bcache.h 36 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243
  1. #ifndef _BCACHE_H
  2. #define _BCACHE_H
  3. /*
  4. * SOME HIGH LEVEL CODE DOCUMENTATION:
  5. *
  6. * Bcache mostly works with cache sets, cache devices, and backing devices.
  7. *
  8. * Support for multiple cache devices hasn't quite been finished off yet, but
  9. * it's about 95% plumbed through. A cache set and its cache devices is sort of
  10. * like a md raid array and its component devices. Most of the code doesn't care
  11. * about individual cache devices, the main abstraction is the cache set.
  12. *
  13. * Multiple cache devices is intended to give us the ability to mirror dirty
  14. * cached data and metadata, without mirroring clean cached data.
  15. *
  16. * Backing devices are different, in that they have a lifetime independent of a
  17. * cache set. When you register a newly formatted backing device it'll come up
  18. * in passthrough mode, and then you can attach and detach a backing device from
  19. * a cache set at runtime - while it's mounted and in use. Detaching implicitly
  20. * invalidates any cached data for that backing device.
  21. *
  22. * A cache set can have multiple (many) backing devices attached to it.
  23. *
  24. * There's also flash only volumes - this is the reason for the distinction
  25. * between struct cached_dev and struct bcache_device. A flash only volume
  26. * works much like a bcache device that has a backing device, except the
  27. * "cached" data is always dirty. The end result is that we get thin
  28. * provisioning with very little additional code.
  29. *
  30. * Flash only volumes work but they're not production ready because the moving
  31. * garbage collector needs more work. More on that later.
  32. *
  33. * BUCKETS/ALLOCATION:
  34. *
  35. * Bcache is primarily designed for caching, which means that in normal
  36. * operation all of our available space will be allocated. Thus, we need an
  37. * efficient way of deleting things from the cache so we can write new things to
  38. * it.
  39. *
  40. * To do this, we first divide the cache device up into buckets. A bucket is the
  41. * unit of allocation; they're typically around 1 mb - anywhere from 128k to 2M+
  42. * works efficiently.
  43. *
  44. * Each bucket has a 16 bit priority, and an 8 bit generation associated with
  45. * it. The gens and priorities for all the buckets are stored contiguously and
  46. * packed on disk (in a linked list of buckets - aside from the superblock, all
  47. * of bcache's metadata is stored in buckets).
  48. *
  49. * The priority is used to implement an LRU. We reset a bucket's priority when
  50. * we allocate it or on cache it, and every so often we decrement the priority
  51. * of each bucket. It could be used to implement something more sophisticated,
  52. * if anyone ever gets around to it.
  53. *
  54. * The generation is used for invalidating buckets. Each pointer also has an 8
  55. * bit generation embedded in it; for a pointer to be considered valid, its gen
  56. * must match the gen of the bucket it points into. Thus, to reuse a bucket all
  57. * we have to do is increment its gen (and write its new gen to disk; we batch
  58. * this up).
  59. *
  60. * Bcache is entirely COW - we never write twice to a bucket, even buckets that
  61. * contain metadata (including btree nodes).
  62. *
  63. * THE BTREE:
  64. *
  65. * Bcache is in large part design around the btree.
  66. *
  67. * At a high level, the btree is just an index of key -> ptr tuples.
  68. *
  69. * Keys represent extents, and thus have a size field. Keys also have a variable
  70. * number of pointers attached to them (potentially zero, which is handy for
  71. * invalidating the cache).
  72. *
  73. * The key itself is an inode:offset pair. The inode number corresponds to a
  74. * backing device or a flash only volume. The offset is the ending offset of the
  75. * extent within the inode - not the starting offset; this makes lookups
  76. * slightly more convenient.
  77. *
  78. * Pointers contain the cache device id, the offset on that device, and an 8 bit
  79. * generation number. More on the gen later.
  80. *
  81. * Index lookups are not fully abstracted - cache lookups in particular are
  82. * still somewhat mixed in with the btree code, but things are headed in that
  83. * direction.
  84. *
  85. * Updates are fairly well abstracted, though. There are two different ways of
  86. * updating the btree; insert and replace.
  87. *
  88. * BTREE_INSERT will just take a list of keys and insert them into the btree -
  89. * overwriting (possibly only partially) any extents they overlap with. This is
  90. * used to update the index after a write.
  91. *
  92. * BTREE_REPLACE is really cmpxchg(); it inserts a key into the btree iff it is
  93. * overwriting a key that matches another given key. This is used for inserting
  94. * data into the cache after a cache miss, and for background writeback, and for
  95. * the moving garbage collector.
  96. *
  97. * There is no "delete" operation; deleting things from the index is
  98. * accomplished by either by invalidating pointers (by incrementing a bucket's
  99. * gen) or by inserting a key with 0 pointers - which will overwrite anything
  100. * previously present at that location in the index.
  101. *
  102. * This means that there are always stale/invalid keys in the btree. They're
  103. * filtered out by the code that iterates through a btree node, and removed when
  104. * a btree node is rewritten.
  105. *
  106. * BTREE NODES:
  107. *
  108. * Our unit of allocation is a bucket, and we we can't arbitrarily allocate and
  109. * free smaller than a bucket - so, that's how big our btree nodes are.
  110. *
  111. * (If buckets are really big we'll only use part of the bucket for a btree node
  112. * - no less than 1/4th - but a bucket still contains no more than a single
  113. * btree node. I'd actually like to change this, but for now we rely on the
  114. * bucket's gen for deleting btree nodes when we rewrite/split a node.)
  115. *
  116. * Anyways, btree nodes are big - big enough to be inefficient with a textbook
  117. * btree implementation.
  118. *
  119. * The way this is solved is that btree nodes are internally log structured; we
  120. * can append new keys to an existing btree node without rewriting it. This
  121. * means each set of keys we write is sorted, but the node is not.
