amba-pl08x.c 54 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101
  1. /*
  2. * Copyright (c) 2006 ARM Ltd.
  3. * Copyright (c) 2010 ST-Ericsson SA
  4. *
  5. * Author: Peter Pearse <peter.pearse@arm.com>
  6. * Author: Linus Walleij <linus.walleij@stericsson.com>
  7. *
  8. * This program is free software; you can redistribute it and/or modify it
  9. * under the terms of the GNU General Public License as published by the Free
  10. * Software Foundation; either version 2 of the License, or (at your option)
  11. * any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful, but WITHOUT
  14. * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  15. * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
  16. * more details.
  17. *
  18. * You should have received a copy of the GNU General Public License along with
  19. * this program; if not, write to the Free Software Foundation, Inc., 59
  20. * Temple Place - Suite 330, Boston, MA 02111-1307, USA.
  21. *
  22. * The full GNU General Public License is in this distribution in the
  23. * file called COPYING.
  24. *
  25. * Documentation: ARM DDI 0196G == PL080
  26. * Documentation: ARM DDI 0218E == PL081
  27. *
  28. * PL080 & PL081 both have 16 sets of DMA signals that can be routed to
  29. * any channel.
  30. *
  31. * The PL080 has 8 channels available for simultaneous use, and the PL081
  32. * has only two channels. So on these DMA controllers the number of channels
  33. * and the number of incoming DMA signals are two totally different things.
  34. * It is usually not possible to theoretically handle all physical signals,
  35. * so a multiplexing scheme with possible denial of use is necessary.
  36. *
  37. * The PL080 has a dual bus master, PL081 has a single master.
  38. *
  39. * Memory to peripheral transfer may be visualized as
  40. * Get data from memory to DMAC
  41. * Until no data left
  42. * On burst request from peripheral
  43. * Destination burst from DMAC to peripheral
  44. * Clear burst request
  45. * Raise terminal count interrupt
  46. *
  47. * For peripherals with a FIFO:
  48. * Source burst size == half the depth of the peripheral FIFO
  49. * Destination burst size == the depth of the peripheral FIFO
  50. *
  51. * (Bursts are irrelevant for mem to mem transfers - there are no burst
  52. * signals, the DMA controller will simply facilitate its AHB master.)
  53. *
  54. * ASSUMES default (little) endianness for DMA transfers
  55. *
  56. * The PL08x has two flow control settings:
  57. * - DMAC flow control: the transfer size defines the number of transfers
  58. * which occur for the current LLI entry, and the DMAC raises TC at the
  59. * end of every LLI entry. Observed behaviour shows the DMAC listening
  60. * to both the BREQ and SREQ signals (contrary to documented),
  61. * transferring data if either is active. The LBREQ and LSREQ signals
  62. * are ignored.
  63. *
  64. * - Peripheral flow control: the transfer size is ignored (and should be
  65. * zero). The data is transferred from the current LLI entry, until
  66. * after the final transfer signalled by LBREQ or LSREQ. The DMAC
  67. * will then move to the next LLI entry.
  68. *
  69. * Only the former works sanely with scatter lists, so we only implement
  70. * the DMAC flow control method. However, peripherals which use the LBREQ
  71. * and LSREQ signals (eg, MMCI) are unable to use this mode, which through
  72. * these hardware restrictions prevents them from using scatter DMA.
  73. *
  74. * Global TODO:
  75. * - Break out common code from arch/arm/mach-s3c64xx and share
  76. */
  77. #include <linux/device.h>
  78. #include <linux/init.h>
  79. #include <linux/module.h>
  80. #include <linux/interrupt.h>
  81. #include <linux/slab.h>
  82. #include <linux/dmapool.h>
  83. #include <linux/dmaengine.h>
  84. #include <linux/amba/bus.h>
  85. #include <linux/amba/pl08x.h>
  86. #include <linux/debugfs.h>
  87. #include <linux/seq_file.h>
  88. #include <asm/hardware/pl080.h>
  89. #define DRIVER_NAME "pl08xdmac"
  90. /**
  91. * struct vendor_data - vendor-specific config parameters
  92. * for PL08x derivatives
  93. * @channels: the number of channels available in this variant
  94. * @dualmaster: whether this version supports dual AHB masters
  95. * or not.
  96. */
  97. struct vendor_data {
  98. u8 channels;
  99. bool dualmaster;
  100. };
  101. /*
  102. * PL08X private data structures
  103. * An LLI struct - see PL08x TRM. Note that next uses bit[0] as a bus bit,
  104. * start & end do not - their bus bit info is in cctl. Also note that these
  105. * are fixed 32-bit quantities.
  106. */
  107. struct pl08x_lli {
  108. u32 src;
  109. u32 dst;
  110. u32 lli;
  111. u32 cctl;
  112. };
  113. /**
  114. * struct pl08x_driver_data - the local state holder for the PL08x
  115. * @slave: slave engine for this instance
  116. * @memcpy: memcpy engine for this instance
  117. * @base: virtual memory base (remapped) for the PL08x
  118. * @adev: the corresponding AMBA (PrimeCell) bus entry
  119. * @vd: vendor data for this PL08x variant
  120. * @pd: platform data passed in from the platform/machine
  121. * @phy_chans: array of data for the physical channels
  122. * @pool: a pool for the LLI descriptors
  123. * @pool_ctr: counter of LLIs in the pool
  124. * @lli_buses: bitmask to or in to LLI pointer selecting AHB port for LLI fetches
  125. * @mem_buses: set to indicate memory transfers on AHB2.
  126. * @lock: a spinlock for this struct
  127. */
  128. struct pl08x_driver_data {
  129. struct dma_device slave;
  130. struct dma_device memcpy;
  131. void __iomem *base;
  132. struct amba_device *adev;
  133. const struct vendor_data *vd;
  134. struct pl08x_platform_data *pd;
  135. struct pl08x_phy_chan *phy_chans;
  136. struct dma_pool *pool;
  137. int pool_ctr;
  138. u8 lli_buses;
  139. u8 mem_buses;
  140. spinlock_t lock;
  141. };
  142. /*
  143. * PL08X specific defines
  144. */
  145. /*
  146. * Memory boundaries: the manual for PL08x says that the controller
  147. * cannot read past a 1KiB boundary, so these defines are used to
  148. * create transfer LLIs that do not cross such boundaries.
  149. */
  150. #define PL08X_BOUNDARY_SHIFT (10) /* 1KB 0x400 */
  151. #define PL08X_BOUNDARY_SIZE (1 << PL08X_BOUNDARY_SHIFT)
  152. /* Minimum period between work queue runs */
  153. #define PL08X_WQ_PERIODMIN 20
  154. /* Size (bytes) of each LLI buffer allocated for one transfer */
  155. # define PL08X_LLI_TSFR_SIZE 0x2000
  156. /* Maximum times we call dma_pool_alloc on this pool without freeing */
  157. #define PL08X_MAX_ALLOCS 0x40
  158. #define MAX_NUM_TSFR_LLIS (PL08X_LLI_TSFR_SIZE/sizeof(struct pl08x_lli))
  159. #define PL08X_ALIGN 8
  160. static inline struct pl08x_dma_chan *to_pl08x_chan(struct dma_chan *chan)
  161. {
  162. return container_of(chan, struct pl08x_dma_chan, chan);
  163. }
  164. static inline struct pl08x_txd *to_pl08x_txd(struct dma_async_tx_descriptor *tx)
  165. {
  166. return container_of(tx, struct pl08x_txd, tx);
  167. }
  168. /*
  169. * Physical channel handling
  170. */
  171. /* Whether a certain channel is busy or not */
  172. static int pl08x_phy_channel_busy(struct pl08x_phy_chan *ch)
  173. {
  174. unsigned int val;
  175. val = readl(ch->base + PL080_CH_CONFIG);
  176. return val & PL080_CONFIG_ACTIVE;
  177. }
  178. /*
  179. * Set the initial DMA register values i.e. those for the first LLI
  180. * The next LLI pointer and the configuration interrupt bit have
  181. * been set when the LLIs were constructed. Poke them into the hardware
  182. * and start the transfer.
  183. */
  184. static void pl08x_start_txd(struct pl08x_dma_chan *plchan,
  185. struct pl08x_txd *txd)
  186. {
  187. struct pl08x_driver_data *pl08x = plchan->host;
  188. struct pl08x_phy_chan *phychan = plchan->phychan;
  189. struct pl08x_lli *lli = &txd->llis_va[0];
  190. u32 val;
  191. plchan->at = txd;
  192. /* Wait for channel inactive */
  193. while (pl08x_phy_channel_busy(phychan))
  194. cpu_relax();
  195. dev_vdbg(&pl08x->adev->dev,
  196. "WRITE channel %d: csrc=0x%08x, cdst=0x%08x, "
  197. "clli=0x%08x, cctl=0x%08x, ccfg=0x%08x\n",
  198. phychan->id, lli->src, lli->dst, lli->lli, lli->cctl,
  199. txd->ccfg);
  200. writel(lli->src, phychan->base + PL080_CH_SRC_ADDR);
  201. writel(lli->dst, phychan->base + PL080_CH_DST_ADDR);
  202. writel(lli->lli, phychan->base + PL080_CH_LLI);
  203. writel(lli->cctl, phychan->base + PL080_CH_CONTROL);
  204. writel(txd->ccfg, phychan->base + PL080_CH_CONFIG);
  205. /* Enable the DMA channel */
  206. /* Do not access config register until channel shows as disabled */
  207. while (readl(pl08x->base + PL080_EN_CHAN) & (1 << phychan->id))
  208. cpu_relax();
  209. /* Do not access config register until channel shows as inactive */
  210. val = readl(phychan->base + PL080_CH_CONFIG);
  211. while ((val & PL080_CONFIG_ACTIVE) || (val & PL080_CONFIG_ENABLE))
  212. val = readl(phychan->base + PL080_CH_CONFIG);
  213. writel(val | PL080_CONFIG_ENABLE, phychan->base + PL080_CH_CONFIG);
  214. }
  215. /*
  216. * Overall DMAC remains enabled always.
  217. *
  218. * Disabling individual channels could lose data.
