pxa2xx_spi.c 42 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634
  1. /*
  2. * Copyright (C) 2005 Stephen Street / StreetFire Sound Labs
  3. *
  4. * This program is free software; you can redistribute it and/or modify
  5. * it under the terms of the GNU General Public License as published by
  6. * the Free Software Foundation; either version 2 of the License, or
  7. * (at your option) any later version.
  8. *
  9. * This program is distributed in the hope that it will be useful,
  10. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. * GNU General Public License for more details.
  13. *
  14. * You should have received a copy of the GNU General Public License
  15. * along with this program; if not, write to the Free Software
  16. * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  17. */
  18. #include <linux/init.h>
  19. #include <linux/module.h>
  20. #include <linux/device.h>
  21. #include <linux/ioport.h>
  22. #include <linux/errno.h>
  23. #include <linux/interrupt.h>
  24. #include <linux/platform_device.h>
  25. #include <linux/dma-mapping.h>
  26. #include <linux/spi/spi.h>
  27. #include <linux/workqueue.h>
  28. #include <linux/errno.h>
  29. #include <linux/delay.h>
  30. #include <asm/io.h>
  31. #include <asm/irq.h>
  32. #include <asm/hardware.h>
  33. #include <asm/delay.h>
  34. #include <asm/dma.h>
  35. #include <asm/arch/hardware.h>
  36. #include <asm/arch/pxa-regs.h>
  37. #include <asm/arch/pxa2xx_spi.h>
  38. MODULE_AUTHOR("Stephen Street");
  39. MODULE_DESCRIPTION("PXA2xx SSP SPI Contoller");
  40. MODULE_LICENSE("GPL");
  41. #define MAX_BUSES 3
  42. #define DMA_INT_MASK (DCSR_ENDINTR | DCSR_STARTINTR | DCSR_BUSERR)
  43. #define RESET_DMA_CHANNEL (DCSR_NODESC | DMA_INT_MASK)
  44. #define IS_DMA_ALIGNED(x) (((u32)(x)&0x07)==0)
  45. /* for testing SSCR1 changes that require SSP restart, basically
  46. * everything except the service and interrupt enables */
  47. #define SSCR1_CHANGE_MASK (SSCR1_TTELP | SSCR1_TTE | SSCR1_EBCEI | SSCR1_SCFR \
  48. | SSCR1_ECRA | SSCR1_ECRB | SSCR1_SCLKDIR \
  49. | SSCR1_RWOT | SSCR1_TRAIL | SSCR1_PINTE \
  50. | SSCR1_STRF | SSCR1_EFWR |SSCR1_RFT \
  51. | SSCR1_TFT | SSCR1_SPH | SSCR1_SPO | SSCR1_LBM)
  52. #define DEFINE_SSP_REG(reg, off) \
  53. static inline u32 read_##reg(void *p) { return __raw_readl(p + (off)); } \
  54. static inline void write_##reg(u32 v, void *p) { __raw_writel(v, p + (off)); }
  55. DEFINE_SSP_REG(SSCR0, 0x00)
  56. DEFINE_SSP_REG(SSCR1, 0x04)
  57. DEFINE_SSP_REG(SSSR, 0x08)
  58. DEFINE_SSP_REG(SSITR, 0x0c)
  59. DEFINE_SSP_REG(SSDR, 0x10)
  60. DEFINE_SSP_REG(SSTO, 0x28)
  61. DEFINE_SSP_REG(SSPSP, 0x2c)
  62. #define START_STATE ((void*)0)
  63. #define RUNNING_STATE ((void*)1)
  64. #define DONE_STATE ((void*)2)
  65. #define ERROR_STATE ((void*)-1)
  66. #define QUEUE_RUNNING 0
  67. #define QUEUE_STOPPED 1
  68. struct driver_data {
  69. /* Driver model hookup */
  70. struct platform_device *pdev;
  71. /* SPI framework hookup */
  72. enum pxa_ssp_type ssp_type;
  73. struct spi_master *master;
  74. /* PXA hookup */
  75. struct pxa2xx_spi_master *master_info;
  76. /* DMA setup stuff */
  77. int rx_channel;
  78. int tx_channel;
  79. u32 *null_dma_buf;
  80. /* SSP register addresses */
  81. void *ioaddr;
  82. u32 ssdr_physical;
  83. /* SSP masks*/
  84. u32 dma_cr1;
  85. u32 int_cr1;
  86. u32 clear_sr;
  87. u32 mask_sr;
  88. /* Driver message queue */
  89. struct workqueue_struct *workqueue;
  90. struct work_struct pump_messages;
  91. spinlock_t lock;
  92. struct list_head queue;
  93. int busy;
  94. int run;
  95. /* Message Transfer pump */
  96. struct tasklet_struct pump_transfers;
  97. /* Current message transfer state info */
  98. struct spi_message* cur_msg;
  99. struct spi_transfer* cur_transfer;
  100. struct chip_data *cur_chip;
  101. size_t len;
  102. void *tx;
  103. void *tx_end;
  104. void *rx;
  105. void *rx_end;
  106. int dma_mapped;
  107. dma_addr_t rx_dma;
  108. dma_addr_t tx_dma;
  109. size_t rx_map_len;
  110. size_t tx_map_len;
  111. u8 n_bytes;
  112. u32 dma_width;
  113. int cs_change;
  114. int (*write)(struct driver_data *drv_data);
  115. int (*read)(struct driver_data *drv_data);
  116. irqreturn_t (*transfer_handler)(struct driver_data *drv_data);
  117. void (*cs_control)(u32 command);
  118. };
  119. struct chip_data {
  120. u32 cr0;
  121. u32 cr1;
  122. u32 psp;
  123. u32 timeout;
  124. u8 n_bytes;
  125. u32 dma_width;
  126. u32 dma_burst_size;
  127. u32 threshold;
  128. u32 dma_threshold;
  129. u8 enable_dma;
  130. u8 bits_per_word;
  131. u32 speed_hz;
  132. int (*write)(struct driver_data *drv_data);
  133. int (*read)(struct driver_data *drv_data);
  134. void (*cs_control)(u32 command);
  135. };
  136. static void pump_messages(struct work_struct *work);
  137. static int flush(struct driver_data *drv_data)
  138. {
  139. unsigned long limit = loops_per_jiffy << 1;
  140. void *reg = drv_data->ioaddr;
  141. do {
  142. while (read_SSSR(reg) & SSSR_RNE) {
  143. read_SSDR(reg);
  144. }
  145. } while ((read_SSSR(reg) & SSSR_BSY) && limit--);
  146. write_SSSR(SSSR_ROR, reg);
  147. return limit;
  148. }
  149. static void null_cs_control(u32 command)
  150. {
  151. }
  152. static int null_writer(struct driver_data *drv_data)
  153. {
  154. void *reg = drv_data->ioaddr;
  155. u8 n_bytes = drv_data->n_bytes;
  156. if (((read_SSSR(reg) & 0x00000f00) == 0x00000f00)
  157. || (drv_data->tx == drv_data->tx_end))
  158. return 0;
  159. write_SSDR(0, reg);
  160. drv_data->tx += n_bytes;
  161. return 1;
  162. }
  163. static int null_reader(struct driver_data *drv_data)
  164. {
  165. void *reg = drv_data->ioaddr;
  166. u8 n_bytes = drv_data->n_bytes;
  167. while ((read_SSSR(reg) & SSSR_RNE)
  168. && (drv_data->rx < drv_data->rx_end)) {