  122. *
  123. * We maintain this log structure in memory - keeping 1Mb of keys sorted would
  124. * be expensive, and we have to distinguish between the keys we have written and
  125. * the keys we haven't. So to do a lookup in a btree node, we have to search
  126. * each sorted set. But we do merge written sets together lazily, so the cost of
  127. * these extra searches is quite low (normally most of the keys in a btree node
  128. * will be in one big set, and then there'll be one or two sets that are much
  129. * smaller).
  130. *
  131. * This log structure makes bcache's btree more of a hybrid between a
  132. * conventional btree and a compacting data structure, with some of the
  133. * advantages of both.
  134. *
  135. * GARBAGE COLLECTION:
  136. *
  137. * We can't just invalidate any bucket - it might contain dirty data or
  138. * metadata. If it once contained dirty data, other writes might overwrite it
  139. * later, leaving no valid pointers into that bucket in the index.
  140. *
  141. * Thus, the primary purpose of garbage collection is to find buckets to reuse.
  142. * It also counts how much valid data it each bucket currently contains, so that
  143. * allocation can reuse buckets sooner when they've been mostly overwritten.
  144. *
  145. * It also does some things that are really internal to the btree
  146. * implementation. If a btree node contains pointers that are stale by more than
  147. * some threshold, it rewrites the btree node to avoid the bucket's generation
  148. * wrapping around. It also merges adjacent btree nodes if they're empty enough.
  149. *
  150. * THE JOURNAL:
  151. *
  152. * Bcache's journal is not necessary for consistency; we always strictly
  153. * order metadata writes so that the btree and everything else is consistent on
  154. * disk in the event of an unclean shutdown, and in fact bcache had writeback
  155. * caching (with recovery from unclean shutdown) before journalling was
  156. * implemented.
  157. *
  158. * Rather, the journal is purely a performance optimization; we can't complete a
  159. * write until we've updated the index on disk, otherwise the cache would be
  160. * inconsistent in the event of an unclean shutdown. This means that without the
  161. * journal, on random write workloads we constantly have to update all the leaf
  162. * nodes in the btree, and those writes will be mostly empty (appending at most
  163. * a few keys each) - highly inefficient in terms of amount of metadata writes,
  164. * and it puts more strain on the various btree resorting/compacting code.
  165. *
  166. * The journal is just a log of keys we've inserted; on startup we just reinsert
  167. * all the keys in the open journal entries. That means that when we're updating
  168. * a node in the btree, we can wait until a 4k block of keys fills up before
  169. * writing them out.
  170. *
  171. * For simplicity, we only journal updates to leaf nodes; updates to parent
  172. * nodes are rare enough (since our leaf nodes are huge) that it wasn't worth
  173. * the complexity to deal with journalling them (in particular, journal replay)
  174. * - updates to non leaf nodes just happen synchronously (see btree_split()).
  175. */
  176. #define pr_fmt(fmt) "bcache: %s() " fmt "\n", __func__
  177. #include <linux/bio.h>
  178. #include <linux/kobject.h>
  179. #include <linux/list.h>
  180. #include <linux/mutex.h>
  181. #include <linux/rbtree.h>
  182. #include <linux/rwsem.h>
  183. #include <linux/types.h>
  184. #include <linux/workqueue.h>
  185. #include "util.h"
  186. #include "closure.h"
  187. struct bucket {
  188. atomic_t pin;
  189. uint16_t prio;
  190. uint8_t gen;
  191. uint8_t disk_gen;
  192. uint8_t last_gc; /* Most out of date gen in the btree */
  193. uint8_t gc_gen;
  194. uint16_t gc_mark;
  195. };
  196. /*
  197. * I'd use bitfields for these, but I don't trust the compiler not to screw me
  198. * as multiple threads touch struct bucket without locking
  199. */
  200. BITMASK(GC_MARK, struct bucket, gc_mark, 0, 2);
  201. #define GC_MARK_RECLAIMABLE 0
  202. #define GC_MARK_DIRTY 1
  203. #define GC_MARK_METADATA 2
  204. BITMASK(GC_SECTORS_USED, struct bucket, gc_mark, 2, 14);
  205. struct bkey {
  206. uint64_t high;
  207. uint64_t low;
  208. uint64_t ptr[];
  209. };
  210. /* Enough for a key with 6 pointers */
  211. #define BKEY_PAD 8
  212. #define BKEY_PADDED(key) \
  213. union { struct bkey key; uint64_t key ## _pad[BKEY_PAD]; }
  214. /* Version 0: Cache device
  215. * Version 1: Backing device
  216. * Version 2: Seed pointer into btree node checksum
  217. * Version 3: Cache device with new UUID format
  218. * Version 4: Backing device with data offset
  219. */
  220. #define BCACHE_SB_VERSION_CDEV 0
  221. #define BCACHE_SB_VERSION_BDEV 1
  222. #define BCACHE_SB_VERSION_CDEV_WITH_UUID 3
  223. #define BCACHE_SB_VERSION_BDEV_WITH_OFFSET 4
  224. #define BCACHE_SB_MAX_VERSION 4
  225. #define SB_SECTOR 8
  226. #define SB_SIZE 4096
  227. #define SB_LABEL_SIZE 32
  228. #define SB_JOURNAL_BUCKETS 256U
  229. /* SB_JOURNAL_BUCKETS must be divisible by BITS_PER_LONG */
  230. #define MAX_CACHES_PER_SET 8
  231. #define BDEV_DATA_START_DEFAULT 16 /* sectors */
  232. struct cache_sb {
  233. uint64_t csum;
  234. uint64_t offset; /* sector where this sb was written */
  235. uint64_t version;
  236. uint8_t magic[16];
  237. uint8_t uuid[16];
  238. union {
  239. uint8_t set_uuid[16];
  240. uint64_t set_magic;
  241. };
  242. uint8_t label[SB_LABEL_SIZE];
