);
  1172. if (xhci->xhc_state & XHCI_STATE_DYING)
  1173. goto dying;
  1174. ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb,
  1175. slot_id, ep_index);
  1176. if (ret)
  1177. goto free_priv;
  1178. spin_unlock_irqrestore(&xhci->lock, flags);
  1179. } else {
  1180. spin_lock_irqsave(&xhci->lock, flags);
  1181. if (xhci->xhc_state & XHCI_STATE_DYING)
  1182. goto dying;
  1183. ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb,
  1184. slot_id, ep_index);
  1185. if (ret)
  1186. goto free_priv;
  1187. spin_unlock_irqrestore(&xhci->lock, flags);
  1188. }
  1189. exit:
  1190. return ret;
  1191. dying:
  1192. xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for "
  1193. "non-responsive xHCI host.\n",
  1194. urb->ep->desc.bEndpointAddress, urb);
  1195. ret = -ESHUTDOWN;
  1196. free_priv:
  1197. xhci_urb_free_priv(xhci, urb_priv);
  1198. urb->hcpriv = NULL;
  1199. spin_unlock_irqrestore(&xhci->lock, flags);
  1200. return ret;
  1201. }
  1202. /* Get the right ring for the given URB.
  1203. * If the endpoint supports streams, boundary check the URB's stream ID.
  1204. * If the endpoint doesn't support streams, return the singular endpoint ring.
  1205. */
  1206. static struct xhci_ring *xhci_urb_to_transfer_ring(struct xhci_hcd *xhci,
  1207. struct urb *urb)
  1208. {
  1209. unsigned int slot_id;
  1210. unsigned int ep_index;
  1211. unsigned int stream_id;
  1212. struct xhci_virt_ep *ep;
  1213. slot_id = urb->dev->slot_id;
  1214. ep_index = xhci_get_endpoint_index(&urb->ep->desc);
  1215. stream_id = urb->stream_id;
  1216. ep = &xhci->devs[slot_id]->eps[ep_index];
  1217. /* Common case: no streams */
  1218. if (!(ep->ep_state & EP_HAS_STREAMS))
  1219. return ep->ring;
  1220. if (stream_id == 0) {
  1221. xhci_warn(xhci,
  1222. "WARN: Slot ID %u, ep index %u has streams, "
  1223. "but URB has no stream ID.\n",
  1224. slot_id, ep_index);
  1225. return NULL;
  1226. }
  1227. if (stream_id < ep->stream_info->num_streams)
  1228. return ep->stream_info->stream_rings[stream_id];
  1229. xhci_warn(xhci,
  1230. "WARN: Slot ID %u, ep index %u has "
  1231. "stream IDs 1 to %u allocated, "
  1232. "but stream ID %u is requested.\n",
  1233. slot_id, ep_index,
  1234. ep->stream_info->num_streams - 1,
  1235. stream_id);
  1236. return NULL;
  1237. }
  1238. /*
  1239. * Remove the URB's TD from the endpoint ring. This may cause the HC to stop
  1240. * USB transfers, potentially stopping in the middle of a TRB buffer. The HC
  1241. * should pick up where it left off in the TD, unless a Set Transfer Ring
  1242. * Dequeue Pointer is issued.
  1243. *
  1244. * The TRBs that make up the buffers for the canceled URB will be "removed" from
  1245. * the ring. Since the ring is a contiguous structure, they can't be physically
  1246. * removed. Instead, there are two options:
  1247. *
  1248. * 1) If the HC is in the middle of processing the URB to be canceled, we
  1249. * simply move the ring's dequeue pointer past those TRBs using the Set
  1250. * Transfer Ring Dequeue Pointer command. This will be the common case,
  1251. * when drivers timeout on the last submitted URB and attempt to cancel.
  1252. *
  1253. * 2) If the HC is in the middle of a different TD, we turn the TRBs into a
  1254. * series of 1-TRB transfer no-op TDs. (No-ops shouldn't be chained.) The
  1255. * HC will need to invalidate the any TRBs it has cached after the stop
  1256. * endpoint command, as noted in the xHCI 0.95 errata.
  1257. *
  1258. * 3) The TD may have completed by the time the Stop Endpoint Command
  1259. * completes, so software needs to handle that case too.
  1260. *
  1261. * This function should protect against the TD enqueueing code ringing the
  1262. * doorbell while this code is waiting for a Stop Endpoint command to complete.
  1263. * It also needs to account for multiple cancellations on happening at the same
  1264. * time for the same endpoint.
  1265. *
  1266. * Note that this function can be called in any context, or so says
  1267. * usb_hcd_unlink_urb()
  1268. */
  1269. int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
  1270. {
  1271. unsigned long flags;
  1272. int ret, i;
  1273. u32 temp;
  1274. struct xhci_hcd *xhci;
  1275. struct urb_priv *urb_priv;
  1276. struct xhci_td *td;
  1277. unsigned int ep_index;
  1278. struct xhci_ring *ep_ring;
  1279. struct xhci_virt_ep *ep;
  1280. xhci = hcd_to_xhci(hcd);
  1281. spin_lock_irqsave(&xhci->lock, flags);
  1282. /* Make sure the URB hasn't completed or been unlinked already */
  1283. ret = usb_hcd_check_unlink_urb(hcd, urb, status);
  1284. if (ret || !urb->hcpriv)
  1285. goto done;
  1286. temp = xhci_readl(xhci, &xhci->op_regs->status);
  1287. if (temp == 0xffffffff || (xhci->xhc_state & XHCI_STATE_HALTED)) {
  1288. xhci_dbg(xhci, "HW died, freeing TD.\n");
  1289. urb_priv = urb->hcpriv;
  1290. for (i = urb_priv->td_cnt; i < urb_priv->length; i++) {
  1291. td = urb_priv->td[i];
  1292. if (!list_empty(&td->td_list))
  1293. list_del_init(&td->td_list);
  1294. if (!list_empty(&td->cancelled_td_list))
  1295. list_del_init(&td->cancelled_td_list);
  1296. }
  1297. usb_hcd_unlink_urb_from_ep(hcd, urb);
  1298. spin_unlock_irqrestore(&xhci->lock, flags);
  1299. usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN);
  1300. xhci_urb_free_priv(xhci, urb_priv);
  1301. return ret;
  1302. }
  1303. if ((xhci->xhc_state & XHCI_STATE_DYING) ||
  1304. (xhci->xhc_state & XHCI_STATE_HALTED)) {
  1305. xhci_dbg(xhci, "Ep 0x%x: URB %p to be canceled on "
  1306. "non-responsive xHCI host.\n",
  1307. urb->ep->desc.bEndpointAddress, urb);
  1308. /* Let the stop endpoint command watchdog timer (which set this
  1309. * state) finish cleaning up the endpoint TD lists. We must
  1310. * have caught it in the middle of dropping a lock and giving
  1311. * back an URB.
  1312. */
  1313. goto done;
  1314. }
  1315. ep_index = xhci_get_endpoint_index(&urb->ep->desc);
  1316. ep = &xhci->devs[urb->dev->slot_id]->eps[ep_index];
  1317. ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
  1318. if (!ep_ring) {
  1319. ret = -EINVAL;
  1320. goto done;
  1321. }
  1322. urb_priv = urb->hcpriv;
  1323. i = urb_priv->td_cnt;
  1324. if (i < urb_priv->length)
  1325. xhci_dbg(xhci, "Cancel URB %p, dev %s, ep 0x%x, "
  1326. "starting at offset 0x%llx\n",
  1327. urb, urb->dev->devpath,
  1328. urb->ep->desc.bEndpointAddress,
  1329. (unsigned long long) xhci_trb_virt_to_dma(
  1330. urb_priv->td[i]->start_seg,
  1331. urb_priv->td[i]->first_trb));
  1332. for (; i < urb_priv->length; i++) {
  1333. td = urb_priv->td[i];
  1334. list_add_tail(&td->cancelled_td_list, &ep->cancelled_td_list);
  1335. }
  1336. /* Queue a stop endpoint command, but only if this is
  1337. * the first cancellation to be handled.
  1338. */
  1339. if (!(ep->ep_state & EP_HALT_PENDING)) {
  1340. ep->ep_state |= EP_HALT_PENDING;
  1341. ep->stop_cmds_pending++;
  1342. ep->stop_cmd_timer.expires = jiffies +
  1343. XHCI_STOP_EP_CMD_TIMEOUT * HZ;
  1344. add_timer(&ep->stop_cmd_timer);
  1345. xhci_queue_stop_endpoint(xhci, urb->dev->slot_id, ep_index, 0);
  1346. xhci_ring_cmd_db(xhci);
  1347. }
  1348. done:
  1349. spin_unlock_irqrestore(&xhci->lock, flags);
  1350. return ret;
  1351. }
  1352. /* Drop an endpoint from a new bandwidth configuration for this device.
  1353. * Only one call to this function is allowed per endpoint before
  1354. * check_bandwidth() or reset_bandwidth() must be called.
  1355. * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
  1356. * add the endpoint to the schedule with possibly new parameters denoted by a
  1357. * different endpoint descriptor in usb_host_endpoint.
  1358. * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
  1359. * not allowed.
  1360. *
  1361. * The USB core will not allow URBs to be queued to an endpoint that is being
  1362. * disabled, so there's no need for mutual exclusion to protect
  1363. * the xhci->devs[slot_id] structure.
  1364. */
  1365. int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
  1366. struct usb_host_endpoint *ep)
  1367. {
  1368. struct xhci_hcd *xhci;
  1369. struct xhci_container_ctx *in_ctx, *out_ctx;
  1370. struct xhci_input_control_ctx *ctrl_ctx;
  1371. struct xhci_slot_ctx *slot_ctx;
  1372. unsigned int last_ctx;
  1373. unsigned int ep_index;
  1374. struct xhci_ep_ctx *ep_ctx;
  1375. u32 drop_flag;
  1376. u32 new_add_flags, new_drop_flags, new_slot_info;
  1377. int ret;
  1378. ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
  1379. if (ret <= 0)
  1380. return ret;
  1381. xhci = hcd_to_xhci(hcd);
  1382. if (xhci->xhc_state & XHCI_STATE_DYING)
  1383. return -ENODEV;
  1384. xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
  1385. drop_flag = xhci_get_endpoint_flag(&ep->desc);
  1386. if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) {
  1387. xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n",
  1388. __func__, drop_flag);
  1389. return 0;
  1390. }
  1391. in_ctx = xhci->devs[udev->slot_id]->in_ctx;
  1392. out_ctx = xhci->devs[udev->slot_id]->out_ctx;
  1393. ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
  1394. ep_index = xhci_get_endpoint_index(&ep->desc);
  1395. ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
  1396. /* If the HC already knows the endpoint is disabled,
  1397. * or the HCD has noted it is disabled, ignore this request
  1398. */
  1399. if (((ep_ctx->ep_info & cpu_to_le32(EP_STATE_MASK)) ==
  1400. cpu_to_le32(EP_STATE_DISABLED)) ||
  1401. le32_to_cpu(ctrl_ctx->drop_flags) &
  1402. xhci_get_endpoint_flag(&ep->desc)) {
  1403. xhci_warn(xhci, "xHCI %s called with disabled ep %p\n",
  1404. __func__, ep);
  1405. return 0;
  1406. }
  1407. ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag);
  1408. new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
  1409. ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag);
  1410. new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
  1411. last_ctx = xhci_last_valid_endpoint(le32_to_cpu(ctrl_ctx->add_flags));
  1412. slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
  1413. /* Update the last valid endpoint context, if we deleted the last one */
  1414. if ((le32_to_cpu(slot_ctx->dev_info) & LAST_CTX_MASK) >
  1415. LAST_CTX(last_ctx)) {
  1416. slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
  1417. slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(last_ctx));
  1418. }
  1419. new_slot_info = le32_to_cpu(slot_ctx->dev_info);
  1420. xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep);
  1421. xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x, new slot info = %#x\n",
  1422. (unsigned int) ep->desc.bEndpointAddress,
  1423. udev->slot_id,
  1424. (unsigned int) new_drop_flags,
  1425. (unsigned int) new_add_flags,
  1426. (unsigned int) new_slot_info);
  1427. return 0;
  1428. }
  1429. /* Add an endpoint to a new possible bandwidth configuration for this device.
  1430. * Only one call to this function is allowed per endpoint before
  1431. * check_bandwidth() or reset_bandwidth() must be called.
  1432. * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
  1433. * add the endpoint to the schedule with possibly new parameters denoted by a
  1434. * different endpoint descriptor in usb_host_endpoint.
  1435. * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
  1436. * not allowed.
  1437. *
  1438. * The USB core will not allow URBs to be queued to an endpoint until the
  1439. * configuration or alt setting is installed in the device, so there's no need
  1440. * for mutual exclusion to protect the xhci->devs[slot_id] structure.
  1441. */
  1442. int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
  1443. struct usb_host_endpoint *ep)
  1444. {
  1445. struct xhci_hcd *xhci;
  1446. struct xhci_container_ctx *in_ctx, *out_ctx;
  1447. unsigned int ep_index;
  1448. struct xhci_slot_ctx *slot_ctx;
  1449. struct xhci_input_control_ctx *ctrl_ctx;
  1450. u32 added_ctxs;
  1451. unsigned int last_ctx;
  1452. u32 new_add_flags, new_drop_flags, new_slot_info;
  1453. struct xhci_virt_device *virt_dev;
  1454. int ret = 0;
  1455. ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
  1456. if (ret <= 0) {
  1457. /* So we won't queue a reset ep command for a root hub */
  1458. ep->hcpriv = NULL;
  1459. return ret;
  1460. }
  1461. xhci = hcd_to_xhci(hcd);
  1462. if (xhci->xhc_state & XHCI_STATE_DYING)
  1463. return -ENODEV;
  1464. added_ctxs = xhci_get_endpoint_flag(&ep->desc);
  1465. last_ctx = xhci_last_valid_endpoint(added_ctxs);
  1466. if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
  1467. /* FIXME when we have to issue an evaluate endpoint command to
  1468. * deal with ep0 max packet size changing once we get the
  1469. * descriptors
  1470. */
  1471. xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n",
  1472. __func__, added_ctxs);
  1473. return 0;
  1474. }
  1475. virt_dev = xhci->devs[udev->slot_id];
  1476. in_ctx = virt_dev->in_ctx;
  1477. out_ctx = virt_dev->out_ctx;
  1478. ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
  1479. ep_index = xhci_get_endpoint_index(&ep->desc);
  1480. /* If this endpoint is already in use, and the upper layers are trying
  1481. * to add it again without dropping it, reject the addition.
  1482. */
  1483. if (virt_dev->eps[ep_index].ring &&
  1484. !(le32_to_cpu(ctrl_ctx->drop_flags) &
  1485. xhci_get_endpoint_flag(&ep->desc))) {
  1486. xhci_warn(xhci, "Trying to add endpoint 0x%x "
  1487. "without dropping it.\n",
  1488. (unsigned int) ep->desc.bEndpointAddress);
  1489. return -EINVAL;
  1490. }
  1491. /* If the HCD has already noted the endpoint is enabled,
  1492. * ignore this request.
  1493. */
  1494. if (le32_to_cpu(ctrl_ctx->add_flags) &
  1495. xhci_get_endpoint_flag(&ep->desc)) {
  1496. xhci_warn(xhci, "xHCI %s called with enabled ep %p\n",
  1497. __func__, ep);
  1498. return 0;
  1499. }
  1500. /*
  1501. * Configuration and alternate setting changes must be done in
  1502. * process context, not interrupt context (or so documenation
  1503. * for usb_set_interface() and usb_set_configuration() claim).
  1504. */
  1505. if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) {
  1506. dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n",
  1507. __func__, ep->desc.bEndpointAddress);
  1508. return -ENOMEM;
  1509. }
  1510. ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs);
  1511. new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
  1512. /* If xhci_endpoint_disable() was called for this endpoint, but the
  1513. * xHC hasn't been notified yet through the check_bandwidth() call,
  1514. * this re-adds a new state for the endpoint from the new endpoint
  1515. * descriptors. We must drop and re-add this endpoint, so we leave the
  1516. * drop flags alone.
  1517. */
  1518. new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
  1519. slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
  1520. /* Update the last valid endpoint context, if we just added one past */
  1521. if ((le32_to_cpu(slot_ctx->dev_info) & LAST_CTX_MASK) <
  1522. LAST_CTX(last_ctx)) {
  1523. slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
  1524. slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(last_ctx));
  1525. }
  1526. new_slot_info = le32_to_cpu(slot_ctx->dev_info);
  1527. /* Store the usb_device pointer for later use */
  1528. ep->hcpriv = udev;
  1529. xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x, new slot info = %#x\n",
  1530. (unsigned int) ep->desc.bEndpointAddress,
  1531. udev->slot_id,
  1532. (unsigned int) new_drop_flags,
  1533. (unsigned int) new_add_flags,
  1534. (unsigned int) new_slot_info);
  1535. return 0;
  1536. }
  1537. static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev)
  1538. {
  1539. struct xhci_input_control_ctx *ctrl_ctx;
  1540. struct xhci_ep_ctx *ep_ctx;
  1541. struct xhci_slot_ctx *slot_ctx;
  1542. int i;
  1543. /* When a device's add flag and drop flag are zero, any subsequent
  1544. * configure endpoint command will leave that endpoint's state
  1545. * untouched. Make sure we don't leave any old state in the input
  1546. * endpoint contexts.
