mct.c 13 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527
  1. /* linux/arch/arm/mach-exynos4/mct.c
  2. *
  3. * Copyright (c) 2011 Samsung Electronics Co., Ltd.
  4. * http://www.samsung.com
  5. *
  6. * EXYNOS4 MCT(Multi-Core Timer) support
  7. *
  8. * This program is free software; you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License version 2 as
  10. * published by the Free Software Foundation.
  11. */
  12. #include <linux/sched.h>
  13. #include <linux/interrupt.h>
  14. #include <linux/irq.h>
  15. #include <linux/err.h>
  16. #include <linux/clk.h>
  17. #include <linux/clockchips.h>
  18. #include <linux/platform_device.h>
  19. #include <linux/delay.h>
  20. #include <linux/percpu.h>
  21. #include <linux/of.h>
  22. #include <asm/arch_timer.h>
  23. #include <asm/localtimer.h>
  24. #include <plat/cpu.h>
  25. #include <mach/map.h>
  26. #include <mach/irqs.h>
  27. #include <asm/mach/time.h>
  28. #define EXYNOS4_MCTREG(x) (x)
  29. #define EXYNOS4_MCT_G_CNT_L EXYNOS4_MCTREG(0x100)
  30. #define EXYNOS4_MCT_G_CNT_U EXYNOS4_MCTREG(0x104)
  31. #define EXYNOS4_MCT_G_CNT_WSTAT EXYNOS4_MCTREG(0x110)
  32. #define EXYNOS4_MCT_G_COMP0_L EXYNOS4_MCTREG(0x200)
  33. #define EXYNOS4_MCT_G_COMP0_U EXYNOS4_MCTREG(0x204)
  34. #define EXYNOS4_MCT_G_COMP0_ADD_INCR EXYNOS4_MCTREG(0x208)
  35. #define EXYNOS4_MCT_G_TCON EXYNOS4_MCTREG(0x240)
  36. #define EXYNOS4_MCT_G_INT_CSTAT EXYNOS4_MCTREG(0x244)
  37. #define EXYNOS4_MCT_G_INT_ENB EXYNOS4_MCTREG(0x248)
  38. #define EXYNOS4_MCT_G_WSTAT EXYNOS4_MCTREG(0x24C)
  39. #define _EXYNOS4_MCT_L_BASE EXYNOS4_MCTREG(0x300)
  40. #define EXYNOS4_MCT_L_BASE(x) (_EXYNOS4_MCT_L_BASE + (0x100 * x))
  41. #define EXYNOS4_MCT_L_MASK (0xffffff00)
  42. #define MCT_L_TCNTB_OFFSET (0x00)
  43. #define MCT_L_ICNTB_OFFSET (0x08)
  44. #define MCT_L_TCON_OFFSET (0x20)
  45. #define MCT_L_INT_CSTAT_OFFSET (0x30)
  46. #define MCT_L_INT_ENB_OFFSET (0x34)
  47. #define MCT_L_WSTAT_OFFSET (0x40)
  48. #define MCT_G_TCON_START (1 << 8)
  49. #define MCT_G_TCON_COMP0_AUTO_INC (1 << 1)
  50. #define MCT_G_TCON_COMP0_ENABLE (1 << 0)
  51. #define MCT_L_TCON_INTERVAL_MODE (1 << 2)
  52. #define MCT_L_TCON_INT_START (1 << 1)
  53. #define MCT_L_TCON_TIMER_START (1 << 0)
  54. #define TICK_BASE_CNT 1
  55. enum {
  56. MCT_INT_SPI,
  57. MCT_INT_PPI
  58. };
  59. enum {
  60. MCT_G0_IRQ,
  61. MCT_G1_IRQ,
  62. MCT_G2_IRQ,
  63. MCT_G3_IRQ,
  64. MCT_L0_IRQ,
  65. MCT_L1_IRQ,
  66. MCT_L2_IRQ,
  67. MCT_L3_IRQ,
  68. MCT_NR_IRQS,
  69. };
  70. static void __iomem *reg_base;
  71. static unsigned long clk_rate;
  72. static unsigned int mct_int_type;
  73. static int mct_irqs[MCT_NR_IRQS];
  74. struct mct_clock_event_device {
  75. struct clock_event_device *evt;
  76. unsigned long base;
  77. char name[10];
  78. };
  79. static void exynos4_mct_write(unsigned int value, unsigned long offset)
  80. {
  81. unsigned long stat_addr;
  82. u32 mask;
  83. u32 i;
  84. __raw_writel(value, reg_base + offset);
  85. if (likely(offset >= EXYNOS4_MCT_L_BASE(0))) {
  86. stat_addr = (offset & ~EXYNOS4_MCT_L_MASK) + MCT_L_WSTAT_OFFSET;
  87. switch (offset & EXYNOS4_MCT_L_MASK) {