  219. *
  220. * Disable the peripheral DMA after disabling the DMAC
  221. * in order to allow the DMAC FIFO to drain, and
  222. * hence allow the channel to show inactive
  223. *
  224. */
  225. static void pl08x_pause_phy_chan(struct pl08x_phy_chan *ch)
  226. {
  227. u32 val;
  228. /* Set the HALT bit and wait for the FIFO to drain */
  229. val = readl(ch->base + PL080_CH_CONFIG);
  230. val |= PL080_CONFIG_HALT;
  231. writel(val, ch->base + PL080_CH_CONFIG);
  232. /* Wait for channel inactive */
  233. while (pl08x_phy_channel_busy(ch))
  234. cpu_relax();
  235. }
  236. static void pl08x_resume_phy_chan(struct pl08x_phy_chan *ch)
  237. {
  238. u32 val;
  239. /* Clear the HALT bit */
  240. val = readl(ch->base + PL080_CH_CONFIG);
  241. val &= ~PL080_CONFIG_HALT;
  242. writel(val, ch->base + PL080_CH_CONFIG);
  243. }
  244. /* Stops the channel */
  245. static void pl08x_stop_phy_chan(struct pl08x_phy_chan *ch)
  246. {
  247. u32 val;
  248. pl08x_pause_phy_chan(ch);
  249. /* Disable channel */
  250. val = readl(ch->base + PL080_CH_CONFIG);
  251. val &= ~PL080_CONFIG_ENABLE;
  252. val &= ~PL080_CONFIG_ERR_IRQ_MASK;
  253. val &= ~PL080_CONFIG_TC_IRQ_MASK;
  254. writel(val, ch->base + PL080_CH_CONFIG);
  255. }
  256. static inline u32 get_bytes_in_cctl(u32 cctl)
  257. {
  258. /* The source width defines the number of bytes */
  259. u32 bytes = cctl & PL080_CONTROL_TRANSFER_SIZE_MASK;
  260. switch (cctl >> PL080_CONTROL_SWIDTH_SHIFT) {
  261. case PL080_WIDTH_8BIT:
  262. break;
  263. case PL080_WIDTH_16BIT:
  264. bytes *= 2;
  265. break;
  266. case PL080_WIDTH_32BIT:
  267. bytes *= 4;
  268. break;
  269. }
  270. return bytes;
  271. }
  272. /* The channel should be paused when calling this */
  273. static u32 pl08x_getbytes_chan(struct pl08x_dma_chan *plchan)
  274. {
  275. struct pl08x_phy_chan *ch;
  276. struct pl08x_txd *txd;
  277. unsigned long flags;
  278. size_t bytes = 0;
  279. spin_lock_irqsave(&plchan->lock, flags);
  280. ch = plchan->phychan;
  281. txd = plchan->at;
  282. /*
  283. * Follow the LLIs to get the number of remaining
  284. * bytes in the currently active transaction.
  285. */
  286. if (ch && txd) {
  287. u32 clli = readl(ch->base + PL080_CH_LLI) & ~PL080_LLI_LM_AHB2;
  288. /* First get the remaining bytes in the active transfer */
  289. bytes = get_bytes_in_cctl(readl(ch->base + PL080_CH_CONTROL));
  290. if (clli) {
  291. struct pl08x_lli *llis_va = txd->llis_va;
  292. dma_addr_t llis_bus = txd->llis_bus;
  293. int index;
  294. BUG_ON(clli < llis_bus || clli >= llis_bus +
  295. sizeof(struct pl08x_lli) * MAX_NUM_TSFR_LLIS);
  296. /*
  297. * Locate the next LLI - as this is an array,
  298. * it's simple maths to find.
  299. */
  300. index = (clli - llis_bus) / sizeof(struct pl08x_lli);
  301. for (; index < MAX_NUM_TSFR_LLIS; index++) {
  302. bytes += get_bytes_in_cctl(llis_va[index].cctl);
  303. /*
  304. * A LLI pointer of 0 terminates the LLI list
  305. */
  306. if (!llis_va[index].lli)
  307. break;
  308. }
  309. }
  310. }
  311. /* Sum up all queued transactions */
  312. if (!list_empty(&plchan->pend_list)) {
  313. struct pl08x_txd *txdi;
  314. list_for_each_entry(txdi, &plchan->pend_list, node) {
  315. bytes += txdi->len;
  316. }
  317. }
  318. spin_unlock_irqrestore(&plchan->lock, flags);
  319. return bytes;
  320. }
  321. /*
  322. * Allocate a physical channel for a virtual channel
  323. */
  324. static struct pl08x_phy_chan *
  325. pl08x_get_phy_channel(struct pl08x_driver_data *pl08x,
  326. struct pl08x_dma_chan *virt_chan)
  327. {
  328. struct pl08x_phy_chan *ch = NULL;
  329. unsigned long flags;
  330. int i;
  331. /*
  332. * Try to locate a physical channel to be used for
  333. * this transfer. If all are taken return NULL and
  334. * the requester will have to cope by using some fallback
  335. * PIO mode or retrying later.
  336. */
  337. for (i = 0; i < pl08x->vd->channels; i++) {
  338. ch = &pl08x->phy_chans[i];
  339. spin_lock_irqsave(&ch->lock, flags);
  340. if (!ch->serving) {
  341. ch->serving = virt_chan;
  342. ch->signal = -1;
  343. spin_unlock_irqrestore(&ch->lock, flags);
  344. break;
  345. }
  346. spin_unlock_irqrestore(&ch->lock, flags);
  347. }
  348. if (i == pl08x->vd->channels) {
  349. /* No physical channel available, cope with it */
  350. return NULL;
  351. }
  352. return ch;
  353. }
  354. static inline void pl08x_put_phy_channel(struct pl08x_driver_data *pl08x,
  355. struct pl08x_phy_chan *ch)
  356. {
  357. unsigned long flags;
  358. /* Stop the channel and clear its interrupts */
  359. pl08x_stop_phy_chan(ch);
  360. writel((1 << ch->id), pl08x->base + PL080_ERR_CLEAR);
  361. writel((1 << ch->id), pl08x->base + PL080_TC_CLEAR);
  362. /* Mark it as free */
  363. spin_lock_irqsave(&ch->lock, flags);
  364. ch->serving = NULL;
  365. spin_unlock_irqrestore(&ch->lock, flags);
  366. }
  367. /*
  368. * LLI handling
  369. */
  370. static inline unsigned int pl08x_get_bytes_for_cctl(unsigned int coded)
  371. {
  372. switch (coded) {
  373. case PL080_WIDTH_8BIT:
  374. return 1;
  375. case PL080_WIDTH_16BIT:
  376. return 2;
  377. case PL080_WIDTH_32BIT:
  378. return 4;
  379. default:
  380. break;
  381. }
  382. BUG();
  383. return 0;
  384. }
  385. static inline u32 pl08x_cctl_bits(u32 cctl, u8 srcwidth, u8 dstwidth,
  386. size_t tsize)
  387. {
  388. u32 retbits = cctl;
  389. /* Remove all src, dst and transfer size bits */
  390. retbits &= ~PL080_CONTROL_DWIDTH_MASK;
  391. retbits &= ~PL080_CONTROL_SWIDTH_MASK;
  392. retbits &= ~PL080_CONTROL_TRANSFER_SIZE_MASK;
  393. /* Then set the bits according to the parameters */
  394. switch (srcwidth) {
  395. case 1:
  396. retbits |= PL080_WIDTH_8BIT << PL080_CONTROL_SWIDTH_SHIFT;
  397. break;
  398. case 2:
  399. retbits |= PL080_WIDTH_16BIT << PL080_CONTROL_SWIDTH_SHIFT;
  400. break;
  401. case 4:
  402. retbits |= PL080_WIDTH_32BIT << PL080_CONTROL_SWIDTH_SHIFT;
  403. break;
  404. default:
  405. BUG();
  406. break;
  407. }
  408. switch (dstwidth) {
  409. case 1:
  410. retbits |= PL080_WIDTH_8BIT << PL080_CONTROL_DWIDTH_SHIFT;
  411. break;
  412. case 2:
  413. retbits |= PL080_WIDTH_16BIT << PL080_CONTROL_DWIDTH_SHIFT;
  414. break;
  415. case 4:
  416. retbits |= PL080_WIDTH_32BIT << PL080_CONTROL_DWIDTH_SHIFT;
  417. break;
  418. default:
  419. BUG();
  420. break;
  421. }
  422. retbits |= tsize << PL080_CONTROL_TRANSFER_SIZE_SHIFT;
  423. return retbits;
  424. }
  425. struct pl08x_lli_build_data {
  426. struct pl08x_txd *txd;
  427. struct pl08x_driver_data *pl08x;
  428. struct pl08x_bus_data srcbus;
  429. struct pl08x_bus_data dstbus;
  430. size_t remainder;
  431. };
  432. /*
  433. * Autoselect a master bus to use for the transfer
  434. * this prefers the destination bus if both available
  435. * if fixed address on one bus the other will be chosen
  436. */
  437. static void pl08x_choose_master_bus(struct pl08x_lli_build_data *bd,
  438. struct pl08x_bus_data **mbus, struct pl08x_bus_data **sbus, u32 cctl)
  439. {
  440. if (!(cctl & PL080_CONTROL_DST_INCR)) {
  441. *mbus = &bd->srcbus;
  442. *sbus = &bd->dstbus;
  443. } else if (!(cctl & PL080_CONTROL_SRC_INCR)) {
  444. *mbus = &bd->dstbus;
  445. *sbus = &bd->srcbus;
  446. } else {
  447. if (bd->dstbus.buswidth == 4) {
  448. *mbus = &bd->dstbus;
  449. *sbus = &bd->srcbus;
  450. } else if (bd->srcbus.buswidth == 4) {
  451. *mbus = &bd->srcbus;
  452. *sbus = &bd->dstbus;
  453. } else if (bd->dstbus.buswidth == 2) {
  454. *mbus = &bd->dstbus;
  455. *sbus = &bd->srcbus;
  456. } else if (bd->srcbus.buswidth == 2) {
  457. *mbus = &bd->srcbus;
  458. *sbus = &bd->dstbus;
  459. } else {
  460. /* bd->srcbus.buswidth == 1 */
  461. *mbus = &bd->dstbus;
  462. *sbus = &bd->srcbus;
  463. }
  464. }
  465. }
  466. /*
  467. * Fills in one LLI for a certain transfer descriptor
  468. * and advance the counter
  469. */
  470. static void pl08x_fill_lli_for_desc(struct pl08x_lli_build_data *bd,
  471. int num_llis, int len, u32 cctl)
  472. {
  473. struct pl08x_lli *llis_va = bd->txd->llis_va;
  474. dma_addr_t llis_bus = bd->txd->llis_bus;
  475. BUG_ON(num_llis >= MAX_NUM_TSFR_LLIS);
  476. llis_va[num_llis].cctl = cctl;
  477. llis_va[num_llis].src = bd->srcbus.addr;
  478. llis_va[num_llis].dst = bd->dstbus.addr;
  479. llis_va[num_llis].lli = llis_bus + (num_llis + 1) * sizeof(struct pl08x_lli);
  480. if (bd->pl08x->lli_buses & PL08X_AHB2)
  481. llis_va[num_llis].lli |= PL080_LLI_LM_AHB2;
  482. if (cctl & PL080_CONTROL_SRC_INCR)
  483. bd->srcbus.addr += len;
  484. if (cctl & PL080_CONTROL_DST_INCR)
  485. bd->dstbus.addr += len;
  486. BUG_ON(bd->remainder < len);
  487. bd->remainder -= len;
  488. }
  489. /*
  490. * Return number of bytes to fill to boundary, or len.