  1547. */
  1548. ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
  1549. ctrl_ctx->drop_flags = 0;
  1550. ctrl_ctx->add_flags = 0;
  1551. slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
  1552. slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
  1553. /* Endpoint 0 is always valid */
  1554. slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1));
  1555. for (i = 1; i < 31; ++i) {
  1556. ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i);
  1557. ep_ctx->ep_info = 0;
  1558. ep_ctx->ep_info2 = 0;
  1559. ep_ctx->deq = 0;
  1560. ep_ctx->tx_info = 0;
  1561. }
  1562. }
  1563. static int xhci_configure_endpoint_result(struct xhci_hcd *xhci,
  1564. struct usb_device *udev, u32 *cmd_status)
  1565. {
  1566. int ret;
  1567. switch (*cmd_status) {
  1568. case COMP_ENOMEM:
  1569. dev_warn(&udev->dev, "Not enough host controller resources "
  1570. "for new device state.\n");
  1571. ret = -ENOMEM;
  1572. /* FIXME: can we allocate more resources for the HC? */
  1573. break;
  1574. case COMP_BW_ERR:
  1575. case COMP_2ND_BW_ERR:
  1576. dev_warn(&udev->dev, "Not enough bandwidth "
  1577. "for new device state.\n");
  1578. ret = -ENOSPC;
  1579. /* FIXME: can we go back to the old state? */
  1580. break;
  1581. case COMP_TRB_ERR:
  1582. /* the HCD set up something wrong */
  1583. dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, "
  1584. "add flag = 1, "
  1585. "and endpoint is not disabled.\n");
  1586. ret = -EINVAL;
  1587. break;
  1588. case COMP_DEV_ERR:
  1589. dev_warn(&udev->dev, "ERROR: Incompatible device for endpoint "
  1590. "configure command.\n");
  1591. ret = -ENODEV;
  1592. break;
  1593. case COMP_SUCCESS:
  1594. dev_dbg(&udev->dev, "Successful Endpoint Configure command\n");
  1595. ret = 0;
  1596. break;
  1597. default:
  1598. xhci_err(xhci, "ERROR: unexpected command completion "
  1599. "code 0x%x.\n", *cmd_status);
  1600. ret = -EINVAL;
  1601. break;
  1602. }
  1603. return ret;
  1604. }
  1605. static int xhci_evaluate_context_result(struct xhci_hcd *xhci,
  1606. struct usb_device *udev, u32 *cmd_status)
  1607. {
  1608. int ret;
  1609. struct xhci_virt_device *virt_dev = xhci->devs[udev->slot_id];
  1610. switch (*cmd_status) {
  1611. case COMP_EINVAL:
  1612. dev_warn(&udev->dev, "WARN: xHCI driver setup invalid evaluate "
  1613. "context command.\n");
  1614. ret = -EINVAL;
  1615. break;
  1616. case COMP_EBADSLT:
  1617. dev_warn(&udev->dev, "WARN: slot not enabled for"
  1618. "evaluate context command.\n");
  1619. ret = -EINVAL;
  1620. break;
  1621. case COMP_CTX_STATE:
  1622. dev_warn(&udev->dev, "WARN: invalid context state for "
  1623. "evaluate context command.\n");
  1624. xhci_dbg_ctx(xhci, virt_dev->out_ctx, 1);
  1625. ret = -EINVAL;
  1626. break;
  1627. case COMP_DEV_ERR:
  1628. dev_warn(&udev->dev, "ERROR: Incompatible device for evaluate "
  1629. "context command.\n");
  1630. ret = -ENODEV;
  1631. break;
  1632. case COMP_MEL_ERR:
  1633. /* Max Exit Latency too large error */
  1634. dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n");
  1635. ret = -EINVAL;
  1636. break;
  1637. case COMP_SUCCESS:
  1638. dev_dbg(&udev->dev, "Successful evaluate context command\n");
  1639. ret = 0;
  1640. break;
  1641. default:
  1642. xhci_err(xhci, "ERROR: unexpected command completion "
  1643. "code 0x%x.\n", *cmd_status);
  1644. ret = -EINVAL;
  1645. break;
  1646. }
  1647. return ret;
  1648. }
  1649. static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci,
  1650. struct xhci_container_ctx *in_ctx)
  1651. {
  1652. struct xhci_input_control_ctx *ctrl_ctx;
  1653. u32 valid_add_flags;
  1654. u32 valid_drop_flags;
  1655. ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
  1656. /* Ignore the slot flag (bit 0), and the default control endpoint flag
  1657. * (bit 1). The default control endpoint is added during the Address
  1658. * Device command and is never removed until the slot is disabled.
  1659. */
  1660. valid_add_flags = ctrl_ctx->add_flags >> 2;
  1661. valid_drop_flags = ctrl_ctx->drop_flags >> 2;
  1662. /* Use hweight32 to count the number of ones in the add flags, or
  1663. * number of endpoints added. Don't count endpoints that are changed
  1664. * (both added and dropped).
  1665. */
  1666. return hweight32(valid_add_flags) -
  1667. hweight32(valid_add_flags & valid_drop_flags);
  1668. }
  1669. static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci,
  1670. struct xhci_container_ctx *in_ctx)
  1671. {
  1672. struct xhci_input_control_ctx *ctrl_ctx;
  1673. u32 valid_add_flags;
  1674. u32 valid_drop_flags;
  1675. ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
  1676. valid_add_flags = ctrl_ctx->add_flags >> 2;
  1677. valid_drop_flags = ctrl_ctx->drop_flags >> 2;
  1678. return hweight32(valid_drop_flags) -
  1679. hweight32(valid_add_flags & valid_drop_flags);
  1680. }
  1681. /*
  1682. * We need to reserve the new number of endpoints before the configure endpoint
  1683. * command completes. We can't subtract the dropped endpoints from the number
  1684. * of active endpoints until the command completes because we can oversubscribe
  1685. * the host in this case:
  1686. *
  1687. * - the first configure endpoint command drops more endpoints than it adds
  1688. * - a second configure endpoint command that adds more endpoints is queued
  1689. * - the first configure endpoint command fails, so the config is unchanged
  1690. * - the second command may succeed, even though there isn't enough resources
  1691. *
  1692. * Must be called with xhci->lock held.
  1693. */
  1694. static int xhci_reserve_host_resources(struct xhci_hcd *xhci,
  1695. struct xhci_container_ctx *in_ctx)
  1696. {
  1697. u32 added_eps;
  1698. added_eps = xhci_count_num_new_endpoints(xhci, in_ctx);
  1699. if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) {
  1700. xhci_dbg(xhci, "Not enough ep ctxs: "
  1701. "%u active, need to add %u, limit is %u.\n",
  1702. xhci->num_active_eps, added_eps,
  1703. xhci->limit_active_eps);
  1704. return -ENOMEM;
  1705. }
  1706. xhci->num_active_eps += added_eps;
  1707. xhci_dbg(xhci, "Adding %u ep ctxs, %u now active.\n", added_eps,
  1708. xhci->num_active_eps);
  1709. return 0;
  1710. }
  1711. /*
  1712. * The configure endpoint was failed by the xHC for some other reason, so we
  1713. * need to revert the resources that failed configuration would have used.
  1714. *
  1715. * Must be called with xhci->lock held.
  1716. */
  1717. static void xhci_free_host_resources(struct xhci_hcd *xhci,
  1718. struct xhci_container_ctx *in_ctx)
  1719. {
  1720. u32 num_failed_eps;
  1721. num_failed_eps = xhci_count_num_new_endpoints(xhci, in_ctx);
  1722. xhci->num_active_eps -= num_failed_eps;
  1723. xhci_dbg(xhci, "Removing %u failed ep ctxs, %u now active.\n",
  1724. num_failed_eps,
  1725. xhci->num_active_eps);
  1726. }
  1727. /*
  1728. * Now that the command has completed, clean up the active endpoint count by
  1729. * subtracting out the endpoints that were dropped (but not changed).
  1730. *
  1731. * Must be called with xhci->lock held.
  1732. */
  1733. static void xhci_finish_resource_reservation(struct xhci_hcd *xhci,
  1734. struct xhci_container_ctx *in_ctx)
  1735. {
  1736. u32 num_dropped_eps;
  1737. num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, in_ctx);
  1738. xhci->num_active_eps -= num_dropped_eps;
  1739. if (num_dropped_eps)
  1740. xhci_dbg(xhci, "Removing %u dropped ep ctxs, %u now active.\n",
  1741. num_dropped_eps,
  1742. xhci->num_active_eps);
  1743. }
  1744. static unsigned int xhci_get_block_size(struct usb_device *udev)
  1745. {
  1746. switch (udev->speed) {
  1747. case USB_SPEED_LOW:
  1748. case USB_SPEED_FULL:
  1749. return FS_BLOCK;
  1750. case USB_SPEED_HIGH:
  1751. return HS_BLOCK;
  1752. case USB_SPEED_SUPER:
  1753. return SS_BLOCK;
  1754. case USB_SPEED_UNKNOWN:
  1755. case USB_SPEED_WIRELESS:
  1756. default:
  1757. /* Should never happen */
  1758. return 1;
  1759. }
  1760. }
  1761. static unsigned int
  1762. xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw)
  1763. {
  1764. if (interval_bw->overhead[LS_OVERHEAD_TYPE])
  1765. return LS_OVERHEAD;
  1766. if (interval_bw->overhead[FS_OVERHEAD_TYPE])
  1767. return FS_OVERHEAD;
  1768. return HS_OVERHEAD;
  1769. }
  1770. /* If we are changing a LS/FS device under a HS hub,
  1771. * make sure (if we are activating a new TT) that the HS bus has enough
  1772. * bandwidth for this new TT.
  1773. */
  1774. static int xhci_check_tt_bw_table(struct xhci_hcd *xhci,
  1775. struct xhci_virt_device *virt_dev,
  1776. int old_active_eps)
  1777. {
  1778. struct xhci_interval_bw_table *bw_table;
  1779. struct xhci_tt_bw_info *tt_info;
  1780. /* Find the bandwidth table for the root port this TT is attached to. */
  1781. bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table;
  1782. tt_info = virt_dev->tt_info;
  1783. /* If this TT already had active endpoints, the bandwidth for this TT
  1784. * has already been added. Removing all periodic endpoints (and thus
  1785. * making the TT enactive) will only decrease the bandwidth used.
  1786. */
  1787. if (old_active_eps)
  1788. return 0;
  1789. if (old_active_eps == 0 && tt_info->active_eps != 0) {
  1790. if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT)
  1791. return -ENOMEM;
  1792. return 0;
  1793. }
  1794. /* Not sure why we would have no new active endpoints...
  1795. *
  1796. * Maybe because of an Evaluate Context change for a hub update or a
  1797. * control endpoint 0 max packet size change?
  1798. * FIXME: skip the bandwidth calculation in that case.
  1799. */
  1800. return 0;
  1801. }
  1802. static int xhci_check_ss_bw(struct xhci_hcd *xhci,
  1803. struct xhci_virt_device *virt_dev)
  1804. {
  1805. unsigned int bw_reserved;
  1806. bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100);
  1807. if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved))
  1808. return -ENOMEM;
  1809. bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100);
  1810. if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved))
  1811. return -ENOMEM;
  1812. return 0;
  1813. }
  1814. /*
  1815. * This algorithm is a very conservative estimate of the worst-case scheduling
  1816. * scenario for any one interval. The hardware dynamically schedules the
  1817. * packets, so we can't tell which microframe could be the limiting factor in
  1818. * the bandwidth scheduling. This only takes into account periodic endpoints.
  1819. *
  1820. * Obviously, we can't solve an NP complete problem to find the minimum worst
  1821. * case scenario. Instead, we come up with an estimate that is no less than
  1822. * the worst case bandwidth used for any one microframe, but may be an
  1823. * over-estimate.
  1824. *
  1825. * We walk the requirements for each endpoint by interval, starting with the
  1826. * smallest interval, and place packets in the schedule where there is only one
  1827. * possible way to schedule packets for that interval. In order to simplify
  1828. * this algorithm, we record the largest max packet size for each interval, and
  1829. * assume all packets will be that size.
  1830. *
  1831. * For interval 0, we obviously must schedule all packets for each interval.
  1832. * The bandwidth for interval 0 is just the amount of data to be transmitted
  1833. * (the sum of all max ESIT payload sizes, plus any overhead per packet times
  1834. * the number of packets).
  1835. *
  1836. * For interval 1, we have two possible microframes to schedule those packets
  1837. * in. For this algorithm, if we can schedule the same number of packets for
  1838. * each possible scheduling opportunity (each microframe), we will do so. The
  1839. * remaining number of packets will be saved to be transmitted in the gaps in
  1840. * the next interval's scheduling sequence.
  1841. *
  1842. * As we move those remaining packets to be scheduled with interval 2 packets,
  1843. * we have to double the number of remaining packets to transmit. This is
  1844. * because the intervals are actually powers of 2, and we would be transmitting
  1845. * the previous interval's packets twice in this interval. We also have to be
  1846. * sure that when we look at the largest max packet size for this interval, we
  1847. * also look at the largest max packet size for the remaining packets and take
  1848. * the greater of the two.
  1849. *
  1850. * The algorithm continues to evenly distribute packets in each scheduling
  1851. * opportunity, and push the remaining packets out, until we get to the last
  1852. * interval. Then those packets and their associated overhead are just added
  1853. * to the bandwidth used.
  1854. */
  1855. static int xhci_check_bw_table(struct xhci_hcd *xhci,
  1856. struct xhci_virt_device *virt_dev,
  1857. int old_active_eps)
  1858. {
  1859. unsigned int bw_reserved;
  1860. unsigned int max_bandwidth;
  1861. unsigned int bw_used;
  1862. unsigned int block_size;
  1863. struct xhci_interval_bw_table *bw_table;
  1864. unsigned int packet_size = 0;
  1865. unsigned int overhead = 0;
  1866. unsigned int packets_transmitted = 0;
  1867. unsigned int packets_remaining = 0;
  1868. unsigned int i;
  1869. if (virt_dev->udev->speed == USB_SPEED_SUPER)
  1870. return xhci_check_ss_bw(xhci, virt_dev);
  1871. if (virt_dev->udev->speed == USB_SPEED_HIGH) {
  1872. max_bandwidth = HS_BW_LIMIT;
  1873. /* Convert percent of bus BW reserved to blocks reserved */
  1874. bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100);
  1875. } else {
  1876. max_bandwidth = FS_BW_LIMIT;
  1877. bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100);
  1878. }
  1879. bw_table = virt_dev->bw_table;
  1880. /* We need to translate the max packet size and max ESIT payloads into
  1881. * the units the hardware uses.
  1882. */
  1883. block_size = xhci_get_block_size(virt_dev->udev);
  1884. /* If we are manipulating a LS/FS device under a HS hub, double check
  1885. * that the HS bus has enough bandwidth if we are activing a new TT.
  1886. */
  1887. if (virt_dev->tt_info) {
  1888. xhci_dbg(xhci, "Recalculating BW for rootport %u\n",
  1889. virt_dev->real_port);
  1890. if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) {
  1891. xhci_warn(xhci, "Not enough bandwidth on HS bus for "
  1892. "newly activated TT.\n");
  1893. return -ENOMEM;
  1894. }
  1895. xhci_dbg(xhci, "Recalculating BW for TT slot %u port %u\n",
  1896. virt_dev->tt_info->slot_id,
  1897. virt_dev->tt_info->ttport);
  1898. } else {
  1899. xhci_dbg(xhci, "Recalculating BW for rootport %u\n",
  1900. virt_dev->real_port);
  1901. }
  1902. /* Add in how much bandwidth will be used for interval zero, or the
  1903. * rounded max ESIT payload + number of packets * largest overhead.
  1904. */
  1905. bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) +
  1906. bw_table->interval_bw[0].num_packets *
  1907. xhci_get_largest_overhead(&bw_table->interval_bw[0]);
  1908. for (i = 1; i < XHCI_MAX_INTERVAL; i++) {
  1909. unsigned int bw_added;
  1910. unsigned int largest_mps;
  1911. unsigned int interval_overhead;
  1912. /*
  1913. * How many packets could we transmit in this interval?
  1914. * If packets didn't fit in the previous interval, we will need
  1915. * to transmit that many packets twice within this interval.
  1916. */
  1917. packets_remaining = 2 * packets_remaining +
  1918. bw_table->interval_bw[i].num_packets;
  1919. /* Find the largest max packet size of this or the previous
  1920. * interval.