  169. read_SSDR(reg);
  170. drv_data->rx += n_bytes;
  171. }
  172. return drv_data->rx == drv_data->rx_end;
  173. }
  174. static int u8_writer(struct driver_data *drv_data)
  175. {
  176. void *reg = drv_data->ioaddr;
  177. if (((read_SSSR(reg) & 0x00000f00) == 0x00000f00)
  178. || (drv_data->tx == drv_data->tx_end))
  179. return 0;
  180. write_SSDR(*(u8 *)(drv_data->tx), reg);
  181. ++drv_data->tx;
  182. return 1;
  183. }
  184. static int u8_reader(struct driver_data *drv_data)
  185. {
  186. void *reg = drv_data->ioaddr;
  187. while ((read_SSSR(reg) & SSSR_RNE)
  188. && (drv_data->rx < drv_data->rx_end)) {
  189. *(u8 *)(drv_data->rx) = read_SSDR(reg);
  190. ++drv_data->rx;
  191. }
  192. return drv_data->rx == drv_data->rx_end;
  193. }
  194. static int u16_writer(struct driver_data *drv_data)
  195. {
  196. void *reg = drv_data->ioaddr;
  197. if (((read_SSSR(reg) & 0x00000f00) == 0x00000f00)
  198. || (drv_data->tx == drv_data->tx_end))
  199. return 0;
  200. write_SSDR(*(u16 *)(drv_data->tx), reg);
  201. drv_data->tx += 2;
  202. return 1;
  203. }
  204. static int u16_reader(struct driver_data *drv_data)
  205. {
  206. void *reg = drv_data->ioaddr;
  207. while ((read_SSSR(reg) & SSSR_RNE)
  208. && (drv_data->rx < drv_data->rx_end)) {
  209. *(u16 *)(drv_data->rx) = read_SSDR(reg);
  210. drv_data->rx += 2;
  211. }
  212. return drv_data->rx == drv_data->rx_end;
  213. }
  214. static int u32_writer(struct driver_data *drv_data)
  215. {
  216. void *reg = drv_data->ioaddr;
  217. if (((read_SSSR(reg) & 0x00000f00) == 0x00000f00)
  218. || (drv_data->tx == drv_data->tx_end))
  219. return 0;
  220. write_SSDR(*(u32 *)(drv_data->tx), reg);
  221. drv_data->tx += 4;
  222. return 1;
  223. }
  224. static int u32_reader(struct driver_data *drv_data)
  225. {
  226. void *reg = drv_data->ioaddr;
  227. while ((read_SSSR(reg) & SSSR_RNE)
  228. && (drv_data->rx < drv_data->rx_end)) {
  229. *(u32 *)(drv_data->rx) = read_SSDR(reg);
  230. drv_data->rx += 4;
  231. }
  232. return drv_data->rx == drv_data->rx_end;
  233. }
  234. static void *next_transfer(struct driver_data *drv_data)
  235. {
  236. struct spi_message *msg = drv_data->cur_msg;
  237. struct spi_transfer *trans = drv_data->cur_transfer;
  238. /* Move to next transfer */
  239. if (trans->transfer_list.next != &msg->transfers) {
  240. drv_data->cur_transfer =
  241. list_entry(trans->transfer_list.next,
  242. struct spi_transfer,
  243. transfer_list);
  244. return RUNNING_STATE;
  245. } else
  246. return DONE_STATE;
  247. }
  248. static int map_dma_buffers(struct driver_data *drv_data)
  249. {
  250. struct spi_message *msg = drv_data->cur_msg;
  251. struct device *dev = &msg->spi->dev;
  252. if (!drv_data->cur_chip->enable_dma)
  253. return 0;
  254. if (msg->is_dma_mapped)
  255. return drv_data->rx_dma && drv_data->tx_dma;
  256. if (!IS_DMA_ALIGNED(drv_data->rx) || !IS_DMA_ALIGNED(drv_data->tx))
  257. return 0;
  258. /* Modify setup if rx buffer is null */
  259. if (drv_data->rx == NULL) {
  260. *drv_data->null_dma_buf = 0;
  261. drv_data->rx = drv_data->null_dma_buf;
  262. drv_data->rx_map_len = 4;
  263. } else
  264. drv_data->rx_map_len = drv_data->len;
  265. /* Modify setup if tx buffer is null */
  266. if (drv_data->tx == NULL) {
  267. *drv_data->null_dma_buf = 0;
  268. drv_data->tx = drv_data->null_dma_buf;
  269. drv_data->tx_map_len = 4;
  270. } else
  271. drv_data->tx_map_len = drv_data->len;
  272. /* Stream map the rx buffer */
  273. drv_data->rx_dma = dma_map_single(dev, drv_data->rx,
  274. drv_data->rx_map_len,
  275. DMA_FROM_DEVICE);
  276. if (dma_mapping_error(drv_data->rx_dma))
  277. return 0;
  278. /* Stream map the tx buffer */
  279. drv_data->tx_dma = dma_map_single(dev, drv_data->tx,
  280. drv_data->tx_map_len,
  281. DMA_TO_DEVICE);
  282. if (dma_mapping_error(drv_data->tx_dma)) {
  283. dma_unmap_single(dev, drv_data->rx_dma,
  284. drv_data->rx_map_len, DMA_FROM_DEVICE);
  285. return 0;
  286. }
  287. return 1;
  288. }
  289. static void unmap_dma_buffers(struct driver_data *drv_data)
  290. {
  291. struct device *dev;
  292. if (!drv_data->dma_mapped)
  293. return;
  294. if (!drv_data->cur_msg->is_dma_mapped) {
  295. dev = &drv_data->cur_msg->spi->dev;
  296. dma_unmap_single(dev, drv_data->rx_dma,
  297. drv_data->rx_map_len, DMA_FROM_DEVICE);
  298. dma_unmap_single(dev, drv_data->tx_dma,
  299. drv_data->tx_map_len, DMA_TO_DEVICE);
  300. }
  301. drv_data->dma_mapped = 0;
  302. }
  303. /* caller already set message->status; dma and pio irqs are blocked */
  304. static void giveback(struct driver_data *drv_data)
  305. {
  306. struct spi_transfer* last_transfer;
  307. unsigned long flags;
  308. struct spi_message *msg;
  309. spin_lock_irqsave(&drv_data->lock, flags);
  310. msg = drv_data->cur_msg;
  311. drv_data->cur_msg = NULL;
  312. drv_data->cur_transfer = NULL;
  313. drv_data->cur_chip = NULL;
  314. queue_work(drv_data->workqueue, &drv_data->pump_messages);
  315. spin_unlock_irqrestore(&drv_data->lock, flags);
  316. last_transfer = list_entry(msg->transfers.prev,
  317. struct spi_transfer,
  318. transfer_list);
  319. if (!last_transfer->cs_change)
  320. drv_data->cs_control(PXA2XX_CS_DEASSERT);
  321. msg->state = NULL;
  322. if (msg->complete)
  323. msg->complete(msg->context);
  324. }
  325. static int wait_ssp_rx_stall(void *ioaddr)
  326. {
  327. unsigned long limit = loops_per_jiffy << 1;
  328. while ((read_SSSR(ioaddr) & SSSR_BSY) && limit--)
  329. cpu_relax();
  330. return limit;
  331. }
  332. static int wait_dma_channel_stop(int channel)
  333. {
  334. unsigned long limit = loops_per_jiffy << 1;
  335. while (!(DCSR(channel) & DCSR_STOPSTATE) && limit--)
  336. cpu_relax();
  337. return limit;
  338. }
  339. void dma_error_stop(struct driver_data *drv_data, const char *msg)