  491. * This calculation works for any value of addr.
  492. */
  493. static inline size_t pl08x_pre_boundary(u32 addr, size_t len)
  494. {
  495. size_t boundary_len = PL08X_BOUNDARY_SIZE -
  496. (addr & (PL08X_BOUNDARY_SIZE - 1));
  497. return min(boundary_len, len);
  498. }
  499. /*
  500. * This fills in the table of LLIs for the transfer descriptor
  501. * Note that we assume we never have to change the burst sizes
  502. * Return 0 for error
  503. */
  504. static int pl08x_fill_llis_for_desc(struct pl08x_driver_data *pl08x,
  505. struct pl08x_txd *txd)
  506. {
  507. struct pl08x_bus_data *mbus, *sbus;
  508. struct pl08x_lli_build_data bd;
  509. int num_llis = 0;
  510. u32 cctl;
  511. size_t max_bytes_per_lli;
  512. size_t total_bytes = 0;
  513. struct pl08x_lli *llis_va;
  514. txd->llis_va = dma_pool_alloc(pl08x->pool, GFP_NOWAIT,
  515. &txd->llis_bus);
  516. if (!txd->llis_va) {
  517. dev_err(&pl08x->adev->dev, "%s no memory for llis\n", __func__);
  518. return 0;
  519. }
  520. pl08x->pool_ctr++;
  521. /* Get the default CCTL */
  522. cctl = txd->cctl;
  523. bd.txd = txd;
  524. bd.pl08x = pl08x;
  525. bd.srcbus.addr = txd->src_addr;
  526. bd.dstbus.addr = txd->dst_addr;
  527. /* Find maximum width of the source bus */
  528. bd.srcbus.maxwidth =
  529. pl08x_get_bytes_for_cctl((cctl & PL080_CONTROL_SWIDTH_MASK) >>
  530. PL080_CONTROL_SWIDTH_SHIFT);
  531. /* Find maximum width of the destination bus */
  532. bd.dstbus.maxwidth =
  533. pl08x_get_bytes_for_cctl((cctl & PL080_CONTROL_DWIDTH_MASK) >>
  534. PL080_CONTROL_DWIDTH_SHIFT);
  535. /* Set up the bus widths to the maximum */
  536. bd.srcbus.buswidth = bd.srcbus.maxwidth;
  537. bd.dstbus.buswidth = bd.dstbus.maxwidth;
  538. dev_vdbg(&pl08x->adev->dev,
  539. "%s source bus is %d bytes wide, dest bus is %d bytes wide\n",
  540. __func__, bd.srcbus.buswidth, bd.dstbus.buswidth);
  541. /*
  542. * Bytes transferred == tsize * MIN(buswidths), not max(buswidths)
  543. */
  544. max_bytes_per_lli = min(bd.srcbus.buswidth, bd.dstbus.buswidth) *
  545. PL080_CONTROL_TRANSFER_SIZE_MASK;
  546. dev_vdbg(&pl08x->adev->dev,
  547. "%s max bytes per lli = %zu\n",
  548. __func__, max_bytes_per_lli);
  549. /* We need to count this down to zero */
  550. bd.remainder = txd->len;
  551. dev_vdbg(&pl08x->adev->dev,
  552. "%s remainder = %zu\n",
  553. __func__, bd.remainder);
  554. /*
  555. * Choose bus to align to
  556. * - prefers destination bus if both available
  557. * - if fixed address on one bus chooses other
  558. * - modifies cctl to choose an appropriate master
  559. */
  560. pl08x_choose_master_bus(&bd, &mbus, &sbus, cctl);
  561. if (txd->len < mbus->buswidth) {
  562. /*
  563. * Less than a bus width available
  564. * - send as single bytes
  565. */
  566. while (bd.remainder) {
  567. dev_vdbg(&pl08x->adev->dev,
  568. "%s single byte LLIs for a transfer of "
  569. "less than a bus width (remain 0x%08x)\n",
  570. __func__, bd.remainder);
  571. cctl = pl08x_cctl_bits(cctl, 1, 1, 1);
  572. pl08x_fill_lli_for_desc(&bd, num_llis++, 1, cctl);
  573. total_bytes++;
  574. }
  575. } else {
  576. /*
  577. * Make one byte LLIs until master bus is aligned
  578. * - slave will then be aligned also
  579. */
  580. while ((mbus->addr) % (mbus->buswidth)) {
  581. dev_vdbg(&pl08x->adev->dev,
  582. "%s adjustment lli for less than bus width "
  583. "(remain 0x%08x)\n",
  584. __func__, bd.remainder);
  585. cctl = pl08x_cctl_bits(cctl, 1, 1, 1);
  586. pl08x_fill_lli_for_desc(&bd, num_llis++, 1, cctl);
  587. total_bytes++;
  588. }
  589. /*
  590. * Master now aligned
  591. * - if slave is not then we must set its width down
  592. */
  593. if (sbus->addr % sbus->buswidth) {
  594. dev_dbg(&pl08x->adev->dev,
  595. "%s set down bus width to one byte\n",
  596. __func__);
  597. sbus->buswidth = 1;
  598. }
  599. /*
  600. * Make largest possible LLIs until less than one bus
  601. * width left
  602. */
  603. while (bd.remainder > (mbus->buswidth - 1)) {
  604. size_t lli_len, target_len, tsize, odd_bytes;
  605. /*
  606. * If enough left try to send max possible,
  607. * otherwise try to send the remainder
  608. */
  609. target_len = min(bd.remainder, max_bytes_per_lli);
  610. /*
  611. * Set bus lengths for incrementing buses to the
  612. * number of bytes which fill to next memory boundary,
  613. * limiting on the target length calculated above.
  614. */
  615. if (cctl & PL080_CONTROL_SRC_INCR)
  616. bd.srcbus.fill_bytes =
  617. pl08x_pre_boundary(bd.srcbus.addr,
  618. target_len);
  619. else
  620. bd.srcbus.fill_bytes = target_len;
  621. if (cctl & PL080_CONTROL_DST_INCR)
  622. bd.dstbus.fill_bytes =
  623. pl08x_pre_boundary(bd.dstbus.addr,
  624. target_len);
  625. else
  626. bd.dstbus.fill_bytes = target_len;
  627. /* Find the nearest */
  628. lli_len = min(bd.srcbus.fill_bytes,
  629. bd.dstbus.fill_bytes);
  630. BUG_ON(lli_len > bd.remainder);
  631. if (lli_len <= 0) {
  632. dev_err(&pl08x->adev->dev,
  633. "%s lli_len is %zu, <= 0\n",
  634. __func__, lli_len);
  635. return 0;
  636. }
  637. if (lli_len == target_len) {
  638. /*
  639. * Can send what we wanted
  640. */
  641. /*
  642. * Maintain alignment
  643. */
  644. lli_len = (lli_len/mbus->buswidth) *
  645. mbus->buswidth;
  646. odd_bytes = 0;
  647. } else {
  648. /*
  649. * So now we know how many bytes to transfer
  650. * to get to the nearest boundary
  651. * The next LLI will past the boundary
  652. * - however we may be working to a boundary
  653. * on the slave bus
  654. * We need to ensure the master stays aligned
  655. */
  656. odd_bytes = lli_len % mbus->buswidth;
  657. /*
  658. * - and that we are working in multiples
  659. * of the bus widths
  660. */
  661. lli_len -= odd_bytes;
  662. }
  663. if (lli_len) {
  664. /*
  665. * Check against minimum bus alignment:
  666. * Calculate actual transfer size in relation
  667. * to bus width an get a maximum remainder of
  668. * the smallest bus width - 1
  669. */
  670. /* FIXME: use round_down()? */
  671. tsize = lli_len / min(mbus->buswidth,
  672. sbus->buswidth);
  673. lli_len = tsize * min(mbus->buswidth,
  674. sbus->buswidth);
  675. if (target_len != lli_len) {
  676. dev_vdbg(&pl08x->adev->dev,
  677. "%s can't send what we want. Desired 0x%08zx, lli of 0x%08zx bytes in txd of 0x%08zx\n",
  678. __func__, target_len, lli_len, txd->len);
  679. }
  680. cctl = pl08x_cctl_bits(cctl,
  681. bd.srcbus.buswidth,
  682. bd.dstbus.buswidth,
  683. tsize);
  684. dev_vdbg(&pl08x->adev->dev,
  685. "%s fill lli with single lli chunk of size 0x%08zx (remainder 0x%08zx)\n",
  686. __func__, lli_len, bd.remainder);
  687. pl08x_fill_lli_for_desc(&bd, num_llis++,
  688. lli_len, cctl);
  689. total_bytes += lli_len;
  690. }
  691. if (odd_bytes) {
  692. /*
  693. * Creep past the boundary,
  694. * maintaining master alignment
  695. */
  696. int j;
  697. for (j = 0; (j < mbus->buswidth)
  698. && (bd.remainder); j++) {
  699. cctl = pl08x_cctl_bits(cctl, 1, 1, 1);
  700. dev_vdbg(&pl08x->adev->dev,
  701. "%s align with boundary, single byte (remain 0x%08zx)\n",
  702. __func__, bd.remainder);
  703. pl08x_fill_lli_for_desc(&bd,
  704. num_llis++, 1, cctl);
  705. total_bytes++;
  706. }
  707. }
  708. }
  709. /*
  710. * Send any odd bytes
  711. */
  712. while (bd.remainder) {
  713. cctl = pl08x_cctl_bits(cctl, 1, 1, 1);
  714. dev_vdbg(&pl08x->adev->dev,
  715. "%s align with boundary, single odd byte (remain %zu)\n",
  716. __func__, bd.remainder);
  717. pl08x_fill_lli_for_desc(&bd, num_llis++, 1, cctl);
  718. total_bytes++;
  719. }
  720. }
  721. if (total_bytes != txd->len) {
  722. dev_err(&pl08x->adev->dev,
  723. "%s size of encoded lli:s don't match total txd, transferred 0x%08zx from size 0x%08zx\n",
  724. __func__, total_bytes, txd->len);
  725. return 0;
  726. }
  727. if (num_llis >= MAX_NUM_TSFR_LLIS) {
  728. dev_err(&pl08x->adev->dev,
  729. "%s need to increase MAX_NUM_TSFR_LLIS from 0x%08x\n",
  730. __func__, (u32) MAX_NUM_TSFR_LLIS);
  731. return 0;
  732. }
  733. llis_va = txd->llis_va;
  734. /*
  735. * The final LLI terminates the LLI.