  1921. */
  1922. if (list_empty(&bw_table->interval_bw[i].endpoints))
  1923. largest_mps = 0;
  1924. else {
  1925. struct xhci_virt_ep *virt_ep;
  1926. struct list_head *ep_entry;
  1927. ep_entry = bw_table->interval_bw[i].endpoints.next;
  1928. virt_ep = list_entry(ep_entry,
  1929. struct xhci_virt_ep, bw_endpoint_list);
  1930. /* Convert to blocks, rounding up */
  1931. largest_mps = DIV_ROUND_UP(
  1932. virt_ep->bw_info.max_packet_size,
  1933. block_size);
  1934. }
  1935. if (largest_mps > packet_size)
  1936. packet_size = largest_mps;
  1937. /* Use the larger overhead of this or the previous interval. */
  1938. interval_overhead = xhci_get_largest_overhead(
  1939. &bw_table->interval_bw[i]);
  1940. if (interval_overhead > overhead)
  1941. overhead = interval_overhead;
  1942. /* How many packets can we evenly distribute across
  1943. * (1 << (i + 1)) possible scheduling opportunities?
  1944. */
  1945. packets_transmitted = packets_remaining >> (i + 1);
  1946. /* Add in the bandwidth used for those scheduled packets */
  1947. bw_added = packets_transmitted * (overhead + packet_size);
  1948. /* How many packets do we have remaining to transmit? */
  1949. packets_remaining = packets_remaining % (1 << (i + 1));
  1950. /* What largest max packet size should those packets have? */
  1951. /* If we've transmitted all packets, don't carry over the
  1952. * largest packet size.
  1953. */
  1954. if (packets_remaining == 0) {
  1955. packet_size = 0;
  1956. overhead = 0;
  1957. } else if (packets_transmitted > 0) {
  1958. /* Otherwise if we do have remaining packets, and we've
  1959. * scheduled some packets in this interval, take the
  1960. * largest max packet size from endpoints with this
  1961. * interval.
  1962. */
  1963. packet_size = largest_mps;
  1964. overhead = interval_overhead;
  1965. }
  1966. /* Otherwise carry over packet_size and overhead from the last
  1967. * time we had a remainder.
  1968. */
  1969. bw_used += bw_added;
  1970. if (bw_used > max_bandwidth) {
  1971. xhci_warn(xhci, "Not enough bandwidth. "
  1972. "Proposed: %u, Max: %u\n",
  1973. bw_used, max_bandwidth);
  1974. return -ENOMEM;
  1975. }
  1976. }
  1977. /*
  1978. * Ok, we know we have some packets left over after even-handedly
  1979. * scheduling interval 15. We don't know which microframes they will
  1980. * fit into, so we over-schedule and say they will be scheduled every
  1981. * microframe.
  1982. */
  1983. if (packets_remaining > 0)
  1984. bw_used += overhead + packet_size;
  1985. if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) {
  1986. unsigned int port_index = virt_dev->real_port - 1;
  1987. /* OK, we're manipulating a HS device attached to a
  1988. * root port bandwidth domain. Include the number of active TTs
  1989. * in the bandwidth used.
  1990. */
  1991. bw_used += TT_HS_OVERHEAD *
  1992. xhci->rh_bw[port_index].num_active_tts;
  1993. }
  1994. xhci_dbg(xhci, "Final bandwidth: %u, Limit: %u, Reserved: %u, "
  1995. "Available: %u " "percent\n",
  1996. bw_used, max_bandwidth, bw_reserved,
  1997. (max_bandwidth - bw_used - bw_reserved) * 100 /
  1998. max_bandwidth);
  1999. bw_used += bw_reserved;
  2000. if (bw_used > max_bandwidth) {
  2001. xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n",
  2002. bw_used, max_bandwidth);
  2003. return -ENOMEM;
  2004. }
  2005. bw_table->bw_used = bw_used;
  2006. return 0;
  2007. }
  2008. static bool xhci_is_async_ep(unsigned int ep_type)
  2009. {
  2010. return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
  2011. ep_type != ISOC_IN_EP &&
  2012. ep_type != INT_IN_EP);
  2013. }
  2014. static bool xhci_is_sync_in_ep(unsigned int ep_type)
  2015. {
  2016. return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP);
  2017. }
  2018. static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw)
  2019. {
  2020. unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK);
  2021. if (ep_bw->ep_interval == 0)
  2022. return SS_OVERHEAD_BURST +
  2023. (ep_bw->mult * ep_bw->num_packets *
  2024. (SS_OVERHEAD + mps));
  2025. return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets *
  2026. (SS_OVERHEAD + mps + SS_OVERHEAD_BURST),
  2027. 1 << ep_bw->ep_interval);
  2028. }
  2029. void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci,
  2030. struct xhci_bw_info *ep_bw,
  2031. struct xhci_interval_bw_table *bw_table,
  2032. struct usb_device *udev,
  2033. struct xhci_virt_ep *virt_ep,
  2034. struct xhci_tt_bw_info *tt_info)
  2035. {
  2036. struct xhci_interval_bw *interval_bw;
  2037. int normalized_interval;
  2038. if (xhci_is_async_ep(ep_bw->type))
  2039. return;
  2040. if (udev->speed == USB_SPEED_SUPER) {
  2041. if (xhci_is_sync_in_ep(ep_bw->type))
  2042. xhci->devs[udev->slot_id]->bw_table->ss_bw_in -=
  2043. xhci_get_ss_bw_consumed(ep_bw);
  2044. else
  2045. xhci->devs[udev->slot_id]->bw_table->ss_bw_out -=
  2046. xhci_get_ss_bw_consumed(ep_bw);
  2047. return;
  2048. }
  2049. /* SuperSpeed endpoints never get added to intervals in the table, so
  2050. * this check is only valid for HS/FS/LS devices.
  2051. */
  2052. if (list_empty(&virt_ep->bw_endpoint_list))
  2053. return;
  2054. /* For LS/FS devices, we need to translate the interval expressed in
  2055. * microframes to frames.
  2056. */
  2057. if (udev->speed == USB_SPEED_HIGH)
  2058. normalized_interval = ep_bw->ep_interval;
  2059. else
  2060. normalized_interval = ep_bw->ep_interval - 3;
  2061. if (normalized_interval == 0)
  2062. bw_table->interval0_esit_payload -= ep_bw->max_esit_payload;
  2063. interval_bw = &bw_table->interval_bw[normalized_interval];
  2064. interval_bw->num_packets -= ep_bw->num_packets;
  2065. switch (udev->speed) {
  2066. case USB_SPEED_LOW:
  2067. interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1;
  2068. break;
  2069. case USB_SPEED_FULL:
  2070. interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1;
  2071. break;
  2072. case USB_SPEED_HIGH:
  2073. interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1;
  2074. break;
  2075. case USB_SPEED_SUPER:
  2076. case USB_SPEED_UNKNOWN:
  2077. case USB_SPEED_WIRELESS:
  2078. /* Should never happen because only LS/FS/HS endpoints will get
  2079. * added to the endpoint list.
  2080. */
  2081. return;
  2082. }
  2083. if (tt_info)
  2084. tt_info->active_eps -= 1;
  2085. list_del_init(&virt_ep->bw_endpoint_list);
  2086. }
  2087. static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci,
  2088. struct xhci_bw_info *ep_bw,
  2089. struct xhci_interval_bw_table *bw_table,
  2090. struct usb_device *udev,
  2091. struct xhci_virt_ep *virt_ep,
  2092. struct xhci_tt_bw_info *tt_info)
  2093. {
  2094. struct xhci_interval_bw *interval_bw;
  2095. struct xhci_virt_ep *smaller_ep;
  2096. int normalized_interval;
  2097. if (xhci_is_async_ep(ep_bw->type))
  2098. return;
  2099. if (udev->speed == USB_SPEED_SUPER) {
  2100. if (xhci_is_sync_in_ep(ep_bw->type))
  2101. xhci->devs[udev->slot_id]->bw_table->ss_bw_in +=
  2102. xhci_get_ss_bw_consumed(ep_bw);
  2103. else
  2104. xhci->devs[udev->slot_id]->bw_table->ss_bw_out +=
  2105. xhci_get_ss_bw_consumed(ep_bw);
  2106. return;
  2107. }
  2108. /* For LS/FS devices, we need to translate the interval expressed in
  2109. * microframes to frames.
  2110. */
  2111. if (udev->speed == USB_SPEED_HIGH)
  2112. normalized_interval = ep_bw->ep_interval;
  2113. else
  2114. normalized_interval = ep_bw->ep_interval - 3;
  2115. if (normalized_interval == 0)
  2116. bw_table->interval0_esit_payload += ep_bw->max_esit_payload;
  2117. interval_bw = &bw_table->interval_bw[normalized_interval];
  2118. interval_bw->num_packets += ep_bw->num_packets;
  2119. switch (udev->speed) {
  2120. case USB_SPEED_LOW:
  2121. interval_bw->overhead[LS_OVERHEAD_TYPE] += 1;
  2122. break;
  2123. case USB_SPEED_FULL:
  2124. interval_bw->overhead[FS_OVERHEAD_TYPE] += 1;
  2125. break;
  2126. case USB_SPEED_HIGH:
  2127. interval_bw->overhead[HS_OVERHEAD_TYPE] += 1;
  2128. break;
  2129. case USB_SPEED_SUPER:
  2130. case USB_SPEED_UNKNOWN:
  2131. case USB_SPEED_WIRELESS:
  2132. /* Should never happen because only LS/FS/HS endpoints will get
  2133. * added to the endpoint list.
  2134. */
  2135. return;
  2136. }
  2137. if (tt_info)
  2138. tt_info->active_eps += 1;
  2139. /* Insert the endpoint into the list, largest max packet size first. */
  2140. list_for_each_entry(smaller_ep, &interval_bw->endpoints,
  2141. bw_endpoint_list) {
  2142. if (ep_bw->max_packet_size >=
  2143. smaller_ep->bw_info.max_packet_size) {
  2144. /* Add the new ep before the smaller endpoint */
  2145. list_add_tail(&virt_ep->bw_endpoint_list,
  2146. &smaller_ep->bw_endpoint_list);
  2147. return;
  2148. }
  2149. }
  2150. /* Add the new endpoint at the end of the list. */
  2151. list_add_tail(&virt_ep->bw_endpoint_list,
  2152. &interval_bw->endpoints);
  2153. }
  2154. void xhci_update_tt_active_eps(struct xhci_hcd *xhci,
  2155. struct xhci_virt_device *virt_dev,
  2156. int old_active_eps)
  2157. {
  2158. struct xhci_root_port_bw_info *rh_bw_info;
  2159. if (!virt_dev->tt_info)
  2160. return;
  2161. rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1];
  2162. if (old_active_eps == 0 &&
  2163. virt_dev->tt_info->active_eps != 0) {
  2164. rh_bw_info->num_active_tts += 1;
  2165. rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD;
  2166. } else if (old_active_eps != 0 &&
  2167. virt_dev->tt_info->active_eps == 0) {
  2168. rh_bw_info->num_active_tts -= 1;
  2169. rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD;
  2170. }
  2171. }
  2172. static int xhci_reserve_bandwidth(struct xhci_hcd *xhci,
  2173. struct xhci_virt_device *virt_dev,
  2174. struct xhci_container_ctx *in_ctx)
  2175. {
  2176. struct xhci_bw_info ep_bw_info[31];
  2177. int i;
  2178. struct xhci_input_control_ctx *ctrl_ctx;
  2179. int old_active_eps = 0;
  2180. if (virt_dev->tt_info)
  2181. old_active_eps = virt_dev->tt_info->active_eps;
  2182. ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
  2183. for (i = 0; i < 31; i++) {
  2184. if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
  2185. continue;
  2186. /* Make a copy of the BW info in case we need to revert this */
  2187. memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info,
  2188. sizeof(ep_bw_info[i]));
  2189. /* Drop the endpoint from the interval table if the endpoint is
  2190. * being dropped or changed.
  2191. */
  2192. if (EP_IS_DROPPED(ctrl_ctx, i))
  2193. xhci_drop_ep_from_interval_table(xhci,
  2194. &virt_dev->eps[i].bw_info,
  2195. virt_dev->bw_table,
  2196. virt_dev->udev,
  2197. &virt_dev->eps[i],
  2198. virt_dev->tt_info);
  2199. }
  2200. /* Overwrite the information stored in the endpoints' bw_info */
  2201. xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev);
  2202. for (i = 0; i < 31; i++) {
  2203. /* Add any changed or added endpoints to the interval table */
  2204. if (EP_IS_ADDED(ctrl_ctx, i))
  2205. xhci_add_ep_to_interval_table(xhci,
  2206. &virt_dev->eps[i].bw_info,
  2207. virt_dev->bw_table,
  2208. virt_dev->udev,
  2209. &virt_dev->eps[i],
  2210. virt_dev->tt_info);
  2211. }
  2212. if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) {
  2213. /* Ok, this fits in the bandwidth we have.
  2214. * Update the number of active TTs.
  2215. */
  2216. xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
  2217. return 0;
  2218. }
  2219. /* We don't have enough bandwidth for this, revert the stored info. */
  2220. for (i = 0; i < 31; i++) {
  2221. if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
  2222. continue;
  2223. /* Drop the new copies of any added or changed endpoints from
  2224. * the interval table.
  2225. */
  2226. if (EP_IS_ADDED(ctrl_ctx, i)) {
  2227. xhci_drop_ep_from_interval_table(xhci,
  2228. &virt_dev->eps[i].bw_info,
  2229. virt_dev->bw_table,
  2230. virt_dev->udev,
  2231. &virt_dev->eps[i],
  2232. virt_dev->tt_info);
  2233. }
  2234. /* Revert the endpoint back to its old information */
  2235. memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i],
  2236. sizeof(ep_bw_info[i]));
  2237. /* Add any changed or dropped endpoints back into the table */
  2238. if (EP_IS_DROPPED(ctrl_ctx, i))
  2239. xhci_add_ep_to_interval_table(xhci,
  2240. &virt_dev->eps[i].bw_info,
  2241. virt_dev->bw_table,
  2242. virt_dev->udev,
  2243. &virt_dev->eps[i],
  2244. virt_dev->tt_info);
  2245. }
  2246. return -ENOMEM;
  2247. }
  2248. /* Issue a configure endpoint command or evaluate context command
  2249. * and wait for it to finish.
  2250. */
  2251. static int xhci_configure_endpoint(struct xhci_hcd *xhci,
  2252. struct usb_device *udev,
  2253. struct xhci_command *command,
  2254. bool ctx_change, bool must_succeed)
  2255. {
  2256. int ret;
  2257. int timeleft;
  2258. unsigned long flags;
  2259. struct xhci_container_ctx *in_ctx;
  2260. struct completion *cmd_completion;
  2261. u32 *cmd_status;
  2262. struct xhci_virt_device *virt_dev;
  2263. union xhci_trb *cmd_trb;
  2264. spin_lock_irqsave(&xhci->lock, flags);
  2265. virt_dev = xhci->devs[udev->slot_id];
  2266. if (command)
  2267. in_ctx = command->in_ctx;
  2268. else
  2269. in_ctx = virt_dev->in_ctx;
  2270. if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) &&
  2271. xhci_reserve_host_resources(xhci, in_ctx)) {
  2272. spin_unlock_irqrestore(&xhci->lock, flags);
  2273. xhci_warn(xhci, "Not enough host resources, "
  2274. "active endpoint contexts = %u\n",
  2275. xhci->num_active_eps);
  2276. return -ENOMEM;
  2277. }
  2278. if ((xhci->quirks & XHCI_SW_BW_CHECKING) &&
  2279. xhci_reserve_bandwidth(xhci, virt_dev, in_ctx)) {
  2280. if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
  2281. xhci_free_host_resources(xhci, in_ctx);
  2282. spin_unlock_irqrestore(&xhci->lock, flags);
  2283. xhci_warn(xhci, "Not enough bandwidth\n");
  2284. return -ENOMEM;
  2285. }
  2286. if (command) {
  2287. cmd_completion = command->completion;
  2288. cmd_status = &command->status;
  2289. command->command_trb = xhci->cmd_ring->enqueue;
  2290. /* Enqueue pointer can be left pointing to the link TRB,
  2291. * we must handle that
  2292. */
  2293. if (TRB_TYPE_LINK_LE32(command->command_trb->link.control))
  2294. command->command_trb =
  2295. xhci->cmd_ring->enq_seg->next->trbs;
  2296. list_add_tail(&command->cmd_list, &virt_dev->cmd_list);
  2297. } else {
  2298. cmd_completion = &virt_dev->cmd_completion;
  2299. cmd_status = &virt_dev->cmd_status;
  2300. }
  2301. init_completion(cmd_completion);
  2302. cmd_trb = xhci->cmd_ring->dequeue;
  2303. if (!ctx_change)
  2304. ret = xhci_queue_configure_endpoint(xhci, in_ctx->dma,
  2305. udev->slot_id, must_succeed);
  2306. else
  2307. ret = xhci_queue_evaluate_context(xhci, in_ctx->dma,
  2308. udev->slot_id, must_succeed);
  2309. if (ret < 0) {
  2310. if (command)
  2311. list_del(&command->cmd_list);
  2312. if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
  2313. xhci_free_host_resources(xhci, in_ctx);
  2314. spin_unlock_irqrestore(&xhci->lock, flags);
  2315. xhci_dbg(xhci, "FIXME allocate a new ring segment\n");
  2316. return -ENOMEM;
  2317. }
  2318. xhci_ring_cmd_db(xhci);
  2319. spin_unlock_irqrestore(&xhci->lock, flags);
  2320. /* Wait for the configure endpoint command to complete */
  2321. timeleft = wait_for_completion_interruptible_timeout(
  2322. cmd_completion,
  2323. XHCI_CMD_DEFAULT_TIMEOUT);
  2324. if (timeleft <= 0) {
  2325. xhci_warn(xhci, "%s while waiting for %s command\n",
  2326. timeleft == 0 ? "Timeout" : "Signal",
  2327. ctx_change == 0 ?