  243. uint64_t flags;
  244. uint64_t seq;
  245. uint64_t pad[8];
  246. union {
  247. struct {
  248. /* Cache devices */
  249. uint64_t nbuckets; /* device size */
  250. uint16_t block_size; /* sectors */
  251. uint16_t bucket_size; /* sectors */
  252. uint16_t nr_in_set;
  253. uint16_t nr_this_dev;
  254. };
  255. struct {
  256. /* Backing devices */
  257. uint64_t data_offset;
  258. /*
  259. * block_size from the cache device section is still used by
  260. * backing devices, so don't add anything here until we fix
  261. * things to not need it for backing devices anymore
  262. */
  263. };
  264. };
  265. uint32_t last_mount; /* time_t */
  266. uint16_t first_bucket;
  267. union {
  268. uint16_t njournal_buckets;
  269. uint16_t keys;
  270. };
  271. uint64_t d[SB_JOURNAL_BUCKETS]; /* journal buckets */
  272. };
  273. BITMASK(CACHE_SYNC, struct cache_sb, flags, 0, 1);
  274. BITMASK(CACHE_DISCARD, struct cache_sb, flags, 1, 1);
  275. BITMASK(CACHE_REPLACEMENT, struct cache_sb, flags, 2, 3);
  276. #define CACHE_REPLACEMENT_LRU 0U
  277. #define CACHE_REPLACEMENT_FIFO 1U
  278. #define CACHE_REPLACEMENT_RANDOM 2U
  279. BITMASK(BDEV_CACHE_MODE, struct cache_sb, flags, 0, 4);
  280. #define CACHE_MODE_WRITETHROUGH 0U
  281. #define CACHE_MODE_WRITEBACK 1U
  282. #define CACHE_MODE_WRITEAROUND 2U
  283. #define CACHE_MODE_NONE 3U
  284. BITMASK(BDEV_STATE, struct cache_sb, flags, 61, 2);
  285. #define BDEV_STATE_NONE 0U
  286. #define BDEV_STATE_CLEAN 1U
  287. #define BDEV_STATE_DIRTY 2U
  288. #define BDEV_STATE_STALE 3U
  289. /* Version 1: Seed pointer into btree node checksum
  290. */
  291. #define BCACHE_BSET_VERSION 1
  292. /*
  293. * This is the on disk format for btree nodes - a btree node on disk is a list
  294. * of these; within each set the keys are sorted
  295. */
  296. struct bset {
  297. uint64_t csum;
  298. uint64_t magic;
  299. uint64_t seq;
  300. uint32_t version;
  301. uint32_t keys;
  302. union {
  303. struct bkey start[0];
  304. uint64_t d[0];
  305. };
  306. };
  307. /*
  308. * On disk format for priorities and gens - see super.c near prio_write() for
  309. * more.
  310. */
  311. struct prio_set {
  312. uint64_t csum;
  313. uint64_t magic;
  314. uint64_t seq;
  315. uint32_t version;
  316. uint32_t pad;
  317. uint64_t next_bucket;
  318. struct bucket_disk {
  319. uint16_t prio;
  320. uint8_t gen;
  321. } __attribute((packed)) data[];
  322. };
  323. struct uuid_entry {
  324. union {
  325. struct {
  326. uint8_t uuid[16];
  327. uint8_t label[32];
  328. uint32_t first_reg;
  329. uint32_t last_reg;
  330. uint32_t invalidated;
  331. uint32_t flags;
  332. /* Size of flash only volumes */
  333. uint64_t sectors;
  334. };
  335. uint8_t pad[128];
  336. };
  337. };
  338. BITMASK(UUID_FLASH_ONLY, struct uuid_entry, flags, 0, 1);
  339. #include "journal.h"
  340. #include "stats.h"
  341. struct search;
  342. struct btree;
  343. struct keybuf;
  344. struct keybuf_key {
  345. struct rb_node node;
  346. BKEY_PADDED(key);
  347. void *private;
  348. };
  349. typedef bool (keybuf_pred_fn)(struct keybuf *, struct bkey *);
  350. struct keybuf {
  351. keybuf_pred_fn *key_predicate;
  352. struct bkey last_scanned;
  353. spinlock_t lock;
  354. /*
  355. * Beginning and end of range in rb tree - so that we can skip taking
  356. * lock and checking the rb tree when we need to check for overlapping
  357. * keys.
  358. */
  359. struct bkey start;
  360. struct bkey end;
  361. struct rb_root keys;
  362. #define KEYBUF_NR 100
  363. DECLARE_ARRAY_ALLOCATOR(struct keybuf_key, freelist, KEYBUF_NR);
  364. };
  365. struct bio_split_pool {
  366. struct bio_set *bio_split;
  367. mempool_t *bio_split_hook;
  368. };
  369. struct bio_split_hook {
  370. struct closure cl;
  371. struct bio_split_pool *p;
  372. struct bio *bio;
  373. bio_end_io_t *bi_end_io;
  374. void *bi_private;
  375. };
  376. struct bcache_device {
  377. struct closure cl;
  378. struct kobject kobj;
  379. struct cache_set *c;
  380. unsigned id;
  381. #define BCACHEDEVNAME_SIZE 12
  382. char name[BCACHEDEVNAME_SIZE];
  383. struct gendisk *disk;
  384. /* If nonzero, we're closing */
  385. atomic_t closing;
  386. /* If nonzero, we're detaching/unregistering from cache set */
  387. atomic_t detaching;
  388. atomic_long_t sectors_dirty;
  389. unsigned long sectors_dirty_gc;
  390. unsigned long sectors_dirty_last;
  391. long sectors_dirty_derivative;
  392. mempool_t *unaligned_bvec;
  393. struct bio_set *bio_split;
  394. unsigned data_csum:1;
  395. int (*cache_miss)(struct btree *, struct search *,
  396. struct bio *, unsigned);
  397. int (*ioctl) (struct bcache_device *, fmode_t, unsigned, unsigned long);
  398. struct bio_split_pool bio_split_hook;
  399. };
  400. struct io {
  401. /* Used to track sequential IO so it can be skipped */
  402. struct hlist_node hash;
  403. struct list_head lru;
  404. unsigned long jiffies;
  405. unsigned sequential;
  406. sector_t last;
  407. };
  408. struct cached_dev {
  409. struct list_head list;
  410. struct bcache_device disk;
  411. struct block_device *bdev;
  412. struct cache_sb sb;
  413. struct bio sb_bio;
  414. struct bio_vec sb_bv[1];
  415. struct closure_with_waitlist sb_write;
  416. /* Refcount on the cache set. Always nonzero when we're caching. */
  417. atomic_t count;
  418. struct work_struct detach;
  419. /*
  420. * Device might not be running if it's dirty and the cache set hasn't
  421. * showed up yet.
