vmx.c 202 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * Copyright (C) 2006 Qumranet, Inc.
  8. * Copyright 2010 Red Hat, Inc. and/or its affiliates.
  9. *
  10. * Authors:
  11. * Avi Kivity <avi@qumranet.com>
  12. * Yaniv Kamay <yaniv@qumranet.com>
  13. *
  14. * This work is licensed under the terms of the GNU GPL, version 2. See
  15. * the COPYING file in the top-level directory.
  16. *
  17. */
  18. #include "irq.h"
  19. #include "mmu.h"
  20. #include <linux/kvm_host.h>
  21. #include <linux/module.h>
  22. #include <linux/kernel.h>
  23. #include <linux/mm.h>
  24. #include <linux/highmem.h>
  25. #include <linux/sched.h>
  26. #include <linux/moduleparam.h>
  27. #include <linux/ftrace_event.h>
  28. #include <linux/slab.h>
  29. #include <linux/tboot.h>
  30. #include "kvm_cache_regs.h"
  31. #include "x86.h"
  32. #include <asm/io.h>
  33. #include <asm/desc.h>
  34. #include <asm/vmx.h>
  35. #include <asm/virtext.h>
  36. #include <asm/mce.h>
  37. #include <asm/i387.h>
  38. #include <asm/xcr.h>
  39. #include "trace.h"
  40. #define __ex(x) __kvm_handle_fault_on_reboot(x)
  41. #define __ex_clear(x, reg) \
  42. ____kvm_handle_fault_on_reboot(x, "xor " reg " , " reg)
  43. MODULE_AUTHOR("Qumranet");
  44. MODULE_LICENSE("GPL");
  45. static int __read_mostly enable_vpid = 1;
  46. module_param_named(vpid, enable_vpid, bool, 0444);
  47. static int __read_mostly flexpriority_enabled = 1;
  48. module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO);
  49. static int __read_mostly enable_ept = 1;
  50. module_param_named(ept, enable_ept, bool, S_IRUGO);
  51. static int __read_mostly enable_unrestricted_guest = 1;
  52. module_param_named(unrestricted_guest,
  53. enable_unrestricted_guest, bool, S_IRUGO);
  54. static int __read_mostly emulate_invalid_guest_state = 0;
  55. module_param(emulate_invalid_guest_state, bool, S_IRUGO);
  56. static int __read_mostly vmm_exclusive = 1;
  57. module_param(vmm_exclusive, bool, S_IRUGO);
  58. static int __read_mostly yield_on_hlt = 1;
  59. module_param(yield_on_hlt, bool, S_IRUGO);
  60. /*
  61. * If nested=1, nested virtualization is supported, i.e., guests may use
  62. * VMX and be a hypervisor for its own guests. If nested=0, guests may not
  63. * use VMX instructions.
  64. */
  65. static int __read_mostly nested = 0;
  66. module_param(nested, bool, S_IRUGO);
  67. #define KVM_GUEST_CR0_MASK_UNRESTRICTED_GUEST \
  68. (X86_CR0_WP | X86_CR0_NE | X86_CR0_NW | X86_CR0_CD)
  69. #define KVM_GUEST_CR0_MASK \
  70. (KVM_GUEST_CR0_MASK_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
  71. #define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST \
  72. (X86_CR0_WP | X86_CR0_NE)
  73. #define KVM_VM_CR0_ALWAYS_ON \
  74. (KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
  75. #define KVM_CR4_GUEST_OWNED_BITS \
  76. (X86_CR4_PVI | X86_CR4_DE | X86_CR4_PCE | X86_CR4_OSFXSR \
  77. | X86_CR4_OSXMMEXCPT)
  78. #define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE)
  79. #define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE)
  80. #define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM))
  81. /*
  82. * These 2 parameters are used to config the controls for Pause-Loop Exiting:
  83. * ple_gap: upper bound on the amount of time between two successive
  84. * executions of PAUSE in a loop. Also indicate if ple enabled.
  85. * According to test, this time is usually smaller than 128 cycles.
  86. * ple_window: upper bound on the amount of time a guest is allowed to execute
  87. * in a PAUSE loop. Tests indicate that most spinlocks are held for
  88. * less than 2^12 cycles
  89. * Time is measured based on a counter that runs at the same rate as the TSC,
  90. * refer SDM volume 3b section 21.6.13 & 22.1.3.
  91. */
  92. #define KVM_VMX_DEFAULT_PLE_GAP 128
  93. #define KVM_VMX_DEFAULT_PLE_WINDOW 4096
  94. static int ple_gap = KVM_VMX_DEFAULT_PLE_GAP;
  95. module_param(ple_gap, int, S_IRUGO);
  96. static int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW;
  97. module_param(ple_window, int, S_IRUGO);
  98. #define NR_AUTOLOAD_MSRS 1
  99. #define VMCS02_POOL_SIZE 1
  100. struct vmcs {
  101. u32 revision_id;
  102. u32 abort;
  103. char data[0];
  104. };
  105. /*
  106. * Track a VMCS that may be loaded on a certain CPU. If it is (cpu!=-1), also
  107. * remember whether it was VMLAUNCHed, and maintain a linked list of all VMCSs
  108. * loaded on this CPU (so we can clear them if the CPU goes down).
  109. */
  110. struct loaded_vmcs {
  111. struct vmcs *vmcs;
  112. int cpu;
  113. int launched;
  114. struct list_head loaded_vmcss_on_cpu_link;
  115. };
  116. struct shared_msr_entry {
  117. unsigned index;
  118. u64 data;
  119. u64 mask;
  120. };
  121. /*
  122. * struct vmcs12 describes the state that our guest hypervisor (L1) keeps for a
  123. * single nested guest (L2), hence the name vmcs12. Any VMX implementation has
  124. * a VMCS structure, and vmcs12 is our emulated VMX's VMCS. This structure is
  125. * stored in guest memory specified by VMPTRLD, but is opaque to the guest,
  126. * which must access it using VMREAD/VMWRITE/VMCLEAR instructions.
  127. * More than one of these structures may exist, if L1 runs multiple L2 guests.
  128. * nested_vmx_run() will use the data here to build a vmcs02: a VMCS for the
  129. * underlying hardware which will be used to run L2.
  130. * This structure is packed to ensure that its layout is identical across
  131. * machines (necessary for live migration).
  132. * If there are changes in this struct, VMCS12_REVISION must be changed.
  133. */
  134. typedef u64 natural_width;
  135. struct __packed vmcs12 {
  136. /* According to the Intel spec, a VMCS region must start with the
  137. * following two fields. Then follow implementation-specific data.
  138. */
  139. u32 revision_id;
  140. u32 abort;
  141. u32 launch_state; /* set to 0 by VMCLEAR, to 1 by VMLAUNCH */
  142. u32 padding[7]; /* room for future expansion */
  143. u64 io_bitmap_a;
  144. u64 io_bitmap_b;
  145. u64 msr_bitmap;
  146. u64 vm_exit_msr_store_addr;
  147. u64 vm_exit_msr_load_addr;
  148. u64 vm_entry_msr_load_addr;
  149. u64 tsc_offset;
  150. u64 virtual_apic_page_addr;
  151. u64 apic_access_addr;
  152. u64 ept_pointer;
  153. u64 guest_physical_address;
  154. u64 vmcs_link_pointer;
  155. u64 guest_ia32_debugctl;
  156. u64 guest_ia32_pat;
  157. u64 guest_ia32_efer;
  158. u64 guest_ia32_perf_global_ctrl;
  159. u64 guest_pdptr0;
  160. u64 guest_pdptr1;
  161. u64 guest_pdptr2;
  162. u64 guest_pdptr3;
  163. u64 host_ia32_pat;
  164. u64 host_ia32_efer;
  165. u64 host_ia32_perf_global_ctrl;
  166. u64 padding64[8]; /* room for future expansion */
  167. /*
  168. * To allow migration of L1 (complete with its L2 guests) between
  169. * machines of different natural widths (32 or 64 bit), we cannot have
  170. * unsigned long fields with no explict size. We use u64 (aliased
  171. * natural_width) instead. Luckily, x86 is little-endian.
  172. */
  173. natural_width cr0_guest_host_mask;
  174. natural_width cr4_guest_host_mask;
  175. natural_width cr0_read_shadow;
  176. natural_width cr4_read_shadow;
  177. natural_width cr3_target_value0;
  178. natural_width cr3_target_value1;
  179. natural_width cr3_target_value2;
  180. natural_width cr3_target_value3;
  181. natural_width exit_qualification;
  182. natural_width guest_linear_address;
  183. natural_width guest_cr0;
  184. natural_width guest_cr3;
  185. natural_width guest_cr4;
  186. natural_width guest_es_base;
  187. natural_width guest_cs_base;
  188. natural_width guest_ss_base;
  189. natural_width guest_ds_base;
  190. natural_width guest_fs_base;
  191. natural_width guest_gs_base;
  192. natural_width guest_ldtr_base;
  193. natural_width guest_tr_base;
  194. natural_width guest_gdtr_base;
  195. natural_width guest_idtr_base;
  196. natural_width guest_dr7;
  197. natural_width guest_rsp;
  198. natural_width guest_rip;
  199. natural_width guest_rflags;
  200. natural_width guest_pending_dbg_exceptions;
  201. natural_width guest_sysenter_esp;
  202. natural_width guest_sysenter_eip;
  203. natural_width host_cr0;
  204. natural_width host_cr3;
  205. natural_width host_cr4;
  206. natural_width host_fs_base;
  207. natural_width host_gs_base;
  208. natural_width host_tr_base;
  209. natural_width host_gdtr_base;
  210. natural_width host_idtr_base;
  211. natural_width host_ia32_sysenter_esp;
  212. natural_width host_ia32_sysenter_eip;
  213. natural_width host_rsp;
  214. natural_width host_rip;
  215. natural_width paddingl[8]; /* room for future expansion */
  216. u32 pin_based_vm_exec_control;
  217. u32 cpu_based_vm_exec_control;
  218. u32 exception_bitmap;
  219. u32 page_fault_error_code_mask;
  220. u32 page_fault_error_code_match;
  221. u32 cr3_target_count;
  222. u32 vm_exit_controls;
  223. u32 vm_exit_msr_store_count;
  224. u32 vm_exit_msr_load_count;
  225. u32 vm_entry_controls;
  226. u32 vm_entry_msr_load_count;
  227. u32 vm_entry_intr_info_field;
  228. u32 vm_entry_exception_error_code;
  229. u32 vm_entry_instruction_len;
  230. u32 tpr_threshold;
  231. u32 secondary_vm_exec_control;
  232. u32 vm_instruction_error;
  233. u32 vm_exit_reason;
  234. u32 vm_exit_intr_info;
  235. u32 vm_exit_intr_error_code;
  236. u32 idt_vectoring_info_field;
  237. u32 idt_vectoring_error_code;
  238. u32 vm_exit_instruction_len;
  239. u32 vmx_instruction_info;
  240. u32 guest_es_limit;
  241. u32 guest_cs_limit;
  242. u32 guest_ss_limit;
  243. u32 guest_ds_limit;
  244. u32 guest_fs_limit;
  245. u32 guest_gs_limit;
  246. u32 guest_ldtr_limit;
  247. u32 guest_tr_limit;
  248. u32 guest_gdtr_limit;
  249. u32 guest_idtr_limit;
  250. u32 guest_es_ar_bytes;
  251. u32 guest_cs_ar_bytes;
  252. u32 guest_ss_ar_bytes;
  253. u32 guest_ds_ar_bytes;
  254. u32 guest_fs_ar_bytes;
  255. u32 guest_gs_ar_bytes;
  256. u32 guest_ldtr_ar_bytes;
  257. u32 guest_tr_ar_bytes;
  258. u32 guest_interruptibility_info;
  259. u32 guest_activity_state;
  260. u32 guest_sysenter_cs;
  261. u32 host_ia32_sysenter_cs;
  262. u32 padding32[8]; /* room for future expansion */
  263. u16 virtual_processor_id;
  264. u16 guest_es_selector;
  265. u16 guest_cs_selector;
  266. u16 guest_ss_selector;
  267. u16 guest_ds_selector;
  268. u16 guest_fs_selector;
  269. u16 guest_gs_selector;
  270. u16 guest_ldtr_selector;
  271. u16 guest_tr_selector;
  272. u16 host_es_selector;
  273. u16 host_cs_selector;
  274. u16 host_ss_selector;
  275. u16 host_ds_selector;
  276. u16 host_fs_selector;
  277. u16 host_gs_selector;
  278. u16 host_tr_selector;
  279. };
  280. /*
  281. * VMCS12_REVISION is an arbitrary id that should be changed if the content or
  282. * layout of struct vmcs12 is changed. MSR_IA32_VMX_BASIC returns this id, and
  283. * VMPTRLD verifies that the VMCS region that L1 is loading contains this id.
  284. */
  285. #define VMCS12_REVISION 0x11e57ed0
  286. /*
  287. * VMCS12_SIZE is the number of bytes L1 should allocate for the VMXON region
  288. * and any VMCS region. Although only sizeof(struct vmcs12) are used by the
  289. * current implementation, 4K are reserved to avoid future complications.
  290. */
  291. #define VMCS12_SIZE 0x1000
  292. /* Used to remember the last vmcs02 used for some recently used vmcs12s */
  293. struct vmcs02_list {
  294. struct list_head list;
  295. gpa_t vmptr;
  296. struct loaded_vmcs vmcs02;
  297. };
  298. /*
  299. * The nested_vmx structure is part of vcpu_vmx, and holds information we need
  300. * for correct emulation of VMX (i.e., nested VMX) on this vcpu.
  301. */
  302. struct nested_vmx {
  303. /* Has the level1 guest done vmxon? */
  304. bool vmxon;
  305. /* The guest-physical address of the current VMCS L1 keeps for L2 */
  306. gpa_t current_vmptr;
  307. /* The host-usable pointer to the above */
  308. struct page *current_vmcs12_page;
  309. struct vmcs12 *current_vmcs12;
  310. /* vmcs02_list cache of VMCSs recently used to run L2 guests */
  311. struct list_head vmcs02_pool;
  312. int vmcs02_num;
  313. u64 vmcs01_tsc_offset;
  314. /* L2 must run next, and mustn't decide to exit to L1. */
  315. bool nested_run_pending;
  316. /*
  317. * Guest pages referred to in vmcs02 with host-physical pointers, so
  318. * we must keep them pinned while L2 runs.
