node.c 41 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759
  1. /*
  2. * fs/f2fs/node.c
  3. *
  4. * Copyright (c) 2012 Samsung Electronics Co., Ltd.
  5. * http://www.samsung.com/
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License version 2 as
  9. * published by the Free Software Foundation.
  10. */
  11. #include <linux/fs.h>
  12. #include <linux/f2fs_fs.h>
  13. #include <linux/mpage.h>
  14. #include <linux/backing-dev.h>
  15. #include <linux/blkdev.h>
  16. #include <linux/pagevec.h>
  17. #include <linux/swap.h>
  18. #include "f2fs.h"
  19. #include "node.h"
  20. #include "segment.h"
  21. static struct kmem_cache *nat_entry_slab;
  22. static struct kmem_cache *free_nid_slab;
  23. static void clear_node_page_dirty(struct page *page)
  24. {
  25. struct address_space *mapping = page->mapping;
  26. struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb);
  27. unsigned int long flags;
  28. if (PageDirty(page)) {
  29. spin_lock_irqsave(&mapping->tree_lock, flags);
  30. radix_tree_tag_clear(&mapping->page_tree,
  31. page_index(page),
  32. PAGECACHE_TAG_DIRTY);
  33. spin_unlock_irqrestore(&mapping->tree_lock, flags);
  34. clear_page_dirty_for_io(page);
  35. dec_page_count(sbi, F2FS_DIRTY_NODES);
  36. }
  37. ClearPageUptodate(page);
  38. }
  39. static struct page *get_current_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
  40. {
  41. pgoff_t index = current_nat_addr(sbi, nid);
  42. return get_meta_page(sbi, index);
  43. }
  44. static struct page *get_next_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
  45. {
  46. struct page *src_page;
  47. struct page *dst_page;
  48. pgoff_t src_off;
  49. pgoff_t dst_off;
  50. void *src_addr;
  51. void *dst_addr;
  52. struct f2fs_nm_info *nm_i = NM_I(sbi);
  53. src_off = current_nat_addr(sbi, nid);
  54. dst_off = next_nat_addr(sbi, src_off);
  55. /* get current nat block page with lock */
  56. src_page = get_meta_page(sbi, src_off);
  57. /* Dirty src_page means that it is already the new target NAT page. */
  58. if (PageDirty(src_page))
  59. return src_page;
  60. dst_page = grab_meta_page(sbi, dst_off);
  61. src_addr = page_address(src_page);
  62. dst_addr = page_address(dst_page);
  63. memcpy(dst_addr, src_addr, PAGE_CACHE_SIZE);
  64. set_page_dirty(dst_page);
  65. f2fs_put_page(src_page, 1);
  66. set_to_next_nat(nm_i, nid);
  67. return dst_page;
  68. }
  69. /*
  70. * Readahead NAT pages
  71. */
  72. static void ra_nat_pages(struct f2fs_sb_info *sbi, int nid)
  73. {
  74. struct address_space *mapping = sbi->meta_inode->i_mapping;
  75. struct f2fs_nm_info *nm_i = NM_I(sbi);
  76. struct page *page;
  77. pgoff_t index;
  78. int i;
  79. for (i = 0; i < FREE_NID_PAGES; i++, nid += NAT_ENTRY_PER_BLOCK) {
  80. if (nid >= nm_i->max_nid)
  81. nid = 0;
  82. index = current_nat_addr(sbi, nid);
  83. page = grab_cache_page(mapping, index);
  84. if (!page)
  85. continue;
  86. if (PageUptodate(page)) {
  87. f2fs_put_page(page, 1);
  88. continue;
  89. }
  90. if (f2fs_readpage(sbi, page, index, READ))
  91. continue;
  92. f2fs_put_page(page, 0);
  93. }
  94. }
  95. static struct nat_entry *__lookup_nat_cache(struct f2fs_nm_info *nm_i, nid_t n)
  96. {
  97. return radix_tree_lookup(&nm_i->nat_root, n);
  98. }
  99. static unsigned int __gang_lookup_nat_cache(struct f2fs_nm_info *nm_i,
  100. nid_t start, unsigned int nr, struct nat_entry **ep)
  101. {
  102. return radix_tree_gang_lookup(&nm_i->nat_root, (void **)ep, start, nr);
  103. }
  104. static void __del_from_nat_cache(struct f2fs_nm_info *nm_i, struct nat_entry *e)
  105. {
  106. list_del(&e->list);
  107. radix_tree_delete(&nm_i->nat_root, nat_get_nid(e));
  108. nm_i->nat_cnt--;
  109. kmem_cache_free(nat_entry_slab, e);
  110. }
  111. int is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid)
  112. {
  113. struct f2fs_nm_info *nm_i = NM_I(sbi);
  114. struct nat_entry *e;
  115. int is_cp = 1;
  116. read_lock(&nm_i->nat_tree_lock);
  117. e = __lookup_nat_cache(nm_i, nid);
  118. if (e && !e->checkpointed)
  119. is_cp = 0;
  120. read_unlock(&nm_i->nat_tree_lock);
  121. return is_cp;
  122. }
  123. static struct nat_entry *grab_nat_entry(struct f2fs_nm_info *nm_i, nid_t nid)
  124. {
  125. struct nat_entry *new;
  126. new = kmem_cache_alloc(nat_entry_slab, GFP_ATOMIC);
  127. if (!new)
  128. return NULL;
  129. if (radix_tree_insert(&nm_i->nat_root, nid, new)) {
  130. kmem_cache_free(nat_entry_slab, new);
  131. return NULL;
  132. }
  133. memset(new, 0, sizeof(struct nat_entry));
  134. nat_set_nid(new, nid);
  135. list_add_tail(&new->list, &nm_i->nat_entries);
  136. nm_i->nat_cnt++;
  137. return new;
  138. }
  139. static void cache_nat_entry(struct f2fs_nm_info *nm_i, nid_t nid,
  140. struct f2fs_nat_entry *ne)
  141. {
  142. struct nat_entry *e;
  143. retry:
  144. write_lock(&nm_i->nat_tree_lock);
  145. e = __lookup_nat_cache(nm_i, nid);
  146. if (!e) {
  147. e = grab_nat_entry(nm_i, nid);
  148. if (!e) {
  149. write_unlock(&nm_i->nat_tree_lock);
  150. goto retry;
  151. }
  152. nat_set_blkaddr(e, le32_to_cpu(ne->block_addr));
  153. nat_set_ino(e, le32_to_cpu(ne->ino));
  154. nat_set_version(e, ne->version);
  155. e->checkpointed = true;
  156. }
  157. write_unlock(&nm_i->nat_tree_lock);
  158. }
  159. static void set_node_addr(struct f2fs_sb_info *sbi, struct node_info *ni,
  160. block_t new_blkaddr)
  161. {
  162. struct f2fs_nm_info *nm_i = NM_I(sbi);
  163. struct nat_entry *e;
  164. retry:
  165. write_lock(&nm_i->nat_tree_lock);
  166. e = __lookup_nat_cache(nm_i, ni->nid);
  167. if (!e) {
  168. e = grab_nat_entry(nm_i, ni->nid);
  169. if (!e) {
  170. write_unlock(&nm_i->nat_tree_lock);
  171. goto retry;
  172. }
  173. e->ni = *ni;
  174. e->checkpointed = true;
  175. BUG_ON(ni->blk_addr == NEW_ADDR);
  176. } else if (new_blkaddr == NEW_ADDR) {
  177. /*
  178. * when nid is reallocated,
  179. * previous nat entry can be remained in nat cache.
  180. * So, reinitialize it with new information.