  736. */
  737. llis_va[num_llis - 1].lli = 0;
  738. /*
  739. * The final LLI element shall also fire an interrupt
  740. */
  741. llis_va[num_llis - 1].cctl |= PL080_CONTROL_TC_IRQ_EN;
  742. #ifdef VERBOSE_DEBUG
  743. {
  744. int i;
  745. for (i = 0; i < num_llis; i++) {
  746. dev_vdbg(&pl08x->adev->dev,
  747. "lli %d @%p: csrc=0x%08x, cdst=0x%08x, cctl=0x%08x, clli=0x%08x\n",
  748. i,
  749. &llis_va[i],
  750. llis_va[i].src,
  751. llis_va[i].dst,
  752. llis_va[i].cctl,
  753. llis_va[i].lli
  754. );
  755. }
  756. }
  757. #endif
  758. return num_llis;
  759. }
  760. /* You should call this with the struct pl08x lock held */
  761. static void pl08x_free_txd(struct pl08x_driver_data *pl08x,
  762. struct pl08x_txd *txd)
  763. {
  764. /* Free the LLI */
  765. dma_pool_free(pl08x->pool, txd->llis_va, txd->llis_bus);
  766. pl08x->pool_ctr--;
  767. kfree(txd);
  768. }
  769. static void pl08x_free_txd_list(struct pl08x_driver_data *pl08x,
  770. struct pl08x_dma_chan *plchan)
  771. {
  772. struct pl08x_txd *txdi = NULL;
  773. struct pl08x_txd *next;
  774. if (!list_empty(&plchan->pend_list)) {
  775. list_for_each_entry_safe(txdi,
  776. next, &plchan->pend_list, node) {
  777. list_del(&txdi->node);
  778. pl08x_free_txd(pl08x, txdi);
  779. }
  780. }
  781. }
  782. /*
  783. * The DMA ENGINE API
  784. */
  785. static int pl08x_alloc_chan_resources(struct dma_chan *chan)
  786. {
  787. return 0;
  788. }
  789. static void pl08x_free_chan_resources(struct dma_chan *chan)
  790. {
  791. }
  792. /*
  793. * This should be called with the channel plchan->lock held
  794. */
  795. static int prep_phy_channel(struct pl08x_dma_chan *plchan,
  796. struct pl08x_txd *txd)
  797. {
  798. struct pl08x_driver_data *pl08x = plchan->host;
  799. struct pl08x_phy_chan *ch;
  800. int ret;
  801. /* Check if we already have a channel */
  802. if (plchan->phychan)
  803. return 0;
  804. ch = pl08x_get_phy_channel(pl08x, plchan);
  805. if (!ch) {
  806. /* No physical channel available, cope with it */
  807. dev_dbg(&pl08x->adev->dev, "no physical channel available for xfer on %s\n", plchan->name);
  808. return -EBUSY;
  809. }
  810. /*
  811. * OK we have a physical channel: for memcpy() this is all we
  812. * need, but for slaves the physical signals may be muxed!
  813. * Can the platform allow us to use this channel?
  814. */
  815. if (plchan->slave &&
  816. ch->signal < 0 &&
  817. pl08x->pd->get_signal) {
  818. ret = pl08x->pd->get_signal(plchan);
  819. if (ret < 0) {
  820. dev_dbg(&pl08x->adev->dev,
  821. "unable to use physical channel %d for transfer on %s due to platform restrictions\n",
  822. ch->id, plchan->name);
  823. /* Release physical channel & return */
  824. pl08x_put_phy_channel(pl08x, ch);
  825. return -EBUSY;
  826. }
  827. ch->signal = ret;
  828. /* Assign the flow control signal to this channel */
  829. if (txd->direction == DMA_TO_DEVICE)
  830. txd->ccfg |= ch->signal << PL080_CONFIG_DST_SEL_SHIFT;
  831. else if (txd->direction == DMA_FROM_DEVICE)
  832. txd->ccfg |= ch->signal << PL080_CONFIG_SRC_SEL_SHIFT;
  833. }
  834. dev_dbg(&pl08x->adev->dev, "allocated physical channel %d and signal %d for xfer on %s\n",
  835. ch->id,
  836. ch->signal,
  837. plchan->name);
  838. plchan->phychan_hold++;
  839. plchan->phychan = ch;
  840. return 0;
  841. }
  842. static void release_phy_channel(struct pl08x_dma_chan *plchan)
  843. {
  844. struct pl08x_driver_data *pl08x = plchan->host;
  845. if ((plchan->phychan->signal >= 0) && pl08x->pd->put_signal) {
  846. pl08x->pd->put_signal(plchan);
  847. plchan->phychan->signal = -1;
  848. }
  849. pl08x_put_phy_channel(pl08x, plchan->phychan);
  850. plchan->phychan = NULL;
  851. }
  852. static dma_cookie_t pl08x_tx_submit(struct dma_async_tx_descriptor *tx)
  853. {
  854. struct pl08x_dma_chan *plchan = to_pl08x_chan(tx->chan);
  855. struct pl08x_txd *txd = to_pl08x_txd(tx);
  856. unsigned long flags;
  857. spin_lock_irqsave(&plchan->lock, flags);
  858. plchan->chan.cookie += 1;
  859. if (plchan->chan.cookie < 0)
  860. plchan->chan.cookie = 1;
  861. tx->cookie = plchan->chan.cookie;
  862. /* Put this onto the pending list */
  863. list_add_tail(&txd->node, &plchan->pend_list);
  864. /*
  865. * If there was no physical channel available for this memcpy,
  866. * stack the request up and indicate that the channel is waiting
  867. * for a free physical channel.
  868. */
  869. if (!plchan->slave && !plchan->phychan) {
  870. /* Do this memcpy whenever there is a channel ready */
  871. plchan->state = PL08X_CHAN_WAITING;
  872. plchan->waiting = txd;
  873. } else {
  874. plchan->phychan_hold--;
  875. }
  876. spin_unlock_irqrestore(&plchan->lock, flags);
  877. return tx->cookie;
  878. }
  879. static struct dma_async_tx_descriptor *pl08x_prep_dma_interrupt(
  880. struct dma_chan *chan, unsigned long flags)
  881. {
  882. struct dma_async_tx_descriptor *retval = NULL;
  883. return retval;
  884. }
  885. /*
  886. * Code accessing dma_async_is_complete() in a tight loop
  887. * may give problems - could schedule where indicated.