  319. */
  320. struct page *apic_access_page;
  321. };
  322. struct vcpu_vmx {
  323. struct kvm_vcpu vcpu;
  324. unsigned long host_rsp;
  325. u8 fail;
  326. u8 cpl;
  327. bool nmi_known_unmasked;
  328. u32 exit_intr_info;
  329. u32 idt_vectoring_info;
  330. ulong rflags;
  331. struct shared_msr_entry *guest_msrs;
  332. int nmsrs;
  333. int save_nmsrs;
  334. #ifdef CONFIG_X86_64
  335. u64 msr_host_kernel_gs_base;
  336. u64 msr_guest_kernel_gs_base;
  337. #endif
  338. /*
  339. * loaded_vmcs points to the VMCS currently used in this vcpu. For a
  340. * non-nested (L1) guest, it always points to vmcs01. For a nested
  341. * guest (L2), it points to a different VMCS.
  342. */
  343. struct loaded_vmcs vmcs01;
  344. struct loaded_vmcs *loaded_vmcs;
  345. bool __launched; /* temporary, used in vmx_vcpu_run */
  346. struct msr_autoload {
  347. unsigned nr;
  348. struct vmx_msr_entry guest[NR_AUTOLOAD_MSRS];
  349. struct vmx_msr_entry host[NR_AUTOLOAD_MSRS];
  350. } msr_autoload;
  351. struct {
  352. int loaded;
  353. u16 fs_sel, gs_sel, ldt_sel;
  354. int gs_ldt_reload_needed;
  355. int fs_reload_needed;
  356. } host_state;
  357. struct {
  358. int vm86_active;
  359. ulong save_rflags;
  360. struct kvm_save_segment {
  361. u16 selector;
  362. unsigned long base;
  363. u32 limit;
  364. u32 ar;
  365. } tr, es, ds, fs, gs;
  366. } rmode;
  367. struct {
  368. u32 bitmask; /* 4 bits per segment (1 bit per field) */
  369. struct kvm_save_segment seg[8];
  370. } segment_cache;
  371. int vpid;
  372. bool emulation_required;
  373. /* Support for vnmi-less CPUs */
  374. int soft_vnmi_blocked;
  375. ktime_t entry_time;
  376. s64 vnmi_blocked_time;
  377. u32 exit_reason;
  378. bool rdtscp_enabled;
  379. /* Support for a guest hypervisor (nested VMX) */
  380. struct nested_vmx nested;
  381. };
  382. enum segment_cache_field {
  383. SEG_FIELD_SEL = 0,
  384. SEG_FIELD_BASE = 1,
  385. SEG_FIELD_LIMIT = 2,
  386. SEG_FIELD_AR = 3,
  387. SEG_FIELD_NR = 4
  388. };
  389. static inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu)
  390. {
  391. return container_of(vcpu, struct vcpu_vmx, vcpu);
  392. }
  393. #define VMCS12_OFFSET(x) offsetof(struct vmcs12, x)
  394. #define FIELD(number, name) [number] = VMCS12_OFFSET(name)
  395. #define FIELD64(number, name) [number] = VMCS12_OFFSET(name), \
  396. [number##_HIGH] = VMCS12_OFFSET(name)+4
  397. static unsigned short vmcs_field_to_offset_table[] = {
  398. FIELD(VIRTUAL_PROCESSOR_ID, virtual_processor_id),
  399. FIELD(GUEST_ES_SELECTOR, guest_es_selector),
  400. FIELD(GUEST_CS_SELECTOR, guest_cs_selector),
  401. FIELD(GUEST_SS_SELECTOR, guest_ss_selector),
  402. FIELD(GUEST_DS_SELECTOR, guest_ds_selector),
  403. FIELD(GUEST_FS_SELECTOR, guest_fs_selector),
  404. FIELD(GUEST_GS_SELECTOR, guest_gs_selector),
  405. FIELD(GUEST_LDTR_SELECTOR, guest_ldtr_selector),
  406. FIELD(GUEST_TR_SELECTOR, guest_tr_selector),
  407. FIELD(HOST_ES_SELECTOR, host_es_selector),
  408. FIELD(HOST_CS_SELECTOR, host_cs_selector),
  409. FIELD(HOST_SS_SELECTOR, host_ss_selector),
  410. FIELD(HOST_DS_SELECTOR, host_ds_selector),
  411. FIELD(HOST_FS_SELECTOR, host_fs_selector),
  412. FIELD(HOST_GS_SELECTOR, host_gs_selector),
  413. FIELD(HOST_TR_SELECTOR, host_tr_selector),
  414. FIELD64(IO_BITMAP_A, io_bitmap_a),
  415. FIELD64(IO_BITMAP_B, io_bitmap_b),
  416. FIELD64(MSR_BITMAP, msr_bitmap),
  417. FIELD64(VM_EXIT_MSR_STORE_ADDR, vm_exit_msr_store_addr),
  418. FIELD64(VM_EXIT_MSR_LOAD_ADDR, vm_exit_msr_load_addr),
  419. FIELD64(VM_ENTRY_MSR_LOAD_ADDR, vm_entry_msr_load_addr),
  420. FIELD64(TSC_OFFSET, tsc_offset),
  421. FIELD64(VIRTUAL_APIC_PAGE_ADDR, virtual_apic_page_addr),
  422. FIELD64(APIC_ACCESS_ADDR, apic_access_addr),
  423. FIELD64(EPT_POINTER, ept_pointer),
  424. FIELD64(GUEST_PHYSICAL_ADDRESS, guest_physical_address),
  425. FIELD64(VMCS_LINK_POINTER, vmcs_link_pointer),
  426. FIELD64(GUEST_IA32_DEBUGCTL, guest_ia32_debugctl),
  427. FIELD64(GUEST_IA32_PAT, guest_ia32_pat),
  428. FIELD64(GUEST_IA32_EFER, guest_ia32_efer),
  429. FIELD64(GUEST_IA32_PERF_GLOBAL_CTRL, guest_ia32_perf_global_ctrl),
  430. FIELD64(GUEST_PDPTR0, guest_pdptr0),
  431. FIELD64(GUEST_PDPTR1, guest_pdptr1),
  432. FIELD64(GUEST_PDPTR2, guest_pdptr2),
  433. FIELD64(GUEST_PDPTR3, guest_pdptr3),
  434. FIELD64(HOST_IA32_PAT, host_ia32_pat),
  435. FIELD64(HOST_IA32_EFER, host_ia32_efer),
  436. FIELD64(HOST_IA32_PERF_GLOBAL_CTRL, host_ia32_perf_global_ctrl),
  437. FIELD(PIN_BASED_VM_EXEC_CONTROL, pin_based_vm_exec_control),
  438. FIELD(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control),
  439. FIELD(EXCEPTION_BITMAP, exception_bitmap),
  440. FIELD(PAGE_FAULT_ERROR_CODE_MASK, page_fault_error_code_mask),
  441. FIELD(PAGE_FAULT_ERROR_CODE_MATCH, page_fault_error_code_match),
  442. FIELD(CR3_TARGET_COUNT, cr3_target_count),
  443. FIELD(VM_EXIT_CONTROLS, vm_exit_controls),
  444. FIELD(VM_EXIT_MSR_STORE_COUNT, vm_exit_msr_store_count),
  445. FIELD(VM_EXIT_MSR_LOAD_COUNT, vm_exit_msr_load_count),
  446. FIELD(VM_ENTRY_CONTROLS, vm_entry_controls),
  447. FIELD(VM_ENTRY_MSR_LOAD_COUNT, vm_entry_msr_load_count),
  448. FIELD(VM_ENTRY_INTR_INFO_FIELD, vm_entry_intr_info_field),
  449. FIELD(VM_ENTRY_EXCEPTION_ERROR_CODE, vm_entry_exception_error_code),
  450. FIELD(VM_ENTRY_INSTRUCTION_LEN, vm_entry_instruction_len),
  451. FIELD(TPR_THRESHOLD, tpr_threshold),
  452. FIELD(SECONDARY_VM_EXEC_CONTROL, secondary_vm_exec_control),
  453. FIELD(VM_INSTRUCTION_ERROR, vm_instruction_error),
  454. FIELD(VM_EXIT_REASON, vm_exit_reason),
  455. FIELD(VM_EXIT_INTR_INFO, vm_exit_intr_info),
  456. FIELD(VM_EXIT_INTR_ERROR_CODE, vm_exit_intr_error_code),
  457. FIELD(IDT_VECTORING_INFO_FIELD, idt_vectoring_info_field),
  458. FIELD(IDT_VECTORING_ERROR_CODE, idt_vectoring_error_code),
  459. FIELD(VM_EXIT_INSTRUCTION_LEN, vm_exit_instruction_len),
  460. FIELD(VMX_INSTRUCTION_INFO, vmx_instruction_info),
  461. FIELD(GUEST_ES_LIMIT, guest_es_limit),
  462. FIELD(GUEST_CS_LIMIT, guest_cs_limit),
  463. FIELD(GUEST_SS_LIMIT, guest_ss_limit),
  464. FIELD(GUEST_DS_LIMIT, guest_ds_limit),
  465. FIELD(GUEST_FS_LIMIT, guest_fs_limit),
  466. FIELD(GUEST_GS_LIMIT, guest_gs_limit),
  467. FIELD(GUEST_LDTR_LIMIT, guest_ldtr_limit),
  468. FIELD(GUEST_TR_LIMIT, guest_tr_limit),
  469. FIELD(GUEST_GDTR_LIMIT, guest_gdtr_limit),
  470. FIELD(GUEST_IDTR_LIMIT, guest_idtr_limit),
  471. FIELD(GUEST_ES_AR_BYTES, guest_es_ar_bytes),
  472. FIELD(GUEST_CS_AR_BYTES, guest_cs_ar_bytes),
  473. FIELD(GUEST_SS_AR_BYTES, guest_ss_ar_bytes),
  474. FIELD(GUEST_DS_AR_BYTES, guest_ds_ar_bytes),
  475. FIELD(GUEST_FS_AR_BYTES, guest_fs_ar_bytes),
  476. FIELD(GUEST_GS_AR_BYTES, guest_gs_ar_bytes),
  477. FIELD(GUEST_LDTR_AR_BYTES, guest_ldtr_ar_bytes),
  478. FIELD(GUEST_TR_AR_BYTES, guest_tr_ar_bytes),
  479. FIELD(GUEST_INTERRUPTIBILITY_INFO, guest_interruptibility_info),
  480. FIELD(GUEST_ACTIVITY_STATE, guest_activity_state),
  481. FIELD(GUEST_SYSENTER_CS, guest_sysenter_cs),
  482. FIELD(HOST_IA32_SYSENTER_CS, host_ia32_sysenter_cs),
  483. FIELD(CR0_GUEST_HOST_MASK, cr0_guest_host_mask),
  484. FIELD(CR4_GUEST_HOST_MASK, cr4_guest_host_mask),
  485. FIELD(CR0_READ_SHADOW, cr0_read_shadow),
  486. FIELD(CR4_READ_SHADOW, cr4_read_shadow),
  487. FIELD(CR3_TARGET_VALUE0, cr3_target_value0),
  488. FIELD(CR3_TARGET_VALUE1, cr3_target_value1),
  489. FIELD(CR3_TARGET_VALUE2, cr3_target_value2),
  490. FIELD(CR3_TARGET_VALUE3, cr3_target_value3),
  491. FIELD(EXIT_QUALIFICATION, exit_qualification),
  492. FIELD(GUEST_LINEAR_ADDRESS, guest_linear_address),
  493. FIELD(GUEST_CR0, guest_cr0),
  494. FIELD(GUEST_CR3, guest_cr3),
  495. FIELD(GUEST_CR4, guest_cr4),
  496. FIELD(GUEST_ES_BASE, guest_es_base),
  497. FIELD(GUEST_CS_BASE, guest_cs_base),
  498. FIELD(GUEST_SS_BASE, guest_ss_base),
  499. FIELD(GUEST_DS_BASE, guest_ds_base),
  500. FIELD(GUEST_FS_BASE, guest_fs_base),
  501. FIELD(GUEST_GS_BASE, guest_gs_base),
  502. FIELD(GUEST_LDTR_BASE, guest_ldtr_base),
  503. FIELD(GUEST_TR_BASE, guest_tr_base),
  504. FIELD(GUEST_GDTR_BASE, guest_gdtr_base),
  505. FIELD(GUEST_IDTR_BASE, guest_idtr_base),
  506. FIELD(GUEST_DR7, guest_dr7),
  507. FIELD(GUEST_RSP, guest_rsp),
  508. FIELD(GUEST_RIP, guest_rip),
  509. FIELD(GUEST_RFLAGS, guest_rflags),
  510. FIELD(GUEST_PENDING_DBG_EXCEPTIONS, guest_pending_dbg_exceptions),
  511. FIELD(GUEST_SYSENTER_ESP, guest_sysenter_esp),
  512. FIELD(GUEST_SYSENTER_EIP, guest_sysenter_eip),
  513. FIELD(HOST_CR0, host_cr0),
  514. FIELD(HOST_CR3, host_cr3),
  515. FIELD(HOST_CR4, host_cr4),
  516. FIELD(HOST_FS_BASE, host_fs_base),
  517. FIELD(HOST_GS_BASE, host_gs_base),
  518. FIELD(HOST_TR_BASE, host_tr_base),
  519. FIELD(HOST_GDTR_BASE, host_gdtr_base),
  520. FIELD(HOST_IDTR_BASE, host_idtr_base),
  521. FIELD(HOST_IA32_SYSENTER_ESP, host_ia32_sysenter_esp),
  522. FIELD(HOST_IA32_SYSENTER_EIP, host_ia32_sysenter_eip),
  523. FIELD(HOST_RSP, host_rsp),
  524. FIELD(HOST_RIP, host_rip),
  525. };
  526. static const int max_vmcs_field = ARRAY_SIZE(vmcs_field_to_offset_table);
  527. static inline short vmcs_field_to_offset(unsigned long field)
  528. {
  529. if (field >= max_vmcs_field || vmcs_field_to_offset_table[field] == 0)
  530. return -1;
  531. return vmcs_field_to_offset_table[field];
  532. }
  533. static inline struct vmcs12 *get_vmcs12(struct kvm_vcpu *vcpu)
  534. {
  535. return to_vmx(vcpu)->nested.current_vmcs12;
  536. }
  537. static struct page *nested_get_page(struct kvm_vcpu *vcpu, gpa_t addr)
  538. {
  539. struct page *page = gfn_to_page(vcpu->kvm, addr >> PAGE_SHIFT);
  540. if (is_error_page(page)) {
  541. kvm_release_page_clean(page);
  542. return NULL;
  543. }
  544. return page;
  545. }
  546. static void nested_release_page(struct page *page)
  547. {
  548. kvm_release_page_dirty(page);
  549. }
  550. static void nested_release_page_clean(struct page *page)
  551. {
  552. kvm_release_page_clean(page);
  553. }
  554. static u64 construct_eptp(unsigned long root_hpa);
  555. static void kvm_cpu_vmxon(u64 addr);
  556. static void kvm_cpu_vmxoff(void);
  557. static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3);
  558. static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr);
  559. static DEFINE_PER_CPU(struct vmcs *, vmxarea);
  560. static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
  561. /*
  562. * We maintain a per-CPU linked-list of VMCS loaded on that CPU. This is needed
  563. * when a CPU is brought down, and we need to VMCLEAR all VMCSs loaded on it.