  88. case MCT_L_TCON_OFFSET:
  89. mask = 1 << 3; /* L_TCON write status */
  90. break;
  91. case MCT_L_ICNTB_OFFSET:
  92. mask = 1 << 1; /* L_ICNTB write status */
  93. break;
  94. case MCT_L_TCNTB_OFFSET:
  95. mask = 1 << 0; /* L_TCNTB write status */
  96. break;
  97. default:
  98. return;
  99. }
  100. } else {
  101. switch (offset) {
  102. case EXYNOS4_MCT_G_TCON:
  103. stat_addr = EXYNOS4_MCT_G_WSTAT;
  104. mask = 1 << 16; /* G_TCON write status */
  105. break;
  106. case EXYNOS4_MCT_G_COMP0_L:
  107. stat_addr = EXYNOS4_MCT_G_WSTAT;
  108. mask = 1 << 0; /* G_COMP0_L write status */
  109. break;
  110. case EXYNOS4_MCT_G_COMP0_U:
  111. stat_addr = EXYNOS4_MCT_G_WSTAT;
  112. mask = 1 << 1; /* G_COMP0_U write status */
  113. break;
  114. case EXYNOS4_MCT_G_COMP0_ADD_INCR:
  115. stat_addr = EXYNOS4_MCT_G_WSTAT;
  116. mask = 1 << 2; /* G_COMP0_ADD_INCR w status */
  117. break;
  118. case EXYNOS4_MCT_G_CNT_L:
  119. stat_addr = EXYNOS4_MCT_G_CNT_WSTAT;
  120. mask = 1 << 0; /* G_CNT_L write status */
  121. break;
  122. case EXYNOS4_MCT_G_CNT_U:
  123. stat_addr = EXYNOS4_MCT_G_CNT_WSTAT;
  124. mask = 1 << 1; /* G_CNT_U write status */
  125. break;
  126. default:
  127. return;
  128. }
  129. }
  130. /* Wait maximum 1 ms until written values are applied */
  131. for (i = 0; i < loops_per_jiffy / 1000 * HZ; i++)
  132. if (__raw_readl(reg_base + stat_addr) & mask) {
  133. __raw_writel(mask, reg_base + stat_addr);
  134. return;
  135. }
  136. panic("MCT hangs after writing %d (offset:0x%lx)\n", value, offset);
  137. }
  138. /* Clocksource handling */
  139. static void exynos4_mct_frc_start(u32 hi, u32 lo)
  140. {
  141. u32 reg;
  142. exynos4_mct_write(lo, EXYNOS4_MCT_G_CNT_L);
  143. exynos4_mct_write(hi, EXYNOS4_MCT_G_CNT_U);
  144. reg = __raw_readl(reg_base + EXYNOS4_MCT_G_TCON);
  145. reg |= MCT_G_TCON_START;
  146. exynos4_mct_write(reg, EXYNOS4_MCT_G_TCON);
  147. }
  148. static cycle_t exynos4_frc_read(struct clocksource *cs)
  149. {
  150. unsigned int lo, hi;
  151. u32 hi2 = __raw_readl(reg_base + EXYNOS4_MCT_G_CNT_U);
  152. do {
  153. hi = hi2;
  154. lo = __raw_readl(reg_base + EXYNOS4_MCT_G_CNT_L);
  155. hi2 = __raw_readl(reg_base + EXYNOS4_MCT_G_CNT_U);
  156. } while (hi != hi2);
  157. return ((cycle_t)hi << 32) | lo;
  158. }
  159. static void exynos4_frc_resume(struct clocksource *cs)
  160. {
  161. exynos4_mct_frc_start(0, 0);
  162. }
  163. struct clocksource mct_frc = {
  164. .name = "mct-frc",
  165. .rating = 400,
  166. .read = exynos4_frc_read,
  167. .mask = CLOCKSOURCE_MASK(64),
  168. .flags = CLOCK_SOURCE_IS_CONTINUOUS,
  169. .resume = exynos4_frc_resume,
  170. };
  171. static void __init exynos4_clocksource_init(void)
  172. {
  173. exynos4_mct_frc_start(0, 0);
  174. if (clocksource_register_hz(&mct_frc, clk_rate))
  175. panic("%s: can't register clocksource\n", mct_frc.name);
  176. }
  177. static void exynos4_mct_comp0_stop(void)
  178. {
  179. unsigned int tcon;
  180. tcon = __raw_readl(reg_base + EXYNOS4_MCT_G_TCON);
  181. tcon &= ~(MCT_G_TCON_COMP0_ENABLE | MCT_G_TCON_COMP0_AUTO_INC);
  182. exynos4_mct_write(tcon, EXYNOS4_MCT_G_TCON);