  340. {
  341. void *reg = drv_data->ioaddr;
  342. /* Stop and reset */
  343. DCSR(drv_data->rx_channel) = RESET_DMA_CHANNEL;
  344. DCSR(drv_data->tx_channel) = RESET_DMA_CHANNEL;
  345. write_SSSR(drv_data->clear_sr, reg);
  346. write_SSCR1(read_SSCR1(reg) & ~drv_data->dma_cr1, reg);
  347. if (drv_data->ssp_type != PXA25x_SSP)
  348. write_SSTO(0, reg);
  349. flush(drv_data);
  350. write_SSCR0(read_SSCR0(reg) & ~SSCR0_SSE, reg);
  351. unmap_dma_buffers(drv_data);
  352. dev_err(&drv_data->pdev->dev, "%s\n", msg);
  353. drv_data->cur_msg->state = ERROR_STATE;
  354. tasklet_schedule(&drv_data->pump_transfers);
  355. }
  356. static void dma_transfer_complete(struct driver_data *drv_data)
  357. {
  358. void *reg = drv_data->ioaddr;
  359. struct spi_message *msg = drv_data->cur_msg;
  360. /* Clear and disable interrupts on SSP and DMA channels*/
  361. write_SSCR1(read_SSCR1(reg) & ~drv_data->dma_cr1, reg);
  362. write_SSSR(drv_data->clear_sr, reg);
  363. DCSR(drv_data->tx_channel) = RESET_DMA_CHANNEL;
  364. DCSR(drv_data->rx_channel) = RESET_DMA_CHANNEL;
  365. if (wait_dma_channel_stop(drv_data->rx_channel) == 0)
  366. dev_err(&drv_data->pdev->dev,
  367. "dma_handler: dma rx channel stop failed\n");
  368. if (wait_ssp_rx_stall(drv_data->ioaddr) == 0)
  369. dev_err(&drv_data->pdev->dev,
  370. "dma_transfer: ssp rx stall failed\n");
  371. unmap_dma_buffers(drv_data);
  372. /* update the buffer pointer for the amount completed in dma */
  373. drv_data->rx += drv_data->len -
  374. (DCMD(drv_data->rx_channel) & DCMD_LENGTH);
  375. /* read trailing data from fifo, it does not matter how many
  376. * bytes are in the fifo just read until buffer is full
  377. * or fifo is empty, which ever occurs first */
  378. drv_data->read(drv_data);
  379. /* return count of what was actually read */
  380. msg->actual_length += drv_data->len -
  381. (drv_data->rx_end - drv_data->rx);
  382. /* Release chip select if requested, transfer delays are
  383. * handled in pump_transfers */
  384. if (drv_data->cs_change)
  385. drv_data->cs_control(PXA2XX_CS_DEASSERT);
  386. /* Move to next transfer */
  387. msg->state = next_transfer(drv_data);
  388. /* Schedule transfer tasklet */
  389. tasklet_schedule(&drv_data->pump_transfers);
  390. }
  391. static void dma_handler(int channel, void *data)
  392. {
  393. struct driver_data *drv_data = data;
  394. u32 irq_status = DCSR(channel) & DMA_INT_MASK;
  395. if (irq_status & DCSR_BUSERR) {
  396. if (channel == drv_data->tx_channel)
  397. dma_error_stop(drv_data,
  398. "dma_handler: "
  399. "bad bus address on tx channel");
  400. else
  401. dma_error_stop(drv_data,
  402. "dma_handler: "
  403. "bad bus address on rx channel");
  404. return;
  405. }
  406. /* PXA255x_SSP has no timeout interrupt, wait for tailing bytes */
  407. if ((channel == drv_data->tx_channel)
  408. && (irq_status & DCSR_ENDINTR)
  409. && (drv_data->ssp_type == PXA25x_SSP)) {
  410. /* Wait for rx to stall */
  411. if (wait_ssp_rx_stall(drv_data->ioaddr) == 0)
  412. dev_err(&drv_data->pdev->dev,
  413. "dma_handler: ssp rx stall failed\n");
  414. /* finish this transfer, start the next */
  415. dma_transfer_complete(drv_data);
  416. }
  417. }
  418. static irqreturn_t dma_transfer(struct driver_data *drv_data)
  419. {
  420. u32 irq_status;
  421. void *reg = drv_data->ioaddr;
  422. irq_status = read_SSSR(reg) & drv_data->mask_sr;
  423. if (irq_status & SSSR_ROR) {
  424. dma_error_stop(drv_data, "dma_transfer: fifo overrun");
  425. return IRQ_HANDLED;
  426. }
  427. /* Check for false positive timeout */
  428. if ((irq_status & SSSR_TINT)
  429. && (DCSR(drv_data->tx_channel) & DCSR_RUN)) {
  430. write_SSSR(SSSR_TINT, reg);
  431. return IRQ_HANDLED;
  432. }
  433. if (irq_status & SSSR_TINT || drv_data->rx == drv_data->rx_end) {
  434. /* Clear and disable timeout interrupt, do the rest in
  435. * dma_transfer_complete */
  436. if (drv_data->ssp_type != PXA25x_SSP)
  437. write_SSTO(0, reg);
  438. /* finish this transfer, start the next */
  439. dma_transfer_complete(drv_data);
  440. return IRQ_HANDLED;
  441. }
  442. /* Opps problem detected */
  443. return IRQ_NONE;
  444. }
  445. static void int_error_stop(struct driver_data *drv_data, const char* msg)
  446. {
  447. void *reg = drv_data->ioaddr;
  448. /* Stop and reset SSP */
  449. write_SSSR(drv_data->clear_sr, reg);
  450. write_SSCR1(read_SSCR1(reg) & ~drv_data->int_cr1, reg);
  451. if (drv_data->ssp_type != PXA25x_SSP)
  452. write_SSTO(0, reg);
  453. flush(drv_data);
  454. write_SSCR0(read_SSCR0(reg) & ~SSCR0_SSE, reg);
  455. dev_err(&drv_data->pdev->dev, "%s\n", msg);
  456. drv_data->cur_msg->state = ERROR_STATE;
  457. tasklet_schedule(&drv_data->pump_transfers);
  458. }
  459. static void int_transfer_complete(struct driver_data *drv_data)
  460. {
  461. void *reg = drv_data->ioaddr;
  462. /* Stop SSP */
  463. write_SSSR(drv_data->clear_sr, reg);
  464. write_SSCR1(read_SSCR1(reg) & ~drv_data->int_cr1, reg);
  465. if (drv_data->ssp_type != PXA25x_SSP)
  466. write_SSTO(0, reg);
  467. /* Update total byte transfered return count actual bytes read */
  468. drv_data->cur_msg->actual_length += drv_data->len -
  469. (drv_data->rx_end - drv_data->rx);
  470. /* Release chip select if requested, transfer delays are
  471. * handled in pump_transfers */
  472. if (drv_data->cs_change)
  473. drv_data->cs_control(PXA2XX_CS_DEASSERT);
  474. /* Move to next transfer */
  475. drv_data->cur_msg->state = next_transfer(drv_data);
  476. /* Schedule transfer tasklet */
  477. tasklet_schedule(&drv_data->pump_transfers);
  478. }
  479. static irqreturn_t interrupt_transfer(struct driver_data *drv_data)
  480. {
  481. void *reg = drv_data->ioaddr;
  482. u32 irq_mask = (read_SSCR1(reg) & SSCR1_TIE) ?
