i915_gem.c 119 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751
  1. /*
  2. * Copyright © 2008 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21. * IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Eric Anholt <eric@anholt.net>
  25. *
  26. */
  27. #include <drm/drmP.h>
  28. #include <drm/i915_drm.h>
  29. #include "i915_drv.h"
  30. #include "i915_trace.h"
  31. #include "intel_drv.h"
  32. #include <linux/shmem_fs.h>
  33. #include <linux/slab.h>
  34. #include <linux/swap.h>
  35. #include <linux/pci.h>
  36. #include <linux/dma-buf.h>
  37. static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
  38. static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
  39. static __must_check int i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
  40. unsigned alignment,
  41. bool map_and_fenceable,
  42. bool nonblocking);
  43. static int i915_gem_phys_pwrite(struct drm_device *dev,
  44. struct drm_i915_gem_object *obj,
  45. struct drm_i915_gem_pwrite *args,
  46. struct drm_file *file);
  47. static void i915_gem_write_fence(struct drm_device *dev, int reg,
  48. struct drm_i915_gem_object *obj);
  49. static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
  50. struct drm_i915_fence_reg *fence,
  51. bool enable);
  52. static int i915_gem_inactive_shrink(struct shrinker *shrinker,
  53. struct shrink_control *sc);
  54. static long i915_gem_purge(struct drm_i915_private *dev_priv, long target);
  55. static void i915_gem_shrink_all(struct drm_i915_private *dev_priv);
  56. static void i915_gem_object_truncate(struct drm_i915_gem_object *obj);
  57. static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
  58. {
  59. if (obj->tiling_mode)
  60. i915_gem_release_mmap(obj);
  61. /* As we do not have an associated fence register, we will force
  62. * a tiling change if we ever need to acquire one.
  63. */
  64. obj->fence_dirty = false;
  65. obj->fence_reg = I915_FENCE_REG_NONE;
  66. }
  67. /* some bookkeeping */
  68. static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
  69. size_t size)
  70. {
  71. spin_lock(&dev_priv->mm.object_stat_lock);
  72. dev_priv->mm.object_count++;
  73. dev_priv->mm.object_memory += size;
  74. spin_unlock(&dev_priv->mm.object_stat_lock);
  75. }
  76. static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
  77. size_t size)
  78. {
  79. spin_lock(&dev_priv->mm.object_stat_lock);
  80. dev_priv->mm.object_count--;
  81. dev_priv->mm.object_memory -= size;
  82. spin_unlock(&dev_priv->mm.object_stat_lock);
  83. }
  84. static int
  85. i915_gem_wait_for_error(struct i915_gpu_error *error)
  86. {
  87. int ret;
  88. #define EXIT_COND (!i915_reset_in_progress(error) || \
  89. i915_terminally_wedged(error))
  90. if (EXIT_COND)
  91. return 0;
  92. /*
  93. * Only wait 10 seconds for the gpu reset to complete to avoid hanging
  94. * userspace. If it takes that long something really bad is going on and
  95. * we should simply try to bail out and fail as gracefully as possible.
  96. */
  97. ret = wait_event_interruptible_timeout(error->reset_queue,
  98. EXIT_COND,
  99. 10*HZ);
  100. if (ret == 0) {
  101. DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
  102. return -EIO;
  103. } else if (ret < 0) {
  104. return ret;
  105. }
  106. #undef EXIT_COND
  107. return 0;
  108. }
  109. int i915_mutex_lock_interruptible(struct drm_device *dev)
  110. {
  111. struct drm_i915_private *dev_priv = dev->dev_private;
  112. int ret;
  113. ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
  114. if (ret)
  115. return ret;
  116. ret = mutex_lock_interruptible(&dev->struct_mutex);
  117. if (ret)
  118. return ret;
  119. WARN_ON(i915_verify_lists(dev));
  120. return 0;
  121. }
  122. static inline bool
  123. i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
  124. {
  125. return i915_gem_obj_ggtt_bound(obj) && !obj->active;
  126. }
  127. int
  128. i915_gem_init_ioctl(struct drm_device *dev, void *data,
  129. struct drm_file *file)
  130. {
  131. struct drm_i915_private *dev_priv = dev->dev_private;
  132. struct drm_i915_gem_init *args = data;
  133. if (drm_core_check_feature(dev, DRIVER_MODESET))
  134. return -ENODEV;
  135. if (args->gtt_start >= args->gtt_end ||
  136. (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
  137. return -EINVAL;
  138. /* GEM with user mode setting was never supported on ilk and later. */
  139. if (INTEL_INFO(dev)->gen >= 5)
  140. return -ENODEV;
  141. mutex_lock(&dev->struct_mutex);
  142. i915_gem_setup_global_gtt(dev, args->gtt_start, args->gtt_end,
  143. args->gtt_end);
  144. dev_priv->gtt.mappable_end = args->gtt_end;
  145. mutex_unlock(&dev->struct_mutex);
  146. return 0;
  147. }
  148. int
  149. i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
  150. struct drm_file *file)
  151. {
  152. struct drm_i915_private *dev_priv = dev->dev_private;
  153. struct drm_i915_gem_get_aperture *args = data;
  154. struct drm_i915_gem_object *obj;
  155. size_t pinned;
  156. pinned = 0;
  157. mutex_lock(&dev->struct_mutex);
  158. list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
  159. if (obj->pin_count)
  160. pinned += i915_gem_obj_ggtt_size(obj);
  161. mutex_unlock(&dev->struct_mutex);
  162. args->aper_size = dev_priv->gtt.base.total;
  163. args->aper_available_size = args->aper_size - pinned;
  164. return 0;
  165. }
  166. void *i915_gem_object_alloc(struct drm_device *dev)
  167. {
  168. struct drm_i915_private *dev_priv = dev->dev_private;
  169. return kmem_cache_alloc(dev_priv->slab, GFP_KERNEL | __GFP_ZERO);
  170. }
  171. void i915_gem_object_free(struct drm_i915_gem_object *obj)
  172. {
  173. struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
  174. kmem_cache_free(dev_priv->slab, obj);
  175. }
  176. static int
  177. i915_gem_create(struct drm_file *file,
  178. struct drm_device *dev,
  179. uint64_t size,
  180. uint32_t *handle_p)
  181. {
  182. struct drm_i915_gem_object *obj;
  183. int ret;
  184. u32 handle;
  185. size = roundup(size, PAGE_SIZE);
  186. if (size == 0)
  187. return -EINVAL;
  188. /* Allocate the new object */
  189. obj = i915_gem_alloc_object(dev, size);
  190. if (obj == NULL)
  191. return -ENOMEM;
  192. ret = drm_gem_handle_create(file, &obj->base, &handle);
  193. /* drop reference from allocate - handle holds it now */
  194. drm_gem_object_unreference_unlocked(&obj->base);
  195. if (ret)
  196. return ret;
  197. *handle_p = handle;
  198. return 0;
  199. }
  200. int
  201. i915_gem_dumb_create(struct drm_file *file,
  202. struct drm_device *dev,
  203. struct drm_mode_create_dumb *args)
  204. {
  205. /* have to work out size/pitch and return them */
  206. args->pitch = ALIGN(args->width * ((args->bpp + 7) / 8), 64);
  207. args->size = args->pitch * args->height;
  208. return i915_gem_create(file, dev,
  209. args->size, &args->handle);
  210. }
  211. int i915_gem_dumb_destroy(struct drm_file *file,
  212. struct drm_device *dev,
  213. uint32_t handle)
  214. {
  215. return drm_gem_handle_delete(file, handle);
  216. }
  217. /**
  218. * Creates a new mm object and returns a handle to it.
  219. */
  220. int
  221. i915_gem_create_ioctl(struct drm_device *dev, void *data,
  222. struct drm_file *file)
  223. {
  224. struct drm_i915_gem_create *args = data;
  225. return i915_gem_create(file, dev,
  226. args->size, &args->handle);
  227. }
  228. static inline int
  229. __copy_to_user_swizzled(char __user *cpu_vaddr,
  230. const char *gpu_vaddr, int gpu_offset,
  231. int length)
  232. {
  233. int ret, cpu_offset = 0;
  234. while (length > 0) {
  235. int cacheline_end = ALIGN(gpu_offset + 1, 64);
  236. int this_length = min(cacheline_end - gpu_offset, length);
  237. int swizzled_gpu_offset = gpu_offset ^ 64;
  238. ret = __copy_to_user(cpu_vaddr + cpu_offset,
  239. gpu_vaddr + swizzled_gpu_offset,
  240. this_length);
  241. if (ret)
  242. return ret + length;
  243. cpu_offset += this_length;
  244. gpu_offset += this_length;
  245. length -= this_length;
  246. }
  247. return 0;
  248. }
  249. static inline int
  250. __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
  251. const char __user *cpu_vaddr,
  252. int length)
  253. {
  254. int ret, cpu_offset = 0;
  255. while (length > 0) {
  256. int cacheline_end = ALIGN(gpu_offset + 1, 64);
  257. int this_length = min(cacheline_end - gpu_offset, length);
  258. int swizzled_gpu_offset = gpu_offset ^ 64;
  259. ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
  260. cpu_vaddr + cpu_offset,
  261. this_length);
  262. if (ret)
  263. return ret + length;
  264. cpu_offset += this_length;
  265. gpu_offset += this_length;
  266. length -= this_length;
  267. }
  268. return 0;
  269. }
  270. /* Per-page copy function for the shmem pread fastpath.
  271. * Flushes invalid cachelines before reading the target if
  272. * needs_clflush is set. */
  273. static int
  274. shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
  275. char __user *user_data,
  276. bool page_do_bit17_swizzling, bool needs_clflush)
  277. {
  278. char *vaddr;
  279. int ret;
  280. if (unlikely(page_do_bit17_swizzling))
  281. return -EINVAL;
  282. vaddr = kmap_atomic(page);
  283. if (needs_clflush)
  284. drm_clflush_virt_range(vaddr + shmem_page_offset,
  285. page_length);
  286. ret = __copy_to_user_inatomic(user_data,
  287. vaddr + shmem_page_offset,
  288. page_length);
  289. kunmap_atomic(vaddr);
  290. return ret ? -EFAULT : 0;
  291. }
  292. static void
  293. shmem_clflush_swizzled_range(char *addr, unsigned long length,
  294. bool swizzled)
  295. {
  296. if (unlikely(swizzled)) {
  297. unsigned long start = (unsigned long) addr;
  298. unsigned long end = (unsigned long) addr + length;
  299. /* For swizzling simply ensure that we always flush both
  300. * channels. Lame, but simple and it works. Swizzled
  301. * pwrite/pread is far from a hotpath - current userspace
  302. * doesn't use it at all. */
  303. start = round_down(start, 128);
  304. end = round_up(end, 128);
  305. drm_clflush_virt_range((void *)start, end - start);
  306. } else {
  307. drm_clflush_virt_range(addr, length);
  308. }
  309. }
  310. /* Only difference to the fast-path function is that this can handle bit17
  311. * and uses non-atomic copy and kmap functions. */
  312. static int
  313. shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
  314. char __user *user_data,
  315. bool page_do_bit17_swizzling, bool needs_clflush)
  316. {
  317. char *vaddr;
  318. int ret;
  319. vaddr = kmap(page);
  320. if (needs_clflush)
  321. shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
  322. page_length,
  323. page_do_bit17_swizzling);
  324. if (page_do_bit17_swizzling)
  325. ret = __copy_to_user_swizzled(user_data,
  326. vaddr, shmem_page_offset,
  327. page_length);
  328. else
  329. ret = __copy_to_user(user_data,
  330. vaddr + shmem_page_offset,
  331. page_length);
  332. kunmap(page);
  333. return ret ? - EFAULT : 0;
  334. }
  335. static int
  336. i915_gem_shmem_pread(struct drm_device *dev,
  337. struct drm_i915_gem_object *obj,
  338. struct drm_i915_gem_pread *args,
  339. struct drm_file *file)
  340. {
  341. char __user *user_data;
  342. ssize_t remain;
  343. loff_t offset;
  344. int shmem_page_offset, page_length, ret = 0;
  345. int obj_do_bit17_swizzling, page_do_bit17_swizzling;
  346. int prefaulted = 0;
  347. int needs_clflush = 0;
  348. struct sg_page_iter sg_iter;
  349. user_data = to_user_ptr(args->data_ptr);
  350. remain = args->size;
  351. obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
  352. if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
  353. /* If we're not in the cpu read domain, set ourself into the gtt
  354. * read domain and manually flush cachelines (if required). This
  355. * optimizes for the case when the gpu will dirty the data
  356. * anyway again before the next pread happens. */
  357. if (obj->cache_level == I915_CACHE_NONE)
  358. needs_clflush = 1;
  359. if (i915_gem_obj_ggtt_bound(obj)) {
  360. ret = i915_gem_object_set_to_gtt_domain(obj, false);
  361. if (ret)
  362. return ret;
  363. }
  364. }
  365. ret = i915_gem_object_get_pages(obj);
  366. if (ret)
  367. return ret;
  368. i915_gem_object_pin_pages(obj);
  369. offset = args->offset;
  370. for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
  371. offset >> PAGE_SHIFT) {
  372. struct page *page = sg_page_iter_page(&sg_iter);
  373. if (remain <= 0)
  374. break;
  375. /* Operation in this page
  376. *
  377. * shmem_page_offset = offset within page in shmem file
  378. * page_length = bytes to copy for this page
  379. */
  380. shmem_page_offset = offset_in_page(offset);
  381. page_length = remain;
  382. if ((shmem_page_offset + page_length) > PAGE_SIZE)
  383. page_length = PAGE_SIZE - shmem_page_offset;
  384. page_do_bit17_swizzling = obj_do_bit17_swizzling &&
  385. (page_to_phys(page) & (1 << 17)) != 0;
  386. ret = shmem_pread_fast(page, shmem_page_offset, page_length,
  387. user_data, page_do_bit17_swizzling,
  388. needs_clflush);
  389. if (ret == 0)
  390. goto next_page;
  391. mutex_unlock(&dev->struct_mutex);
  392. if (likely(!i915_prefault_disable) && !prefaulted) {
  393. ret = fault_in_multipages_writeable(user_data, remain);
  394. /* Userspace is tricking us, but we've already clobbered
  395. * its pages with the prefault and promised to write the
  396. * data up to the first fault. Hence ignore any errors
  397. * and just continue. */
  398. (void)ret;
  399. prefaulted = 1;
  400. }
  401. ret = shmem_pread_slow(page, shmem_page_offset, page_length,
  402. user_data, page_do_bit17_swizzling,
  403. needs_clflush);
  404. mutex_lock(&dev->struct_mutex);
  405. next_page:
  406. mark_page_accessed(page);
  407. if (ret)
  408. goto out;
  409. remain -= page_length;
  410. user_data += page_length;
  411. offset += page_length;
  412. }
  413. out:
  414. i915_gem_object_unpin_pages(obj);
  415. return ret;
  416. }
  417. /**
  418. * Reads data from the object referenced by handle.
  419. *
  420. * On error, the contents of *data are undefined.
  421. */
  422. int
  423. i915_gem_pread_ioctl(struct drm_device *dev, void *data,
  424. struct drm_file *file)
  425. {
  426. struct drm_i915_gem_pread *args = data;
  427. struct drm_i915_gem_object *obj;
  428. int ret = 0;
  429. if (args->size == 0)
  430. return 0;
  431. if (!access_ok(VERIFY_WRITE,
  432. to_user_ptr(args->data_ptr),
  433. args->size))
  434. return -EFAULT;
  435. ret = i915_mutex_lock_interruptible(dev);
  436. if (ret)
  437. return ret;
  438. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  439. if (&obj->base == NULL) {
  440. ret = -ENOENT;
  441. goto unlock;
  442. }
  443. /* Bounds check source. */
  444. if (args->offset > obj->base.size ||
  445. args->size > obj->base.size - args->offset) {
  446. ret = -EINVAL;
  447. goto out;
  448. }
  449. /* prime objects have no backing filp to GEM pread/pwrite
  450. * pages from.
  451. */
  452. if (!obj->base.filp) {
  453. ret = -EINVAL;
  454. goto out;
  455. }
  456. trace_i915_gem_object_pread(obj, args->offset, args->size);
  457. ret = i915_gem_shmem_pread(dev, obj, args, file);
  458. out:
  459. drm_gem_object_unreference(&obj->base);
  460. unlock:
  461. mutex_unlock(&dev->struct_mutex);
  462. return ret;
  463. }
  464. /* This is the fast write path which cannot handle
  465. * page faults in the source data
  466. */
  467. static inline int
  468. fast_user_write(struct io_mapping *mapping,
  469. loff_t page_base, int page_offset,
  470. char __user *user_data,
  471. int length)
  472. {
  473. void __iomem *vaddr_atomic;
  474. void *vaddr;
  475. unsigned long unwritten;
  476. vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
  477. /* We can use the cpu mem copy function because this is X86. */
  478. vaddr = (void __force*)vaddr_atomic + page_offset;
  479. unwritten = __copy_from_user_inatomic_nocache(vaddr,
  480. user_data, length);
  481. io_mapping_unmap_atomic(vaddr_atomic);
  482. return unwritten;
  483. }
  484. /**
  485. * This is the fast pwrite path, where we copy the data directly from the
  486. * user into the GTT, uncached.
  487. */
  488. static int
  489. i915_gem_gtt_pwrite_fast(struct drm_device *dev,
  490. struct drm_i915_gem_object *obj,
  491. struct drm_i915_gem_pwrite *args,
  492. struct drm_file *file)
  493. {
  494. drm_i915_private_t *dev_priv = dev->dev_private;
  495. ssize_t remain;
  496. loff_t offset, page_base;
  497. char __user *user_data;
  498. int page_offset, page_length, ret;
  499. ret = i915_gem_obj_ggtt_pin(obj, 0, true, true);
  500. if (ret)
  501. goto out;
  502. ret = i915_gem_object_set_to_gtt_domain(obj, true);
  503. if (ret)
  504. goto out_unpin;
  505. ret = i915_gem_object_put_fence(obj);
  506. if (ret)
  507. goto out_unpin;
  508. user_data = to_user_ptr(args->data_ptr);
  509. remain = args->size;
  510. offset = i915_gem_obj_ggtt_offset(obj) + args->offset;
  511. while (remain > 0) {
  512. /* Operation in this page
  513. *
  514. * page_base = page offset within aperture
  515. * page_offset = offset within page
  516. * page_length = bytes to copy for this page
  517. */
  518. page_base = offset & PAGE_MASK;
  519. page_offset = offset_in_page(offset);
  520. page_length = remain;
  521. if ((page_offset + remain) > PAGE_SIZE)
  522. page_length = PAGE_SIZE - page_offset;
  523. /* If we get a fault while copying data, then (presumably) our
  524. * source page isn't available. Return the error and we'll
  525. * retry in the slow path.
  526. */
  527. if (fast_user_write(dev_priv->gtt.mappable, page_base,
  528. page_offset, user_data, page_length)) {
  529. ret = -EFAULT;
  530. goto out_unpin;
  531. }
  532. remain -= page_length;
  533. user_data += page_length;
  534. offset += page_length;
  535. }
  536. out_unpin:
  537. i915_gem_object_unpin(obj);
  538. out:
  539. return ret;
  540. }
  541. /* Per-page copy function for the shmem pwrite fastpath.