  2328. "configure endpoint" :
  2329. "evaluate context");
  2330. /* cancel the configure endpoint command */
  2331. ret = xhci_cancel_cmd(xhci, command, cmd_trb);
  2332. if (ret < 0)
  2333. return ret;
  2334. return -ETIME;
  2335. }
  2336. if (!ctx_change)
  2337. ret = xhci_configure_endpoint_result(xhci, udev, cmd_status);
  2338. else
  2339. ret = xhci_evaluate_context_result(xhci, udev, cmd_status);
  2340. if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
  2341. spin_lock_irqsave(&xhci->lock, flags);
  2342. /* If the command failed, remove the reserved resources.
  2343. * Otherwise, clean up the estimate to include dropped eps.
  2344. */
  2345. if (ret)
  2346. xhci_free_host_resources(xhci, in_ctx);
  2347. else
  2348. xhci_finish_resource_reservation(xhci, in_ctx);
  2349. spin_unlock_irqrestore(&xhci->lock, flags);
  2350. }
  2351. return ret;
  2352. }
  2353. /* Called after one or more calls to xhci_add_endpoint() or
  2354. * xhci_drop_endpoint(). If this call fails, the USB core is expected
  2355. * to call xhci_reset_bandwidth().
  2356. *
  2357. * Since we are in the middle of changing either configuration or
  2358. * installing a new alt setting, the USB core won't allow URBs to be
  2359. * enqueued for any endpoint on the old config or interface. Nothing
  2360. * else should be touching the xhci->devs[slot_id] structure, so we
  2361. * don't need to take the xhci->lock for manipulating that.
  2362. */
  2363. int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
  2364. {
  2365. int i;
  2366. int ret = 0;
  2367. struct xhci_hcd *xhci;
  2368. struct xhci_virt_device *virt_dev;
  2369. struct xhci_input_control_ctx *ctrl_ctx;
  2370. struct xhci_slot_ctx *slot_ctx;
  2371. ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
  2372. if (ret <= 0)
  2373. return ret;
  2374. xhci = hcd_to_xhci(hcd);
  2375. if (xhci->xhc_state & XHCI_STATE_DYING)
  2376. return -ENODEV;
  2377. xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
  2378. virt_dev = xhci->devs[udev->slot_id];
  2379. /* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */
  2380. ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
  2381. ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
  2382. ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG);
  2383. ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG));
  2384. /* Don't issue the command if there's no endpoints to update. */
  2385. if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) &&
  2386. ctrl_ctx->drop_flags == 0)
  2387. return 0;
  2388. xhci_dbg(xhci, "New Input Control Context:\n");
  2389. slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
  2390. xhci_dbg_ctx(xhci, virt_dev->in_ctx,
  2391. LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info)));
  2392. ret = xhci_configure_endpoint(xhci, udev, NULL,
  2393. false, false);
  2394. if (ret) {
  2395. /* Callee should call reset_bandwidth() */
  2396. return ret;
  2397. }
  2398. xhci_dbg(xhci, "Output context after successful config ep cmd:\n");
  2399. xhci_dbg_ctx(xhci, virt_dev->out_ctx,
  2400. LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info)));
  2401. /* Free any rings that were dropped, but not changed. */
  2402. for (i = 1; i < 31; ++i) {
  2403. if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) &&
  2404. !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1))))
  2405. xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
  2406. }
  2407. xhci_zero_in_ctx(xhci, virt_dev);
  2408. /*
  2409. * Install any rings for completely new endpoints or changed endpoints,
  2410. * and free or cache any old rings from changed endpoints.
  2411. */
  2412. for (i = 1; i < 31; ++i) {
  2413. if (!virt_dev->eps[i].new_ring)
  2414. continue;
  2415. /* Only cache or free the old ring if it exists.
  2416. * It may not if this is the first add of an endpoint.
  2417. */
  2418. if (virt_dev->eps[i].ring) {
  2419. xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
  2420. }
  2421. virt_dev->eps[i].ring = virt_dev->eps[i].new_ring;
  2422. virt_dev->eps[i].new_ring = NULL;
  2423. }
  2424. return ret;
  2425. }
  2426. void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
  2427. {
  2428. struct xhci_hcd *xhci;
  2429. struct xhci_virt_device *virt_dev;
  2430. int i, ret;
  2431. ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
  2432. if (ret <= 0)
  2433. return;
  2434. xhci = hcd_to_xhci(hcd);
  2435. xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
  2436. virt_dev = xhci->devs[udev->slot_id];
  2437. /* Free any rings allocated for added endpoints */
  2438. for (i = 0; i < 31; ++i) {
  2439. if (virt_dev->eps[i].new_ring) {
  2440. xhci_ring_free(xhci, virt_dev->eps[i].new_ring);
  2441. virt_dev->eps[i].new_ring = NULL;
  2442. }
  2443. }
  2444. xhci_zero_in_ctx(xhci, virt_dev);
  2445. }
  2446. static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci,
  2447. struct xhci_container_ctx *in_ctx,
  2448. struct xhci_container_ctx *out_ctx,
  2449. u32 add_flags, u32 drop_flags)
  2450. {
  2451. struct xhci_input_control_ctx *ctrl_ctx;
  2452. ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
  2453. ctrl_ctx->add_flags = cpu_to_le32(add_flags);
  2454. ctrl_ctx->drop_flags = cpu_to_le32(drop_flags);
  2455. xhci_slot_copy(xhci, in_ctx, out_ctx);
  2456. ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
  2457. xhci_dbg(xhci, "Input Context:\n");
  2458. xhci_dbg_ctx(xhci, in_ctx, xhci_last_valid_endpoint(add_flags));
  2459. }
  2460. static void xhci_setup_input_ctx_for_quirk(struct xhci_hcd *xhci,
  2461. unsigned int slot_id, unsigned int ep_index,
  2462. struct xhci_dequeue_state *deq_state)
  2463. {
  2464. struct xhci_container_ctx *in_ctx;
  2465. struct xhci_ep_ctx *ep_ctx;
  2466. u32 added_ctxs;
  2467. dma_addr_t addr;
  2468. xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
  2469. xhci->devs[slot_id]->out_ctx, ep_index);
  2470. in_ctx = xhci->devs[slot_id]->in_ctx;
  2471. ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
  2472. addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg,
  2473. deq_state->new_deq_ptr);
  2474. if (addr == 0) {
  2475. xhci_warn(xhci, "WARN Cannot submit config ep after "
  2476. "reset ep command\n");
  2477. xhci_warn(xhci, "WARN deq seg = %p, deq ptr = %p\n",
  2478. deq_state->new_deq_seg,
  2479. deq_state->new_deq_ptr);
  2480. return;
  2481. }
  2482. ep_ctx->deq = cpu_to_le64(addr | deq_state->new_cycle_state);
  2483. added_ctxs = xhci_get_endpoint_flag_from_index(ep_index);
  2484. xhci_setup_input_ctx_for_config_ep(xhci, xhci->devs[slot_id]->in_ctx,
  2485. xhci->devs[slot_id]->out_ctx, added_ctxs, added_ctxs);
  2486. }
  2487. void xhci_cleanup_stalled_ring(struct xhci_hcd *xhci,
  2488. struct usb_device *udev, unsigned int ep_index)
  2489. {
  2490. struct xhci_dequeue_state deq_state;
  2491. struct xhci_virt_ep *ep;
  2492. xhci_dbg(xhci, "Cleaning up stalled endpoint ring\n");
  2493. ep = &xhci->devs[udev->slot_id]->eps[ep_index];
  2494. /* We need to move the HW's dequeue pointer past this TD,
  2495. * or it will attempt to resend it on the next doorbell ring.
  2496. */
  2497. xhci_find_new_dequeue_state(xhci, udev->slot_id,
  2498. ep_index, ep->stopped_stream, ep->stopped_td,
  2499. &deq_state);
  2500. /* HW with the reset endpoint quirk will use the saved dequeue state to
  2501. * issue a configure endpoint command later.
  2502. */
  2503. if (!(xhci->quirks & XHCI_RESET_EP_QUIRK)) {
  2504. xhci_dbg(xhci, "Queueing new dequeue state\n");
  2505. xhci_queue_new_dequeue_state(xhci, udev->slot_id,
  2506. ep_index, ep->stopped_stream, &deq_state);
  2507. } else {
  2508. /* Better hope no one uses the input context between now and the
  2509. * reset endpoint completion!
  2510. * XXX: No idea how this hardware will react when stream rings
  2511. * are enabled.
  2512. */
  2513. xhci_dbg(xhci, "Setting up input context for "
  2514. "configure endpoint command\n");
  2515. xhci_setup_input_ctx_for_quirk(xhci, udev->slot_id,
  2516. ep_index, &deq_state);
  2517. }
  2518. }
  2519. /* Deal with stalled endpoints. The core should have sent the control message
  2520. * to clear the halt condition. However, we need to make the xHCI hardware
  2521. * reset its sequence number, since a device will expect a sequence number of
  2522. * zero after the halt condition is cleared.
  2523. * Context: in_interrupt
  2524. */
  2525. void xhci_endpoint_reset(struct usb_hcd *hcd,
  2526. struct usb_host_endpoint *ep)
  2527. {
  2528. struct xhci_hcd *xhci;
  2529. struct usb_device *udev;
  2530. unsigned int ep_index;
  2531. unsigned long flags;
  2532. int ret;
  2533. struct xhci_virt_ep *virt_ep;
  2534. xhci = hcd_to_xhci(hcd);
  2535. udev = (struct usb_device *) ep->hcpriv;
  2536. /* Called with a root hub endpoint (or an endpoint that wasn't added
  2537. * with xhci_add_endpoint()
  2538. */
  2539. if (!ep->hcpriv)
  2540. return;
  2541. ep_index = xhci_get_endpoint_index(&ep->desc);
  2542. virt_ep = &xhci->devs[udev->slot_id]->eps[ep_index];
  2543. if (!virt_ep->stopped_td) {
  2544. xhci_dbg(xhci, "Endpoint 0x%x not halted, refusing to reset.\n",
  2545. ep->desc.bEndpointAddress);
  2546. return;
  2547. }
  2548. if (usb_endpoint_xfer_control(&ep->desc)) {
  2549. xhci_dbg(xhci, "Control endpoint stall already handled.\n");
  2550. return;
  2551. }
  2552. xhci_dbg(xhci, "Queueing reset endpoint command\n");
  2553. spin_lock_irqsave(&xhci->lock, flags);
  2554. ret = xhci_queue_reset_ep(xhci, udev->slot_id, ep_index);
  2555. /*
  2556. * Can't change the ring dequeue pointer until it's transitioned to the
  2557. * stopped state, which is only upon a successful reset endpoint
  2558. * command. Better hope that last command worked!
  2559. */
  2560. if (!ret) {
  2561. xhci_cleanup_stalled_ring(xhci, udev, ep_index);
  2562. kfree(virt_ep->stopped_td);
  2563. xhci_ring_cmd_db(xhci);
  2564. }
  2565. virt_ep->stopped_td = NULL;
  2566. virt_ep->stopped_trb = NULL;
  2567. virt_ep->stopped_stream = 0;
  2568. spin_unlock_irqrestore(&xhci->lock, flags);
  2569. if (ret)
  2570. xhci_warn(xhci, "FIXME allocate a new ring segment\n");
  2571. }
  2572. static int xhci_check_streams_endpoint(struct xhci_hcd *xhci,
  2573. struct usb_device *udev, struct usb_host_endpoint *ep,
  2574. unsigned int slot_id)
  2575. {
  2576. int ret;
  2577. unsigned int ep_index;
  2578. unsigned int ep_state;
  2579. if (!ep)
  2580. return -EINVAL;
  2581. ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__);
  2582. if (ret <= 0)
  2583. return -EINVAL;
  2584. if (ep->ss_ep_comp.bmAttributes == 0) {
  2585. xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion"
  2586. " descriptor for ep 0x%x does not support streams\n",
  2587. ep->desc.bEndpointAddress);
  2588. return -EINVAL;
  2589. }
  2590. ep_index = xhci_get_endpoint_index(&ep->desc);
  2591. ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
  2592. if (ep_state & EP_HAS_STREAMS ||
  2593. ep_state & EP_GETTING_STREAMS) {
  2594. xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x "
  2595. "already has streams set up.\n",
  2596. ep->desc.bEndpointAddress);
  2597. xhci_warn(xhci, "Send email to xHCI maintainer and ask for "
  2598. "dynamic stream context array reallocation.\n");
  2599. return -EINVAL;
  2600. }
  2601. if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) {
  2602. xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk "
  2603. "endpoint 0x%x; URBs are pending.\n",
  2604. ep->desc.bEndpointAddress);
  2605. return -EINVAL;
  2606. }
  2607. return 0;
  2608. }
  2609. static void xhci_calculate_streams_entries(struct xhci_hcd *xhci,
  2610. unsigned int *num_streams, unsigned int *num_stream_ctxs)
  2611. {
  2612. unsigned int max_streams;
  2613. /* The stream context array size must be a power of two */
  2614. *num_stream_ctxs = roundup_pow_of_two(*num_streams);
  2615. /*
  2616. * Find out how many primary stream array entries the host controller
  2617. * supports. Later we may use secondary stream arrays (similar to 2nd
  2618. * level page entries), but that's an optional feature for xHCI host
  2619. * controllers. xHCs must support at least 4 stream IDs.
  2620. */
  2621. max_streams = HCC_MAX_PSA(xhci->hcc_params);
  2622. if (*num_stream_ctxs > max_streams) {
  2623. xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n",
  2624. max_streams);
  2625. *num_stream_ctxs = max_streams;
  2626. *num_streams = max_streams;
  2627. }
  2628. }
  2629. /* Returns an error code if one of the endpoint already has streams.
  2630. * This does not change any data structures, it only checks and gathers
  2631. * information.
  2632. */
  2633. static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci,
  2634. struct usb_device *udev,
  2635. struct usb_host_endpoint **eps, unsigned int num_eps,
  2636. unsigned int *num_streams, u32 *changed_ep_bitmask)
  2637. {
  2638. unsigned int max_streams;
  2639. unsigned int endpoint_flag;
  2640. int i;
  2641. int ret;
  2642. for (i = 0; i < num_eps; i++) {
  2643. ret = xhci_check_streams_endpoint(xhci, udev,
  2644. eps[i], udev->slot_id);
  2645. if (ret < 0)
  2646. return ret;
  2647. max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp);
  2648. if (max_streams < (*num_streams - 1)) {
  2649. xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n",
  2650. eps[i]->desc.bEndpointAddress,
  2651. max_streams);
  2652. *num_streams = max_streams+1;
  2653. }
  2654. endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc);
  2655. if (*changed_ep_bitmask & endpoint_flag)
  2656. return -EINVAL;
  2657. *changed_ep_bitmask |= endpoint_flag;
  2658. }
  2659. return 0;
  2660. }
  2661. static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci,
  2662. struct usb_device *udev,
  2663. struct usb_host_endpoint **eps, unsigned int num_eps)
  2664. {
  2665. u32 changed_ep_bitmask = 0;
  2666. unsigned int slot_id;
  2667. unsigned int ep_index;
  2668. unsigned int ep_state;
  2669. int i;
  2670. slot_id = udev->slot_id;
  2671. if (!xhci->devs[slot_id])
  2672. return 0;
  2673. for (i = 0; i < num_eps; i++) {
  2674. ep_index = xhci_get_endpoint_index(&eps[i]->desc);
  2675. ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
  2676. /* Are streams already being freed for the endpoint? */
  2677. if (ep_state & EP_GETTING_NO_STREAMS) {
  2678. xhci_warn(xhci, "WARN Can't disable streams for "
  2679. "endpoint 0x%x\n, "
  2680. "streams are being disabled already.",
  2681. eps[i]->desc.bEndpointAddress);
  2682. return 0;
  2683. }
  2684. /* Are there actually any streams to free? */
  2685. if (!(ep_state & EP_HAS_STREAMS) &&
  2686. !(ep_state & EP_GETTING_STREAMS)) {
  2687. xhci_warn(xhci, "WARN Can't disable streams for "
  2688. "endpoint 0x%x\n, "
  2689. "streams are already disabled!",
  2690. eps[i]->desc.bEndpointAddress);
  2691. xhci_warn(xhci, "WARN xhci_free_streams() called "
  2692. "with non-streams endpoint\n");
  2693. return 0;
  2694. }
  2695. changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc);
  2696. }
  2697. return changed_ep_bitmask;
  2698. }
  2699. /*
  2700. * The USB device drivers use this function (though the HCD interface in USB
  2701. * core) to prepare a set of bulk endpoints to use streams. Streams are used to
  2702. * coordinate mass storage command queueing across multiple endpoints (basically
  2703. * a stream ID == a task ID).
  2704. *
  2705. * Setting up streams involves allocating the same size stream context array
  2706. * for each endpoint and issuing a configure endpoint command for all endpoints.