  422. */
  423. atomic_t running;
  424. /*
  425. * Writes take a shared lock from start to finish; scanning for dirty
  426. * data to refill the rb tree requires an exclusive lock.
  427. */
  428. struct rw_semaphore writeback_lock;
  429. /*
  430. * Nonzero, and writeback has a refcount (d->count), iff there is dirty
  431. * data in the cache. Protected by writeback_lock; must have an
  432. * shared lock to set and exclusive lock to clear.
  433. */
  434. atomic_t has_dirty;
  435. struct ratelimit writeback_rate;
  436. struct delayed_work writeback_rate_update;
  437. /*
  438. * Internal to the writeback code, so read_dirty() can keep track of
  439. * where it's at.
  440. */
  441. sector_t last_read;
  442. /* Number of writeback bios in flight */
  443. atomic_t in_flight;
  444. struct closure_with_timer writeback;
  445. struct closure_waitlist writeback_wait;
  446. struct keybuf writeback_keys;
  447. /* For tracking sequential IO */
  448. #define RECENT_IO_BITS 7
  449. #define RECENT_IO (1 << RECENT_IO_BITS)
  450. struct io io[RECENT_IO];
  451. struct hlist_head io_hash[RECENT_IO + 1];
  452. struct list_head io_lru;
  453. spinlock_t io_lock;
  454. struct cache_accounting accounting;
  455. /* The rest of this all shows up in sysfs */
  456. unsigned sequential_cutoff;
  457. unsigned readahead;
  458. unsigned sequential_merge:1;
  459. unsigned verify:1;
  460. unsigned writeback_metadata:1;
  461. unsigned writeback_running:1;
  462. unsigned char writeback_percent;
  463. unsigned writeback_delay;
  464. int writeback_rate_change;
  465. int64_t writeback_rate_derivative;
  466. uint64_t writeback_rate_target;
  467. unsigned writeback_rate_update_seconds;
  468. unsigned writeback_rate_d_term;
  469. unsigned writeback_rate_p_term_inverse;
  470. unsigned writeback_rate_d_smooth;
  471. };
  472. enum alloc_watermarks {
  473. WATERMARK_PRIO,
  474. WATERMARK_METADATA,
  475. WATERMARK_MOVINGGC,
  476. WATERMARK_NONE,
  477. WATERMARK_MAX
  478. };
  479. struct cache {
  480. struct cache_set *set;
  481. struct cache_sb sb;
  482. struct bio sb_bio;
  483. struct bio_vec sb_bv[1];
  484. struct kobject kobj;
  485. struct block_device *bdev;
  486. unsigned watermark[WATERMARK_MAX];
  487. struct task_struct *alloc_thread;
  488. struct closure prio;
  489. struct prio_set *disk_buckets;
  490. /*
  491. * When allocating new buckets, prio_write() gets first dibs - since we
  492. * may not be allocate at all without writing priorities and gens.
  493. * prio_buckets[] contains the last buckets we wrote priorities to (so
  494. * gc can mark them as metadata), prio_next[] contains the buckets
  495. * allocated for the next prio write.
  496. */
  497. uint64_t *prio_buckets;
  498. uint64_t *prio_last_buckets;
  499. /*
  500. * free: Buckets that are ready to be used
  501. *
  502. * free_inc: Incoming buckets - these are buckets that currently have
  503. * cached data in them, and we can't reuse them until after we write
  504. * their new gen to disk. After prio_write() finishes writing the new
  505. * gens/prios, they'll be moved to the free list (and possibly discarded
  506. * in the process)
  507. *
  508. * unused: GC found nothing pointing into these buckets (possibly
  509. * because all the data they contained was overwritten), so we only
  510. * need to discard them before they can be moved to the free list.
  511. */
  512. DECLARE_FIFO(long, free);
  513. DECLARE_FIFO(long, free_inc);
  514. DECLARE_FIFO(long, unused);
  515. size_t fifo_last_bucket;
  516. /* Allocation stuff: */
  517. struct bucket *buckets;
  518. DECLARE_HEAP(struct bucket *, heap);
  519. /*
  520. * max(gen - disk_gen) for all buckets. When it gets too big we have to
  521. * call prio_write() to keep gens from wrapping.
  522. */
  523. uint8_t need_save_prio;
  524. unsigned gc_move_threshold;
  525. /*
  526. * If nonzero, we know we aren't going to find any buckets to invalidate
  527. * until a gc finishes - otherwise we could pointlessly burn a ton of
  528. * cpu
  529. */
  530. unsigned invalidate_needs_gc:1;
  531. bool discard; /* Get rid of? */
  532. /*
  533. * We preallocate structs for issuing discards to buckets, and keep them
  534. * on this list when they're not in use; do_discard() issues discards
  535. * whenever there's work to do and is called by free_some_buckets() and
  536. * when a discard finishes.