  181. */
  182. e->ni = *ni;
  183. BUG_ON(ni->blk_addr != NULL_ADDR);
  184. }
  185. if (new_blkaddr == NEW_ADDR)
  186. e->checkpointed = false;
  187. /* sanity check */
  188. BUG_ON(nat_get_blkaddr(e) != ni->blk_addr);
  189. BUG_ON(nat_get_blkaddr(e) == NULL_ADDR &&
  190. new_blkaddr == NULL_ADDR);
  191. BUG_ON(nat_get_blkaddr(e) == NEW_ADDR &&
  192. new_blkaddr == NEW_ADDR);
  193. BUG_ON(nat_get_blkaddr(e) != NEW_ADDR &&
  194. nat_get_blkaddr(e) != NULL_ADDR &&
  195. new_blkaddr == NEW_ADDR);
  196. /* increament version no as node is removed */
  197. if (nat_get_blkaddr(e) != NEW_ADDR && new_blkaddr == NULL_ADDR) {
  198. unsigned char version = nat_get_version(e);
  199. nat_set_version(e, inc_node_version(version));
  200. }
  201. /* change address */
  202. nat_set_blkaddr(e, new_blkaddr);
  203. __set_nat_cache_dirty(nm_i, e);
  204. write_unlock(&nm_i->nat_tree_lock);
  205. }
  206. static int try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink)
  207. {
  208. struct f2fs_nm_info *nm_i = NM_I(sbi);
  209. if (nm_i->nat_cnt < 2 * NM_WOUT_THRESHOLD)
  210. return 0;
  211. write_lock(&nm_i->nat_tree_lock);
  212. while (nr_shrink && !list_empty(&nm_i->nat_entries)) {
  213. struct nat_entry *ne;
  214. ne = list_first_entry(&nm_i->nat_entries,
  215. struct nat_entry, list);
  216. __del_from_nat_cache(nm_i, ne);
  217. nr_shrink--;
  218. }
  219. write_unlock(&nm_i->nat_tree_lock);
  220. return nr_shrink;
  221. }
  222. /*
  223. * This function returns always success
  224. */
  225. void get_node_info(struct f2fs_sb_info *sbi, nid_t nid, struct node_info *ni)
  226. {
  227. struct f2fs_nm_info *nm_i = NM_I(sbi);
  228. struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
  229. struct f2fs_summary_block *sum = curseg->sum_blk;
  230. nid_t start_nid = START_NID(nid);
  231. struct f2fs_nat_block *nat_blk;
  232. struct page *page = NULL;
  233. struct f2fs_nat_entry ne;
  234. struct nat_entry *e;
  235. int i;
  236. memset(&ne, 0, sizeof(struct f2fs_nat_entry));
  237. ni->nid = nid;
  238. /* Check nat cache */
  239. read_lock(&nm_i->nat_tree_lock);
  240. e = __lookup_nat_cache(nm_i, nid);
  241. if (e) {
  242. ni->ino = nat_get_ino(e);
  243. ni->blk_addr = nat_get_blkaddr(e);
  244. ni->version = nat_get_version(e);
  245. }
  246. read_unlock(&nm_i->nat_tree_lock);
  247. if (e)
  248. return;
  249. /* Check current segment summary */
  250. mutex_lock(&curseg->curseg_mutex);
  251. i = lookup_journal_in_cursum(sum, NAT_JOURNAL, nid, 0);
  252. if (i >= 0) {
  253. ne = nat_in_journal(sum, i);
  254. node_info_from_raw_nat(ni, &ne);
  255. }
  256. mutex_unlock(&curseg->curseg_mutex);
  257. if (i >= 0)
  258. goto cache;
  259. /* Fill node_info from nat page */
  260. page = get_current_nat_page(sbi, start_nid);
  261. nat_blk = (struct f2fs_nat_block *)page_address(page);
  262. ne = nat_blk->entries[nid - start_nid];
  263. node_info_from_raw_nat(ni, &ne);
  264. f2fs_put_page(page, 1);
  265. cache:
  266. /* cache nat entry */
  267. cache_nat_entry(NM_I(sbi), nid, &ne);
  268. }
  269. /*
  270. * The maximum depth is four.
  271. * Offset[0] will have raw inode offset.
  272. */
  273. static int get_node_path(long block, int offset[4], unsigned int noffset[4])
  274. {
  275. const long direct_index = ADDRS_PER_INODE;
  276. const long direct_blks = ADDRS_PER_BLOCK;
  277. const long dptrs_per_blk = NIDS_PER_BLOCK;
  278. const long indirect_blks = ADDRS_PER_BLOCK * NIDS_PER_BLOCK;
  279. const long dindirect_blks = indirect_blks * NIDS_PER_BLOCK;
  280. int n = 0;
  281. int level = 0;
  282. noffset[0] = 0;
  283. if (block < direct_index) {
  284. offset[n] = block;
  285. goto got;
  286. }
  287. block -= direct_index;
  288. if (block < direct_blks) {
  289. offset[n++] = NODE_DIR1_BLOCK;
  290. noffset[n] = 1;
  291. offset[n] = block;
  292. level = 1;
  293. goto got;
  294. }
  295. block -= direct_blks;
  296. if (block < direct_blks) {
  297. offset[n++] = NODE_DIR2_BLOCK;
  298. noffset[n] = 2;
  299. offset[n] = block;
  300. level = 1;
  301. goto got;
  302. }
  303. block -= direct_blks;
  304. if (block < indirect_blks) {
  305. offset[n++] = NODE_IND1_BLOCK;
  306. noffset[n] = 3;
  307. offset[n++] = block / direct_blks;
  308. noffset[n] = 4 + offset[n - 1];
  309. offset[n] = block % direct_blks;
  310. level = 2;
  311. goto got;
  312. }
  313. block -= indirect_blks;
  314. if (block < indirect_blks) {
  315. offset[n++] = NODE_IND2_BLOCK;
  316. noffset[n] = 4 + dptrs_per_blk;
  317. offset[n++] = block / direct_blks;
  318. noffset[n] = 5 + dptrs_per_blk + offset[n - 1];
  319. offset[n] = block % direct_blks;
  320. level = 2;
  321. goto got;
  322. }
  323. block -= indirect_blks;
  324. if (block < dindirect_blks) {
  325. offset[n++] = NODE_DIND_BLOCK;
  326. noffset[n] = 5 + (dptrs_per_blk * 2);
  327. offset[n++] = block / indirect_blks;
  328. noffset[n] = 6 + (dptrs_per_blk * 2) +
  329. offset[n - 1] * (dptrs_per_blk + 1);
  330. offset[n++] = (block / direct_blks) % dptrs_per_blk;
  331. noffset[n] = 7 + (dptrs_per_blk * 2) +
  332. offset[n - 2] * (dptrs_per_blk + 1) +
  333. offset[n - 1];
  334. offset[n] = block % direct_blks;
  335. level = 3;
  336. goto got;
  337. } else {
  338. BUG();
  339. }
  340. got:
  341. return level;
  342. }
  343. /*
  344. * Caller should call f2fs_put_dnode(dn).