  888. * If slaves are relying on interrupts to signal completion this
  889. * function must not be called with interrupts disabled
  890. */
  891. static enum dma_status
  892. pl08x_dma_tx_status(struct dma_chan *chan,
  893. dma_cookie_t cookie,
  894. struct dma_tx_state *txstate)
  895. {
  896. struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
  897. dma_cookie_t last_used;
  898. dma_cookie_t last_complete;
  899. enum dma_status ret;
  900. u32 bytesleft = 0;
  901. last_used = plchan->chan.cookie;
  902. last_complete = plchan->lc;
  903. ret = dma_async_is_complete(cookie, last_complete, last_used);
  904. if (ret == DMA_SUCCESS) {
  905. dma_set_tx_state(txstate, last_complete, last_used, 0);
  906. return ret;
  907. }
  908. /*
  909. * schedule(); could be inserted here
  910. */
  911. /*
  912. * This cookie not complete yet
  913. */
  914. last_used = plchan->chan.cookie;
  915. last_complete = plchan->lc;
  916. /* Get number of bytes left in the active transactions and queue */
  917. bytesleft = pl08x_getbytes_chan(plchan);
  918. dma_set_tx_state(txstate, last_complete, last_used,
  919. bytesleft);
  920. if (plchan->state == PL08X_CHAN_PAUSED)
  921. return DMA_PAUSED;
  922. /* Whether waiting or running, we're in progress */
  923. return DMA_IN_PROGRESS;
  924. }
  925. /* PrimeCell DMA extension */
  926. struct burst_table {
  927. int burstwords;
  928. u32 reg;
  929. };
  930. static const struct burst_table burst_sizes[] = {
  931. {
  932. .burstwords = 256,
  933. .reg = (PL080_BSIZE_256 << PL080_CONTROL_SB_SIZE_SHIFT) |
  934. (PL080_BSIZE_256 << PL080_CONTROL_DB_SIZE_SHIFT),
  935. },
  936. {
  937. .burstwords = 128,
  938. .reg = (PL080_BSIZE_128 << PL080_CONTROL_SB_SIZE_SHIFT) |
  939. (PL080_BSIZE_128 << PL080_CONTROL_DB_SIZE_SHIFT),
  940. },
  941. {
  942. .burstwords = 64,
  943. .reg = (PL080_BSIZE_64 << PL080_CONTROL_SB_SIZE_SHIFT) |
  944. (PL080_BSIZE_64 << PL080_CONTROL_DB_SIZE_SHIFT),
  945. },
  946. {
  947. .burstwords = 32,
  948. .reg = (PL080_BSIZE_32 << PL080_CONTROL_SB_SIZE_SHIFT) |
  949. (PL080_BSIZE_32 << PL080_CONTROL_DB_SIZE_SHIFT),
  950. },
  951. {
  952. .burstwords = 16,
  953. .reg = (PL080_BSIZE_16 << PL080_CONTROL_SB_SIZE_SHIFT) |
  954. (PL080_BSIZE_16 << PL080_CONTROL_DB_SIZE_SHIFT),
  955. },
  956. {
  957. .burstwords = 8,
  958. .reg = (PL080_BSIZE_8 << PL080_CONTROL_SB_SIZE_SHIFT) |
  959. (PL080_BSIZE_8 << PL080_CONTROL_DB_SIZE_SHIFT),
  960. },
  961. {
  962. .burstwords = 4,
  963. .reg = (PL080_BSIZE_4 << PL080_CONTROL_SB_SIZE_SHIFT) |
  964. (PL080_BSIZE_4 << PL080_CONTROL_DB_SIZE_SHIFT),
  965. },
  966. {
  967. .burstwords = 1,
  968. .reg = (PL080_BSIZE_1 << PL080_CONTROL_SB_SIZE_SHIFT) |
  969. (PL080_BSIZE_1 << PL080_CONTROL_DB_SIZE_SHIFT),
  970. },
  971. };
  972. static void dma_set_runtime_config(struct dma_chan *chan,
  973. struct dma_slave_config *config)
  974. {
  975. struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
  976. struct pl08x_driver_data *pl08x = plchan->host;
  977. struct pl08x_channel_data *cd = plchan->cd;
  978. enum dma_slave_buswidth addr_width;
  979. u32 maxburst;
  980. u32 cctl = 0;
  981. int i;
  982. /* Transfer direction */
  983. plchan->runtime_direction = config->direction;
  984. if (config->direction == DMA_TO_DEVICE) {
  985. plchan->runtime_addr = config->dst_addr;
  986. addr_width = config->dst_addr_width;
  987. maxburst = config->dst_maxburst;
  988. } else if (config->direction == DMA_FROM_DEVICE) {
  989. plchan->runtime_addr = config->src_addr;
  990. addr_width = config->src_addr_width;
  991. maxburst = config->src_maxburst;
  992. } else {
  993. dev_err(&pl08x->adev->dev,
  994. "bad runtime_config: alien transfer direction\n");
  995. return;
  996. }
  997. switch (addr_width) {
  998. case DMA_SLAVE_BUSWIDTH_1_BYTE:
  999. cctl |= (PL080_WIDTH_8BIT << PL080_CONTROL_SWIDTH_SHIFT) |
  1000. (PL080_WIDTH_8BIT << PL080_CONTROL_DWIDTH_SHIFT);
  1001. break;
  1002. case DMA_SLAVE_BUSWIDTH_2_BYTES:
  1003. cctl |= (PL080_WIDTH_16BIT << PL080_CONTROL_SWIDTH_SHIFT) |
  1004. (PL080_WIDTH_16BIT << PL080_CONTROL_DWIDTH_SHIFT);
  1005. break;
  1006. case DMA_SLAVE_BUSWIDTH_4_BYTES:
  1007. cctl |= (PL080_WIDTH_32BIT << PL080_CONTROL_SWIDTH_SHIFT) |
  1008. (PL080_WIDTH_32BIT << PL080_CONTROL_DWIDTH_SHIFT);
  1009. break;
  1010. default:
  1011. dev_err(&pl08x->adev->dev,
  1012. "bad runtime_config: alien address width\n");
  1013. return;
  1014. }
  1015. /*
  1016. * Now decide on a maxburst:
  1017. * If this channel will only request single transfers, set this
  1018. * down to ONE element. Also select one element if no maxburst
  1019. * is specified.
  1020. */
  1021. if (plchan->cd->single || maxburst == 0) {
  1022. cctl |= (PL080_BSIZE_1 << PL080_CONTROL_SB_SIZE_SHIFT) |
  1023. (PL080_BSIZE_1 << PL080_CONTROL_DB_SIZE_SHIFT);
  1024. } else {
  1025. for (i = 0; i < ARRAY_SIZE(burst_sizes); i++)
  1026. if (burst_sizes[i].burstwords <= maxburst)
  1027. break;
  1028. cctl |= burst_sizes[i].reg;
  1029. }
  1030. /* Modify the default channel data to fit PrimeCell request */
  1031. cd->cctl = cctl;
  1032. dev_dbg(&pl08x->adev->dev,
  1033. "configured channel %s (%s) for %s, data width %d, "
  1034. "maxburst %d words, LE, CCTL=0x%08x\n",
  1035. dma_chan_name(chan), plchan->name,
  1036. (config->direction == DMA_FROM_DEVICE) ? "RX" : "TX",
  1037. addr_width,
  1038. maxburst,
  1039. cctl);
  1040. }
  1041. /*
  1042. * Slave transactions callback to the slave device to allow
  1043. * synchronization of slave DMA signals with the DMAC enable
  1044. */
  1045. static void pl08x_issue_pending(struct dma_chan *chan)
  1046. {
  1047. struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
  1048. unsigned long flags;
  1049. spin_lock_irqsave(&plchan->lock, flags);
  1050. /* Something is already active, or we're waiting for a channel... */
  1051. if (plchan->at || plchan->state == PL08X_CHAN_WAITING) {
  1052. spin_unlock_irqrestore(&plchan->lock, flags);
  1053. return;
  1054. }
  1055. /* Take the first element in the queue and execute it */
  1056. if (!list_empty(&plchan->pend_list)) {
  1057. struct pl08x_txd *next;
  1058. next = list_first_entry(&plchan->pend_list,
  1059. struct pl08x_txd,
  1060. node);
  1061. list_del(&next->node);
  1062. plchan->state = PL08X_CHAN_RUNNING;
  1063. pl08x_start_txd(plchan, next);
  1064. }
  1065. spin_unlock_irqrestore(&plchan->lock, flags);
  1066. }
  1067. static int pl08x_prep_channel_resources(struct pl08x_dma_chan *plchan,
  1068. struct pl08x_txd *txd)
  1069. {
  1070. struct pl08x_driver_data *pl08x = plchan->host;
  1071. unsigned long flags;
  1072. int num_llis, ret;
  1073. num_llis = pl08x_fill_llis_for_desc(pl08x, txd);
  1074. if (!num_llis) {
  1075. kfree(txd);
  1076. return -EINVAL;
  1077. }
  1078. spin_lock_irqsave(&plchan->lock, flags);
  1079. /*
  1080. * See if we already have a physical channel allocated,
  1081. * else this is the time to try to get one.
  1082. */
  1083. ret = prep_phy_channel(plchan, txd);
  1084. if (ret) {
  1085. /*
  1086. * No physical channel was available.
  1087. *
  1088. * memcpy transfers can be sorted out at submission time.
  1089. *
  1090. * Slave transfers may have been denied due to platform
  1091. * channel muxing restrictions. Since there is no guarantee
  1092. * that this will ever be resolved, and the signal must be
  1093. * acquired AFTER acquiring the physical channel, we will let
  1094. * them be NACK:ed with -EBUSY here. The drivers can retry
  1095. * the prep() call if they are eager on doing this using DMA.
  1096. */
  1097. if (plchan->slave) {
  1098. pl08x_free_txd_list(pl08x, plchan);
  1099. pl08x_free_txd(pl08x, txd);
  1100. spin_unlock_irqrestore(&plchan->lock, flags);
  1101. return -EBUSY;
  1102. }
  1103. } else
  1104. /*
  1105. * Else we're all set, paused and ready to roll,
  1106. * status will switch to PL08X_CHAN_RUNNING when
  1107. * we call issue_pending(). If there is something
  1108. * running on the channel already we don't change
  1109. * its state.
  1110. */
  1111. if (plchan->state == PL08X_CHAN_IDLE)
  1112. plchan->state = PL08X_CHAN_PAUSED;
  1113. spin_unlock_irqrestore(&plchan->lock, flags);
  1114. return 0;
  1115. }
  1116. /*
  1117. * Given the source and destination available bus masks, select which
  1118. * will be routed to each port. We try to have source and destination
  1119. * on separate ports, but always respect the allowable settings.