  483. drv_data->mask_sr : drv_data->mask_sr & ~SSSR_TFS;
  484. u32 irq_status = read_SSSR(reg) & irq_mask;
  485. if (irq_status & SSSR_ROR) {
  486. int_error_stop(drv_data, "interrupt_transfer: fifo overrun");
  487. return IRQ_HANDLED;
  488. }
  489. if (irq_status & SSSR_TINT) {
  490. write_SSSR(SSSR_TINT, reg);
  491. if (drv_data->read(drv_data)) {
  492. int_transfer_complete(drv_data);
  493. return IRQ_HANDLED;
  494. }
  495. }
  496. /* Drain rx fifo, Fill tx fifo and prevent overruns */
  497. do {
  498. if (drv_data->read(drv_data)) {
  499. int_transfer_complete(drv_data);
  500. return IRQ_HANDLED;
  501. }
  502. } while (drv_data->write(drv_data));
  503. if (drv_data->read(drv_data)) {
  504. int_transfer_complete(drv_data);
  505. return IRQ_HANDLED;
  506. }
  507. if (drv_data->tx == drv_data->tx_end) {
  508. write_SSCR1(read_SSCR1(reg) & ~SSCR1_TIE, reg);
  509. /* PXA25x_SSP has no timeout, read trailing bytes */
  510. if (drv_data->ssp_type == PXA25x_SSP) {
  511. if (!wait_ssp_rx_stall(reg))
  512. {
  513. int_error_stop(drv_data, "interrupt_transfer: "
  514. "rx stall failed");
  515. return IRQ_HANDLED;
  516. }
  517. if (!drv_data->read(drv_data))
  518. {
  519. int_error_stop(drv_data,
  520. "interrupt_transfer: "
  521. "trailing byte read failed");
  522. return IRQ_HANDLED;
  523. }
  524. int_transfer_complete(drv_data);
  525. }
  526. }
  527. /* We did something */
  528. return IRQ_HANDLED;
  529. }
  530. static irqreturn_t ssp_int(int irq, void *dev_id)
  531. {
  532. struct driver_data *drv_data = dev_id;
  533. void *reg = drv_data->ioaddr;
  534. if (!drv_data->cur_msg) {
  535. write_SSCR0(read_SSCR0(reg) & ~SSCR0_SSE, reg);
  536. write_SSCR1(read_SSCR1(reg) & ~drv_data->int_cr1, reg);
  537. if (drv_data->ssp_type != PXA25x_SSP)
  538. write_SSTO(0, reg);
  539. write_SSSR(drv_data->clear_sr, reg);
  540. dev_err(&drv_data->pdev->dev, "bad message state "
  541. "in interrupt handler\n");
  542. /* Never fail */
  543. return IRQ_HANDLED;
  544. }
  545. return drv_data->transfer_handler(drv_data);
  546. }
  547. int set_dma_burst_and_threshold(struct chip_data *chip, struct spi_device *spi,
  548. u8 bits_per_word, u32 *burst_code,
  549. u32 *threshold)
  550. {
  551. struct pxa2xx_spi_chip *chip_info =
  552. (struct pxa2xx_spi_chip *)spi->controller_data;
  553. int bytes_per_word;
  554. int burst_bytes;
  555. int thresh_words;
  556. int req_burst_size;
  557. int retval = 0;
  558. /* Set the threshold (in registers) to equal the same amount of data
  559. * as represented by burst size (in bytes). The computation below
  560. * is (burst_size rounded up to nearest 8 byte, word or long word)
  561. * divided by (bytes/register); the tx threshold is the inverse of
  562. * the rx, so that there will always be enough data in the rx fifo
  563. * to satisfy a burst, and there will always be enough space in the
  564. * tx fifo to accept a burst (a tx burst will overwrite the fifo if
  565. * there is not enough space), there must always remain enough empty
  566. * space in the rx fifo for any data loaded to the tx fifo.
  567. * Whenever burst_size (in bytes) equals bits/word, the fifo threshold
  568. * will be 8, or half the fifo;
  569. * The threshold can only be set to 2, 4 or 8, but not 16, because
  570. * to burst 16 to the tx fifo, the fifo would have to be empty;
  571. * however, the minimum fifo trigger level is 1, and the tx will
  572. * request service when the fifo is at this level, with only 15 spaces.
  573. */
  574. /* find bytes/word */
  575. if (bits_per_word <= 8)
  576. bytes_per_word = 1;
  577. else if (bits_per_word <= 16)
  578. bytes_per_word = 2;
  579. else
  580. bytes_per_word = 4;
  581. /* use struct pxa2xx_spi_chip->dma_burst_size if available */
  582. if (chip_info)
  583. req_burst_size = chip_info->dma_burst_size;
  584. else {
  585. switch (chip->dma_burst_size) {
  586. default:
  587. /* if the default burst size is not set,
  588. * do it now */
  589. chip->dma_burst_size = DCMD_BURST8;
  590. case DCMD_BURST8:
  591. req_burst_size = 8;
  592. break;
  593. case DCMD_BURST16:
  594. req_burst_size = 16;
  595. break;
  596. case DCMD_BURST32:
  597. req_burst_size = 32;
  598. break;
  599. }
  600. }
  601. if (req_burst_size <= 8) {
  602. *burst_code = DCMD_BURST8;
  603. burst_bytes = 8;
  604. } else if (req_burst_size <= 16) {
  605. if (bytes_per_word == 1) {
  606. /* don't burst more than 1/2 the fifo */
  607. *burst_code = DCMD_BURST8;
  608. burst_bytes = 8;
  609. retval = 1;
  610. } else {
  611. *burst_code = DCMD_BURST16;
  612. burst_bytes = 16;
  613. }
  614. } else {
  615. if (bytes_per_word == 1) {
  616. /* don't burst more than 1/2 the fifo */
  617. *burst_code = DCMD_BURST8;
  618. burst_bytes = 8;
  619. retval = 1;
  620. } else if (bytes_per_word == 2) {
  621. /* don't burst more than 1/2 the fifo */
  622. *burst_code = DCMD_BURST16;
  623. burst_bytes = 16;
  624. retval = 1;
  625. } else {
  626. *burst_code = DCMD_BURST32;
  627. burst_bytes = 32;
  628. }
  629. }
  630. thresh_words = burst_bytes / bytes_per_word;
  631. /* thresh_words will be between 2 and 8 */
  632. *threshold = (SSCR1_RxTresh(thresh_words) & SSCR1_RFT)
  633. | (SSCR1_TxTresh(16-thresh_words) & SSCR1_TFT);
  634. return retval;
  635. }
  636. static void pump_transfers(unsigned long data)
  637. {
  638. struct driver_data *drv_data = (struct driver_data *)data;
  639. struct spi_message *message = NULL;
  640. struct spi_transfer *transfer = NULL;
  641. struct spi_transfer *previous = NULL;
  642. struct chip_data *chip = NULL;
  643. void *reg = drv_data->ioaddr;
  644. u32 clk_div = 0;
  645. u8 bits = 0;
  646. u32 speed = 0;
  647. u32 cr0;
  648. u32 cr1;
  649. u32 dma_thresh = drv_data->cur_chip->dma_threshold;
  650. u32 dma_burst = drv_data->cur_chip->dma_burst_size;
  651. /* Get current state information */
  652. message = drv_data->cur_msg;
  653. transfer = drv_data->cur_transfer;
  654. chip = drv_data->cur_chip;
  655. /* Handle for abort */
  656. if (message->state == ERROR_STATE) {
  657. message->status = -EIO;
  658. giveback(drv_data);
  659. return;
  660. }
  661. /* Handle end of message */
  662. if (message->state == DONE_STATE) {
  663. message->status = 0;
  664. giveback(drv_data);
  665. return;
  666. }
  667. /* Delay if requested at end of transfer*/
  668. if (message->state == RUNNING_STATE) {
  669. previous = list_entry(transfer->transfer_list.prev,
  670. struct spi_transfer,
  671. transfer_list);
  672. if (previous->delay_usecs)
  673. udelay(previous->delay_usecs);
  674. }
  675. /* Check transfer length */
  676. if (transfer->len > 8191)
  677. {
  678. dev_warn(&drv_data->pdev->dev, "pump_transfers: transfer "
  679. "length greater than 8191\n");
  680. message->status = -EINVAL;
  681. giveback(drv_data);
  682. return;
  683. }
  684. /* Setup the transfer state based on the type of transfer */
  685. if (flush(drv_data) == 0) {
  686. dev_err(&drv_data->pdev->dev, "pump_transfers: flush failed\n");
  687. message->status = -EIO;
  688. giveback(drv_data);
  689. return;
  690. }
  691. drv_data->n_bytes = chip->n_bytes;
  692. drv_data->dma_width = chip->dma_width;
  693. drv_data->cs_control = chip->cs_control;
  694. drv_data->tx = (void *)transfer->tx_buf;
  695. drv_data->tx_end = drv_data->tx + transfer->len;
  696. drv_data->rx = transfer->rx_buf;
  697. drv_data->rx_end = drv_data->rx + transfer->len;
  698. drv_data->rx_dma = transfer->rx_dma;
  699. drv_data->tx_dma = transfer->tx_dma;
  700. drv_data->len = transfer->len & DCMD_LENGTH;
  701. drv_data->write = drv_data->tx ? chip->write : null_writer;
  702. drv_data->read = drv_data->rx ? chip->read : null_reader;
  703. drv_data->cs_change = transfer->cs_change;
  704. /* Change speed and bit per word on a per transfer */
  705. cr0 = chip->cr0;
  706. if (transfer->speed_hz || transfer->bits_per_word) {
  707. bits = chip->bits_per_word;
  708. speed = chip->speed_hz;
  709. if (transfer->speed_hz)
  710. speed = transfer->speed_hz;
  711. if (transfer->bits_per_word)
  712. bits = transfer->bits_per_word;
  713. if (reg == SSP1_VIRT)
  714. clk_div = SSP1_SerClkDiv(speed);
  715. else if (reg == SSP2_VIRT)
  716. clk_div = SSP2_SerClkDiv(speed);
  717. else if (reg == SSP3_VIRT)
  718. clk_div = SSP3_SerClkDiv(speed);
  719. if (bits <= 8) {
  720. drv_data->n_bytes = 1;
  721. drv_data->dma_width = DCMD_WIDTH1;
  722. drv_data->read = drv_data->read != null_reader ?