  345. */
  346. int get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode)
  347. {
  348. struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
  349. struct page *npage[4];
  350. struct page *parent;
  351. int offset[4];
  352. unsigned int noffset[4];
  353. nid_t nids[4];
  354. int level, i;
  355. int err = 0;
  356. level = get_node_path(index, offset, noffset);
  357. nids[0] = dn->inode->i_ino;
  358. npage[0] = get_node_page(sbi, nids[0]);
  359. if (IS_ERR(npage[0]))
  360. return PTR_ERR(npage[0]);
  361. parent = npage[0];
  362. if (level != 0)
  363. nids[1] = get_nid(parent, offset[0], true);
  364. dn->inode_page = npage[0];
  365. dn->inode_page_locked = true;
  366. /* get indirect or direct nodes */
  367. for (i = 1; i <= level; i++) {
  368. bool done = false;
  369. if (!nids[i] && mode == ALLOC_NODE) {
  370. mutex_lock_op(sbi, NODE_NEW);
  371. /* alloc new node */
  372. if (!alloc_nid(sbi, &(nids[i]))) {
  373. mutex_unlock_op(sbi, NODE_NEW);
  374. err = -ENOSPC;
  375. goto release_pages;
  376. }
  377. dn->nid = nids[i];
  378. npage[i] = new_node_page(dn, noffset[i]);
  379. if (IS_ERR(npage[i])) {
  380. alloc_nid_failed(sbi, nids[i]);
  381. mutex_unlock_op(sbi, NODE_NEW);
  382. err = PTR_ERR(npage[i]);
  383. goto release_pages;
  384. }
  385. set_nid(parent, offset[i - 1], nids[i], i == 1);
  386. alloc_nid_done(sbi, nids[i]);
  387. mutex_unlock_op(sbi, NODE_NEW);
  388. done = true;
  389. } else if (mode == LOOKUP_NODE_RA && i == level && level > 1) {
  390. npage[i] = get_node_page_ra(parent, offset[i - 1]);
  391. if (IS_ERR(npage[i])) {
  392. err = PTR_ERR(npage[i]);
  393. goto release_pages;
  394. }
  395. done = true;
  396. }
  397. if (i == 1) {
  398. dn->inode_page_locked = false;
  399. unlock_page(parent);
  400. } else {
  401. f2fs_put_page(parent, 1);
  402. }
  403. if (!done) {
  404. npage[i] = get_node_page(sbi, nids[i]);
  405. if (IS_ERR(npage[i])) {
  406. err = PTR_ERR(npage[i]);
  407. f2fs_put_page(npage[0], 0);
  408. goto release_out;
  409. }
  410. }
  411. if (i < level) {
  412. parent = npage[i];
  413. nids[i + 1] = get_nid(parent, offset[i], false);
  414. }
  415. }
  416. dn->nid = nids[level];
  417. dn->ofs_in_node = offset[level];
  418. dn->node_page = npage[level];
  419. dn->data_blkaddr = datablock_addr(dn->node_page, dn->ofs_in_node);
  420. return 0;
  421. release_pages:
  422. f2fs_put_page(parent, 1);
  423. if (i > 1)
  424. f2fs_put_page(npage[0], 0);
  425. release_out:
  426. dn->inode_page = NULL;
  427. dn->node_page = NULL;
  428. return err;
  429. }
  430. static void truncate_node(struct dnode_of_data *dn)
  431. {
  432. struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
  433. struct node_info ni;
  434. get_node_info(sbi, dn->nid, &ni);
  435. if (dn->inode->i_blocks == 0) {
  436. BUG_ON(ni.blk_addr != NULL_ADDR);
  437. goto invalidate;
  438. }
  439. BUG_ON(ni.blk_addr == NULL_ADDR);
  440. /* Deallocate node address */
  441. invalidate_blocks(sbi, ni.blk_addr);
  442. dec_valid_node_count(sbi, dn->inode, 1);
  443. set_node_addr(sbi, &ni, NULL_ADDR);
  444. if (dn->nid == dn->inode->i_ino) {
  445. remove_orphan_inode(sbi, dn->nid);
  446. dec_valid_inode_count(sbi);
  447. } else {
  448. sync_inode_page(dn);
  449. }
  450. invalidate:
  451. clear_node_page_dirty(dn->node_page);
  452. F2FS_SET_SB_DIRT(sbi);
  453. f2fs_put_page(dn->node_page, 1);
  454. dn->node_page = NULL;
  455. }
  456. static int truncate_dnode(struct dnode_of_data *dn)
  457. {
  458. struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
  459. struct page *page;
  460. if (dn->nid == 0)
  461. return 1;
  462. /* get direct node */
  463. page = get_node_page(sbi, dn->nid);
  464. if (IS_ERR(page) && PTR_ERR(page) == -ENOENT)
  465. return 1;
  466. else if (IS_ERR(page))
  467. return PTR_ERR(page);
  468. /* Make dnode_of_data for parameter */
  469. dn->node_page = page;
  470. dn->ofs_in_node = 0;
  471. truncate_data_blocks(dn);
  472. truncate_node(dn);
  473. return 1;
  474. }
  475. static int truncate_nodes(struct dnode_of_data *dn, unsigned int nofs,
  476. int ofs, int depth)
  477. {
  478. struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
  479. struct dnode_of_data rdn = *dn;
  480. struct page *page;
  481. struct f2fs_node *rn;
  482. nid_t child_nid;
  483. unsigned int child_nofs;
  484. int freed = 0;
  485. int i, ret;
  486. if (dn->nid == 0)
  487. return NIDS_PER_BLOCK + 1;
  488. page = get_node_page(sbi, dn->nid);
  489. if (IS_ERR(page))
  490. return PTR_ERR(page);
  491. rn = (struct f2fs_node *)page_address(page);
  492. if (depth < 3) {
  493. for (i = ofs; i < NIDS_PER_BLOCK; i++, freed++) {
  494. child_nid = le32_to_cpu(rn->in.nid[i]);
  495. if (child_nid == 0)
  496. continue;
  497. rdn.nid = child_nid;
  498. ret = truncate_dnode(&rdn);
  499. if (ret < 0)
  500. goto out_err;
  501. set_nid(page, i, 0, false);
  502. }
  503. } else {
  504. child_nofs = nofs + ofs * (NIDS_PER_BLOCK + 1) + 1;
  505. for (i = ofs; i < NIDS_PER_BLOCK; i++) {
  506. child_nid = le32_to_cpu(rn->in.nid[i]);
  507. if (child_nid == 0) {
  508. child_nofs += NIDS_PER_BLOCK + 1;
  509. continue;
  510. }
  511. rdn.nid = child_nid;
  512. ret = truncate_nodes(&rdn, child_nofs, 0, depth - 1);
  513. if (ret == (NIDS_PER_BLOCK + 1)) {
  514. set_nid(page, i, 0, false);
  515. child_nofs += ret;
  516. } else if (ret < 0 && ret != -ENOENT) {
  517. goto out_err;
  518. }
  519. }
  520. freed = child_nofs;
  521. }
  522. if (!ofs) {
  523. /* remove current indirect node */
  524. dn->node_page = page;
  525. truncate_node(dn);
  526. freed++;
  527. } else {
  528. f2fs_put_page(page, 1);
  529. }
  530. return freed;
  531. out_err:
  532. f2fs_put_page(page, 1);
  533. return ret;
  534. }
  535. static int truncate_partial_nodes(struct dnode_of_data *dn,
  536. struct f2fs_inode *ri, int *offset, int depth)
  537. {
  538. struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
  539. struct page *pages[2];
  540. nid_t nid[3];
  541. nid_t child_nid;
  542. int err = 0;
  543. int i;
  544. int idx = depth - 2;
  545. nid[0] = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
  546. if (!nid[0])
  547. return 0;
  548. /* get indirect nodes in the path */
  549. for (i = 0; i < depth - 1; i++) {
  550. /* refernece count'll be increased */
  551. pages[i] = get_node_page(sbi, nid[i]);
  552. if (IS_ERR(pages[i])) {
  553. depth = i + 1;
  554. err = PTR_ERR(pages[i]);
  555. goto fail;
  556. }
  557. nid[i + 1] = get_nid(pages[i], offset[i + 1], false);
  558. }
  559. /* free direct nodes linked to a partial indirect node */
  560. for (i = offset[depth - 1]; i < NIDS_PER_BLOCK; i++) {
  561. child_nid = get_nid(pages[idx], i, false);
  562. if (!child_nid)
  563. continue;
  564. dn->nid = child_nid;
  565. err = truncate_dnode(dn);
  566. if (err < 0)
  567. goto fail;
  568. set_nid(pages[idx], i, 0, false);
  569. }
  570. if (offset[depth - 1] == 0) {
  571. dn->node_page = pages[idx];
  572. dn->nid = nid[idx];
  573. truncate_node(dn);
  574. } else {
  575. f2fs_put_page(pages[idx], 1);
  576. }
  577. offset[idx]++;
  578. offset[depth - 1] = 0;
  579. fail:
  580. for (i = depth - 3; i >= 0; i--)
  581. f2fs_put_page(pages[i], 1);
  582. return err;
  583. }
  584. /*
  585. * All the block addresses of data and nodes should be nullified.
