intel_ddi.c 37 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373
  1. /*
  2. * Copyright © 2012 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21. * IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Eugeni Dodonov <eugeni.dodonov@intel.com>
  25. *
  26. */
  27. #include "i915_drv.h"
  28. #include "intel_drv.h"
  29. /* HDMI/DVI modes ignore everything but the last 2 items. So we share
  30. * them for both DP and FDI transports, allowing those ports to
  31. * automatically adapt to HDMI connections as well
  32. */
  33. static const u32 hsw_ddi_translations_dp[] = {
  34. 0x00FFFFFF, 0x0006000E, /* DP parameters */
  35. 0x00D75FFF, 0x0005000A,
  36. 0x00C30FFF, 0x00040006,
  37. 0x80AAAFFF, 0x000B0000,
  38. 0x00FFFFFF, 0x0005000A,
  39. 0x00D75FFF, 0x000C0004,
  40. 0x80C30FFF, 0x000B0000,
  41. 0x00FFFFFF, 0x00040006,
  42. 0x80D75FFF, 0x000B0000,
  43. 0x00FFFFFF, 0x00040006 /* HDMI parameters */
  44. };
  45. static const u32 hsw_ddi_translations_fdi[] = {
  46. 0x00FFFFFF, 0x0007000E, /* FDI parameters */
  47. 0x00D75FFF, 0x000F000A,
  48. 0x00C30FFF, 0x00060006,
  49. 0x00AAAFFF, 0x001E0000,
  50. 0x00FFFFFF, 0x000F000A,
  51. 0x00D75FFF, 0x00160004,
  52. 0x00C30FFF, 0x001E0000,
  53. 0x00FFFFFF, 0x00060006,
  54. 0x00D75FFF, 0x001E0000,
  55. 0x00FFFFFF, 0x00040006 /* HDMI parameters */
  56. };
  57. static enum port intel_ddi_get_encoder_port(struct intel_encoder *intel_encoder)
  58. {
  59. struct drm_encoder *encoder = &intel_encoder->base;
  60. int type = intel_encoder->type;
  61. if (type == INTEL_OUTPUT_DISPLAYPORT || type == INTEL_OUTPUT_EDP ||
  62. type == INTEL_OUTPUT_HDMI || type == INTEL_OUTPUT_UNKNOWN) {
  63. struct intel_digital_port *intel_dig_port =
  64. enc_to_dig_port(encoder);
  65. return intel_dig_port->port;
  66. } else if (type == INTEL_OUTPUT_ANALOG) {
  67. return PORT_E;
  68. } else {
  69. DRM_ERROR("Invalid DDI encoder type %d\n", type);
  70. BUG();
  71. }
  72. }
  73. /* On Haswell, DDI port buffers must be programmed with correct values
  74. * in advance. The buffer values are different for FDI and DP modes,
  75. * but the HDMI/DVI fields are shared among those. So we program the DDI
  76. * in either FDI or DP modes only, as HDMI connections will work with both
  77. * of those
  78. */
  79. static void intel_prepare_ddi_buffers(struct drm_device *dev, enum port port,
  80. bool use_fdi_mode)
  81. {
  82. struct drm_i915_private *dev_priv = dev->dev_private;
  83. u32 reg;
  84. int i;
  85. const u32 *ddi_translations = ((use_fdi_mode) ?
  86. hsw_ddi_translations_fdi :
  87. hsw_ddi_translations_dp);
  88. DRM_DEBUG_DRIVER("Initializing DDI buffers for port %c in %s mode\n",
  89. port_name(port),
  90. use_fdi_mode ? "FDI" : "DP");
  91. WARN((use_fdi_mode && (port != PORT_E)),
  92. "Programming port %c in FDI mode, this probably will not work.\n",
  93. port_name(port));
  94. for (i=0, reg=DDI_BUF_TRANS(port); i < ARRAY_SIZE(hsw_ddi_translations_fdi); i++) {
  95. I915_WRITE(reg, ddi_translations[i]);
  96. reg += 4;
  97. }
  98. }
  99. /* Program DDI buffers translations for DP. By default, program ports A-D in DP
  100. * mode and port E for FDI.
  101. */
  102. void intel_prepare_ddi(struct drm_device *dev)
  103. {
  104. int port;
  105. if (!HAS_DDI(dev))
  106. return;
  107. for (port = PORT_A; port < PORT_E; port++)
  108. intel_prepare_ddi_buffers(dev, port, false);
  109. /* DDI E is the suggested one to work in FDI mode, so program is as such
  110. * by default. It will have to be re-programmed in case a digital DP
  111. * output will be detected on it
  112. */
  113. intel_prepare_ddi_buffers(dev, PORT_E, true);
  114. }
  115. static const long hsw_ddi_buf_ctl_values[] = {
  116. DDI_BUF_EMP_400MV_0DB_HSW,
  117. DDI_BUF_EMP_400MV_3_5DB_HSW,
  118. DDI_BUF_EMP_400MV_6DB_HSW,
  119. DDI_BUF_EMP_400MV_9_5DB_HSW,
  120. DDI_BUF_EMP_600MV_0DB_HSW,
  121. DDI_BUF_EMP_600MV_3_5DB_HSW,
  122. DDI_BUF_EMP_600MV_6DB_HSW,
  123. DDI_BUF_EMP_800MV_0DB_HSW,
  124. DDI_BUF_EMP_800MV_3_5DB_HSW
  125. };
  126. static void intel_wait_ddi_buf_idle(struct drm_i915_private *dev_priv,
  127. enum port port)
  128. {
  129. uint32_t reg = DDI_BUF_CTL(port);
  130. int i;
  131. for (i = 0; i < 8; i++) {
  132. udelay(1);
  133. if (I915_READ(reg) & DDI_BUF_IS_IDLE)
  134. return;
  135. }
  136. DRM_ERROR("Timeout waiting for DDI BUF %c idle bit\n", port_name(port));
  137. }
  138. /* Starting with Haswell, different DDI ports can work in FDI mode for
  139. * connection to the PCH-located connectors. For this, it is necessary to train
  140. * both the DDI port and PCH receiver for the desired DDI buffer settings.