  564. */
  565. static DEFINE_PER_CPU(struct list_head, loaded_vmcss_on_cpu);
  566. static DEFINE_PER_CPU(struct desc_ptr, host_gdt);
  567. static unsigned long *vmx_io_bitmap_a;
  568. static unsigned long *vmx_io_bitmap_b;
  569. static unsigned long *vmx_msr_bitmap_legacy;
  570. static unsigned long *vmx_msr_bitmap_longmode;
  571. static bool cpu_has_load_ia32_efer;
  572. static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
  573. static DEFINE_SPINLOCK(vmx_vpid_lock);
  574. static struct vmcs_config {
  575. int size;
  576. int order;
  577. u32 revision_id;
  578. u32 pin_based_exec_ctrl;
  579. u32 cpu_based_exec_ctrl;
  580. u32 cpu_based_2nd_exec_ctrl;
  581. u32 vmexit_ctrl;
  582. u32 vmentry_ctrl;
  583. } vmcs_config;
  584. static struct vmx_capability {
  585. u32 ept;
  586. u32 vpid;
  587. } vmx_capability;
  588. #define VMX_SEGMENT_FIELD(seg) \
  589. [VCPU_SREG_##seg] = { \
  590. .selector = GUEST_##seg##_SELECTOR, \
  591. .base = GUEST_##seg##_BASE, \
  592. .limit = GUEST_##seg##_LIMIT, \
  593. .ar_bytes = GUEST_##seg##_AR_BYTES, \
  594. }
  595. static struct kvm_vmx_segment_field {
  596. unsigned selector;
  597. unsigned base;
  598. unsigned limit;
  599. unsigned ar_bytes;
  600. } kvm_vmx_segment_fields[] = {
  601. VMX_SEGMENT_FIELD(CS),
  602. VMX_SEGMENT_FIELD(DS),
  603. VMX_SEGMENT_FIELD(ES),
  604. VMX_SEGMENT_FIELD(FS),
  605. VMX_SEGMENT_FIELD(GS),
  606. VMX_SEGMENT_FIELD(SS),
  607. VMX_SEGMENT_FIELD(TR),
  608. VMX_SEGMENT_FIELD(LDTR),
  609. };
  610. static u64 host_efer;
  611. static void ept_save_pdptrs(struct kvm_vcpu *vcpu);
  612. /*
  613. * Keep MSR_STAR at the end, as setup_msrs() will try to optimize it
  614. * away by decrementing the array size.
  615. */
  616. static const u32 vmx_msr_index[] = {
  617. #ifdef CONFIG_X86_64
  618. MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR,
  619. #endif
  620. MSR_EFER, MSR_TSC_AUX, MSR_STAR,
  621. };
  622. #define NR_VMX_MSR ARRAY_SIZE(vmx_msr_index)
  623. static inline bool is_page_fault(u32 intr_info)
  624. {
  625. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
  626. INTR_INFO_VALID_MASK)) ==
  627. (INTR_TYPE_HARD_EXCEPTION | PF_VECTOR | INTR_INFO_VALID_MASK);
  628. }
  629. static inline bool is_no_device(u32 intr_info)
  630. {
  631. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
  632. INTR_INFO_VALID_MASK)) ==
  633. (INTR_TYPE_HARD_EXCEPTION | NM_VECTOR | INTR_INFO_VALID_MASK);
  634. }
  635. static inline bool is_invalid_opcode(u32 intr_info)
  636. {
  637. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
  638. INTR_INFO_VALID_MASK)) ==
  639. (INTR_TYPE_HARD_EXCEPTION | UD_VECTOR | INTR_INFO_VALID_MASK);
  640. }
  641. static inline bool is_external_interrupt(u32 intr_info)
  642. {
  643. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
  644. == (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
  645. }
  646. static inline bool is_machine_check(u32 intr_info)
  647. {
  648. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
  649. INTR_INFO_VALID_MASK)) ==
  650. (INTR_TYPE_HARD_EXCEPTION | MC_VECTOR | INTR_INFO_VALID_MASK);
  651. }
  652. static inline bool cpu_has_vmx_msr_bitmap(void)
  653. {
  654. return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_USE_MSR_BITMAPS;
  655. }
  656. static inline bool cpu_has_vmx_tpr_shadow(void)
  657. {
  658. return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW;
  659. }
  660. static inline bool vm_need_tpr_shadow(struct kvm *kvm)
  661. {
  662. return (cpu_has_vmx_tpr_shadow()) && (irqchip_in_kernel(kvm));
  663. }
  664. static inline bool cpu_has_secondary_exec_ctrls(void)
  665. {
  666. return vmcs_config.cpu_based_exec_ctrl &
  667. CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
  668. }
  669. static inline bool cpu_has_vmx_virtualize_apic_accesses(void)
  670. {
  671. return vmcs_config.cpu_based_2nd_exec_ctrl &
  672. SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
  673. }
  674. static inline bool cpu_has_vmx_flexpriority(void)
  675. {
  676. return cpu_has_vmx_tpr_shadow() &&
  677. cpu_has_vmx_virtualize_apic_accesses();
  678. }
  679. static inline bool cpu_has_vmx_ept_execute_only(void)
  680. {
  681. return vmx_capability.ept & VMX_EPT_EXECUTE_ONLY_BIT;
  682. }
  683. static inline bool cpu_has_vmx_eptp_uncacheable(void)
  684. {
  685. return vmx_capability.ept & VMX_EPTP_UC_BIT;
  686. }
  687. static inline bool cpu_has_vmx_eptp_writeback(void)
  688. {
  689. return vmx_capability.ept & VMX_EPTP_WB_BIT;
  690. }
  691. static inline bool cpu_has_vmx_ept_2m_page(void)
  692. {
  693. return vmx_capability.ept & VMX_EPT_2MB_PAGE_BIT;
  694. }
  695. static inline bool cpu_has_vmx_ept_1g_page(void)
  696. {
  697. return vmx_capability.ept & VMX_EPT_1GB_PAGE_BIT;
  698. }
  699. static inline bool cpu_has_vmx_ept_4levels(void)
  700. {
  701. return vmx_capability.ept & VMX_EPT_PAGE_WALK_4_BIT;
  702. }
  703. static inline bool cpu_has_vmx_invept_individual_addr(void)
  704. {
  705. return vmx_capability.ept & VMX_EPT_EXTENT_INDIVIDUAL_BIT;
  706. }
  707. static inline bool cpu_has_vmx_invept_context(void)
  708. {
  709. return vmx_capability.ept & VMX_EPT_EXTENT_CONTEXT_BIT;
  710. }
  711. static inline bool cpu_has_vmx_invept_global(void)
  712. {
  713. return vmx_capability.ept & VMX_EPT_EXTENT_GLOBAL_BIT;
  714. }
  715. static inline bool cpu_has_vmx_invvpid_single(void)
  716. {
  717. return vmx_capability.vpid & VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT;
  718. }
  719. static inline bool cpu_has_vmx_invvpid_global(void)
  720. {
  721. return vmx_capability.vpid & VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT;
  722. }
  723. static inline bool cpu_has_vmx_ept(void)
  724. {
  725. return vmcs_config.cpu_based_2nd_exec_ctrl &
  726. SECONDARY_EXEC_ENABLE_EPT;
  727. }
  728. static inline bool cpu_has_vmx_unrestricted_guest(void)
  729. {
  730. return vmcs_config.cpu_based_2nd_exec_ctrl &
  731. SECONDARY_EXEC_UNRESTRICTED_GUEST;
  732. }
  733. static inline bool cpu_has_vmx_ple(void)
  734. {
  735. return vmcs_config.cpu_based_2nd_exec_ctrl &
  736. SECONDARY_EXEC_PAUSE_LOOP_EXITING;
  737. }
  738. static inline bool vm_need_virtualize_apic_accesses(struct kvm *kvm)
  739. {
  740. return flexpriority_enabled && irqchip_in_kernel(kvm);
  741. }
  742. static inline bool cpu_has_vmx_vpid(void)
  743. {
  744. return vmcs_config.cpu_based_2nd_exec_ctrl &
  745. SECONDARY_EXEC_ENABLE_VPID;
  746. }
  747. static inline bool cpu_has_vmx_rdtscp(void)
  748. {
  749. return vmcs_config.cpu_based_2nd_exec_ctrl &
  750. SECONDARY_EXEC_RDTSCP;
  751. }
  752. static inline bool cpu_has_virtual_nmis(void)
  753. {
  754. return vmcs_config.pin_based_exec_ctrl & PIN_BASED_VIRTUAL_NMIS;
  755. }
  756. static inline bool cpu_has_vmx_wbinvd_exit(void)
  757. {
  758. return vmcs_config.cpu_based_2nd_exec_ctrl &
  759. SECONDARY_EXEC_WBINVD_EXITING;
  760. }
  761. static inline bool report_flexpriority(void)
  762. {
  763. return flexpriority_enabled;
  764. }
  765. static inline bool nested_cpu_has(struct vmcs12 *vmcs12, u32 bit)
  766. {
  767. return vmcs12->cpu_based_vm_exec_control & bit;
  768. }
  769. static inline bool nested_cpu_has2(struct vmcs12 *vmcs12, u32 bit)
  770. {
  771. return (vmcs12->cpu_based_vm_exec_control &
  772. CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) &&
  773. (vmcs12->secondary_vm_exec_control & bit);
  774. }
  775. static inline bool nested_cpu_has_virtual_nmis(struct vmcs12 *vmcs12,
  776. struct kvm_vcpu *vcpu)
  777. {
  778. return vmcs12->pin_based_vm_exec_control & PIN_BASED_VIRTUAL_NMIS;
  779. }
  780. static inline bool is_exception(u32 intr_info)
  781. {
  782. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
  783. == (INTR_TYPE_HARD_EXCEPTION | INTR_INFO_VALID_MASK);
  784. }
  785. static void nested_vmx_vmexit(struct kvm_vcpu *vcpu);
  786. static void nested_vmx_entry_failure(struct kvm_vcpu *vcpu,
  787. struct vmcs12 *vmcs12,
  788. u32 reason, unsigned long qualification);
  789. static int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
  790. {
  791. int i;
  792. for (i = 0; i < vmx->nmsrs; ++i)
  793. if (vmx_msr_index[vmx->guest_msrs[i].index] == msr)
  794. return i;
  795. return -1;
  796. }
  797. static inline void __invvpid(int ext, u16 vpid, gva_t gva)
  798. {
  799. struct {
  800. u64 vpid : 16;
  801. u64 rsvd : 48;
  802. u64 gva;
  803. } operand = { vpid, 0, gva };
  804. asm volatile (__ex(ASM_VMX_INVVPID)
  805. /* CF==1 or ZF==1 --> rc = -1 */
  806. "; ja 1f ; ud2 ; 1:"
  807. : : "a"(&operand), "c"(ext) : "cc", "memory");
  808. }
  809. static inline void __invept(int ext, u64 eptp, gpa_t gpa)
  810. {
  811. struct {
  812. u64 eptp, gpa;
  813. } operand = {eptp, gpa};
  814. asm volatile (__ex(ASM_VMX_INVEPT)
  815. /* CF==1 or ZF==1 --> rc = -1 */
  816. "; ja 1f ; ud2 ; 1:\n"
  817. : : "a" (&operand), "c" (ext) : "cc", "memory");
  818. }
  819. static struct shared_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
  820. {
  821. int i;
  822. i = __find_msr_index(vmx, msr);
  823. if (i >= 0)
  824. return &vmx->guest_msrs[i];
  825. return NULL;
  826. }
  827. static void vmcs_clear(struct vmcs *vmcs)
  828. {
  829. u64 phys_addr = __pa(vmcs);
  830. u8 error;
  831. asm volatile (__ex(ASM_VMX_VMCLEAR_RAX) "; setna %0"
  832. : "=qm"(error) : "a"(&phys_addr), "m"(phys_addr)
  833. : "cc", "memory");
  834. if (error)
  835. printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
  836. vmcs, phys_addr);
  837. }
  838. static inline void loaded_vmcs_init(struct loaded_vmcs *loaded_vmcs)
  839. {
  840. vmcs_clear(loaded_vmcs->vmcs);
  841. loaded_vmcs->cpu = -1;
  842. loaded_vmcs->launched = 0;
  843. }
  844. static void vmcs_load(struct vmcs *vmcs)
  845. {
  846. u64 phys_addr = __pa(vmcs);
  847. u8 error;
  848. asm volatile (__ex(ASM_VMX_VMPTRLD_RAX) "; setna %0"
  849. : "=qm"(error) : "a"(&phys_addr), "m"(phys_addr)
  850. : "cc", "memory");
  851. if (error)
  852. printk(KERN_ERR "kvm: vmptrld %p/%llx failed\n",
  853. vmcs, phys_addr);
  854. }
  855. static void __loaded_vmcs_clear(void *arg)
  856. {
  857. struct loaded_vmcs *loaded_vmcs = arg;
  858. int cpu = raw_smp_processor_id();
  859. if (loaded_vmcs->cpu != cpu)
  860. return; /* vcpu migration can race with cpu offline */
  861. if (per_cpu(current_vmcs, cpu) == loaded_vmcs->vmcs)
  862. per_cpu(current_vmcs, cpu) = NULL;
  863. list_del(&loaded_vmcs->loaded_vmcss_on_cpu_link);
  864. loaded_vmcs_init(loaded_vmcs);
  865. }
  866. static void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs)
  867. {
  868. if (loaded_vmcs->cpu != -1)
  869. smp_call_function_single(