  586. */
  587. int truncate_inode_blocks(struct inode *inode, pgoff_t from)
  588. {
  589. struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
  590. int err = 0, cont = 1;
  591. int level, offset[4], noffset[4];
  592. unsigned int nofs = 0;
  593. struct f2fs_node *rn;
  594. struct dnode_of_data dn;
  595. struct page *page;
  596. level = get_node_path(from, offset, noffset);
  597. page = get_node_page(sbi, inode->i_ino);
  598. if (IS_ERR(page))
  599. return PTR_ERR(page);
  600. set_new_dnode(&dn, inode, page, NULL, 0);
  601. unlock_page(page);
  602. rn = page_address(page);
  603. switch (level) {
  604. case 0:
  605. case 1:
  606. nofs = noffset[1];
  607. break;
  608. case 2:
  609. nofs = noffset[1];
  610. if (!offset[level - 1])
  611. goto skip_partial;
  612. err = truncate_partial_nodes(&dn, &rn->i, offset, level);
  613. if (err < 0 && err != -ENOENT)
  614. goto fail;
  615. nofs += 1 + NIDS_PER_BLOCK;
  616. break;
  617. case 3:
  618. nofs = 5 + 2 * NIDS_PER_BLOCK;
  619. if (!offset[level - 1])
  620. goto skip_partial;
  621. err = truncate_partial_nodes(&dn, &rn->i, offset, level);
  622. if (err < 0 && err != -ENOENT)
  623. goto fail;
  624. break;
  625. default:
  626. BUG();
  627. }
  628. skip_partial:
  629. while (cont) {
  630. dn.nid = le32_to_cpu(rn->i.i_nid[offset[0] - NODE_DIR1_BLOCK]);
  631. switch (offset[0]) {
  632. case NODE_DIR1_BLOCK:
  633. case NODE_DIR2_BLOCK:
  634. err = truncate_dnode(&dn);
  635. break;
  636. case NODE_IND1_BLOCK:
  637. case NODE_IND2_BLOCK:
  638. err = truncate_nodes(&dn, nofs, offset[1], 2);
  639. break;
  640. case NODE_DIND_BLOCK:
  641. err = truncate_nodes(&dn, nofs, offset[1], 3);
  642. cont = 0;
  643. break;
  644. default:
  645. BUG();
  646. }
  647. if (err < 0 && err != -ENOENT)
  648. goto fail;
  649. if (offset[1] == 0 &&
  650. rn->i.i_nid[offset[0] - NODE_DIR1_BLOCK]) {
  651. lock_page(page);
  652. wait_on_page_writeback(page);
  653. rn->i.i_nid[offset[0] - NODE_DIR1_BLOCK] = 0;
  654. set_page_dirty(page);
  655. unlock_page(page);
  656. }
  657. offset[1] = 0;
  658. offset[0]++;
  659. nofs += err;
  660. }
  661. fail:
  662. f2fs_put_page(page, 0);
  663. return err > 0 ? 0 : err;
  664. }
  665. int remove_inode_page(struct inode *inode)
  666. {
  667. struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
  668. struct page *page;
  669. nid_t ino = inode->i_ino;
  670. struct dnode_of_data dn;
  671. mutex_lock_op(sbi, NODE_TRUNC);
  672. page = get_node_page(sbi, ino);
  673. if (IS_ERR(page)) {
  674. mutex_unlock_op(sbi, NODE_TRUNC);
  675. return PTR_ERR(page);
  676. }
  677. if (F2FS_I(inode)->i_xattr_nid) {
  678. nid_t nid = F2FS_I(inode)->i_xattr_nid;
  679. struct page *npage = get_node_page(sbi, nid);
  680. if (IS_ERR(npage)) {
  681. mutex_unlock_op(sbi, NODE_TRUNC);
  682. return PTR_ERR(npage);
  683. }
  684. F2FS_I(inode)->i_xattr_nid = 0;
  685. set_new_dnode(&dn, inode, page, npage, nid);
  686. dn.inode_page_locked = 1;
  687. truncate_node(&dn);
  688. }
  689. /* 0 is possible, after f2fs_new_inode() is failed */
  690. BUG_ON(inode->i_blocks != 0 && inode->i_blocks != 1);
  691. set_new_dnode(&dn, inode, page, page, ino);
  692. truncate_node(&dn);
  693. mutex_unlock_op(sbi, NODE_TRUNC);
  694. return 0;
  695. }
  696. int new_inode_page(struct inode *inode, const struct qstr *name)
  697. {
  698. struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
  699. struct page *page;
  700. struct dnode_of_data dn;
  701. /* allocate inode page for new inode */
  702. set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
  703. mutex_lock_op(sbi, NODE_NEW);
  704. page = new_node_page(&dn, 0);
  705. init_dent_inode(name, page);
  706. mutex_unlock_op(sbi, NODE_NEW);
  707. if (IS_ERR(page))
  708. return PTR_ERR(page);
  709. f2fs_put_page(page, 1);
  710. return 0;
  711. }
  712. struct page *new_node_page(struct dnode_of_data *dn, unsigned int ofs)
  713. {
  714. struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
  715. struct address_space *mapping = sbi->node_inode->i_mapping;
  716. struct node_info old_ni, new_ni;
  717. struct page *page;
  718. int err;
  719. if (is_inode_flag_set(F2FS_I(dn->inode), FI_NO_ALLOC))
  720. return ERR_PTR(-EPERM);
  721. page = grab_cache_page(mapping, dn->nid);
  722. if (!page)
  723. return ERR_PTR(-ENOMEM);
  724. get_node_info(sbi, dn->nid, &old_ni);
  725. SetPageUptodate(page);
  726. fill_node_footer(page, dn->nid, dn->inode->i_ino, ofs, true);
  727. /* Reinitialize old_ni with new node page */
  728. BUG_ON(old_ni.blk_addr != NULL_ADDR);
  729. new_ni = old_ni;
  730. new_ni.ino = dn->inode->i_ino;
  731. if (!inc_valid_node_count(sbi, dn->inode, 1)) {
  732. err = -ENOSPC;
  733. goto fail;
  734. }
  735. set_node_addr(sbi, &new_ni, NEW_ADDR);
  736. set_cold_node(dn->inode, page);
  737. dn->node_page = page;
  738. sync_inode_page(dn);
  739. set_page_dirty(page);
  740. if (ofs == 0)
  741. inc_valid_inode_count(sbi);
  742. return page;
  743. fail:
  744. clear_node_page_dirty(page);
  745. f2fs_put_page(page, 1);
  746. return ERR_PTR(err);
  747. }
  748. static int read_node_page(struct page *page, int type)
  749. {
  750. struct f2fs_sb_info *sbi = F2FS_SB(page->mapping->host->i_sb);
  751. struct node_info ni;
  752. get_node_info(sbi, page->index, &ni);
  753. if (ni.blk_addr == NULL_ADDR) {
  754. f2fs_put_page(page, 1);
  755. return -ENOENT;
  756. }
  757. if (PageUptodate(page)) {
  758. unlock_page(page);
  759. return 0;
  760. }
  761. return f2fs_readpage(sbi, page, ni.blk_addr, type);
  762. }
  763. /*
  764. * Readahead a node page
  765. */
  766. void ra_node_page(struct f2fs_sb_info *sbi, nid_t nid)
  767. {
  768. struct address_space *mapping = sbi->node_inode->i_mapping;
  769. struct page *apage;
  770. apage = find_get_page(mapping, nid);
  771. if (apage && PageUptodate(apage)) {
  772. f2fs_put_page(apage, 0);
  773. return;
  774. }
  775. f2fs_put_page(apage, 0);
  776. apage = grab_cache_page(mapping, nid);
  777. if (!apage)
  778. return;
  779. if (read_node_page(apage, READA) == 0)
  780. f2fs_put_page(apage, 0);
  781. return;
  782. }
  783. struct page *get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid)
  784. {
  785. int err;
  786. struct page *page;
  787. struct address_space *mapping = sbi->node_inode->i_mapping;
  788. page = grab_cache_page(mapping, nid);
  789. if (!page)
  790. return ERR_PTR(-ENOMEM);
  791. err = read_node_page(page, READ_SYNC);
  792. if (err)
  793. return ERR_PTR(err);
  794. lock_page(page);
  795. if (!PageUptodate(page)) {
  796. f2fs_put_page(page, 1);
  797. return ERR_PTR(-EIO);
  798. }
  799. BUG_ON(nid != nid_of_node(page));
  800. mark_page_accessed(page);
  801. return page;
  802. }
  803. /*
  804. * Return a locked page for the desired node page.
