data.c 17 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720
  1. /*
  2. * fs/f2fs/data.c
  3. *
  4. * Copyright (c) 2012 Samsung Electronics Co., Ltd.
  5. * http://www.samsung.com/
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License version 2 as
  9. * published by the Free Software Foundation.
  10. */
  11. #include <linux/fs.h>
  12. #include <linux/f2fs_fs.h>
  13. #include <linux/buffer_head.h>
  14. #include <linux/mpage.h>
  15. #include <linux/writeback.h>
  16. #include <linux/backing-dev.h>
  17. #include <linux/blkdev.h>
  18. #include <linux/bio.h>
  19. #include <linux/prefetch.h>
  20. #include "f2fs.h"
  21. #include "node.h"
  22. #include "segment.h"
  23. /*
  24. * Lock ordering for the change of data block address:
  25. * ->data_page
  26. * ->node_page
  27. * update block addresses in the node page
  28. */
  29. static void __set_data_blkaddr(struct dnode_of_data *dn, block_t new_addr)
  30. {
  31. struct f2fs_node *rn;
  32. __le32 *addr_array;
  33. struct page *node_page = dn->node_page;
  34. unsigned int ofs_in_node = dn->ofs_in_node;
  35. wait_on_page_writeback(node_page);
  36. rn = (struct f2fs_node *)page_address(node_page);
  37. /* Get physical address of data block */
  38. addr_array = blkaddr_in_node(rn);
  39. addr_array[ofs_in_node] = cpu_to_le32(new_addr);
  40. set_page_dirty(node_page);
  41. }
  42. int reserve_new_block(struct dnode_of_data *dn)
  43. {
  44. struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
  45. if (is_inode_flag_set(F2FS_I(dn->inode), FI_NO_ALLOC))
  46. return -EPERM;
  47. if (!inc_valid_block_count(sbi, dn->inode, 1))
  48. return -ENOSPC;
  49. __set_data_blkaddr(dn, NEW_ADDR);
  50. dn->data_blkaddr = NEW_ADDR;
  51. sync_inode_page(dn);
  52. return 0;
  53. }
  54. static int check_extent_cache(struct inode *inode, pgoff_t pgofs,
  55. struct buffer_head *bh_result)
  56. {
  57. struct f2fs_inode_info *fi = F2FS_I(inode);
  58. struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
  59. pgoff_t start_fofs, end_fofs;
  60. block_t start_blkaddr;
  61. read_lock(&fi->ext.ext_lock);
  62. if (fi->ext.len == 0) {
  63. read_unlock(&fi->ext.ext_lock);
  64. return 0;
  65. }
  66. sbi->total_hit_ext++;
  67. start_fofs = fi->ext.fofs;
  68. end_fofs = fi->ext.fofs + fi->ext.len - 1;
  69. start_blkaddr = fi->ext.blk_addr;
  70. if (pgofs >= start_fofs && pgofs <= end_fofs) {
  71. unsigned int blkbits = inode->i_sb->s_blocksize_bits;
  72. size_t count;
  73. clear_buffer_new(bh_result);
  74. map_bh(bh_result, inode->i_sb,
  75. start_blkaddr + pgofs - start_fofs);
  76. count = end_fofs - pgofs + 1;
  77. if (count < (UINT_MAX >> blkbits))
  78. bh_result->b_size = (count << blkbits);
  79. else
  80. bh_result->b_size = UINT_MAX;
  81. sbi->read_hit_ext++;
  82. read_unlock(&fi->ext.ext_lock);
  83. return 1;
  84. }
  85. read_unlock(&fi->ext.ext_lock);
  86. return 0;
  87. }
  88. void update_extent_cache(block_t blk_addr, struct dnode_of_data *dn)
  89. {
  90. struct f2fs_inode_info *fi = F2FS_I(dn->inode);
  91. pgoff_t fofs, start_fofs, end_fofs;
  92. block_t start_blkaddr, end_blkaddr;
  93. BUG_ON(blk_addr == NEW_ADDR);
  94. fofs = start_bidx_of_node(ofs_of_node(dn->node_page)) + dn->ofs_in_node;
  95. /* Update the page address in the parent node */
  96. __set_data_blkaddr(dn, blk_addr);
  97. write_lock(&fi->ext.ext_lock);
  98. start_fofs = fi->ext.fofs;
  99. end_fofs = fi->ext.fofs + fi->ext.len - 1;
  100. start_blkaddr = fi->ext.blk_addr;
  101. end_blkaddr = fi->ext.blk_addr + fi->ext.len - 1;
  102. /* Drop and initialize the matched extent */
  103. if (fi->ext.len == 1 && fofs == start_fofs)
  104. fi->ext.len = 0;