  870. loaded_vmcs->cpu, __loaded_vmcs_clear, loaded_vmcs, 1);
  871. }
  872. static inline void vpid_sync_vcpu_single(struct vcpu_vmx *vmx)
  873. {
  874. if (vmx->vpid == 0)
  875. return;
  876. if (cpu_has_vmx_invvpid_single())
  877. __invvpid(VMX_VPID_EXTENT_SINGLE_CONTEXT, vmx->vpid, 0);
  878. }
  879. static inline void vpid_sync_vcpu_global(void)
  880. {
  881. if (cpu_has_vmx_invvpid_global())
  882. __invvpid(VMX_VPID_EXTENT_ALL_CONTEXT, 0, 0);
  883. }
  884. static inline void vpid_sync_context(struct vcpu_vmx *vmx)
  885. {
  886. if (cpu_has_vmx_invvpid_single())
  887. vpid_sync_vcpu_single(vmx);
  888. else
  889. vpid_sync_vcpu_global();
  890. }
  891. static inline void ept_sync_global(void)
  892. {
  893. if (cpu_has_vmx_invept_global())
  894. __invept(VMX_EPT_EXTENT_GLOBAL, 0, 0);
  895. }
  896. static inline void ept_sync_context(u64 eptp)
  897. {
  898. if (enable_ept) {
  899. if (cpu_has_vmx_invept_context())
  900. __invept(VMX_EPT_EXTENT_CONTEXT, eptp, 0);
  901. else
  902. ept_sync_global();
  903. }
  904. }
  905. static inline void ept_sync_individual_addr(u64 eptp, gpa_t gpa)
  906. {
  907. if (enable_ept) {
  908. if (cpu_has_vmx_invept_individual_addr())
  909. __invept(VMX_EPT_EXTENT_INDIVIDUAL_ADDR,
  910. eptp, gpa);
  911. else
  912. ept_sync_context(eptp);
  913. }
  914. }
  915. static __always_inline unsigned long vmcs_readl(unsigned long field)
  916. {
  917. unsigned long value;
  918. asm volatile (__ex_clear(ASM_VMX_VMREAD_RDX_RAX, "%0")
  919. : "=a"(value) : "d"(field) : "cc");
  920. return value;
  921. }
  922. static __always_inline u16 vmcs_read16(unsigned long field)
  923. {
  924. return vmcs_readl(field);
  925. }
  926. static __always_inline u32 vmcs_read32(unsigned long field)
  927. {
  928. return vmcs_readl(field);
  929. }
  930. static __always_inline u64 vmcs_read64(unsigned long field)
  931. {
  932. #ifdef CONFIG_X86_64
  933. return vmcs_readl(field);
  934. #else
  935. return vmcs_readl(field) | ((u64)vmcs_readl(field+1) << 32);
  936. #endif
  937. }
  938. static noinline void vmwrite_error(unsigned long field, unsigned long value)
  939. {
  940. printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
  941. field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
  942. dump_stack();
  943. }
  944. static void vmcs_writel(unsigned long field, unsigned long value)
  945. {
  946. u8 error;
  947. asm volatile (__ex(ASM_VMX_VMWRITE_RAX_RDX) "; setna %0"
  948. : "=q"(error) : "a"(value), "d"(field) : "cc");
  949. if (unlikely(error))
  950. vmwrite_error(field, value);
  951. }
  952. static void vmcs_write16(unsigned long field, u16 value)
  953. {
  954. vmcs_writel(field, value);
  955. }
  956. static void vmcs_write32(unsigned long field, u32 value)
  957. {
  958. vmcs_writel(field, value);
  959. }
  960. static void vmcs_write64(unsigned long field, u64 value)
  961. {
  962. vmcs_writel(field, value);
  963. #ifndef CONFIG_X86_64
  964. asm volatile ("");
  965. vmcs_writel(field+1, value >> 32);
  966. #endif
  967. }
  968. static void vmcs_clear_bits(unsigned long field, u32 mask)
  969. {
  970. vmcs_writel(field, vmcs_readl(field) & ~mask);
  971. }
  972. static void vmcs_set_bits(unsigned long field, u32 mask)
  973. {
  974. vmcs_writel(field, vmcs_readl(field) | mask);
  975. }
  976. static void vmx_segment_cache_clear(struct vcpu_vmx *vmx)
  977. {
  978. vmx->segment_cache.bitmask = 0;
  979. }
  980. static bool vmx_segment_cache_test_set(struct vcpu_vmx *vmx, unsigned seg,
  981. unsigned field)
  982. {
  983. bool ret;
  984. u32 mask = 1 << (seg * SEG_FIELD_NR + field);
  985. if (!(vmx->vcpu.arch.regs_avail & (1 << VCPU_EXREG_SEGMENTS))) {
  986. vmx->vcpu.arch.regs_avail |= (1 << VCPU_EXREG_SEGMENTS);
  987. vmx->segment_cache.bitmask = 0;
  988. }
  989. ret = vmx->segment_cache.bitmask & mask;
  990. vmx->segment_cache.bitmask |= mask;
  991. return ret;
  992. }
  993. static u16 vmx_read_guest_seg_selector(struct vcpu_vmx *vmx, unsigned seg)
  994. {
  995. u16 *p = &vmx->segment_cache.seg[seg].selector;
  996. if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_SEL))
  997. *p = vmcs_read16(kvm_vmx_segment_fields[seg].selector);
  998. return *p;
  999. }
  1000. static ulong vmx_read_guest_seg_base(struct vcpu_vmx *vmx, unsigned seg)
  1001. {
  1002. ulong *p = &vmx->segment_cache.seg[seg].base;
  1003. if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_BASE))
  1004. *p = vmcs_readl(kvm_vmx_segment_fields[seg].base);
  1005. return *p;
  1006. }
  1007. static u32 vmx_read_guest_seg_limit(struct vcpu_vmx *vmx, unsigned seg)
  1008. {
  1009. u32 *p = &vmx->segment_cache.seg[seg].limit;
  1010. if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_LIMIT))
  1011. *p = vmcs_read32(kvm_vmx_segment_fields[seg].limit);
  1012. return *p;
  1013. }
  1014. static u32 vmx_read_guest_seg_ar(struct vcpu_vmx *vmx, unsigned seg)
  1015. {
  1016. u32 *p = &vmx->segment_cache.seg[seg].ar;
  1017. if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_AR))
  1018. *p = vmcs_read32(kvm_vmx_segment_fields[seg].ar_bytes);
  1019. return *p;
  1020. }
  1021. static void update_exception_bitmap(struct kvm_vcpu *vcpu)
  1022. {
  1023. u32 eb;
  1024. eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) |
  1025. (1u << NM_VECTOR) | (1u << DB_VECTOR);
  1026. if ((vcpu->guest_debug &
  1027. (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) ==
  1028. (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP))
  1029. eb |= 1u << BP_VECTOR;
  1030. if (to_vmx(vcpu)->rmode.vm86_active)
  1031. eb = ~0;
  1032. if (enable_ept)
  1033. eb &= ~(1u << PF_VECTOR); /* bypass_guest_pf = 0 */
  1034. if (vcpu->fpu_active)
  1035. eb &= ~(1u << NM_VECTOR);
  1036. /* When we are running a nested L2 guest and L1 specified for it a
  1037. * certain exception bitmap, we must trap the same exceptions and pass
  1038. * them to L1. When running L2, we will only handle the exceptions
  1039. * specified above if L1 did not want them.
  1040. */
  1041. if (is_guest_mode(vcpu))
  1042. eb |= get_vmcs12(vcpu)->exception_bitmap;
  1043. vmcs_write32(EXCEPTION_BITMAP, eb);
  1044. }
  1045. static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr)
  1046. {
  1047. unsigned i;
  1048. struct msr_autoload *m = &vmx->msr_autoload;
  1049. if (msr == MSR_EFER && cpu_has_load_ia32_efer) {
  1050. vmcs_clear_bits(VM_ENTRY_CONTROLS, VM_ENTRY_LOAD_IA32_EFER);
  1051. vmcs_clear_bits(VM_EXIT_CONTROLS, VM_EXIT_LOAD_IA32_EFER);
  1052. return;
  1053. }
  1054. for (i = 0; i < m->nr; ++i)
  1055. if (m->guest[i].index == msr)
  1056. break;
  1057. if (i == m->nr)
  1058. return;
  1059. --m->nr;
  1060. m->guest[i] = m->guest[m->nr];
  1061. m->host[i] = m->host[m->nr];
  1062. vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
  1063. vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
  1064. }
  1065. static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr,
  1066. u64 guest_val, u64 host_val)
  1067. {
  1068. unsigned i;
  1069. struct msr_autoload *m = &vmx->msr_autoload;
  1070. if (msr == MSR_EFER && cpu_has_load_ia32_efer) {
  1071. vmcs_write64(GUEST_IA32_EFER, guest_val);
  1072. vmcs_write64(HOST_IA32_EFER, host_val);
  1073. vmcs_set_bits(VM_ENTRY_CONTROLS, VM_ENTRY_LOAD_IA32_EFER);
  1074. vmcs_set_bits(VM_EXIT_CONTROLS, VM_EXIT_LOAD_IA32_EFER);
  1075. return;
  1076. }
  1077. for (i = 0; i < m->nr; ++i)
  1078. if (m->guest[i].index == msr)
  1079. break;
  1080. if (i == m->nr) {
  1081. ++m->nr;
  1082. vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
  1083. vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
  1084. }
  1085. m->guest[i].index = msr;
  1086. m->guest[i].value = guest_val;
  1087. m->host[i].index = msr;
  1088. m->host[i].value = host_val;
  1089. }
  1090. static void reload_tss(void)
  1091. {
  1092. /*
  1093. * VT restores TR but not its size. Useless.
  1094. */
  1095. struct desc_ptr *gdt = &__get_cpu_var(host_gdt);
  1096. struct desc_struct *descs;
  1097. descs = (void *)gdt->address;
  1098. descs[GDT_ENTRY_TSS].type = 9; /* available TSS */
  1099. load_TR_desc();
  1100. }
  1101. static bool update_transition_efer(struct vcpu_vmx *vmx, int efer_offset)
  1102. {
  1103. u64 guest_efer;
  1104. u64 ignore_bits;
  1105. guest_efer = vmx->vcpu.arch.efer;
  1106. /*
  1107. * NX is emulated; LMA and LME handled by hardware; SCE meaninless
  1108. * outside long mode
  1109. */
  1110. ignore_bits = EFER_NX | EFER_SCE;
  1111. #ifdef CONFIG_X86_64
  1112. ignore_bits |= EFER_LMA | EFER_LME;
  1113. /* SCE is meaningful only in long mode on Intel */
  1114. if (guest_efer & EFER_LMA)
  1115. ignore_bits &= ~(u64)EFER_SCE;
  1116. #endif
  1117. guest_efer &= ~ignore_bits;
  1118. guest_efer |= host_efer & ignore_bits;
  1119. vmx->guest_msrs[efer_offset].data = guest_efer;
  1120. vmx->guest_msrs[efer_offset].mask = ~ignore_bits;
  1121. clear_atomic_switch_msr(vmx, MSR_EFER);
  1122. /* On ept, can't emulate nx, and must switch nx atomically */
  1123. if (enable_ept && ((vmx->vcpu.arch.efer ^ host_efer) & EFER_NX)) {
  1124. guest_efer = vmx->vcpu.arch.efer;
  1125. if (!(guest_efer & EFER_LMA))
  1126. guest_efer &= ~EFER_LME;
  1127. add_atomic_switch_msr(vmx, MSR_EFER, guest_efer, host_efer);
  1128. return false;
  1129. }
  1130. return true;
  1131. }
  1132. static unsigned long segment_base(u16 selector)
  1133. {
  1134. struct desc_ptr *gdt = &__get_cpu_var(host_gdt);
  1135. struct desc_struct *d;
  1136. unsigned long table_base;
  1137. unsigned long v;
  1138. if (!(selector & ~3))
  1139. return 0;
  1140. table_base = gdt->address;
  1141. if (selector & 4) { /* from ldt */
  1142. u16 ldt_selector = kvm_read_ldt();
  1143. if (!(ldt_selector & ~3))
  1144. return 0;
  1145. table_base = segment_base(ldt_selector);
  1146. }
  1147. d = (struct desc_struct *)(table_base + (selector & ~7));
  1148. v = get_desc_base(d);
  1149. #ifdef CONFIG_X86_64
  1150. if (d->s == 0 && (d->type == 2 || d->type == 9 || d->type == 11))
  1151. v |= ((unsigned long)((struct ldttss_desc64 *)d)->base3) << 32;
  1152. #endif
  1153. return v;
  1154. }
  1155. static inline unsigned long kvm_read_tr_base(void)
  1156. {
  1157. u16 tr;
  1158. asm("str %0" : "=g"(tr));
  1159. return segment_base(tr);
  1160. }
  1161. static void vmx_save_host_state(struct kvm_vcpu *vcpu)
  1162. {
  1163. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1164. int i;
  1165. if (vmx->host_state.loaded)
  1166. return;
  1167. vmx->host_state.loaded = 1;
  1168. /*
  1169. * Set host fs and gs selectors. Unfortunately, 22.2.3 does not
  1170. * allow segment selectors with cpl > 0 or ti == 1.