  542. * Flushes invalid cachelines before writing to the target if
  543. * needs_clflush_before is set and flushes out any written cachelines after
  544. * writing if needs_clflush is set. */
  545. static int
  546. shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
  547. char __user *user_data,
  548. bool page_do_bit17_swizzling,
  549. bool needs_clflush_before,
  550. bool needs_clflush_after)
  551. {
  552. char *vaddr;
  553. int ret;
  554. if (unlikely(page_do_bit17_swizzling))
  555. return -EINVAL;
  556. vaddr = kmap_atomic(page);
  557. if (needs_clflush_before)
  558. drm_clflush_virt_range(vaddr + shmem_page_offset,
  559. page_length);
  560. ret = __copy_from_user_inatomic_nocache(vaddr + shmem_page_offset,
  561. user_data,
  562. page_length);
  563. if (needs_clflush_after)
  564. drm_clflush_virt_range(vaddr + shmem_page_offset,
  565. page_length);
  566. kunmap_atomic(vaddr);
  567. return ret ? -EFAULT : 0;
  568. }
  569. /* Only difference to the fast-path function is that this can handle bit17
  570. * and uses non-atomic copy and kmap functions. */
  571. static int
  572. shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
  573. char __user *user_data,
  574. bool page_do_bit17_swizzling,
  575. bool needs_clflush_before,
  576. bool needs_clflush_after)
  577. {
  578. char *vaddr;
  579. int ret;
  580. vaddr = kmap(page);
  581. if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
  582. shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
  583. page_length,
  584. page_do_bit17_swizzling);
  585. if (page_do_bit17_swizzling)
  586. ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
  587. user_data,
  588. page_length);
  589. else
  590. ret = __copy_from_user(vaddr + shmem_page_offset,
  591. user_data,
  592. page_length);
  593. if (needs_clflush_after)
  594. shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
  595. page_length,
  596. page_do_bit17_swizzling);
  597. kunmap(page);
  598. return ret ? -EFAULT : 0;
  599. }
  600. static int
  601. i915_gem_shmem_pwrite(struct drm_device *dev,
  602. struct drm_i915_gem_object *obj,
  603. struct drm_i915_gem_pwrite *args,
  604. struct drm_file *file)
  605. {
  606. ssize_t remain;
  607. loff_t offset;
  608. char __user *user_data;
  609. int shmem_page_offset, page_length, ret = 0;
  610. int obj_do_bit17_swizzling, page_do_bit17_swizzling;
  611. int hit_slowpath = 0;
  612. int needs_clflush_after = 0;
  613. int needs_clflush_before = 0;
  614. struct sg_page_iter sg_iter;
  615. user_data = to_user_ptr(args->data_ptr);
  616. remain = args->size;
  617. obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
  618. if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
  619. /* If we're not in the cpu write domain, set ourself into the gtt
  620. * write domain and manually flush cachelines (if required). This
  621. * optimizes for the case when the gpu will use the data
  622. * right away and we therefore have to clflush anyway. */
  623. if (obj->cache_level == I915_CACHE_NONE)
  624. needs_clflush_after = 1;
  625. if (i915_gem_obj_ggtt_bound(obj)) {
  626. ret = i915_gem_object_set_to_gtt_domain(obj, true);
  627. if (ret)
  628. return ret;
  629. }
  630. }
  631. /* Same trick applies for invalidate partially written cachelines before
  632. * writing. */
  633. if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)
  634. && obj->cache_level == I915_CACHE_NONE)
  635. needs_clflush_before = 1;
  636. ret = i915_gem_object_get_pages(obj);
  637. if (ret)
  638. return ret;
  639. i915_gem_object_pin_pages(obj);
  640. offset = args->offset;
  641. obj->dirty = 1;
  642. for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
  643. offset >> PAGE_SHIFT) {
  644. struct page *page = sg_page_iter_page(&sg_iter);
  645. int partial_cacheline_write;
  646. if (remain <= 0)
  647. break;
  648. /* Operation in this page
  649. *
  650. * shmem_page_offset = offset within page in shmem file
  651. * page_length = bytes to copy for this page
  652. */
  653. shmem_page_offset = offset_in_page(offset);
  654. page_length = remain;
  655. if ((shmem_page_offset + page_length) > PAGE_SIZE)
  656. page_length = PAGE_SIZE - shmem_page_offset;
  657. /* If we don't overwrite a cacheline completely we need to be
  658. * careful to have up-to-date data by first clflushing. Don't
  659. * overcomplicate things and flush the entire patch. */
  660. partial_cacheline_write = needs_clflush_before &&
  661. ((shmem_page_offset | page_length)
  662. & (boot_cpu_data.x86_clflush_size - 1));
  663. page_do_bit17_swizzling = obj_do_bit17_swizzling &&
  664. (page_to_phys(page) & (1 << 17)) != 0;
  665. ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
  666. user_data, page_do_bit17_swizzling,
  667. partial_cacheline_write,
  668. needs_clflush_after);
  669. if (ret == 0)
  670. goto next_page;
  671. hit_slowpath = 1;
  672. mutex_unlock(&dev->struct_mutex);
  673. ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
  674. user_data, page_do_bit17_swizzling,
  675. partial_cacheline_write,
  676. needs_clflush_after);
  677. mutex_lock(&dev->struct_mutex);
  678. next_page:
  679. set_page_dirty(page);
  680. mark_page_accessed(page);
  681. if (ret)
  682. goto out;
  683. remain -= page_length;
  684. user_data += page_length;
  685. offset += page_length;
  686. }
  687. out:
  688. i915_gem_object_unpin_pages(obj);
  689. if (hit_slowpath) {
  690. /*
  691. * Fixup: Flush cpu caches in case we didn't flush the dirty
  692. * cachelines in-line while writing and the object moved
  693. * out of the cpu write domain while we've dropped the lock.
  694. */
  695. if (!needs_clflush_after &&
  696. obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
  697. i915_gem_clflush_object(obj);
  698. i915_gem_chipset_flush(dev);
  699. }
  700. }
  701. if (needs_clflush_after)
  702. i915_gem_chipset_flush(dev);
  703. return ret;
  704. }
  705. /**
  706. * Writes data to the object referenced by handle.
  707. *
  708. * On error, the contents of the buffer that were to be modified are undefined.
  709. */
  710. int
  711. i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
  712. struct drm_file *file)
  713. {
  714. struct drm_i915_gem_pwrite *args = data;
  715. struct drm_i915_gem_object *obj;
  716. int ret;
  717. if (args->size == 0)
  718. return 0;
  719. if (!access_ok(VERIFY_READ,
  720. to_user_ptr(args->data_ptr),
  721. args->size))
  722. return -EFAULT;
  723. if (likely(!i915_prefault_disable)) {
  724. ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr),
  725. args->size);
  726. if (ret)
  727. return -EFAULT;
  728. }
  729. ret = i915_mutex_lock_interruptible(dev);
  730. if (ret)
  731. return ret;
  732. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  733. if (&obj->base == NULL) {
  734. ret = -ENOENT;
  735. goto unlock;
  736. }
  737. /* Bounds check destination. */
  738. if (args->offset > obj->base.size ||
  739. args->size > obj->base.size - args->offset) {
  740. ret = -EINVAL;
  741. goto out;
  742. }
  743. /* prime objects have no backing filp to GEM pread/pwrite
  744. * pages from.
  745. */
  746. if (!obj->base.filp) {
  747. ret = -EINVAL;
  748. goto out;
  749. }
  750. trace_i915_gem_object_pwrite(obj, args->offset, args->size);
  751. ret = -EFAULT;
  752. /* We can only do the GTT pwrite on untiled buffers, as otherwise
  753. * it would end up going through the fenced access, and we'll get
  754. * different detiling behavior between reading and writing.
  755. * pread/pwrite currently are reading and writing from the CPU
  756. * perspective, requiring manual detiling by the client.
  757. */
  758. if (obj->phys_obj) {
  759. ret = i915_gem_phys_pwrite(dev, obj, args, file);
  760. goto out;
  761. }
  762. if (obj->cache_level == I915_CACHE_NONE &&
  763. obj->tiling_mode == I915_TILING_NONE &&
  764. obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
  765. ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
  766. /* Note that the gtt paths might fail with non-page-backed user
  767. * pointers (e.g. gtt mappings when moving data between
  768. * textures). Fallback to the shmem path in that case. */
  769. }
  770. if (ret == -EFAULT || ret == -ENOSPC)
  771. ret = i915_gem_shmem_pwrite(dev, obj, args, file);
  772. out:
  773. drm_gem_object_unreference(&obj->base);
  774. unlock:
  775. mutex_unlock(&dev->struct_mutex);
  776. return ret;
  777. }
  778. int
  779. i915_gem_check_wedge(struct i915_gpu_error *error,
  780. bool interruptible)
  781. {
  782. if (i915_reset_in_progress(error)) {
  783. /* Non-interruptible callers can't handle -EAGAIN, hence return
  784. * -EIO unconditionally for these. */
  785. if (!interruptible)
  786. return -EIO;
  787. /* Recovery complete, but the reset failed ... */
  788. if (i915_terminally_wedged(error))
  789. return -EIO;
  790. return -EAGAIN;
  791. }
  792. return 0;
  793. }
  794. /*
  795. * Compare seqno against outstanding lazy request. Emit a request if they are
  796. * equal.
  797. */
  798. static int
  799. i915_gem_check_olr(struct intel_ring_buffer *ring, u32 seqno)
  800. {
  801. int ret;
  802. BUG_ON(!mutex_is_locked(&ring->dev->struct_mutex));
  803. ret = 0;
  804. if (seqno == ring->outstanding_lazy_request)
  805. ret = i915_add_request(ring, NULL);
  806. return ret;
  807. }
  808. /**
  809. * __wait_seqno - wait until execution of seqno has finished
  810. * @ring: the ring expected to report seqno
  811. * @seqno: duh!
  812. * @reset_counter: reset sequence associated with the given seqno
  813. * @interruptible: do an interruptible wait (normally yes)
  814. * @timeout: in - how long to wait (NULL forever); out - how much time remaining
  815. *
  816. * Note: It is of utmost importance that the passed in seqno and reset_counter
  817. * values have been read by the caller in an smp safe manner. Where read-side
  818. * locks are involved, it is sufficient to read the reset_counter before
  819. * unlocking the lock that protects the seqno. For lockless tricks, the
  820. * reset_counter _must_ be read before, and an appropriate smp_rmb must be
  821. * inserted.
  822. *
  823. * Returns 0 if the seqno was found within the alloted time. Else returns the
  824. * errno with remaining time filled in timeout argument.
  825. */
  826. static int __wait_seqno(struct intel_ring_buffer *ring, u32 seqno,
  827. unsigned reset_counter,
  828. bool interruptible, struct timespec *timeout)
  829. {
  830. drm_i915_private_t *dev_priv = ring->dev->dev_private;
  831. struct timespec before, now, wait_time={1,0};
  832. unsigned long timeout_jiffies;
  833. long end;
  834. bool wait_forever = true;
  835. int ret;
  836. if (i915_seqno_passed(ring->get_seqno(ring, true), seqno))
  837. return 0;
  838. trace_i915_gem_request_wait_begin(ring, seqno);
  839. if (timeout != NULL) {
  840. wait_time = *timeout;
  841. wait_forever = false;
  842. }
  843. timeout_jiffies = timespec_to_jiffies_timeout(&wait_time);
  844. if (WARN_ON(!ring->irq_get(ring)))
  845. return -ENODEV;
  846. /* Record current time in case interrupted by signal, or wedged * */
  847. getrawmonotonic(&before);
  848. #define EXIT_COND \
  849. (i915_seqno_passed(ring->get_seqno(ring, false), seqno) || \
  850. i915_reset_in_progress(&dev_priv->gpu_error) || \
  851. reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
  852. do {
  853. if (interruptible)
  854. end = wait_event_interruptible_timeout(ring->irq_queue,
  855. EXIT_COND,
  856. timeout_jiffies);
  857. else
  858. end = wait_event_timeout(ring->irq_queue, EXIT_COND,
  859. timeout_jiffies);
  860. /* We need to check whether any gpu reset happened in between
  861. * the caller grabbing the seqno and now ... */
  862. if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
  863. end = -EAGAIN;
  864. /* ... but upgrade the -EGAIN to an -EIO if the gpu is truely
  865. * gone. */
  866. ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
  867. if (ret)
  868. end = ret;
  869. } while (end == 0 && wait_forever);
  870. getrawmonotonic(&now);
  871. ring->irq_put(ring);
  872. trace_i915_gem_request_wait_end(ring, seqno);
  873. #undef EXIT_COND
  874. if (timeout) {
  875. struct timespec sleep_time = timespec_sub(now, before);
  876. *timeout = timespec_sub(*timeout, sleep_time);
  877. if (!timespec_valid(timeout)) /* i.e. negative time remains */
  878. set_normalized_timespec(timeout, 0, 0);
  879. }
  880. switch (end) {
  881. case -EIO:
  882. case -EAGAIN: /* Wedged */
  883. case -ERESTARTSYS: /* Signal */
  884. return (int)end;
  885. case 0: /* Timeout */
  886. return -ETIME;
  887. default: /* Completed */
  888. WARN_ON(end < 0); /* We're not aware of other errors */
  889. return 0;
  890. }
  891. }
  892. /**
  893. * Waits for a sequence number to be signaled, and cleans up the
  894. * request and object lists appropriately for that event.
  895. */
  896. int
  897. i915_wait_seqno(struct intel_ring_buffer *ring, uint32_t seqno)
  898. {
  899. struct drm_device *dev = ring->dev;
  900. struct drm_i915_private *dev_priv = dev->dev_private;
  901. bool interruptible = dev_priv->mm.interruptible;
  902. int ret;
  903. BUG_ON(!mutex_is_locked(&dev->struct_mutex));
  904. BUG_ON(seqno == 0);
  905. ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
  906. if (ret)
  907. return ret;
  908. ret = i915_gem_check_olr(ring, seqno);
  909. if (ret)
  910. return ret;
  911. return __wait_seqno(ring, seqno,
  912. atomic_read(&dev_priv->gpu_error.reset_counter),
  913. interruptible, NULL);
  914. }
  915. static int
  916. i915_gem_object_wait_rendering__tail(struct drm_i915_gem_object *obj,
  917. struct intel_ring_buffer *ring)
  918. {
  919. i915_gem_retire_requests_ring(ring);
  920. /* Manually manage the write flush as we may have not yet
  921. * retired the buffer.
  922. *
  923. * Note that the last_write_seqno is always the earlier of
  924. * the two (read/write) seqno, so if we haved successfully waited,
  925. * we know we have passed the last write.
  926. */
  927. obj->last_write_seqno = 0;
  928. obj->base.write_domain &= ~I915_GEM_GPU_DOMAINS;
  929. return 0;
  930. }
  931. /**
  932. * Ensures that all rendering to the object has completed and the object is
  933. * safe to unbind from the GTT or access from the CPU.
  934. */
  935. static __must_check int
  936. i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
  937. bool readonly)
  938. {
  939. struct intel_ring_buffer *ring = obj->ring;
  940. u32 seqno;
  941. int ret;
  942. seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
  943. if (seqno == 0)
  944. return 0;
  945. ret = i915_wait_seqno(ring, seqno);
  946. if (ret)
  947. return ret;
  948. return i915_gem_object_wait_rendering__tail(obj, ring);
  949. }
  950. /* A nonblocking variant of the above wait. This is a highly dangerous routine
  951. * as the object state may change during this call.
  952. */
  953. static __must_check int
  954. i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
  955. bool readonly)
  956. {
  957. struct drm_device *dev = obj->base.dev;
  958. struct drm_i915_private *dev_priv = dev->dev_private;
  959. struct intel_ring_buffer *ring = obj->ring;
  960. unsigned reset_counter;
  961. u32 seqno;
  962. int ret;
  963. BUG_ON(!mutex_is_locked(&dev->struct_mutex));
  964. BUG_ON(!dev_priv->mm.interruptible);
  965. seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
  966. if (seqno == 0)
  967. return 0;
  968. ret = i915_gem_check_wedge(&dev_priv->gpu_error, true);
  969. if (ret)
  970. return ret;
  971. ret = i915_gem_check_olr(ring, seqno);
  972. if (ret)
  973. return ret;
  974. reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
  975. mutex_unlock(&dev->struct_mutex);
  976. ret = __wait_seqno(ring, seqno, reset_counter, true, NULL);
  977. mutex_lock(&dev->struct_mutex);
  978. if (ret)
  979. return ret;
  980. return i915_gem_object_wait_rendering__tail(obj, ring);
  981. }
  982. /**
  983. * Called when user space prepares to use an object with the CPU, either
  984. * through the mmap ioctl's mapping or a GTT mapping.
  985. */
  986. int
  987. i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
  988. struct drm_file *file)
  989. {
  990. struct drm_i915_gem_set_domain *args = data;
  991. struct drm_i915_gem_object *obj;
  992. uint32_t read_domains = args->read_domains;
  993. uint32_t write_domain = args->write_domain;
  994. int ret;
  995. /* Only handle setting domains to types used by the CPU. */
  996. if (write_domain & I915_GEM_GPU_DOMAINS)
  997. return -EINVAL;
  998. if (read_domains & I915_GEM_GPU_DOMAINS)
  999. return -EINVAL;
  1000. /* Having something in the write domain implies it's in the read
  1001. * domain, and only that read domain. Enforce that in the request.
  1002. */
  1003. if (write_domain != 0 && read_domains != write_domain)
  1004. return -EINVAL;
  1005. ret = i915_mutex_lock_interruptible(dev);
  1006. if (ret)
  1007. return ret;
  1008. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  1009. if (&obj->base == NULL) {
  1010. ret = -ENOENT;
  1011. goto unlock;
  1012. }
  1013. /* Try to flush the object off the GPU without holding the lock.
  1014. * We will repeat the flush holding the lock in the normal manner
  1015. * to catch cases where we are gazumped.
  1016. */
  1017. ret = i915_gem_object_wait_rendering__nonblocking(obj, !write_domain);
  1018. if (ret)
  1019. goto unref;
  1020. if (read_domains & I915_GEM_DOMAIN_GTT) {
  1021. ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
  1022. /* Silently promote "you're not bound, there was nothing to do"
  1023. * to success, since the client was just asking us to
  1024. * make sure everything was done.
  1025. */
  1026. if (ret == -EINVAL)
  1027. ret = 0;
  1028. } else {
  1029. ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
  1030. }
  1031. unref:
  1032. drm_gem_object_unreference(&obj->base);
  1033. unlock:
  1034. mutex_unlock(&dev->struct_mutex);
  1035. return ret;
  1036. }
  1037. /**
  1038. * Called when user space has done writes to this buffer
  1039. */
  1040. int
  1041. i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
  1042. struct drm_file *file)
  1043. {
  1044. struct drm_i915_gem_sw_finish *args = data;
  1045. struct drm_i915_gem_object *obj;
  1046. int ret = 0;
  1047. ret = i915_mutex_lock_interruptible(dev);
  1048. if (ret)
  1049. return ret;
  1050. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  1051. if (&obj->base == NULL) {
  1052. ret = -ENOENT;
  1053. goto unlock;
  1054. }
  1055. /* Pinned buffers may be scanout, so flush the cache */
  1056. if (obj->pin_count)
  1057. i915_gem_object_flush_cpu_write_domain(obj);
  1058. drm_gem_object_unreference(&obj->base);
  1059. unlock:
  1060. mutex_unlock(&dev->struct_mutex);
  1061. return ret;
  1062. }
  1063. /**
  1064. * Maps the contents of an object, returning the address it is mapped
  1065. * into.