  141. *
  142. * The recommended port to work in FDI mode is DDI E, which we use here. Also,
  143. * please note that when FDI mode is active on DDI E, it shares 2 lines with
  144. * DDI A (which is used for eDP)
  145. */
  146. void hsw_fdi_link_train(struct drm_crtc *crtc)
  147. {
  148. struct drm_device *dev = crtc->dev;
  149. struct drm_i915_private *dev_priv = dev->dev_private;
  150. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  151. u32 temp, i, rx_ctl_val;
  152. /* Set the FDI_RX_MISC pwrdn lanes and the 2 workarounds listed at the
  153. * mode set "sequence for CRT port" document:
  154. * - TP1 to TP2 time with the default value
  155. * - FDI delay to 90h
  156. *
  157. * WaFDIAutoLinkSetTimingOverrride:hsw
  158. */
  159. I915_WRITE(_FDI_RXA_MISC, FDI_RX_PWRDN_LANE1_VAL(2) |
  160. FDI_RX_PWRDN_LANE0_VAL(2) |
  161. FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
  162. /* Enable the PCH Receiver FDI PLL */
  163. rx_ctl_val = dev_priv->fdi_rx_config | FDI_RX_ENHANCE_FRAME_ENABLE |
  164. FDI_RX_PLL_ENABLE |
  165. FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
  166. I915_WRITE(_FDI_RXA_CTL, rx_ctl_val);
  167. POSTING_READ(_FDI_RXA_CTL);
  168. udelay(220);
  169. /* Switch from Rawclk to PCDclk */
  170. rx_ctl_val |= FDI_PCDCLK;
  171. I915_WRITE(_FDI_RXA_CTL, rx_ctl_val);
  172. /* Configure Port Clock Select */
  173. I915_WRITE(PORT_CLK_SEL(PORT_E), intel_crtc->ddi_pll_sel);
  174. /* Start the training iterating through available voltages and emphasis,
  175. * testing each value twice. */
  176. for (i = 0; i < ARRAY_SIZE(hsw_ddi_buf_ctl_values) * 2; i++) {
  177. /* Configure DP_TP_CTL with auto-training */
  178. I915_WRITE(DP_TP_CTL(PORT_E),
  179. DP_TP_CTL_FDI_AUTOTRAIN |
  180. DP_TP_CTL_ENHANCED_FRAME_ENABLE |
  181. DP_TP_CTL_LINK_TRAIN_PAT1 |
  182. DP_TP_CTL_ENABLE);
  183. /* Configure and enable DDI_BUF_CTL for DDI E with next voltage.
  184. * DDI E does not support port reversal, the functionality is
  185. * achieved on the PCH side in FDI_RX_CTL, so no need to set the
  186. * port reversal bit */
  187. I915_WRITE(DDI_BUF_CTL(PORT_E),
  188. DDI_BUF_CTL_ENABLE |
  189. ((intel_crtc->config.fdi_lanes - 1) << 1) |
  190. hsw_ddi_buf_ctl_values[i / 2]);
  191. POSTING_READ(DDI_BUF_CTL(PORT_E));
  192. udelay(600);
  193. /* Program PCH FDI Receiver TU */
  194. I915_WRITE(_FDI_RXA_TUSIZE1, TU_SIZE(64));
  195. /* Enable PCH FDI Receiver with auto-training */
  196. rx_ctl_val |= FDI_RX_ENABLE | FDI_LINK_TRAIN_AUTO;
  197. I915_WRITE(_FDI_RXA_CTL, rx_ctl_val);
  198. POSTING_READ(_FDI_RXA_CTL);
  199. /* Wait for FDI receiver lane calibration */
  200. udelay(30);
  201. /* Unset FDI_RX_MISC pwrdn lanes */
  202. temp = I915_READ(_FDI_RXA_MISC);
  203. temp &= ~(FDI_RX_PWRDN_LANE1_MASK | FDI_RX_PWRDN_LANE0_MASK);
  204. I915_WRITE(_FDI_RXA_MISC, temp);
  205. POSTING_READ(_FDI_RXA_MISC);
  206. /* Wait for FDI auto training time */
  207. udelay(5);
  208. temp = I915_READ(DP_TP_STATUS(PORT_E));
  209. if (temp & DP_TP_STATUS_AUTOTRAIN_DONE) {
  210. DRM_DEBUG_KMS("FDI link training done on step %d\n", i);
  211. /* Enable normal pixel sending for FDI */
  212. I915_WRITE(DP_TP_CTL(PORT_E),
  213. DP_TP_CTL_FDI_AUTOTRAIN |
  214. DP_TP_CTL_LINK_TRAIN_NORMAL |
  215. DP_TP_CTL_ENHANCED_FRAME_ENABLE |
  216. DP_TP_CTL_ENABLE);
  217. return;
  218. }
  219. temp = I915_READ(DDI_BUF_CTL(PORT_E));
  220. temp &= ~DDI_BUF_CTL_ENABLE;
  221. I915_WRITE(DDI_BUF_CTL(PORT_E), temp);
  222. POSTING_READ(DDI_BUF_CTL(PORT_E));
  223. /* Disable DP_TP_CTL and FDI_RX_CTL and retry */
  224. temp = I915_READ(DP_TP_CTL(PORT_E));
  225. temp &= ~(DP_TP_CTL_ENABLE | DP_TP_CTL_LINK_TRAIN_MASK);
  226. temp |= DP_TP_CTL_LINK_TRAIN_PAT1;
  227. I915_WRITE(DP_TP_CTL(PORT_E), temp);
  228. POSTING_READ(DP_TP_CTL(PORT_E));
  229. intel_wait_ddi_buf_idle(dev_priv, PORT_E);
  230. rx_ctl_val &= ~FDI_RX_ENABLE;
  231. I915_WRITE(_FDI_RXA_CTL, rx_ctl_val);
  232. POSTING_READ(_FDI_RXA_CTL);
  233. /* Reset FDI_RX_MISC pwrdn lanes */
  234. temp = I915_READ(_FDI_RXA_MISC);
  235. temp &= ~(FDI_RX_PWRDN_LANE1_MASK | FDI_RX_PWRDN_LANE0_MASK);
  236. temp |= FDI_RX_PWRDN_LANE1_VAL(2) | FDI_RX_PWRDN_LANE0_VAL(2);
  237. I915_WRITE(_FDI_RXA_MISC, temp);
  238. POSTING_READ(_FDI_RXA_MISC);
  239. }
  240. DRM_ERROR("FDI link training failed!\n");
  241. }
  242. static void intel_ddi_mode_set(struct intel_encoder *encoder)
  243. {
  244. struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
  245. int port = intel_ddi_get_encoder_port(encoder);
  246. int pipe = crtc->pipe;
  247. int type = encoder->type;
  248. struct drm_display_mode *adjusted_mode = &crtc->config.adjusted_mode;
  249. DRM_DEBUG_KMS("Preparing DDI mode on port %c, pipe %c\n",
  250. port_name(port), pipe_name(pipe));
  251. crtc->eld_vld = false;
  252. if (type == INTEL_OUTPUT_DISPLAYPORT || type == INTEL_OUTPUT_EDP) {
  253. struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
  254. struct intel_digital_port *intel_dig_port =
  255. enc_to_dig_port(&encoder->base);
  256. intel_dp->DP = intel_dig_port->saved_port_bits |
  257. DDI_BUF_CTL_ENABLE | DDI_BUF_EMP_400MV_0DB_HSW;
  258. intel_dp->DP |= DDI_PORT_WIDTH(intel_dp->lane_count);
  259. if (intel_dp->has_audio) {
  260. DRM_DEBUG_DRIVER("DP audio on pipe %c on DDI\n",
  261. pipe_name(crtc->pipe));
  262. /* write eld */
  263. DRM_DEBUG_DRIVER("DP audio: write eld information\n");
  264. intel_write_eld(&encoder->base, adjusted_mode);
  265. }
  266. intel_dp_init_link_config(intel_dp);
  267. } else if (type == INTEL_OUTPUT_HDMI) {
  268. struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&encoder->base);
  269. if (intel_hdmi->has_audio) {
  270. /* Proper support for digital audio needs a new logic
  271. * and a new set of registers, so we leave it for future
  272. * patch bombing.