  805. * And, readahead MAX_RA_NODE number of node pages.
  806. */
  807. struct page *get_node_page_ra(struct page *parent, int start)
  808. {
  809. struct f2fs_sb_info *sbi = F2FS_SB(parent->mapping->host->i_sb);
  810. struct address_space *mapping = sbi->node_inode->i_mapping;
  811. int i, end;
  812. int err = 0;
  813. nid_t nid;
  814. struct page *page;
  815. /* First, try getting the desired direct node. */
  816. nid = get_nid(parent, start, false);
  817. if (!nid)
  818. return ERR_PTR(-ENOENT);
  819. page = grab_cache_page(mapping, nid);
  820. if (!page)
  821. return ERR_PTR(-ENOMEM);
  822. else if (PageUptodate(page))
  823. goto page_hit;
  824. err = read_node_page(page, READ_SYNC);
  825. if (err)
  826. return ERR_PTR(err);
  827. /* Then, try readahead for siblings of the desired node */
  828. end = start + MAX_RA_NODE;
  829. end = min(end, NIDS_PER_BLOCK);
  830. for (i = start + 1; i < end; i++) {
  831. nid = get_nid(parent, i, false);
  832. if (!nid)
  833. continue;
  834. ra_node_page(sbi, nid);
  835. }
  836. lock_page(page);
  837. page_hit:
  838. if (PageError(page)) {
  839. f2fs_put_page(page, 1);
  840. return ERR_PTR(-EIO);
  841. }
  842. mark_page_accessed(page);
  843. return page;
  844. }
  845. void sync_inode_page(struct dnode_of_data *dn)
  846. {
  847. if (IS_INODE(dn->node_page) || dn->inode_page == dn->node_page) {
  848. update_inode(dn->inode, dn->node_page);
  849. } else if (dn->inode_page) {
  850. if (!dn->inode_page_locked)
  851. lock_page(dn->inode_page);
  852. update_inode(dn->inode, dn->inode_page);
  853. if (!dn->inode_page_locked)
  854. unlock_page(dn->inode_page);
  855. } else {
  856. f2fs_write_inode(dn->inode, NULL);
  857. }
  858. }
  859. int sync_node_pages(struct f2fs_sb_info *sbi, nid_t ino,
  860. struct writeback_control *wbc)
  861. {
  862. struct address_space *mapping = sbi->node_inode->i_mapping;
  863. pgoff_t index, end;
  864. struct pagevec pvec;
  865. int step = ino ? 2 : 0;
  866. int nwritten = 0, wrote = 0;
  867. pagevec_init(&pvec, 0);
  868. next_step:
  869. index = 0;
  870. end = LONG_MAX;
  871. while (index <= end) {
  872. int i, nr_pages;
  873. nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
  874. PAGECACHE_TAG_DIRTY,
  875. min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
  876. if (nr_pages == 0)
  877. break;
  878. for (i = 0; i < nr_pages; i++) {
  879. struct page *page = pvec.pages[i];
  880. /*
  881. * flushing sequence with step:
  882. * 0. indirect nodes
  883. * 1. dentry dnodes
  884. * 2. file dnodes
  885. */
  886. if (step == 0 && IS_DNODE(page))
  887. continue;
  888. if (step == 1 && (!IS_DNODE(page) ||
  889. is_cold_node(page)))
  890. continue;
  891. if (step == 2 && (!IS_DNODE(page) ||
  892. !is_cold_node(page)))
  893. continue;
  894. /*
  895. * If an fsync mode,
  896. * we should not skip writing node pages.
  897. */
  898. if (ino && ino_of_node(page) == ino)
  899. lock_page(page);
  900. else if (!trylock_page(page))
  901. continue;
  902. if (unlikely(page->mapping != mapping)) {
  903. continue_unlock:
  904. unlock_page(page);
  905. continue;
  906. }
  907. if (ino && ino_of_node(page) != ino)
  908. goto continue_unlock;
  909. if (!PageDirty(page)) {
  910. /* someone wrote it for us */
  911. goto continue_unlock;
  912. }
  913. if (!clear_page_dirty_for_io(page))
  914. goto continue_unlock;
  915. /* called by fsync() */
  916. if (ino && IS_DNODE(page)) {
  917. int mark = !is_checkpointed_node(sbi, ino);
  918. set_fsync_mark(page, 1);
  919. if (IS_INODE(page))
  920. set_dentry_mark(page, mark);
  921. nwritten++;
  922. } else {
  923. set_fsync_mark(page, 0);
  924. set_dentry_mark(page, 0);
  925. }
  926. mapping->a_ops->writepage(page, wbc);
  927. wrote++;
  928. if (--wbc->nr_to_write == 0)
  929. break;
  930. }
  931. pagevec_release(&pvec);
  932. cond_resched();
  933. if (wbc->nr_to_write == 0) {
  934. step = 2;
  935. break;
  936. }
  937. }
  938. if (step < 2) {
  939. step++;
  940. goto next_step;
  941. }
  942. if (wrote)
  943. f2fs_submit_bio(sbi, NODE, wbc->sync_mode == WB_SYNC_ALL);
  944. return nwritten;
  945. }
  946. static int f2fs_write_node_page(struct page *page,
  947. struct writeback_control *wbc)
  948. {
  949. struct f2fs_sb_info *sbi = F2FS_SB(page->mapping->host->i_sb);
  950. nid_t nid;
  951. block_t new_addr;
  952. struct node_info ni;
  953. wait_on_page_writeback(page);
  954. mutex_lock_op(sbi, NODE_WRITE);
  955. /* get old block addr of this node page */
  956. nid = nid_of_node(page);
  957. BUG_ON(page->index != nid);
  958. get_node_info(sbi, nid, &ni);
  959. /* This page is already truncated */
  960. if (ni.blk_addr == NULL_ADDR)
  961. goto out;
  962. if (wbc->for_reclaim) {
  963. dec_page_count(sbi, F2FS_DIRTY_NODES);
  964. wbc->pages_skipped++;
  965. set_page_dirty(page);
  966. mutex_unlock_op(sbi, NODE_WRITE);
  967. return AOP_WRITEPAGE_ACTIVATE;
  968. }
  969. set_page_writeback(page);
  970. /* insert node offset */
  971. write_node_page(sbi, page, nid, ni.blk_addr, &new_addr);
  972. set_node_addr(sbi, &ni, new_addr);
  973. out:
  974. dec_page_count(sbi, F2FS_DIRTY_NODES);
  975. mutex_unlock_op(sbi, NODE_WRITE);
  976. unlock_page(page);
  977. return 0;
  978. }
  979. /*
  980. * It is very important to gather dirty pages and write at once, so that we can
  981. * submit a big bio without interfering other data writes.
  982. * Be default, 512 pages (2MB), a segment size, is quite reasonable.