  1171. */
  1172. vmx->host_state.ldt_sel = kvm_read_ldt();
  1173. vmx->host_state.gs_ldt_reload_needed = vmx->host_state.ldt_sel;
  1174. savesegment(fs, vmx->host_state.fs_sel);
  1175. if (!(vmx->host_state.fs_sel & 7)) {
  1176. vmcs_write16(HOST_FS_SELECTOR, vmx->host_state.fs_sel);
  1177. vmx->host_state.fs_reload_needed = 0;
  1178. } else {
  1179. vmcs_write16(HOST_FS_SELECTOR, 0);
  1180. vmx->host_state.fs_reload_needed = 1;
  1181. }
  1182. savesegment(gs, vmx->host_state.gs_sel);
  1183. if (!(vmx->host_state.gs_sel & 7))
  1184. vmcs_write16(HOST_GS_SELECTOR, vmx->host_state.gs_sel);
  1185. else {
  1186. vmcs_write16(HOST_GS_SELECTOR, 0);
  1187. vmx->host_state.gs_ldt_reload_needed = 1;
  1188. }
  1189. #ifdef CONFIG_X86_64
  1190. vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE));
  1191. vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE));
  1192. #else
  1193. vmcs_writel(HOST_FS_BASE, segment_base(vmx->host_state.fs_sel));
  1194. vmcs_writel(HOST_GS_BASE, segment_base(vmx->host_state.gs_sel));
  1195. #endif
  1196. #ifdef CONFIG_X86_64
  1197. rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
  1198. if (is_long_mode(&vmx->vcpu))
  1199. wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
  1200. #endif
  1201. for (i = 0; i < vmx->save_nmsrs; ++i)
  1202. kvm_set_shared_msr(vmx->guest_msrs[i].index,
  1203. vmx->guest_msrs[i].data,
  1204. vmx->guest_msrs[i].mask);
  1205. }
  1206. static void __vmx_load_host_state(struct vcpu_vmx *vmx)
  1207. {
  1208. if (!vmx->host_state.loaded)
  1209. return;
  1210. ++vmx->vcpu.stat.host_state_reload;
  1211. vmx->host_state.loaded = 0;
  1212. #ifdef CONFIG_X86_64
  1213. if (is_long_mode(&vmx->vcpu))
  1214. rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
  1215. #endif
  1216. if (vmx->host_state.gs_ldt_reload_needed) {
  1217. kvm_load_ldt(vmx->host_state.ldt_sel);
  1218. #ifdef CONFIG_X86_64
  1219. load_gs_index(vmx->host_state.gs_sel);
  1220. #else
  1221. loadsegment(gs, vmx->host_state.gs_sel);
  1222. #endif
  1223. }
  1224. if (vmx->host_state.fs_reload_needed)
  1225. loadsegment(fs, vmx->host_state.fs_sel);
  1226. reload_tss();
  1227. #ifdef CONFIG_X86_64
  1228. wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
  1229. #endif
  1230. if (current_thread_info()->status & TS_USEDFPU)
  1231. clts();
  1232. load_gdt(&__get_cpu_var(host_gdt));
  1233. }
  1234. static void vmx_load_host_state(struct vcpu_vmx *vmx)
  1235. {
  1236. preempt_disable();
  1237. __vmx_load_host_state(vmx);
  1238. preempt_enable();
  1239. }
  1240. /*
  1241. * Switches to specified vcpu, until a matching vcpu_put(), but assumes
  1242. * vcpu mutex is already taken.
  1243. */
  1244. static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
  1245. {
  1246. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1247. u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
  1248. if (!vmm_exclusive)
  1249. kvm_cpu_vmxon(phys_addr);
  1250. else if (vmx->loaded_vmcs->cpu != cpu)
  1251. loaded_vmcs_clear(vmx->loaded_vmcs);
  1252. if (per_cpu(current_vmcs, cpu) != vmx->loaded_vmcs->vmcs) {
  1253. per_cpu(current_vmcs, cpu) = vmx->loaded_vmcs->vmcs;
  1254. vmcs_load(vmx->loaded_vmcs->vmcs);
  1255. }
  1256. if (vmx->loaded_vmcs->cpu != cpu) {
  1257. struct desc_ptr *gdt = &__get_cpu_var(host_gdt);
  1258. unsigned long sysenter_esp;
  1259. kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
  1260. local_irq_disable();
  1261. list_add(&vmx->loaded_vmcs->loaded_vmcss_on_cpu_link,
  1262. &per_cpu(loaded_vmcss_on_cpu, cpu));
  1263. local_irq_enable();
  1264. /*
  1265. * Linux uses per-cpu TSS and GDT, so set these when switching
  1266. * processors.
  1267. */
  1268. vmcs_writel(HOST_TR_BASE, kvm_read_tr_base()); /* 22.2.4 */
  1269. vmcs_writel(HOST_GDTR_BASE, gdt->address); /* 22.2.4 */
  1270. rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
  1271. vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
  1272. vmx->loaded_vmcs->cpu = cpu;
  1273. }
  1274. }
  1275. static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
  1276. {
  1277. __vmx_load_host_state(to_vmx(vcpu));
  1278. if (!vmm_exclusive) {
  1279. __loaded_vmcs_clear(to_vmx(vcpu)->loaded_vmcs);
  1280. vcpu->cpu = -1;
  1281. kvm_cpu_vmxoff();
  1282. }
  1283. }
  1284. static void vmx_fpu_activate(struct kvm_vcpu *vcpu)
  1285. {
  1286. ulong cr0;
  1287. if (vcpu->fpu_active)
  1288. return;
  1289. vcpu->fpu_active = 1;
  1290. cr0 = vmcs_readl(GUEST_CR0);
  1291. cr0 &= ~(X86_CR0_TS | X86_CR0_MP);
  1292. cr0 |= kvm_read_cr0_bits(vcpu, X86_CR0_TS | X86_CR0_MP);
  1293. vmcs_writel(GUEST_CR0, cr0);
  1294. update_exception_bitmap(vcpu);
  1295. vcpu->arch.cr0_guest_owned_bits = X86_CR0_TS;
  1296. if (is_guest_mode(vcpu))
  1297. vcpu->arch.cr0_guest_owned_bits &=
  1298. ~get_vmcs12(vcpu)->cr0_guest_host_mask;
  1299. vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
  1300. }
  1301. static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu);
  1302. /*
  1303. * Return the cr0 value that a nested guest would read. This is a combination
  1304. * of the real cr0 used to run the guest (guest_cr0), and the bits shadowed by
  1305. * its hypervisor (cr0_read_shadow).
  1306. */
  1307. static inline unsigned long nested_read_cr0(struct vmcs12 *fields)
  1308. {
  1309. return (fields->guest_cr0 & ~fields->cr0_guest_host_mask) |
  1310. (fields->cr0_read_shadow & fields->cr0_guest_host_mask);
  1311. }
  1312. static inline unsigned long nested_read_cr4(struct vmcs12 *fields)
  1313. {
  1314. return (fields->guest_cr4 & ~fields->cr4_guest_host_mask) |
  1315. (fields->cr4_read_shadow & fields->cr4_guest_host_mask);
  1316. }
  1317. static void vmx_fpu_deactivate(struct kvm_vcpu *vcpu)
  1318. {
  1319. /* Note that there is no vcpu->fpu_active = 0 here. The caller must
  1320. * set this *before* calling this function.
  1321. */
  1322. vmx_decache_cr0_guest_bits(vcpu);
  1323. vmcs_set_bits(GUEST_CR0, X86_CR0_TS | X86_CR0_MP);
  1324. update_exception_bitmap(vcpu);
  1325. vcpu->arch.cr0_guest_owned_bits = 0;
  1326. vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
  1327. if (is_guest_mode(vcpu)) {
  1328. /*
  1329. * L1's specified read shadow might not contain the TS bit,
  1330. * so now that we turned on shadowing of this bit, we need to
  1331. * set this bit of the shadow. Like in nested_vmx_run we need
  1332. * nested_read_cr0(vmcs12), but vmcs12->guest_cr0 is not yet
  1333. * up-to-date here because we just decached cr0.TS (and we'll
  1334. * only update vmcs12->guest_cr0 on nested exit).
  1335. */
  1336. struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
  1337. vmcs12->guest_cr0 = (vmcs12->guest_cr0 & ~X86_CR0_TS) |
  1338. (vcpu->arch.cr0 & X86_CR0_TS);
  1339. vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
  1340. } else
  1341. vmcs_writel(CR0_READ_SHADOW, vcpu->arch.cr0);
  1342. }
  1343. static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
  1344. {
  1345. unsigned long rflags, save_rflags;
  1346. if (!test_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail)) {
  1347. __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
  1348. rflags = vmcs_readl(GUEST_RFLAGS);
  1349. if (to_vmx(vcpu)->rmode.vm86_active) {
  1350. rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
  1351. save_rflags = to_vmx(vcpu)->rmode.save_rflags;
  1352. rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
  1353. }
  1354. to_vmx(vcpu)->rflags = rflags;
  1355. }
  1356. return to_vmx(vcpu)->rflags;
  1357. }
  1358. static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
  1359. {
  1360. __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
  1361. __clear_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail);
  1362. to_vmx(vcpu)->rflags = rflags;
  1363. if (to_vmx(vcpu)->rmode.vm86_active) {
  1364. to_vmx(vcpu)->rmode.save_rflags = rflags;
  1365. rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
  1366. }
  1367. vmcs_writel(GUEST_RFLAGS, rflags);
  1368. }
  1369. static u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
  1370. {
  1371. u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
  1372. int ret = 0;
  1373. if (interruptibility & GUEST_INTR_STATE_STI)
  1374. ret |= KVM_X86_SHADOW_INT_STI;
  1375. if (interruptibility & GUEST_INTR_STATE_MOV_SS)
  1376. ret |= KVM_X86_SHADOW_INT_MOV_SS;
  1377. return ret & mask;
  1378. }
  1379. static void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
  1380. {
  1381. u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
  1382. u32 interruptibility = interruptibility_old;
  1383. interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);
  1384. if (mask & KVM_X86_SHADOW_INT_MOV_SS)
  1385. interruptibility |= GUEST_INTR_STATE_MOV_SS;
  1386. else if (mask & KVM_X86_SHADOW_INT_STI)
  1387. interruptibility |= GUEST_INTR_STATE_STI;
  1388. if ((interruptibility != interruptibility_old))
  1389. vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility);
  1390. }
  1391. static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
  1392. {
  1393. unsigned long rip;
  1394. rip = kvm_rip_read(vcpu);
  1395. rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
  1396. kvm_rip_write(vcpu, rip);
  1397. /* skipping an emulated instruction also counts */
  1398. vmx_set_interrupt_shadow(vcpu, 0);
  1399. }
  1400. static void vmx_clear_hlt(struct kvm_vcpu *vcpu)
  1401. {
  1402. /* Ensure that we clear the HLT state in the VMCS. We don't need to
  1403. * explicitly skip the instruction because if the HLT state is set, then
  1404. * the instruction is already executing and RIP has already been
  1405. * advanced. */
  1406. if (!yield_on_hlt &&
  1407. vmcs_read32(GUEST_ACTIVITY_STATE) == GUEST_ACTIVITY_HLT)
  1408. vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
  1409. }
  1410. /*
  1411. * KVM wants to inject page-faults which it got to the guest. This function
  1412. * checks whether in a nested guest, we need to inject them to L1 or L2.
  1413. * This function assumes it is called with the exit reason in vmcs02 being
  1414. * a #PF exception (this is the only case in which KVM injects a #PF when L2
  1415. * is running).
  1416. */
  1417. static int nested_pf_handled(struct kvm_vcpu *vcpu)
  1418. {
  1419. struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
  1420. /* TODO: also check PFEC_MATCH/MASK, not just EB.PF. */
  1421. if (!(vmcs12->exception_bitmap & PF_VECTOR))
  1422. return 0;
  1423. nested_vmx_vmexit(vcpu);
  1424. return 1;
  1425. }
  1426. static void vmx_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
  1427. bool has_error_code, u32 error_code,
  1428. bool reinject)
  1429. {
  1430. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1431. u32 intr_info = nr | INTR_INFO_VALID_MASK;
  1432. if (nr == PF_VECTOR && is_guest_mode(vcpu) &&
  1433. nested_pf_handled(vcpu))
  1434. return;
  1435. if (has_error_code) {
  1436. vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
  1437. intr_info |= INTR_INFO_DELIVER_CODE_MASK;
  1438. }
  1439. if (vmx->rmode.vm86_active) {
  1440. int inc_eip = 0;
  1441. if (kvm_exception_is_soft(nr))
  1442. inc_eip = vcpu->arch.event_exit_inst_len;
  1443. if (kvm_inject_realmode_interrupt(vcpu, nr, inc_eip) != EMULATE_DONE)
  1444. kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
  1445. return;
  1446. }
  1447. if (kvm_exception_is_soft(nr)) {
  1448. vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
  1449. vmx->vcpu.arch.event_exit_inst_len);
  1450. intr_info |= INTR_TYPE_SOFT_EXCEPTION;
  1451. } else
  1452. intr_info |= INTR_TYPE_HARD_EXCEPTION;
  1453. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
  1454. vmx_clear_hlt(vcpu);
  1455. }
  1456. static bool vmx_rdtscp_supported(void)
  1457. {
  1458. return cpu_has_vmx_rdtscp();
  1459. }
  1460. /*
  1461. * Swap MSR entry in host/guest MSR entry array.
  1462. */
  1463. static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
  1464. {
  1465. struct shared_msr_entry tmp;
  1466. tmp = vmx->guest_msrs[to];
  1467. vmx->guest_msrs[to] = vmx->guest_msrs[from];
  1468. vmx->guest_msrs[from] = tmp;
  1469. }
  1470. /*
  1471. * Set up the vmcs to automatically save and restore system
  1472. * msrs. Don't touch the 64-bit msrs if the guest is in legacy
  1473. * mode, as fiddling with msrs is very expensive.
  1474. */
  1475. static void setup_msrs(struct vcpu_vmx *vmx)
  1476. {
  1477. int save_nmsrs, index;
  1478. unsigned long *msr_bitmap;
  1479. vmx_load_host_state(vmx);
  1480. save_nmsrs = 0;
  1481. #ifdef CONFIG_X86_64
  1482. if (is_long_mode(&vmx->vcpu)) {
  1483. index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
  1484. if (index >= 0)
  1485. move_msr_up(vmx, index, save_nmsrs++);
  1486. index = __find_msr_index(vmx, MSR_LSTAR);
  1487. if (index >= 0)
  1488. move_msr_up(vmx, index, save_nmsrs++);
  1489. index = __find_msr_index(vmx, MSR_CSTAR);
  1490. if (index >= 0)
  1491. move_msr_up(vmx, index, save_nmsrs++);
  1492. index = __find_msr_index(vmx, MSR_TSC_AUX);
  1493. if (index >= 0 && vmx->rdtscp_enabled)
  1494. move_msr_up(vmx, index, save_nmsrs++);
  1495. /*
  1496. * MSR_STAR is only needed on long mode guests, and only
  1497. * if efer.sce is enabled.