  2707. *
  2708. * Don't allow the call to succeed if one endpoint only supports one stream
  2709. * (which means it doesn't support streams at all).
  2710. *
  2711. * Drivers may get less stream IDs than they asked for, if the host controller
  2712. * hardware or endpoints claim they can't support the number of requested
  2713. * stream IDs.
  2714. */
  2715. int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev,
  2716. struct usb_host_endpoint **eps, unsigned int num_eps,
  2717. unsigned int num_streams, gfp_t mem_flags)
  2718. {
  2719. int i, ret;
  2720. struct xhci_hcd *xhci;
  2721. struct xhci_virt_device *vdev;
  2722. struct xhci_command *config_cmd;
  2723. unsigned int ep_index;
  2724. unsigned int num_stream_ctxs;
  2725. unsigned long flags;
  2726. u32 changed_ep_bitmask = 0;
  2727. if (!eps)
  2728. return -EINVAL;
  2729. /* Add one to the number of streams requested to account for
  2730. * stream 0 that is reserved for xHCI usage.
  2731. */
  2732. num_streams += 1;
  2733. xhci = hcd_to_xhci(hcd);
  2734. xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n",
  2735. num_streams);
  2736. config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
  2737. if (!config_cmd) {
  2738. xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
  2739. return -ENOMEM;
  2740. }
  2741. /* Check to make sure all endpoints are not already configured for
  2742. * streams. While we're at it, find the maximum number of streams that
  2743. * all the endpoints will support and check for duplicate endpoints.
  2744. */
  2745. spin_lock_irqsave(&xhci->lock, flags);
  2746. ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps,
  2747. num_eps, &num_streams, &changed_ep_bitmask);
  2748. if (ret < 0) {
  2749. xhci_free_command(xhci, config_cmd);
  2750. spin_unlock_irqrestore(&xhci->lock, flags);
  2751. return ret;
  2752. }
  2753. if (num_streams <= 1) {
  2754. xhci_warn(xhci, "WARN: endpoints can't handle "
  2755. "more than one stream.\n");
  2756. xhci_free_command(xhci, config_cmd);
  2757. spin_unlock_irqrestore(&xhci->lock, flags);
  2758. return -EINVAL;
  2759. }
  2760. vdev = xhci->devs[udev->slot_id];
  2761. /* Mark each endpoint as being in transition, so
  2762. * xhci_urb_enqueue() will reject all URBs.
  2763. */
  2764. for (i = 0; i < num_eps; i++) {
  2765. ep_index = xhci_get_endpoint_index(&eps[i]->desc);
  2766. vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS;
  2767. }
  2768. spin_unlock_irqrestore(&xhci->lock, flags);
  2769. /* Setup internal data structures and allocate HW data structures for
  2770. * streams (but don't install the HW structures in the input context
  2771. * until we're sure all memory allocation succeeded).
  2772. */
  2773. xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs);
  2774. xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n",
  2775. num_stream_ctxs, num_streams);
  2776. for (i = 0; i < num_eps; i++) {
  2777. ep_index = xhci_get_endpoint_index(&eps[i]->desc);
  2778. vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci,
  2779. num_stream_ctxs,
  2780. num_streams, mem_flags);
  2781. if (!vdev->eps[ep_index].stream_info)
  2782. goto cleanup;
  2783. /* Set maxPstreams in endpoint context and update deq ptr to
  2784. * point to stream context array. FIXME
  2785. */
  2786. }
  2787. /* Set up the input context for a configure endpoint command. */
  2788. for (i = 0; i < num_eps; i++) {
  2789. struct xhci_ep_ctx *ep_ctx;
  2790. ep_index = xhci_get_endpoint_index(&eps[i]->desc);
  2791. ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index);
  2792. xhci_endpoint_copy(xhci, config_cmd->in_ctx,
  2793. vdev->out_ctx, ep_index);
  2794. xhci_setup_streams_ep_input_ctx(xhci, ep_ctx,
  2795. vdev->eps[ep_index].stream_info);
  2796. }
  2797. /* Tell the HW to drop its old copy of the endpoint context info
  2798. * and add the updated copy from the input context.
  2799. */
  2800. xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx,
  2801. vdev->out_ctx, changed_ep_bitmask, changed_ep_bitmask);
  2802. /* Issue and wait for the configure endpoint command */
  2803. ret = xhci_configure_endpoint(xhci, udev, config_cmd,
  2804. false, false);
  2805. /* xHC rejected the configure endpoint command for some reason, so we
  2806. * leave the old ring intact and free our internal streams data
  2807. * structure.
  2808. */
  2809. if (ret < 0)
  2810. goto cleanup;
  2811. spin_lock_irqsave(&xhci->lock, flags);
  2812. for (i = 0; i < num_eps; i++) {
  2813. ep_index = xhci_get_endpoint_index(&eps[i]->desc);
  2814. vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
  2815. xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n",
  2816. udev->slot_id, ep_index);
  2817. vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS;
  2818. }
  2819. xhci_free_command(xhci, config_cmd);
  2820. spin_unlock_irqrestore(&xhci->lock, flags);
  2821. /* Subtract 1 for stream 0, which drivers can't use */
  2822. return num_streams - 1;
  2823. cleanup:
  2824. /* If it didn't work, free the streams! */
  2825. for (i = 0; i < num_eps; i++) {
  2826. ep_index = xhci_get_endpoint_index(&eps[i]->desc);
  2827. xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
  2828. vdev->eps[ep_index].stream_info = NULL;
  2829. /* FIXME Unset maxPstreams in endpoint context and
  2830. * update deq ptr to point to normal string ring.
  2831. */
  2832. vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
  2833. vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
  2834. xhci_endpoint_zero(xhci, vdev, eps[i]);
  2835. }
  2836. xhci_free_command(xhci, config_cmd);
  2837. return -ENOMEM;
  2838. }
  2839. /* Transition the endpoint from using streams to being a "normal" endpoint
  2840. * without streams.
  2841. *
  2842. * Modify the endpoint context state, submit a configure endpoint command,
  2843. * and free all endpoint rings for streams if that completes successfully.
  2844. */
  2845. int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev,
  2846. struct usb_host_endpoint **eps, unsigned int num_eps,
  2847. gfp_t mem_flags)
  2848. {
  2849. int i, ret;
  2850. struct xhci_hcd *xhci;
  2851. struct xhci_virt_device *vdev;
  2852. struct xhci_command *command;
  2853. unsigned int ep_index;
  2854. unsigned long flags;
  2855. u32 changed_ep_bitmask;
  2856. xhci = hcd_to_xhci(hcd);
  2857. vdev = xhci->devs[udev->slot_id];
  2858. /* Set up a configure endpoint command to remove the streams rings */
  2859. spin_lock_irqsave(&xhci->lock, flags);
  2860. changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci,
  2861. udev, eps, num_eps);
  2862. if (changed_ep_bitmask == 0) {
  2863. spin_unlock_irqrestore(&xhci->lock, flags);
  2864. return -EINVAL;
  2865. }
  2866. /* Use the xhci_command structure from the first endpoint. We may have
  2867. * allocated too many, but the driver may call xhci_free_streams() for
  2868. * each endpoint it grouped into one call to xhci_alloc_streams().
  2869. */
  2870. ep_index = xhci_get_endpoint_index(&eps[0]->desc);
  2871. command = vdev->eps[ep_index].stream_info->free_streams_command;
  2872. for (i = 0; i < num_eps; i++) {
  2873. struct xhci_ep_ctx *ep_ctx;
  2874. ep_index = xhci_get_endpoint_index(&eps[i]->desc);
  2875. ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
  2876. xhci->devs[udev->slot_id]->eps[ep_index].ep_state |=
  2877. EP_GETTING_NO_STREAMS;
  2878. xhci_endpoint_copy(xhci, command->in_ctx,
  2879. vdev->out_ctx, ep_index);
  2880. xhci_setup_no_streams_ep_input_ctx(xhci, ep_ctx,
  2881. &vdev->eps[ep_index]);
  2882. }
  2883. xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx,
  2884. vdev->out_ctx, changed_ep_bitmask, changed_ep_bitmask);
  2885. spin_unlock_irqrestore(&xhci->lock, flags);
  2886. /* Issue and wait for the configure endpoint command,
  2887. * which must succeed.
  2888. */
  2889. ret = xhci_configure_endpoint(xhci, udev, command,
  2890. false, true);
  2891. /* xHC rejected the configure endpoint command for some reason, so we
  2892. * leave the streams rings intact.
  2893. */
  2894. if (ret < 0)
  2895. return ret;
  2896. spin_lock_irqsave(&xhci->lock, flags);
  2897. for (i = 0; i < num_eps; i++) {
  2898. ep_index = xhci_get_endpoint_index(&eps[i]->desc);
  2899. xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
  2900. vdev->eps[ep_index].stream_info = NULL;
  2901. /* FIXME Unset maxPstreams in endpoint context and
  2902. * update deq ptr to point to normal string ring.
  2903. */
  2904. vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS;
  2905. vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
  2906. }
  2907. spin_unlock_irqrestore(&xhci->lock, flags);
  2908. return 0;
  2909. }
  2910. /*
  2911. * Deletes endpoint resources for endpoints that were active before a Reset
  2912. * Device command, or a Disable Slot command. The Reset Device command leaves
  2913. * the control endpoint intact, whereas the Disable Slot command deletes it.
  2914. *
  2915. * Must be called with xhci->lock held.
  2916. */
  2917. void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci,
  2918. struct xhci_virt_device *virt_dev, bool drop_control_ep)
  2919. {
  2920. int i;
  2921. unsigned int num_dropped_eps = 0;
  2922. unsigned int drop_flags = 0;
  2923. for (i = (drop_control_ep ? 0 : 1); i < 31; i++) {
  2924. if (virt_dev->eps[i].ring) {
  2925. drop_flags |= 1 << i;
  2926. num_dropped_eps++;
  2927. }
  2928. }
  2929. xhci->num_active_eps -= num_dropped_eps;
  2930. if (num_dropped_eps)
  2931. xhci_dbg(xhci, "Dropped %u ep ctxs, flags = 0x%x, "
  2932. "%u now active.\n",
  2933. num_dropped_eps, drop_flags,
  2934. xhci->num_active_eps);
  2935. }
  2936. /*
  2937. * This submits a Reset Device Command, which will set the device state to 0,
  2938. * set the device address to 0, and disable all the endpoints except the default
  2939. * control endpoint. The USB core should come back and call
  2940. * xhci_address_device(), and then re-set up the configuration. If this is
  2941. * called because of a usb_reset_and_verify_device(), then the old alternate
  2942. * settings will be re-installed through the normal bandwidth allocation
  2943. * functions.
  2944. *
  2945. * Wait for the Reset Device command to finish. Remove all structures
  2946. * associated with the endpoints that were disabled. Clear the input device
  2947. * structure? Cache the rings? Reset the control endpoint 0 max packet size?
  2948. *
  2949. * If the virt_dev to be reset does not exist or does not match the udev,
  2950. * it means the device is lost, possibly due to the xHC restore error and
  2951. * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to
  2952. * re-allocate the device.
  2953. */
  2954. int xhci_discover_or_reset_device(struct usb_hcd *hcd, struct usb_device *udev)
  2955. {
  2956. int ret, i;
  2957. unsigned long flags;
  2958. struct xhci_hcd *xhci;
  2959. unsigned int slot_id;
  2960. struct xhci_virt_device *virt_dev;
  2961. struct xhci_command *reset_device_cmd;
  2962. int timeleft;
  2963. int last_freed_endpoint;
  2964. struct xhci_slot_ctx *slot_ctx;
  2965. int old_active_eps = 0;
  2966. ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__);
  2967. if (ret <= 0)
  2968. return ret;
  2969. xhci = hcd_to_xhci(hcd);
  2970. slot_id = udev->slot_id;
  2971. virt_dev = xhci->devs[slot_id];
  2972. if (!virt_dev) {
  2973. xhci_dbg(xhci, "The device to be reset with slot ID %u does "
  2974. "not exist. Re-allocate the device\n", slot_id);
  2975. ret = xhci_alloc_dev(hcd, udev);
  2976. if (ret == 1)
  2977. return 0;
  2978. else
  2979. return -EINVAL;
  2980. }
  2981. if (virt_dev->udev != udev) {
  2982. /* If the virt_dev and the udev does not match, this virt_dev
  2983. * may belong to another udev.
  2984. * Re-allocate the device.
  2985. */
  2986. xhci_dbg(xhci, "The device to be reset with slot ID %u does "
  2987. "not match the udev. Re-allocate the device\n",
  2988. slot_id);
  2989. ret = xhci_alloc_dev(hcd, udev);
  2990. if (ret == 1)
  2991. return 0;
  2992. else
  2993. return -EINVAL;
  2994. }
  2995. /* If device is not setup, there is no point in resetting it */
  2996. slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
  2997. if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
  2998. SLOT_STATE_DISABLED)
  2999. return 0;
  3000. xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id);
  3001. /* Allocate the command structure that holds the struct completion.
  3002. * Assume we're in process context, since the normal device reset
  3003. * process has to wait for the device anyway. Storage devices are
  3004. * reset as part of error handling, so use GFP_NOIO instead of
  3005. * GFP_KERNEL.
  3006. */
  3007. reset_device_cmd = xhci_alloc_command(xhci, false, true, GFP_NOIO);
  3008. if (!reset_device_cmd) {
  3009. xhci_dbg(xhci, "Couldn't allocate command structure.\n");
  3010. return -ENOMEM;
  3011. }
  3012. /* Attempt to submit the Reset Device command to the command ring */
  3013. spin_lock_irqsave(&xhci->lock, flags);
  3014. reset_device_cmd->command_trb = xhci->cmd_ring->enqueue;
  3015. /* Enqueue pointer can be left pointing to the link TRB,
  3016. * we must handle that
  3017. */
  3018. if (TRB_TYPE_LINK_LE32(reset_device_cmd->command_trb->link.control))
  3019. reset_device_cmd->command_trb =
  3020. xhci->cmd_ring->enq_seg->next->trbs;
  3021. list_add_tail(&reset_device_cmd->cmd_list, &virt_dev->cmd_list);
  3022. ret = xhci_queue_reset_device(xhci, slot_id);
  3023. if (ret) {
  3024. xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
  3025. list_del(&reset_device_cmd->cmd_list);
  3026. spin_unlock_irqrestore(&xhci->lock, flags);
  3027. goto command_cleanup;
  3028. }
  3029. xhci_ring_cmd_db(xhci);
  3030. spin_unlock_irqrestore(&xhci->lock, flags);
  3031. /* Wait for the Reset Device command to finish */
  3032. timeleft = wait_for_completion_interruptible_timeout(
  3033. reset_device_cmd->completion,
  3034. USB_CTRL_SET_TIMEOUT);
  3035. if (timeleft <= 0) {
  3036. xhci_warn(xhci, "%s while waiting for reset device command\n",
  3037. timeleft == 0 ? "Timeout" : "Signal");
  3038. spin_lock_irqsave(&xhci->lock, flags);
  3039. /* The timeout might have raced with the event ring handler, so
  3040. * only delete from the list if the item isn't poisoned.
  3041. */
  3042. if (reset_device_cmd->cmd_list.next != LIST_POISON1)
  3043. list_del(&reset_device_cmd->cmd_list);
  3044. spin_unlock_irqrestore(&xhci->lock, flags);
  3045. ret = -ETIME;
  3046. goto command_cleanup;
  3047. }
  3048. /* The Reset Device command can't fail, according to the 0.95/0.96 spec,
  3049. * unless we tried to reset a slot ID that wasn't enabled,
  3050. * or the device wasn't in the addressed or configured state.
  3051. */
  3052. ret = reset_device_cmd->status;
  3053. switch (ret) {
  3054. case COMP_EBADSLT: /* 0.95 completion code for bad slot ID */
  3055. case COMP_CTX_STATE: /* 0.96 completion code for same thing */
  3056. xhci_info(xhci, "Can't reset device (slot ID %u) in %s state\n",
  3057. slot_id,
  3058. xhci_get_slot_state(xhci, virt_dev->out_ctx));
  3059. xhci_info(xhci, "Not freeing device rings.\n");
  3060. /* Don't treat this as an error. May change my mind later. */
  3061. ret = 0;
  3062. goto command_cleanup;
  3063. case COMP_SUCCESS:
  3064. xhci_dbg(xhci, "Successful reset device command.\n");
  3065. break;
  3066. default:
  3067. if (xhci_is_vendor_info_code(xhci, ret))
  3068. break;
  3069. xhci_warn(xhci, "Unknown completion code %u for "
  3070. "reset device command.\n", ret);
  3071. ret = -EINVAL;
  3072. goto command_cleanup;
  3073. }
  3074. /* Free up host controller endpoint resources */
  3075. if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
  3076. spin_lock_irqsave(&xhci->lock, flags);
  3077. /* Don't delete the default control endpoint resources */
  3078. xhci_free_device_endpoint_resources(xhci, virt_dev, false);
  3079. spin_unlock_irqrestore(&xhci->lock, flags);
  3080. }
  3081. /* Everything but endpoint 0 is disabled, so free or cache the rings. */
  3082. last_freed_endpoint = 1;
  3083. for (i = 1; i < 31; ++i) {
  3084. struct xhci_virt_ep *ep = &virt_dev->eps[i];
  3085. if (ep->ep_state & EP_HAS_STREAMS) {
  3086. xhci_free_stream_info(xhci, ep->stream_info);
  3087. ep->stream_info = NULL;
  3088. ep->ep_state &= ~EP_HAS_STREAMS;
  3089. }
  3090. if (ep->ring) {
  3091. xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
  3092. last_freed_endpoint = i;
  3093. }
  3094. if (!list_empty(&virt_dev->eps[i].bw_endpoint_list))
  3095. xhci_drop_ep_from_interval_table(xhci,
  3096. &virt_dev->eps[i].bw_info,
  3097. virt_dev->bw_table,
  3098. udev,
  3099. &virt_dev->eps[i],
  3100. virt_dev->tt_info);
  3101. xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info);
  3102. }
  3103. /* If necessary, update the number of active TTs on this root port */
  3104. xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
  3105. xhci_dbg(xhci, "Output context after successful reset device cmd:\n");
  3106. xhci_dbg_ctx(xhci, virt_dev->out_ctx, last_freed_endpoint);
  3107. ret = 0;
  3108. command_cleanup:
  3109. xhci_free_command(xhci, reset_device_cmd);
  3110. return ret;
  3111. }
  3112. /*
  3113. * At this point, the struct usb_device is about to go away, the device has
  3114. * disconnected, and all traffic has been stopped and the endpoints have been
  3115. * disabled. Free any HC data structures associated with that device.