  1066. *
  1067. * While the mapping holds a reference on the contents of the object, it doesn't
  1068. * imply a ref on the object itself.
  1069. */
  1070. int
  1071. i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
  1072. struct drm_file *file)
  1073. {
  1074. struct drm_i915_gem_mmap *args = data;
  1075. struct drm_gem_object *obj;
  1076. unsigned long addr;
  1077. obj = drm_gem_object_lookup(dev, file, args->handle);
  1078. if (obj == NULL)
  1079. return -ENOENT;
  1080. /* prime objects have no backing filp to GEM mmap
  1081. * pages from.
  1082. */
  1083. if (!obj->filp) {
  1084. drm_gem_object_unreference_unlocked(obj);
  1085. return -EINVAL;
  1086. }
  1087. addr = vm_mmap(obj->filp, 0, args->size,
  1088. PROT_READ | PROT_WRITE, MAP_SHARED,
  1089. args->offset);
  1090. drm_gem_object_unreference_unlocked(obj);
  1091. if (IS_ERR((void *)addr))
  1092. return addr;
  1093. args->addr_ptr = (uint64_t) addr;
  1094. return 0;
  1095. }
  1096. /**
  1097. * i915_gem_fault - fault a page into the GTT
  1098. * vma: VMA in question
  1099. * vmf: fault info
  1100. *
  1101. * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
  1102. * from userspace. The fault handler takes care of binding the object to
  1103. * the GTT (if needed), allocating and programming a fence register (again,
  1104. * only if needed based on whether the old reg is still valid or the object
  1105. * is tiled) and inserting a new PTE into the faulting process.
  1106. *
  1107. * Note that the faulting process may involve evicting existing objects
  1108. * from the GTT and/or fence registers to make room. So performance may
  1109. * suffer if the GTT working set is large or there are few fence registers
  1110. * left.
  1111. */
  1112. int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
  1113. {
  1114. struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
  1115. struct drm_device *dev = obj->base.dev;
  1116. drm_i915_private_t *dev_priv = dev->dev_private;
  1117. pgoff_t page_offset;
  1118. unsigned long pfn;
  1119. int ret = 0;
  1120. bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
  1121. /* We don't use vmf->pgoff since that has the fake offset */
  1122. page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
  1123. PAGE_SHIFT;
  1124. ret = i915_mutex_lock_interruptible(dev);
  1125. if (ret)
  1126. goto out;
  1127. trace_i915_gem_object_fault(obj, page_offset, true, write);
  1128. /* Access to snoopable pages through the GTT is incoherent. */
  1129. if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
  1130. ret = -EINVAL;
  1131. goto unlock;
  1132. }
  1133. /* Now bind it into the GTT if needed */
  1134. ret = i915_gem_obj_ggtt_pin(obj, 0, true, false);
  1135. if (ret)
  1136. goto unlock;
  1137. ret = i915_gem_object_set_to_gtt_domain(obj, write);
  1138. if (ret)
  1139. goto unpin;
  1140. ret = i915_gem_object_get_fence(obj);
  1141. if (ret)
  1142. goto unpin;
  1143. obj->fault_mappable = true;
  1144. pfn = dev_priv->gtt.mappable_base + i915_gem_obj_ggtt_offset(obj);
  1145. pfn >>= PAGE_SHIFT;
  1146. pfn += page_offset;
  1147. /* Finally, remap it using the new GTT offset */
  1148. ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
  1149. unpin:
  1150. i915_gem_object_unpin(obj);
  1151. unlock:
  1152. mutex_unlock(&dev->struct_mutex);
  1153. out:
  1154. switch (ret) {
  1155. case -EIO:
  1156. /* If this -EIO is due to a gpu hang, give the reset code a
  1157. * chance to clean up the mess. Otherwise return the proper
  1158. * SIGBUS. */
  1159. if (i915_terminally_wedged(&dev_priv->gpu_error))
  1160. return VM_FAULT_SIGBUS;
  1161. case -EAGAIN:
  1162. /* Give the error handler a chance to run and move the
  1163. * objects off the GPU active list. Next time we service the
  1164. * fault, we should be able to transition the page into the
  1165. * GTT without touching the GPU (and so avoid further
  1166. * EIO/EGAIN). If the GPU is wedged, then there is no issue
  1167. * with coherency, just lost writes.
  1168. */
  1169. set_need_resched();
  1170. case 0:
  1171. case -ERESTARTSYS:
  1172. case -EINTR:
  1173. case -EBUSY:
  1174. /*
  1175. * EBUSY is ok: this just means that another thread
  1176. * already did the job.
  1177. */
  1178. return VM_FAULT_NOPAGE;
  1179. case -ENOMEM:
  1180. return VM_FAULT_OOM;
  1181. case -ENOSPC:
  1182. return VM_FAULT_SIGBUS;
  1183. default:
  1184. WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
  1185. return VM_FAULT_SIGBUS;
  1186. }
  1187. }
  1188. /**
  1189. * i915_gem_release_mmap - remove physical page mappings
  1190. * @obj: obj in question
  1191. *
  1192. * Preserve the reservation of the mmapping with the DRM core code, but
  1193. * relinquish ownership of the pages back to the system.
  1194. *
  1195. * It is vital that we remove the page mapping if we have mapped a tiled
  1196. * object through the GTT and then lose the fence register due to
  1197. * resource pressure. Similarly if the object has been moved out of the
  1198. * aperture, than pages mapped into userspace must be revoked. Removing the
  1199. * mapping will then trigger a page fault on the next user access, allowing
  1200. * fixup by i915_gem_fault().
  1201. */
  1202. void
  1203. i915_gem_release_mmap(struct drm_i915_gem_object *obj)
  1204. {
  1205. if (!obj->fault_mappable)
  1206. return;
  1207. if (obj->base.dev->dev_mapping)
  1208. unmap_mapping_range(obj->base.dev->dev_mapping,
  1209. (loff_t)obj->base.map_list.hash.key<<PAGE_SHIFT,
  1210. obj->base.size, 1);
  1211. obj->fault_mappable = false;
  1212. }
  1213. uint32_t
  1214. i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
  1215. {
  1216. uint32_t gtt_size;
  1217. if (INTEL_INFO(dev)->gen >= 4 ||
  1218. tiling_mode == I915_TILING_NONE)
  1219. return size;
  1220. /* Previous chips need a power-of-two fence region when tiling */
  1221. if (INTEL_INFO(dev)->gen == 3)
  1222. gtt_size = 1024*1024;
  1223. else
  1224. gtt_size = 512*1024;
  1225. while (gtt_size < size)
  1226. gtt_size <<= 1;
  1227. return gtt_size;
  1228. }
  1229. /**
  1230. * i915_gem_get_gtt_alignment - return required GTT alignment for an object
  1231. * @obj: object to check
  1232. *
  1233. * Return the required GTT alignment for an object, taking into account
  1234. * potential fence register mapping.
  1235. */
  1236. uint32_t
  1237. i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
  1238. int tiling_mode, bool fenced)
  1239. {
  1240. /*
  1241. * Minimum alignment is 4k (GTT page size), but might be greater
  1242. * if a fence register is needed for the object.
  1243. */
  1244. if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
  1245. tiling_mode == I915_TILING_NONE)
  1246. return 4096;
  1247. /*
  1248. * Previous chips need to be aligned to the size of the smallest
  1249. * fence register that can contain the object.
  1250. */
  1251. return i915_gem_get_gtt_size(dev, size, tiling_mode);
  1252. }
  1253. static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
  1254. {
  1255. struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
  1256. int ret;
  1257. if (obj->base.map_list.map)
  1258. return 0;
  1259. dev_priv->mm.shrinker_no_lock_stealing = true;
  1260. ret = drm_gem_create_mmap_offset(&obj->base);
  1261. if (ret != -ENOSPC)
  1262. goto out;
  1263. /* Badly fragmented mmap space? The only way we can recover
  1264. * space is by destroying unwanted objects. We can't randomly release
  1265. * mmap_offsets as userspace expects them to be persistent for the
  1266. * lifetime of the objects. The closest we can is to release the
  1267. * offsets on purgeable objects by truncating it and marking it purged,
  1268. * which prevents userspace from ever using that object again.
  1269. */
  1270. i915_gem_purge(dev_priv, obj->base.size >> PAGE_SHIFT);
  1271. ret = drm_gem_create_mmap_offset(&obj->base);
  1272. if (ret != -ENOSPC)
  1273. goto out;
  1274. i915_gem_shrink_all(dev_priv);
  1275. ret = drm_gem_create_mmap_offset(&obj->base);
  1276. out:
  1277. dev_priv->mm.shrinker_no_lock_stealing = false;
  1278. return ret;
  1279. }
  1280. static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
  1281. {
  1282. if (!obj->base.map_list.map)
  1283. return;
  1284. drm_gem_free_mmap_offset(&obj->base);
  1285. }
  1286. int
  1287. i915_gem_mmap_gtt(struct drm_file *file,
  1288. struct drm_device *dev,
  1289. uint32_t handle,
  1290. uint64_t *offset)
  1291. {
  1292. struct drm_i915_private *dev_priv = dev->dev_private;
  1293. struct drm_i915_gem_object *obj;
  1294. int ret;
  1295. ret = i915_mutex_lock_interruptible(dev);
  1296. if (ret)
  1297. return ret;
  1298. obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
  1299. if (&obj->base == NULL) {
  1300. ret = -ENOENT;
  1301. goto unlock;
  1302. }
  1303. if (obj->base.size > dev_priv->gtt.mappable_end) {
  1304. ret = -E2BIG;
  1305. goto out;
  1306. }
  1307. if (obj->madv != I915_MADV_WILLNEED) {
  1308. DRM_ERROR("Attempting to mmap a purgeable buffer\n");
  1309. ret = -EINVAL;
  1310. goto out;
  1311. }
  1312. ret = i915_gem_object_create_mmap_offset(obj);
  1313. if (ret)
  1314. goto out;
  1315. *offset = (u64)obj->base.map_list.hash.key << PAGE_SHIFT;
  1316. out:
  1317. drm_gem_object_unreference(&obj->base);
  1318. unlock:
  1319. mutex_unlock(&dev->struct_mutex);
  1320. return ret;
  1321. }
  1322. /**
  1323. * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
  1324. * @dev: DRM device
  1325. * @data: GTT mapping ioctl data
  1326. * @file: GEM object info
  1327. *
  1328. * Simply returns the fake offset to userspace so it can mmap it.
  1329. * The mmap call will end up in drm_gem_mmap(), which will set things
  1330. * up so we can get faults in the handler above.
  1331. *
  1332. * The fault handler will take care of binding the object into the GTT
  1333. * (since it may have been evicted to make room for something), allocating
  1334. * a fence register, and mapping the appropriate aperture address into
  1335. * userspace.
  1336. */
  1337. int
  1338. i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
  1339. struct drm_file *file)
  1340. {
  1341. struct drm_i915_gem_mmap_gtt *args = data;
  1342. return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
  1343. }
  1344. /* Immediately discard the backing storage */
  1345. static void
  1346. i915_gem_object_truncate(struct drm_i915_gem_object *obj)
  1347. {
  1348. struct inode *inode;
  1349. i915_gem_object_free_mmap_offset(obj);
  1350. if (obj->base.filp == NULL)
  1351. return;
  1352. /* Our goal here is to return as much of the memory as
  1353. * is possible back to the system as we are called from OOM.
  1354. * To do this we must instruct the shmfs to drop all of its
  1355. * backing pages, *now*.
  1356. */
  1357. inode = file_inode(obj->base.filp);
  1358. shmem_truncate_range(inode, 0, (loff_t)-1);
  1359. obj->madv = __I915_MADV_PURGED;
  1360. }
  1361. static inline int
  1362. i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
  1363. {
  1364. return obj->madv == I915_MADV_DONTNEED;
  1365. }
  1366. static void
  1367. i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
  1368. {
  1369. struct sg_page_iter sg_iter;
  1370. int ret;
  1371. BUG_ON(obj->madv == __I915_MADV_PURGED);
  1372. ret = i915_gem_object_set_to_cpu_domain(obj, true);
  1373. if (ret) {
  1374. /* In the event of a disaster, abandon all caches and
  1375. * hope for the best.
  1376. */
  1377. WARN_ON(ret != -EIO);
  1378. i915_gem_clflush_object(obj);
  1379. obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
  1380. }
  1381. if (i915_gem_object_needs_bit17_swizzle(obj))
  1382. i915_gem_object_save_bit_17_swizzle(obj);
  1383. if (obj->madv == I915_MADV_DONTNEED)
  1384. obj->dirty = 0;
  1385. for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
  1386. struct page *page = sg_page_iter_page(&sg_iter);
  1387. if (obj->dirty)
  1388. set_page_dirty(page);
  1389. if (obj->madv == I915_MADV_WILLNEED)
  1390. mark_page_accessed(page);
  1391. page_cache_release(page);
  1392. }
  1393. obj->dirty = 0;
  1394. sg_free_table(obj->pages);
  1395. kfree(obj->pages);
  1396. }
  1397. int
  1398. i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
  1399. {
  1400. const struct drm_i915_gem_object_ops *ops = obj->ops;
  1401. if (obj->pages == NULL)
  1402. return 0;
  1403. BUG_ON(i915_gem_obj_ggtt_bound(obj));
  1404. if (obj->pages_pin_count)
  1405. return -EBUSY;
  1406. /* ->put_pages might need to allocate memory for the bit17 swizzle
  1407. * array, hence protect them from being reaped by removing them from gtt
  1408. * lists early. */
  1409. list_del(&obj->global_list);
  1410. ops->put_pages(obj);
  1411. obj->pages = NULL;
  1412. if (i915_gem_object_is_purgeable(obj))
  1413. i915_gem_object_truncate(obj);
  1414. return 0;
  1415. }
  1416. static long
  1417. __i915_gem_shrink(struct drm_i915_private *dev_priv, long target,
  1418. bool purgeable_only)
  1419. {
  1420. struct drm_i915_gem_object *obj, *next;
  1421. struct i915_address_space *vm = &dev_priv->gtt.base;
  1422. long count = 0;
  1423. list_for_each_entry_safe(obj, next,
  1424. &dev_priv->mm.unbound_list,
  1425. global_list) {
  1426. if ((i915_gem_object_is_purgeable(obj) || !purgeable_only) &&
  1427. i915_gem_object_put_pages(obj) == 0) {
  1428. count += obj->base.size >> PAGE_SHIFT;
  1429. if (count >= target)
  1430. return count;
  1431. }
  1432. }
  1433. list_for_each_entry_safe(obj, next, &vm->inactive_list, mm_list) {
  1434. if ((i915_gem_object_is_purgeable(obj) || !purgeable_only) &&
  1435. i915_gem_object_unbind(obj) == 0 &&
  1436. i915_gem_object_put_pages(obj) == 0) {
  1437. count += obj->base.size >> PAGE_SHIFT;
  1438. if (count >= target)
  1439. return count;
  1440. }
  1441. }
  1442. return count;
  1443. }
  1444. static long
  1445. i915_gem_purge(struct drm_i915_private *dev_priv, long target)
  1446. {
  1447. return __i915_gem_shrink(dev_priv, target, true);
  1448. }
  1449. static void
  1450. i915_gem_shrink_all(struct drm_i915_private *dev_priv)
  1451. {
  1452. struct drm_i915_gem_object *obj, *next;
  1453. i915_gem_evict_everything(dev_priv->dev);
  1454. list_for_each_entry_safe(obj, next, &dev_priv->mm.unbound_list,
  1455. global_list)
  1456. i915_gem_object_put_pages(obj);
  1457. }
  1458. static int
  1459. i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
  1460. {
  1461. struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
  1462. int page_count, i;
  1463. struct address_space *mapping;
  1464. struct sg_table *st;
  1465. struct scatterlist *sg;
  1466. struct sg_page_iter sg_iter;
  1467. struct page *page;
  1468. unsigned long last_pfn = 0; /* suppress gcc warning */
  1469. gfp_t gfp;
  1470. /* Assert that the object is not currently in any GPU domain. As it
  1471. * wasn't in the GTT, there shouldn't be any way it could have been in
  1472. * a GPU cache
  1473. */
  1474. BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
  1475. BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
  1476. st = kmalloc(sizeof(*st), GFP_KERNEL);
  1477. if (st == NULL)
  1478. return -ENOMEM;
  1479. page_count = obj->base.size / PAGE_SIZE;
  1480. if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
  1481. sg_free_table(st);
  1482. kfree(st);
  1483. return -ENOMEM;
  1484. }
  1485. /* Get the list of pages out of our struct file. They'll be pinned
  1486. * at this point until we release them.
  1487. *
  1488. * Fail silently without starting the shrinker
  1489. */
  1490. mapping = file_inode(obj->base.filp)->i_mapping;
  1491. gfp = mapping_gfp_mask(mapping);
  1492. gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
  1493. gfp &= ~(__GFP_IO | __GFP_WAIT);
  1494. sg = st->sgl;
  1495. st->nents = 0;
  1496. for (i = 0; i < page_count; i++) {
  1497. page = shmem_read_mapping_page_gfp(mapping, i, gfp);
  1498. if (IS_ERR(page)) {
  1499. i915_gem_purge(dev_priv, page_count);
  1500. page = shmem_read_mapping_page_gfp(mapping, i, gfp);
  1501. }
  1502. if (IS_ERR(page)) {
  1503. /* We've tried hard to allocate the memory by reaping
  1504. * our own buffer, now let the real VM do its job and
  1505. * go down in flames if truly OOM.
  1506. */
  1507. gfp &= ~(__GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD);
  1508. gfp |= __GFP_IO | __GFP_WAIT;
  1509. i915_gem_shrink_all(dev_priv);
  1510. page = shmem_read_mapping_page_gfp(mapping, i, gfp);
  1511. if (IS_ERR(page))
  1512. goto err_pages;
  1513. gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
  1514. gfp &= ~(__GFP_IO | __GFP_WAIT);
  1515. }
  1516. #ifdef CONFIG_SWIOTLB
  1517. if (swiotlb_nr_tbl()) {
  1518. st->nents++;
  1519. sg_set_page(sg, page, PAGE_SIZE, 0);
  1520. sg = sg_next(sg);
  1521. continue;
  1522. }
  1523. #endif
  1524. if (!i || page_to_pfn(page) != last_pfn + 1) {
  1525. if (i)
  1526. sg = sg_next(sg);
  1527. st->nents++;
  1528. sg_set_page(sg, page, PAGE_SIZE, 0);
  1529. } else {
  1530. sg->length += PAGE_SIZE;
  1531. }
  1532. last_pfn = page_to_pfn(page);
  1533. }
  1534. #ifdef CONFIG_SWIOTLB
  1535. if (!swiotlb_nr_tbl())
  1536. #endif
  1537. sg_mark_end(sg);
  1538. obj->pages = st;
  1539. if (i915_gem_object_needs_bit17_swizzle(obj))
  1540. i915_gem_object_do_bit_17_swizzle(obj);
  1541. return 0;
  1542. err_pages:
  1543. sg_mark_end(sg);
  1544. for_each_sg_page(st->sgl, &sg_iter, st->nents, 0)
  1545. page_cache_release(sg_page_iter_page(&sg_iter));
  1546. sg_free_table(st);
  1547. kfree(st);
  1548. return PTR_ERR(page);
  1549. }
  1550. /* Ensure that the associated pages are gathered from the backing storage
  1551. * and pinned into our object. i915_gem_object_get_pages() may be called
  1552. * multiple times before they are released by a single call to
  1553. * i915_gem_object_put_pages() - once the pages are no longer referenced
  1554. * either as a result of memory pressure (reaping pages under the shrinker)
  1555. * or as the object is itself released.