  537. */
  538. atomic_t discards_in_flight;
  539. struct list_head discards;
  540. struct journal_device journal;
  541. /* The rest of this all shows up in sysfs */
  542. #define IO_ERROR_SHIFT 20
  543. atomic_t io_errors;
  544. atomic_t io_count;
  545. atomic_long_t meta_sectors_written;
  546. atomic_long_t btree_sectors_written;
  547. atomic_long_t sectors_written;
  548. struct bio_split_pool bio_split_hook;
  549. };
  550. struct gc_stat {
  551. size_t nodes;
  552. size_t key_bytes;
  553. size_t nkeys;
  554. uint64_t data; /* sectors */
  555. uint64_t dirty; /* sectors */
  556. unsigned in_use; /* percent */
  557. };
  558. /*
  559. * Flag bits, for how the cache set is shutting down, and what phase it's at:
  560. *
  561. * CACHE_SET_UNREGISTERING means we're not just shutting down, we're detaching
  562. * all the backing devices first (their cached data gets invalidated, and they
  563. * won't automatically reattach).
  564. *
  565. * CACHE_SET_STOPPING always gets set first when we're closing down a cache set;
  566. * we'll continue to run normally for awhile with CACHE_SET_STOPPING set (i.e.
  567. * flushing dirty data).
  568. *
  569. * CACHE_SET_STOPPING_2 gets set at the last phase, when it's time to shut down
  570. * the allocation thread.
  571. */
  572. #define CACHE_SET_UNREGISTERING 0
  573. #define CACHE_SET_STOPPING 1
  574. #define CACHE_SET_STOPPING_2 2
  575. struct cache_set {
  576. struct closure cl;
  577. struct list_head list;
  578. struct kobject kobj;
  579. struct kobject internal;
  580. struct dentry *debug;
  581. struct cache_accounting accounting;
  582. unsigned long flags;
  583. struct cache_sb sb;
  584. struct cache *cache[MAX_CACHES_PER_SET];
  585. struct cache *cache_by_alloc[MAX_CACHES_PER_SET];
  586. int caches_loaded;
  587. struct bcache_device **devices;
  588. struct list_head cached_devs;
  589. uint64_t cached_dev_sectors;
  590. struct closure caching;
  591. struct closure_with_waitlist sb_write;
  592. mempool_t *search;
  593. mempool_t *bio_meta;
  594. struct bio_set *bio_split;
  595. /* For the btree cache */
  596. struct shrinker shrink;
  597. /* For the btree cache and anything allocation related */
  598. struct mutex bucket_lock;
  599. /* log2(bucket_size), in sectors */
  600. unsigned short bucket_bits;
  601. /* log2(block_size), in sectors */
  602. unsigned short block_bits;
  603. /*
  604. * Default number of pages for a new btree node - may be less than a
  605. * full bucket
  606. */
  607. unsigned btree_pages;
  608. /*
  609. * Lists of struct btrees; lru is the list for structs that have memory
  610. * allocated for actual btree node, freed is for structs that do not.
  611. *
  612. * We never free a struct btree, except on shutdown - we just put it on
  613. * the btree_cache_freed list and reuse it later. This simplifies the
  614. * code, and it doesn't cost us much memory as the memory usage is
  615. * dominated by buffers that hold the actual btree node data and those
  616. * can be freed - and the number of struct btrees allocated is
  617. * effectively bounded.
  618. *
  619. * btree_cache_freeable effectively is a small cache - we use it because
  620. * high order page allocations can be rather expensive, and it's quite
  621. * common to delete and allocate btree nodes in quick succession. It
  622. * should never grow past ~2-3 nodes in practice.
  623. */
  624. struct list_head btree_cache;
  625. struct list_head btree_cache_freeable;
  626. struct list_head btree_cache_freed;
  627. /* Number of elements in btree_cache + btree_cache_freeable lists */
  628. unsigned bucket_cache_used;
  629. /*
  630. * If we need to allocate memory for a new btree node and that
  631. * allocation fails, we can cannibalize another node in the btree cache
  632. * to satisfy the allocation. However, only one thread can be doing this
  633. * at a time, for obvious reasons - try_harder and try_wait are
  634. * basically a lock for this that we can wait on asynchronously. The
  635. * btree_root() macro releases the lock when it returns.
  636. */
  637. struct closure *try_harder;
  638. struct closure_waitlist try_wait;
  639. uint64_t try_harder_start;
  640. /*
  641. * When we free a btree node, we increment the gen of the bucket the
  642. * node is in - but we can't rewrite the prios and gens until we
  643. * finished whatever it is we were doing, otherwise after a crash the
  644. * btree node would be freed but for say a split, we might not have the
  645. * pointers to the new nodes inserted into the btree yet.
  646. *
  647. * This is a refcount that blocks prio_write() until the new keys are
  648. * written.
  649. */
  650. atomic_t prio_blocked;
  651. struct closure_waitlist bucket_wait;
  652. /*
  653. * For any bio we don't skip we subtract the number of sectors from
  654. * rescale; when it hits 0 we rescale all the bucket priorities.
  655. */
  656. atomic_t rescale;
  657. /*
  658. * When we invalidate buckets, we use both the priority and the amount
  659. * of good data to determine which buckets to reuse first - to weight
  660. * those together consistently we keep track of the smallest nonzero
  661. * priority of any bucket.
  662. */
  663. uint16_t min_prio;
  664. /*
  665. * max(gen - gc_gen) for all buckets. When it gets too big we have to gc
  666. * to keep gens from wrapping around.
  667. */
  668. uint8_t need_gc;
  669. struct gc_stat gc_stats;
  670. size_t nbuckets;
  671. struct closure_with_waitlist gc;
  672. /* Where in the btree gc currently is */
  673. struct bkey gc_done;
  674. /*
  675. * The allocation code needs gc_mark in struct bucket to be correct, but
  676. * it's not while a gc is in progress. Protected by bucket_lock.