  723. u8_reader : null_reader;
  724. drv_data->write = drv_data->write != null_writer ?
  725. u8_writer : null_writer;
  726. } else if (bits <= 16) {
  727. drv_data->n_bytes = 2;
  728. drv_data->dma_width = DCMD_WIDTH2;
  729. drv_data->read = drv_data->read != null_reader ?
  730. u16_reader : null_reader;
  731. drv_data->write = drv_data->write != null_writer ?
  732. u16_writer : null_writer;
  733. } else if (bits <= 32) {
  734. drv_data->n_bytes = 4;
  735. drv_data->dma_width = DCMD_WIDTH4;
  736. drv_data->read = drv_data->read != null_reader ?
  737. u32_reader : null_reader;
  738. drv_data->write = drv_data->write != null_writer ?
  739. u32_writer : null_writer;
  740. }
  741. /* if bits/word is changed in dma mode, then must check the
  742. * thresholds and burst also */
  743. if (chip->enable_dma) {
  744. if (set_dma_burst_and_threshold(chip, message->spi,
  745. bits, &dma_burst,
  746. &dma_thresh))
  747. if (printk_ratelimit())
  748. dev_warn(&message->spi->dev,
  749. "pump_transfer: "
  750. "DMA burst size reduced to "
  751. "match bits_per_word\n");
  752. }
  753. cr0 = clk_div
  754. | SSCR0_Motorola
  755. | SSCR0_DataSize(bits > 16 ? bits - 16 : bits)
  756. | SSCR0_SSE
  757. | (bits > 16 ? SSCR0_EDSS : 0);
  758. }
  759. message->state = RUNNING_STATE;
  760. /* Try to map dma buffer and do a dma transfer if successful */
  761. if ((drv_data->dma_mapped = map_dma_buffers(drv_data))) {
  762. /* Ensure we have the correct interrupt handler */
  763. drv_data->transfer_handler = dma_transfer;
  764. /* Setup rx DMA Channel */
  765. DCSR(drv_data->rx_channel) = RESET_DMA_CHANNEL;
  766. DSADR(drv_data->rx_channel) = drv_data->ssdr_physical;
  767. DTADR(drv_data->rx_channel) = drv_data->rx_dma;
  768. if (drv_data->rx == drv_data->null_dma_buf)
  769. /* No target address increment */
  770. DCMD(drv_data->rx_channel) = DCMD_FLOWSRC
  771. | drv_data->dma_width
  772. | dma_burst
  773. | drv_data->len;
  774. else
  775. DCMD(drv_data->rx_channel) = DCMD_INCTRGADDR
  776. | DCMD_FLOWSRC
  777. | drv_data->dma_width
  778. | dma_burst
  779. | drv_data->len;
  780. /* Setup tx DMA Channel */
  781. DCSR(drv_data->tx_channel) = RESET_DMA_CHANNEL;
  782. DSADR(drv_data->tx_channel) = drv_data->tx_dma;
  783. DTADR(drv_data->tx_channel) = drv_data->ssdr_physical;
  784. if (drv_data->tx == drv_data->null_dma_buf)
  785. /* No source address increment */
  786. DCMD(drv_data->tx_channel) = DCMD_FLOWTRG
  787. | drv_data->dma_width
  788. | dma_burst
  789. | drv_data->len;
  790. else
  791. DCMD(drv_data->tx_channel) = DCMD_INCSRCADDR
  792. | DCMD_FLOWTRG
  793. | drv_data->dma_width
  794. | dma_burst
  795. | drv_data->len;
  796. /* Enable dma end irqs on SSP to detect end of transfer */
  797. if (drv_data->ssp_type == PXA25x_SSP)
  798. DCMD(drv_data->tx_channel) |= DCMD_ENDIRQEN;
  799. /* Fix me, need to handle cs polarity */
  800. drv_data->cs_control(PXA2XX_CS_ASSERT);
  801. /* Clear status and start DMA engine */
  802. cr1 = chip->cr1 | dma_thresh | drv_data->dma_cr1;
  803. write_SSSR(drv_data->clear_sr, reg);
  804. DCSR(drv_data->rx_channel) |= DCSR_RUN;
  805. DCSR(drv_data->tx_channel) |= DCSR_RUN;
  806. } else {
  807. /* Ensure we have the correct interrupt handler */
  808. drv_data->transfer_handler = interrupt_transfer;
  809. /* Fix me, need to handle cs polarity */
  810. drv_data->cs_control(PXA2XX_CS_ASSERT);
  811. /* Clear status */
  812. cr1 = chip->cr1 | chip->threshold | drv_data->int_cr1;
  813. write_SSSR(drv_data->clear_sr, reg);
  814. }
  815. /* see if we need to reload the config registers */
  816. if ((read_SSCR0(reg) != cr0)
  817. || (read_SSCR1(reg) & SSCR1_CHANGE_MASK) !=
  818. (cr1 & SSCR1_CHANGE_MASK)) {
  819. write_SSCR0(cr0 & ~SSCR0_SSE, reg);
  820. if (drv_data->ssp_type != PXA25x_SSP)
  821. write_SSTO(chip->timeout, reg);
  822. write_SSCR1(cr1, reg);
  823. write_SSCR0(cr0, reg);
  824. } else {
  825. if (drv_data->ssp_type != PXA25x_SSP)
  826. write_SSTO(chip->timeout, reg);
  827. write_SSCR1(cr1, reg);
  828. }
  829. }
  830. static void pump_messages(struct work_struct *work)
  831. {
  832. struct driver_data *drv_data =
  833. container_of(work, struct driver_data, pump_messages);
  834. unsigned long flags;
  835. /* Lock queue and check for queue work */
  836. spin_lock_irqsave(&drv_data->lock, flags);
  837. if (list_empty(&drv_data->queue) || drv_data->run == QUEUE_STOPPED) {
  838. drv_data->busy = 0;
  839. spin_unlock_irqrestore(&drv_data->lock, flags);
  840. return;
  841. }
  842. /* Make sure we are not already running a message */
  843. if (drv_data->cur_msg) {
  844. spin_unlock_irqrestore(&drv_data->lock, flags);
  845. return;
  846. }
  847. /* Extract head of queue */
  848. drv_data->cur_msg = list_entry(drv_data->queue.next,
  849. struct spi_message, queue);
  850. list_del_init(&drv_data->cur_msg->queue);
  851. /* Initial message state*/
  852. drv_data->cur_msg->state = START_STATE;
  853. drv_data->cur_transfer = list_entry(drv_data->cur_msg->transfers.next,
  854. struct spi_transfer,
  855. transfer_list);
  856. /* prepare to setup the SSP, in pump_transfers, using the per
  857. * chip configuration */
  858. drv_data->cur_chip = spi_get_ctldata(drv_data->cur_msg->spi);
  859. /* Mark as busy and launch transfers */
  860. tasklet_schedule(&drv_data->pump_transfers);
  861. drv_data->busy = 1;
  862. spin_unlock_irqrestore(&drv_data->lock, flags);
  863. }
  864. static int transfer(struct spi_device *spi, struct spi_message *msg)
  865. {
  866. struct driver_data *drv_data = spi_master_get_devdata(spi->master);
  867. unsigned long flags;
  868. spin_lock_irqsave(&drv_data->lock, flags);
  869. if (drv_data->run == QUEUE_STOPPED) {
  870. spin_unlock_irqrestore(&drv_data->lock, flags);
  871. return -ESHUTDOWN;
  872. }
  873. msg->actual_length = 0;
  874. msg->status = -EINPROGRESS;
  875. msg->state = START_STATE;
  876. list_add_tail(&msg->queue, &drv_data->queue);
  877. if (drv_data->run == QUEUE_RUNNING && !drv_data->busy)
  878. queue_work(drv_data->workqueue, &drv_data->pump_messages);
  879. spin_unlock_irqrestore(&drv_data->lock, flags);
  880. return 0;
  881. }
  882. static int setup(struct spi_device *spi)
  883. {
  884. struct pxa2xx_spi_chip *chip_info = NULL;