  105. /* Initial extent */
  106. if (fi->ext.len == 0) {
  107. if (blk_addr != NULL_ADDR) {
  108. fi->ext.fofs = fofs;
  109. fi->ext.blk_addr = blk_addr;
  110. fi->ext.len = 1;
  111. }
  112. goto end_update;
  113. }
  114. /* Frone merge */
  115. if (fofs == start_fofs - 1 && blk_addr == start_blkaddr - 1) {
  116. fi->ext.fofs--;
  117. fi->ext.blk_addr--;
  118. fi->ext.len++;
  119. goto end_update;
  120. }
  121. /* Back merge */
  122. if (fofs == end_fofs + 1 && blk_addr == end_blkaddr + 1) {
  123. fi->ext.len++;
  124. goto end_update;
  125. }
  126. /* Split the existing extent */
  127. if (fi->ext.len > 1 &&
  128. fofs >= start_fofs && fofs <= end_fofs) {
  129. if ((end_fofs - fofs) < (fi->ext.len >> 1)) {
  130. fi->ext.len = fofs - start_fofs;
  131. } else {
  132. fi->ext.fofs = fofs + 1;
  133. fi->ext.blk_addr = start_blkaddr +
  134. fofs - start_fofs + 1;
  135. fi->ext.len -= fofs - start_fofs + 1;
  136. }
  137. goto end_update;
  138. }
  139. write_unlock(&fi->ext.ext_lock);
  140. return;
  141. end_update:
  142. write_unlock(&fi->ext.ext_lock);
  143. sync_inode_page(dn);
  144. return;
  145. }
  146. struct page *find_data_page(struct inode *inode, pgoff_t index)
  147. {
  148. struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
  149. struct address_space *mapping = inode->i_mapping;
  150. struct dnode_of_data dn;
  151. struct page *page;
  152. int err;
  153. page = find_get_page(mapping, index);
  154. if (page && PageUptodate(page))
  155. return page;
  156. f2fs_put_page(page, 0);
  157. set_new_dnode(&dn, inode, NULL, NULL, 0);
  158. err = get_dnode_of_data(&dn, index, LOOKUP_NODE);
  159. if (err)
  160. return ERR_PTR(err);
  161. f2fs_put_dnode(&dn);
  162. if (dn.data_blkaddr == NULL_ADDR)
  163. return ERR_PTR(-ENOENT);
  164. /* By fallocate(), there is no cached page, but with NEW_ADDR */
  165. if (dn.data_blkaddr == NEW_ADDR)
  166. return ERR_PTR(-EINVAL);
  167. page = grab_cache_page(mapping, index);
  168. if (!page)
  169. return ERR_PTR(-ENOMEM);
  170. if (PageUptodate(page)) {
  171. unlock_page(page);
  172. return page;
  173. }
  174. err = f2fs_readpage(sbi, page, dn.data_blkaddr, READ_SYNC);
  175. wait_on_page_locked(page);
  176. if (!PageUptodate(page)) {
  177. f2fs_put_page(page, 0);
  178. return ERR_PTR(-EIO);
  179. }
  180. return page;
  181. }
  182. /*
  183. * If it tries to access a hole, return an error.
  184. * Because, the callers, functions in dir.c and GC, should be able to know
  185. * whether this page exists or not.
  186. */
  187. struct page *get_lock_data_page(struct inode *inode, pgoff_t index)
  188. {
  189. struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
  190. struct address_space *mapping = inode->i_mapping;
  191. struct dnode_of_data dn;
  192. struct page *page;
  193. int err;
  194. set_new_dnode(&dn, inode, NULL, NULL, 0);
  195. err = get_dnode_of_data(&dn, index, LOOKUP_NODE);
  196. if (err)
  197. return ERR_PTR(err);
  198. f2fs_put_dnode(&dn);
  199. if (dn.data_blkaddr == NULL_ADDR)
  200. return ERR_PTR(-ENOENT);
  201. page = grab_cache_page(mapping, index);
  202. if (!page)
  203. return ERR_PTR(-ENOMEM);
  204. if (PageUptodate(page))
  205. return page;
  206. BUG_ON(dn.data_blkaddr == NEW_ADDR);
  207. BUG_ON(dn.data_blkaddr == NULL_ADDR);
  208. err = f2fs_readpage(sbi, page, dn.data_blkaddr, READ_SYNC);
  209. if (err)
  210. return ERR_PTR(err);
  211. lock_page(page);
  212. if (!PageUptodate(page)) {
  213. f2fs_put_page(page, 1);
  214. return ERR_PTR(-EIO);
  215. }
  216. return page;
  217. }
  218. /*
  219. * Caller ensures that this data page is never allocated.