  677. */
  678. int gc_mark_valid;
  679. /* Counts how many sectors bio_insert has added to the cache */
  680. atomic_t sectors_to_gc;
  681. struct closure moving_gc;
  682. struct closure_waitlist moving_gc_wait;
  683. struct keybuf moving_gc_keys;
  684. /* Number of moving GC bios in flight */
  685. atomic_t in_flight;
  686. struct btree *root;
  687. #ifdef CONFIG_BCACHE_DEBUG
  688. struct btree *verify_data;
  689. struct mutex verify_lock;
  690. #endif
  691. unsigned nr_uuids;
  692. struct uuid_entry *uuids;
  693. BKEY_PADDED(uuid_bucket);
  694. struct closure_with_waitlist uuid_write;
  695. /*
  696. * A btree node on disk could have too many bsets for an iterator to fit
  697. * on the stack - have to dynamically allocate them
  698. */
  699. mempool_t *fill_iter;
  700. /*
  701. * btree_sort() is a merge sort and requires temporary space - single
  702. * element mempool
  703. */
  704. struct mutex sort_lock;
  705. struct bset *sort;
  706. /* List of buckets we're currently writing data to */
  707. struct list_head data_buckets;
  708. spinlock_t data_bucket_lock;
  709. struct journal journal;
  710. #define CONGESTED_MAX 1024
  711. unsigned congested_last_us;
  712. atomic_t congested;
  713. /* The rest of this all shows up in sysfs */
  714. unsigned congested_read_threshold_us;
  715. unsigned congested_write_threshold_us;
  716. spinlock_t sort_time_lock;
  717. struct time_stats sort_time;
  718. struct time_stats btree_gc_time;
  719. struct time_stats btree_split_time;
  720. spinlock_t btree_read_time_lock;
  721. struct time_stats btree_read_time;
  722. struct time_stats try_harder_time;
  723. atomic_long_t cache_read_races;
  724. atomic_long_t writeback_keys_done;
  725. atomic_long_t writeback_keys_failed;
  726. unsigned error_limit;
  727. unsigned error_decay;
  728. unsigned short journal_delay_ms;
  729. unsigned verify:1;
  730. unsigned key_merging_disabled:1;
  731. unsigned gc_always_rewrite:1;
  732. unsigned shrinker_disabled:1;
  733. unsigned copy_gc_enabled:1;
  734. #define BUCKET_HASH_BITS 12
  735. struct hlist_head bucket_hash[1 << BUCKET_HASH_BITS];
  736. };
  737. static inline bool key_merging_disabled(struct cache_set *c)
  738. {
  739. #ifdef CONFIG_BCACHE_DEBUG
  740. return c->key_merging_disabled;
  741. #else
  742. return 0;
  743. #endif
  744. }
  745. static inline bool SB_IS_BDEV(const struct cache_sb *sb)
  746. {
  747. return sb->version == BCACHE_SB_VERSION_BDEV
  748. || sb->version == BCACHE_SB_VERSION_BDEV_WITH_OFFSET;
  749. }
  750. struct bbio {
  751. unsigned submit_time_us;
  752. union {
  753. struct bkey key;
  754. uint64_t _pad[3];
  755. /*
  756. * We only need pad = 3 here because we only ever carry around a
  757. * single pointer - i.e. the pointer we're doing io to/from.
  758. */
  759. };
  760. struct bio bio;
  761. };
  762. static inline unsigned local_clock_us(void)
  763. {
  764. return local_clock() >> 10;
  765. }
  766. #define BTREE_PRIO USHRT_MAX
  767. #define INITIAL_PRIO 32768
  768. #define btree_bytes(c) ((c)->btree_pages * PAGE_SIZE)
  769. #define btree_blocks(b) \
  770. ((unsigned) (KEY_SIZE(&b->key) >> (b)->c->block_bits))
  771. #define btree_default_blocks(c) \
  772. ((unsigned) ((PAGE_SECTORS * (c)->btree_pages) >> (c)->block_bits))
  773. #define bucket_pages(c) ((c)->sb.bucket_size / PAGE_SECTORS)
  774. #define bucket_bytes(c) ((c)->sb.bucket_size << 9)
  775. #define block_bytes(c) ((c)->sb.block_size << 9)
  776. #define __set_bytes(i, k) (sizeof(*(i)) + (k) * sizeof(uint64_t))
  777. #define set_bytes(i) __set_bytes(i, i->keys)
  778. #define __set_blocks(i, k, c) DIV_ROUND_UP(__set_bytes(i, k), block_bytes(c))
  779. #define set_blocks(i, c) __set_blocks(i, (i)->keys, c)
  780. #define node(i, j) ((struct bkey *) ((i)->d + (j)))
  781. #define end(i) node(i, (i)->keys)
  782. #define index(i, b) \
  783. ((size_t) (((void *) i - (void *) (b)->sets[0].data) / \
  784. block_bytes(b->c)))
  785. #define btree_data_space(b) (PAGE_SIZE << (b)->page_order)
  786. #define prios_per_bucket(c) \
  787. ((bucket_bytes(c) - sizeof(struct prio_set)) / \
  788. sizeof(struct bucket_disk))
  789. #define prio_buckets(c) \
  790. DIV_ROUND_UP((size_t) (c)->sb.nbuckets, prios_per_bucket(c))
  791. #define JSET_MAGIC 0x245235c1a3625032ULL
  792. #define PSET_MAGIC 0x6750e15f87337f91ULL
  793. #define BSET_MAGIC 0x90135c78b99e07f5ULL
  794. #define jset_magic(c) ((c)->sb.set_magic ^ JSET_MAGIC)
  795. #define pset_magic(c) ((c)->sb.set_magic ^ PSET_MAGIC)
  796. #define bset_magic(c) ((c)->sb.set_magic ^ BSET_MAGIC)
  797. /* Bkey fields: all units are in sectors */
  798. #define KEY_FIELD(name, field, offset, size) \
  799. BITMASK(name, struct bkey, field, offset, size)
  800. #define PTR_FIELD(name, offset, size) \
  801. static inline uint64_t name(const struct bkey *k, unsigned i) \
  802. { return (k->ptr[i] >> offset) & ~(((uint64_t) ~0) << size); } \