  983. */
  984. #define COLLECT_DIRTY_NODES 512
  985. static int f2fs_write_node_pages(struct address_space *mapping,
  986. struct writeback_control *wbc)
  987. {
  988. struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb);
  989. struct block_device *bdev = sbi->sb->s_bdev;
  990. long nr_to_write = wbc->nr_to_write;
  991. /* First check balancing cached NAT entries */
  992. if (try_to_free_nats(sbi, NAT_ENTRY_PER_BLOCK)) {
  993. write_checkpoint(sbi, false);
  994. return 0;
  995. }
  996. /* collect a number of dirty node pages and write together */
  997. if (get_pages(sbi, F2FS_DIRTY_NODES) < COLLECT_DIRTY_NODES)
  998. return 0;
  999. /* if mounting is failed, skip writing node pages */
  1000. wbc->nr_to_write = bio_get_nr_vecs(bdev);
  1001. sync_node_pages(sbi, 0, wbc);
  1002. wbc->nr_to_write = nr_to_write -
  1003. (bio_get_nr_vecs(bdev) - wbc->nr_to_write);
  1004. return 0;
  1005. }
  1006. static int f2fs_set_node_page_dirty(struct page *page)
  1007. {
  1008. struct address_space *mapping = page->mapping;
  1009. struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb);
  1010. SetPageUptodate(page);
  1011. if (!PageDirty(page)) {
  1012. __set_page_dirty_nobuffers(page);
  1013. inc_page_count(sbi, F2FS_DIRTY_NODES);
  1014. SetPagePrivate(page);
  1015. return 1;
  1016. }
  1017. return 0;
  1018. }
  1019. static void f2fs_invalidate_node_page(struct page *page, unsigned long offset)
  1020. {
  1021. struct inode *inode = page->mapping->host;
  1022. struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
  1023. if (PageDirty(page))
  1024. dec_page_count(sbi, F2FS_DIRTY_NODES);
  1025. ClearPagePrivate(page);
  1026. }
  1027. static int f2fs_release_node_page(struct page *page, gfp_t wait)
  1028. {
  1029. ClearPagePrivate(page);
  1030. return 1;
  1031. }
  1032. /*
  1033. * Structure of the f2fs node operations
  1034. */
  1035. const struct address_space_operations f2fs_node_aops = {
  1036. .writepage = f2fs_write_node_page,
  1037. .writepages = f2fs_write_node_pages,
  1038. .set_page_dirty = f2fs_set_node_page_dirty,
  1039. .invalidatepage = f2fs_invalidate_node_page,
  1040. .releasepage = f2fs_release_node_page,
  1041. };
  1042. static struct free_nid *__lookup_free_nid_list(nid_t n, struct list_head *head)
  1043. {
  1044. struct list_head *this;
  1045. struct free_nid *i;
  1046. list_for_each(this, head) {
  1047. i = list_entry(this, struct free_nid, list);
  1048. if (i->nid == n)
  1049. return i;
  1050. }
  1051. return NULL;
  1052. }
  1053. static void __del_from_free_nid_list(struct free_nid *i)
  1054. {
  1055. list_del(&i->list);
  1056. kmem_cache_free(free_nid_slab, i);
  1057. }
  1058. static int add_free_nid(struct f2fs_nm_info *nm_i, nid_t nid)
  1059. {
  1060. struct free_nid *i;
  1061. if (nm_i->fcnt > 2 * MAX_FREE_NIDS)
  1062. return 0;
  1063. retry:
  1064. i = kmem_cache_alloc(free_nid_slab, GFP_NOFS);
  1065. if (!i) {
  1066. cond_resched();
  1067. goto retry;
  1068. }
  1069. i->nid = nid;
  1070. i->state = NID_NEW;
  1071. spin_lock(&nm_i->free_nid_list_lock);
  1072. if (__lookup_free_nid_list(nid, &nm_i->free_nid_list)) {
  1073. spin_unlock(&nm_i->free_nid_list_lock);
  1074. kmem_cache_free(free_nid_slab, i);
  1075. return 0;
  1076. }
  1077. list_add_tail(&i->list, &nm_i->free_nid_list);
  1078. nm_i->fcnt++;
  1079. spin_unlock(&nm_i->free_nid_list_lock);
  1080. return 1;
  1081. }
  1082. static void remove_free_nid(struct f2fs_nm_info *nm_i, nid_t nid)
  1083. {
  1084. struct free_nid *i;
  1085. spin_lock(&nm_i->free_nid_list_lock);
  1086. i = __lookup_free_nid_list(nid, &nm_i->free_nid_list);
  1087. if (i && i->state == NID_NEW) {
  1088. __del_from_free_nid_list(i);
  1089. nm_i->fcnt--;
  1090. }
  1091. spin_unlock(&nm_i->free_nid_list_lock);
  1092. }
  1093. static int scan_nat_page(struct f2fs_nm_info *nm_i,
  1094. struct page *nat_page, nid_t start_nid)
  1095. {
  1096. struct f2fs_nat_block *nat_blk = page_address(nat_page);
  1097. block_t blk_addr;
  1098. int fcnt = 0;
  1099. int i;
  1100. /* 0 nid should not be used */
  1101. if (start_nid == 0)
  1102. ++start_nid;
  1103. i = start_nid % NAT_ENTRY_PER_BLOCK;
  1104. for (; i < NAT_ENTRY_PER_BLOCK; i++, start_nid++) {
  1105. blk_addr = le32_to_cpu(nat_blk->entries[i].block_addr);
  1106. BUG_ON(blk_addr == NEW_ADDR);
  1107. if (blk_addr == NULL_ADDR)
  1108. fcnt += add_free_nid(nm_i, start_nid);
  1109. }
  1110. return fcnt;
  1111. }
  1112. static void build_free_nids(struct f2fs_sb_info *sbi)
  1113. {
  1114. struct free_nid *fnid, *next_fnid;
  1115. struct f2fs_nm_info *nm_i = NM_I(sbi);
  1116. struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
  1117. struct f2fs_summary_block *sum = curseg->sum_blk;
  1118. nid_t nid = 0;
  1119. bool is_cycled = false;
  1120. int fcnt = 0;
  1121. int i;
  1122. nid = nm_i->next_scan_nid;
  1123. nm_i->init_scan_nid = nid;
  1124. ra_nat_pages(sbi, nid);
  1125. while (1) {
  1126. struct page *page = get_current_nat_page(sbi, nid);
  1127. fcnt += scan_nat_page(nm_i, page, nid);
  1128. f2fs_put_page(page, 1);
  1129. nid += (NAT_ENTRY_PER_BLOCK - (nid % NAT_ENTRY_PER_BLOCK));
  1130. if (nid >= nm_i->max_nid) {
  1131. nid = 0;
  1132. is_cycled = true;
  1133. }
  1134. if (fcnt > MAX_FREE_NIDS)
  1135. break;
  1136. if (is_cycled && nm_i->init_scan_nid <= nid)
  1137. break;
  1138. }
  1139. /* go to the next nat page in order to reuse free nids first */
  1140. nm_i->next_scan_nid = nm_i->init_scan_nid + NAT_ENTRY_PER_BLOCK;
  1141. /* find free nids from current sum_pages */
  1142. mutex_lock(&curseg->curseg_mutex);
  1143. for (i = 0; i < nats_in_cursum(sum); i++) {
  1144. block_t addr = le32_to_cpu(nat_in_journal(sum, i).block_addr);
  1145. nid = le32_to_cpu(nid_in_journal(sum, i));
  1146. if (addr == NULL_ADDR)
  1147. add_free_nid(nm_i, nid);
  1148. else
  1149. remove_free_nid(nm_i, nid);
  1150. }
  1151. mutex_unlock(&curseg->curseg_mutex);
  1152. /* remove the free nids from current allocated nids */
  1153. list_for_each_entry_safe(fnid, next_fnid, &nm_i->free_nid_list, list) {
  1154. struct nat_entry *ne;
  1155. read_lock(&nm_i->nat_tree_lock);
  1156. ne = __lookup_nat_cache(nm_i, fnid->nid);
  1157. if (ne && nat_get_blkaddr(ne) != NULL_ADDR)
  1158. remove_free_nid(nm_i, fnid->nid);
  1159. read_unlock(&nm_i->nat_tree_lock);
  1160. }
  1161. }
  1162. /*
  1163. * If this function returns success, caller can obtain a new nid
  1164. * from second parameter of this function.
  1165. * The returned nid could be used ino as well as nid when inode is created.
  1166. */
  1167. bool alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid)
  1168. {
  1169. struct f2fs_nm_info *nm_i = NM_I(sbi);
  1170. struct free_nid *i = NULL;
  1171. struct list_head *this;
  1172. retry:
  1173. mutex_lock(&nm_i->build_lock);
  1174. if (!nm_i->fcnt) {
  1175. /* scan NAT in order to build free nid list */
  1176. build_free_nids(sbi);
  1177. if (!nm_i->fcnt) {
  1178. mutex_unlock(&nm_i->build_lock);
  1179. return false;
  1180. }
  1181. }
  1182. mutex_unlock(&nm_i->build_lock);
  1183. /*
  1184. * We check fcnt again since previous check is racy as
  1185. * we didn't hold free_nid_list_lock. So other thread
  1186. * could consume all of free nids.