  885. struct chip_data *chip;
  886. struct driver_data *drv_data = spi_master_get_devdata(spi->master);
  887. unsigned int clk_div;
  888. if (!spi->bits_per_word)
  889. spi->bits_per_word = 8;
  890. if (drv_data->ssp_type != PXA25x_SSP
  891. && (spi->bits_per_word < 4 || spi->bits_per_word > 32)) {
  892. dev_err(&spi->dev, "failed setup: ssp_type=%d, bits/wrd=%d "
  893. "b/w not 4-32 for type non-PXA25x_SSP\n",
  894. drv_data->ssp_type, spi->bits_per_word);
  895. return -EINVAL;
  896. }
  897. else if (drv_data->ssp_type == PXA25x_SSP
  898. && (spi->bits_per_word < 4
  899. || spi->bits_per_word > 16)) {
  900. dev_err(&spi->dev, "failed setup: ssp_type=%d, bits/wrd=%d "
  901. "b/w not 4-16 for type PXA25x_SSP\n",
  902. drv_data->ssp_type, spi->bits_per_word);
  903. return -EINVAL;
  904. }
  905. /* Only alloc on first setup */
  906. chip = spi_get_ctldata(spi);
  907. if (!chip) {
  908. chip = kzalloc(sizeof(struct chip_data), GFP_KERNEL);
  909. if (!chip) {
  910. dev_err(&spi->dev,
  911. "failed setup: can't allocate chip data\n");
  912. return -ENOMEM;
  913. }
  914. chip->cs_control = null_cs_control;
  915. chip->enable_dma = 0;
  916. chip->timeout = 1000;
  917. chip->threshold = SSCR1_RxTresh(1) | SSCR1_TxTresh(1);
  918. chip->dma_burst_size = drv_data->master_info->enable_dma ?
  919. DCMD_BURST8 : 0;
  920. }
  921. /* protocol drivers may change the chip settings, so...
  922. * if chip_info exists, use it */
  923. chip_info = spi->controller_data;
  924. /* chip_info isn't always needed */
  925. chip->cr1 = 0;
  926. if (chip_info) {
  927. if (chip_info->cs_control)
  928. chip->cs_control = chip_info->cs_control;
  929. chip->timeout = chip_info->timeout;
  930. chip->threshold = (SSCR1_RxTresh(chip_info->rx_threshold) &
  931. SSCR1_RFT) |
  932. (SSCR1_TxTresh(chip_info->tx_threshold) &
  933. SSCR1_TFT);
  934. chip->enable_dma = chip_info->dma_burst_size != 0
  935. && drv_data->master_info->enable_dma;
  936. chip->dma_threshold = 0;
  937. if (chip_info->enable_loopback)
  938. chip->cr1 = SSCR1_LBM;
  939. }
  940. /* set dma burst and threshold outside of chip_info path so that if
  941. * chip_info goes away after setting chip->enable_dma, the
  942. * burst and threshold can still respond to changes in bits_per_word */
  943. if (chip->enable_dma) {
  944. /* set up legal burst and threshold for dma */
  945. if (set_dma_burst_and_threshold(chip, spi, spi->bits_per_word,
  946. &chip->dma_burst_size,
  947. &chip->dma_threshold)) {
  948. dev_warn(&spi->dev, "in setup: DMA burst size reduced "
  949. "to match bits_per_word\n");
  950. }
  951. }
  952. if (drv_data->ioaddr == SSP1_VIRT)
  953. clk_div = SSP1_SerClkDiv(spi->max_speed_hz);
  954. else if (drv_data->ioaddr == SSP2_VIRT)
  955. clk_div = SSP2_SerClkDiv(spi->max_speed_hz);
  956. else if (drv_data->ioaddr == SSP3_VIRT)
  957. clk_div = SSP3_SerClkDiv(spi->max_speed_hz);
  958. else
  959. {
  960. dev_err(&spi->dev, "failed setup: unknown IO address=0x%p\n",
  961. drv_data->ioaddr);
  962. return -ENODEV;
  963. }
  964. chip->speed_hz = spi->max_speed_hz;
  965. chip->cr0 = clk_div
  966. | SSCR0_Motorola
  967. | SSCR0_DataSize(spi->bits_per_word > 16 ?
  968. spi->bits_per_word - 16 : spi->bits_per_word)
  969. | SSCR0_SSE
  970. | (spi->bits_per_word > 16 ? SSCR0_EDSS : 0);
  971. chip->cr1 |= (((spi->mode & SPI_CPHA) != 0) << 4)
  972. | (((spi->mode & SPI_CPOL) != 0) << 3);
  973. /* NOTE: PXA25x_SSP _could_ use external clocking ... */
  974. if (drv_data->ssp_type != PXA25x_SSP)
  975. dev_dbg(&spi->dev, "%d bits/word, %d Hz, mode %d\n",
  976. spi->bits_per_word,
  977. (CLOCK_SPEED_HZ)
  978. / (1 + ((chip->cr0 & SSCR0_SCR) >> 8)),
  979. spi->mode & 0x3);
  980. else
  981. dev_dbg(&spi->dev, "%d bits/word, %d Hz, mode %d\n",
  982. spi->bits_per_word,
  983. (CLOCK_SPEED_HZ/2)
  984. / (1 + ((chip->cr0 & SSCR0_SCR) >> 8)),
  985. spi->mode & 0x3);
  986. if (spi->bits_per_word <= 8) {
  987. chip->n_bytes = 1;
  988. chip->dma_width = DCMD_WIDTH1;
  989. chip->read = u8_reader;
  990. chip->write = u8_writer;
  991. } else if (spi->bits_per_word <= 16) {
  992. chip->n_bytes = 2;
  993. chip->dma_width = DCMD_WIDTH2;
  994. chip->read = u16_reader;
  995. chip->write = u16_writer;
  996. } else if (spi->bits_per_word <= 32) {
  997. chip->cr0 |= SSCR0_EDSS;
  998. chip->n_bytes = 4;
  999. chip->dma_width = DCMD_WIDTH4;
  1000. chip->read = u32_reader;
  1001. chip->write = u32_writer;
  1002. } else {
  1003. dev_err(&spi->dev, "invalid wordsize\n");
  1004. return -ENODEV;
  1005. }
  1006. chip->bits_per_word = spi->bits_per_word;
  1007. spi_set_ctldata(spi, chip);
  1008. return 0;
  1009. }
  1010. static void cleanup(const struct spi_device *spi)
  1011. {
  1012. struct chip_data *chip = spi_get_ctldata((struct spi_device *)spi);
  1013. kfree(chip);
  1014. }
  1015. static int init_queue(struct driver_data *drv_data)
  1016. {
  1017. INIT_LIST_HEAD(&drv_data->queue);
  1018. spin_lock_init(&drv_data->lock);
  1019. drv_data->run = QUEUE_STOPPED;
  1020. drv_data->busy = 0;
  1021. tasklet_init(&drv_data->pump_transfers,
  1022. pump_transfers, (unsigned long)drv_data);
  1023. INIT_WORK(&drv_data->pump_messages, pump_messages);
  1024. drv_data->workqueue = create_singlethread_workqueue(
  1025. drv_data->master->cdev.dev->bus_id);
  1026. if (drv_data->workqueue == NULL)
  1027. return -EBUSY;
  1028. return 0;
  1029. }
  1030. static int start_queue(struct driver_data *drv_data)
  1031. {
  1032. unsigned long flags;
  1033. spin_lock_irqsave(&drv_data->lock, flags);
  1034. if (drv_data->run == QUEUE_RUNNING || drv_data->busy) {
  1035. spin_unlock_irqrestore(&drv_data->lock, flags);
  1036. return -EBUSY;
  1037. }
  1038. drv_data->run = QUEUE_RUNNING;
  1039. drv_data->cur_msg = NULL;
  1040. drv_data->cur_transfer = NULL;
  1041. drv_data->cur_chip = NULL;
  1042. spin_unlock_irqrestore(&drv_data->lock, flags);
  1043. queue_work(drv_data->workqueue, &drv_data->pump_messages);
  1044. return 0;
  1045. }
  1046. static int stop_queue(struct driver_data *drv_data)
  1047. {
  1048. unsigned long flags;
  1049. unsigned limit = 500;
  1050. int status = 0;
  1051. spin_lock_irqsave(&drv_data->lock, flags);
  1052. /* This is a bit lame, but is optimized for the common execution path.