  273. */
  274. DRM_DEBUG_DRIVER("HDMI audio on pipe %c on DDI\n",
  275. pipe_name(crtc->pipe));
  276. /* write eld */
  277. DRM_DEBUG_DRIVER("HDMI audio: write eld information\n");
  278. intel_write_eld(&encoder->base, adjusted_mode);
  279. }
  280. intel_hdmi->set_infoframes(&encoder->base, adjusted_mode);
  281. }
  282. }
  283. static struct intel_encoder *
  284. intel_ddi_get_crtc_encoder(struct drm_crtc *crtc)
  285. {
  286. struct drm_device *dev = crtc->dev;
  287. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  288. struct intel_encoder *intel_encoder, *ret = NULL;
  289. int num_encoders = 0;
  290. for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
  291. ret = intel_encoder;
  292. num_encoders++;
  293. }
  294. if (num_encoders != 1)
  295. WARN(1, "%d encoders on crtc for pipe %c\n", num_encoders,
  296. pipe_name(intel_crtc->pipe));
  297. BUG_ON(ret == NULL);
  298. return ret;
  299. }
  300. void intel_ddi_put_crtc_pll(struct drm_crtc *crtc)
  301. {
  302. struct drm_i915_private *dev_priv = crtc->dev->dev_private;
  303. struct intel_ddi_plls *plls = &dev_priv->ddi_plls;
  304. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  305. uint32_t val;
  306. switch (intel_crtc->ddi_pll_sel) {
  307. case PORT_CLK_SEL_SPLL:
  308. plls->spll_refcount--;
  309. if (plls->spll_refcount == 0) {
  310. DRM_DEBUG_KMS("Disabling SPLL\n");
  311. val = I915_READ(SPLL_CTL);
  312. WARN_ON(!(val & SPLL_PLL_ENABLE));
  313. I915_WRITE(SPLL_CTL, val & ~SPLL_PLL_ENABLE);
  314. POSTING_READ(SPLL_CTL);
  315. }
  316. break;
  317. case PORT_CLK_SEL_WRPLL1:
  318. plls->wrpll1_refcount--;
  319. if (plls->wrpll1_refcount == 0) {
  320. DRM_DEBUG_KMS("Disabling WRPLL 1\n");
  321. val = I915_READ(WRPLL_CTL1);
  322. WARN_ON(!(val & WRPLL_PLL_ENABLE));
  323. I915_WRITE(WRPLL_CTL1, val & ~WRPLL_PLL_ENABLE);
  324. POSTING_READ(WRPLL_CTL1);
  325. }
  326. break;
  327. case PORT_CLK_SEL_WRPLL2:
  328. plls->wrpll2_refcount--;
  329. if (plls->wrpll2_refcount == 0) {
  330. DRM_DEBUG_KMS("Disabling WRPLL 2\n");
  331. val = I915_READ(WRPLL_CTL2);
  332. WARN_ON(!(val & WRPLL_PLL_ENABLE));
  333. I915_WRITE(WRPLL_CTL2, val & ~WRPLL_PLL_ENABLE);
  334. POSTING_READ(WRPLL_CTL2);
  335. }
  336. break;
  337. }
  338. WARN(plls->spll_refcount < 0, "Invalid SPLL refcount\n");
  339. WARN(plls->wrpll1_refcount < 0, "Invalid WRPLL1 refcount\n");
  340. WARN(plls->wrpll2_refcount < 0, "Invalid WRPLL2 refcount\n");
  341. intel_crtc->ddi_pll_sel = PORT_CLK_SEL_NONE;
  342. }
  343. #define LC_FREQ 2700
  344. #define LC_FREQ_2K (LC_FREQ * 2000)
  345. #define P_MIN 2
  346. #define P_MAX 64
  347. #define P_INC 2
  348. /* Constraints for PLL good behavior */
  349. #define REF_MIN 48
  350. #define REF_MAX 400
  351. #define VCO_MIN 2400
  352. #define VCO_MAX 4800
  353. #define ABS_DIFF(a, b) ((a > b) ? (a - b) : (b - a))
  354. struct wrpll_rnp {
  355. unsigned p, n2, r2;
  356. };
  357. static unsigned wrpll_get_budget_for_freq(int clock)
  358. {
  359. unsigned budget;
  360. switch (clock) {
  361. case 25175000:
  362. case 25200000:
  363. case 27000000:
  364. case 27027000:
  365. case 37762500:
  366. case 37800000:
  367. case 40500000:
  368. case 40541000:
  369. case 54000000:
  370. case 54054000:
  371. case 59341000:
  372. case 59400000:
  373. case 72000000:
  374. case 74176000:
  375. case 74250000:
  376. case 81000000:
  377. case 81081000:
  378. case 89012000:
  379. case 89100000:
  380. case 108000000:
  381. case 108108000:
  382. case 111264000:
  383. case 111375000:
  384. case 148352000:
  385. case 148500000:
  386. case 162000000:
  387. case 162162000:
  388. case 222525000:
  389. case 222750000:
  390. case 296703000:
  391. case 297000000:
  392. budget = 0;
  393. break;
  394. case 233500000:
  395. case 245250000:
  396. case 247750000:
  397. case 253250000:
  398. case 298000000:
  399. budget = 1500;
  400. break;
  401. case 169128000:
  402. case 169500000:
  403. case 179500000:
  404. case 202000000:
  405. budget = 2000;
  406. break;
  407. case 256250000:
  408. case 262500000:
  409. case 270000000:
  410. case 272500000:
  411. case 273750000:
  412. case 280750000:
  413. case 281250000:
  414. case 286000000:
  415. case 291750000:
  416. budget = 4000;
  417. break;
  418. case 267250000:
  419. case 268500000:
  420. budget = 5000;
  421. break;
  422. default:
  423. budget = 1000;
  424. break;
  425. }
  426. return budget;
  427. }
  428. static void wrpll_update_rnp(uint64_t freq2k, unsigned budget,
  429. unsigned r2, unsigned n2, unsigned p,
  430. struct wrpll_rnp *best)
  431. {
  432. uint64_t a, b, c, d, diff, diff_best;
  433. /* No best (r,n,p) yet */
  434. if (best->p == 0) {
  435. best->p = p;
  436. best->n2 = n2;
  437. best->r2 = r2;
  438. return;
  439. }
  440. /*
  441. * Output clock is (LC_FREQ_2K / 2000) * N / (P * R), which compares to
  442. * freq2k.
  443. *
  444. * delta = 1e6 *
  445. * abs(freq2k - (LC_FREQ_2K * n2/(p * r2))) /
  446. * freq2k;
  447. *
  448. * and we would like delta <= budget.
  449. *
  450. * If the discrepancy is above the PPM-based budget, always prefer to
  451. * improve upon the previous solution. However, if you're within the
  452. * budget, try to maximize Ref * VCO, that is N / (P * R^2).