  1556. */
  1557. int
  1558. i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
  1559. {
  1560. struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
  1561. const struct drm_i915_gem_object_ops *ops = obj->ops;
  1562. int ret;
  1563. if (obj->pages)
  1564. return 0;
  1565. if (obj->madv != I915_MADV_WILLNEED) {
  1566. DRM_ERROR("Attempting to obtain a purgeable object\n");
  1567. return -EINVAL;
  1568. }
  1569. BUG_ON(obj->pages_pin_count);
  1570. ret = ops->get_pages(obj);
  1571. if (ret)
  1572. return ret;
  1573. list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
  1574. return 0;
  1575. }
  1576. void
  1577. i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
  1578. struct intel_ring_buffer *ring)
  1579. {
  1580. struct drm_device *dev = obj->base.dev;
  1581. struct drm_i915_private *dev_priv = dev->dev_private;
  1582. struct i915_address_space *vm = &dev_priv->gtt.base;
  1583. u32 seqno = intel_ring_get_seqno(ring);
  1584. BUG_ON(ring == NULL);
  1585. if (obj->ring != ring && obj->last_write_seqno) {
  1586. /* Keep the seqno relative to the current ring */
  1587. obj->last_write_seqno = seqno;
  1588. }
  1589. obj->ring = ring;
  1590. /* Add a reference if we're newly entering the active list. */
  1591. if (!obj->active) {
  1592. drm_gem_object_reference(&obj->base);
  1593. obj->active = 1;
  1594. }
  1595. /* Move from whatever list we were on to the tail of execution. */
  1596. list_move_tail(&obj->mm_list, &vm->active_list);
  1597. list_move_tail(&obj->ring_list, &ring->active_list);
  1598. obj->last_read_seqno = seqno;
  1599. if (obj->fenced_gpu_access) {
  1600. obj->last_fenced_seqno = seqno;
  1601. /* Bump MRU to take account of the delayed flush */
  1602. if (obj->fence_reg != I915_FENCE_REG_NONE) {
  1603. struct drm_i915_fence_reg *reg;
  1604. reg = &dev_priv->fence_regs[obj->fence_reg];
  1605. list_move_tail(&reg->lru_list,
  1606. &dev_priv->mm.fence_list);
  1607. }
  1608. }
  1609. }
  1610. static void
  1611. i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
  1612. {
  1613. struct drm_device *dev = obj->base.dev;
  1614. struct drm_i915_private *dev_priv = dev->dev_private;
  1615. struct i915_address_space *vm = &dev_priv->gtt.base;
  1616. BUG_ON(obj->base.write_domain & ~I915_GEM_GPU_DOMAINS);
  1617. BUG_ON(!obj->active);
  1618. list_move_tail(&obj->mm_list, &vm->inactive_list);
  1619. list_del_init(&obj->ring_list);
  1620. obj->ring = NULL;
  1621. obj->last_read_seqno = 0;
  1622. obj->last_write_seqno = 0;
  1623. obj->base.write_domain = 0;
  1624. obj->last_fenced_seqno = 0;
  1625. obj->fenced_gpu_access = false;
  1626. obj->active = 0;
  1627. drm_gem_object_unreference(&obj->base);
  1628. WARN_ON(i915_verify_lists(dev));
  1629. }
  1630. static int
  1631. i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
  1632. {
  1633. struct drm_i915_private *dev_priv = dev->dev_private;
  1634. struct intel_ring_buffer *ring;
  1635. int ret, i, j;
  1636. /* Carefully retire all requests without writing to the rings */
  1637. for_each_ring(ring, dev_priv, i) {
  1638. ret = intel_ring_idle(ring);
  1639. if (ret)
  1640. return ret;
  1641. }
  1642. i915_gem_retire_requests(dev);
  1643. /* Finally reset hw state */
  1644. for_each_ring(ring, dev_priv, i) {
  1645. intel_ring_init_seqno(ring, seqno);
  1646. for (j = 0; j < ARRAY_SIZE(ring->sync_seqno); j++)
  1647. ring->sync_seqno[j] = 0;
  1648. }
  1649. return 0;
  1650. }
  1651. int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
  1652. {
  1653. struct drm_i915_private *dev_priv = dev->dev_private;
  1654. int ret;
  1655. if (seqno == 0)
  1656. return -EINVAL;
  1657. /* HWS page needs to be set less than what we
  1658. * will inject to ring
  1659. */
  1660. ret = i915_gem_init_seqno(dev, seqno - 1);
  1661. if (ret)
  1662. return ret;
  1663. /* Carefully set the last_seqno value so that wrap
  1664. * detection still works
  1665. */
  1666. dev_priv->next_seqno = seqno;
  1667. dev_priv->last_seqno = seqno - 1;
  1668. if (dev_priv->last_seqno == 0)
  1669. dev_priv->last_seqno--;
  1670. return 0;
  1671. }
  1672. int
  1673. i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
  1674. {
  1675. struct drm_i915_private *dev_priv = dev->dev_private;
  1676. /* reserve 0 for non-seqno */
  1677. if (dev_priv->next_seqno == 0) {
  1678. int ret = i915_gem_init_seqno(dev, 0);
  1679. if (ret)
  1680. return ret;
  1681. dev_priv->next_seqno = 1;
  1682. }
  1683. *seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
  1684. return 0;
  1685. }
  1686. int __i915_add_request(struct intel_ring_buffer *ring,
  1687. struct drm_file *file,
  1688. struct drm_i915_gem_object *obj,
  1689. u32 *out_seqno)
  1690. {
  1691. drm_i915_private_t *dev_priv = ring->dev->dev_private;
  1692. struct drm_i915_gem_request *request;
  1693. u32 request_ring_position, request_start;
  1694. int was_empty;
  1695. int ret;
  1696. request_start = intel_ring_get_tail(ring);
  1697. /*
  1698. * Emit any outstanding flushes - execbuf can fail to emit the flush
  1699. * after having emitted the batchbuffer command. Hence we need to fix
  1700. * things up similar to emitting the lazy request. The difference here
  1701. * is that the flush _must_ happen before the next request, no matter
  1702. * what.
  1703. */
  1704. ret = intel_ring_flush_all_caches(ring);
  1705. if (ret)
  1706. return ret;
  1707. request = kmalloc(sizeof(*request), GFP_KERNEL);
  1708. if (request == NULL)
  1709. return -ENOMEM;
  1710. /* Record the position of the start of the request so that
  1711. * should we detect the updated seqno part-way through the
  1712. * GPU processing the request, we never over-estimate the
  1713. * position of the head.
  1714. */
  1715. request_ring_position = intel_ring_get_tail(ring);
  1716. ret = ring->add_request(ring);
  1717. if (ret) {
  1718. kfree(request);
  1719. return ret;
  1720. }
  1721. request->seqno = intel_ring_get_seqno(ring);
  1722. request->ring = ring;
  1723. request->head = request_start;
  1724. request->tail = request_ring_position;
  1725. request->ctx = ring->last_context;
  1726. request->batch_obj = obj;
  1727. /* Whilst this request exists, batch_obj will be on the
  1728. * active_list, and so will hold the active reference. Only when this
  1729. * request is retired will the the batch_obj be moved onto the
  1730. * inactive_list and lose its active reference. Hence we do not need
  1731. * to explicitly hold another reference here.
  1732. */
  1733. if (request->ctx)
  1734. i915_gem_context_reference(request->ctx);
  1735. request->emitted_jiffies = jiffies;
  1736. was_empty = list_empty(&ring->request_list);
  1737. list_add_tail(&request->list, &ring->request_list);
  1738. request->file_priv = NULL;
  1739. if (file) {
  1740. struct drm_i915_file_private *file_priv = file->driver_priv;
  1741. spin_lock(&file_priv->mm.lock);
  1742. request->file_priv = file_priv;
  1743. list_add_tail(&request->client_list,
  1744. &file_priv->mm.request_list);
  1745. spin_unlock(&file_priv->mm.lock);
  1746. }
  1747. trace_i915_gem_request_add(ring, request->seqno);
  1748. ring->outstanding_lazy_request = 0;
  1749. if (!dev_priv->ums.mm_suspended) {
  1750. i915_queue_hangcheck(ring->dev);
  1751. if (was_empty) {
  1752. queue_delayed_work(dev_priv->wq,
  1753. &dev_priv->mm.retire_work,
  1754. round_jiffies_up_relative(HZ));
  1755. intel_mark_busy(dev_priv->dev);
  1756. }
  1757. }
  1758. if (out_seqno)
  1759. *out_seqno = request->seqno;
  1760. return 0;
  1761. }
  1762. static inline void
  1763. i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
  1764. {
  1765. struct drm_i915_file_private *file_priv = request->file_priv;
  1766. if (!file_priv)
  1767. return;
  1768. spin_lock(&file_priv->mm.lock);
  1769. if (request->file_priv) {
  1770. list_del(&request->client_list);
  1771. request->file_priv = NULL;
  1772. }
  1773. spin_unlock(&file_priv->mm.lock);
  1774. }
  1775. static bool i915_head_inside_object(u32 acthd, struct drm_i915_gem_object *obj)
  1776. {
  1777. if (acthd >= i915_gem_obj_ggtt_offset(obj) &&
  1778. acthd < i915_gem_obj_ggtt_offset(obj) + obj->base.size)
  1779. return true;
  1780. return false;
  1781. }
  1782. static bool i915_head_inside_request(const u32 acthd_unmasked,
  1783. const u32 request_start,
  1784. const u32 request_end)
  1785. {
  1786. const u32 acthd = acthd_unmasked & HEAD_ADDR;
  1787. if (request_start < request_end) {
  1788. if (acthd >= request_start && acthd < request_end)
  1789. return true;
  1790. } else if (request_start > request_end) {
  1791. if (acthd >= request_start || acthd < request_end)
  1792. return true;
  1793. }
  1794. return false;
  1795. }
  1796. static bool i915_request_guilty(struct drm_i915_gem_request *request,
  1797. const u32 acthd, bool *inside)
  1798. {
  1799. /* There is a possibility that unmasked head address
  1800. * pointing inside the ring, matches the batch_obj address range.
  1801. * However this is extremely unlikely.
  1802. */
  1803. if (request->batch_obj) {
  1804. if (i915_head_inside_object(acthd, request->batch_obj)) {
  1805. *inside = true;
  1806. return true;
  1807. }
  1808. }
  1809. if (i915_head_inside_request(acthd, request->head, request->tail)) {
  1810. *inside = false;
  1811. return true;
  1812. }
  1813. return false;
  1814. }
  1815. static void i915_set_reset_status(struct intel_ring_buffer *ring,
  1816. struct drm_i915_gem_request *request,
  1817. u32 acthd)
  1818. {
  1819. struct i915_ctx_hang_stats *hs = NULL;
  1820. bool inside, guilty;
  1821. /* Innocent until proven guilty */
  1822. guilty = false;
  1823. if (ring->hangcheck.action != wait &&
  1824. i915_request_guilty(request, acthd, &inside)) {
  1825. DRM_ERROR("%s hung %s bo (0x%lx ctx %d) at 0x%x\n",
  1826. ring->name,
  1827. inside ? "inside" : "flushing",
  1828. request->batch_obj ?
  1829. i915_gem_obj_ggtt_offset(request->batch_obj) : 0,
  1830. request->ctx ? request->ctx->id : 0,
  1831. acthd);
  1832. guilty = true;
  1833. }
  1834. /* If contexts are disabled or this is the default context, use
  1835. * file_priv->reset_state
  1836. */
  1837. if (request->ctx && request->ctx->id != DEFAULT_CONTEXT_ID)
  1838. hs = &request->ctx->hang_stats;
  1839. else if (request->file_priv)
  1840. hs = &request->file_priv->hang_stats;
  1841. if (hs) {
  1842. if (guilty)
  1843. hs->batch_active++;
  1844. else
  1845. hs->batch_pending++;
  1846. }
  1847. }
  1848. static void i915_gem_free_request(struct drm_i915_gem_request *request)
  1849. {
  1850. list_del(&request->list);
  1851. i915_gem_request_remove_from_client(request);
  1852. if (request->ctx)
  1853. i915_gem_context_unreference(request->ctx);
  1854. kfree(request);
  1855. }
  1856. static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
  1857. struct intel_ring_buffer *ring)
  1858. {
  1859. u32 completed_seqno;
  1860. u32 acthd;
  1861. acthd = intel_ring_get_active_head(ring);
  1862. completed_seqno = ring->get_seqno(ring, false);
  1863. while (!list_empty(&ring->request_list)) {
  1864. struct drm_i915_gem_request *request;
  1865. request = list_first_entry(&ring->request_list,
  1866. struct drm_i915_gem_request,
  1867. list);
  1868. if (request->seqno > completed_seqno)
  1869. i915_set_reset_status(ring, request, acthd);
  1870. i915_gem_free_request(request);
  1871. }
  1872. while (!list_empty(&ring->active_list)) {
  1873. struct drm_i915_gem_object *obj;
  1874. obj = list_first_entry(&ring->active_list,
  1875. struct drm_i915_gem_object,
  1876. ring_list);
  1877. i915_gem_object_move_to_inactive(obj);
  1878. }
  1879. }
  1880. void i915_gem_restore_fences(struct drm_device *dev)
  1881. {
  1882. struct drm_i915_private *dev_priv = dev->dev_private;
  1883. int i;
  1884. for (i = 0; i < dev_priv->num_fence_regs; i++) {
  1885. struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
  1886. /*
  1887. * Commit delayed tiling changes if we have an object still
  1888. * attached to the fence, otherwise just clear the fence.
  1889. */
  1890. if (reg->obj) {
  1891. i915_gem_object_update_fence(reg->obj, reg,
  1892. reg->obj->tiling_mode);
  1893. } else {
  1894. i915_gem_write_fence(dev, i, NULL);
  1895. }
  1896. }
  1897. }
  1898. void i915_gem_reset(struct drm_device *dev)
  1899. {
  1900. struct drm_i915_private *dev_priv = dev->dev_private;
  1901. struct i915_address_space *vm = &dev_priv->gtt.base;
  1902. struct drm_i915_gem_object *obj;
  1903. struct intel_ring_buffer *ring;
  1904. int i;
  1905. for_each_ring(ring, dev_priv, i)
  1906. i915_gem_reset_ring_lists(dev_priv, ring);
  1907. /* Move everything out of the GPU domains to ensure we do any
  1908. * necessary invalidation upon reuse.
  1909. */
  1910. list_for_each_entry(obj, &vm->inactive_list, mm_list)
  1911. obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
  1912. i915_gem_restore_fences(dev);
  1913. }
  1914. /**
  1915. * This function clears the request list as sequence numbers are passed.
  1916. */
  1917. void
  1918. i915_gem_retire_requests_ring(struct intel_ring_buffer *ring)
  1919. {
  1920. uint32_t seqno;
  1921. if (list_empty(&ring->request_list))
  1922. return;
  1923. WARN_ON(i915_verify_lists(ring->dev));
  1924. seqno = ring->get_seqno(ring, true);
  1925. while (!list_empty(&ring->request_list)) {
  1926. struct drm_i915_gem_request *request;
  1927. request = list_first_entry(&ring->request_list,
  1928. struct drm_i915_gem_request,
  1929. list);
  1930. if (!i915_seqno_passed(seqno, request->seqno))
  1931. break;
  1932. trace_i915_gem_request_retire(ring, request->seqno);
  1933. /* We know the GPU must have read the request to have
  1934. * sent us the seqno + interrupt, so use the position
  1935. * of tail of the request to update the last known position
  1936. * of the GPU head.
  1937. */
  1938. ring->last_retired_head = request->tail;
  1939. i915_gem_free_request(request);
  1940. }
  1941. /* Move any buffers on the active list that are no longer referenced
  1942. * by the ringbuffer to the flushing/inactive lists as appropriate.
  1943. */
  1944. while (!list_empty(&ring->active_list)) {
  1945. struct drm_i915_gem_object *obj;
  1946. obj = list_first_entry(&ring->active_list,
  1947. struct drm_i915_gem_object,
  1948. ring_list);
  1949. if (!i915_seqno_passed(seqno, obj->last_read_seqno))
  1950. break;
  1951. i915_gem_object_move_to_inactive(obj);
  1952. }
  1953. if (unlikely(ring->trace_irq_seqno &&
  1954. i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
  1955. ring->irq_put(ring);
  1956. ring->trace_irq_seqno = 0;
  1957. }
  1958. WARN_ON(i915_verify_lists(ring->dev));
  1959. }
  1960. void
  1961. i915_gem_retire_requests(struct drm_device *dev)
  1962. {
  1963. drm_i915_private_t *dev_priv = dev->dev_private;
  1964. struct intel_ring_buffer *ring;
  1965. int i;
  1966. for_each_ring(ring, dev_priv, i)
  1967. i915_gem_retire_requests_ring(ring);
  1968. }
  1969. static void
  1970. i915_gem_retire_work_handler(struct work_struct *work)
  1971. {
  1972. drm_i915_private_t *dev_priv;
  1973. struct drm_device *dev;
  1974. struct intel_ring_buffer *ring;
  1975. bool idle;
  1976. int i;
  1977. dev_priv = container_of(work, drm_i915_private_t,
  1978. mm.retire_work.work);
  1979. dev = dev_priv->dev;
  1980. /* Come back later if the device is busy... */
  1981. if (!mutex_trylock(&dev->struct_mutex)) {
  1982. queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
  1983. round_jiffies_up_relative(HZ));
  1984. return;
  1985. }
  1986. i915_gem_retire_requests(dev);
  1987. /* Send a periodic flush down the ring so we don't hold onto GEM
  1988. * objects indefinitely.
  1989. */
  1990. idle = true;
  1991. for_each_ring(ring, dev_priv, i) {
  1992. if (ring->gpu_caches_dirty)
  1993. i915_add_request(ring, NULL);
  1994. idle &= list_empty(&ring->request_list);
  1995. }
  1996. if (!dev_priv->ums.mm_suspended && !idle)
  1997. queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
  1998. round_jiffies_up_relative(HZ));
  1999. if (idle)
  2000. intel_mark_idle(dev);
  2001. mutex_unlock(&dev->struct_mutex);
  2002. }
  2003. /**
  2004. * Ensures that an object will eventually get non-busy by flushing any required
  2005. * write domains, emitting any outstanding lazy request and retiring and
  2006. * completed requests.
  2007. */
  2008. static int
  2009. i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
  2010. {
  2011. int ret;
  2012. if (obj->active) {
  2013. ret = i915_gem_check_olr(obj->ring, obj->last_read_seqno);
  2014. if (ret)
  2015. return ret;
  2016. i915_gem_retire_requests_ring(obj->ring);
  2017. }
  2018. return 0;
  2019. }
  2020. /**
  2021. * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
  2022. * @DRM_IOCTL_ARGS: standard ioctl arguments
  2023. *
  2024. * Returns 0 if successful, else an error is returned with the remaining time in
  2025. * the timeout parameter.