  220. * A new zero-filled data page is allocated in the page cache.
  221. */
  222. struct page *get_new_data_page(struct inode *inode, pgoff_t index,
  223. bool new_i_size)
  224. {
  225. struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
  226. struct address_space *mapping = inode->i_mapping;
  227. struct page *page;
  228. struct dnode_of_data dn;
  229. int err;
  230. set_new_dnode(&dn, inode, NULL, NULL, 0);
  231. err = get_dnode_of_data(&dn, index, ALLOC_NODE);
  232. if (err)
  233. return ERR_PTR(err);
  234. if (dn.data_blkaddr == NULL_ADDR) {
  235. if (reserve_new_block(&dn)) {
  236. f2fs_put_dnode(&dn);
  237. return ERR_PTR(-ENOSPC);
  238. }
  239. }
  240. f2fs_put_dnode(&dn);
  241. page = grab_cache_page(mapping, index);
  242. if (!page)
  243. return ERR_PTR(-ENOMEM);
  244. if (PageUptodate(page))
  245. return page;
  246. if (dn.data_blkaddr == NEW_ADDR) {
  247. zero_user_segment(page, 0, PAGE_CACHE_SIZE);
  248. SetPageUptodate(page);
  249. } else {
  250. err = f2fs_readpage(sbi, page, dn.data_blkaddr, READ_SYNC);
  251. if (err)
  252. return ERR_PTR(err);
  253. lock_page(page);
  254. if (!PageUptodate(page)) {
  255. f2fs_put_page(page, 1);
  256. return ERR_PTR(-EIO);
  257. }
  258. }
  259. if (new_i_size &&
  260. i_size_read(inode) < ((index + 1) << PAGE_CACHE_SHIFT)) {
  261. i_size_write(inode, ((index + 1) << PAGE_CACHE_SHIFT));
  262. mark_inode_dirty_sync(inode);
  263. }
  264. return page;
  265. }
  266. static void read_end_io(struct bio *bio, int err)
  267. {
  268. const int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
  269. struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
  270. do {
  271. struct page *page = bvec->bv_page;
  272. if (--bvec >= bio->bi_io_vec)
  273. prefetchw(&bvec->bv_page->flags);
  274. if (uptodate) {
  275. SetPageUptodate(page);
  276. } else {
  277. ClearPageUptodate(page);
  278. SetPageError(page);
  279. }
  280. unlock_page(page);
  281. } while (bvec >= bio->bi_io_vec);
  282. kfree(bio->bi_private);
  283. bio_put(bio);
  284. }
  285. /*
  286. * Fill the locked page with data located in the block address.
  287. * Return unlocked page.
  288. */
  289. int f2fs_readpage(struct f2fs_sb_info *sbi, struct page *page,
  290. block_t blk_addr, int type)
  291. {
  292. struct block_device *bdev = sbi->sb->s_bdev;
  293. struct bio *bio;
  294. down_read(&sbi->bio_sem);
  295. /* Allocate a new bio */
  296. bio = f2fs_bio_alloc(bdev, 1);
  297. /* Initialize the bio */
  298. bio->bi_sector = SECTOR_FROM_BLOCK(sbi, blk_addr);
  299. bio->bi_end_io = read_end_io;
  300. if (bio_add_page(bio, page, PAGE_CACHE_SIZE, 0) < PAGE_CACHE_SIZE) {
  301. kfree(bio->bi_private);
  302. bio_put(bio);
  303. up_read(&sbi->bio_sem);
  304. f2fs_put_page(page, 1);
  305. return -EFAULT;
  306. }
  307. submit_bio(type, bio);
  308. up_read(&sbi->bio_sem);
  309. return 0;
  310. }
  311. /*
  312. * This function should be used by the data read flow only where it
  313. * does not check the "create" flag that indicates block allocation.