  453. */
  454. a = freq2k * budget * p * r2;
  455. b = freq2k * budget * best->p * best->r2;
  456. diff = ABS_DIFF((freq2k * p * r2), (LC_FREQ_2K * n2));
  457. diff_best = ABS_DIFF((freq2k * best->p * best->r2),
  458. (LC_FREQ_2K * best->n2));
  459. c = 1000000 * diff;
  460. d = 1000000 * diff_best;
  461. if (a < c && b < d) {
  462. /* If both are above the budget, pick the closer */
  463. if (best->p * best->r2 * diff < p * r2 * diff_best) {
  464. best->p = p;
  465. best->n2 = n2;
  466. best->r2 = r2;
  467. }
  468. } else if (a >= c && b < d) {
  469. /* If A is below the threshold but B is above it? Update. */
  470. best->p = p;
  471. best->n2 = n2;
  472. best->r2 = r2;
  473. } else if (a >= c && b >= d) {
  474. /* Both are below the limit, so pick the higher n2/(r2*r2) */
  475. if (n2 * best->r2 * best->r2 > best->n2 * r2 * r2) {
  476. best->p = p;
  477. best->n2 = n2;
  478. best->r2 = r2;
  479. }
  480. }
  481. /* Otherwise a < c && b >= d, do nothing */
  482. }
  483. static void
  484. intel_ddi_calculate_wrpll(int clock /* in Hz */,
  485. unsigned *r2_out, unsigned *n2_out, unsigned *p_out)
  486. {
  487. uint64_t freq2k;
  488. unsigned p, n2, r2;
  489. struct wrpll_rnp best = { 0, 0, 0 };
  490. unsigned budget;
  491. freq2k = clock / 100;
  492. budget = wrpll_get_budget_for_freq(clock);
  493. /* Special case handling for 540 pixel clock: bypass WR PLL entirely
  494. * and directly pass the LC PLL to it. */
  495. if (freq2k == 5400000) {
  496. *n2_out = 2;
  497. *p_out = 1;
  498. *r2_out = 2;
  499. return;
  500. }
  501. /*
  502. * Ref = LC_FREQ / R, where Ref is the actual reference input seen by
  503. * the WR PLL.
  504. *
  505. * We want R so that REF_MIN <= Ref <= REF_MAX.
  506. * Injecting R2 = 2 * R gives:
  507. * REF_MAX * r2 > LC_FREQ * 2 and
  508. * REF_MIN * r2 < LC_FREQ * 2
  509. *
  510. * Which means the desired boundaries for r2 are:
  511. * LC_FREQ * 2 / REF_MAX < r2 < LC_FREQ * 2 / REF_MIN
  512. *
  513. */
  514. for (r2 = LC_FREQ * 2 / REF_MAX + 1;
  515. r2 <= LC_FREQ * 2 / REF_MIN;
  516. r2++) {
  517. /*
  518. * VCO = N * Ref, that is: VCO = N * LC_FREQ / R
  519. *
  520. * Once again we want VCO_MIN <= VCO <= VCO_MAX.
  521. * Injecting R2 = 2 * R and N2 = 2 * N, we get:
  522. * VCO_MAX * r2 > n2 * LC_FREQ and
  523. * VCO_MIN * r2 < n2 * LC_FREQ)
  524. *
  525. * Which means the desired boundaries for n2 are:
  526. * VCO_MIN * r2 / LC_FREQ < n2 < VCO_MAX * r2 / LC_FREQ
  527. */
  528. for (n2 = VCO_MIN * r2 / LC_FREQ + 1;
  529. n2 <= VCO_MAX * r2 / LC_FREQ;
  530. n2++) {
  531. for (p = P_MIN; p <= P_MAX; p += P_INC)
  532. wrpll_update_rnp(freq2k, budget,
  533. r2, n2, p, &best);
  534. }
  535. }
  536. *n2_out = best.n2;
  537. *p_out = best.p;
  538. *r2_out = best.r2;
  539. DRM_DEBUG_KMS("WRPLL: %dHz refresh rate with p=%d, n2=%d r2=%d\n",
  540. clock, *p_out, *n2_out, *r2_out);
  541. }
  542. bool intel_ddi_pll_mode_set(struct drm_crtc *crtc)
  543. {
  544. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  545. struct intel_encoder *intel_encoder = intel_ddi_get_crtc_encoder(crtc);
  546. struct drm_encoder *encoder = &intel_encoder->base;
  547. struct drm_i915_private *dev_priv = crtc->dev->dev_private;
  548. struct intel_ddi_plls *plls = &dev_priv->ddi_plls;
  549. int type = intel_encoder->type;
  550. enum pipe pipe = intel_crtc->pipe;
  551. uint32_t reg, val;
  552. int clock = intel_crtc->config.port_clock;
  553. /* TODO: reuse PLLs when possible (compare values) */
  554. intel_ddi_put_crtc_pll(crtc);
  555. if (type == INTEL_OUTPUT_DISPLAYPORT || type == INTEL_OUTPUT_EDP) {
  556. struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
  557. switch (intel_dp->link_bw) {
  558. case DP_LINK_BW_1_62:
  559. intel_crtc->ddi_pll_sel = PORT_CLK_SEL_LCPLL_810;
  560. break;
  561. case DP_LINK_BW_2_7:
  562. intel_crtc->ddi_pll_sel = PORT_CLK_SEL_LCPLL_1350;
  563. break;
  564. case DP_LINK_BW_5_4:
  565. intel_crtc->ddi_pll_sel = PORT_CLK_SEL_LCPLL_2700;
  566. break;
  567. default:
  568. DRM_ERROR("Link bandwidth %d unsupported\n",
  569. intel_dp->link_bw);
  570. return false;
  571. }
  572. /* We don't need to turn any PLL on because we'll use LCPLL. */
  573. return true;
  574. } else if (type == INTEL_OUTPUT_HDMI) {
  575. unsigned p, n2, r2;
  576. if (plls->wrpll1_refcount == 0) {
  577. DRM_DEBUG_KMS("Using WRPLL 1 on pipe %c\n",
  578. pipe_name(pipe));
  579. plls->wrpll1_refcount++;
  580. reg = WRPLL_CTL1;
  581. intel_crtc->ddi_pll_sel = PORT_CLK_SEL_WRPLL1;
  582. } else if (plls->wrpll2_refcount == 0) {
  583. DRM_DEBUG_KMS("Using WRPLL 2 on pipe %c\n",
  584. pipe_name(pipe));
  585. plls->wrpll2_refcount++;
  586. reg = WRPLL_CTL2;
  587. intel_crtc->ddi_pll_sel = PORT_CLK_SEL_WRPLL2;
  588. } else {
  589. DRM_ERROR("No WRPLLs available!\n");
  590. return false;
  591. }
  592. WARN(I915_READ(reg) & WRPLL_PLL_ENABLE,
  593. "WRPLL already enabled\n");
  594. intel_ddi_calculate_wrpll(clock * 1000, &r2, &n2, &p);
  595. val = WRPLL_PLL_ENABLE | WRPLL_PLL_SELECT_LCPLL_2700 |
  596. WRPLL_DIVIDER_REFERENCE(r2) | WRPLL_DIVIDER_FEEDBACK(n2) |
  597. WRPLL_DIVIDER_POST(p);
  598. } else if (type == INTEL_OUTPUT_ANALOG) {
  599. if (plls->spll_refcount == 0) {
  600. DRM_DEBUG_KMS("Using SPLL on pipe %c\n",
  601. pipe_name(pipe));
  602. plls->spll_refcount++;
  603. reg = SPLL_CTL;
  604. intel_crtc->ddi_pll_sel = PORT_CLK_SEL_SPLL;
  605. } else {
  606. DRM_ERROR("SPLL already in use\n");
  607. return false;
  608. }
  609. WARN(I915_READ(reg) & SPLL_PLL_ENABLE,
  610. "SPLL already enabled\n");
  611. val = SPLL_PLL_ENABLE | SPLL_PLL_FREQ_1350MHz | SPLL_PLL_SSC;
  612. } else {
  613. WARN(1, "Invalid DDI encoder type %d\n", type);
  614. return false;
  615. }
  616. I915_WRITE(reg, val);
  617. udelay(20);
  618. return true;
  619. }
  620. void intel_ddi_set_pipe_settings(struct drm_crtc *crtc)
  621. {
  622. struct drm_i915_private *dev_priv = crtc->dev->dev_private;