  2026. * -ETIME: object is still busy after timeout
  2027. * -ERESTARTSYS: signal interrupted the wait
  2028. * -ENONENT: object doesn't exist
  2029. * Also possible, but rare:
  2030. * -EAGAIN: GPU wedged
  2031. * -ENOMEM: damn
  2032. * -ENODEV: Internal IRQ fail
  2033. * -E?: The add request failed
  2034. *
  2035. * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
  2036. * non-zero timeout parameter the wait ioctl will wait for the given number of
  2037. * nanoseconds on an object becoming unbusy. Since the wait itself does so
  2038. * without holding struct_mutex the object may become re-busied before this
  2039. * function completes. A similar but shorter * race condition exists in the busy
  2040. * ioctl
  2041. */
  2042. int
  2043. i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
  2044. {
  2045. drm_i915_private_t *dev_priv = dev->dev_private;
  2046. struct drm_i915_gem_wait *args = data;
  2047. struct drm_i915_gem_object *obj;
  2048. struct intel_ring_buffer *ring = NULL;
  2049. struct timespec timeout_stack, *timeout = NULL;
  2050. unsigned reset_counter;
  2051. u32 seqno = 0;
  2052. int ret = 0;
  2053. if (args->timeout_ns >= 0) {
  2054. timeout_stack = ns_to_timespec(args->timeout_ns);
  2055. timeout = &timeout_stack;
  2056. }
  2057. ret = i915_mutex_lock_interruptible(dev);
  2058. if (ret)
  2059. return ret;
  2060. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
  2061. if (&obj->base == NULL) {
  2062. mutex_unlock(&dev->struct_mutex);
  2063. return -ENOENT;
  2064. }
  2065. /* Need to make sure the object gets inactive eventually. */
  2066. ret = i915_gem_object_flush_active(obj);
  2067. if (ret)
  2068. goto out;
  2069. if (obj->active) {
  2070. seqno = obj->last_read_seqno;
  2071. ring = obj->ring;
  2072. }
  2073. if (seqno == 0)
  2074. goto out;
  2075. /* Do this after OLR check to make sure we make forward progress polling
  2076. * on this IOCTL with a 0 timeout (like busy ioctl)
  2077. */
  2078. if (!args->timeout_ns) {
  2079. ret = -ETIME;
  2080. goto out;
  2081. }
  2082. drm_gem_object_unreference(&obj->base);
  2083. reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
  2084. mutex_unlock(&dev->struct_mutex);
  2085. ret = __wait_seqno(ring, seqno, reset_counter, true, timeout);
  2086. if (timeout)
  2087. args->timeout_ns = timespec_to_ns(timeout);
  2088. return ret;
  2089. out:
  2090. drm_gem_object_unreference(&obj->base);
  2091. mutex_unlock(&dev->struct_mutex);
  2092. return ret;
  2093. }
  2094. /**
  2095. * i915_gem_object_sync - sync an object to a ring.
  2096. *
  2097. * @obj: object which may be in use on another ring.
  2098. * @to: ring we wish to use the object on. May be NULL.
  2099. *
  2100. * This code is meant to abstract object synchronization with the GPU.
  2101. * Calling with NULL implies synchronizing the object with the CPU
  2102. * rather than a particular GPU ring.
  2103. *
  2104. * Returns 0 if successful, else propagates up the lower layer error.
  2105. */
  2106. int
  2107. i915_gem_object_sync(struct drm_i915_gem_object *obj,
  2108. struct intel_ring_buffer *to)
  2109. {
  2110. struct intel_ring_buffer *from = obj->ring;
  2111. u32 seqno;
  2112. int ret, idx;
  2113. if (from == NULL || to == from)
  2114. return 0;
  2115. if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
  2116. return i915_gem_object_wait_rendering(obj, false);
  2117. idx = intel_ring_sync_index(from, to);
  2118. seqno = obj->last_read_seqno;
  2119. if (seqno <= from->sync_seqno[idx])
  2120. return 0;
  2121. ret = i915_gem_check_olr(obj->ring, seqno);
  2122. if (ret)
  2123. return ret;
  2124. ret = to->sync_to(to, from, seqno);
  2125. if (!ret)
  2126. /* We use last_read_seqno because sync_to()
  2127. * might have just caused seqno wrap under
  2128. * the radar.
  2129. */
  2130. from->sync_seqno[idx] = obj->last_read_seqno;
  2131. return ret;
  2132. }
  2133. static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
  2134. {
  2135. u32 old_write_domain, old_read_domains;
  2136. /* Force a pagefault for domain tracking on next user access */
  2137. i915_gem_release_mmap(obj);
  2138. if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
  2139. return;
  2140. /* Wait for any direct GTT access to complete */
  2141. mb();
  2142. old_read_domains = obj->base.read_domains;
  2143. old_write_domain = obj->base.write_domain;
  2144. obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
  2145. obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
  2146. trace_i915_gem_object_change_domain(obj,
  2147. old_read_domains,
  2148. old_write_domain);
  2149. }
  2150. /**
  2151. * Unbinds an object from the GTT aperture.
  2152. */
  2153. int
  2154. i915_gem_object_unbind(struct drm_i915_gem_object *obj)
  2155. {
  2156. drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
  2157. struct i915_vma *vma;
  2158. int ret;
  2159. if (!i915_gem_obj_ggtt_bound(obj))
  2160. return 0;
  2161. if (obj->pin_count)
  2162. return -EBUSY;
  2163. BUG_ON(obj->pages == NULL);
  2164. ret = i915_gem_object_finish_gpu(obj);
  2165. if (ret)
  2166. return ret;
  2167. /* Continue on if we fail due to EIO, the GPU is hung so we
  2168. * should be safe and we need to cleanup or else we might
  2169. * cause memory corruption through use-after-free.
  2170. */
  2171. i915_gem_object_finish_gtt(obj);
  2172. /* release the fence reg _after_ flushing */
  2173. ret = i915_gem_object_put_fence(obj);
  2174. if (ret)
  2175. return ret;
  2176. trace_i915_gem_object_unbind(obj);
  2177. if (obj->has_global_gtt_mapping)
  2178. i915_gem_gtt_unbind_object(obj);
  2179. if (obj->has_aliasing_ppgtt_mapping) {
  2180. i915_ppgtt_unbind_object(dev_priv->mm.aliasing_ppgtt, obj);
  2181. obj->has_aliasing_ppgtt_mapping = 0;
  2182. }
  2183. i915_gem_gtt_finish_object(obj);
  2184. i915_gem_object_unpin_pages(obj);
  2185. list_del(&obj->mm_list);
  2186. /* Avoid an unnecessary call to unbind on rebind. */
  2187. obj->map_and_fenceable = true;
  2188. vma = i915_gem_obj_to_vma(obj, &dev_priv->gtt.base);
  2189. list_del(&vma->vma_link);
  2190. drm_mm_remove_node(&vma->node);
  2191. i915_gem_vma_destroy(vma);
  2192. /* Since the unbound list is global, only move to that list if
  2193. * no more VMAs exist.
  2194. * NB: Until we have real VMAs there will only ever be one */
  2195. WARN_ON(!list_empty(&obj->vma_list));
  2196. if (list_empty(&obj->vma_list))
  2197. list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
  2198. return 0;
  2199. }
  2200. int i915_gpu_idle(struct drm_device *dev)
  2201. {
  2202. drm_i915_private_t *dev_priv = dev->dev_private;
  2203. struct intel_ring_buffer *ring;
  2204. int ret, i;
  2205. /* Flush everything onto the inactive list. */
  2206. for_each_ring(ring, dev_priv, i) {
  2207. ret = i915_switch_context(ring, NULL, DEFAULT_CONTEXT_ID);
  2208. if (ret)
  2209. return ret;
  2210. ret = intel_ring_idle(ring);
  2211. if (ret)
  2212. return ret;
  2213. }
  2214. return 0;
  2215. }
  2216. static void i965_write_fence_reg(struct drm_device *dev, int reg,
  2217. struct drm_i915_gem_object *obj)
  2218. {
  2219. drm_i915_private_t *dev_priv = dev->dev_private;
  2220. int fence_reg;
  2221. int fence_pitch_shift;
  2222. if (INTEL_INFO(dev)->gen >= 6) {
  2223. fence_reg = FENCE_REG_SANDYBRIDGE_0;
  2224. fence_pitch_shift = SANDYBRIDGE_FENCE_PITCH_SHIFT;
  2225. } else {
  2226. fence_reg = FENCE_REG_965_0;
  2227. fence_pitch_shift = I965_FENCE_PITCH_SHIFT;
  2228. }
  2229. fence_reg += reg * 8;
  2230. /* To w/a incoherency with non-atomic 64-bit register updates,
  2231. * we split the 64-bit update into two 32-bit writes. In order
  2232. * for a partial fence not to be evaluated between writes, we
  2233. * precede the update with write to turn off the fence register,
  2234. * and only enable the fence as the last step.
  2235. *
  2236. * For extra levels of paranoia, we make sure each step lands
  2237. * before applying the next step.
  2238. */
  2239. I915_WRITE(fence_reg, 0);
  2240. POSTING_READ(fence_reg);
  2241. if (obj) {
  2242. u32 size = i915_gem_obj_ggtt_size(obj);
  2243. uint64_t val;
  2244. val = (uint64_t)((i915_gem_obj_ggtt_offset(obj) + size - 4096) &
  2245. 0xfffff000) << 32;
  2246. val |= i915_gem_obj_ggtt_offset(obj) & 0xfffff000;
  2247. val |= (uint64_t)((obj->stride / 128) - 1) << fence_pitch_shift;
  2248. if (obj->tiling_mode == I915_TILING_Y)
  2249. val |= 1 << I965_FENCE_TILING_Y_SHIFT;
  2250. val |= I965_FENCE_REG_VALID;
  2251. I915_WRITE(fence_reg + 4, val >> 32);
  2252. POSTING_READ(fence_reg + 4);
  2253. I915_WRITE(fence_reg + 0, val);
  2254. POSTING_READ(fence_reg);
  2255. } else {
  2256. I915_WRITE(fence_reg + 4, 0);
  2257. POSTING_READ(fence_reg + 4);
  2258. }
  2259. }
  2260. static void i915_write_fence_reg(struct drm_device *dev, int reg,
  2261. struct drm_i915_gem_object *obj)
  2262. {
  2263. drm_i915_private_t *dev_priv = dev->dev_private;
  2264. u32 val;
  2265. if (obj) {
  2266. u32 size = i915_gem_obj_ggtt_size(obj);
  2267. int pitch_val;
  2268. int tile_width;
  2269. WARN((i915_gem_obj_ggtt_offset(obj) & ~I915_FENCE_START_MASK) ||
  2270. (size & -size) != size ||
  2271. (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
  2272. "object 0x%08lx [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
  2273. i915_gem_obj_ggtt_offset(obj), obj->map_and_fenceable, size);
  2274. if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
  2275. tile_width = 128;
  2276. else
  2277. tile_width = 512;
  2278. /* Note: pitch better be a power of two tile widths */
  2279. pitch_val = obj->stride / tile_width;
  2280. pitch_val = ffs(pitch_val) - 1;
  2281. val = i915_gem_obj_ggtt_offset(obj);
  2282. if (obj->tiling_mode == I915_TILING_Y)
  2283. val |= 1 << I830_FENCE_TILING_Y_SHIFT;
  2284. val |= I915_FENCE_SIZE_BITS(size);
  2285. val |= pitch_val << I830_FENCE_PITCH_SHIFT;
  2286. val |= I830_FENCE_REG_VALID;
  2287. } else
  2288. val = 0;
  2289. if (reg < 8)
  2290. reg = FENCE_REG_830_0 + reg * 4;
  2291. else
  2292. reg = FENCE_REG_945_8 + (reg - 8) * 4;
  2293. I915_WRITE(reg, val);
  2294. POSTING_READ(reg);
  2295. }
  2296. static void i830_write_fence_reg(struct drm_device *dev, int reg,
  2297. struct drm_i915_gem_object *obj)
  2298. {
  2299. drm_i915_private_t *dev_priv = dev->dev_private;
  2300. uint32_t val;
  2301. if (obj) {
  2302. u32 size = i915_gem_obj_ggtt_size(obj);
  2303. uint32_t pitch_val;
  2304. WARN((i915_gem_obj_ggtt_offset(obj) & ~I830_FENCE_START_MASK) ||
  2305. (size & -size) != size ||
  2306. (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
  2307. "object 0x%08lx not 512K or pot-size 0x%08x aligned\n",
  2308. i915_gem_obj_ggtt_offset(obj), size);
  2309. pitch_val = obj->stride / 128;
  2310. pitch_val = ffs(pitch_val) - 1;
  2311. val = i915_gem_obj_ggtt_offset(obj);
  2312. if (obj->tiling_mode == I915_TILING_Y)
  2313. val |= 1 << I830_FENCE_TILING_Y_SHIFT;
  2314. val |= I830_FENCE_SIZE_BITS(size);
  2315. val |= pitch_val << I830_FENCE_PITCH_SHIFT;
  2316. val |= I830_FENCE_REG_VALID;
  2317. } else
  2318. val = 0;
  2319. I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
  2320. POSTING_READ(FENCE_REG_830_0 + reg * 4);
  2321. }
  2322. inline static bool i915_gem_object_needs_mb(struct drm_i915_gem_object *obj)
  2323. {
  2324. return obj && obj->base.read_domains & I915_GEM_DOMAIN_GTT;
  2325. }
  2326. static void i915_gem_write_fence(struct drm_device *dev, int reg,
  2327. struct drm_i915_gem_object *obj)
  2328. {
  2329. struct drm_i915_private *dev_priv = dev->dev_private;
  2330. /* Ensure that all CPU reads are completed before installing a fence
  2331. * and all writes before removing the fence.
  2332. */
  2333. if (i915_gem_object_needs_mb(dev_priv->fence_regs[reg].obj))
  2334. mb();
  2335. WARN(obj && (!obj->stride || !obj->tiling_mode),
  2336. "bogus fence setup with stride: 0x%x, tiling mode: %i\n",
  2337. obj->stride, obj->tiling_mode);
  2338. switch (INTEL_INFO(dev)->gen) {
  2339. case 7:
  2340. case 6:
  2341. case 5:
  2342. case 4: i965_write_fence_reg(dev, reg, obj); break;
  2343. case 3: i915_write_fence_reg(dev, reg, obj); break;
  2344. case 2: i830_write_fence_reg(dev, reg, obj); break;
  2345. default: BUG();
  2346. }
  2347. /* And similarly be paranoid that no direct access to this region
  2348. * is reordered to before the fence is installed.
  2349. */
  2350. if (i915_gem_object_needs_mb(obj))
  2351. mb();
  2352. }
  2353. static inline int fence_number(struct drm_i915_private *dev_priv,
  2354. struct drm_i915_fence_reg *fence)
  2355. {
  2356. return fence - dev_priv->fence_regs;
  2357. }
  2358. static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
  2359. struct drm_i915_fence_reg *fence,
  2360. bool enable)
  2361. {
  2362. struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
  2363. int reg = fence_number(dev_priv, fence);
  2364. i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
  2365. if (enable) {
  2366. obj->fence_reg = reg;
  2367. fence->obj = obj;
  2368. list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
  2369. } else {
  2370. obj->fence_reg = I915_FENCE_REG_NONE;
  2371. fence->obj = NULL;
  2372. list_del_init(&fence->lru_list);
  2373. }
  2374. obj->fence_dirty = false;
  2375. }
  2376. static int
  2377. i915_gem_object_wait_fence(struct drm_i915_gem_object *obj)
  2378. {
  2379. if (obj->last_fenced_seqno) {
  2380. int ret = i915_wait_seqno(obj->ring, obj->last_fenced_seqno);
  2381. if (ret)
  2382. return ret;
  2383. obj->last_fenced_seqno = 0;
  2384. }
  2385. obj->fenced_gpu_access = false;
  2386. return 0;
  2387. }
  2388. int
  2389. i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
  2390. {
  2391. struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
  2392. struct drm_i915_fence_reg *fence;
  2393. int ret;
  2394. ret = i915_gem_object_wait_fence(obj);
  2395. if (ret)
  2396. return ret;
  2397. if (obj->fence_reg == I915_FENCE_REG_NONE)
  2398. return 0;
  2399. fence = &dev_priv->fence_regs[obj->fence_reg];
  2400. i915_gem_object_fence_lost(obj);
  2401. i915_gem_object_update_fence(obj, fence, false);
  2402. return 0;
  2403. }
  2404. static struct drm_i915_fence_reg *
  2405. i915_find_fence_reg(struct drm_device *dev)
  2406. {
  2407. struct drm_i915_private *dev_priv = dev->dev_private;
  2408. struct drm_i915_fence_reg *reg, *avail;
  2409. int i;
  2410. /* First try to find a free reg */
  2411. avail = NULL;
  2412. for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
  2413. reg = &dev_priv->fence_regs[i];
  2414. if (!reg->obj)
  2415. return reg;
  2416. if (!reg->pin_count)
  2417. avail = reg;
  2418. }
  2419. if (avail == NULL)
  2420. return NULL;
  2421. /* None available, try to steal one or wait for a user to finish */
  2422. list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
  2423. if (reg->pin_count)
  2424. continue;
  2425. return reg;
  2426. }
  2427. return NULL;
  2428. }
  2429. /**
  2430. * i915_gem_object_get_fence - set up fencing for an object
  2431. * @obj: object to map through a fence reg
  2432. *
  2433. * When mapping objects through the GTT, userspace wants to be able to write
  2434. * to them without having to worry about swizzling if the object is tiled.
  2435. * This function walks the fence regs looking for a free one for @obj,
  2436. * stealing one if it can't find any.
  2437. *
  2438. * It then sets up the reg based on the object's properties: address, pitch
  2439. * and tiling format.
  2440. *
  2441. * For an untiled surface, this removes any existing fence.
  2442. */
  2443. int
  2444. i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
  2445. {
  2446. struct drm_device *dev = obj->base.dev;
  2447. struct drm_i915_private *dev_priv = dev->dev_private;
  2448. bool enable = obj->tiling_mode != I915_TILING_NONE;
  2449. struct drm_i915_fence_reg *reg;
  2450. int ret;
  2451. /* Have we updated the tiling parameters upon the object and so
  2452. * will need to serialise the write to the associated fence register?
  2453. */
  2454. if (obj->fence_dirty) {
  2455. ret = i915_gem_object_wait_fence(obj);
  2456. if (ret)
  2457. return ret;
  2458. }
  2459. /* Just update our place in the LRU if our fence is getting reused. */
  2460. if (obj->fence_reg != I915_FENCE_REG_NONE) {
  2461. reg = &dev_priv->fence_regs[obj->fence_reg];
  2462. if (!obj->fence_dirty) {
  2463. list_move_tail(&reg->lru_list,
  2464. &dev_priv->mm.fence_list);
  2465. return 0;
  2466. }
  2467. } else if (enable) {
  2468. reg = i915_find_fence_reg(dev);
  2469. if (reg == NULL)
  2470. return -EDEADLK;
  2471. if (reg->obj) {
  2472. struct drm_i915_gem_object *old = reg->obj;
  2473. ret = i915_gem_object_wait_fence(old);
  2474. if (ret)
  2475. return ret;
  2476. i915_gem_object_fence_lost(old);
  2477. }
  2478. } else
  2479. return 0;
  2480. i915_gem_object_update_fence(obj, reg, enable);
  2481. return 0;
  2482. }
  2483. static bool i915_gem_valid_gtt_space(struct drm_device *dev,
  2484. struct drm_mm_node *gtt_space,
  2485. unsigned long cache_level)
  2486. {
  2487. struct drm_mm_node *other;
  2488. /* On non-LLC machines we have to be careful when putting differing
  2489. * types of snoopable memory together to avoid the prefetcher
  2490. * crossing memory domains and dying.