  3116. */
  3117. void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
  3118. {
  3119. struct xhci_hcd *xhci = hcd_to_xhci(hcd);
  3120. struct xhci_virt_device *virt_dev;
  3121. unsigned long flags;
  3122. u32 state;
  3123. int i, ret;
  3124. ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
  3125. /* If the host is halted due to driver unload, we still need to free the
  3126. * device.
  3127. */
  3128. if (ret <= 0 && ret != -ENODEV)
  3129. return;
  3130. virt_dev = xhci->devs[udev->slot_id];
  3131. /* Stop any wayward timer functions (which may grab the lock) */
  3132. for (i = 0; i < 31; ++i) {
  3133. virt_dev->eps[i].ep_state &= ~EP_HALT_PENDING;
  3134. del_timer_sync(&virt_dev->eps[i].stop_cmd_timer);
  3135. }
  3136. if (udev->usb2_hw_lpm_enabled) {
  3137. xhci_set_usb2_hardware_lpm(hcd, udev, 0);
  3138. udev->usb2_hw_lpm_enabled = 0;
  3139. }
  3140. spin_lock_irqsave(&xhci->lock, flags);
  3141. /* Don't disable the slot if the host controller is dead. */
  3142. state = xhci_readl(xhci, &xhci->op_regs->status);
  3143. if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
  3144. (xhci->xhc_state & XHCI_STATE_HALTED)) {
  3145. xhci_free_virt_device(xhci, udev->slot_id);
  3146. spin_unlock_irqrestore(&xhci->lock, flags);
  3147. return;
  3148. }
  3149. if (xhci_queue_slot_control(xhci, TRB_DISABLE_SLOT, udev->slot_id)) {
  3150. spin_unlock_irqrestore(&xhci->lock, flags);
  3151. xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
  3152. return;
  3153. }
  3154. xhci_ring_cmd_db(xhci);
  3155. spin_unlock_irqrestore(&xhci->lock, flags);
  3156. /*
  3157. * Event command completion handler will free any data structures
  3158. * associated with the slot. XXX Can free sleep?
  3159. */
  3160. }
  3161. /*
  3162. * Checks if we have enough host controller resources for the default control
  3163. * endpoint.
  3164. *
  3165. * Must be called with xhci->lock held.
  3166. */
  3167. static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci)
  3168. {
  3169. if (xhci->num_active_eps + 1 > xhci->limit_active_eps) {
  3170. xhci_dbg(xhci, "Not enough ep ctxs: "
  3171. "%u active, need to add 1, limit is %u.\n",
  3172. xhci->num_active_eps, xhci->limit_active_eps);
  3173. return -ENOMEM;
  3174. }
  3175. xhci->num_active_eps += 1;
  3176. xhci_dbg(xhci, "Adding 1 ep ctx, %u now active.\n",
  3177. xhci->num_active_eps);
  3178. return 0;
  3179. }
  3180. /*
  3181. * Returns 0 if the xHC ran out of device slots, the Enable Slot command
  3182. * timed out, or allocating memory failed. Returns 1 on success.
  3183. */
  3184. int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev)
  3185. {
  3186. struct xhci_hcd *xhci = hcd_to_xhci(hcd);
  3187. unsigned long flags;
  3188. int timeleft;
  3189. int ret;
  3190. union xhci_trb *cmd_trb;
  3191. spin_lock_irqsave(&xhci->lock, flags);
  3192. cmd_trb = xhci->cmd_ring->dequeue;
  3193. ret = xhci_queue_slot_control(xhci, TRB_ENABLE_SLOT, 0);
  3194. if (ret) {
  3195. spin_unlock_irqrestore(&xhci->lock, flags);
  3196. xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
  3197. return 0;
  3198. }
  3199. xhci_ring_cmd_db(xhci);
  3200. spin_unlock_irqrestore(&xhci->lock, flags);
  3201. /* XXX: how much time for xHC slot assignment? */
  3202. timeleft = wait_for_completion_interruptible_timeout(&xhci->addr_dev,
  3203. XHCI_CMD_DEFAULT_TIMEOUT);
  3204. if (timeleft <= 0) {
  3205. xhci_warn(xhci, "%s while waiting for a slot\n",
  3206. timeleft == 0 ? "Timeout" : "Signal");
  3207. /* cancel the enable slot request */
  3208. return xhci_cancel_cmd(xhci, NULL, cmd_trb);
  3209. }
  3210. if (!xhci->slot_id) {
  3211. xhci_err(xhci, "Error while assigning device slot ID\n");
  3212. return 0;
  3213. }
  3214. if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
  3215. spin_lock_irqsave(&xhci->lock, flags);
  3216. ret = xhci_reserve_host_control_ep_resources(xhci);
  3217. if (ret) {
  3218. spin_unlock_irqrestore(&xhci->lock, flags);
  3219. xhci_warn(xhci, "Not enough host resources, "
  3220. "active endpoint contexts = %u\n",
  3221. xhci->num_active_eps);
  3222. goto disable_slot;
  3223. }
  3224. spin_unlock_irqrestore(&xhci->lock, flags);
  3225. }
  3226. /* Use GFP_NOIO, since this function can be called from
  3227. * xhci_discover_or_reset_device(), which may be called as part of
  3228. * mass storage driver error handling.
  3229. */
  3230. if (!xhci_alloc_virt_device(xhci, xhci->slot_id, udev, GFP_NOIO)) {
  3231. xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n");
  3232. goto disable_slot;
  3233. }
  3234. udev->slot_id = xhci->slot_id;
  3235. /* Is this a LS or FS device under a HS hub? */
  3236. /* Hub or peripherial? */
  3237. return 1;
  3238. disable_slot:
  3239. /* Disable slot, if we can do it without mem alloc */
  3240. spin_lock_irqsave(&xhci->lock, flags);
  3241. if (!xhci_queue_slot_control(xhci, TRB_DISABLE_SLOT, udev->slot_id))
  3242. xhci_ring_cmd_db(xhci);
  3243. spin_unlock_irqrestore(&xhci->lock, flags);
  3244. return 0;
  3245. }
  3246. /*
  3247. * Issue an Address Device command (which will issue a SetAddress request to
  3248. * the device).
  3249. * We should be protected by the usb_address0_mutex in khubd's hub_port_init, so
  3250. * we should only issue and wait on one address command at the same time.
  3251. *
  3252. * We add one to the device address issued by the hardware because the USB core
  3253. * uses address 1 for the root hubs (even though they're not really devices).
  3254. */
  3255. int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev)
  3256. {
  3257. unsigned long flags;
  3258. int timeleft;
  3259. struct xhci_virt_device *virt_dev;
  3260. int ret = 0;
  3261. struct xhci_hcd *xhci = hcd_to_xhci(hcd);
  3262. struct xhci_slot_ctx *slot_ctx;
  3263. struct xhci_input_control_ctx *ctrl_ctx;
  3264. u64 temp_64;
  3265. union xhci_trb *cmd_trb;
  3266. if (!udev->slot_id) {
  3267. xhci_dbg(xhci, "Bad Slot ID %d\n", udev->slot_id);
  3268. return -EINVAL;
  3269. }
  3270. virt_dev = xhci->devs[udev->slot_id];
  3271. if (WARN_ON(!virt_dev)) {
  3272. /*
  3273. * In plug/unplug torture test with an NEC controller,
  3274. * a zero-dereference was observed once due to virt_dev = 0.
  3275. * Print useful debug rather than crash if it is observed again!
  3276. */
  3277. xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n",
  3278. udev->slot_id);
  3279. return -EINVAL;
  3280. }
  3281. slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
  3282. /*
  3283. * If this is the first Set Address since device plug-in or
  3284. * virt_device realloaction after a resume with an xHCI power loss,
  3285. * then set up the slot context.
  3286. */
  3287. if (!slot_ctx->dev_info)
  3288. xhci_setup_addressable_virt_dev(xhci, udev);
  3289. /* Otherwise, update the control endpoint ring enqueue pointer. */
  3290. else
  3291. xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev);
  3292. ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
  3293. ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG);
  3294. ctrl_ctx->drop_flags = 0;
  3295. xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
  3296. xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
  3297. spin_lock_irqsave(&xhci->lock, flags);
  3298. cmd_trb = xhci->cmd_ring->dequeue;
  3299. ret = xhci_queue_address_device(xhci, virt_dev->in_ctx->dma,
  3300. udev->slot_id);
  3301. if (ret) {
  3302. spin_unlock_irqrestore(&xhci->lock, flags);
  3303. xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
  3304. return ret;
  3305. }
  3306. xhci_ring_cmd_db(xhci);
  3307. spin_unlock_irqrestore(&xhci->lock, flags);
  3308. /* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */
  3309. timeleft = wait_for_completion_interruptible_timeout(&xhci->addr_dev,
  3310. XHCI_CMD_DEFAULT_TIMEOUT);
  3311. /* FIXME: From section 4.3.4: "Software shall be responsible for timing
  3312. * the SetAddress() "recovery interval" required by USB and aborting the
  3313. * command on a timeout.
  3314. */
  3315. if (timeleft <= 0) {
  3316. xhci_warn(xhci, "%s while waiting for address device command\n",
  3317. timeleft == 0 ? "Timeout" : "Signal");
  3318. /* cancel the address device command */
  3319. ret = xhci_cancel_cmd(xhci, NULL, cmd_trb);
  3320. if (ret < 0)
  3321. return ret;
  3322. return -ETIME;
  3323. }
  3324. switch (virt_dev->cmd_status) {
  3325. case COMP_CTX_STATE:
  3326. case COMP_EBADSLT:
  3327. xhci_err(xhci, "Setup ERROR: address device command for slot %d.\n",
  3328. udev->slot_id);
  3329. ret = -EINVAL;
  3330. break;
  3331. case COMP_TX_ERR:
  3332. dev_warn(&udev->dev, "Device not responding to set address.\n");
  3333. ret = -EPROTO;
  3334. break;
  3335. case COMP_DEV_ERR:
  3336. dev_warn(&udev->dev, "ERROR: Incompatible device for address "
  3337. "device command.\n");
  3338. ret = -ENODEV;
  3339. break;
  3340. case COMP_SUCCESS:
  3341. xhci_dbg(xhci, "Successful Address Device command\n");
  3342. break;
  3343. default:
  3344. xhci_err(xhci, "ERROR: unexpected command completion "
  3345. "code 0x%x.\n", virt_dev->cmd_status);
  3346. xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
  3347. xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
  3348. ret = -EINVAL;
  3349. break;
  3350. }
  3351. if (ret) {
  3352. return ret;
  3353. }
  3354. temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
  3355. xhci_dbg(xhci, "Op regs DCBAA ptr = %#016llx\n", temp_64);
  3356. xhci_dbg(xhci, "Slot ID %d dcbaa entry @%p = %#016llx\n",
  3357. udev->slot_id,
  3358. &xhci->dcbaa->dev_context_ptrs[udev->slot_id],
  3359. (unsigned long long)
  3360. le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id]));
  3361. xhci_dbg(xhci, "Output Context DMA address = %#08llx\n",
  3362. (unsigned long long)virt_dev->out_ctx->dma);
  3363. xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
  3364. xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
  3365. xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
  3366. xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
  3367. /*
  3368. * USB core uses address 1 for the roothubs, so we add one to the
  3369. * address given back to us by the HC.
  3370. */
  3371. slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
  3372. /* Use kernel assigned address for devices; store xHC assigned
  3373. * address locally. */
  3374. virt_dev->address = (le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK)
  3375. + 1;
  3376. /* Zero the input context control for later use */
  3377. ctrl_ctx->add_flags = 0;
  3378. ctrl_ctx->drop_flags = 0;
  3379. xhci_dbg(xhci, "Internal device address = %d\n", virt_dev->address);
  3380. return 0;
  3381. }
  3382. /*
  3383. * Transfer the port index into real index in the HW port status
  3384. * registers. Caculate offset between the port's PORTSC register
  3385. * and port status base. Divide the number of per port register
  3386. * to get the real index. The raw port number bases 1.
  3387. */
  3388. int xhci_find_raw_port_number(struct usb_hcd *hcd, int port1)
  3389. {
  3390. struct xhci_hcd *xhci = hcd_to_xhci(hcd);
  3391. __le32 __iomem *base_addr = &xhci->op_regs->port_status_base;
  3392. __le32 __iomem *addr;
  3393. int raw_port;
  3394. if (hcd->speed != HCD_USB3)
  3395. addr = xhci->usb2_ports[port1 - 1];
  3396. else
  3397. addr = xhci->usb3_ports[port1 - 1];
  3398. raw_port = (addr - base_addr)/NUM_PORT_REGS + 1;
  3399. return raw_port;
  3400. }
  3401. #ifdef CONFIG_PM_RUNTIME
  3402. /* BESL to HIRD Encoding array for USB2 LPM */
  3403. static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000,
  3404. 3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000};
  3405. /* Calculate HIRD/BESL for USB2 PORTPMSC*/
  3406. static int xhci_calculate_hird_besl(struct xhci_hcd *xhci,
  3407. struct usb_device *udev)
  3408. {
  3409. int u2del, besl, besl_host;
  3410. int besl_device = 0;
  3411. u32 field;
  3412. u2del = HCS_U2_LATENCY(xhci->hcs_params3);
  3413. field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
  3414. if (field & USB_BESL_SUPPORT) {
  3415. for (besl_host = 0; besl_host < 16; besl_host++) {
  3416. if (xhci_besl_encoding[besl_host] >= u2del)
  3417. break;
  3418. }
  3419. /* Use baseline BESL value as default */
  3420. if (field & USB_BESL_BASELINE_VALID)
  3421. besl_device = USB_GET_BESL_BASELINE(field);
  3422. else if (field & USB_BESL_DEEP_VALID)
  3423. besl_device = USB_GET_BESL_DEEP(field);
  3424. } else {
  3425. if (u2del <= 50)
  3426. besl_host = 0;
  3427. else
  3428. besl_host = (u2del - 51) / 75 + 1;
  3429. }
  3430. besl = besl_host + besl_device;
  3431. if (besl > 15)
  3432. besl = 15;
  3433. return besl;
  3434. }
  3435. static int xhci_usb2_software_lpm_test(struct usb_hcd *hcd,
  3436. struct usb_device *udev)
  3437. {
  3438. struct xhci_hcd *xhci = hcd_to_xhci(hcd);
  3439. struct dev_info *dev_info;
  3440. __le32 __iomem **port_array;
  3441. __le32 __iomem *addr, *pm_addr;
  3442. u32 temp, dev_id;
  3443. unsigned int port_num;
  3444. unsigned long flags;
  3445. int hird;
  3446. int ret;
  3447. if (hcd->speed == HCD_USB3 || !xhci->sw_lpm_support ||
  3448. !udev->lpm_capable)
  3449. return -EINVAL;
  3450. /* we only support lpm for non-hub device connected to root hub yet */
  3451. if (!udev->parent || udev->parent->parent ||
  3452. udev->descriptor.bDeviceClass == USB_CLASS_HUB)
  3453. return -EINVAL;
  3454. spin_lock_irqsave(&xhci->lock, flags);
  3455. /* Look for devices in lpm_failed_devs list */
  3456. dev_id = le16_to_cpu(udev->descriptor.idVendor) << 16 |
  3457. le16_to_cpu(udev->descriptor.idProduct);
  3458. list_for_each_entry(dev_info, &xhci->lpm_failed_devs, list) {
  3459. if (dev_info->dev_id == dev_id) {
  3460. ret = -EINVAL;
  3461. goto finish;
  3462. }
  3463. }
  3464. port_array = xhci->usb2_ports;
  3465. port_num = udev->portnum - 1;
  3466. if (port_num > HCS_MAX_PORTS(xhci->hcs_params1)) {
  3467. xhci_dbg(xhci, "invalid port number %d\n", udev->portnum);
  3468. ret = -EINVAL;
  3469. goto finish;
  3470. }
  3471. /*
  3472. * Test USB 2.0 software LPM.