  623. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  624. struct intel_encoder *intel_encoder = intel_ddi_get_crtc_encoder(crtc);
  625. enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
  626. int type = intel_encoder->type;
  627. uint32_t temp;
  628. if (type == INTEL_OUTPUT_DISPLAYPORT || type == INTEL_OUTPUT_EDP) {
  629. temp = TRANS_MSA_SYNC_CLK;
  630. switch (intel_crtc->config.pipe_bpp) {
  631. case 18:
  632. temp |= TRANS_MSA_6_BPC;
  633. break;
  634. case 24:
  635. temp |= TRANS_MSA_8_BPC;
  636. break;
  637. case 30:
  638. temp |= TRANS_MSA_10_BPC;
  639. break;
  640. case 36:
  641. temp |= TRANS_MSA_12_BPC;
  642. break;
  643. default:
  644. BUG();
  645. }
  646. I915_WRITE(TRANS_MSA_MISC(cpu_transcoder), temp);
  647. }
  648. }
  649. void intel_ddi_enable_transcoder_func(struct drm_crtc *crtc)
  650. {
  651. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  652. struct intel_encoder *intel_encoder = intel_ddi_get_crtc_encoder(crtc);
  653. struct drm_encoder *encoder = &intel_encoder->base;
  654. struct drm_i915_private *dev_priv = crtc->dev->dev_private;
  655. enum pipe pipe = intel_crtc->pipe;
  656. enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
  657. enum port port = intel_ddi_get_encoder_port(intel_encoder);
  658. int type = intel_encoder->type;
  659. uint32_t temp;
  660. /* Enable TRANS_DDI_FUNC_CTL for the pipe to work in HDMI mode */
  661. temp = TRANS_DDI_FUNC_ENABLE;
  662. temp |= TRANS_DDI_SELECT_PORT(port);
  663. switch (intel_crtc->config.pipe_bpp) {
  664. case 18:
  665. temp |= TRANS_DDI_BPC_6;
  666. break;
  667. case 24:
  668. temp |= TRANS_DDI_BPC_8;
  669. break;
  670. case 30:
  671. temp |= TRANS_DDI_BPC_10;
  672. break;
  673. case 36:
  674. temp |= TRANS_DDI_BPC_12;
  675. break;
  676. default:
  677. BUG();
  678. }
  679. if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
  680. temp |= TRANS_DDI_PVSYNC;
  681. if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
  682. temp |= TRANS_DDI_PHSYNC;
  683. if (cpu_transcoder == TRANSCODER_EDP) {
  684. switch (pipe) {
  685. case PIPE_A:
  686. /* Can only use the always-on power well for eDP when
  687. * not using the panel fitter, and when not using motion
  688. * blur mitigation (which we don't support). */
  689. if (intel_crtc->config.pch_pfit.size)
  690. temp |= TRANS_DDI_EDP_INPUT_A_ONOFF;
  691. else
  692. temp |= TRANS_DDI_EDP_INPUT_A_ON;
  693. break;
  694. case PIPE_B:
  695. temp |= TRANS_DDI_EDP_INPUT_B_ONOFF;
  696. break;
  697. case PIPE_C:
  698. temp |= TRANS_DDI_EDP_INPUT_C_ONOFF;
  699. break;
  700. default:
  701. BUG();
  702. break;
  703. }
  704. }
  705. if (type == INTEL_OUTPUT_HDMI) {
  706. struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
  707. if (intel_hdmi->has_hdmi_sink)
  708. temp |= TRANS_DDI_MODE_SELECT_HDMI;
  709. else
  710. temp |= TRANS_DDI_MODE_SELECT_DVI;
  711. } else if (type == INTEL_OUTPUT_ANALOG) {
  712. temp |= TRANS_DDI_MODE_SELECT_FDI;
  713. temp |= (intel_crtc->config.fdi_lanes - 1) << 1;
  714. } else if (type == INTEL_OUTPUT_DISPLAYPORT ||
  715. type == INTEL_OUTPUT_EDP) {
  716. struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
  717. temp |= TRANS_DDI_MODE_SELECT_DP_SST;
  718. temp |= DDI_PORT_WIDTH(intel_dp->lane_count);
  719. } else {
  720. WARN(1, "Invalid encoder type %d for pipe %c\n",
  721. intel_encoder->type, pipe_name(pipe));
  722. }
  723. I915_WRITE(TRANS_DDI_FUNC_CTL(cpu_transcoder), temp);
  724. }
  725. void intel_ddi_disable_transcoder_func(struct drm_i915_private *dev_priv,
  726. enum transcoder cpu_transcoder)
  727. {
  728. uint32_t reg = TRANS_DDI_FUNC_CTL(cpu_transcoder);
  729. uint32_t val = I915_READ(reg);
  730. val &= ~(TRANS_DDI_FUNC_ENABLE | TRANS_DDI_PORT_MASK);
  731. val |= TRANS_DDI_PORT_NONE;
  732. I915_WRITE(reg, val);
  733. }
  734. bool intel_ddi_connector_get_hw_state(struct intel_connector *intel_connector)
  735. {
  736. struct drm_device *dev = intel_connector->base.dev;
  737. struct drm_i915_private *dev_priv = dev->dev_private;
  738. struct intel_encoder *intel_encoder = intel_connector->encoder;
  739. int type = intel_connector->base.connector_type;
  740. enum port port = intel_ddi_get_encoder_port(intel_encoder);
  741. enum pipe pipe = 0;
  742. enum transcoder cpu_transcoder;
  743. uint32_t tmp;
  744. if (!intel_encoder->get_hw_state(intel_encoder, &pipe))
  745. return false;
  746. if (port == PORT_A)
  747. cpu_transcoder = TRANSCODER_EDP;
  748. else
  749. cpu_transcoder = (enum transcoder) pipe;
  750. tmp = I915_READ(TRANS_DDI_FUNC_CTL(cpu_transcoder));
  751. switch (tmp & TRANS_DDI_MODE_SELECT_MASK) {
  752. case TRANS_DDI_MODE_SELECT_HDMI:
  753. case TRANS_DDI_MODE_SELECT_DVI:
  754. return (type == DRM_MODE_CONNECTOR_HDMIA);
  755. case TRANS_DDI_MODE_SELECT_DP_SST:
  756. if (type == DRM_MODE_CONNECTOR_eDP)
  757. return true;
  758. case TRANS_DDI_MODE_SELECT_DP_MST:
  759. return (type == DRM_MODE_CONNECTOR_DisplayPort);
  760. case TRANS_DDI_MODE_SELECT_FDI:
  761. return (type == DRM_MODE_CONNECTOR_VGA);
  762. default:
  763. return false;
  764. }
  765. }
  766. bool intel_ddi_get_hw_state(struct intel_encoder *encoder,
  767. enum pipe *pipe)
  768. {
  769. struct drm_device *dev = encoder->base.dev;
  770. struct drm_i915_private *dev_priv = dev->dev_private;
  771. enum port port = intel_ddi_get_encoder_port(encoder);
  772. u32 tmp;
  773. int i;
  774. tmp = I915_READ(DDI_BUF_CTL(port));
  775. if (!(tmp & DDI_BUF_CTL_ENABLE))
  776. return false;
  777. if (port == PORT_A) {
  778. tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
  779. switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
  780. case TRANS_DDI_EDP_INPUT_A_ON:
  781. case TRANS_DDI_EDP_INPUT_A_ONOFF:
  782. *pipe = PIPE_A;
  783. break;
  784. case TRANS_DDI_EDP_INPUT_B_ONOFF:
  785. *pipe = PIPE_B;
  786. break;
  787. case TRANS_DDI_EDP_INPUT_C_ONOFF:
  788. *pipe = PIPE_C;
  789. break;
  790. }
  791. return true;