  314. * The reason for this special functionality is to exploit VFS readahead
  315. * mechanism.
  316. */
  317. static int get_data_block_ro(struct inode *inode, sector_t iblock,
  318. struct buffer_head *bh_result, int create)
  319. {
  320. unsigned int blkbits = inode->i_sb->s_blocksize_bits;
  321. unsigned maxblocks = bh_result->b_size >> blkbits;
  322. struct dnode_of_data dn;
  323. pgoff_t pgofs;
  324. int err;
  325. /* Get the page offset from the block offset(iblock) */
  326. pgofs = (pgoff_t)(iblock >> (PAGE_CACHE_SHIFT - blkbits));
  327. if (check_extent_cache(inode, pgofs, bh_result))
  328. return 0;
  329. /* When reading holes, we need its node page */
  330. set_new_dnode(&dn, inode, NULL, NULL, 0);
  331. err = get_dnode_of_data(&dn, pgofs, LOOKUP_NODE_RA);
  332. if (err)
  333. return (err == -ENOENT) ? 0 : err;
  334. /* It does not support data allocation */
  335. BUG_ON(create);
  336. if (dn.data_blkaddr != NEW_ADDR && dn.data_blkaddr != NULL_ADDR) {
  337. int i;
  338. unsigned int end_offset;
  339. end_offset = IS_INODE(dn.node_page) ?
  340. ADDRS_PER_INODE :
  341. ADDRS_PER_BLOCK;
  342. clear_buffer_new(bh_result);
  343. /* Give more consecutive addresses for the read ahead */
  344. for (i = 0; i < end_offset - dn.ofs_in_node; i++)
  345. if (((datablock_addr(dn.node_page,
  346. dn.ofs_in_node + i))
  347. != (dn.data_blkaddr + i)) || maxblocks == i)
  348. break;
  349. map_bh(bh_result, inode->i_sb, dn.data_blkaddr);
  350. bh_result->b_size = (i << blkbits);
  351. }
  352. f2fs_put_dnode(&dn);
  353. return 0;
  354. }
  355. static int f2fs_read_data_page(struct file *file, struct page *page)
  356. {
  357. return mpage_readpage(page, get_data_block_ro);
  358. }
  359. static int f2fs_read_data_pages(struct file *file,
  360. struct address_space *mapping,
  361. struct list_head *pages, unsigned nr_pages)
  362. {
  363. return mpage_readpages(mapping, pages, nr_pages, get_data_block_ro);
  364. }
  365. int do_write_data_page(struct page *page)
  366. {
  367. struct inode *inode = page->mapping->host;
  368. struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
  369. block_t old_blk_addr, new_blk_addr;
  370. struct dnode_of_data dn;
  371. int err = 0;
  372. set_new_dnode(&dn, inode, NULL, NULL, 0);
  373. err = get_dnode_of_data(&dn, page->index, LOOKUP_NODE);
  374. if (err)
  375. return err;
  376. old_blk_addr = dn.data_blkaddr;
  377. /* This page is already truncated */
  378. if (old_blk_addr == NULL_ADDR)
  379. goto out_writepage;
  380. set_page_writeback(page);
  381. /*
  382. * If current allocation needs SSR,
  383. * it had better in-place writes for updated data.
  384. */
  385. if (old_blk_addr != NEW_ADDR && !is_cold_data(page) &&
  386. need_inplace_update(inode)) {
  387. rewrite_data_page(F2FS_SB(inode->i_sb), page,
  388. old_blk_addr);
  389. } else {
  390. write_data_page(inode, page, &dn,
  391. old_blk_addr, &new_blk_addr);
  392. update_extent_cache(new_blk_addr, &dn);
  393. F2FS_I(inode)->data_version =
  394. le64_to_cpu(F2FS_CKPT(sbi)->checkpoint_ver);
  395. }
  396. out_writepage:
  397. f2fs_put_dnode(&dn);
  398. return err;
  399. }
  400. static int f2fs_write_data_page(struct page *page,
  401. struct writeback_control *wbc)
  402. {
  403. struct inode *inode = page->mapping->host;
  404. struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
  405. loff_t i_size = i_size_read(inode);
  406. const pgoff_t end_index = ((unsigned long long) i_size)
  407. >> PAGE_CACHE_SHIFT;
  408. unsigned offset;
  409. int err = 0;
  410. if (page->index < end_index)
  411. goto out;
  412. /*
  413. * If the offset is out-of-range of file size,
  414. * this page does not have to be written to disk.