  3473. * FIXME: some xHCI 1.0 hosts may implement a new register to set up
  3474. * hardware-controlled USB 2.0 LPM. See section 5.4.11 and 4.23.5.1.1.1
  3475. * in the June 2011 errata release.
  3476. */
  3477. xhci_dbg(xhci, "test port %d software LPM\n", port_num);
  3478. /*
  3479. * Set L1 Device Slot and HIRD/BESL.
  3480. * Check device's USB 2.0 extension descriptor to determine whether
  3481. * HIRD or BESL shoule be used. See USB2.0 LPM errata.
  3482. */
  3483. pm_addr = port_array[port_num] + 1;
  3484. hird = xhci_calculate_hird_besl(xhci, udev);
  3485. temp = PORT_L1DS(udev->slot_id) | PORT_HIRD(hird);
  3486. xhci_writel(xhci, temp, pm_addr);
  3487. /* Set port link state to U2(L1) */
  3488. addr = port_array[port_num];
  3489. xhci_set_link_state(xhci, port_array, port_num, XDEV_U2);
  3490. /* wait for ACK */
  3491. spin_unlock_irqrestore(&xhci->lock, flags);
  3492. msleep(10);
  3493. spin_lock_irqsave(&xhci->lock, flags);
  3494. /* Check L1 Status */
  3495. ret = xhci_handshake(xhci, pm_addr,
  3496. PORT_L1S_MASK, PORT_L1S_SUCCESS, 125);
  3497. if (ret != -ETIMEDOUT) {
  3498. /* enter L1 successfully */
  3499. temp = xhci_readl(xhci, addr);
  3500. xhci_dbg(xhci, "port %d entered L1 state, port status 0x%x\n",
  3501. port_num, temp);
  3502. ret = 0;
  3503. } else {
  3504. temp = xhci_readl(xhci, pm_addr);
  3505. xhci_dbg(xhci, "port %d software lpm failed, L1 status %d\n",
  3506. port_num, temp & PORT_L1S_MASK);
  3507. ret = -EINVAL;
  3508. }
  3509. /* Resume the port */
  3510. xhci_set_link_state(xhci, port_array, port_num, XDEV_U0);
  3511. spin_unlock_irqrestore(&xhci->lock, flags);
  3512. msleep(10);
  3513. spin_lock_irqsave(&xhci->lock, flags);
  3514. /* Clear PLC */
  3515. xhci_test_and_clear_bit(xhci, port_array, port_num, PORT_PLC);
  3516. /* Check PORTSC to make sure the device is in the right state */
  3517. if (!ret) {
  3518. temp = xhci_readl(xhci, addr);
  3519. xhci_dbg(xhci, "resumed port %d status 0x%x\n", port_num, temp);
  3520. if (!(temp & PORT_CONNECT) || !(temp & PORT_PE) ||
  3521. (temp & PORT_PLS_MASK) != XDEV_U0) {
  3522. xhci_dbg(xhci, "port L1 resume fail\n");
  3523. ret = -EINVAL;
  3524. }
  3525. }
  3526. if (ret) {
  3527. /* Insert dev to lpm_failed_devs list */
  3528. xhci_warn(xhci, "device LPM test failed, may disconnect and "
  3529. "re-enumerate\n");
  3530. dev_info = kzalloc(sizeof(struct dev_info), GFP_ATOMIC);
  3531. if (!dev_info) {
  3532. ret = -ENOMEM;
  3533. goto finish;
  3534. }
  3535. dev_info->dev_id = dev_id;
  3536. INIT_LIST_HEAD(&dev_info->list);
  3537. list_add(&dev_info->list, &xhci->lpm_failed_devs);
  3538. } else {
  3539. xhci_ring_device(xhci, udev->slot_id);
  3540. }
  3541. finish:
  3542. spin_unlock_irqrestore(&xhci->lock, flags);
  3543. return ret;
  3544. }
  3545. int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
  3546. struct usb_device *udev, int enable)
  3547. {
  3548. struct xhci_hcd *xhci = hcd_to_xhci(hcd);
  3549. __le32 __iomem **port_array;
  3550. __le32 __iomem *pm_addr;
  3551. u32 temp;
  3552. unsigned int port_num;
  3553. unsigned long flags;
  3554. int hird;
  3555. if (hcd->speed == HCD_USB3 || !xhci->hw_lpm_support ||
  3556. !udev->lpm_capable)
  3557. return -EPERM;
  3558. if (!udev->parent || udev->parent->parent ||
  3559. udev->descriptor.bDeviceClass == USB_CLASS_HUB)
  3560. return -EPERM;
  3561. if (udev->usb2_hw_lpm_capable != 1)
  3562. return -EPERM;
  3563. spin_lock_irqsave(&xhci->lock, flags);
  3564. port_array = xhci->usb2_ports;
  3565. port_num = udev->portnum - 1;
  3566. pm_addr = port_array[port_num] + 1;
  3567. temp = xhci_readl(xhci, pm_addr);
  3568. xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n",
  3569. enable ? "enable" : "disable", port_num);
  3570. hird = xhci_calculate_hird_besl(xhci, udev);
  3571. if (enable) {
  3572. temp &= ~PORT_HIRD_MASK;
  3573. temp |= PORT_HIRD(hird) | PORT_RWE;
  3574. xhci_writel(xhci, temp, pm_addr);
  3575. temp = xhci_readl(xhci, pm_addr);
  3576. temp |= PORT_HLE;
  3577. xhci_writel(xhci, temp, pm_addr);
  3578. } else {
  3579. temp &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK);
  3580. xhci_writel(xhci, temp, pm_addr);
  3581. }
  3582. spin_unlock_irqrestore(&xhci->lock, flags);
  3583. return 0;
  3584. }
  3585. int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
  3586. {
  3587. struct xhci_hcd *xhci = hcd_to_xhci(hcd);
  3588. int ret;
  3589. ret = xhci_usb2_software_lpm_test(hcd, udev);
  3590. if (!ret) {
  3591. xhci_dbg(xhci, "software LPM test succeed\n");
  3592. if (xhci->hw_lpm_support == 1) {
  3593. udev->usb2_hw_lpm_capable = 1;
  3594. ret = xhci_set_usb2_hardware_lpm(hcd, udev, 1);
  3595. if (!ret)
  3596. udev->usb2_hw_lpm_enabled = 1;
  3597. }
  3598. }
  3599. return 0;
  3600. }
  3601. #else
  3602. int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
  3603. struct usb_device *udev, int enable)
  3604. {
  3605. return 0;
  3606. }
  3607. int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
  3608. {
  3609. return 0;
  3610. }
  3611. #endif /* CONFIG_PM_RUNTIME */
  3612. /*---------------------- USB 3.0 Link PM functions ------------------------*/
  3613. #ifdef CONFIG_PM
  3614. /* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */
  3615. static unsigned long long xhci_service_interval_to_ns(
  3616. struct usb_endpoint_descriptor *desc)
  3617. {
  3618. return (1ULL << (desc->bInterval - 1)) * 125 * 1000;
  3619. }
  3620. static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev,
  3621. enum usb3_link_state state)
  3622. {
  3623. unsigned long long sel;
  3624. unsigned long long pel;
  3625. unsigned int max_sel_pel;
  3626. char *state_name;
  3627. switch (state) {
  3628. case USB3_LPM_U1:
  3629. /* Convert SEL and PEL stored in nanoseconds to microseconds */
  3630. sel = DIV_ROUND_UP(udev->u1_params.sel, 1000);
  3631. pel = DIV_ROUND_UP(udev->u1_params.pel, 1000);
  3632. max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL;
  3633. state_name = "U1";
  3634. break;
  3635. case USB3_LPM_U2:
  3636. sel = DIV_ROUND_UP(udev->u2_params.sel, 1000);
  3637. pel = DIV_ROUND_UP(udev->u2_params.pel, 1000);
  3638. max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL;
  3639. state_name = "U2";
  3640. break;
  3641. default:
  3642. dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n",
  3643. __func__);
  3644. return USB3_LPM_DISABLED;
  3645. }
  3646. if (sel <= max_sel_pel && pel <= max_sel_pel)
  3647. return USB3_LPM_DEVICE_INITIATED;
  3648. if (sel > max_sel_pel)
  3649. dev_dbg(&udev->dev, "Device-initiated %s disabled "
  3650. "due to long SEL %llu ms\n",
  3651. state_name, sel);
  3652. else
  3653. dev_dbg(&udev->dev, "Device-initiated %s disabled "
  3654. "due to long PEL %llu\n ms",
  3655. state_name, pel);
  3656. return USB3_LPM_DISABLED;
  3657. }
  3658. /* Returns the hub-encoded U1 timeout value.
  3659. * The U1 timeout should be the maximum of the following values:
  3660. * - For control endpoints, U1 system exit latency (SEL) * 3
  3661. * - For bulk endpoints, U1 SEL * 5
  3662. * - For interrupt endpoints:
  3663. * - Notification EPs, U1 SEL * 3
  3664. * - Periodic EPs, max(105% of bInterval, U1 SEL * 2)
  3665. * - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2)
  3666. */
  3667. static u16 xhci_calculate_intel_u1_timeout(struct usb_device *udev,
  3668. struct usb_endpoint_descriptor *desc)
  3669. {
  3670. unsigned long long timeout_ns;
  3671. int ep_type;
  3672. int intr_type;
  3673. ep_type = usb_endpoint_type(desc);
  3674. switch (ep_type) {
  3675. case USB_ENDPOINT_XFER_CONTROL:
  3676. timeout_ns = udev->u1_params.sel * 3;
  3677. break;
  3678. case USB_ENDPOINT_XFER_BULK:
  3679. timeout_ns = udev->u1_params.sel * 5;
  3680. break;
  3681. case USB_ENDPOINT_XFER_INT:
  3682. intr_type = usb_endpoint_interrupt_type(desc);
  3683. if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) {
  3684. timeout_ns = udev->u1_params.sel * 3;
  3685. break;
  3686. }
  3687. /* Otherwise the calculation is the same as isoc eps */
  3688. case USB_ENDPOINT_XFER_ISOC:
  3689. timeout_ns = xhci_service_interval_to_ns(desc);
  3690. timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100);
  3691. if (timeout_ns < udev->u1_params.sel * 2)
  3692. timeout_ns = udev->u1_params.sel * 2;
  3693. break;
  3694. default:
  3695. return 0;
  3696. }
  3697. /* The U1 timeout is encoded in 1us intervals. */
  3698. timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000);
  3699. /* Don't return a timeout of zero, because that's USB3_LPM_DISABLED. */
  3700. if (timeout_ns == USB3_LPM_DISABLED)
  3701. timeout_ns++;
  3702. /* If the necessary timeout value is bigger than what we can set in the
  3703. * USB 3.0 hub, we have to disable hub-initiated U1.
  3704. */
  3705. if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT)
  3706. return timeout_ns;
  3707. dev_dbg(&udev->dev, "Hub-initiated U1 disabled "
  3708. "due to long timeout %llu ms\n", timeout_ns);
  3709. return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1);
  3710. }
  3711. /* Returns the hub-encoded U2 timeout value.
  3712. * The U2 timeout should be the maximum of:
  3713. * - 10 ms (to avoid the bandwidth impact on the scheduler)
  3714. * - largest bInterval of any active periodic endpoint (to avoid going
  3715. * into lower power link states between intervals).
  3716. * - the U2 Exit Latency of the device
  3717. */
  3718. static u16 xhci_calculate_intel_u2_timeout(struct usb_device *udev,
  3719. struct usb_endpoint_descriptor *desc)
  3720. {
  3721. unsigned long long timeout_ns;
  3722. unsigned long long u2_del_ns;
  3723. timeout_ns = 10 * 1000 * 1000;
  3724. if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) &&
  3725. (xhci_service_interval_to_ns(desc) > timeout_ns))
  3726. timeout_ns = xhci_service_interval_to_ns(desc);
  3727. u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL;
  3728. if (u2_del_ns > timeout_ns)
  3729. timeout_ns = u2_del_ns;
  3730. /* The U2 timeout is encoded in 256us intervals */
  3731. timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000);
  3732. /* If the necessary timeout value is bigger than what we can set in the
  3733. * USB 3.0 hub, we have to disable hub-initiated U2.
  3734. */
  3735. if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT)
  3736. return timeout_ns;
  3737. dev_dbg(&udev->dev, "Hub-initiated U2 disabled "
  3738. "due to long timeout %llu ms\n", timeout_ns);
  3739. return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2);
  3740. }
  3741. static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci,
  3742. struct usb_device *udev,
  3743. struct usb_endpoint_descriptor *desc,
  3744. enum usb3_link_state state,
  3745. u16 *timeout)
  3746. {
  3747. if (state == USB3_LPM_U1) {
  3748. if (xhci->quirks & XHCI_INTEL_HOST)
  3749. return xhci_calculate_intel_u1_timeout(udev, desc);
  3750. } else {
  3751. if (xhci->quirks & XHCI_INTEL_HOST)
  3752. return xhci_calculate_intel_u2_timeout(udev, desc);
  3753. }
  3754. return USB3_LPM_DISABLED;
  3755. }
  3756. static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci,
  3757. struct usb_device *udev,
  3758. struct usb_endpoint_descriptor *desc,
  3759. enum usb3_link_state state,
  3760. u16 *timeout)
  3761. {
  3762. u16 alt_timeout;
  3763. alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev,
  3764. desc, state, timeout);
  3765. /* If we found we can't enable hub-initiated LPM, or
  3766. * the U1 or U2 exit latency was too high to allow
  3767. * device-initiated LPM as well, just stop searching.
  3768. */
  3769. if (alt_timeout == USB3_LPM_DISABLED ||
  3770. alt_timeout == USB3_LPM_DEVICE_INITIATED) {
  3771. *timeout = alt_timeout;
  3772. return -E2BIG;
  3773. }
  3774. if (alt_timeout > *timeout)
  3775. *timeout = alt_timeout;
  3776. return 0;
  3777. }
  3778. static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci,
  3779. struct usb_device *udev,
  3780. struct usb_host_interface *alt,
  3781. enum usb3_link_state state,
  3782. u16 *timeout)
  3783. {
  3784. int j;
  3785. for (j = 0; j < alt->desc.bNumEndpoints; j++) {
  3786. if (xhci_update_timeout_for_endpoint(xhci, udev,
  3787. &alt->endpoint[j].desc, state, timeout))
  3788. return -E2BIG;
  3789. continue;
  3790. }
  3791. return 0;
  3792. }
  3793. static int xhci_check_intel_tier_policy(struct usb_device *udev,
  3794. enum usb3_link_state state)
  3795. {
  3796. struct usb_device *parent;
  3797. unsigned int num_hubs;
  3798. if (state == USB3_LPM_U2)
  3799. return 0;
  3800. /* Don't enable U1 if the device is on a 2nd tier hub or lower. */
  3801. for (parent = udev->parent, num_hubs = 0; parent->parent;
  3802. parent = parent->parent)
  3803. num_hubs++;
  3804. if (num_hubs < 2)
  3805. return 0;
  3806. dev_dbg(&udev->dev, "Disabling U1 link state for device"
  3807. " below second-tier hub.\n");
  3808. dev_dbg(&udev->dev, "Plug device into first-tier hub "
  3809. "to decrease power consumption.\n");
  3810. return -E2BIG;
  3811. }
  3812. static int xhci_check_tier_policy(struct xhci_hcd *xhci,
  3813. struct usb_device *udev,
  3814. enum usb3_link_state state)
  3815. {
  3816. if (xhci->quirks & XHCI_INTEL_HOST)
  3817. return xhci_check_intel_tier_policy(udev, state);
  3818. return -EINVAL;
  3819. }
  3820. /* Returns the U1 or U2 timeout that should be enabled.
  3821. * If the tier check or timeout setting functions return with a non-zero exit
  3822. * code, that means the timeout value has been finalized and we shouldn't look
  3823. * at any more endpoints.
  3824. */
  3825. static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd,
  3826. struct usb_device *udev, enum usb3_link_state state)
  3827. {
  3828. struct xhci_hcd *xhci = hcd_to_xhci(hcd);
  3829. struct usb_host_config *config;
  3830. char *state_name;
  3831. int i;
  3832. u16 timeout = USB3_LPM_DISABLED;
  3833. if (state == USB3_LPM_U1)
  3834. state_name = "U1";
  3835. else if (state == USB3_LPM_U2)
  3836. state_name = "U2";
  3837. else {
  3838. dev_warn(&udev->dev, "Can't enable unknown link state %i\n",
  3839. state);
  3840. return timeout;
  3841. }
  3842. if (xhci_check_tier_policy(xhci, udev, state) < 0)
  3843. return timeout;
  3844. /* Gather some information about the currently installed configuration
  3845. * and alternate interface settings.