  792. } else {
  793. for (i = TRANSCODER_A; i <= TRANSCODER_C; i++) {
  794. tmp = I915_READ(TRANS_DDI_FUNC_CTL(i));
  795. if ((tmp & TRANS_DDI_PORT_MASK)
  796. == TRANS_DDI_SELECT_PORT(port)) {
  797. *pipe = i;
  798. return true;
  799. }
  800. }
  801. }
  802. DRM_DEBUG_KMS("No pipe for ddi port %c found\n", port_name(port));
  803. return false;
  804. }
  805. static uint32_t intel_ddi_get_crtc_pll(struct drm_i915_private *dev_priv,
  806. enum pipe pipe)
  807. {
  808. uint32_t temp, ret;
  809. enum port port = I915_MAX_PORTS;
  810. enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
  811. pipe);
  812. int i;
  813. if (cpu_transcoder == TRANSCODER_EDP) {
  814. port = PORT_A;
  815. } else {
  816. temp = I915_READ(TRANS_DDI_FUNC_CTL(cpu_transcoder));
  817. temp &= TRANS_DDI_PORT_MASK;
  818. for (i = PORT_B; i <= PORT_E; i++)
  819. if (temp == TRANS_DDI_SELECT_PORT(i))
  820. port = i;
  821. }
  822. if (port == I915_MAX_PORTS) {
  823. WARN(1, "Pipe %c enabled on an unknown port\n",
  824. pipe_name(pipe));
  825. ret = PORT_CLK_SEL_NONE;
  826. } else {
  827. ret = I915_READ(PORT_CLK_SEL(port));
  828. DRM_DEBUG_KMS("Pipe %c connected to port %c using clock "
  829. "0x%08x\n", pipe_name(pipe), port_name(port),
  830. ret);
  831. }
  832. return ret;
  833. }
  834. void intel_ddi_setup_hw_pll_state(struct drm_device *dev)
  835. {
  836. struct drm_i915_private *dev_priv = dev->dev_private;
  837. enum pipe pipe;
  838. struct intel_crtc *intel_crtc;
  839. for_each_pipe(pipe) {
  840. intel_crtc =
  841. to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
  842. if (!intel_crtc->active)
  843. continue;
  844. intel_crtc->ddi_pll_sel = intel_ddi_get_crtc_pll(dev_priv,
  845. pipe);
  846. switch (intel_crtc->ddi_pll_sel) {
  847. case PORT_CLK_SEL_SPLL:
  848. dev_priv->ddi_plls.spll_refcount++;
  849. break;
  850. case PORT_CLK_SEL_WRPLL1:
  851. dev_priv->ddi_plls.wrpll1_refcount++;
  852. break;
  853. case PORT_CLK_SEL_WRPLL2:
  854. dev_priv->ddi_plls.wrpll2_refcount++;
  855. break;
  856. }
  857. }
  858. }
  859. void intel_ddi_enable_pipe_clock(struct intel_crtc *intel_crtc)
  860. {
  861. struct drm_crtc *crtc = &intel_crtc->base;
  862. struct drm_i915_private *dev_priv = crtc->dev->dev_private;
  863. struct intel_encoder *intel_encoder = intel_ddi_get_crtc_encoder(crtc);
  864. enum port port = intel_ddi_get_encoder_port(intel_encoder);
  865. enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
  866. if (cpu_transcoder != TRANSCODER_EDP)
  867. I915_WRITE(TRANS_CLK_SEL(cpu_transcoder),
  868. TRANS_CLK_SEL_PORT(port));
  869. }
  870. void intel_ddi_disable_pipe_clock(struct intel_crtc *intel_crtc)
  871. {
  872. struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
  873. enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
  874. if (cpu_transcoder != TRANSCODER_EDP)
  875. I915_WRITE(TRANS_CLK_SEL(cpu_transcoder),
  876. TRANS_CLK_SEL_DISABLED);
  877. }
  878. static void intel_ddi_pre_enable(struct intel_encoder *intel_encoder)
  879. {
  880. struct drm_encoder *encoder = &intel_encoder->base;
  881. struct drm_crtc *crtc = encoder->crtc;
  882. struct drm_i915_private *dev_priv = encoder->dev->dev_private;
  883. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  884. enum port port = intel_ddi_get_encoder_port(intel_encoder);
  885. int type = intel_encoder->type;
  886. if (type == INTEL_OUTPUT_EDP) {
  887. struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
  888. ironlake_edp_panel_vdd_on(intel_dp);
  889. ironlake_edp_panel_on(intel_dp);
  890. ironlake_edp_panel_vdd_off(intel_dp, true);
  891. }
  892. WARN_ON(intel_crtc->ddi_pll_sel == PORT_CLK_SEL_NONE);
  893. I915_WRITE(PORT_CLK_SEL(port), intel_crtc->ddi_pll_sel);
  894. if (type == INTEL_OUTPUT_DISPLAYPORT || type == INTEL_OUTPUT_EDP) {
  895. struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
  896. intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
  897. intel_dp_start_link_train(intel_dp);
  898. intel_dp_complete_link_train(intel_dp);
  899. if (port != PORT_A)
  900. intel_dp_stop_link_train(intel_dp);
  901. }
  902. }
  903. static void intel_ddi_post_disable(struct intel_encoder *intel_encoder)
  904. {
  905. struct drm_encoder *encoder = &intel_encoder->base;
  906. struct drm_i915_private *dev_priv = encoder->dev->dev_private;
  907. enum port port = intel_ddi_get_encoder_port(intel_encoder);
  908. int type = intel_encoder->type;
  909. uint32_t val;
  910. bool wait = false;
  911. val = I915_READ(DDI_BUF_CTL(port));
  912. if (val & DDI_BUF_CTL_ENABLE) {
  913. val &= ~DDI_BUF_CTL_ENABLE;
  914. I915_WRITE(DDI_BUF_CTL(port), val);
  915. wait = true;
  916. }
  917. val = I915_READ(DP_TP_CTL(port));
  918. val &= ~(DP_TP_CTL_ENABLE | DP_TP_CTL_LINK_TRAIN_MASK);
  919. val |= DP_TP_CTL_LINK_TRAIN_PAT1;
  920. I915_WRITE(DP_TP_CTL(port), val);
  921. if (wait)
  922. intel_wait_ddi_buf_idle(dev_priv, port);
  923. if (type == INTEL_OUTPUT_EDP) {
  924. struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
  925. ironlake_edp_panel_vdd_on(intel_dp);
  926. ironlake_edp_panel_off(intel_dp);
  927. }
  928. I915_WRITE(PORT_CLK_SEL(port), PORT_CLK_SEL_NONE);
  929. }
  930. static void intel_enable_ddi(struct intel_encoder *intel_encoder)
  931. {
  932. struct drm_encoder *encoder = &intel_encoder->base;
  933. struct drm_crtc *crtc = encoder->crtc;
  934. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  935. int pipe = intel_crtc->pipe;
  936. struct drm_device *dev = encoder->dev;
  937. struct drm_i915_private *dev_priv = dev->dev_private;
  938. enum port port = intel_ddi_get_encoder_port(intel_encoder);
  939. int type = intel_encoder->type;
  940. uint32_t tmp;
  941. if (type == INTEL_OUTPUT_HDMI) {
  942. struct intel_digital_port *intel_dig_port =
  943. enc_to_dig_port(encoder);
  944. /* In HDMI/DVI mode, the port width, and swing/emphasis values
  945. * are ignored so nothing special needs to be done besides
  946. * enabling the port.