  1120. */
  1121. static u32 pl08x_select_bus(struct pl08x_driver_data *pl08x, u8 src, u8 dst)
  1122. {
  1123. u32 cctl = 0;
  1124. if (!(dst & PL08X_AHB1) || ((dst & PL08X_AHB2) && (src & PL08X_AHB1)))
  1125. cctl |= PL080_CONTROL_DST_AHB2;
  1126. if (!(src & PL08X_AHB1) || ((src & PL08X_AHB2) && !(dst & PL08X_AHB2)))
  1127. cctl |= PL080_CONTROL_SRC_AHB2;
  1128. return cctl;
  1129. }
  1130. static struct pl08x_txd *pl08x_get_txd(struct pl08x_dma_chan *plchan,
  1131. unsigned long flags)
  1132. {
  1133. struct pl08x_txd *txd = kzalloc(sizeof(struct pl08x_txd), GFP_NOWAIT);
  1134. if (txd) {
  1135. dma_async_tx_descriptor_init(&txd->tx, &plchan->chan);
  1136. txd->tx.flags = flags;
  1137. txd->tx.tx_submit = pl08x_tx_submit;
  1138. INIT_LIST_HEAD(&txd->node);
  1139. /* Always enable error and terminal interrupts */
  1140. txd->ccfg = PL080_CONFIG_ERR_IRQ_MASK |
  1141. PL080_CONFIG_TC_IRQ_MASK;
  1142. }
  1143. return txd;
  1144. }
  1145. /*
  1146. * Initialize a descriptor to be used by memcpy submit
  1147. */
  1148. static struct dma_async_tx_descriptor *pl08x_prep_dma_memcpy(
  1149. struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
  1150. size_t len, unsigned long flags)
  1151. {
  1152. struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
  1153. struct pl08x_driver_data *pl08x = plchan->host;
  1154. struct pl08x_txd *txd;
  1155. int ret;
  1156. txd = pl08x_get_txd(plchan, flags);
  1157. if (!txd) {
  1158. dev_err(&pl08x->adev->dev,
  1159. "%s no memory for descriptor\n", __func__);
  1160. return NULL;
  1161. }
  1162. txd->direction = DMA_NONE;
  1163. txd->src_addr = src;
  1164. txd->dst_addr = dest;
  1165. txd->len = len;
  1166. /* Set platform data for m2m */
  1167. txd->ccfg |= PL080_FLOW_MEM2MEM << PL080_CONFIG_FLOW_CONTROL_SHIFT;
  1168. txd->cctl = pl08x->pd->memcpy_channel.cctl &
  1169. ~(PL080_CONTROL_DST_AHB2 | PL080_CONTROL_SRC_AHB2);
  1170. /* Both to be incremented or the code will break */
  1171. txd->cctl |= PL080_CONTROL_SRC_INCR | PL080_CONTROL_DST_INCR;
  1172. if (pl08x->vd->dualmaster)
  1173. txd->cctl |= pl08x_select_bus(pl08x,
  1174. pl08x->mem_buses, pl08x->mem_buses);
  1175. ret = pl08x_prep_channel_resources(plchan, txd);
  1176. if (ret)
  1177. return NULL;
  1178. return &txd->tx;
  1179. }
  1180. static struct dma_async_tx_descriptor *pl08x_prep_slave_sg(
  1181. struct dma_chan *chan, struct scatterlist *sgl,
  1182. unsigned int sg_len, enum dma_data_direction direction,
  1183. unsigned long flags)
  1184. {
  1185. struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
  1186. struct pl08x_driver_data *pl08x = plchan->host;
  1187. struct pl08x_txd *txd;
  1188. u8 src_buses, dst_buses;
  1189. int ret;
  1190. /*
  1191. * Current implementation ASSUMES only one sg
  1192. */
  1193. if (sg_len != 1) {
  1194. dev_err(&pl08x->adev->dev, "%s prepared too long sglist\n",
  1195. __func__);
  1196. BUG();
  1197. }
  1198. dev_dbg(&pl08x->adev->dev, "%s prepare transaction of %d bytes from %s\n",
  1199. __func__, sgl->length, plchan->name);
  1200. txd = pl08x_get_txd(plchan, flags);
  1201. if (!txd) {
  1202. dev_err(&pl08x->adev->dev, "%s no txd\n", __func__);
  1203. return NULL;
  1204. }
  1205. if (direction != plchan->runtime_direction)
  1206. dev_err(&pl08x->adev->dev, "%s DMA setup does not match "
  1207. "the direction configured for the PrimeCell\n",
  1208. __func__);
  1209. /*
  1210. * Set up addresses, the PrimeCell configured address
  1211. * will take precedence since this may configure the
  1212. * channel target address dynamically at runtime.
  1213. */
  1214. txd->direction = direction;
  1215. txd->len = sgl->length;
  1216. txd->cctl = plchan->cd->cctl &
  1217. ~(PL080_CONTROL_SRC_AHB2 | PL080_CONTROL_DST_AHB2 |
  1218. PL080_CONTROL_SRC_INCR | PL080_CONTROL_DST_INCR |
  1219. PL080_CONTROL_PROT_MASK);
  1220. /* Access the cell in privileged mode, non-bufferable, non-cacheable */
  1221. txd->cctl |= PL080_CONTROL_PROT_SYS;
  1222. if (direction == DMA_TO_DEVICE) {
  1223. txd->ccfg |= PL080_FLOW_MEM2PER << PL080_CONFIG_FLOW_CONTROL_SHIFT;
  1224. txd->cctl |= PL080_CONTROL_SRC_INCR;
  1225. txd->src_addr = sgl->dma_address;
  1226. if (plchan->runtime_addr)
  1227. txd->dst_addr = plchan->runtime_addr;
  1228. else
  1229. txd->dst_addr = plchan->cd->addr;
  1230. src_buses = pl08x->mem_buses;
  1231. dst_buses = plchan->cd->periph_buses;
  1232. } else if (direction == DMA_FROM_DEVICE) {
  1233. txd->ccfg |= PL080_FLOW_PER2MEM << PL080_CONFIG_FLOW_CONTROL_SHIFT;
  1234. txd->cctl |= PL080_CONTROL_DST_INCR;
  1235. if (plchan->runtime_addr)
  1236. txd->src_addr = plchan->runtime_addr;
  1237. else
  1238. txd->src_addr = plchan->cd->addr;
  1239. txd->dst_addr = sgl->dma_address;
  1240. src_buses = plchan->cd->periph_buses;
  1241. dst_buses = pl08x->mem_buses;
  1242. } else {
  1243. dev_err(&pl08x->adev->dev,
  1244. "%s direction unsupported\n", __func__);
  1245. return NULL;
  1246. }
  1247. txd->cctl |= pl08x_select_bus(pl08x, src_buses, dst_buses);
  1248. ret = pl08x_prep_channel_resources(plchan, txd);
  1249. if (ret)
  1250. return NULL;
  1251. return &txd->tx;
  1252. }
  1253. static int pl08x_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd,
  1254. unsigned long arg)
  1255. {
  1256. struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
  1257. struct pl08x_driver_data *pl08x = plchan->host;
  1258. unsigned long flags;
  1259. int ret = 0;
  1260. /* Controls applicable to inactive channels */
  1261. if (cmd == DMA_SLAVE_CONFIG) {
  1262. dma_set_runtime_config(chan,
  1263. (struct dma_slave_config *)
  1264. arg);
  1265. return 0;
  1266. }
  1267. /*
  1268. * Anything succeeds on channels with no physical allocation and
  1269. * no queued transfers.
  1270. */
  1271. spin_lock_irqsave(&plchan->lock, flags);
  1272. if (!plchan->phychan && !plchan->at) {
  1273. spin_unlock_irqrestore(&plchan->lock, flags);
  1274. return 0;
  1275. }
  1276. switch (cmd) {
  1277. case DMA_TERMINATE_ALL:
  1278. plchan->state = PL08X_CHAN_IDLE;
  1279. if (plchan->phychan) {
  1280. pl08x_stop_phy_chan(plchan->phychan);
  1281. /*
  1282. * Mark physical channel as free and free any slave
  1283. * signal
  1284. */
  1285. release_phy_channel(plchan);
  1286. }
  1287. /* Dequeue jobs and free LLIs */
  1288. if (plchan->at) {
  1289. pl08x_free_txd(pl08x, plchan->at);
  1290. plchan->at = NULL;
  1291. }
  1292. /* Dequeue jobs not yet fired as well */
  1293. pl08x_free_txd_list(pl08x, plchan);
  1294. break;
  1295. case DMA_PAUSE:
  1296. pl08x_pause_phy_chan(plchan->phychan);
  1297. plchan->state = PL08X_CHAN_PAUSED;
  1298. break;
  1299. case DMA_RESUME:
  1300. pl08x_resume_phy_chan(plchan->phychan);
  1301. plchan->state = PL08X_CHAN_RUNNING;
  1302. break;
  1303. default:
  1304. /* Unknown command */
  1305. ret = -ENXIO;
  1306. break;
  1307. }
  1308. spin_unlock_irqrestore(&plchan->lock, flags);
  1309. return ret;
  1310. }
  1311. bool pl08x_filter_id(struct dma_chan *chan, void *chan_id)
  1312. {
  1313. struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
  1314. char *name = chan_id;
  1315. /* Check that the channel is not taken! */
  1316. if (!strcmp(plchan->name, name))
  1317. return true;
  1318. return false;
  1319. }
  1320. /*
  1321. * Just check that the device is there and active
  1322. * TODO: turn this bit on/off depending on the number of
  1323. * physical channels actually used, if it is zero... well
  1324. * shut it off. That will save some power. Cut the clock
  1325. * at the same time.
  1326. */
  1327. static void pl08x_ensure_on(struct pl08x_driver_data *pl08x)
  1328. {
  1329. u32 val;
  1330. val = readl(pl08x->base + PL080_CONFIG);
  1331. val &= ~(PL080_CONFIG_M2_BE | PL080_CONFIG_M1_BE | PL080_CONFIG_ENABLE);
  1332. /* We implicitly clear bit 1 and that means little-endian mode */
  1333. val |= PL080_CONFIG_ENABLE;
  1334. writel(val, pl08x->base + PL080_CONFIG);
  1335. }
  1336. static void pl08x_unmap_buffers(struct pl08x_txd *txd)
  1337. {
  1338. struct device *dev = txd->tx.chan->device->dev;
  1339. if (!(txd->tx.flags & DMA_COMPL_SKIP_SRC_UNMAP)) {
  1340. if (txd->tx.flags & DMA_COMPL_SRC_UNMAP_SINGLE)
  1341. dma_unmap_single(dev, txd->src_addr, txd->len,
  1342. DMA_TO_DEVICE);
  1343. else
  1344. dma_unmap_page(dev, txd->src_addr, txd->len,
  1345. DMA_TO_DEVICE);
  1346. }
  1347. if (!(txd->tx.flags & DMA_COMPL_SKIP_DEST_UNMAP)) {
  1348. if (txd->tx.flags & DMA_COMPL_DEST_UNMAP_SINGLE)
  1349. dma_unmap_single(dev, txd->dst_addr, txd->len,
  1350. DMA_FROM_DEVICE);
  1351. else
  1352. dma_unmap_page(dev, txd->dst_addr, txd->len,
  1353. DMA_FROM_DEVICE);
  1354. }
  1355. }
  1356. static void pl08x_tasklet(unsigned long data)
  1357. {
  1358. struct pl08x_dma_chan *plchan = (struct pl08x_dma_chan *) data;
  1359. struct pl08x_driver_data *pl08x = plchan->host;
  1360. struct pl08x_txd *txd;
  1361. unsigned long flags;
  1362. spin_lock_irqsave(&plchan->lock, flags);
  1363. txd = plchan->at;
  1364. plchan->at = NULL;
  1365. if (txd) {
  1366. /*
  1367. * Update last completed
  1368. */
  1369. plchan->lc = txd->tx.cookie;
  1370. }
  1371. /*
  1372. * If a new descriptor is queued, set it up
  1373. * plchan->at is NULL here
  1374. */
  1375. if (!list_empty(&plchan->pend_list)) {
  1376. struct pl08x_txd *next;
  1377. next = list_first_entry(&plchan->pend_list,
  1378. struct pl08x_txd,
  1379. node);
  1380. list_del(&next->node);
  1381. pl08x_start_txd(plchan, next);
  1382. } else if (plchan->phychan_hold) {
  1383. /*
  1384. * This channel is still in use - we have a new txd being
  1385. * prepared and will soon be queued. Don't give up the
  1386. * physical channel.