  183. exynos4_mct_write(0, EXYNOS4_MCT_G_INT_ENB);
  184. }
  185. static void exynos4_mct_comp0_start(enum clock_event_mode mode,
  186. unsigned long cycles)
  187. {
  188. unsigned int tcon;
  189. cycle_t comp_cycle;
  190. tcon = __raw_readl(reg_base + EXYNOS4_MCT_G_TCON);
  191. if (mode == CLOCK_EVT_MODE_PERIODIC) {
  192. tcon |= MCT_G_TCON_COMP0_AUTO_INC;
  193. exynos4_mct_write(cycles, EXYNOS4_MCT_G_COMP0_ADD_INCR);
  194. }
  195. comp_cycle = exynos4_frc_read(&mct_frc) + cycles;
  196. exynos4_mct_write((u32)comp_cycle, EXYNOS4_MCT_G_COMP0_L);
  197. exynos4_mct_write((u32)(comp_cycle >> 32), EXYNOS4_MCT_G_COMP0_U);
  198. exynos4_mct_write(0x1, EXYNOS4_MCT_G_INT_ENB);
  199. tcon |= MCT_G_TCON_COMP0_ENABLE;
  200. exynos4_mct_write(tcon , EXYNOS4_MCT_G_TCON);
  201. }
  202. static int exynos4_comp_set_next_event(unsigned long cycles,
  203. struct clock_event_device *evt)
  204. {
  205. exynos4_mct_comp0_start(evt->mode, cycles);
  206. return 0;
  207. }
  208. static void exynos4_comp_set_mode(enum clock_event_mode mode,
  209. struct clock_event_device *evt)
  210. {
  211. unsigned long cycles_per_jiffy;
  212. exynos4_mct_comp0_stop();
  213. switch (mode) {
  214. case CLOCK_EVT_MODE_PERIODIC:
  215. cycles_per_jiffy =
  216. (((unsigned long long) NSEC_PER_SEC / HZ * evt->mult) >> evt->shift);
  217. exynos4_mct_comp0_start(mode, cycles_per_jiffy);
  218. break;
  219. case CLOCK_EVT_MODE_ONESHOT:
  220. case CLOCK_EVT_MODE_UNUSED:
  221. case CLOCK_EVT_MODE_SHUTDOWN:
  222. case CLOCK_EVT_MODE_RESUME:
  223. break;
  224. }
  225. }
  226. static struct clock_event_device mct_comp_device = {
  227. .name = "mct-comp",
  228. .features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT,
  229. .rating = 250,
  230. .set_next_event = exynos4_comp_set_next_event,
  231. .set_mode = exynos4_comp_set_mode,
  232. };
  233. static irqreturn_t exynos4_mct_comp_isr(int irq, void *dev_id)
  234. {
  235. struct clock_event_device *evt = dev_id;
  236. exynos4_mct_write(0x1, EXYNOS4_MCT_G_INT_CSTAT);
  237. evt->event_handler(evt);
  238. return IRQ_HANDLED;
  239. }
  240. static struct irqaction mct_comp_event_irq = {
  241. .name = "mct_comp_irq",
  242. .flags = IRQF_TIMER | IRQF_IRQPOLL,
  243. .handler = exynos4_mct_comp_isr,
  244. .dev_id = &mct_comp_device,
  245. };
  246. static void exynos4_clockevent_init(void)
  247. {
  248. mct_comp_device.cpumask = cpumask_of(0);
  249. clockevents_config_and_register(&mct_comp_device, clk_rate,
  250. 0xf, 0xffffffff);
  251. setup_irq(mct_irqs[MCT_G0_IRQ], &mct_comp_event_irq);
  252. }
  253. #ifdef CONFIG_LOCAL_TIMERS
  254. static DEFINE_PER_CPU(struct mct_clock_event_device, percpu_mct_tick);
  255. /* Clock event handling */
  256. static void exynos4_mct_tick_stop(struct mct_clock_event_device *mevt)
  257. {
  258. unsigned long tmp;
  259. unsigned long mask = MCT_L_TCON_INT_START | MCT_L_TCON_TIMER_START;
  260. unsigned long offset = mevt->base + MCT_L_TCON_OFFSET;
  261. tmp = __raw_readl(reg_base + offset);
  262. if (tmp & mask) {
  263. tmp &= ~mask;
  264. exynos4_mct_write(tmp, offset);
  265. }
  266. }