  947. */
  948. I915_WRITE(DDI_BUF_CTL(port),
  949. intel_dig_port->saved_port_bits |
  950. DDI_BUF_CTL_ENABLE);
  951. } else if (type == INTEL_OUTPUT_EDP) {
  952. struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
  953. if (port == PORT_A)
  954. intel_dp_stop_link_train(intel_dp);
  955. ironlake_edp_backlight_on(intel_dp);
  956. intel_edp_psr_enable(intel_dp);
  957. }
  958. if (intel_crtc->eld_vld && type != INTEL_OUTPUT_EDP) {
  959. tmp = I915_READ(HSW_AUD_PIN_ELD_CP_VLD);
  960. tmp |= ((AUDIO_OUTPUT_ENABLE_A | AUDIO_ELD_VALID_A) << (pipe * 4));
  961. I915_WRITE(HSW_AUD_PIN_ELD_CP_VLD, tmp);
  962. }
  963. }
  964. static void intel_disable_ddi(struct intel_encoder *intel_encoder)
  965. {
  966. struct drm_encoder *encoder = &intel_encoder->base;
  967. struct drm_crtc *crtc = encoder->crtc;
  968. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  969. int pipe = intel_crtc->pipe;
  970. int type = intel_encoder->type;
  971. struct drm_device *dev = encoder->dev;
  972. struct drm_i915_private *dev_priv = dev->dev_private;
  973. uint32_t tmp;
  974. if (intel_crtc->eld_vld && type != INTEL_OUTPUT_EDP) {
  975. tmp = I915_READ(HSW_AUD_PIN_ELD_CP_VLD);
  976. tmp &= ~((AUDIO_OUTPUT_ENABLE_A | AUDIO_ELD_VALID_A) <<
  977. (pipe * 4));
  978. I915_WRITE(HSW_AUD_PIN_ELD_CP_VLD, tmp);
  979. }
  980. if (type == INTEL_OUTPUT_EDP) {
  981. struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
  982. intel_edp_psr_disable(intel_dp);
  983. ironlake_edp_backlight_off(intel_dp);
  984. }
  985. }
  986. int intel_ddi_get_cdclk_freq(struct drm_i915_private *dev_priv)
  987. {
  988. if (I915_READ(HSW_FUSE_STRAP) & HSW_CDCLK_LIMIT)
  989. return 450000;
  990. else if ((I915_READ(LCPLL_CTL) & LCPLL_CLK_FREQ_MASK) ==
  991. LCPLL_CLK_FREQ_450)
  992. return 450000;
  993. else if (IS_ULT(dev_priv->dev))
  994. return 337500;
  995. else
  996. return 540000;
  997. }
  998. void intel_ddi_pll_init(struct drm_device *dev)
  999. {
  1000. struct drm_i915_private *dev_priv = dev->dev_private;
  1001. uint32_t val = I915_READ(LCPLL_CTL);
  1002. /* The LCPLL register should be turned on by the BIOS. For now let's
  1003. * just check its state and print errors in case something is wrong.
  1004. * Don't even try to turn it on.
  1005. */
  1006. DRM_DEBUG_KMS("CDCLK running at %dKHz\n",
  1007. intel_ddi_get_cdclk_freq(dev_priv));
  1008. if (val & LCPLL_CD_SOURCE_FCLK)
  1009. DRM_ERROR("CDCLK source is not LCPLL\n");
  1010. if (val & LCPLL_PLL_DISABLE)
  1011. DRM_ERROR("LCPLL is disabled\n");
  1012. }
  1013. void intel_ddi_prepare_link_retrain(struct drm_encoder *encoder)
  1014. {
  1015. struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
  1016. struct intel_dp *intel_dp = &intel_dig_port->dp;
  1017. struct drm_i915_private *dev_priv = encoder->dev->dev_private;
  1018. enum port port = intel_dig_port->port;
  1019. uint32_t val;
  1020. bool wait = false;
  1021. if (I915_READ(DP_TP_CTL(port)) & DP_TP_CTL_ENABLE) {
  1022. val = I915_READ(DDI_BUF_CTL(port));
  1023. if (val & DDI_BUF_CTL_ENABLE) {
  1024. val &= ~DDI_BUF_CTL_ENABLE;
  1025. I915_WRITE(DDI_BUF_CTL(port), val);
  1026. wait = true;
  1027. }
  1028. val = I915_READ(DP_TP_CTL(port));
  1029. val &= ~(DP_TP_CTL_ENABLE | DP_TP_CTL_LINK_TRAIN_MASK);
  1030. val |= DP_TP_CTL_LINK_TRAIN_PAT1;
  1031. I915_WRITE(DP_TP_CTL(port), val);
  1032. POSTING_READ(DP_TP_CTL(port));
  1033. if (wait)
  1034. intel_wait_ddi_buf_idle(dev_priv, port);
  1035. }
  1036. val = DP_TP_CTL_ENABLE | DP_TP_CTL_MODE_SST |
  1037. DP_TP_CTL_LINK_TRAIN_PAT1 | DP_TP_CTL_SCRAMBLE_DISABLE;
  1038. if (intel_dp->link_configuration[1] & DP_LANE_COUNT_ENHANCED_FRAME_EN)
  1039. val |= DP_TP_CTL_ENHANCED_FRAME_ENABLE;
  1040. I915_WRITE(DP_TP_CTL(port), val);
  1041. POSTING_READ(DP_TP_CTL(port));
  1042. intel_dp->DP |= DDI_BUF_CTL_ENABLE;
  1043. I915_WRITE(DDI_BUF_CTL(port), intel_dp->DP);
  1044. POSTING_READ(DDI_BUF_CTL(port));
  1045. udelay(600);
  1046. }
  1047. void intel_ddi_fdi_disable(struct drm_crtc *crtc)
  1048. {
  1049. struct drm_i915_private *dev_priv = crtc->dev->dev_private;
  1050. struct intel_encoder *intel_encoder = intel_ddi_get_crtc_encoder(crtc);
  1051. uint32_t val;
  1052. intel_ddi_post_disable(intel_encoder);
  1053. val = I915_READ(_FDI_RXA_CTL);
  1054. val &= ~FDI_RX_ENABLE;
  1055. I915_WRITE(_FDI_RXA_CTL, val);
  1056. val = I915_READ(_FDI_RXA_MISC);
  1057. val &= ~(FDI_RX_PWRDN_LANE1_MASK | FDI_RX_PWRDN_LANE0_MASK);
  1058. val |= FDI_RX_PWRDN_LANE1_VAL(2) | FDI_RX_PWRDN_LANE0_VAL(2);