  1187. */
  1188. spin_lock(&nm_i->free_nid_list_lock);
  1189. if (!nm_i->fcnt) {
  1190. spin_unlock(&nm_i->free_nid_list_lock);
  1191. goto retry;
  1192. }
  1193. BUG_ON(list_empty(&nm_i->free_nid_list));
  1194. list_for_each(this, &nm_i->free_nid_list) {
  1195. i = list_entry(this, struct free_nid, list);
  1196. if (i->state == NID_NEW)
  1197. break;
  1198. }
  1199. BUG_ON(i->state != NID_NEW);
  1200. *nid = i->nid;
  1201. i->state = NID_ALLOC;
  1202. nm_i->fcnt--;
  1203. spin_unlock(&nm_i->free_nid_list_lock);
  1204. return true;
  1205. }
  1206. /*
  1207. * alloc_nid() should be called prior to this function.
  1208. */
  1209. void alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid)
  1210. {
  1211. struct f2fs_nm_info *nm_i = NM_I(sbi);
  1212. struct free_nid *i;
  1213. spin_lock(&nm_i->free_nid_list_lock);
  1214. i = __lookup_free_nid_list(nid, &nm_i->free_nid_list);
  1215. if (i) {
  1216. BUG_ON(i->state != NID_ALLOC);
  1217. __del_from_free_nid_list(i);
  1218. }
  1219. spin_unlock(&nm_i->free_nid_list_lock);
  1220. }
  1221. /*
  1222. * alloc_nid() should be called prior to this function.
  1223. */
  1224. void alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid)
  1225. {
  1226. alloc_nid_done(sbi, nid);
  1227. add_free_nid(NM_I(sbi), nid);
  1228. }
  1229. void recover_node_page(struct f2fs_sb_info *sbi, struct page *page,
  1230. struct f2fs_summary *sum, struct node_info *ni,
  1231. block_t new_blkaddr)
  1232. {
  1233. rewrite_node_page(sbi, page, sum, ni->blk_addr, new_blkaddr);
  1234. set_node_addr(sbi, ni, new_blkaddr);
  1235. clear_node_page_dirty(page);
  1236. }
  1237. int recover_inode_page(struct f2fs_sb_info *sbi, struct page *page)
  1238. {
  1239. struct address_space *mapping = sbi->node_inode->i_mapping;
  1240. struct f2fs_node *src, *dst;
  1241. nid_t ino = ino_of_node(page);
  1242. struct node_info old_ni, new_ni;
  1243. struct page *ipage;
  1244. ipage = grab_cache_page(mapping, ino);
  1245. if (!ipage)
  1246. return -ENOMEM;
  1247. /* Should not use this inode from free nid list */
  1248. remove_free_nid(NM_I(sbi), ino);
  1249. get_node_info(sbi, ino, &old_ni);
  1250. SetPageUptodate(ipage);
  1251. fill_node_footer(ipage, ino, ino, 0, true);
  1252. src = (struct f2fs_node *)page_address(page);
  1253. dst = (struct f2fs_node *)page_address(ipage);
  1254. memcpy(dst, src, (unsigned long)&src->i.i_ext - (unsigned long)&src->i);
  1255. dst->i.i_size = 0;
  1256. dst->i.i_blocks = cpu_to_le64(1);
  1257. dst->i.i_links = cpu_to_le32(1);
  1258. dst->i.i_xattr_nid = 0;
  1259. new_ni = old_ni;
  1260. new_ni.ino = ino;
  1261. set_node_addr(sbi, &new_ni, NEW_ADDR);
  1262. inc_valid_inode_count(sbi);
  1263. f2fs_put_page(ipage, 1);
  1264. return 0;
  1265. }
  1266. int restore_node_summary(struct f2fs_sb_info *sbi,
  1267. unsigned int segno, struct f2fs_summary_block *sum)
  1268. {
  1269. struct f2fs_node *rn;
  1270. struct f2fs_summary *sum_entry;
  1271. struct page *page;
  1272. block_t addr;
  1273. int i, last_offset;
  1274. /* alloc temporal page for read node */
  1275. page = alloc_page(GFP_NOFS | __GFP_ZERO);
  1276. if (IS_ERR(page))
  1277. return PTR_ERR(page);
  1278. lock_page(page);
  1279. /* scan the node segment */
  1280. last_offset = sbi->blocks_per_seg;
  1281. addr = START_BLOCK(sbi, segno);
  1282. sum_entry = &sum->entries[0];
  1283. for (i = 0; i < last_offset; i++, sum_entry++) {
  1284. /*
  1285. * In order to read next node page,
  1286. * we must clear PageUptodate flag.
  1287. */
  1288. ClearPageUptodate(page);
  1289. if (f2fs_readpage(sbi, page, addr, READ_SYNC))
  1290. goto out;
  1291. lock_page(page);
  1292. rn = (struct f2fs_node *)page_address(page);
  1293. sum_entry->nid = rn->footer.nid;
  1294. sum_entry->version = 0;
  1295. sum_entry->ofs_in_node = 0;
  1296. addr++;
  1297. }
  1298. unlock_page(page);
  1299. out:
  1300. __free_pages(page, 0);
  1301. return 0;
  1302. }
  1303. static bool flush_nats_in_journal(struct f2fs_sb_info *sbi)
  1304. {
  1305. struct f2fs_nm_info *nm_i = NM_I(sbi);
  1306. struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
  1307. struct f2fs_summary_block *sum = curseg->sum_blk;
  1308. int i;
  1309. mutex_lock(&curseg->curseg_mutex);
  1310. if (nats_in_cursum(sum) < NAT_JOURNAL_ENTRIES) {
  1311. mutex_unlock(&curseg->curseg_mutex);
  1312. return false;
  1313. }
  1314. for (i = 0; i < nats_in_cursum(sum); i++) {
  1315. struct nat_entry *ne;
  1316. struct f2fs_nat_entry raw_ne;
  1317. nid_t nid = le32_to_cpu(nid_in_journal(sum, i));
  1318. raw_ne = nat_in_journal(sum, i);
  1319. retry:
  1320. write_lock(&nm_i->nat_tree_lock);
  1321. ne = __lookup_nat_cache(nm_i, nid);
  1322. if (ne) {
  1323. __set_nat_cache_dirty(nm_i, ne);
  1324. write_unlock(&nm_i->nat_tree_lock);
  1325. continue;
  1326. }
  1327. ne = grab_nat_entry(nm_i, nid);
  1328. if (!ne) {
  1329. write_unlock(&nm_i->nat_tree_lock);
  1330. goto retry;
  1331. }
  1332. nat_set_blkaddr(ne, le32_to_cpu(raw_ne.block_addr));
  1333. nat_set_ino(ne, le32_to_cpu(raw_ne.ino));
  1334. nat_set_version(ne, raw_ne.version);
  1335. __set_nat_cache_dirty(nm_i, ne);
  1336. write_unlock(&nm_i->nat_tree_lock);
  1337. }
  1338. update_nats_in_cursum(sum, -i);
  1339. mutex_unlock(&curseg->curseg_mutex);
  1340. return true;
  1341. }
  1342. /*
  1343. * This function is called during the checkpointing process.