  803. \
  804. static inline void SET_##name(struct bkey *k, unsigned i, uint64_t v)\
  805. { \
  806. k->ptr[i] &= ~(~((uint64_t) ~0 << size) << offset); \
  807. k->ptr[i] |= v << offset; \
  808. }
  809. KEY_FIELD(KEY_PTRS, high, 60, 3)
  810. KEY_FIELD(HEADER_SIZE, high, 58, 2)
  811. KEY_FIELD(KEY_CSUM, high, 56, 2)
  812. KEY_FIELD(KEY_PINNED, high, 55, 1)
  813. KEY_FIELD(KEY_DIRTY, high, 36, 1)
  814. KEY_FIELD(KEY_SIZE, high, 20, 16)
  815. KEY_FIELD(KEY_INODE, high, 0, 20)
  816. /* Next time I change the on disk format, KEY_OFFSET() won't be 64 bits */
  817. static inline uint64_t KEY_OFFSET(const struct bkey *k)
  818. {
  819. return k->low;
  820. }
  821. static inline void SET_KEY_OFFSET(struct bkey *k, uint64_t v)
  822. {
  823. k->low = v;
  824. }
  825. PTR_FIELD(PTR_DEV, 51, 12)
  826. PTR_FIELD(PTR_OFFSET, 8, 43)
  827. PTR_FIELD(PTR_GEN, 0, 8)
  828. #define PTR_CHECK_DEV ((1 << 12) - 1)
  829. #define PTR(gen, offset, dev) \
  830. ((((uint64_t) dev) << 51) | ((uint64_t) offset) << 8 | gen)
  831. static inline size_t sector_to_bucket(struct cache_set *c, sector_t s)
  832. {
  833. return s >> c->bucket_bits;
  834. }
  835. static inline sector_t bucket_to_sector(struct cache_set *c, size_t b)
  836. {
  837. return ((sector_t) b) << c->bucket_bits;
  838. }
  839. static inline sector_t bucket_remainder(struct cache_set *c, sector_t s)
  840. {
  841. return s & (c->sb.bucket_size - 1);
  842. }
  843. static inline struct cache *PTR_CACHE(struct cache_set *c,
  844. const struct bkey *k,
  845. unsigned ptr)
  846. {
  847. return c->cache[PTR_DEV(k, ptr)];
  848. }
  849. static inline size_t PTR_BUCKET_NR(struct cache_set *c,
  850. const struct bkey *k,
  851. unsigned ptr)
  852. {
  853. return sector_to_bucket(c, PTR_OFFSET(k, ptr));
  854. }
  855. static inline struct bucket *PTR_BUCKET(struct cache_set *c,
  856. const struct bkey *k,
  857. unsigned ptr)
  858. {
  859. return PTR_CACHE(c, k, ptr)->buckets + PTR_BUCKET_NR(c, k, ptr);
  860. }
  861. /* Btree key macros */
  862. /*
  863. * The high bit being set is a relic from when we used it to do binary
  864. * searches - it told you where a key started. It's not used anymore,
  865. * and can probably be safely dropped.
  866. */
  867. #define KEY(dev, sector, len) \
  868. ((struct bkey) { \
  869. .high = (1ULL << 63) | ((uint64_t) (len) << 20) | (dev), \
  870. .low = (sector) \
  871. })
  872. static inline void bkey_init(struct bkey *k)
  873. {
  874. *k = KEY(0, 0, 0);
  875. }
  876. #define KEY_START(k) (KEY_OFFSET(k) - KEY_SIZE(k))
  877. #define START_KEY(k) KEY(KEY_INODE(k), KEY_START(k), 0)
  878. #define MAX_KEY KEY(~(~0 << 20), ((uint64_t) ~0) >> 1, 0)
  879. #define ZERO_KEY KEY(0, 0, 0)
  880. /*
  881. * This is used for various on disk data structures - cache_sb, prio_set, bset,
  882. * jset: The checksum is _always_ the first 8 bytes of these structs
  883. */
  884. #define csum_set(i) \
  885. bch_crc64(((void *) (i)) + sizeof(uint64_t), \
  886. ((void *) end(i)) - (((void *) (i)) + sizeof(uint64_t)))
  887. /* Error handling macros */
  888. #define btree_bug(b, ...) \
  889. do { \
  890. if (bch_cache_set_error((b)->c, __VA_ARGS__)) \
  891. dump_stack(); \
  892. } while (0)
  893. #define cache_bug(c, ...) \
  894. do { \
  895. if (bch_cache_set_error(c, __VA_ARGS__)) \
  896. dump_stack(); \
  897. } while (0)
  898. #define btree_bug_on(cond, b, ...) \
  899. do { \
  900. if (cond) \
  901. btree_bug(b, __VA_ARGS__); \
  902. } while (0)
  903. #define cache_bug_on(cond, c, ...) \
  904. do { \
  905. if (cond) \
  906. cache_bug(c, __VA_ARGS__); \
  907. } while (0)
  908. #define cache_set_err_on(cond, c, ...) \
  909. do { \
  910. if (cond) \
  911. bch_cache_set_error(c, __VA_ARGS__); \
  912. } while (0)
  913. /* Looping macros */
  914. #define for_each_cache(ca, cs, iter) \
  915. for (iter = 0; ca = cs->cache[iter], iter < (cs)->sb.nr_in_set; iter++)
  916. #define for_each_bucket(b, ca) \
  917. for (b = (ca)->buckets + (ca)->sb.first_bucket; \
  918. b < (ca)->buckets + (ca)->sb.nbuckets; b++)
  919. static inline void __bkey_put(struct cache_set *c, struct bkey *k)
  920. {
  921. unsigned i;
  922. for (i = 0; i < KEY_PTRS(k); i++)
  923. atomic_dec_bug(&PTR_BUCKET(c, k, i)->pin);
  924. }
  925. static inline void cached_dev_put(struct cached_dev *dc)
  926. {
  927. if (atomic_dec_and_test(&dc->count))
  928. schedule_work(&dc->detach);
  929. }
  930. static inline bool cached_dev_get(struct cached_dev *dc)
  931. {
  932. if (!atomic_inc_not_zero(&dc->count))
  933. return false;
  934. /* Paired with the mb in cached_dev_attach */
  935. smp_mb__after_atomic_inc();
  936. return true;
  937. }
  938. /*
  939. * bucket_gc_gen() returns the difference between the bucket's current gen and
  940. * the oldest gen of any pointer into that bucket in the btree (last_gc).