  1387. */
  1388. } else {
  1389. struct pl08x_dma_chan *waiting = NULL;
  1390. /*
  1391. * No more jobs, so free up the physical channel
  1392. * Free any allocated signal on slave transfers too
  1393. */
  1394. release_phy_channel(plchan);
  1395. plchan->state = PL08X_CHAN_IDLE;
  1396. /*
  1397. * And NOW before anyone else can grab that free:d
  1398. * up physical channel, see if there is some memcpy
  1399. * pending that seriously needs to start because of
  1400. * being stacked up while we were choking the
  1401. * physical channels with data.
  1402. */
  1403. list_for_each_entry(waiting, &pl08x->memcpy.channels,
  1404. chan.device_node) {
  1405. if (waiting->state == PL08X_CHAN_WAITING &&
  1406. waiting->waiting != NULL) {
  1407. int ret;
  1408. /* This should REALLY not fail now */
  1409. ret = prep_phy_channel(waiting,
  1410. waiting->waiting);
  1411. BUG_ON(ret);
  1412. waiting->phychan_hold--;
  1413. waiting->state = PL08X_CHAN_RUNNING;
  1414. waiting->waiting = NULL;
  1415. pl08x_issue_pending(&waiting->chan);
  1416. break;
  1417. }
  1418. }
  1419. }
  1420. spin_unlock_irqrestore(&plchan->lock, flags);
  1421. if (txd) {
  1422. dma_async_tx_callback callback = txd->tx.callback;
  1423. void *callback_param = txd->tx.callback_param;
  1424. /* Don't try to unmap buffers on slave channels */
  1425. if (!plchan->slave)
  1426. pl08x_unmap_buffers(txd);
  1427. /* Free the descriptor */
  1428. spin_lock_irqsave(&plchan->lock, flags);
  1429. pl08x_free_txd(pl08x, txd);
  1430. spin_unlock_irqrestore(&plchan->lock, flags);
  1431. /* Callback to signal completion */
  1432. if (callback)
  1433. callback(callback_param);
  1434. }
  1435. }
  1436. static irqreturn_t pl08x_irq(int irq, void *dev)
  1437. {
  1438. struct pl08x_driver_data *pl08x = dev;
  1439. u32 mask = 0;
  1440. u32 val;
  1441. int i;
  1442. val = readl(pl08x->base + PL080_ERR_STATUS);
  1443. if (val) {
  1444. /*
  1445. * An error interrupt (on one or more channels)
  1446. */
  1447. dev_err(&pl08x->adev->dev,
  1448. "%s error interrupt, register value 0x%08x\n",
  1449. __func__, val);
  1450. /*
  1451. * Simply clear ALL PL08X error interrupts,
  1452. * regardless of channel and cause
  1453. * FIXME: should be 0x00000003 on PL081 really.
  1454. */
  1455. writel(0x000000FF, pl08x->base + PL080_ERR_CLEAR);
  1456. }
  1457. val = readl(pl08x->base + PL080_INT_STATUS);
  1458. for (i = 0; i < pl08x->vd->channels; i++) {
  1459. if ((1 << i) & val) {
  1460. /* Locate physical channel */
  1461. struct pl08x_phy_chan *phychan = &pl08x->phy_chans[i];
  1462. struct pl08x_dma_chan *plchan = phychan->serving;
  1463. /* Schedule tasklet on this channel */
  1464. tasklet_schedule(&plchan->tasklet);
  1465. mask |= (1 << i);
  1466. }
  1467. }
  1468. /*
  1469. * Clear only the terminal interrupts on channels we processed
  1470. */
  1471. writel(mask, pl08x->base + PL080_TC_CLEAR);
  1472. return mask ? IRQ_HANDLED : IRQ_NONE;
  1473. }
  1474. /*
  1475. * Initialise the DMAC memcpy/slave channels.
  1476. * Make a local wrapper to hold required data
  1477. */
  1478. static int pl08x_dma_init_virtual_channels(struct pl08x_driver_data *pl08x,
  1479. struct dma_device *dmadev,
  1480. unsigned int channels,
  1481. bool slave)
  1482. {
  1483. struct pl08x_dma_chan *chan;
  1484. int i;
  1485. INIT_LIST_HEAD(&dmadev->channels);
  1486. /*
  1487. * Register as many many memcpy as we have physical channels,
  1488. * we won't always be able to use all but the code will have
  1489. * to cope with that situation.
  1490. */
  1491. for (i = 0; i < channels; i++) {
  1492. chan = kzalloc(sizeof(struct pl08x_dma_chan), GFP_KERNEL);
  1493. if (!chan) {
  1494. dev_err(&pl08x->adev->dev,
  1495. "%s no memory for channel\n", __func__);
  1496. return -ENOMEM;
  1497. }
  1498. chan->host = pl08x;
  1499. chan->state = PL08X_CHAN_IDLE;
  1500. if (slave) {
  1501. chan->slave = true;
  1502. chan->name = pl08x->pd->slave_channels[i].bus_id;
  1503. chan->cd = &pl08x->pd->slave_channels[i];
  1504. } else {
  1505. chan->cd = &pl08x->pd->memcpy_channel;
  1506. chan->name = kasprintf(GFP_KERNEL, "memcpy%d", i);
  1507. if (!chan->name) {
  1508. kfree(chan);
  1509. return -ENOMEM;
  1510. }
  1511. }
  1512. if (chan->cd->circular_buffer) {
  1513. dev_err(&pl08x->adev->dev,
  1514. "channel %s: circular buffers not supported\n",
  1515. chan->name);
  1516. kfree(chan);
  1517. continue;
  1518. }
  1519. dev_info(&pl08x->adev->dev,
  1520. "initialize virtual channel \"%s\"\n",
  1521. chan->name);
  1522. chan->chan.device = dmadev;
  1523. chan->chan.cookie = 0;
  1524. chan->lc = 0;
  1525. spin_lock_init(&chan->lock);
  1526. INIT_LIST_HEAD(&chan->pend_list);
  1527. tasklet_init(&chan->tasklet, pl08x_tasklet,
  1528. (unsigned long) chan);
  1529. list_add_tail(&chan->chan.device_node, &dmadev->channels);
  1530. }
  1531. dev_info(&pl08x->adev->dev, "initialized %d virtual %s channels\n",
  1532. i, slave ? "slave" : "memcpy");
  1533. return i;
  1534. }
  1535. static void pl08x_free_virtual_channels(struct dma_device *dmadev)
  1536. {
  1537. struct pl08x_dma_chan *chan = NULL;
  1538. struct pl08x_dma_chan *next;
  1539. list_for_each_entry_safe(chan,
  1540. next, &dmadev->channels, chan.device_node) {
  1541. list_del(&chan->chan.device_node);
  1542. kfree(chan);
  1543. }
  1544. }
  1545. #ifdef CONFIG_DEBUG_FS
  1546. static const char *pl08x_state_str(enum pl08x_dma_chan_state state)
  1547. {
  1548. switch (state) {
  1549. case PL08X_CHAN_IDLE:
  1550. return "idle";
  1551. case PL08X_CHAN_RUNNING:
  1552. return "running";
  1553. case PL08X_CHAN_PAUSED:
  1554. return "paused";
  1555. case PL08X_CHAN_WAITING:
  1556. return "waiting";
  1557. default:
  1558. break;
  1559. }
  1560. return "UNKNOWN STATE";
  1561. }
  1562. static int pl08x_debugfs_show(struct seq_file *s, void *data)
  1563. {
  1564. struct pl08x_driver_data *pl08x = s->private;
  1565. struct pl08x_dma_chan *chan;
  1566. struct pl08x_phy_chan *ch;
  1567. unsigned long flags;
  1568. int i;
  1569. seq_printf(s, "PL08x physical channels:\n");
  1570. seq_printf(s, "CHANNEL:\tUSER:\n");
  1571. seq_printf(s, "--------\t-----\n");
  1572. for (i = 0; i < pl08x->vd->channels; i++) {
  1573. struct pl08x_dma_chan *virt_chan;
  1574. ch = &pl08x->phy_chans[i];
  1575. spin_lock_irqsave(&ch->lock, flags);
  1576. virt_chan = ch->serving;
  1577. seq_printf(s, "%d\t\t%s\n",
  1578. ch->id, virt_chan ? virt_chan->name : "(none)");
  1579. spin_unlock_irqrestore(&ch->lock, flags);
  1580. }
  1581. seq_printf(s, "\nPL08x virtual memcpy channels:\n");
  1582. seq_printf(s, "CHANNEL:\tSTATE:\n");
  1583. seq_printf(s, "--------\t------\n");
  1584. list_for_each_entry(chan, &pl08x->memcpy.channels, chan.device_node) {
  1585. seq_printf(s, "%s\t\t%s\n", chan->name,
  1586. pl08x_state_str(chan->state));
  1587. }
  1588. seq_printf(s, "\nPL08x virtual slave channels:\n");
  1589. seq_printf(s, "CHANNEL:\tSTATE:\n");
  1590. seq_printf(s, "--------\t------\n");
  1591. list_for_each_entry(chan, &pl08x->slave.channels, chan.device_node) {
  1592. seq_printf(s, "%s\t\t%s\n", chan->name,
  1593. pl08x_state_str(chan->state));
  1594. }
  1595. return 0;
  1596. }
  1597. static int pl08x_debugfs_open(struct inode *inode, struct file *file)
  1598. {
  1599. return single_open(file, pl08x_debugfs_show, inode->i_private);
  1600. }
  1601. static const struct file_operations pl08x_debugfs_operations = {
  1602. .open = pl08x_debugfs_open,
  1603. .read = seq_read,
  1604. .llseek = seq_lseek,
  1605. .release = single_release,
  1606. };
  1607. static void init_pl08x_debugfs(struct pl08x_driver_data *pl08x)
  1608. {