  2491. */
  2492. if (HAS_LLC(dev))
  2493. return true;
  2494. if (!drm_mm_node_allocated(gtt_space))
  2495. return true;
  2496. if (list_empty(&gtt_space->node_list))
  2497. return true;
  2498. other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
  2499. if (other->allocated && !other->hole_follows && other->color != cache_level)
  2500. return false;
  2501. other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
  2502. if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
  2503. return false;
  2504. return true;
  2505. }
  2506. static void i915_gem_verify_gtt(struct drm_device *dev)
  2507. {
  2508. #if WATCH_GTT
  2509. struct drm_i915_private *dev_priv = dev->dev_private;
  2510. struct drm_i915_gem_object *obj;
  2511. int err = 0;
  2512. list_for_each_entry(obj, &dev_priv->mm.gtt_list, global_list) {
  2513. if (obj->gtt_space == NULL) {
  2514. printk(KERN_ERR "object found on GTT list with no space reserved\n");
  2515. err++;
  2516. continue;
  2517. }
  2518. if (obj->cache_level != obj->gtt_space->color) {
  2519. printk(KERN_ERR "object reserved space [%08lx, %08lx] with wrong color, cache_level=%x, color=%lx\n",
  2520. i915_gem_obj_ggtt_offset(obj),
  2521. i915_gem_obj_ggtt_offset(obj) + i915_gem_obj_ggtt_size(obj),
  2522. obj->cache_level,
  2523. obj->gtt_space->color);
  2524. err++;
  2525. continue;
  2526. }
  2527. if (!i915_gem_valid_gtt_space(dev,
  2528. obj->gtt_space,
  2529. obj->cache_level)) {
  2530. printk(KERN_ERR "invalid GTT space found at [%08lx, %08lx] - color=%x\n",
  2531. i915_gem_obj_ggtt_offset(obj),
  2532. i915_gem_obj_ggtt_offset(obj) + i915_gem_obj_ggtt_size(obj),
  2533. obj->cache_level);
  2534. err++;
  2535. continue;
  2536. }
  2537. }
  2538. WARN_ON(err);
  2539. #endif
  2540. }
  2541. /**
  2542. * Finds free space in the GTT aperture and binds the object there.
  2543. */
  2544. static int
  2545. i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
  2546. unsigned alignment,
  2547. bool map_and_fenceable,
  2548. bool nonblocking)
  2549. {
  2550. struct drm_device *dev = obj->base.dev;
  2551. drm_i915_private_t *dev_priv = dev->dev_private;
  2552. struct i915_address_space *vm = &dev_priv->gtt.base;
  2553. u32 size, fence_size, fence_alignment, unfenced_alignment;
  2554. bool mappable, fenceable;
  2555. size_t gtt_max = map_and_fenceable ?
  2556. dev_priv->gtt.mappable_end : dev_priv->gtt.base.total;
  2557. struct i915_vma *vma;
  2558. int ret;
  2559. if (WARN_ON(!list_empty(&obj->vma_list)))
  2560. return -EBUSY;
  2561. fence_size = i915_gem_get_gtt_size(dev,
  2562. obj->base.size,
  2563. obj->tiling_mode);
  2564. fence_alignment = i915_gem_get_gtt_alignment(dev,
  2565. obj->base.size,
  2566. obj->tiling_mode, true);
  2567. unfenced_alignment =
  2568. i915_gem_get_gtt_alignment(dev,
  2569. obj->base.size,
  2570. obj->tiling_mode, false);
  2571. if (alignment == 0)
  2572. alignment = map_and_fenceable ? fence_alignment :
  2573. unfenced_alignment;
  2574. if (map_and_fenceable && alignment & (fence_alignment - 1)) {
  2575. DRM_ERROR("Invalid object alignment requested %u\n", alignment);
  2576. return -EINVAL;
  2577. }
  2578. size = map_and_fenceable ? fence_size : obj->base.size;
  2579. /* If the object is bigger than the entire aperture, reject it early
  2580. * before evicting everything in a vain attempt to find space.
  2581. */
  2582. if (obj->base.size > gtt_max) {
  2583. DRM_ERROR("Attempting to bind an object larger than the aperture: object=%zd > %s aperture=%zu\n",
  2584. obj->base.size,
  2585. map_and_fenceable ? "mappable" : "total",
  2586. gtt_max);
  2587. return -E2BIG;
  2588. }
  2589. ret = i915_gem_object_get_pages(obj);
  2590. if (ret)
  2591. return ret;
  2592. i915_gem_object_pin_pages(obj);
  2593. vma = i915_gem_vma_create(obj, &dev_priv->gtt.base);
  2594. if (IS_ERR(vma)) {
  2595. ret = PTR_ERR(vma);
  2596. goto err_unpin;
  2597. }
  2598. search_free:
  2599. ret = drm_mm_insert_node_in_range_generic(&dev_priv->gtt.base.mm,
  2600. &vma->node,
  2601. size, alignment,
  2602. obj->cache_level, 0, gtt_max);
  2603. if (ret) {
  2604. ret = i915_gem_evict_something(dev, size, alignment,
  2605. obj->cache_level,
  2606. map_and_fenceable,
  2607. nonblocking);
  2608. if (ret == 0)
  2609. goto search_free;
  2610. goto err_free_vma;
  2611. }
  2612. if (WARN_ON(!i915_gem_valid_gtt_space(dev, &vma->node,
  2613. obj->cache_level))) {
  2614. ret = -EINVAL;
  2615. goto err_remove_node;
  2616. }
  2617. ret = i915_gem_gtt_prepare_object(obj);
  2618. if (ret)
  2619. goto err_remove_node;
  2620. list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
  2621. list_add_tail(&obj->mm_list, &vm->inactive_list);
  2622. list_add(&vma->vma_link, &obj->vma_list);
  2623. fenceable =
  2624. i915_gem_obj_ggtt_size(obj) == fence_size &&
  2625. (i915_gem_obj_ggtt_offset(obj) & (fence_alignment - 1)) == 0;
  2626. mappable = i915_gem_obj_ggtt_offset(obj) + obj->base.size <=
  2627. dev_priv->gtt.mappable_end;
  2628. obj->map_and_fenceable = mappable && fenceable;
  2629. trace_i915_gem_object_bind(obj, map_and_fenceable);
  2630. i915_gem_verify_gtt(dev);
  2631. return 0;
  2632. err_remove_node:
  2633. drm_mm_remove_node(&vma->node);
  2634. err_free_vma:
  2635. i915_gem_vma_destroy(vma);
  2636. err_unpin:
  2637. i915_gem_object_unpin_pages(obj);
  2638. return ret;
  2639. }
  2640. void
  2641. i915_gem_clflush_object(struct drm_i915_gem_object *obj)
  2642. {
  2643. /* If we don't have a page list set up, then we're not pinned
  2644. * to GPU, and we can ignore the cache flush because it'll happen
  2645. * again at bind time.
  2646. */
  2647. if (obj->pages == NULL)
  2648. return;
  2649. /*
  2650. * Stolen memory is always coherent with the GPU as it is explicitly
  2651. * marked as wc by the system, or the system is cache-coherent.
  2652. */
  2653. if (obj->stolen)
  2654. return;
  2655. /* If the GPU is snooping the contents of the CPU cache,
  2656. * we do not need to manually clear the CPU cache lines. However,
  2657. * the caches are only snooped when the render cache is
  2658. * flushed/invalidated. As we always have to emit invalidations
  2659. * and flushes when moving into and out of the RENDER domain, correct
  2660. * snooping behaviour occurs naturally as the result of our domain
  2661. * tracking.
  2662. */
  2663. if (obj->cache_level != I915_CACHE_NONE)
  2664. return;
  2665. trace_i915_gem_object_clflush(obj);
  2666. drm_clflush_sg(obj->pages);
  2667. }
  2668. /** Flushes the GTT write domain for the object if it's dirty. */
  2669. static void
  2670. i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
  2671. {
  2672. uint32_t old_write_domain;
  2673. if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
  2674. return;
  2675. /* No actual flushing is required for the GTT write domain. Writes
  2676. * to it immediately go to main memory as far as we know, so there's
  2677. * no chipset flush. It also doesn't land in render cache.
  2678. *
  2679. * However, we do have to enforce the order so that all writes through
  2680. * the GTT land before any writes to the device, such as updates to
  2681. * the GATT itself.
  2682. */
  2683. wmb();
  2684. old_write_domain = obj->base.write_domain;
  2685. obj->base.write_domain = 0;
  2686. trace_i915_gem_object_change_domain(obj,
  2687. obj->base.read_domains,
  2688. old_write_domain);
  2689. }
  2690. /** Flushes the CPU write domain for the object if it's dirty. */
  2691. static void
  2692. i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
  2693. {
  2694. uint32_t old_write_domain;
  2695. if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
  2696. return;
  2697. i915_gem_clflush_object(obj);
  2698. i915_gem_chipset_flush(obj->base.dev);
  2699. old_write_domain = obj->base.write_domain;
  2700. obj->base.write_domain = 0;
  2701. trace_i915_gem_object_change_domain(obj,
  2702. obj->base.read_domains,
  2703. old_write_domain);
  2704. }
  2705. /**
  2706. * Moves a single object to the GTT read, and possibly write domain.
  2707. *
  2708. * This function returns when the move is complete, including waiting on
  2709. * flushes to occur.
  2710. */
  2711. int
  2712. i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
  2713. {
  2714. drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
  2715. uint32_t old_write_domain, old_read_domains;
  2716. int ret;
  2717. /* Not valid to be called on unbound objects. */
  2718. if (!i915_gem_obj_ggtt_bound(obj))
  2719. return -EINVAL;
  2720. if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
  2721. return 0;
  2722. ret = i915_gem_object_wait_rendering(obj, !write);
  2723. if (ret)
  2724. return ret;
  2725. i915_gem_object_flush_cpu_write_domain(obj);
  2726. /* Serialise direct access to this object with the barriers for
  2727. * coherent writes from the GPU, by effectively invalidating the
  2728. * GTT domain upon first access.
  2729. */
  2730. if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
  2731. mb();
  2732. old_write_domain = obj->base.write_domain;
  2733. old_read_domains = obj->base.read_domains;
  2734. /* It should now be out of any other write domains, and we can update
  2735. * the domain values for our changes.
  2736. */
  2737. BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
  2738. obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
  2739. if (write) {
  2740. obj->base.read_domains = I915_GEM_DOMAIN_GTT;
  2741. obj->base.write_domain = I915_GEM_DOMAIN_GTT;
  2742. obj->dirty = 1;
  2743. }
  2744. trace_i915_gem_object_change_domain(obj,
  2745. old_read_domains,
  2746. old_write_domain);
  2747. /* And bump the LRU for this access */
  2748. if (i915_gem_object_is_inactive(obj))
  2749. list_move_tail(&obj->mm_list,
  2750. &dev_priv->gtt.base.inactive_list);
  2751. return 0;
  2752. }
  2753. int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
  2754. enum i915_cache_level cache_level)
  2755. {
  2756. struct drm_device *dev = obj->base.dev;
  2757. drm_i915_private_t *dev_priv = dev->dev_private;
  2758. struct i915_vma *vma = i915_gem_obj_to_vma(obj, &dev_priv->gtt.base);
  2759. int ret;
  2760. if (obj->cache_level == cache_level)
  2761. return 0;
  2762. if (obj->pin_count) {
  2763. DRM_DEBUG("can not change the cache level of pinned objects\n");
  2764. return -EBUSY;
  2765. }
  2766. if (vma && !i915_gem_valid_gtt_space(dev, &vma->node, cache_level)) {
  2767. ret = i915_gem_object_unbind(obj);
  2768. if (ret)
  2769. return ret;
  2770. }
  2771. if (i915_gem_obj_ggtt_bound(obj)) {
  2772. ret = i915_gem_object_finish_gpu(obj);
  2773. if (ret)
  2774. return ret;
  2775. i915_gem_object_finish_gtt(obj);
  2776. /* Before SandyBridge, you could not use tiling or fence
  2777. * registers with snooped memory, so relinquish any fences
  2778. * currently pointing to our region in the aperture.
  2779. */
  2780. if (INTEL_INFO(dev)->gen < 6) {
  2781. ret = i915_gem_object_put_fence(obj);
  2782. if (ret)
  2783. return ret;
  2784. }
  2785. if (obj->has_global_gtt_mapping)
  2786. i915_gem_gtt_bind_object(obj, cache_level);
  2787. if (obj->has_aliasing_ppgtt_mapping)
  2788. i915_ppgtt_bind_object(dev_priv->mm.aliasing_ppgtt,
  2789. obj, cache_level);
  2790. i915_gem_obj_to_vma(obj, &dev_priv->gtt.base)->node.color = cache_level;
  2791. }
  2792. if (cache_level == I915_CACHE_NONE) {
  2793. u32 old_read_domains, old_write_domain;
  2794. /* If we're coming from LLC cached, then we haven't
  2795. * actually been tracking whether the data is in the
  2796. * CPU cache or not, since we only allow one bit set
  2797. * in obj->write_domain and have been skipping the clflushes.
  2798. * Just set it to the CPU cache for now.
  2799. */
  2800. WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
  2801. WARN_ON(obj->base.read_domains & ~I915_GEM_DOMAIN_CPU);
  2802. old_read_domains = obj->base.read_domains;
  2803. old_write_domain = obj->base.write_domain;
  2804. obj->base.read_domains = I915_GEM_DOMAIN_CPU;
  2805. obj->base.write_domain = I915_GEM_DOMAIN_CPU;
  2806. trace_i915_gem_object_change_domain(obj,
  2807. old_read_domains,
  2808. old_write_domain);
  2809. }
  2810. obj->cache_level = cache_level;
  2811. i915_gem_verify_gtt(dev);
  2812. return 0;
  2813. }
  2814. int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
  2815. struct drm_file *file)
  2816. {
  2817. struct drm_i915_gem_caching *args = data;
  2818. struct drm_i915_gem_object *obj;
  2819. int ret;
  2820. ret = i915_mutex_lock_interruptible(dev);
  2821. if (ret)
  2822. return ret;
  2823. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  2824. if (&obj->base == NULL) {
  2825. ret = -ENOENT;
  2826. goto unlock;
  2827. }
  2828. args->caching = obj->cache_level != I915_CACHE_NONE;
  2829. drm_gem_object_unreference(&obj->base);
  2830. unlock:
  2831. mutex_unlock(&dev->struct_mutex);
  2832. return ret;
  2833. }
  2834. int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
  2835. struct drm_file *file)
  2836. {
  2837. struct drm_i915_gem_caching *args = data;
  2838. struct drm_i915_gem_object *obj;
  2839. enum i915_cache_level level;
  2840. int ret;
  2841. switch (args->caching) {
  2842. case I915_CACHING_NONE:
  2843. level = I915_CACHE_NONE;
  2844. break;
  2845. case I915_CACHING_CACHED:
  2846. level = I915_CACHE_LLC;
  2847. break;
  2848. default:
  2849. return -EINVAL;
  2850. }
  2851. ret = i915_mutex_lock_interruptible(dev);
  2852. if (ret)
  2853. return ret;
  2854. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  2855. if (&obj->base == NULL) {
  2856. ret = -ENOENT;
  2857. goto unlock;
  2858. }
  2859. ret = i915_gem_object_set_cache_level(obj, level);
  2860. drm_gem_object_unreference(&obj->base);
  2861. unlock:
  2862. mutex_unlock(&dev->struct_mutex);
  2863. return ret;
  2864. }
  2865. /*
  2866. * Prepare buffer for display plane (scanout, cursors, etc).
  2867. * Can be called from an uninterruptible phase (modesetting) and allows
  2868. * any flushes to be pipelined (for pageflips).
  2869. */
  2870. int
  2871. i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
  2872. u32 alignment,
  2873. struct intel_ring_buffer *pipelined)
  2874. {
  2875. u32 old_read_domains, old_write_domain;
  2876. int ret;
  2877. if (pipelined != obj->ring) {
  2878. ret = i915_gem_object_sync(obj, pipelined);
  2879. if (ret)
  2880. return ret;
  2881. }
  2882. /* The display engine is not coherent with the LLC cache on gen6. As
  2883. * a result, we make sure that the pinning that is about to occur is
  2884. * done with uncached PTEs. This is lowest common denominator for all
  2885. * chipsets.
  2886. *
  2887. * However for gen6+, we could do better by using the GFDT bit instead
  2888. * of uncaching, which would allow us to flush all the LLC-cached data
  2889. * with that bit in the PTE to main memory with just one PIPE_CONTROL.
  2890. */
  2891. ret = i915_gem_object_set_cache_level(obj, I915_CACHE_NONE);
  2892. if (ret)
  2893. return ret;
  2894. /* As the user may map the buffer once pinned in the display plane
  2895. * (e.g. libkms for the bootup splash), we have to ensure that we
  2896. * always use map_and_fenceable for all scanout buffers.
  2897. */
  2898. ret = i915_gem_obj_ggtt_pin(obj, alignment, true, false);
  2899. if (ret)
  2900. return ret;
  2901. i915_gem_object_flush_cpu_write_domain(obj);
  2902. old_write_domain = obj->base.write_domain;
  2903. old_read_domains = obj->base.read_domains;
  2904. /* It should now be out of any other write domains, and we can update
  2905. * the domain values for our changes.
  2906. */
  2907. obj->base.write_domain = 0;
  2908. obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
  2909. trace_i915_gem_object_change_domain(obj,
  2910. old_read_domains,
  2911. old_write_domain);
  2912. return 0;
  2913. }
  2914. int
  2915. i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
  2916. {
  2917. int ret;
  2918. if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
  2919. return 0;
  2920. ret = i915_gem_object_wait_rendering(obj, false);
  2921. if (ret)
  2922. return ret;
  2923. /* Ensure that we invalidate the GPU's caches and TLBs. */
  2924. obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
  2925. return 0;
  2926. }
  2927. /**
  2928. * Moves a single object to the CPU read, and possibly write domain.
  2929. *
  2930. * This function returns when the move is complete, including waiting on
  2931. * flushes to occur.
  2932. */
  2933. int
  2934. i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
  2935. {
  2936. uint32_t old_write_domain, old_read_domains;
  2937. int ret;
  2938. if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
  2939. return 0;
  2940. ret = i915_gem_object_wait_rendering(obj, !write);
  2941. if (ret)
  2942. return ret;
  2943. i915_gem_object_flush_gtt_write_domain(obj);
  2944. old_write_domain = obj->base.write_domain;
  2945. old_read_domains = obj->base.read_domains;
  2946. /* Flush the CPU cache if it's still invalid. */
  2947. if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
  2948. i915_gem_clflush_object(obj);
  2949. obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
  2950. }
  2951. /* It should now be out of any other write domains, and we can update
  2952. * the domain values for our changes.
  2953. */
  2954. BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
  2955. /* If we're writing through the CPU, then the GPU read domains will
  2956. * need to be invalidated at next use.
  2957. */
  2958. if (write) {
  2959. obj->base.read_domains = I915_GEM_DOMAIN_CPU;
  2960. obj->base.write_domain = I915_GEM_DOMAIN_CPU;
  2961. }
  2962. trace_i915_gem_object_change_domain(obj,
  2963. old_read_domains,
  2964. old_write_domain);
  2965. return 0;
  2966. }
  2967. /* Throttle our rendering by waiting until the ring has completed our requests
  2968. * emitted over 20 msec ago.
  2969. *
  2970. * Note that if we were to use the current jiffies each time around the loop,
  2971. * we wouldn't escape the function with any frames outstanding if the time to
  2972. * render a frame was over 20ms.
  2973. *
  2974. * This should get us reasonable parallelism between CPU and GPU but also
  2975. * relatively low latency when blocking on a particular request to finish.