  415. */
  416. offset = i_size & (PAGE_CACHE_SIZE - 1);
  417. if ((page->index >= end_index + 1) || !offset) {
  418. if (S_ISDIR(inode->i_mode)) {
  419. dec_page_count(sbi, F2FS_DIRTY_DENTS);
  420. inode_dec_dirty_dents(inode);
  421. }
  422. goto unlock_out;
  423. }
  424. zero_user_segment(page, offset, PAGE_CACHE_SIZE);
  425. out:
  426. if (sbi->por_doing)
  427. goto redirty_out;
  428. if (wbc->for_reclaim && !S_ISDIR(inode->i_mode) && !is_cold_data(page))
  429. goto redirty_out;
  430. mutex_lock_op(sbi, DATA_WRITE);
  431. if (S_ISDIR(inode->i_mode)) {
  432. dec_page_count(sbi, F2FS_DIRTY_DENTS);
  433. inode_dec_dirty_dents(inode);
  434. }
  435. err = do_write_data_page(page);
  436. if (err && err != -ENOENT) {
  437. wbc->pages_skipped++;
  438. set_page_dirty(page);
  439. }
  440. mutex_unlock_op(sbi, DATA_WRITE);
  441. if (wbc->for_reclaim)
  442. f2fs_submit_bio(sbi, DATA, true);
  443. if (err == -ENOENT)
  444. goto unlock_out;
  445. clear_cold_data(page);
  446. unlock_page(page);
  447. if (!wbc->for_reclaim && !S_ISDIR(inode->i_mode))
  448. f2fs_balance_fs(sbi);
  449. return 0;
  450. unlock_out:
  451. unlock_page(page);
  452. return (err == -ENOENT) ? 0 : err;
  453. redirty_out:
  454. wbc->pages_skipped++;
  455. set_page_dirty(page);
  456. return AOP_WRITEPAGE_ACTIVATE;
  457. }
  458. #define MAX_DESIRED_PAGES_WP 4096
  459. static int __f2fs_writepage(struct page *page, struct writeback_control *wbc,
  460. void *data)
  461. {
  462. struct address_space *mapping = data;
  463. int ret = mapping->a_ops->writepage(page, wbc);
  464. mapping_set_error(mapping, ret);
  465. return ret;
  466. }
  467. static int f2fs_write_data_pages(struct address_space *mapping,
  468. struct writeback_control *wbc)
  469. {
  470. struct inode *inode = mapping->host;
  471. struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
  472. int ret;
  473. long excess_nrtw = 0, desired_nrtw;
  474. if (wbc->nr_to_write < MAX_DESIRED_PAGES_WP) {
  475. desired_nrtw = MAX_DESIRED_PAGES_WP;
  476. excess_nrtw = desired_nrtw - wbc->nr_to_write;
  477. wbc->nr_to_write = desired_nrtw;
  478. }
  479. if (!S_ISDIR(inode->i_mode))
  480. mutex_lock(&sbi->writepages);
  481. ret = write_cache_pages(mapping, wbc, __f2fs_writepage, mapping);
  482. if (!S_ISDIR(inode->i_mode))
  483. mutex_unlock(&sbi->writepages);
  484. f2fs_submit_bio(sbi, DATA, (wbc->sync_mode == WB_SYNC_ALL));
  485. remove_dirty_dir_inode(inode);
  486. wbc->nr_to_write -= excess_nrtw;
  487. return ret;
  488. }
  489. static int f2fs_write_begin(struct file *file, struct address_space *mapping,
  490. loff_t pos, unsigned len, unsigned flags,
  491. struct page **pagep, void **fsdata)
  492. {
  493. struct inode *inode = mapping->host;
  494. struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
  495. struct page *page;
  496. pgoff_t index = ((unsigned long long) pos) >> PAGE_CACHE_SHIFT;
  497. struct dnode_of_data dn;
  498. int err = 0;
  499. /* for nobh_write_end */
  500. *fsdata = NULL;
  501. f2fs_balance_fs(sbi);
  502. page = grab_cache_page_write_begin(mapping, index, flags);
  503. if (!page)
  504. return -ENOMEM;
  505. *pagep = page;
  506. mutex_lock_op(sbi, DATA_NEW);
  507. set_new_dnode(&dn, inode, NULL, NULL, 0);