  941. *
  942. * bucket_disk_gen() returns the difference between the current gen and the gen
  943. * on disk; they're both used to make sure gens don't wrap around.
  944. */
  945. static inline uint8_t bucket_gc_gen(struct bucket *b)
  946. {
  947. return b->gen - b->last_gc;
  948. }
  949. static inline uint8_t bucket_disk_gen(struct bucket *b)
  950. {
  951. return b->gen - b->disk_gen;
  952. }
  953. #define BUCKET_GC_GEN_MAX 96U
  954. #define BUCKET_DISK_GEN_MAX 64U
  955. #define kobj_attribute_write(n, fn) \
  956. static struct kobj_attribute ksysfs_##n = __ATTR(n, S_IWUSR, NULL, fn)
  957. #define kobj_attribute_rw(n, show, store) \
  958. static struct kobj_attribute ksysfs_##n = \
  959. __ATTR(n, S_IWUSR|S_IRUSR, show, store)
  960. static inline void wake_up_allocators(struct cache_set *c)
  961. {
  962. struct cache *ca;
  963. unsigned i;
  964. for_each_cache(ca, c, i)
  965. wake_up_process(ca->alloc_thread);
  966. }
  967. /* Forward declarations */
  968. void bch_writeback_queue(struct cached_dev *);
  969. void bch_writeback_add(struct cached_dev *, unsigned);
  970. void bch_count_io_errors(struct cache *, int, const char *);
  971. void bch_bbio_count_io_errors(struct cache_set *, struct bio *,
  972. int, const char *);
  973. void bch_bbio_endio(struct cache_set *, struct bio *, int, const char *);
  974. void bch_bbio_free(struct bio *, struct cache_set *);
  975. struct bio *bch_bbio_alloc(struct cache_set *);
  976. struct bio *bch_bio_split(struct bio *, int, gfp_t, struct bio_set *);
  977. void bch_generic_make_request(struct bio *, struct bio_split_pool *);
  978. void __bch_submit_bbio(struct bio *, struct cache_set *);
  979. void bch_submit_bbio(struct bio *, struct cache_set *, struct bkey *, unsigned);
  980. uint8_t bch_inc_gen(struct cache *, struct bucket *);
  981. void bch_rescale_priorities(struct cache_set *, int);
  982. bool bch_bucket_add_unused(struct cache *, struct bucket *);
  983. long bch_bucket_alloc(struct cache *, unsigned, struct closure *);
  984. void bch_bucket_free(struct cache_set *, struct bkey *);
  985. int __bch_bucket_alloc_set(struct cache_set *, unsigned,
  986. struct bkey *, int, struct closure *);
  987. int bch_bucket_alloc_set(struct cache_set *, unsigned,
  988. struct bkey *, int, struct closure *);
  989. __printf(2, 3)
  990. bool bch_cache_set_error(struct cache_set *, const char *, ...);
  991. void bch_prio_write(struct cache *);
  992. void bch_write_bdev_super(struct cached_dev *, struct closure *);
  993. extern struct workqueue_struct *bcache_wq, *bch_gc_wq;
  994. extern const char * const bch_cache_modes[];
  995. extern struct mutex bch_register_lock;
  996. extern struct list_head bch_cache_sets;
  997. extern struct kobj_type bch_cached_dev_ktype;
  998. extern struct kobj_type bch_flash_dev_ktype;
  999. extern struct kobj_type bch_cache_set_ktype;
  1000. extern struct kobj_type bch_cache_set_internal_ktype;
  1001. extern struct kobj_type bch_cache_ktype;
  1002. void bch_cached_dev_release(struct kobject *);
  1003. void bch_flash_dev_release(struct kobject *);
  1004. void bch_cache_set_release(struct kobject *);
  1005. void bch_cache_release(struct kobject *);
  1006. int bch_uuid_write(struct cache_set *);
  1007. void bcache_write_super(struct cache_set *);
  1008. int bch_flash_dev_create(struct cache_set *c, uint64_t size);
  1009. int bch_cached_dev_attach(struct cached_dev *, struct cache_set *);
  1010. void bch_cached_dev_detach(struct cached_dev *);
  1011. void bch_cached_dev_run(struct cached_dev *);
  1012. void bcache_device_stop(struct bcache_device *);
  1013. void bch_cache_set_unregister(struct cache_set *);
  1014. void bch_cache_set_stop(struct cache_set *);
  1015. struct cache_set *bch_cache_set_alloc(struct cache_sb *);
  1016. void bch_btree_cache_free(struct cache_set *);
  1017. int bch_btree_cache_alloc(struct cache_set *);
  1018. void bch_cached_dev_writeback_init(struct cached_dev *);
  1019. void bch_moving_init_cache_set(struct cache_set *);
  1020. int bch_cache_allocator_start(struct cache *ca);
  1021. void bch_cache_allocator_exit(struct cache *ca);
  1022. int bch_cache_allocator_init(struct cache *ca);
  1023. void bch_debug_exit(void);
  1024. int bch_debug_init(struct kobject *);
  1025. void bch_writeback_exit(void);
  1026. int bch_writeback_init(void);
  1027. void bch_request_exit(void);
  1028. int bch_request_init(void);
  1029. void bch_btree_exit(void);
  1030. int bch_btree_init(void);
  1031. #endif /* _BCACHE_H */