  2976. */
  2977. static int
  2978. i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
  2979. {
  2980. struct drm_i915_private *dev_priv = dev->dev_private;
  2981. struct drm_i915_file_private *file_priv = file->driver_priv;
  2982. unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
  2983. struct drm_i915_gem_request *request;
  2984. struct intel_ring_buffer *ring = NULL;
  2985. unsigned reset_counter;
  2986. u32 seqno = 0;
  2987. int ret;
  2988. ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
  2989. if (ret)
  2990. return ret;
  2991. ret = i915_gem_check_wedge(&dev_priv->gpu_error, false);
  2992. if (ret)
  2993. return ret;
  2994. spin_lock(&file_priv->mm.lock);
  2995. list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
  2996. if (time_after_eq(request->emitted_jiffies, recent_enough))
  2997. break;
  2998. ring = request->ring;
  2999. seqno = request->seqno;
  3000. }
  3001. reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
  3002. spin_unlock(&file_priv->mm.lock);
  3003. if (seqno == 0)
  3004. return 0;
  3005. ret = __wait_seqno(ring, seqno, reset_counter, true, NULL);
  3006. if (ret == 0)
  3007. queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
  3008. return ret;
  3009. }
  3010. int
  3011. i915_gem_object_pin(struct drm_i915_gem_object *obj,
  3012. struct i915_address_space *vm,
  3013. uint32_t alignment,
  3014. bool map_and_fenceable,
  3015. bool nonblocking)
  3016. {
  3017. int ret;
  3018. if (WARN_ON(obj->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
  3019. return -EBUSY;
  3020. if (i915_gem_obj_ggtt_bound(obj)) {
  3021. if ((alignment && i915_gem_obj_ggtt_offset(obj) & (alignment - 1)) ||
  3022. (map_and_fenceable && !obj->map_and_fenceable)) {
  3023. WARN(obj->pin_count,
  3024. "bo is already pinned with incorrect alignment:"
  3025. " offset=%lx, req.alignment=%x, req.map_and_fenceable=%d,"
  3026. " obj->map_and_fenceable=%d\n",
  3027. i915_gem_obj_ggtt_offset(obj), alignment,
  3028. map_and_fenceable,
  3029. obj->map_and_fenceable);
  3030. ret = i915_gem_object_unbind(obj);
  3031. if (ret)
  3032. return ret;
  3033. }
  3034. }
  3035. if (!i915_gem_obj_ggtt_bound(obj)) {
  3036. struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
  3037. ret = i915_gem_object_bind_to_gtt(obj, alignment,
  3038. map_and_fenceable,
  3039. nonblocking);
  3040. if (ret)
  3041. return ret;
  3042. if (!dev_priv->mm.aliasing_ppgtt)
  3043. i915_gem_gtt_bind_object(obj, obj->cache_level);
  3044. }
  3045. if (!obj->has_global_gtt_mapping && map_and_fenceable)
  3046. i915_gem_gtt_bind_object(obj, obj->cache_level);
  3047. obj->pin_count++;
  3048. obj->pin_mappable |= map_and_fenceable;
  3049. return 0;
  3050. }
  3051. void
  3052. i915_gem_object_unpin(struct drm_i915_gem_object *obj)
  3053. {
  3054. BUG_ON(obj->pin_count == 0);
  3055. BUG_ON(!i915_gem_obj_ggtt_bound(obj));
  3056. if (--obj->pin_count == 0)
  3057. obj->pin_mappable = false;
  3058. }
  3059. int
  3060. i915_gem_pin_ioctl(struct drm_device *dev, void *data,
  3061. struct drm_file *file)
  3062. {
  3063. struct drm_i915_gem_pin *args = data;
  3064. struct drm_i915_gem_object *obj;
  3065. int ret;
  3066. ret = i915_mutex_lock_interruptible(dev);
  3067. if (ret)
  3068. return ret;
  3069. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  3070. if (&obj->base == NULL) {
  3071. ret = -ENOENT;
  3072. goto unlock;
  3073. }
  3074. if (obj->madv != I915_MADV_WILLNEED) {
  3075. DRM_ERROR("Attempting to pin a purgeable buffer\n");
  3076. ret = -EINVAL;
  3077. goto out;
  3078. }
  3079. if (obj->pin_filp != NULL && obj->pin_filp != file) {
  3080. DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
  3081. args->handle);
  3082. ret = -EINVAL;
  3083. goto out;
  3084. }
  3085. if (obj->user_pin_count == 0) {
  3086. ret = i915_gem_obj_ggtt_pin(obj, args->alignment, true, false);
  3087. if (ret)
  3088. goto out;
  3089. }
  3090. obj->user_pin_count++;
  3091. obj->pin_filp = file;
  3092. /* XXX - flush the CPU caches for pinned objects
  3093. * as the X server doesn't manage domains yet
  3094. */
  3095. i915_gem_object_flush_cpu_write_domain(obj);
  3096. args->offset = i915_gem_obj_ggtt_offset(obj);
  3097. out:
  3098. drm_gem_object_unreference(&obj->base);
  3099. unlock:
  3100. mutex_unlock(&dev->struct_mutex);
  3101. return ret;
  3102. }
  3103. int
  3104. i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
  3105. struct drm_file *file)
  3106. {
  3107. struct drm_i915_gem_pin *args = data;
  3108. struct drm_i915_gem_object *obj;
  3109. int ret;
  3110. ret = i915_mutex_lock_interruptible(dev);
  3111. if (ret)
  3112. return ret;
  3113. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  3114. if (&obj->base == NULL) {
  3115. ret = -ENOENT;
  3116. goto unlock;
  3117. }
  3118. if (obj->pin_filp != file) {
  3119. DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
  3120. args->handle);
  3121. ret = -EINVAL;
  3122. goto out;
  3123. }
  3124. obj->user_pin_count--;
  3125. if (obj->user_pin_count == 0) {
  3126. obj->pin_filp = NULL;
  3127. i915_gem_object_unpin(obj);
  3128. }
  3129. out:
  3130. drm_gem_object_unreference(&obj->base);
  3131. unlock:
  3132. mutex_unlock(&dev->struct_mutex);
  3133. return ret;
  3134. }
  3135. int
  3136. i915_gem_busy_ioctl(struct drm_device *dev, void *data,
  3137. struct drm_file *file)
  3138. {
  3139. struct drm_i915_gem_busy *args = data;
  3140. struct drm_i915_gem_object *obj;
  3141. int ret;
  3142. ret = i915_mutex_lock_interruptible(dev);
  3143. if (ret)
  3144. return ret;
  3145. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  3146. if (&obj->base == NULL) {
  3147. ret = -ENOENT;
  3148. goto unlock;
  3149. }
  3150. /* Count all active objects as busy, even if they are currently not used
  3151. * by the gpu. Users of this interface expect objects to eventually
  3152. * become non-busy without any further actions, therefore emit any
  3153. * necessary flushes here.
  3154. */
  3155. ret = i915_gem_object_flush_active(obj);
  3156. args->busy = obj->active;
  3157. if (obj->ring) {
  3158. BUILD_BUG_ON(I915_NUM_RINGS > 16);
  3159. args->busy |= intel_ring_flag(obj->ring) << 16;
  3160. }
  3161. drm_gem_object_unreference(&obj->base);
  3162. unlock:
  3163. mutex_unlock(&dev->struct_mutex);
  3164. return ret;
  3165. }
  3166. int
  3167. i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
  3168. struct drm_file *file_priv)
  3169. {
  3170. return i915_gem_ring_throttle(dev, file_priv);
  3171. }
  3172. int
  3173. i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
  3174. struct drm_file *file_priv)
  3175. {
  3176. struct drm_i915_gem_madvise *args = data;
  3177. struct drm_i915_gem_object *obj;
  3178. int ret;
  3179. switch (args->madv) {
  3180. case I915_MADV_DONTNEED:
  3181. case I915_MADV_WILLNEED:
  3182. break;
  3183. default:
  3184. return -EINVAL;
  3185. }
  3186. ret = i915_mutex_lock_interruptible(dev);
  3187. if (ret)
  3188. return ret;
  3189. obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
  3190. if (&obj->base == NULL) {
  3191. ret = -ENOENT;
  3192. goto unlock;
  3193. }
  3194. if (obj->pin_count) {
  3195. ret = -EINVAL;
  3196. goto out;
  3197. }
  3198. if (obj->madv != __I915_MADV_PURGED)
  3199. obj->madv = args->madv;
  3200. /* if the object is no longer attached, discard its backing storage */
  3201. if (i915_gem_object_is_purgeable(obj) && obj->pages == NULL)
  3202. i915_gem_object_truncate(obj);
  3203. args->retained = obj->madv != __I915_MADV_PURGED;
  3204. out:
  3205. drm_gem_object_unreference(&obj->base);
  3206. unlock:
  3207. mutex_unlock(&dev->struct_mutex);
  3208. return ret;
  3209. }
  3210. void i915_gem_object_init(struct drm_i915_gem_object *obj,
  3211. const struct drm_i915_gem_object_ops *ops)
  3212. {
  3213. INIT_LIST_HEAD(&obj->mm_list);
  3214. INIT_LIST_HEAD(&obj->global_list);
  3215. INIT_LIST_HEAD(&obj->ring_list);
  3216. INIT_LIST_HEAD(&obj->exec_list);
  3217. INIT_LIST_HEAD(&obj->vma_list);
  3218. obj->ops = ops;
  3219. obj->fence_reg = I915_FENCE_REG_NONE;
  3220. obj->madv = I915_MADV_WILLNEED;
  3221. /* Avoid an unnecessary call to unbind on the first bind. */
  3222. obj->map_and_fenceable = true;
  3223. i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
  3224. }
  3225. static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
  3226. .get_pages = i915_gem_object_get_pages_gtt,
  3227. .put_pages = i915_gem_object_put_pages_gtt,
  3228. };
  3229. struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
  3230. size_t size)
  3231. {
  3232. struct drm_i915_gem_object *obj;
  3233. struct address_space *mapping;
  3234. gfp_t mask;
  3235. obj = i915_gem_object_alloc(dev);
  3236. if (obj == NULL)
  3237. return NULL;
  3238. if (drm_gem_object_init(dev, &obj->base, size) != 0) {
  3239. i915_gem_object_free(obj);
  3240. return NULL;
  3241. }
  3242. mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
  3243. if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
  3244. /* 965gm cannot relocate objects above 4GiB. */
  3245. mask &= ~__GFP_HIGHMEM;
  3246. mask |= __GFP_DMA32;
  3247. }
  3248. mapping = file_inode(obj->base.filp)->i_mapping;
  3249. mapping_set_gfp_mask(mapping, mask);
  3250. i915_gem_object_init(obj, &i915_gem_object_ops);
  3251. obj->base.write_domain = I915_GEM_DOMAIN_CPU;
  3252. obj->base.read_domains = I915_GEM_DOMAIN_CPU;
  3253. if (HAS_LLC(dev)) {
  3254. /* On some devices, we can have the GPU use the LLC (the CPU
  3255. * cache) for about a 10% performance improvement
  3256. * compared to uncached. Graphics requests other than
  3257. * display scanout are coherent with the CPU in
  3258. * accessing this cache. This means in this mode we
  3259. * don't need to clflush on the CPU side, and on the
  3260. * GPU side we only need to flush internal caches to
  3261. * get data visible to the CPU.
  3262. *
  3263. * However, we maintain the display planes as UC, and so
  3264. * need to rebind when first used as such.
  3265. */
  3266. obj->cache_level = I915_CACHE_LLC;
  3267. } else
  3268. obj->cache_level = I915_CACHE_NONE;
  3269. trace_i915_gem_object_create(obj);
  3270. return obj;
  3271. }
  3272. int i915_gem_init_object(struct drm_gem_object *obj)
  3273. {
  3274. BUG();
  3275. return 0;
  3276. }
  3277. void i915_gem_free_object(struct drm_gem_object *gem_obj)
  3278. {
  3279. struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
  3280. struct drm_device *dev = obj->base.dev;
  3281. drm_i915_private_t *dev_priv = dev->dev_private;
  3282. trace_i915_gem_object_destroy(obj);
  3283. if (obj->phys_obj)
  3284. i915_gem_detach_phys_object(dev, obj);
  3285. obj->pin_count = 0;
  3286. if (WARN_ON(i915_gem_object_unbind(obj) == -ERESTARTSYS)) {
  3287. bool was_interruptible;
  3288. was_interruptible = dev_priv->mm.interruptible;
  3289. dev_priv->mm.interruptible = false;
  3290. WARN_ON(i915_gem_object_unbind(obj));
  3291. dev_priv->mm.interruptible = was_interruptible;
  3292. }
  3293. /* Stolen objects don't hold a ref, but do hold pin count. Fix that up
  3294. * before progressing. */
  3295. if (obj->stolen)
  3296. i915_gem_object_unpin_pages(obj);
  3297. if (WARN_ON(obj->pages_pin_count))
  3298. obj->pages_pin_count = 0;
  3299. i915_gem_object_put_pages(obj);
  3300. i915_gem_object_free_mmap_offset(obj);
  3301. i915_gem_object_release_stolen(obj);
  3302. BUG_ON(obj->pages);
  3303. if (obj->base.import_attach)
  3304. drm_prime_gem_destroy(&obj->base, NULL);
  3305. drm_gem_object_release(&obj->base);
  3306. i915_gem_info_remove_obj(dev_priv, obj->base.size);
  3307. kfree(obj->bit_17);
  3308. i915_gem_object_free(obj);
  3309. }
  3310. struct i915_vma *i915_gem_vma_create(struct drm_i915_gem_object *obj,
  3311. struct i915_address_space *vm)
  3312. {
  3313. struct i915_vma *vma = kzalloc(sizeof(*vma), GFP_KERNEL);
  3314. if (vma == NULL)
  3315. return ERR_PTR(-ENOMEM);
  3316. INIT_LIST_HEAD(&vma->vma_link);
  3317. vma->vm = vm;
  3318. vma->obj = obj;
  3319. return vma;
  3320. }
  3321. void i915_gem_vma_destroy(struct i915_vma *vma)
  3322. {
  3323. WARN_ON(vma->node.allocated);
  3324. kfree(vma);
  3325. }
  3326. int
  3327. i915_gem_idle(struct drm_device *dev)
  3328. {
  3329. drm_i915_private_t *dev_priv = dev->dev_private;
  3330. int ret;
  3331. if (dev_priv->ums.mm_suspended) {
  3332. mutex_unlock(&dev->struct_mutex);
  3333. return 0;
  3334. }
  3335. ret = i915_gpu_idle(dev);
  3336. if (ret) {
  3337. mutex_unlock(&dev->struct_mutex);
  3338. return ret;
  3339. }
  3340. i915_gem_retire_requests(dev);
  3341. /* Under UMS, be paranoid and evict. */
  3342. if (!drm_core_check_feature(dev, DRIVER_MODESET))
  3343. i915_gem_evict_everything(dev);
  3344. del_timer_sync(&dev_priv->gpu_error.hangcheck_timer);
  3345. i915_kernel_lost_context(dev);
  3346. i915_gem_cleanup_ringbuffer(dev);
  3347. /* Cancel the retire work handler, which should be idle now. */
  3348. cancel_delayed_work_sync(&dev_priv->mm.retire_work);
  3349. return 0;
  3350. }
  3351. void i915_gem_l3_remap(struct drm_device *dev)
  3352. {
  3353. drm_i915_private_t *dev_priv = dev->dev_private;
  3354. u32 misccpctl;
  3355. int i;
  3356. if (!HAS_L3_GPU_CACHE(dev))
  3357. return;
  3358. if (!dev_priv->l3_parity.remap_info)
  3359. return;
  3360. misccpctl = I915_READ(GEN7_MISCCPCTL);
  3361. I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
  3362. POSTING_READ(GEN7_MISCCPCTL);
  3363. for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
  3364. u32 remap = I915_READ(GEN7_L3LOG_BASE + i);
  3365. if (remap && remap != dev_priv->l3_parity.remap_info[i/4])
  3366. DRM_DEBUG("0x%x was already programmed to %x\n",
  3367. GEN7_L3LOG_BASE + i, remap);
  3368. if (remap && !dev_priv->l3_parity.remap_info[i/4])
  3369. DRM_DEBUG_DRIVER("Clearing remapped register\n");
  3370. I915_WRITE(GEN7_L3LOG_BASE + i, dev_priv->l3_parity.remap_info[i/4]);
  3371. }
  3372. /* Make sure all the writes land before disabling dop clock gating */
  3373. POSTING_READ(GEN7_L3LOG_BASE);
  3374. I915_WRITE(GEN7_MISCCPCTL, misccpctl);
  3375. }
  3376. void i915_gem_init_swizzling(struct drm_device *dev)
  3377. {
  3378. drm_i915_private_t *dev_priv = dev->dev_private;
  3379. if (INTEL_INFO(dev)->gen < 5 ||
  3380. dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
  3381. return;
  3382. I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
  3383. DISP_TILE_SURFACE_SWIZZLING);
  3384. if (IS_GEN5(dev))
  3385. return;
  3386. I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
  3387. if (IS_GEN6(dev))
  3388. I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
  3389. else if (IS_GEN7(dev))
  3390. I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
  3391. else
  3392. BUG();
  3393. }
  3394. static bool
  3395. intel_enable_blt(struct drm_device *dev)
  3396. {
  3397. if (!HAS_BLT(dev))
  3398. return false;
  3399. /* The blitter was dysfunctional on early prototypes */
  3400. if (IS_GEN6(dev) && dev->pdev->revision < 8) {
  3401. DRM_INFO("BLT not supported on this pre-production hardware;"
  3402. " graphics performance will be degraded.\n");
  3403. return false;
  3404. }
  3405. return true;
  3406. }
  3407. static int i915_gem_init_rings(struct drm_device *dev)
  3408. {
  3409. struct drm_i915_private *dev_priv = dev->dev_private;
  3410. int ret;
  3411. ret = intel_init_render_ring_buffer(dev);
  3412. if (ret)
  3413. return ret;
  3414. if (HAS_BSD(dev)) {
  3415. ret = intel_init_bsd_ring_buffer(dev);
  3416. if (ret)
  3417. goto cleanup_render_ring;
  3418. }
  3419. if (intel_enable_blt(dev)) {
  3420. ret = intel_init_blt_ring_buffer(dev);
  3421. if (ret)
  3422. goto cleanup_bsd_ring;
  3423. }
  3424. if (HAS_VEBOX(dev)) {
  3425. ret = intel_init_vebox_ring_buffer(dev);
  3426. if (ret)
  3427. goto cleanup_blt_ring;
  3428. }
  3429. ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
  3430. if (ret)
  3431. goto cleanup_vebox_ring;
  3432. return 0;
  3433. cleanup_vebox_ring:
  3434. intel_cleanup_ring_buffer(&dev_priv->ring[VECS]);
  3435. cleanup_blt_ring:
  3436. intel_cleanup_ring_buffer(&dev_priv->ring[BCS]);
  3437. cleanup_bsd_ring:
  3438. intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
  3439. cleanup_render_ring:
  3440. intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
  3441. return ret;
  3442. }
  3443. int
  3444. i915_gem_init_hw(struct drm_device *dev)
  3445. {
  3446. drm_i915_private_t *dev_priv = dev->dev_private;
  3447. int ret;
  3448. if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
  3449. return -EIO;
  3450. if (dev_priv->ellc_size)
  3451. I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
  3452. if (HAS_PCH_NOP(dev)) {
  3453. u32 temp = I915_READ(GEN7_MSG_CTL);
  3454. temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
  3455. I915_WRITE(GEN7_MSG_CTL, temp);
  3456. }
  3457. i915_gem_l3_remap(dev);
  3458. i915_gem_init_swizzling(dev);
  3459. ret = i915_gem_init_rings(dev);
  3460. if (ret)
  3461. return ret;
  3462. /*
  3463. * XXX: There was some w/a described somewhere suggesting loading
  3464. * contexts before PPGTT.