  1344. */
  1345. void flush_nat_entries(struct f2fs_sb_info *sbi)
  1346. {
  1347. struct f2fs_nm_info *nm_i = NM_I(sbi);
  1348. struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
  1349. struct f2fs_summary_block *sum = curseg->sum_blk;
  1350. struct list_head *cur, *n;
  1351. struct page *page = NULL;
  1352. struct f2fs_nat_block *nat_blk = NULL;
  1353. nid_t start_nid = 0, end_nid = 0;
  1354. bool flushed;
  1355. flushed = flush_nats_in_journal(sbi);
  1356. if (!flushed)
  1357. mutex_lock(&curseg->curseg_mutex);
  1358. /* 1) flush dirty nat caches */
  1359. list_for_each_safe(cur, n, &nm_i->dirty_nat_entries) {
  1360. struct nat_entry *ne;
  1361. nid_t nid;
  1362. struct f2fs_nat_entry raw_ne;
  1363. int offset = -1;
  1364. block_t new_blkaddr;
  1365. ne = list_entry(cur, struct nat_entry, list);
  1366. nid = nat_get_nid(ne);
  1367. if (nat_get_blkaddr(ne) == NEW_ADDR)
  1368. continue;
  1369. if (flushed)
  1370. goto to_nat_page;
  1371. /* if there is room for nat enries in curseg->sumpage */
  1372. offset = lookup_journal_in_cursum(sum, NAT_JOURNAL, nid, 1);
  1373. if (offset >= 0) {
  1374. raw_ne = nat_in_journal(sum, offset);
  1375. goto flush_now;
  1376. }
  1377. to_nat_page:
  1378. if (!page || (start_nid > nid || nid > end_nid)) {
  1379. if (page) {
  1380. f2fs_put_page(page, 1);
  1381. page = NULL;
  1382. }
  1383. start_nid = START_NID(nid);
  1384. end_nid = start_nid + NAT_ENTRY_PER_BLOCK - 1;
  1385. /*
  1386. * get nat block with dirty flag, increased reference
  1387. * count, mapped and lock
  1388. */
  1389. page = get_next_nat_page(sbi, start_nid);
  1390. nat_blk = page_address(page);
  1391. }
  1392. BUG_ON(!nat_blk);
  1393. raw_ne = nat_blk->entries[nid - start_nid];
  1394. flush_now:
  1395. new_blkaddr = nat_get_blkaddr(ne);
  1396. raw_ne.ino = cpu_to_le32(nat_get_ino(ne));
  1397. raw_ne.block_addr = cpu_to_le32(new_blkaddr);
  1398. raw_ne.version = nat_get_version(ne);
  1399. if (offset < 0) {
  1400. nat_blk->entries[nid - start_nid] = raw_ne;
  1401. } else {
  1402. nat_in_journal(sum, offset) = raw_ne;
  1403. nid_in_journal(sum, offset) = cpu_to_le32(nid);
  1404. }
  1405. if (nat_get_blkaddr(ne) == NULL_ADDR) {
  1406. write_lock(&nm_i->nat_tree_lock);
  1407. __del_from_nat_cache(nm_i, ne);
  1408. write_unlock(&nm_i->nat_tree_lock);
  1409. add_free_nid(NM_I(sbi), nid);
  1410. } else {
  1411. write_lock(&nm_i->nat_tree_lock);
  1412. __clear_nat_cache_dirty(nm_i, ne);
  1413. ne->checkpointed = true;
  1414. write_unlock(&nm_i->nat_tree_lock);
  1415. }
  1416. }
  1417. if (!flushed)
  1418. mutex_unlock(&curseg->curseg_mutex);
  1419. f2fs_put_page(page, 1);
  1420. /* 2) shrink nat caches if necessary */
  1421. try_to_free_nats(sbi, nm_i->nat_cnt - NM_WOUT_THRESHOLD);
  1422. }
  1423. static int init_node_manager(struct f2fs_sb_info *sbi)
  1424. {
  1425. struct f2fs_super_block *sb_raw = F2FS_RAW_SUPER(sbi);
  1426. struct f2fs_nm_info *nm_i = NM_I(sbi);
  1427. unsigned char *version_bitmap;
  1428. unsigned int nat_segs, nat_blocks;
  1429. nm_i->nat_blkaddr = le32_to_cpu(sb_raw->nat_blkaddr);
  1430. /* segment_count_nat includes pair segment so divide to 2. */
  1431. nat_segs = le32_to_cpu(sb_raw->segment_count_nat) >> 1;
  1432. nat_blocks = nat_segs << le32_to_cpu(sb_raw->log_blocks_per_seg);
  1433. nm_i->max_nid = NAT_ENTRY_PER_BLOCK * nat_blocks;
  1434. nm_i->fcnt = 0;
  1435. nm_i->nat_cnt = 0;
  1436. INIT_LIST_HEAD(&nm_i->free_nid_list);
  1437. INIT_RADIX_TREE(&nm_i->nat_root, GFP_ATOMIC);
  1438. INIT_LIST_HEAD(&nm_i->nat_entries);
  1439. INIT_LIST_HEAD(&nm_i->dirty_nat_entries);
  1440. mutex_init(&nm_i->build_lock);
  1441. spin_lock_init(&nm_i->free_nid_list_lock);
  1442. rwlock_init(&nm_i->nat_tree_lock);
  1443. nm_i->bitmap_size = __bitmap_size(sbi, NAT_BITMAP);
  1444. nm_i->init_scan_nid = le32_to_cpu(sbi->ckpt->next_free_nid);
  1445. nm_i->next_scan_nid = le32_to_cpu(sbi->ckpt->next_free_nid);
  1446. nm_i->nat_bitmap = kzalloc(nm_i->bitmap_size, GFP_KERNEL);
  1447. if (!nm_i->nat_bitmap)
  1448. return -ENOMEM;
  1449. version_bitmap = __bitmap_ptr(sbi, NAT_BITMAP);
  1450. if (!version_bitmap)
  1451. return -EFAULT;
  1452. /* copy version bitmap */
  1453. memcpy(nm_i->nat_bitmap, version_bitmap, nm_i->bitmap_size);
  1454. return 0;
  1455. }
  1456. int build_node_manager(struct f2fs_sb_info *sbi)
  1457. {
  1458. int err;
  1459. sbi->nm_info = kzalloc(sizeof(struct f2fs_nm_info), GFP_KERNEL);
  1460. if (!sbi->nm_info)
  1461. return -ENOMEM;
  1462. err = init_node_manager(sbi);
  1463. if (err)
  1464. return err;
  1465. build_free_nids(sbi);
  1466. return 0;
  1467. }
  1468. void destroy_node_manager(struct f2fs_sb_info *sbi)
  1469. {
  1470. struct f2fs_nm_info *nm_i = NM_I(sbi);
  1471. struct free_nid *i, *next_i;
  1472. struct nat_entry *natvec[NATVEC_SIZE];
  1473. nid_t nid = 0;
  1474. unsigned int found;
  1475. if (!nm_i)
  1476. return;
  1477. /* destroy free nid list */
  1478. spin_lock(&nm_i->free_nid_list_lock);
  1479. list_for_each_entry_safe(i, next_i, &nm_i->free_nid_list, list) {
  1480. BUG_ON(i->state == NID_ALLOC);
  1481. __del_from_free_nid_list(i);
  1482. nm_i->fcnt--;
  1483. }
  1484. BUG_ON(nm_i->fcnt);
  1485. spin_unlock(&nm_i->free_nid_list_lock);
  1486. /* destroy nat cache */
  1487. write_lock(&nm_i->nat_tree_lock);
  1488. while ((found = __gang_lookup_nat_cache(nm_i,
  1489. nid, NATVEC_SIZE, natvec))) {
  1490. unsigned idx;
  1491. for (idx = 0; idx < found; idx++) {
  1492. struct nat_entry *e = natvec[idx];
  1493. nid = nat_get_nid(e) + 1;
  1494. __del_from_nat_cache(nm_i, e);
  1495. }
  1496. }
  1497. BUG_ON(nm_i->nat_cnt);
  1498. write_unlock(&nm_i->nat_tree_lock);
  1499. kfree(nm_i->nat_bitmap);
  1500. sbi->nm_info = NULL;
  1501. kfree(nm_i);
  1502. }
  1503. int __init create_node_manager_caches(void)
  1504. {
  1505. nat_entry_slab = f2fs_kmem_cache_create("nat_entry",
  1506. sizeof(struct nat_entry), NULL);
  1507. if (!nat_entry_slab)
  1508. return -ENOMEM;
  1509. free_nid_slab = f2fs_kmem_cache_create("free_nid",
  1510. sizeof(struct free_nid), NULL);
  1511. if (!free_nid_slab) {
  1512. kmem_cache_destroy(nat_entry_slab);
  1513. return -ENOMEM;
  1514. }
  1515. return 0;
  1516. }
  1517. void destroy_node_manager_caches(void)
  1518. {
  1519. kmem_cache_destroy(free_nid_slab);
  1520. kmem_cache_destroy(nat_entry_slab);
  1521. }