  267. static void exynos4_mct_tick_start(unsigned long cycles,
  268. struct mct_clock_event_device *mevt)
  269. {
  270. unsigned long tmp;
  271. exynos4_mct_tick_stop(mevt);
  272. tmp = (1 << 31) | cycles; /* MCT_L_UPDATE_ICNTB */
  273. /* update interrupt count buffer */
  274. exynos4_mct_write(tmp, mevt->base + MCT_L_ICNTB_OFFSET);
  275. /* enable MCT tick interrupt */
  276. exynos4_mct_write(0x1, mevt->base + MCT_L_INT_ENB_OFFSET);
  277. tmp = __raw_readl(reg_base + mevt->base + MCT_L_TCON_OFFSET);
  278. tmp |= MCT_L_TCON_INT_START | MCT_L_TCON_TIMER_START |
  279. MCT_L_TCON_INTERVAL_MODE;
  280. exynos4_mct_write(tmp, mevt->base + MCT_L_TCON_OFFSET);
  281. }
  282. static int exynos4_tick_set_next_event(unsigned long cycles,
  283. struct clock_event_device *evt)
  284. {
  285. struct mct_clock_event_device *mevt = this_cpu_ptr(&percpu_mct_tick);
  286. exynos4_mct_tick_start(cycles, mevt);
  287. return 0;
  288. }
  289. static inline void exynos4_tick_set_mode(enum clock_event_mode mode,
  290. struct clock_event_device *evt)
  291. {
  292. struct mct_clock_event_device *mevt = this_cpu_ptr(&percpu_mct_tick);
  293. unsigned long cycles_per_jiffy;
  294. exynos4_mct_tick_stop(mevt);
  295. switch (mode) {
  296. case CLOCK_EVT_MODE_PERIODIC:
  297. cycles_per_jiffy =
  298. (((unsigned long long) NSEC_PER_SEC / HZ * evt->mult) >> evt->shift);
  299. exynos4_mct_tick_start(cycles_per_jiffy, mevt);
  300. break;
  301. case CLOCK_EVT_MODE_ONESHOT:
  302. case CLOCK_EVT_MODE_UNUSED:
  303. case CLOCK_EVT_MODE_SHUTDOWN:
  304. case CLOCK_EVT_MODE_RESUME:
  305. break;
  306. }
  307. }
  308. static int exynos4_mct_tick_clear(struct mct_clock_event_device *mevt)
  309. {
  310. struct clock_event_device *evt = mevt->evt;
  311. /*
  312. * This is for supporting oneshot mode.
  313. * Mct would generate interrupt periodically
  314. * without explicit stopping.
  315. */
  316. if (evt->mode != CLOCK_EVT_MODE_PERIODIC)
  317. exynos4_mct_tick_stop(mevt);
  318. /* Clear the MCT tick interrupt */
  319. if (__raw_readl(reg_base + mevt->base + MCT_L_INT_CSTAT_OFFSET) & 1) {
  320. exynos4_mct_write(0x1, mevt->base + MCT_L_INT_CSTAT_OFFSET);
  321. return 1;
  322. } else {
  323. return 0;
  324. }
  325. }
  326. static irqreturn_t exynos4_mct_tick_isr(int irq, void *dev_id)
  327. {
  328. struct mct_clock_event_device *mevt = dev_id;
  329. struct clock_event_device *evt = mevt->evt;
  330. exynos4_mct_tick_clear(mevt);
  331. evt->event_handler(evt);
  332. return IRQ_HANDLED;
  333. }
  334. static struct irqaction mct_tick0_event_irq = {
  335. .name = "mct_tick0_irq",
  336. .flags = IRQF_TIMER | IRQF_NOBALANCING,
  337. .handler = exynos4_mct_tick_isr,
  338. };
  339. static struct irqaction mct_tick1_event_irq = {
  340. .name = "mct_tick1_irq",
  341. .flags = IRQF_TIMER | IRQF_NOBALANCING,
  342. .handler = exynos4_mct_tick_isr,
  343. };
  344. static int __cpuinit exynos4_local_timer_setup(struct clock_event_device *evt)
  345. {
  346. struct mct_clock_event_device *mevt;
  347. unsigned int cpu = smp_processor_id();
  348. mevt = this_cpu_ptr(&percpu_mct_tick);
  349. mevt->evt = evt;