  1498. */
  1499. index = __find_msr_index(vmx, MSR_STAR);
  1500. if ((index >= 0) && (vmx->vcpu.arch.efer & EFER_SCE))
  1501. move_msr_up(vmx, index, save_nmsrs++);
  1502. }
  1503. #endif
  1504. index = __find_msr_index(vmx, MSR_EFER);
  1505. if (index >= 0 && update_transition_efer(vmx, index))
  1506. move_msr_up(vmx, index, save_nmsrs++);
  1507. vmx->save_nmsrs = save_nmsrs;
  1508. if (cpu_has_vmx_msr_bitmap()) {
  1509. if (is_long_mode(&vmx->vcpu))
  1510. msr_bitmap = vmx_msr_bitmap_longmode;
  1511. else
  1512. msr_bitmap = vmx_msr_bitmap_legacy;
  1513. vmcs_write64(MSR_BITMAP, __pa(msr_bitmap));
  1514. }
  1515. }
  1516. /*
  1517. * reads and returns guest's timestamp counter "register"
  1518. * guest_tsc = host_tsc + tsc_offset -- 21.3
  1519. */
  1520. static u64 guest_read_tsc(void)
  1521. {
  1522. u64 host_tsc, tsc_offset;
  1523. rdtscll(host_tsc);
  1524. tsc_offset = vmcs_read64(TSC_OFFSET);
  1525. return host_tsc + tsc_offset;
  1526. }
  1527. /*
  1528. * Empty call-back. Needs to be implemented when VMX enables the SET_TSC_KHZ
  1529. * ioctl. In this case the call-back should update internal vmx state to make
  1530. * the changes effective.
  1531. */
  1532. static void vmx_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz)
  1533. {
  1534. /* Nothing to do here */
  1535. }
  1536. /*
  1537. * writes 'offset' into guest's timestamp counter offset register
  1538. */
  1539. static void vmx_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
  1540. {
  1541. vmcs_write64(TSC_OFFSET, offset);
  1542. if (is_guest_mode(vcpu))
  1543. /*
  1544. * We're here if L1 chose not to trap the TSC MSR. Since
  1545. * prepare_vmcs12() does not copy tsc_offset, we need to also
  1546. * set the vmcs12 field here.
  1547. */
  1548. get_vmcs12(vcpu)->tsc_offset = offset -
  1549. to_vmx(vcpu)->nested.vmcs01_tsc_offset;
  1550. }
  1551. static void vmx_adjust_tsc_offset(struct kvm_vcpu *vcpu, s64 adjustment)
  1552. {
  1553. u64 offset = vmcs_read64(TSC_OFFSET);
  1554. vmcs_write64(TSC_OFFSET, offset + adjustment);
  1555. if (is_guest_mode(vcpu)) {
  1556. /* Even when running L2, the adjustment needs to apply to L1 */
  1557. to_vmx(vcpu)->nested.vmcs01_tsc_offset += adjustment;
  1558. }
  1559. }
  1560. static u64 vmx_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
  1561. {
  1562. return target_tsc - native_read_tsc();
  1563. }
  1564. static bool guest_cpuid_has_vmx(struct kvm_vcpu *vcpu)
  1565. {
  1566. struct kvm_cpuid_entry2 *best = kvm_find_cpuid_entry(vcpu, 1, 0);
  1567. return best && (best->ecx & (1 << (X86_FEATURE_VMX & 31)));
  1568. }
  1569. /*
  1570. * nested_vmx_allowed() checks whether a guest should be allowed to use VMX
  1571. * instructions and MSRs (i.e., nested VMX). Nested VMX is disabled for
  1572. * all guests if the "nested" module option is off, and can also be disabled
  1573. * for a single guest by disabling its VMX cpuid bit.
  1574. */
  1575. static inline bool nested_vmx_allowed(struct kvm_vcpu *vcpu)
  1576. {
  1577. return nested && guest_cpuid_has_vmx(vcpu);
  1578. }
  1579. /*
  1580. * nested_vmx_setup_ctls_msrs() sets up variables containing the values to be
  1581. * returned for the various VMX controls MSRs when nested VMX is enabled.
  1582. * The same values should also be used to verify that vmcs12 control fields are
  1583. * valid during nested entry from L1 to L2.
  1584. * Each of these control msrs has a low and high 32-bit half: A low bit is on
  1585. * if the corresponding bit in the (32-bit) control field *must* be on, and a
  1586. * bit in the high half is on if the corresponding bit in the control field
  1587. * may be on. See also vmx_control_verify().
  1588. * TODO: allow these variables to be modified (downgraded) by module options
  1589. * or other means.
  1590. */
  1591. static u32 nested_vmx_procbased_ctls_low, nested_vmx_procbased_ctls_high;
  1592. static u32 nested_vmx_secondary_ctls_low, nested_vmx_secondary_ctls_high;
  1593. static u32 nested_vmx_pinbased_ctls_low, nested_vmx_pinbased_ctls_high;
  1594. static u32 nested_vmx_exit_ctls_low, nested_vmx_exit_ctls_high;
  1595. static u32 nested_vmx_entry_ctls_low, nested_vmx_entry_ctls_high;
  1596. static __init void nested_vmx_setup_ctls_msrs(void)
  1597. {
  1598. /*
  1599. * Note that as a general rule, the high half of the MSRs (bits in
  1600. * the control fields which may be 1) should be initialized by the
  1601. * intersection of the underlying hardware's MSR (i.e., features which
  1602. * can be supported) and the list of features we want to expose -
  1603. * because they are known to be properly supported in our code.
  1604. * Also, usually, the low half of the MSRs (bits which must be 1) can
  1605. * be set to 0, meaning that L1 may turn off any of these bits. The
  1606. * reason is that if one of these bits is necessary, it will appear
  1607. * in vmcs01 and prepare_vmcs02, when it bitwise-or's the control
  1608. * fields of vmcs01 and vmcs02, will turn these bits off - and
  1609. * nested_vmx_exit_handled() will not pass related exits to L1.
  1610. * These rules have exceptions below.
  1611. */
  1612. /* pin-based controls */
  1613. /*
  1614. * According to the Intel spec, if bit 55 of VMX_BASIC is off (as it is
  1615. * in our case), bits 1, 2 and 4 (i.e., 0x16) must be 1 in this MSR.
  1616. */
  1617. nested_vmx_pinbased_ctls_low = 0x16 ;
  1618. nested_vmx_pinbased_ctls_high = 0x16 |
  1619. PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING |
  1620. PIN_BASED_VIRTUAL_NMIS;
  1621. /* exit controls */
  1622. nested_vmx_exit_ctls_low = 0;
  1623. /* Note that guest use of VM_EXIT_ACK_INTR_ON_EXIT is not supported. */
  1624. #ifdef CONFIG_X86_64
  1625. nested_vmx_exit_ctls_high = VM_EXIT_HOST_ADDR_SPACE_SIZE;
  1626. #else
  1627. nested_vmx_exit_ctls_high = 0;
  1628. #endif
  1629. /* entry controls */
  1630. rdmsr(MSR_IA32_VMX_ENTRY_CTLS,
  1631. nested_vmx_entry_ctls_low, nested_vmx_entry_ctls_high);
  1632. nested_vmx_entry_ctls_low = 0;
  1633. nested_vmx_entry_ctls_high &=
  1634. VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_IA32E_MODE;
  1635. /* cpu-based controls */
  1636. rdmsr(MSR_IA32_VMX_PROCBASED_CTLS,
  1637. nested_vmx_procbased_ctls_low, nested_vmx_procbased_ctls_high);
  1638. nested_vmx_procbased_ctls_low = 0;
  1639. nested_vmx_procbased_ctls_high &=
  1640. CPU_BASED_VIRTUAL_INTR_PENDING | CPU_BASED_USE_TSC_OFFSETING |
  1641. CPU_BASED_HLT_EXITING | CPU_BASED_INVLPG_EXITING |
  1642. CPU_BASED_MWAIT_EXITING | CPU_BASED_CR3_LOAD_EXITING |
  1643. CPU_BASED_CR3_STORE_EXITING |
  1644. #ifdef CONFIG_X86_64
  1645. CPU_BASED_CR8_LOAD_EXITING | CPU_BASED_CR8_STORE_EXITING |
  1646. #endif
  1647. CPU_BASED_MOV_DR_EXITING | CPU_BASED_UNCOND_IO_EXITING |
  1648. CPU_BASED_USE_IO_BITMAPS | CPU_BASED_MONITOR_EXITING |
  1649. CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
  1650. /*
  1651. * We can allow some features even when not supported by the
  1652. * hardware. For example, L1 can specify an MSR bitmap - and we
  1653. * can use it to avoid exits to L1 - even when L0 runs L2
  1654. * without MSR bitmaps.
  1655. */
  1656. nested_vmx_procbased_ctls_high |= CPU_BASED_USE_MSR_BITMAPS;
  1657. /* secondary cpu-based controls */
  1658. rdmsr(MSR_IA32_VMX_PROCBASED_CTLS2,
  1659. nested_vmx_secondary_ctls_low, nested_vmx_secondary_ctls_high);
  1660. nested_vmx_secondary_ctls_low = 0;
  1661. nested_vmx_secondary_ctls_high &=
  1662. SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
  1663. }
  1664. static inline bool vmx_control_verify(u32 control, u32 low, u32 high)
  1665. {
  1666. /*
  1667. * Bits 0 in high must be 0, and bits 1 in low must be 1.
  1668. */
  1669. return ((control & high) | low) == control;
  1670. }
  1671. static inline u64 vmx_control_msr(u32 low, u32 high)
  1672. {
  1673. return low | ((u64)high << 32);
  1674. }
  1675. /*
  1676. * If we allow our guest to use VMX instructions (i.e., nested VMX), we should
  1677. * also let it use VMX-specific MSRs.
  1678. * vmx_get_vmx_msr() and vmx_set_vmx_msr() return 1 when we handled a
  1679. * VMX-specific MSR, or 0 when we haven't (and the caller should handle it
  1680. * like all other MSRs).
  1681. */
  1682. static int vmx_get_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
  1683. {
  1684. if (!nested_vmx_allowed(vcpu) && msr_index >= MSR_IA32_VMX_BASIC &&
  1685. msr_index <= MSR_IA32_VMX_TRUE_ENTRY_CTLS) {
  1686. /*
  1687. * According to the spec, processors which do not support VMX
  1688. * should throw a #GP(0) when VMX capability MSRs are read.
  1689. */
  1690. kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
  1691. return 1;
  1692. }
  1693. switch (msr_index) {
  1694. case MSR_IA32_FEATURE_CONTROL:
  1695. *pdata = 0;
  1696. break;
  1697. case MSR_IA32_VMX_BASIC:
  1698. /*
  1699. * This MSR reports some information about VMX support. We
  1700. * should return information about the VMX we emulate for the
  1701. * guest, and the VMCS structure we give it - not about the
  1702. * VMX support of the underlying hardware.
  1703. */
  1704. *pdata = VMCS12_REVISION |
  1705. ((u64)VMCS12_SIZE << VMX_BASIC_VMCS_SIZE_SHIFT) |
  1706. (VMX_BASIC_MEM_TYPE_WB << VMX_BASIC_MEM_TYPE_SHIFT);
  1707. break;
  1708. case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
  1709. case MSR_IA32_VMX_PINBASED_CTLS:
  1710. *pdata = vmx_control_msr(nested_vmx_pinbased_ctls_low,
  1711. nested_vmx_pinbased_ctls_high);
  1712. break;
  1713. case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
  1714. case MSR_IA32_VMX_PROCBASED_CTLS:
  1715. *pdata = vmx_control_msr(nested_vmx_procbased_ctls_low,
  1716. nested_vmx_procbased_ctls_high);
  1717. break;
  1718. case MSR_IA32_VMX_TRUE_EXIT_CTLS:
  1719. case MSR_IA32_VMX_EXIT_CTLS:
  1720. *pdata = vmx_control_msr(nested_vmx_exit_ctls_low,
  1721. nested_vmx_exit_ctls_high);
  1722. break;
  1723. case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
  1724. case MSR_IA32_VMX_ENTRY_CTLS:
  1725. *pdata = vmx_control_msr(nested_vmx_entry_ctls_low,
  1726. nested_vmx_entry_ctls_high);
  1727. break;
  1728. case MSR_IA32_VMX_MISC:
  1729. *pdata = 0;
  1730. break;
  1731. /*
  1732. * These MSRs specify bits which the guest must keep fixed (on or off)
  1733. * while L1 is in VMXON mode (in L1's root mode, or running an L2).
  1734. * We picked the standard core2 setting.
  1735. */
  1736. #define VMXON_CR0_ALWAYSON (X86_CR0_PE | X86_CR0_PG | X86_CR0_NE)
  1737. #define VMXON_CR4_ALWAYSON X86_CR4_VMXE
  1738. case MSR_IA32_VMX_CR0_FIXED0:
  1739. *pdata = VMXON_CR0_ALWAYSON;
  1740. break;
  1741. case MSR_IA32_VMX_CR0_FIXED1:
  1742. *pdata = -1ULL;
  1743. break;
  1744. case MSR_IA32_VMX_CR4_FIXED0:
  1745. *pdata = VMXON_CR4_ALWAYSON;
  1746. break;
  1747. case MSR_IA32_VMX_CR4_FIXED1:
  1748. *pdata = -1ULL;
  1749. break;
  1750. case MSR_IA32_VMX_VMCS_ENUM:
  1751. *pdata = 0x1f;
  1752. break;
  1753. case MSR_IA32_VMX_PROCBASED_CTLS2:
  1754. *pdata = vmx_control_msr(nested_vmx_secondary_ctls_low,
  1755. nested_vmx_secondary_ctls_high);
  1756. break;
  1757. case MSR_IA32_VMX_EPT_VPID_CAP:
  1758. /* Currently, no nested ept or nested vpid */
  1759. *pdata = 0;
  1760. break;
  1761. default:
  1762. return 0;
  1763. }
  1764. return 1;
  1765. }
  1766. static int vmx_set_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
  1767. {
  1768. if (!nested_vmx_allowed(vcpu))
  1769. return 0;
  1770. if (msr_index == MSR_IA32_FEATURE_CONTROL)
  1771. /* TODO: the right thing. */
  1772. return 1;
  1773. /*
  1774. * No need to treat VMX capability MSRs specially: If we don't handle
  1775. * them, handle_wrmsr will #GP(0), which is correct (they are readonly)
  1776. */
  1777. return 0;
  1778. }
  1779. /*
  1780. * Reads an msr value (of 'msr_index') into 'pdata'.
  1781. * Returns 0 on success, non-0 otherwise.
  1782. * Assumes vcpu_load() was already called.