  508. err = get_dnode_of_data(&dn, index, ALLOC_NODE);
  509. if (err) {
  510. mutex_unlock_op(sbi, DATA_NEW);
  511. f2fs_put_page(page, 1);
  512. return err;
  513. }
  514. if (dn.data_blkaddr == NULL_ADDR) {
  515. err = reserve_new_block(&dn);
  516. if (err) {
  517. f2fs_put_dnode(&dn);
  518. mutex_unlock_op(sbi, DATA_NEW);
  519. f2fs_put_page(page, 1);
  520. return err;
  521. }
  522. }
  523. f2fs_put_dnode(&dn);
  524. mutex_unlock_op(sbi, DATA_NEW);
  525. if ((len == PAGE_CACHE_SIZE) || PageUptodate(page))
  526. return 0;
  527. if ((pos & PAGE_CACHE_MASK) >= i_size_read(inode)) {
  528. unsigned start = pos & (PAGE_CACHE_SIZE - 1);
  529. unsigned end = start + len;
  530. /* Reading beyond i_size is simple: memset to zero */
  531. zero_user_segments(page, 0, start, end, PAGE_CACHE_SIZE);
  532. goto out;
  533. }
  534. if (dn.data_blkaddr == NEW_ADDR) {
  535. zero_user_segment(page, 0, PAGE_CACHE_SIZE);
  536. } else {
  537. err = f2fs_readpage(sbi, page, dn.data_blkaddr, READ_SYNC);
  538. if (err)
  539. return err;
  540. lock_page(page);
  541. if (!PageUptodate(page)) {
  542. f2fs_put_page(page, 1);
  543. return -EIO;
  544. }
  545. }
  546. out:
  547. SetPageUptodate(page);
  548. clear_cold_data(page);
  549. return 0;
  550. }
  551. static ssize_t f2fs_direct_IO(int rw, struct kiocb *iocb,
  552. const struct iovec *iov, loff_t offset, unsigned long nr_segs)
  553. {
  554. struct file *file = iocb->ki_filp;
  555. struct inode *inode = file->f_mapping->host;
  556. if (rw == WRITE)
  557. return 0;
  558. /* Needs synchronization with the cleaner */
  559. return blockdev_direct_IO(rw, iocb, inode, iov, offset, nr_segs,
  560. get_data_block_ro);
  561. }
  562. static void f2fs_invalidate_data_page(struct page *page, unsigned long offset)
  563. {
  564. struct inode *inode = page->mapping->host;
  565. struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
  566. if (S_ISDIR(inode->i_mode) && PageDirty(page)) {
  567. dec_page_count(sbi, F2FS_DIRTY_DENTS);
  568. inode_dec_dirty_dents(inode);
  569. }
  570. ClearPagePrivate(page);
  571. }
  572. static int f2fs_release_data_page(struct page *page, gfp_t wait)
  573. {
  574. ClearPagePrivate(page);
  575. return 1;
  576. }
  577. static int f2fs_set_data_page_dirty(struct page *page)
  578. {
  579. struct address_space *mapping = page->mapping;
  580. struct inode *inode = mapping->host;
  581. SetPageUptodate(page);
  582. if (!PageDirty(page)) {
  583. __set_page_dirty_nobuffers(page);
  584. set_dirty_dir_page(inode, page);
  585. return 1;
  586. }
  587. return 0;
  588. }
  589. static sector_t f2fs_bmap(struct address_space *mapping, sector_t block)
  590. {
  591. return generic_block_bmap(mapping, block, get_data_block_ro);
  592. }
  593. const struct address_space_operations f2fs_dblock_aops = {
  594. .readpage = f2fs_read_data_page,
  595. .readpages = f2fs_read_data_pages,
  596. .writepage = f2fs_write_data_page,
  597. .writepages = f2fs_write_data_pages,
  598. .write_begin = f2fs_write_begin,
  599. .write_end = nobh_write_end,
  600. .set_page_dirty = f2fs_set_data_page_dirty,
  601. .invalidatepage = f2fs_invalidate_data_page,
  602. .releasepage = f2fs_release_data_page,
  603. .direct_IO = f2fs_direct_IO,
  604. .bmap = f2fs_bmap,
  605. };