  1053. * A wait_queue on the drv_data->busy could be used, but then the common
  1054. * execution path (pump_messages) would be required to call wake_up or
  1055. * friends on every SPI message. Do this instead */
  1056. drv_data->run = QUEUE_STOPPED;
  1057. while (!list_empty(&drv_data->queue) && drv_data->busy && limit--) {
  1058. spin_unlock_irqrestore(&drv_data->lock, flags);
  1059. msleep(10);
  1060. spin_lock_irqsave(&drv_data->lock, flags);
  1061. }
  1062. if (!list_empty(&drv_data->queue) || drv_data->busy)
  1063. status = -EBUSY;
  1064. spin_unlock_irqrestore(&drv_data->lock, flags);
  1065. return status;
  1066. }
  1067. static int destroy_queue(struct driver_data *drv_data)
  1068. {
  1069. int status;
  1070. status = stop_queue(drv_data);
  1071. /* we are unloading the module or failing to load (only two calls
  1072. * to this routine), and neither call can handle a return value.
  1073. * However, destroy_workqueue calls flush_workqueue, and that will
  1074. * block until all work is done. If the reason that stop_queue
  1075. * timed out is that the work will never finish, then it does no
  1076. * good to call destroy_workqueue, so return anyway. */
  1077. if (status != 0)
  1078. return status;
  1079. destroy_workqueue(drv_data->workqueue);
  1080. return 0;
  1081. }
  1082. static int pxa2xx_spi_probe(struct platform_device *pdev)
  1083. {
  1084. struct device *dev = &pdev->dev;
  1085. struct pxa2xx_spi_master *platform_info;
  1086. struct spi_master *master;
  1087. struct driver_data *drv_data = 0;
  1088. struct resource *memory_resource;
  1089. int irq;
  1090. int status = 0;
  1091. platform_info = dev->platform_data;
  1092. if (platform_info->ssp_type == SSP_UNDEFINED) {
  1093. dev_err(&pdev->dev, "undefined SSP\n");
  1094. return -ENODEV;
  1095. }
  1096. /* Allocate master with space for drv_data and null dma buffer */
  1097. master = spi_alloc_master(dev, sizeof(struct driver_data) + 16);
  1098. if (!master) {
  1099. dev_err(&pdev->dev, "can not alloc spi_master\n");
  1100. return -ENOMEM;
  1101. }
  1102. drv_data = spi_master_get_devdata(master);
  1103. drv_data->master = master;
  1104. drv_data->master_info = platform_info;
  1105. drv_data->pdev = pdev;
  1106. master->bus_num = pdev->id;
  1107. master->num_chipselect = platform_info->num_chipselect;
  1108. master->cleanup = cleanup;
  1109. master->setup = setup;
  1110. master->transfer = transfer;
  1111. drv_data->ssp_type = platform_info->ssp_type;
  1112. drv_data->null_dma_buf = (u32 *)ALIGN((u32)(drv_data +
  1113. sizeof(struct driver_data)), 8);
  1114. /* Setup register addresses */
  1115. memory_resource = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  1116. if (!memory_resource) {
  1117. dev_err(&pdev->dev, "memory resources not defined\n");
  1118. status = -ENODEV;
  1119. goto out_error_master_alloc;
  1120. }
  1121. drv_data->ioaddr = (void *)io_p2v((unsigned long)(memory_resource->start));
  1122. drv_data->ssdr_physical = memory_resource->start + 0x00000010;
  1123. if (platform_info->ssp_type == PXA25x_SSP) {
  1124. drv_data->int_cr1 = SSCR1_TIE | SSCR1_RIE;
  1125. drv_data->dma_cr1 = 0;
  1126. drv_data->clear_sr = SSSR_ROR;
  1127. drv_data->mask_sr = SSSR_RFS | SSSR_TFS | SSSR_ROR;
  1128. } else {
  1129. drv_data->int_cr1 = SSCR1_TIE | SSCR1_RIE | SSCR1_TINTE;
  1130. drv_data->dma_cr1 = SSCR1_TSRE | SSCR1_RSRE | SSCR1_TINTE;
  1131. drv_data->clear_sr = SSSR_ROR | SSSR_TINT;
  1132. drv_data->mask_sr = SSSR_TINT | SSSR_RFS | SSSR_TFS | SSSR_ROR;
  1133. }
  1134. /* Attach to IRQ */
  1135. irq = platform_get_irq(pdev, 0);
  1136. if (irq < 0) {
  1137. dev_err(&pdev->dev, "irq resource not defined\n");
  1138. status = -ENODEV;
  1139. goto out_error_master_alloc;
  1140. }
  1141. status = request_irq(irq, ssp_int, 0, dev->bus_id, drv_data);
  1142. if (status < 0) {
  1143. dev_err(&pdev->dev, "can not get IRQ\n");
  1144. goto out_error_master_alloc;
  1145. }
  1146. /* Setup DMA if requested */
  1147. drv_data->tx_channel = -1;
  1148. drv_data->rx_channel = -1;
  1149. if (platform_info->enable_dma) {
  1150. /* Get two DMA channels (rx and tx) */
  1151. drv_data->rx_channel = pxa_request_dma("pxa2xx_spi_ssp_rx",
  1152. DMA_PRIO_HIGH,
  1153. dma_handler,
  1154. drv_data);
  1155. if (drv_data->rx_channel < 0) {
  1156. dev_err(dev, "problem (%d) requesting rx channel\n",
  1157. drv_data->rx_channel);
  1158. status = -ENODEV;
  1159. goto out_error_irq_alloc;
  1160. }
  1161. drv_data->tx_channel = pxa_request_dma("pxa2xx_spi_ssp_tx",
  1162. DMA_PRIO_MEDIUM,
  1163. dma_handler,
  1164. drv_data);
  1165. if (drv_data->tx_channel < 0) {
  1166. dev_err(dev, "problem (%d) requesting tx channel\n",
  1167. drv_data->tx_channel);
  1168. status = -ENODEV;
  1169. goto out_error_dma_alloc;
  1170. }
  1171. if (drv_data->ioaddr == SSP1_VIRT) {
  1172. DRCMRRXSSDR = DRCMR_MAPVLD
  1173. | drv_data->rx_channel;
  1174. DRCMRTXSSDR = DRCMR_MAPVLD
  1175. | drv_data->tx_channel;
  1176. } else if (drv_data->ioaddr == SSP2_VIRT) {
  1177. DRCMRRXSS2DR = DRCMR_MAPVLD
  1178. | drv_data->rx_channel;
  1179. DRCMRTXSS2DR = DRCMR_MAPVLD
  1180. | drv_data->tx_channel;
  1181. } else if (drv_data->ioaddr == SSP3_VIRT) {
  1182. DRCMRRXSS3DR = DRCMR_MAPVLD
  1183. | drv_data->rx_channel;
  1184. DRCMRTXSS3DR = DRCMR_MAPVLD
  1185. | drv_data->tx_channel;
  1186. } else {
  1187. dev_err(dev, "bad SSP type\n");
  1188. goto out_error_dma_alloc;
  1189. }
  1190. }
  1191. /* Enable SOC clock */
  1192. pxa_set_cken(platform_info->clock_enable, 1);
  1193. /* Load default SSP configuration */
  1194. write_SSCR0(0, drv_data->ioaddr);
  1195. write_SSCR1(SSCR1_RxTresh(4) | SSCR1_TxTresh(12), drv_data->ioaddr);
  1196. write_SSCR0(SSCR0_SerClkDiv(2)