  1783. */
  1784. static int vmx_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
  1785. {
  1786. u64 data;
  1787. struct shared_msr_entry *msr;
  1788. if (!pdata) {
  1789. printk(KERN_ERR "BUG: get_msr called with NULL pdata\n");
  1790. return -EINVAL;
  1791. }
  1792. switch (msr_index) {
  1793. #ifdef CONFIG_X86_64
  1794. case MSR_FS_BASE:
  1795. data = vmcs_readl(GUEST_FS_BASE);
  1796. break;
  1797. case MSR_GS_BASE:
  1798. data = vmcs_readl(GUEST_GS_BASE);
  1799. break;
  1800. case MSR_KERNEL_GS_BASE:
  1801. vmx_load_host_state(to_vmx(vcpu));
  1802. data = to_vmx(vcpu)->msr_guest_kernel_gs_base;
  1803. break;
  1804. #endif
  1805. case MSR_EFER:
  1806. return kvm_get_msr_common(vcpu, msr_index, pdata);
  1807. case MSR_IA32_TSC:
  1808. data = guest_read_tsc();
  1809. break;
  1810. case MSR_IA32_SYSENTER_CS:
  1811. data = vmcs_read32(GUEST_SYSENTER_CS);
  1812. break;
  1813. case MSR_IA32_SYSENTER_EIP:
  1814. data = vmcs_readl(GUEST_SYSENTER_EIP);
  1815. break;
  1816. case MSR_IA32_SYSENTER_ESP:
  1817. data = vmcs_readl(GUEST_SYSENTER_ESP);
  1818. break;
  1819. case MSR_TSC_AUX:
  1820. if (!to_vmx(vcpu)->rdtscp_enabled)
  1821. return 1;
  1822. /* Otherwise falls through */
  1823. default:
  1824. vmx_load_host_state(to_vmx(vcpu));
  1825. if (vmx_get_vmx_msr(vcpu, msr_index, pdata))
  1826. return 0;
  1827. msr = find_msr_entry(to_vmx(vcpu), msr_index);
  1828. if (msr) {
  1829. vmx_load_host_state(to_vmx(vcpu));
  1830. data = msr->data;
  1831. break;
  1832. }
  1833. return kvm_get_msr_common(vcpu, msr_index, pdata);
  1834. }
  1835. *pdata = data;
  1836. return 0;
  1837. }
  1838. /*
  1839. * Writes msr value into into the appropriate "register".
  1840. * Returns 0 on success, non-0 otherwise.
  1841. * Assumes vcpu_load() was already called.
  1842. */
  1843. static int vmx_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
  1844. {
  1845. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1846. struct shared_msr_entry *msr;
  1847. int ret = 0;
  1848. switch (msr_index) {
  1849. case MSR_EFER:
  1850. vmx_load_host_state(vmx);
  1851. ret = kvm_set_msr_common(vcpu, msr_index, data);
  1852. break;
  1853. #ifdef CONFIG_X86_64
  1854. case MSR_FS_BASE:
  1855. vmx_segment_cache_clear(vmx);
  1856. vmcs_writel(GUEST_FS_BASE, data);
  1857. break;
  1858. case MSR_GS_BASE:
  1859. vmx_segment_cache_clear(vmx);
  1860. vmcs_writel(GUEST_GS_BASE, data);
  1861. break;
  1862. case MSR_KERNEL_GS_BASE:
  1863. vmx_load_host_state(vmx);
  1864. vmx->msr_guest_kernel_gs_base = data;
  1865. break;
  1866. #endif
  1867. case MSR_IA32_SYSENTER_CS:
  1868. vmcs_write32(GUEST_SYSENTER_CS, data);
  1869. break;
  1870. case MSR_IA32_SYSENTER_EIP:
  1871. vmcs_writel(GUEST_SYSENTER_EIP, data);
  1872. break;
  1873. case MSR_IA32_SYSENTER_ESP:
  1874. vmcs_writel(GUEST_SYSENTER_ESP, data);
  1875. break;
  1876. case MSR_IA32_TSC:
  1877. kvm_write_tsc(vcpu, data);
  1878. break;
  1879. case MSR_IA32_CR_PAT:
  1880. if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
  1881. vmcs_write64(GUEST_IA32_PAT, data);
  1882. vcpu->arch.pat = data;
  1883. break;
  1884. }
  1885. ret = kvm_set_msr_common(vcpu, msr_index, data);
  1886. break;
  1887. case MSR_TSC_AUX:
  1888. if (!vmx->rdtscp_enabled)
  1889. return 1;
  1890. /* Check reserved bit, higher 32 bits should be zero */
  1891. if ((data >> 32) != 0)
  1892. return 1;
  1893. /* Otherwise falls through */
  1894. default:
  1895. if (vmx_set_vmx_msr(vcpu, msr_index, data))
  1896. break;
  1897. msr = find_msr_entry(vmx, msr_index);
  1898. if (msr) {
  1899. vmx_load_host_state(vmx);
  1900. msr->data = data;
  1901. break;
  1902. }
  1903. ret = kvm_set_msr_common(vcpu, msr_index, data);
  1904. }
  1905. return ret;
  1906. }
  1907. static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
  1908. {
  1909. __set_bit(reg, (unsigned long *)&vcpu->arch.regs_avail);
  1910. switch (reg) {
  1911. case VCPU_REGS_RSP:
  1912. vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
  1913. break;
  1914. case VCPU_REGS_RIP:
  1915. vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
  1916. break;
  1917. case VCPU_EXREG_PDPTR:
  1918. if (enable_ept)
  1919. ept_save_pdptrs(vcpu);
  1920. break;
  1921. default:
  1922. break;
  1923. }
  1924. }
  1925. static void set_guest_debug(struct kvm_vcpu *vcpu, struct kvm_guest_debug *dbg)
  1926. {
  1927. if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
  1928. vmcs_writel(GUEST_DR7, dbg->arch.debugreg[7]);
  1929. else
  1930. vmcs_writel(GUEST_DR7, vcpu->arch.dr7);
  1931. update_exception_bitmap(vcpu);
  1932. }
  1933. static __init int cpu_has_kvm_support(void)
  1934. {
  1935. return cpu_has_vmx();
  1936. }
  1937. static __init int vmx_disabled_by_bios(void)
  1938. {
  1939. u64 msr;
  1940. rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
  1941. if (msr & FEATURE_CONTROL_LOCKED) {
  1942. /* launched w/ TXT and VMX disabled */
  1943. if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
  1944. && tboot_enabled())
  1945. return 1;
  1946. /* launched w/o TXT and VMX only enabled w/ TXT */
  1947. if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
  1948. && (msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
  1949. && !tboot_enabled()) {
  1950. printk(KERN_WARNING "kvm: disable TXT in the BIOS or "
  1951. "activate TXT before enabling KVM\n");
  1952. return 1;
  1953. }
  1954. /* launched w/o TXT and VMX disabled */
  1955. if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
  1956. && !tboot_enabled())
  1957. return 1;
  1958. }
  1959. return 0;
  1960. }
  1961. static void kvm_cpu_vmxon(u64 addr)
  1962. {
  1963. asm volatile (ASM_VMX_VMXON_RAX
  1964. : : "a"(&addr), "m"(addr)
  1965. : "memory", "cc");
  1966. }
  1967. static int hardware_enable(void *garbage)
  1968. {
  1969. int cpu = raw_smp_processor_id();
  1970. u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
  1971. u64 old, test_bits;
  1972. if (read_cr4() & X86_CR4_VMXE)
  1973. return -EBUSY;
  1974. INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu, cpu));
  1975. rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
  1976. test_bits = FEATURE_CONTROL_LOCKED;
  1977. test_bits |= FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
  1978. if (tboot_enabled())
  1979. test_bits |= FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX;
  1980. if ((old & test_bits) != test_bits) {
  1981. /* enable and lock */
  1982. wrmsrl(MSR_IA32_FEATURE_CONTROL, old | test_bits);
  1983. }
  1984. write_cr4(read_cr4() | X86_CR4_VMXE); /* FIXME: not cpu hotplug safe */
  1985. if (vmm_exclusive) {
  1986. kvm_cpu_vmxon(phys_addr);
  1987. ept_sync_global();
  1988. }
  1989. store_gdt(&__get_cpu_var(host_gdt));
  1990. return 0;
  1991. }
  1992. static void vmclear_local_loaded_vmcss(void)
  1993. {
  1994. int cpu = raw_smp_processor_id();
  1995. struct loaded_vmcs *v, *n;
  1996. list_for_each_entry_safe(v, n, &per_cpu(loaded_vmcss_on_cpu, cpu),
  1997. loaded_vmcss_on_cpu_link)
  1998. __loaded_vmcs_clear(v);
  1999. }
  2000. /* Just like cpu_vmxoff(), but with the __kvm_handle_fault_on_reboot()
  2001. * tricks.
  2002. */
  2003. static void kvm_cpu_vmxoff(void)
  2004. {
  2005. asm volatile (__ex(ASM_VMX_VMXOFF) : : : "cc");
  2006. }
  2007. static void hardware_disable(void *garbage)
  2008. {
  2009. if (vmm_exclusive) {
  2010. vmclear_local_loaded_vmcss();
  2011. kvm_cpu_vmxoff();
  2012. }
  2013. write_cr4(read_cr4() & ~X86_CR4_VMXE);
  2014. }
  2015. static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
  2016. u32 msr, u32 *result)
  2017. {
  2018. u32 vmx_msr_low, vmx_msr_high;
  2019. u32 ctl = ctl_min | ctl_opt;
  2020. rdmsr(msr, vmx_msr_low, vmx_msr_high);
  2021. ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
  2022. ctl |= vmx_msr_low; /* bit == 1 in low word ==> must be one */
  2023. /* Ensure minimum (required) set of control bits are supported. */
  2024. if (ctl_min & ~ctl)
  2025. return -EIO;
  2026. *result = ctl;
  2027. return 0;
  2028. }
  2029. static __init bool allow_1_setting(u32 msr, u32 ctl)
  2030. {
  2031. u32 vmx_msr_low, vmx_msr_high;
  2032. rdmsr(msr, vmx_msr_low, vmx_msr_high);
  2033. return vmx_msr_high & ctl;
  2034. }
  2035. static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf)
  2036. {
  2037. u32 vmx_msr_low, vmx_msr_high;
  2038. u32 min, opt, min2, opt2;
  2039. u32 _pin_based_exec_control = 0;
  2040. u32 _cpu_based_exec_control = 0;
  2041. u32 _cpu_based_2nd_exec_control = 0;
  2042. u32 _vmexit_control = 0;
  2043. u32 _vmentry_control = 0;
  2044. min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
  2045. opt = PIN_BASED_VIRTUAL_NMIS;
  2046. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
  2047. &_pin_based_exec_control) < 0)
  2048. return -EIO;
  2049. min =
  2050. #ifdef CONFIG_X86_64
  2051. CPU_BASED_CR8_LOAD_EXITING |
  2052. CPU_BASED_CR8_STORE_EXITING |
  2053. #endif
  2054. CPU_BASED_CR3_LOAD_EXITING |
  2055. CPU_BASED_CR3_STORE_EXITING |
  2056. CPU_BASED_USE_IO_BITMAPS |
  2057. CPU_BASED_MOV_DR_EXITING |
  2058. CPU_BASED_USE_TSC_OFFSETING |
  2059. CPU_BASED_MWAIT_EXITING |
  2060. CPU_BASED_MONITOR_EXITING |
  2061. CPU_BASED_INVLPG_EXITING;
  2062. if (yield_on_hlt)
  2063. min |= CPU_BASED_HLT_EXITING;
  2064. opt = CPU_BASED_TPR_SHADOW |
  2065. CPU_BASED_USE_MSR_BITMAPS |
  2066. CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
  2067. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
  2068. &_cpu_based_exec_control) < 0)
  2069. return -EIO;
  2070. #ifdef CONFIG_X86_64
  2071. if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
  2072. _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
  2073. ~CPU_BASED_CR8_STORE_EXITING;
  2074. #endif
  2075. if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
  2076. min2 = 0;
  2077. opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
  2078. SECONDARY_EXEC_WBINVD_EXITING |
  2079. SECONDARY_EXEC_ENABLE_VPID |
  2080. SECONDARY_EXEC_ENABLE_EPT |
  2081. SECONDARY_EXEC_UNRESTRICTED_GUEST |
  2082. SECONDARY_EXEC_PAUSE_LOOP_EXITING |
  2083. SECONDARY_EXEC_RDTSCP;
  2084. if (adjust_vmx_controls(min2, opt2,
  2085. MSR_IA32_VMX_PROCBASED_CTLS2,
  2086. &_cpu_based_2nd_exec_control) < 0)
  2087. return -EIO;
  2088. }
  2089. #ifndef CONFIG_X86_64
  2090. if (!(_cpu_based_2nd_exec_control &
  2091. SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
  2092. _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
  2093. #endif
  2094. if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) {
  2095. /* CR3 accesses and invlpg don't need to cause VM Exits when EPT
  2096. enabled */
  2097. _cpu_based_exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING |
  2098. CPU_BASED_CR3_STORE_EXITING |
  2099. CPU_BASED_INVLPG_EXITING);
  2100. rdmsr(MSR_IA32_VMX_EPT_VPID_CAP,
  2101. vmx_capability.ept, vmx_capability.vpid);
  2102. }
  2103. min = 0;
  2104. #ifdef CONFIG_X86_64
  2105. min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
  2106. #endif
  2107. opt = VM_EXIT_SAVE_IA32_PAT | VM_EXIT_LOAD_IA32_PAT;
  2108. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
  2109. &_vmexit_control) < 0)
  2110. return -EIO;
  2111. min = 0;
  2112. opt = VM_ENTRY_LOAD_IA32_PAT;
  2113. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
  2114. &_vmentry_control) < 0)
  2115. return -EIO;
  2116. rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
  2117. /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
  2118. if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
  2119. return -EIO;
  2120. #ifdef CONFIG_X86_64
  2121. /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
  2122. if (vmx_msr_high & (1u<<16))
  2123. return -EIO;
  2124. #endif
  2125. /* Require Write-Back (WB) memory type for VMCS accesses. */
  2126. if (((vmx_msr_high >> 18) & 15) != 6)
  2127. return -EIO;
  2128. vmcs_conf->size = vmx_msr_high & 0x1fff;
  2129. vmcs_conf->order = get_order(vmcs_config.size);
  2130. vmcs_conf->revision_id = vmx_msr_low;