  3465. */
  3466. i915_gem_context_init(dev);
  3467. if (dev_priv->mm.aliasing_ppgtt) {
  3468. ret = dev_priv->mm.aliasing_ppgtt->enable(dev);
  3469. if (ret) {
  3470. i915_gem_cleanup_aliasing_ppgtt(dev);
  3471. DRM_INFO("PPGTT enable failed. This is not fatal, but unexpected\n");
  3472. }
  3473. }
  3474. return 0;
  3475. }
  3476. int i915_gem_init(struct drm_device *dev)
  3477. {
  3478. struct drm_i915_private *dev_priv = dev->dev_private;
  3479. int ret;
  3480. mutex_lock(&dev->struct_mutex);
  3481. if (IS_VALLEYVIEW(dev)) {
  3482. /* VLVA0 (potential hack), BIOS isn't actually waking us */
  3483. I915_WRITE(VLV_GTLC_WAKE_CTRL, 1);
  3484. if (wait_for((I915_READ(VLV_GTLC_PW_STATUS) & 1) == 1, 10))
  3485. DRM_DEBUG_DRIVER("allow wake ack timed out\n");
  3486. }
  3487. i915_gem_init_global_gtt(dev);
  3488. ret = i915_gem_init_hw(dev);
  3489. mutex_unlock(&dev->struct_mutex);
  3490. if (ret) {
  3491. i915_gem_cleanup_aliasing_ppgtt(dev);
  3492. return ret;
  3493. }
  3494. /* Allow hardware batchbuffers unless told otherwise, but not for KMS. */
  3495. if (!drm_core_check_feature(dev, DRIVER_MODESET))
  3496. dev_priv->dri1.allow_batchbuffer = 1;
  3497. return 0;
  3498. }
  3499. void
  3500. i915_gem_cleanup_ringbuffer(struct drm_device *dev)
  3501. {
  3502. drm_i915_private_t *dev_priv = dev->dev_private;
  3503. struct intel_ring_buffer *ring;
  3504. int i;
  3505. for_each_ring(ring, dev_priv, i)
  3506. intel_cleanup_ring_buffer(ring);
  3507. }
  3508. int
  3509. i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
  3510. struct drm_file *file_priv)
  3511. {
  3512. struct drm_i915_private *dev_priv = dev->dev_private;
  3513. int ret;
  3514. if (drm_core_check_feature(dev, DRIVER_MODESET))
  3515. return 0;
  3516. if (i915_reset_in_progress(&dev_priv->gpu_error)) {
  3517. DRM_ERROR("Reenabling wedged hardware, good luck\n");
  3518. atomic_set(&dev_priv->gpu_error.reset_counter, 0);
  3519. }
  3520. mutex_lock(&dev->struct_mutex);
  3521. dev_priv->ums.mm_suspended = 0;
  3522. ret = i915_gem_init_hw(dev);
  3523. if (ret != 0) {
  3524. mutex_unlock(&dev->struct_mutex);
  3525. return ret;
  3526. }
  3527. BUG_ON(!list_empty(&dev_priv->gtt.base.active_list));
  3528. mutex_unlock(&dev->struct_mutex);
  3529. ret = drm_irq_install(dev);
  3530. if (ret)
  3531. goto cleanup_ringbuffer;
  3532. return 0;
  3533. cleanup_ringbuffer:
  3534. mutex_lock(&dev->struct_mutex);
  3535. i915_gem_cleanup_ringbuffer(dev);
  3536. dev_priv->ums.mm_suspended = 1;
  3537. mutex_unlock(&dev->struct_mutex);
  3538. return ret;
  3539. }
  3540. int
  3541. i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
  3542. struct drm_file *file_priv)
  3543. {
  3544. struct drm_i915_private *dev_priv = dev->dev_private;
  3545. int ret;
  3546. if (drm_core_check_feature(dev, DRIVER_MODESET))
  3547. return 0;
  3548. drm_irq_uninstall(dev);
  3549. mutex_lock(&dev->struct_mutex);
  3550. ret = i915_gem_idle(dev);
  3551. /* Hack! Don't let anybody do execbuf while we don't control the chip.
  3552. * We need to replace this with a semaphore, or something.
  3553. * And not confound ums.mm_suspended!
  3554. */
  3555. if (ret != 0)
  3556. dev_priv->ums.mm_suspended = 1;
  3557. mutex_unlock(&dev->struct_mutex);
  3558. return ret;
  3559. }
  3560. void
  3561. i915_gem_lastclose(struct drm_device *dev)
  3562. {
  3563. int ret;
  3564. if (drm_core_check_feature(dev, DRIVER_MODESET))
  3565. return;
  3566. mutex_lock(&dev->struct_mutex);
  3567. ret = i915_gem_idle(dev);
  3568. if (ret)
  3569. DRM_ERROR("failed to idle hardware: %d\n", ret);
  3570. mutex_unlock(&dev->struct_mutex);
  3571. }
  3572. static void
  3573. init_ring_lists(struct intel_ring_buffer *ring)
  3574. {
  3575. INIT_LIST_HEAD(&ring->active_list);
  3576. INIT_LIST_HEAD(&ring->request_list);
  3577. }
  3578. static void i915_init_vm(struct drm_i915_private *dev_priv,
  3579. struct i915_address_space *vm)
  3580. {
  3581. vm->dev = dev_priv->dev;
  3582. INIT_LIST_HEAD(&vm->active_list);
  3583. INIT_LIST_HEAD(&vm->inactive_list);
  3584. INIT_LIST_HEAD(&vm->global_link);
  3585. list_add(&vm->global_link, &dev_priv->vm_list);
  3586. }
  3587. void
  3588. i915_gem_load(struct drm_device *dev)
  3589. {
  3590. drm_i915_private_t *dev_priv = dev->dev_private;
  3591. int i;
  3592. dev_priv->slab =
  3593. kmem_cache_create("i915_gem_object",
  3594. sizeof(struct drm_i915_gem_object), 0,
  3595. SLAB_HWCACHE_ALIGN,
  3596. NULL);
  3597. INIT_LIST_HEAD(&dev_priv->vm_list);
  3598. i915_init_vm(dev_priv, &dev_priv->gtt.base);
  3599. INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
  3600. INIT_LIST_HEAD(&dev_priv->mm.bound_list);
  3601. INIT_LIST_HEAD(&dev_priv->mm.fence_list);
  3602. for (i = 0; i < I915_NUM_RINGS; i++)
  3603. init_ring_lists(&dev_priv->ring[i]);
  3604. for (i = 0; i < I915_MAX_NUM_FENCES; i++)
  3605. INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
  3606. INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
  3607. i915_gem_retire_work_handler);
  3608. init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
  3609. /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
  3610. if (IS_GEN3(dev)) {
  3611. I915_WRITE(MI_ARB_STATE,
  3612. _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
  3613. }
  3614. dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
  3615. /* Old X drivers will take 0-2 for front, back, depth buffers */
  3616. if (!drm_core_check_feature(dev, DRIVER_MODESET))
  3617. dev_priv->fence_reg_start = 3;
  3618. if (INTEL_INFO(dev)->gen >= 7 && !IS_VALLEYVIEW(dev))
  3619. dev_priv->num_fence_regs = 32;
  3620. else if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
  3621. dev_priv->num_fence_regs = 16;
  3622. else
  3623. dev_priv->num_fence_regs = 8;
  3624. /* Initialize fence registers to zero */
  3625. INIT_LIST_HEAD(&dev_priv->mm.fence_list);
  3626. i915_gem_restore_fences(dev);
  3627. i915_gem_detect_bit_6_swizzle(dev);
  3628. init_waitqueue_head(&dev_priv->pending_flip_queue);
  3629. dev_priv->mm.interruptible = true;
  3630. dev_priv->mm.inactive_shrinker.shrink = i915_gem_inactive_shrink;
  3631. dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
  3632. register_shrinker(&dev_priv->mm.inactive_shrinker);
  3633. }
  3634. /*
  3635. * Create a physically contiguous memory object for this object
  3636. * e.g. for cursor + overlay regs
  3637. */
  3638. static int i915_gem_init_phys_object(struct drm_device *dev,
  3639. int id, int size, int align)
  3640. {
  3641. drm_i915_private_t *dev_priv = dev->dev_private;
  3642. struct drm_i915_gem_phys_object *phys_obj;
  3643. int ret;
  3644. if (dev_priv->mm.phys_objs[id - 1] || !size)
  3645. return 0;
  3646. phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
  3647. if (!phys_obj)
  3648. return -ENOMEM;
  3649. phys_obj->id = id;
  3650. phys_obj->handle = drm_pci_alloc(dev, size, align);
  3651. if (!phys_obj->handle) {
  3652. ret = -ENOMEM;
  3653. goto kfree_obj;
  3654. }
  3655. #ifdef CONFIG_X86
  3656. set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
  3657. #endif
  3658. dev_priv->mm.phys_objs[id - 1] = phys_obj;
  3659. return 0;
  3660. kfree_obj:
  3661. kfree(phys_obj);
  3662. return ret;
  3663. }
  3664. static void i915_gem_free_phys_object(struct drm_device *dev, int id)
  3665. {
  3666. drm_i915_private_t *dev_priv = dev->dev_private;
  3667. struct drm_i915_gem_phys_object *phys_obj;
  3668. if (!dev_priv->mm.phys_objs[id - 1])
  3669. return;
  3670. phys_obj = dev_priv->mm.phys_objs[id - 1];
  3671. if (phys_obj->cur_obj) {
  3672. i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
  3673. }
  3674. #ifdef CONFIG_X86
  3675. set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
  3676. #endif
  3677. drm_pci_free(dev, phys_obj->handle);
  3678. kfree(phys_obj);
  3679. dev_priv->mm.phys_objs[id - 1] = NULL;
  3680. }
  3681. void i915_gem_free_all_phys_object(struct drm_device *dev)
  3682. {
  3683. int i;
  3684. for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
  3685. i915_gem_free_phys_object(dev, i);
  3686. }
  3687. void i915_gem_detach_phys_object(struct drm_device *dev,
  3688. struct drm_i915_gem_object *obj)
  3689. {
  3690. struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
  3691. char *vaddr;
  3692. int i;
  3693. int page_count;
  3694. if (!obj->phys_obj)
  3695. return;
  3696. vaddr = obj->phys_obj->handle->vaddr;
  3697. page_count = obj->base.size / PAGE_SIZE;
  3698. for (i = 0; i < page_count; i++) {
  3699. struct page *page = shmem_read_mapping_page(mapping, i);
  3700. if (!IS_ERR(page)) {
  3701. char *dst = kmap_atomic(page);
  3702. memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE);
  3703. kunmap_atomic(dst);
  3704. drm_clflush_pages(&page, 1);
  3705. set_page_dirty(page);
  3706. mark_page_accessed(page);
  3707. page_cache_release(page);
  3708. }
  3709. }
  3710. i915_gem_chipset_flush(dev);
  3711. obj->phys_obj->cur_obj = NULL;
  3712. obj->phys_obj = NULL;
  3713. }
  3714. int
  3715. i915_gem_attach_phys_object(struct drm_device *dev,
  3716. struct drm_i915_gem_object *obj,
  3717. int id,
  3718. int align)
  3719. {
  3720. struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
  3721. drm_i915_private_t *dev_priv = dev->dev_private;
  3722. int ret = 0;
  3723. int page_count;
  3724. int i;
  3725. if (id > I915_MAX_PHYS_OBJECT)
  3726. return -EINVAL;
  3727. if (obj->phys_obj) {
  3728. if (obj->phys_obj->id == id)
  3729. return 0;
  3730. i915_gem_detach_phys_object(dev, obj);
  3731. }
  3732. /* create a new object */
  3733. if (!dev_priv->mm.phys_objs[id - 1]) {
  3734. ret = i915_gem_init_phys_object(dev, id,
  3735. obj->base.size, align);
  3736. if (ret) {
  3737. DRM_ERROR("failed to init phys object %d size: %zu\n",
  3738. id, obj->base.size);
  3739. return ret;
  3740. }
  3741. }
  3742. /* bind to the object */
  3743. obj->phys_obj = dev_priv->mm.phys_objs[id - 1];
  3744. obj->phys_obj->cur_obj = obj;
  3745. page_count = obj->base.size / PAGE_SIZE;
  3746. for (i = 0; i < page_count; i++) {
  3747. struct page *page;
  3748. char *dst, *src;
  3749. page = shmem_read_mapping_page(mapping, i);
  3750. if (IS_ERR(page))
  3751. return PTR_ERR(page);
  3752. src = kmap_atomic(page);
  3753. dst = obj->phys_obj->handle->vaddr + (i * PAGE_SIZE);
  3754. memcpy(dst, src, PAGE_SIZE);
  3755. kunmap_atomic(src);
  3756. mark_page_accessed(page);
  3757. page_cache_release(page);
  3758. }
  3759. return 0;
  3760. }
  3761. static int
  3762. i915_gem_phys_pwrite(struct drm_device *dev,
  3763. struct drm_i915_gem_object *obj,
  3764. struct drm_i915_gem_pwrite *args,
  3765. struct drm_file *file_priv)
  3766. {
  3767. void *vaddr = obj->phys_obj->handle->vaddr + args->offset;
  3768. char __user *user_data = to_user_ptr(args->data_ptr);
  3769. if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
  3770. unsigned long unwritten;
  3771. /* The physical object once assigned is fixed for the lifetime
  3772. * of the obj, so we can safely drop the lock and continue
  3773. * to access vaddr.
  3774. */
  3775. mutex_unlock(&dev->struct_mutex);
  3776. unwritten = copy_from_user(vaddr, user_data, args->size);
  3777. mutex_lock(&dev->struct_mutex);
  3778. if (unwritten)
  3779. return -EFAULT;
  3780. }
  3781. i915_gem_chipset_flush(dev);
  3782. return 0;
  3783. }
  3784. void i915_gem_release(struct drm_device *dev, struct drm_file *file)
  3785. {
  3786. struct drm_i915_file_private *file_priv = file->driver_priv;
  3787. /* Clean up our request list when the client is going away, so that
  3788. * later retire_requests won't dereference our soon-to-be-gone
  3789. * file_priv.
  3790. */
  3791. spin_lock(&file_priv->mm.lock);
  3792. while (!list_empty(&file_priv->mm.request_list)) {
  3793. struct drm_i915_gem_request *request;
  3794. request = list_first_entry(&file_priv->mm.request_list,
  3795. struct drm_i915_gem_request,
  3796. client_list);
  3797. list_del(&request->client_list);
  3798. request->file_priv = NULL;
  3799. }
  3800. spin_unlock(&file_priv->mm.lock);
  3801. }
  3802. static bool mutex_is_locked_by(struct mutex *mutex, struct task_struct *task)
  3803. {
  3804. if (!mutex_is_locked(mutex))
  3805. return false;
  3806. #if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_MUTEXES)
  3807. return mutex->owner == task;
  3808. #else
  3809. /* Since UP may be pre-empted, we cannot assume that we own the lock */
  3810. return false;
  3811. #endif
  3812. }
  3813. static int
  3814. i915_gem_inactive_shrink(struct shrinker *shrinker, struct shrink_control *sc)
  3815. {
  3816. struct drm_i915_private *dev_priv =
  3817. container_of(shrinker,
  3818. struct drm_i915_private,
  3819. mm.inactive_shrinker);
  3820. struct drm_device *dev = dev_priv->dev;
  3821. struct drm_i915_gem_object *obj;
  3822. int nr_to_scan = sc->nr_to_scan;
  3823. bool unlock = true;
  3824. int cnt;
  3825. if (!mutex_trylock(&dev->struct_mutex)) {
  3826. if (!mutex_is_locked_by(&dev->struct_mutex, current))
  3827. return 0;
  3828. if (dev_priv->mm.shrinker_no_lock_stealing)
  3829. return 0;
  3830. unlock = false;
  3831. }
  3832. if (nr_to_scan) {
  3833. nr_to_scan -= i915_gem_purge(dev_priv, nr_to_scan);
  3834. if (nr_to_scan > 0)
  3835. nr_to_scan -= __i915_gem_shrink(dev_priv, nr_to_scan,
  3836. false);
  3837. if (nr_to_scan > 0)
  3838. i915_gem_shrink_all(dev_priv);
  3839. }
  3840. cnt = 0;
  3841. list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list)
  3842. if (obj->pages_pin_count == 0)
  3843. cnt += obj->base.size >> PAGE_SHIFT;
  3844. list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
  3845. if (obj->active)
  3846. continue;
  3847. if (obj->pin_count == 0 && obj->pages_pin_count == 0)
  3848. cnt += obj->base.size >> PAGE_SHIFT;
  3849. }
  3850. if (unlock)
  3851. mutex_unlock(&dev->struct_mutex);
  3852. return cnt;
  3853. }
  3854. /* All the new VM stuff */
  3855. unsigned long i915_gem_obj_offset(struct drm_i915_gem_object *o,
  3856. struct i915_address_space *vm)
  3857. {
  3858. struct drm_i915_private *dev_priv = o->base.dev->dev_private;
  3859. struct i915_vma *vma;
  3860. if (vm == &dev_priv->mm.aliasing_ppgtt->base)
  3861. vm = &dev_priv->gtt.base;
  3862. BUG_ON(list_empty(&o->vma_list));
  3863. list_for_each_entry(vma, &o->vma_list, vma_link) {
  3864. if (vma->vm == vm)
  3865. return vma->node.start;
  3866. }
  3867. return -1;
  3868. }
  3869. bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
  3870. struct i915_address_space *vm)
  3871. {
  3872. struct i915_vma *vma;
  3873. list_for_each_entry(vma, &o->vma_list, vma_link)
  3874. if (vma->vm == vm)
  3875. return true;
  3876. return false;
  3877. }
  3878. bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
  3879. {
  3880. struct drm_i915_private *dev_priv = o->base.dev->dev_private;
  3881. struct i915_address_space *vm;
  3882. list_for_each_entry(vm, &dev_priv->vm_list, global_link)
  3883. if (i915_gem_obj_bound(o, vm))
  3884. return true;
  3885. return false;
  3886. }
  3887. unsigned long i915_gem_obj_size(struct drm_i915_gem_object *o,
  3888. struct i915_address_space *vm)
  3889. {
  3890. struct drm_i915_private *dev_priv = o->base.dev->dev_private;
  3891. struct i915_vma *vma;
  3892. if (vm == &dev_priv->mm.aliasing_ppgtt->base)
  3893. vm = &dev_priv->gtt.base;
  3894. BUG_ON(list_empty(&o->vma_list));
  3895. list_for_each_entry(vma, &o->vma_list, vma_link)
  3896. if (vma->vm == vm)
  3897. return vma->node.size;
  3898. return 0;
  3899. }
  3900. struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
  3901. struct i915_address_space *vm)
  3902. {
  3903. struct i915_vma *vma;
  3904. list_for_each_entry(vma, &obj->vma_list, vma_link)
  3905. if (vma->vm == vm)
  3906. return vma;
  3907. return NULL;
  3908. }