  1197. | SSCR0_Motorola
  1198. | SSCR0_DataSize(8),
  1199. drv_data->ioaddr);
  1200. if (drv_data->ssp_type != PXA25x_SSP)
  1201. write_SSTO(0, drv_data->ioaddr);
  1202. write_SSPSP(0, drv_data->ioaddr);
  1203. /* Initial and start queue */
  1204. status = init_queue(drv_data);
  1205. if (status != 0) {
  1206. dev_err(&pdev->dev, "problem initializing queue\n");
  1207. goto out_error_clock_enabled;
  1208. }
  1209. status = start_queue(drv_data);
  1210. if (status != 0) {
  1211. dev_err(&pdev->dev, "problem starting queue\n");
  1212. goto out_error_clock_enabled;
  1213. }
  1214. /* Register with the SPI framework */
  1215. platform_set_drvdata(pdev, drv_data);
  1216. status = spi_register_master(master);
  1217. if (status != 0) {
  1218. dev_err(&pdev->dev, "problem registering spi master\n");
  1219. goto out_error_queue_alloc;
  1220. }
  1221. return status;
  1222. out_error_queue_alloc:
  1223. destroy_queue(drv_data);
  1224. out_error_clock_enabled:
  1225. pxa_set_cken(platform_info->clock_enable, 0);
  1226. out_error_dma_alloc:
  1227. if (drv_data->tx_channel != -1)
  1228. pxa_free_dma(drv_data->tx_channel);
  1229. if (drv_data->rx_channel != -1)
  1230. pxa_free_dma(drv_data->rx_channel);
  1231. out_error_irq_alloc:
  1232. free_irq(irq, drv_data);
  1233. out_error_master_alloc:
  1234. spi_master_put(master);
  1235. return status;
  1236. }
  1237. static int pxa2xx_spi_remove(struct platform_device *pdev)
  1238. {
  1239. struct driver_data *drv_data = platform_get_drvdata(pdev);
  1240. int irq;
  1241. int status = 0;
  1242. if (!drv_data)
  1243. return 0;
  1244. /* Remove the queue */
  1245. status = destroy_queue(drv_data);
  1246. if (status != 0)
  1247. /* the kernel does not check the return status of this
  1248. * this routine (mod->exit, within the kernel). Therefore
  1249. * nothing is gained by returning from here, the module is
  1250. * going away regardless, and we should not leave any more
  1251. * resources allocated than necessary. We cannot free the
  1252. * message memory in drv_data->queue, but we can release the
  1253. * resources below. I think the kernel should honor -EBUSY
  1254. * returns but... */
  1255. dev_err(&pdev->dev, "pxa2xx_spi_remove: workqueue will not "
  1256. "complete, message memory not freed\n");
  1257. /* Disable the SSP at the peripheral and SOC level */
  1258. write_SSCR0(0, drv_data->ioaddr);
  1259. pxa_set_cken(drv_data->master_info->clock_enable, 0);
  1260. /* Release DMA */
  1261. if (drv_data->master_info->enable_dma) {
  1262. if (drv_data->ioaddr == SSP1_VIRT) {
  1263. DRCMRRXSSDR = 0;
  1264. DRCMRTXSSDR = 0;
  1265. } else if (drv_data->ioaddr == SSP2_VIRT) {
  1266. DRCMRRXSS2DR = 0;
  1267. DRCMRTXSS2DR = 0;
  1268. } else if (drv_data->ioaddr == SSP3_VIRT) {
  1269. DRCMRRXSS3DR = 0;
  1270. DRCMRTXSS3DR = 0;
  1271. }
  1272. pxa_free_dma(drv_data->tx_channel);
  1273. pxa_free_dma(drv_data->rx_channel);
  1274. }
  1275. /* Release IRQ */
  1276. irq = platform_get_irq(pdev, 0);
  1277. if (irq >= 0)
  1278. free_irq(irq, drv_data);
  1279. /* Disconnect from the SPI framework */
  1280. spi_unregister_master(drv_data->master);
  1281. /* Prevent double remove */
  1282. platform_set_drvdata(pdev, NULL);
  1283. return 0;
  1284. }
  1285. static void pxa2xx_spi_shutdown(struct platform_device *pdev)
  1286. {
  1287. int status = 0;
  1288. if ((status = pxa2xx_spi_remove(pdev)) != 0)
  1289. dev_err(&pdev->dev, "shutdown failed with %d\n", status);
  1290. }
  1291. #ifdef CONFIG_PM
  1292. static int suspend_devices(struct device *dev, void *pm_message)
  1293. {
  1294. pm_message_t *state = pm_message;
  1295. if (dev->power.power_state.event != state->event) {
  1296. dev_warn(dev, "pm state does not match request\n");
  1297. return -1;
  1298. }
  1299. return 0;
  1300. }
  1301. static int pxa2xx_spi_suspend(struct platform_device *pdev, pm_message_t state)
  1302. {
  1303. struct driver_data *drv_data = platform_get_drvdata(pdev);
  1304. int status = 0;
  1305. /* Check all childern for current power state */
  1306. if (device_for_each_child(&pdev->dev, &state, suspend_devices) != 0) {
  1307. dev_warn(&pdev->dev, "suspend aborted\n");
  1308. return -1;
  1309. }
  1310. status = stop_queue(drv_data);
  1311. if (status != 0)
  1312. return status;
  1313. write_SSCR0(0, drv_data->ioaddr);
  1314. pxa_set_cken(drv_data->master_info->clock_enable, 0);
  1315. return 0;
  1316. }
  1317. static int pxa2xx_spi_resume(struct platform_device *pdev)
  1318. {
  1319. struct driver_data *drv_data = platform_get_drvdata(pdev);
  1320. int status = 0;
  1321. /* Enable the SSP clock */
  1322. pxa_set_cken(drv_data->master_info->clock_enable, 1);
  1323. /* Start the queue running */
  1324. status = start_queue(drv_data);
  1325. if (status != 0) {
  1326. dev_err(&pdev->dev, "problem starting queue (%d)\n", status);
  1327. return status;
  1328. }
  1329. return 0;
  1330. }
  1331. #else
  1332. #define pxa2xx_spi_suspend NULL
  1333. #define pxa2xx_spi_resume NULL
  1334. #endif /* CONFIG_PM */
  1335. static struct platform_driver driver = {
  1336. .driver = {
  1337. .name = "pxa2xx-spi",
  1338. .bus = &platform_bus_type,
  1339. .owner = THIS_MODULE,
  1340. },
  1341. .probe = pxa2xx_spi_probe,
  1342. .remove = __devexit_p(pxa2xx_spi_remove),
  1343. .shutdown = pxa2xx_spi_shutdown,
  1344. .suspend = pxa2xx_spi_suspend,
  1345. .resume = pxa2xx_spi_resume,
  1346. };
  1347. static int __init pxa2xx_spi_init(void)
  1348. {
  1349. platform_driver_register(&driver);
  1350. return 0;
  1351. }
  1352. module_init(pxa2xx_spi_init);
  1353. static void __exit pxa2xx_spi_exit(void)
  1354. {
  1355. platform_driver_unregister(&driver);
  1356. }
  1357. module_exit(pxa2xx_spi_exit);