  1059. I915_WRITE(_FDI_RXA_MISC, val);
  1060. val = I915_READ(_FDI_RXA_CTL);
  1061. val &= ~FDI_PCDCLK;
  1062. I915_WRITE(_FDI_RXA_CTL, val);
  1063. val = I915_READ(_FDI_RXA_CTL);
  1064. val &= ~FDI_RX_PLL_ENABLE;
  1065. I915_WRITE(_FDI_RXA_CTL, val);
  1066. }
  1067. static void intel_ddi_hot_plug(struct intel_encoder *intel_encoder)
  1068. {
  1069. struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
  1070. int type = intel_encoder->type;
  1071. if (type == INTEL_OUTPUT_DISPLAYPORT || type == INTEL_OUTPUT_EDP)
  1072. intel_dp_check_link_status(intel_dp);
  1073. }
  1074. static void intel_ddi_get_config(struct intel_encoder *encoder,
  1075. struct intel_crtc_config *pipe_config)
  1076. {
  1077. struct drm_i915_private *dev_priv = encoder->base.dev->dev_private;
  1078. struct intel_crtc *intel_crtc = to_intel_crtc(encoder->base.crtc);
  1079. enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
  1080. u32 temp, flags = 0;
  1081. temp = I915_READ(TRANS_DDI_FUNC_CTL(cpu_transcoder));
  1082. if (temp & TRANS_DDI_PHSYNC)
  1083. flags |= DRM_MODE_FLAG_PHSYNC;
  1084. else
  1085. flags |= DRM_MODE_FLAG_NHSYNC;
  1086. if (temp & TRANS_DDI_PVSYNC)
  1087. flags |= DRM_MODE_FLAG_PVSYNC;
  1088. else
  1089. flags |= DRM_MODE_FLAG_NVSYNC;
  1090. pipe_config->adjusted_mode.flags |= flags;
  1091. }
  1092. static void intel_ddi_destroy(struct drm_encoder *encoder)
  1093. {
  1094. /* HDMI has nothing special to destroy, so we can go with this. */
  1095. intel_dp_encoder_destroy(encoder);
  1096. }
  1097. static bool intel_ddi_compute_config(struct intel_encoder *encoder,
  1098. struct intel_crtc_config *pipe_config)
  1099. {
  1100. int type = encoder->type;
  1101. int port = intel_ddi_get_encoder_port(encoder);
  1102. WARN(type == INTEL_OUTPUT_UNKNOWN, "compute_config() on unknown output!\n");
  1103. if (port == PORT_A)
  1104. pipe_config->cpu_transcoder = TRANSCODER_EDP;
  1105. if (type == INTEL_OUTPUT_HDMI)
  1106. return intel_hdmi_compute_config(encoder, pipe_config);
  1107. else
  1108. return intel_dp_compute_config(encoder, pipe_config);
  1109. }
  1110. static const struct drm_encoder_funcs intel_ddi_funcs = {
  1111. .destroy = intel_ddi_destroy,
  1112. };
  1113. void intel_ddi_init(struct drm_device *dev, enum port port)
  1114. {
  1115. struct drm_i915_private *dev_priv = dev->dev_private;
  1116. struct intel_digital_port *intel_dig_port;
  1117. struct intel_encoder *intel_encoder;
  1118. struct drm_encoder *encoder;
  1119. struct intel_connector *hdmi_connector = NULL;
  1120. struct intel_connector *dp_connector = NULL;
  1121. intel_dig_port = kzalloc(sizeof(struct intel_digital_port), GFP_KERNEL);
  1122. if (!intel_dig_port)
  1123. return;
  1124. dp_connector = kzalloc(sizeof(struct intel_connector), GFP_KERNEL);
  1125. if (!dp_connector) {
  1126. kfree(intel_dig_port);
  1127. return;
  1128. }
  1129. intel_encoder = &intel_dig_port->base;
  1130. encoder = &intel_encoder->base;
  1131. drm_encoder_init(dev, encoder, &intel_ddi_funcs,
  1132. DRM_MODE_ENCODER_TMDS);
  1133. intel_encoder->compute_config = intel_ddi_compute_config;
  1134. intel_encoder->mode_set = intel_ddi_mode_set;
  1135. intel_encoder->enable = intel_enable_ddi;
  1136. intel_encoder->pre_enable = intel_ddi_pre_enable;
  1137. intel_encoder->disable = intel_disable_ddi;
  1138. intel_encoder->post_disable = intel_ddi_post_disable;
  1139. intel_encoder->get_hw_state = intel_ddi_get_hw_state;
  1140. intel_encoder->get_config = intel_ddi_get_config;
  1141. intel_dig_port->port = port;
  1142. intel_dig_port->saved_port_bits = I915_READ(DDI_BUF_CTL(port)) &
  1143. (DDI_BUF_PORT_REVERSAL |
  1144. DDI_A_4_LANES);
  1145. intel_dig_port->dp.output_reg = DDI_BUF_CTL(port);
  1146. intel_encoder->type = INTEL_OUTPUT_UNKNOWN;
  1147. intel_encoder->crtc_mask = (1 << 0) | (1 << 1) | (1 << 2);
  1148. intel_encoder->cloneable = false;
  1149. intel_encoder->hot_plug = intel_ddi_hot_plug;
  1150. if (!intel_dp_init_connector(intel_dig_port, dp_connector)) {
  1151. drm_encoder_cleanup(encoder);
  1152. kfree(intel_dig_port);
  1153. kfree(dp_connector);
  1154. return;
  1155. }
  1156. if (intel_encoder->type != INTEL_OUTPUT_EDP) {
  1157. hdmi_connector = kzalloc(sizeof(struct intel_connector),
  1158. GFP_KERNEL);
  1159. if (!hdmi_connector) {
  1160. return;
  1161. }
  1162. intel_dig_port->hdmi.hdmi_reg = DDI_BUF_CTL(port);
  1163. intel_hdmi_init_connector(intel_dig_port, hdmi_connector);
  1164. }
  1165. }