  350. mevt->base = EXYNOS4_MCT_L_BASE(cpu);
  351. sprintf(mevt->name, "mct_tick%d", cpu);
  352. evt->name = mevt->name;
  353. evt->cpumask = cpumask_of(cpu);
  354. evt->set_next_event = exynos4_tick_set_next_event;
  355. evt->set_mode = exynos4_tick_set_mode;
  356. evt->features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT;
  357. evt->rating = 450;
  358. clockevents_config_and_register(evt, clk_rate / (TICK_BASE_CNT + 1),
  359. 0xf, 0x7fffffff);
  360. exynos4_mct_write(TICK_BASE_CNT, mevt->base + MCT_L_TCNTB_OFFSET);
  361. if (mct_int_type == MCT_INT_SPI) {
  362. if (cpu == 0) {
  363. mct_tick0_event_irq.dev_id = mevt;
  364. evt->irq = mct_irqs[MCT_L0_IRQ];
  365. setup_irq(evt->irq, &mct_tick0_event_irq);
  366. } else {
  367. mct_tick1_event_irq.dev_id = mevt;
  368. evt->irq = mct_irqs[MCT_L1_IRQ];
  369. setup_irq(evt->irq, &mct_tick1_event_irq);
  370. irq_set_affinity(evt->irq, cpumask_of(1));
  371. }
  372. } else {
  373. enable_percpu_irq(mct_irqs[MCT_L0_IRQ], 0);
  374. }
  375. return 0;
  376. }
  377. static void exynos4_local_timer_stop(struct clock_event_device *evt)
  378. {
  379. unsigned int cpu = smp_processor_id();
  380. evt->set_mode(CLOCK_EVT_MODE_UNUSED, evt);
  381. if (mct_int_type == MCT_INT_SPI)
  382. if (cpu == 0)
  383. remove_irq(evt->irq, &mct_tick0_event_irq);
  384. else
  385. remove_irq(evt->irq, &mct_tick1_event_irq);
  386. else
  387. disable_percpu_irq(mct_irqs[MCT_L0_IRQ]);
  388. }
  389. static struct local_timer_ops exynos4_mct_tick_ops __cpuinitdata = {
  390. .setup = exynos4_local_timer_setup,
  391. .stop = exynos4_local_timer_stop,
  392. };
  393. #endif /* CONFIG_LOCAL_TIMERS */
  394. static void __init exynos4_timer_resources(void)
  395. {
  396. struct clk *mct_clk;
  397. mct_clk = clk_get(NULL, "xtal");
  398. clk_rate = clk_get_rate(mct_clk);
  399. reg_base = S5P_VA_SYSTIMER;
  400. #ifdef CONFIG_LOCAL_TIMERS
  401. if (mct_int_type == MCT_INT_PPI) {
  402. int err;
  403. err = request_percpu_irq(mct_irqs[MCT_L0_IRQ],
  404. exynos4_mct_tick_isr, "MCT",
  405. &percpu_mct_tick);
  406. WARN(err, "MCT: can't request IRQ %d (%d)\n",
  407. mct_irqs[MCT_L0_IRQ], err);
  408. }
  409. local_timer_register(&exynos4_mct_tick_ops);
  410. #endif /* CONFIG_LOCAL_TIMERS */
  411. }
  412. void __init exynos4_timer_init(void)
  413. {
  414. if (soc_is_exynos5440()) {
  415. arch_timer_of_register();
  416. return;
  417. }
  418. if (soc_is_exynos4210()) {
  419. mct_irqs[MCT_G0_IRQ] = EXYNOS4_IRQ_MCT_G0;
  420. mct_irqs[MCT_L0_IRQ] = EXYNOS4_IRQ_MCT_L0;
  421. mct_irqs[MCT_L1_IRQ] = EXYNOS4_IRQ_MCT_L1;
  422. mct_int_type = MCT_INT_SPI;
  423. } else if (soc_is_exynos5250()) {
  424. mct_irqs[MCT_G0_IRQ] = EXYNOS5_IRQ_MCT_G0;
  425. mct_irqs[MCT_L0_IRQ] = EXYNOS5_IRQ_MCT_L0;
  426. mct_irqs[MCT_L1_IRQ] = EXYNOS5_IRQ_MCT_L1;
  427. mct_int_type = MCT_INT_SPI;
  428. } else {
  429. mct_irqs[MCT_G0_IRQ] = EXYNOS4_IRQ_MCT_G0;
  430. mct_irqs[MCT_L0_IRQ] = EXYNOS_IRQ_MCT_LOCALTIMER;
  431. mct_int_type = MCT_INT_PPI;
  432. }
  433. exynos4_timer_resources();
  434. exynos4_clocksource_init();
  435. exynos4_clockevent_init();
  436. }