  3846. */
  3847. if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc,
  3848. state, &timeout))
  3849. return timeout;
  3850. config = udev->actconfig;
  3851. if (!config)
  3852. return timeout;
  3853. for (i = 0; i < USB_MAXINTERFACES; i++) {
  3854. struct usb_driver *driver;
  3855. struct usb_interface *intf = config->interface[i];
  3856. if (!intf)
  3857. continue;
  3858. /* Check if any currently bound drivers want hub-initiated LPM
  3859. * disabled.
  3860. */
  3861. if (intf->dev.driver) {
  3862. driver = to_usb_driver(intf->dev.driver);
  3863. if (driver && driver->disable_hub_initiated_lpm) {
  3864. dev_dbg(&udev->dev, "Hub-initiated %s disabled "
  3865. "at request of driver %s\n",
  3866. state_name, driver->name);
  3867. return xhci_get_timeout_no_hub_lpm(udev, state);
  3868. }
  3869. }
  3870. /* Not sure how this could happen... */
  3871. if (!intf->cur_altsetting)
  3872. continue;
  3873. if (xhci_update_timeout_for_interface(xhci, udev,
  3874. intf->cur_altsetting,
  3875. state, &timeout))
  3876. return timeout;
  3877. }
  3878. return timeout;
  3879. }
  3880. /*
  3881. * Issue an Evaluate Context command to change the Maximum Exit Latency in the
  3882. * slot context. If that succeeds, store the new MEL in the xhci_virt_device.
  3883. */
  3884. static int xhci_change_max_exit_latency(struct xhci_hcd *xhci,
  3885. struct usb_device *udev, u16 max_exit_latency)
  3886. {
  3887. struct xhci_virt_device *virt_dev;
  3888. struct xhci_command *command;
  3889. struct xhci_input_control_ctx *ctrl_ctx;
  3890. struct xhci_slot_ctx *slot_ctx;
  3891. unsigned long flags;
  3892. int ret;
  3893. spin_lock_irqsave(&xhci->lock, flags);
  3894. if (max_exit_latency == xhci->devs[udev->slot_id]->current_mel) {
  3895. spin_unlock_irqrestore(&xhci->lock, flags);
  3896. return 0;
  3897. }
  3898. /* Attempt to issue an Evaluate Context command to change the MEL. */
  3899. virt_dev = xhci->devs[udev->slot_id];
  3900. command = xhci->lpm_command;
  3901. xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx);
  3902. spin_unlock_irqrestore(&xhci->lock, flags);
  3903. ctrl_ctx = xhci_get_input_control_ctx(xhci, command->in_ctx);
  3904. ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
  3905. slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
  3906. slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT));
  3907. slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency);
  3908. xhci_dbg(xhci, "Set up evaluate context for LPM MEL change.\n");
  3909. xhci_dbg(xhci, "Slot %u Input Context:\n", udev->slot_id);
  3910. xhci_dbg_ctx(xhci, command->in_ctx, 0);
  3911. /* Issue and wait for the evaluate context command. */
  3912. ret = xhci_configure_endpoint(xhci, udev, command,
  3913. true, true);
  3914. xhci_dbg(xhci, "Slot %u Output Context:\n", udev->slot_id);
  3915. xhci_dbg_ctx(xhci, virt_dev->out_ctx, 0);
  3916. if (!ret) {
  3917. spin_lock_irqsave(&xhci->lock, flags);
  3918. virt_dev->current_mel = max_exit_latency;
  3919. spin_unlock_irqrestore(&xhci->lock, flags);
  3920. }
  3921. return ret;
  3922. }
  3923. static int calculate_max_exit_latency(struct usb_device *udev,
  3924. enum usb3_link_state state_changed,
  3925. u16 hub_encoded_timeout)
  3926. {
  3927. unsigned long long u1_mel_us = 0;
  3928. unsigned long long u2_mel_us = 0;
  3929. unsigned long long mel_us = 0;
  3930. bool disabling_u1;
  3931. bool disabling_u2;
  3932. bool enabling_u1;
  3933. bool enabling_u2;
  3934. disabling_u1 = (state_changed == USB3_LPM_U1 &&
  3935. hub_encoded_timeout == USB3_LPM_DISABLED);
  3936. disabling_u2 = (state_changed == USB3_LPM_U2 &&
  3937. hub_encoded_timeout == USB3_LPM_DISABLED);
  3938. enabling_u1 = (state_changed == USB3_LPM_U1 &&
  3939. hub_encoded_timeout != USB3_LPM_DISABLED);
  3940. enabling_u2 = (state_changed == USB3_LPM_U2 &&
  3941. hub_encoded_timeout != USB3_LPM_DISABLED);
  3942. /* If U1 was already enabled and we're not disabling it,
  3943. * or we're going to enable U1, account for the U1 max exit latency.
  3944. */
  3945. if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) ||
  3946. enabling_u1)
  3947. u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000);
  3948. if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) ||
  3949. enabling_u2)
  3950. u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000);
  3951. if (u1_mel_us > u2_mel_us)
  3952. mel_us = u1_mel_us;
  3953. else
  3954. mel_us = u2_mel_us;
  3955. /* xHCI host controller max exit latency field is only 16 bits wide. */
  3956. if (mel_us > MAX_EXIT) {
  3957. dev_warn(&udev->dev, "Link PM max exit latency of %lluus "
  3958. "is too big.\n", mel_us);
  3959. return -E2BIG;
  3960. }
  3961. return mel_us;
  3962. }
  3963. /* Returns the USB3 hub-encoded value for the U1/U2 timeout. */
  3964. int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
  3965. struct usb_device *udev, enum usb3_link_state state)
  3966. {
  3967. struct xhci_hcd *xhci;
  3968. u16 hub_encoded_timeout;
  3969. int mel;
  3970. int ret;
  3971. xhci = hcd_to_xhci(hcd);
  3972. /* The LPM timeout values are pretty host-controller specific, so don't
  3973. * enable hub-initiated timeouts unless the vendor has provided
  3974. * information about their timeout algorithm.
  3975. */
  3976. if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
  3977. !xhci->devs[udev->slot_id])
  3978. return USB3_LPM_DISABLED;
  3979. hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state);
  3980. mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout);
  3981. if (mel < 0) {
  3982. /* Max Exit Latency is too big, disable LPM. */
  3983. hub_encoded_timeout = USB3_LPM_DISABLED;
  3984. mel = 0;
  3985. }
  3986. ret = xhci_change_max_exit_latency(xhci, udev, mel);
  3987. if (ret)
  3988. return ret;
  3989. return hub_encoded_timeout;
  3990. }
  3991. int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
  3992. struct usb_device *udev, enum usb3_link_state state)
  3993. {
  3994. struct xhci_hcd *xhci;
  3995. u16 mel;
  3996. int ret;
  3997. xhci = hcd_to_xhci(hcd);
  3998. if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
  3999. !xhci->devs[udev->slot_id])
  4000. return 0;
  4001. mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED);
  4002. ret = xhci_change_max_exit_latency(xhci, udev, mel);
  4003. if (ret)
  4004. return ret;
  4005. return 0;
  4006. }
  4007. #else /* CONFIG_PM */
  4008. int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
  4009. struct usb_device *udev, enum usb3_link_state state)
  4010. {
  4011. return USB3_LPM_DISABLED;
  4012. }
  4013. int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
  4014. struct usb_device *udev, enum usb3_link_state state)
  4015. {
  4016. return 0;
  4017. }
  4018. #endif /* CONFIG_PM */
  4019. /*-------------------------------------------------------------------------*/
  4020. /* Once a hub descriptor is fetched for a device, we need to update the xHC's
  4021. * internal data structures for the device.
  4022. */
  4023. int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev,
  4024. struct usb_tt *tt, gfp_t mem_flags)
  4025. {
  4026. struct xhci_hcd *xhci = hcd_to_xhci(hcd);
  4027. struct xhci_virt_device *vdev;
  4028. struct xhci_command *config_cmd;
  4029. struct xhci_input_control_ctx *ctrl_ctx;
  4030. struct xhci_slot_ctx *slot_ctx;
  4031. unsigned long flags;
  4032. unsigned think_time;
  4033. int ret;
  4034. /* Ignore root hubs */
  4035. if (!hdev->parent)
  4036. return 0;
  4037. vdev = xhci->devs[hdev->slot_id];
  4038. if (!vdev) {
  4039. xhci_warn(xhci, "Cannot update hub desc for unknown device.\n");
  4040. return -EINVAL;
  4041. }
  4042. config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
  4043. if (!config_cmd) {
  4044. xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
  4045. return -ENOMEM;
  4046. }
  4047. spin_lock_irqsave(&xhci->lock, flags);
  4048. if (hdev->speed == USB_SPEED_HIGH &&
  4049. xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) {
  4050. xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n");
  4051. xhci_free_command(xhci, config_cmd);
  4052. spin_unlock_irqrestore(&xhci->lock, flags);
  4053. return -ENOMEM;
  4054. }
  4055. xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx);
  4056. ctrl_ctx = xhci_get_input_control_ctx(xhci, config_cmd->in_ctx);
  4057. ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
  4058. slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx);
  4059. slot_ctx->dev_info |= cpu_to_le32(DEV_HUB);
  4060. if (tt->multi)
  4061. slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
  4062. if (xhci->hci_version > 0x95) {
  4063. xhci_dbg(xhci, "xHCI version %x needs hub "
  4064. "TT think time and number of ports\n",
  4065. (unsigned int) xhci->hci_version);
  4066. slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild));
  4067. /* Set TT think time - convert from ns to FS bit times.
  4068. * 0 = 8 FS bit times, 1 = 16 FS bit times,
  4069. * 2 = 24 FS bit times, 3 = 32 FS bit times.
  4070. *
  4071. * xHCI 1.0: this field shall be 0 if the device is not a
  4072. * High-spped hub.
  4073. */
  4074. think_time = tt->think_time;
  4075. if (think_time != 0)
  4076. think_time = (think_time / 666) - 1;
  4077. if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH)
  4078. slot_ctx->tt_info |=
  4079. cpu_to_le32(TT_THINK_TIME(think_time));
  4080. } else {
  4081. xhci_dbg(xhci, "xHCI version %x doesn't need hub "
  4082. "TT think time or number of ports\n",
  4083. (unsigned int) xhci->hci_version);
  4084. }
  4085. slot_ctx->dev_state = 0;
  4086. spin_unlock_irqrestore(&xhci->lock, flags);
  4087. xhci_dbg(xhci, "Set up %s for hub device.\n",
  4088. (xhci->hci_version > 0x95) ?
  4089. "configure endpoint" : "evaluate context");
  4090. xhci_dbg(xhci, "Slot %u Input Context:\n", hdev->slot_id);
  4091. xhci_dbg_ctx(xhci, config_cmd->in_ctx, 0);
  4092. /* Issue and wait for the configure endpoint or
  4093. * evaluate context command.
  4094. */
  4095. if (xhci->hci_version > 0x95)
  4096. ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
  4097. false, false);
  4098. else
  4099. ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
  4100. true, false);
  4101. xhci_dbg(xhci, "Slot %u Output Context:\n", hdev->slot_id);
  4102. xhci_dbg_ctx(xhci, vdev->out_ctx, 0);
  4103. xhci_free_command(xhci, config_cmd);
  4104. return ret;
  4105. }
  4106. int xhci_get_frame(struct usb_hcd *hcd)
  4107. {
  4108. struct xhci_hcd *xhci = hcd_to_xhci(hcd);
  4109. /* EHCI mods by the periodic size. Why? */
  4110. return xhci_readl(xhci, &xhci->run_regs->microframe_index) >> 3;
  4111. }
  4112. int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks)
  4113. {
  4114. struct xhci_hcd *xhci;
  4115. struct device *dev = hcd->self.controller;
  4116. int retval;
  4117. u32 temp;
  4118. /* Accept arbitrarily long scatter-gather lists */
  4119. hcd->self.sg_tablesize = ~0;
  4120. /* XHCI controllers don't stop the ep queue on short packets :| */
  4121. hcd->self.no_stop_on_short = 1;
  4122. if (usb_hcd_is_primary_hcd(hcd)) {
  4123. xhci = kzalloc(sizeof(struct xhci_hcd), GFP_KERNEL);
  4124. if (!xhci)
  4125. return -ENOMEM;
  4126. *((struct xhci_hcd **) hcd->hcd_priv) = xhci;
  4127. xhci->main_hcd = hcd;
  4128. /* Mark the first roothub as being USB 2.0.
  4129. * The xHCI driver will register the USB 3.0 roothub.
  4130. */
  4131. hcd->speed = HCD_USB2;
  4132. hcd->self.root_hub->speed = USB_SPEED_HIGH;
  4133. /*
  4134. * USB 2.0 roothub under xHCI has an integrated TT,
  4135. * (rate matching hub) as opposed to having an OHCI/UHCI
  4136. * companion controller.
  4137. */
  4138. hcd->has_tt = 1;
  4139. } else {
  4140. /* xHCI private pointer was set in xhci_pci_probe for the second
  4141. * registered roothub.
  4142. */
  4143. xhci = hcd_to_xhci(hcd);
  4144. temp = xhci_readl(xhci, &xhci->cap_regs->hcc_params);
  4145. if (HCC_64BIT_ADDR(temp)) {
  4146. xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
  4147. dma_set_mask(hcd->self.controller, DMA_BIT_MASK(64));
  4148. } else {
  4149. dma_set_mask(hcd->self.controller, DMA_BIT_MASK(32));
  4150. }
  4151. return 0;
  4152. }
  4153. xhci->cap_regs = hcd->regs;
  4154. xhci->op_regs = hcd->regs +
  4155. HC_LENGTH(xhci_readl(xhci, &xhci->cap_regs->hc_capbase));
  4156. xhci->run_regs = hcd->regs +
  4157. (xhci_readl(xhci, &xhci->cap_regs->run_regs_off) & RTSOFF_MASK);
  4158. /* Cache read-only capability registers */
  4159. xhci->hcs_params1 = xhci_readl(xhci, &xhci->cap_regs->hcs_params1);
  4160. xhci->hcs_params2 = xhci_readl(xhci, &xhci->cap_regs->hcs_params2);
  4161. xhci->hcs_params3 = xhci_readl(xhci, &xhci->cap_regs->hcs_params3);
  4162. xhci->hcc_params = xhci_readl(xhci, &xhci->cap_regs->hc_capbase);
  4163. xhci->hci_version = HC_VERSION(xhci->hcc_params);
  4164. xhci->hcc_params = xhci_readl(xhci, &xhci->cap_regs->hcc_params);
  4165. xhci_print_registers(xhci);
  4166. get_quirks(dev, xhci);
  4167. /* Make sure the HC is halted. */
  4168. retval = xhci_halt(xhci);
  4169. if (retval)
  4170. goto error;
  4171. xhci_dbg(xhci, "Resetting HCD\n");
  4172. /* Reset the internal HC memory state and registers. */
  4173. retval = xhci_reset(xhci);
  4174. if (retval)
  4175. goto error;
  4176. xhci_dbg(xhci, "Reset complete\n");
  4177. temp = xhci_readl(xhci, &xhci->cap_regs->hcc_params);
  4178. if (HCC_64BIT_ADDR(temp)) {
  4179. xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
  4180. dma_set_mask(hcd->self.controller, DMA_BIT_MASK(64));
  4181. } else {
  4182. dma_set_mask(hcd->self.controller, DMA_BIT_MASK(32));
  4183. }
  4184. xhci_dbg(xhci, "Calling HCD init\n");
  4185. /* Initialize HCD and host controller data structures. */
  4186. retval = xhci_init(hcd);
  4187. if (retval)
  4188. goto error;
  4189. xhci_dbg(xhci, "Called HCD init\n");
  4190. return 0;
  4191. error:
  4192. kfree(xhci);
  4193. return retval;
  4194. }
  4195. MODULE_DESCRIPTION(DRIVER_DESC);
  4196. MODULE_AUTHOR(DRIVER_AUTHOR);
  4197. MODULE_LICENSE("GPL");
  4198. static int __init xhci_hcd_init(void)
  4199. {
  4200. int retval;
  4201. retval = xhci_register_pci();
  4202. if (retval < 0) {
  4203. printk(KERN_DEBUG "Problem registering PCI driver.");
  4204. return retval;
  4205. }
  4206. retval = xhci_register_plat();
  4207. if (retval < 0) {
  4208. printk(KERN_DEBUG "Problem registering platform driver.");
  4209. goto unreg_pci;
  4210. }
  4211. /*
  4212. * Check the compiler generated sizes of structures that must be laid
  4213. * out in specific ways for hardware access.
  4214. */
  4215. BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
  4216. BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8);
  4217. BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8);
  4218. /* xhci_device_control has eight fields, and also
  4219. * embeds one xhci_slot_ctx and 31 xhci_ep_ctx
  4220. */
  4221. BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8);
  4222. BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8);
  4223. BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8);
  4224. BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 7*32/8);
  4225. BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8);
  4226. /* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */
  4227. BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8);
  4228. return 0;
  4229. unreg_pci:
  4230. xhci_unregister_pci();
  4231. return retval;
  4232. }
  4233. module_init(xhci_hcd_init);
  4234. static void __exit xhci_hcd_cleanup(void)
  4235. {
  4236. xhci_unregister_pci();
  4237. xhci_unregister_plat();
  4238. }
  4239. module_exit(xhci_hcd_cleanup);