  1609. /* Expose a simple debugfs interface to view all clocks */
  1610. (void) debugfs_create_file(dev_name(&pl08x->adev->dev), S_IFREG | S_IRUGO,
  1611. NULL, pl08x,
  1612. &pl08x_debugfs_operations);
  1613. }
  1614. #else
  1615. static inline void init_pl08x_debugfs(struct pl08x_driver_data *pl08x)
  1616. {
  1617. }
  1618. #endif
  1619. static int pl08x_probe(struct amba_device *adev, struct amba_id *id)
  1620. {
  1621. struct pl08x_driver_data *pl08x;
  1622. const struct vendor_data *vd = id->data;
  1623. int ret = 0;
  1624. int i;
  1625. ret = amba_request_regions(adev, NULL);
  1626. if (ret)
  1627. return ret;
  1628. /* Create the driver state holder */
  1629. pl08x = kzalloc(sizeof(struct pl08x_driver_data), GFP_KERNEL);
  1630. if (!pl08x) {
  1631. ret = -ENOMEM;
  1632. goto out_no_pl08x;
  1633. }
  1634. /* Initialize memcpy engine */
  1635. dma_cap_set(DMA_MEMCPY, pl08x->memcpy.cap_mask);
  1636. pl08x->memcpy.dev = &adev->dev;
  1637. pl08x->memcpy.device_alloc_chan_resources = pl08x_alloc_chan_resources;
  1638. pl08x->memcpy.device_free_chan_resources = pl08x_free_chan_resources;
  1639. pl08x->memcpy.device_prep_dma_memcpy = pl08x_prep_dma_memcpy;
  1640. pl08x->memcpy.device_prep_dma_interrupt = pl08x_prep_dma_interrupt;
  1641. pl08x->memcpy.device_tx_status = pl08x_dma_tx_status;
  1642. pl08x->memcpy.device_issue_pending = pl08x_issue_pending;
  1643. pl08x->memcpy.device_control = pl08x_control;
  1644. /* Initialize slave engine */
  1645. dma_cap_set(DMA_SLAVE, pl08x->slave.cap_mask);
  1646. pl08x->slave.dev = &adev->dev;
  1647. pl08x->slave.device_alloc_chan_resources = pl08x_alloc_chan_resources;
  1648. pl08x->slave.device_free_chan_resources = pl08x_free_chan_resources;
  1649. pl08x->slave.device_prep_dma_interrupt = pl08x_prep_dma_interrupt;
  1650. pl08x->slave.device_tx_status = pl08x_dma_tx_status;
  1651. pl08x->slave.device_issue_pending = pl08x_issue_pending;
  1652. pl08x->slave.device_prep_slave_sg = pl08x_prep_slave_sg;
  1653. pl08x->slave.device_control = pl08x_control;
  1654. /* Get the platform data */
  1655. pl08x->pd = dev_get_platdata(&adev->dev);
  1656. if (!pl08x->pd) {
  1657. dev_err(&adev->dev, "no platform data supplied\n");
  1658. goto out_no_platdata;
  1659. }
  1660. /* Assign useful pointers to the driver state */
  1661. pl08x->adev = adev;
  1662. pl08x->vd = vd;
  1663. /* By default, AHB1 only. If dualmaster, from platform */
  1664. pl08x->lli_buses = PL08X_AHB1;
  1665. pl08x->mem_buses = PL08X_AHB1;
  1666. if (pl08x->vd->dualmaster) {
  1667. pl08x->lli_buses = pl08x->pd->lli_buses;
  1668. pl08x->mem_buses = pl08x->pd->mem_buses;
  1669. }
  1670. /* A DMA memory pool for LLIs, align on 1-byte boundary */
  1671. pl08x->pool = dma_pool_create(DRIVER_NAME, &pl08x->adev->dev,
  1672. PL08X_LLI_TSFR_SIZE, PL08X_ALIGN, 0);
  1673. if (!pl08x->pool) {
  1674. ret = -ENOMEM;
  1675. goto out_no_lli_pool;
  1676. }
  1677. spin_lock_init(&pl08x->lock);
  1678. pl08x->base = ioremap(adev->res.start, resource_size(&adev->res));
  1679. if (!pl08x->base) {
  1680. ret = -ENOMEM;
  1681. goto out_no_ioremap;
  1682. }
  1683. /* Turn on the PL08x */
  1684. pl08x_ensure_on(pl08x);
  1685. /*
  1686. * Attach the interrupt handler
  1687. */
  1688. writel(0x000000FF, pl08x->base + PL080_ERR_CLEAR);
  1689. writel(0x000000FF, pl08x->base + PL080_TC_CLEAR);
  1690. ret = request_irq(adev->irq[0], pl08x_irq, IRQF_DISABLED,
  1691. DRIVER_NAME, pl08x);
  1692. if (ret) {
  1693. dev_err(&adev->dev, "%s failed to request interrupt %d\n",
  1694. __func__, adev->irq[0]);
  1695. goto out_no_irq;
  1696. }
  1697. /* Initialize physical channels */
  1698. pl08x->phy_chans = kmalloc((vd->channels * sizeof(struct pl08x_phy_chan)),
  1699. GFP_KERNEL);
  1700. if (!pl08x->phy_chans) {
  1701. dev_err(&adev->dev, "%s failed to allocate "
  1702. "physical channel holders\n",
  1703. __func__);
  1704. goto out_no_phychans;
  1705. }
  1706. for (i = 0; i < vd->channels; i++) {
  1707. struct pl08x_phy_chan *ch = &pl08x->phy_chans[i];
  1708. ch->id = i;
  1709. ch->base = pl08x->base + PL080_Cx_BASE(i);
  1710. spin_lock_init(&ch->lock);
  1711. ch->serving = NULL;
  1712. ch->signal = -1;
  1713. dev_info(&adev->dev,
  1714. "physical channel %d is %s\n", i,
  1715. pl08x_phy_channel_busy(ch) ? "BUSY" : "FREE");
  1716. }
  1717. /* Register as many memcpy channels as there are physical channels */
  1718. ret = pl08x_dma_init_virtual_channels(pl08x, &pl08x->memcpy,
  1719. pl08x->vd->channels, false);
  1720. if (ret <= 0) {
  1721. dev_warn(&pl08x->adev->dev,
  1722. "%s failed to enumerate memcpy channels - %d\n",
  1723. __func__, ret);
  1724. goto out_no_memcpy;
  1725. }
  1726. pl08x->memcpy.chancnt = ret;
  1727. /* Register slave channels */
  1728. ret = pl08x_dma_init_virtual_channels(pl08x, &pl08x->slave,
  1729. pl08x->pd->num_slave_channels,
  1730. true);
  1731. if (ret <= 0) {
  1732. dev_warn(&pl08x->adev->dev,
  1733. "%s failed to enumerate slave channels - %d\n",
  1734. __func__, ret);
  1735. goto out_no_slave;
  1736. }
  1737. pl08x->slave.chancnt = ret;
  1738. ret = dma_async_device_register(&pl08x->memcpy);
  1739. if (ret) {
  1740. dev_warn(&pl08x->adev->dev,
  1741. "%s failed to register memcpy as an async device - %d\n",
  1742. __func__, ret);
  1743. goto out_no_memcpy_reg;
  1744. }
  1745. ret = dma_async_device_register(&pl08x->slave);
  1746. if (ret) {
  1747. dev_warn(&pl08x->adev->dev,
  1748. "%s failed to register slave as an async device - %d\n",
  1749. __func__, ret);
  1750. goto out_no_slave_reg;
  1751. }
  1752. amba_set_drvdata(adev, pl08x);
  1753. init_pl08x_debugfs(pl08x);
  1754. dev_info(&pl08x->adev->dev, "DMA: PL%03x rev%u at 0x%08llx irq %d\n",
  1755. amba_part(adev), amba_rev(adev),
  1756. (unsigned long long)adev->res.start, adev->irq[0]);
  1757. return 0;
  1758. out_no_slave_reg:
  1759. dma_async_device_unregister(&pl08x->memcpy);
  1760. out_no_memcpy_reg:
  1761. pl08x_free_virtual_channels(&pl08x->slave);
  1762. out_no_slave:
  1763. pl08x_free_virtual_channels(&pl08x->memcpy);
  1764. out_no_memcpy:
  1765. kfree(pl08x->phy_chans);
  1766. out_no_phychans:
  1767. free_irq(adev->irq[0], pl08x);
  1768. out_no_irq:
  1769. iounmap(pl08x->base);
  1770. out_no_ioremap:
  1771. dma_pool_destroy(pl08x->pool);
  1772. out_no_lli_pool:
  1773. out_no_platdata:
  1774. kfree(pl08x);
  1775. out_no_pl08x:
  1776. amba_release_regions(adev);
  1777. return ret;
  1778. }
  1779. /* PL080 has 8 channels and the PL080 have just 2 */
  1780. static struct vendor_data vendor_pl080 = {
  1781. .channels = 8,
  1782. .dualmaster = true,
  1783. };
  1784. static struct vendor_data vendor_pl081 = {
  1785. .channels = 2,
  1786. .dualmaster = false,
  1787. };
  1788. static struct amba_id pl08x_ids[] = {
  1789. /* PL080 */
  1790. {
  1791. .id = 0x00041080,
  1792. .mask = 0x000fffff,
  1793. .data = &vendor_pl080,
  1794. },
  1795. /* PL081 */
  1796. {
  1797. .id = 0x00041081,
  1798. .mask = 0x000fffff,
  1799. .data = &vendor_pl081,
  1800. },
  1801. /* Nomadik 8815 PL080 variant */
  1802. {
  1803. .id = 0x00280880,
  1804. .mask = 0x00ffffff,
  1805. .data = &vendor_pl080,
  1806. },
  1807. { 0, 0 },
  1808. };
  1809. static struct amba_driver pl08x_amba_driver = {
  1810. .drv.name = DRIVER_NAME,
  1811. .id_table = pl08x_ids,
  1812. .probe = pl08x_probe,
  1813. };
  1814. static int __init pl08x_init(void)
  1815. {
  1816. int retval;
  1817. retval = amba_driver_register(&pl08x_amba_driver);
  1818. if (retval)
  1819. printk(KERN_WARNING DRIVER_NAME
  1820. "failed to register as an AMBA device (%d)\n",
  1821. retval);
  1822. return retval;
  1823. }
  1824. subsys_initcall(pl08x_init);