  2131. vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
  2132. vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
  2133. vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
  2134. vmcs_conf->vmexit_ctrl = _vmexit_control;
  2135. vmcs_conf->vmentry_ctrl = _vmentry_control;
  2136. cpu_has_load_ia32_efer =
  2137. allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS,
  2138. VM_ENTRY_LOAD_IA32_EFER)
  2139. && allow_1_setting(MSR_IA32_VMX_EXIT_CTLS,
  2140. VM_EXIT_LOAD_IA32_EFER);
  2141. return 0;
  2142. }
  2143. static struct vmcs *alloc_vmcs_cpu(int cpu)
  2144. {
  2145. int node = cpu_to_node(cpu);
  2146. struct page *pages;
  2147. struct vmcs *vmcs;
  2148. pages = alloc_pages_exact_node(node, GFP_KERNEL, vmcs_config.order);
  2149. if (!pages)
  2150. return NULL;
  2151. vmcs = page_address(pages);
  2152. memset(vmcs, 0, vmcs_config.size);
  2153. vmcs->revision_id = vmcs_config.revision_id; /* vmcs revision id */
  2154. return vmcs;
  2155. }
  2156. static struct vmcs *alloc_vmcs(void)
  2157. {
  2158. return alloc_vmcs_cpu(raw_smp_processor_id());
  2159. }
  2160. static void free_vmcs(struct vmcs *vmcs)
  2161. {
  2162. free_pages((unsigned long)vmcs, vmcs_config.order);
  2163. }
  2164. /*
  2165. * Free a VMCS, but before that VMCLEAR it on the CPU where it was last loaded
  2166. */
  2167. static void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
  2168. {
  2169. if (!loaded_vmcs->vmcs)
  2170. return;
  2171. loaded_vmcs_clear(loaded_vmcs);
  2172. free_vmcs(loaded_vmcs->vmcs);
  2173. loaded_vmcs->vmcs = NULL;
  2174. }
  2175. static void free_kvm_area(void)
  2176. {
  2177. int cpu;
  2178. for_each_possible_cpu(cpu) {
  2179. free_vmcs(per_cpu(vmxarea, cpu));
  2180. per_cpu(vmxarea, cpu) = NULL;
  2181. }
  2182. }
  2183. static __init int alloc_kvm_area(void)
  2184. {
  2185. int cpu;
  2186. for_each_possible_cpu(cpu) {
  2187. struct vmcs *vmcs;
  2188. vmcs = alloc_vmcs_cpu(cpu);
  2189. if (!vmcs) {
  2190. free_kvm_area();
  2191. return -ENOMEM;
  2192. }
  2193. per_cpu(vmxarea, cpu) = vmcs;
  2194. }
  2195. return 0;
  2196. }
  2197. static __init int hardware_setup(void)
  2198. {
  2199. if (setup_vmcs_config(&vmcs_config) < 0)
  2200. return -EIO;
  2201. if (boot_cpu_has(X86_FEATURE_NX))
  2202. kvm_enable_efer_bits(EFER_NX);
  2203. if (!cpu_has_vmx_vpid())
  2204. enable_vpid = 0;
  2205. if (!cpu_has_vmx_ept() ||
  2206. !cpu_has_vmx_ept_4levels()) {
  2207. enable_ept = 0;
  2208. enable_unrestricted_guest = 0;
  2209. }
  2210. if (!cpu_has_vmx_unrestricted_guest())
  2211. enable_unrestricted_guest = 0;
  2212. if (!cpu_has_vmx_flexpriority())
  2213. flexpriority_enabled = 0;
  2214. if (!cpu_has_vmx_tpr_shadow())
  2215. kvm_x86_ops->update_cr8_intercept = NULL;
  2216. if (enable_ept && !cpu_has_vmx_ept_2m_page())
  2217. kvm_disable_largepages();
  2218. if (!cpu_has_vmx_ple())
  2219. ple_gap = 0;
  2220. if (nested)
  2221. nested_vmx_setup_ctls_msrs();
  2222. return alloc_kvm_area();
  2223. }
  2224. static __exit void hardware_unsetup(void)
  2225. {
  2226. free_kvm_area();
  2227. }
  2228. static void fix_pmode_dataseg(int seg, struct kvm_save_segment *save)
  2229. {
  2230. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  2231. if (vmcs_readl(sf->base) == save->base && (save->base & AR_S_MASK)) {
  2232. vmcs_write16(sf->selector, save->selector);
  2233. vmcs_writel(sf->base, save->base);
  2234. vmcs_write32(sf->limit, save->limit);
  2235. vmcs_write32(sf->ar_bytes, save->ar);
  2236. } else {
  2237. u32 dpl = (vmcs_read16(sf->selector) & SELECTOR_RPL_MASK)
  2238. << AR_DPL_SHIFT;
  2239. vmcs_write32(sf->ar_bytes, 0x93 | dpl);
  2240. }
  2241. }
  2242. static void enter_pmode(struct kvm_vcpu *vcpu)
  2243. {
  2244. unsigned long flags;
  2245. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2246. vmx->emulation_required = 1;
  2247. vmx->rmode.vm86_active = 0;
  2248. vmx_segment_cache_clear(vmx);
  2249. vmcs_write16(GUEST_TR_SELECTOR, vmx->rmode.tr.selector);
  2250. vmcs_writel(GUEST_TR_BASE, vmx->rmode.tr.base);
  2251. vmcs_write32(GUEST_TR_LIMIT, vmx->rmode.tr.limit);
  2252. vmcs_write32(GUEST_TR_AR_BYTES, vmx->rmode.tr.ar);
  2253. flags = vmcs_readl(GUEST_RFLAGS);
  2254. flags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
  2255. flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
  2256. vmcs_writel(GUEST_RFLAGS, flags);
  2257. vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
  2258. (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
  2259. update_exception_bitmap(vcpu);
  2260. if (emulate_invalid_guest_state)
  2261. return;
  2262. fix_pmode_dataseg(VCPU_SREG_ES, &vmx->rmode.es);
  2263. fix_pmode_dataseg(VCPU_SREG_DS, &vmx->rmode.ds);
  2264. fix_pmode_dataseg(VCPU_SREG_GS, &vmx->rmode.gs);
  2265. fix_pmode_dataseg(VCPU_SREG_FS, &vmx->rmode.fs);
  2266. vmx_segment_cache_clear(vmx);
  2267. vmcs_write16(GUEST_SS_SELECTOR, 0);
  2268. vmcs_write32(GUEST_SS_AR_BYTES, 0x93);
  2269. vmcs_write16(GUEST_CS_SELECTOR,
  2270. vmcs_read16(GUEST_CS_SELECTOR) & ~SELECTOR_RPL_MASK);
  2271. vmcs_write32(GUEST_CS_AR_BYTES, 0x9b);
  2272. }
  2273. static gva_t rmode_tss_base(struct kvm *kvm)
  2274. {
  2275. if (!kvm->arch.tss_addr) {
  2276. struct kvm_memslots *slots;
  2277. gfn_t base_gfn;
  2278. slots = kvm_memslots(kvm);
  2279. base_gfn = slots->memslots[0].base_gfn +
  2280. kvm->memslots->memslots[0].npages - 3;
  2281. return base_gfn << PAGE_SHIFT;
  2282. }
  2283. return kvm->arch.tss_addr;
  2284. }
  2285. static void fix_rmode_seg(int seg, struct kvm_save_segment *save)
  2286. {
  2287. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  2288. save->selector = vmcs_read16(sf->selector);
  2289. save->base = vmcs_readl(sf->base);
  2290. save->limit = vmcs_read32(sf->limit);
  2291. save->ar = vmcs_read32(sf->ar_bytes);
  2292. vmcs_write16(sf->selector, save->base >> 4);
  2293. vmcs_write32(sf->base, save->base & 0xffff0);
  2294. vmcs_write32(sf->limit, 0xffff);
  2295. vmcs_write32(sf->ar_bytes, 0xf3);
  2296. if (save->base & 0xf)
  2297. printk_once(KERN_WARNING "kvm: segment base is not paragraph"
  2298. " aligned when entering protected mode (seg=%d)",
  2299. seg);
  2300. }
  2301. static void enter_rmode(struct kvm_vcpu *vcpu)
  2302. {
  2303. unsigned long flags;
  2304. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2305. if (enable_unrestricted_guest)
  2306. return;
  2307. vmx->emulation_required = 1;
  2308. vmx->rmode.vm86_active = 1;
  2309. /*
  2310. * Very old userspace does not call KVM_SET_TSS_ADDR before entering
  2311. * vcpu. Call it here with phys address pointing 16M below 4G.
  2312. */
  2313. if (!vcpu->kvm->arch.tss_addr) {
  2314. printk_once(KERN_WARNING "kvm: KVM_SET_TSS_ADDR need to be "
  2315. "called before entering vcpu\n");
  2316. srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
  2317. vmx_set_tss_addr(vcpu->kvm, 0xfeffd000);
  2318. vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
  2319. }
  2320. vmx_segment_cache_clear(vmx);
  2321. vmx->rmode.tr.selector = vmcs_read16(GUEST_TR_SELECTOR);
  2322. vmx->rmode.tr.base = vmcs_readl(GUEST_TR_BASE);
  2323. vmcs_writel(GUEST_TR_BASE, rmode_tss_base(vcpu->kvm));
  2324. vmx->rmode.tr.limit = vmcs_read32(GUEST_TR_LIMIT);
  2325. vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
  2326. vmx->rmode.tr.ar = vmcs_read32(GUEST_TR_AR_BYTES);
  2327. vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
  2328. flags = vmcs_readl(GUEST_RFLAGS);
  2329. vmx->rmode.save_rflags = flags;
  2330. flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
  2331. vmcs_writel(GUEST_RFLAGS, flags);
  2332. vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
  2333. update_exception_bitmap(vcpu);
  2334. if (emulate_invalid_guest_state)
  2335. goto continue_rmode;
  2336. vmcs_write16(GUEST_SS_SELECTOR, vmcs_readl(GUEST_SS_BASE) >> 4);
  2337. vmcs_write32(GUEST_SS_LIMIT, 0xffff);
  2338. vmcs_write32(GUEST_SS_AR_BYTES, 0xf3);
  2339. vmcs_write32(GUEST_CS_AR_BYTES, 0xf3);
  2340. vmcs_write32(GUEST_CS_LIMIT, 0xffff);
  2341. if (vmcs_readl(GUEST_CS_BASE) == 0xffff0000)
  2342. vmcs_writel(GUEST_CS_BASE, 0xf0000);
  2343. vmcs_write16(GUEST_CS_SELECTOR, vmcs_readl(GUEST_CS_BASE) >> 4);
  2344. fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.es);
  2345. fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.ds);
  2346. fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.gs);
  2347. fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.fs);
  2348. continue_rmode:
  2349. kvm_mmu_reset_context(vcpu);
  2350. }
  2351. static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
  2352. {
  2353. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2354. struct shared_msr_entry *msr = find_msr_entry(vmx, MSR_EFER);
  2355. if (!msr)
  2356. return;
  2357. /*
  2358. * Force kernel_gs_base reloading before EFER changes, as control
  2359. * of this msr depends on is_long_mode().
  2360. */
  2361. vmx_load_host_state(to_vmx(vcpu));
  2362. vcpu->arch.efer = efer;
  2363. if (efer & EFER_LMA) {
  2364. vmcs_write32(VM_ENTRY_CONTROLS,
  2365. vmcs_read32(VM_ENTRY_CONTROLS) |
  2366. VM_ENTRY_IA32E_MODE);
  2367. msr->data = efer;
  2368. } else {
  2369. vmcs_write32(VM_ENTRY_CONTROLS,
  2370. vmcs_read32(VM_ENTRY_CONTROLS) &
  2371. ~VM_ENTRY_IA32E_MODE);
  2372. msr->data = efer & ~EFER_LME;
  2373. }
  2374. setup_msrs(vmx);
  2375. }
  2376. #ifdef CONFIG_X86_64
  2377. static void enter_lmode(struct kvm_vcpu *vcpu)
  2378. {
  2379. u32 guest_tr_ar;
  2380. vmx_segment_cache_clear(to_vmx(vcpu));
  2381. guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
  2382. if ((guest_tr_ar & AR_TYPE_MASK) != AR_TYPE_BUSY_64_TSS) {
  2383. printk(KERN_DEBUG "%s: tss fixup for long mode. \n",
  2384. __func__);
  2385. vmcs_write32(GUEST_TR_AR_BYTES,
  2386. (guest_tr_ar & ~AR_TYPE_MASK)
  2387. | AR_TYPE_BUSY_64_TSS);
  2388. }
  2389. vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA);
  2390. }
  2391. static void exit_lmode(struct kvm_vcpu *vcpu)
  2392. {
  2393. vmcs_write32(VM_ENTRY_CONTROLS,
  2394. vmcs_read32(VM_ENTRY_CONTROLS)
  2395. & ~VM_ENTRY_IA32E_MODE);
  2396. vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA);
  2397. }
  2398. #endif
  2399. static void vmx_flush_tlb(struct kvm_vcpu *vcpu)
  2400. {
  2401. vpid_sync_context(to_vmx(vcpu));
  2402. if (enable_ept) {
  2403. if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
  2404. return;
  2405. ept_sync_context(construct_eptp(vcpu->arch.mmu.root_hpa));
  2406. }
  2407. }
  2408. static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
  2409. {
  2410. ulong cr0_guest_owned_bits = vcpu->arch.cr0_guest_owned_bits;
  2411. vcpu->arch.cr0 &= ~cr0_guest_owned_bits;
  2412. vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & cr0_guest_owned_bits;
  2413. }
  2414. static void vmx_decache_cr3(struct kvm_vcpu *vcpu)
  2415. {
  2416. if (enable_ept && is_paging(vcpu))
  2417. vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
  2418. __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
  2419. }
  2420. static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
  2421. {
  2422. ulong cr4_guest_owned_bits = vcpu->arch.cr4_guest_owned_bits;
  2423. vcpu->arch.cr4 &= ~cr4_guest_owned_bits;
  2424. vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & cr4_guest_owned_bits;
  2425. }
  2426. static void ept_load_pdptrs(struct kvm_vcpu *vcpu)
  2427. {
  2428. if (!test_bit(VCPU_EXREG_PDPTR,
  2429. (unsigned long *)&vcpu->arch.regs_dirty))
  2430. return;
  2431. if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
  2432. vmcs_write64(GUEST_PDPTR0, vcpu->arch.mmu.pdptrs[0]);
  2433. vmcs_write64(GUEST_PDPTR1, vcpu->arch.mmu.pdptrs[1]);
  2434. vmcs_write64(GUEST_PDPTR2, vcpu->arch.mmu.pdptrs[2]);
  2435. vmcs_write64(GUEST_PDPTR3, vcpu->arch.mmu.pdptrs[3]);
  2436. }
  2437. }
  2438. static void ept_save_pdptrs(struct kvm_vcpu *vcpu)
  2439. {
  2440. if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
  2441. vcpu->arch.mmu.pdptrs[0] = vmcs_read64(GUEST_PDPTR0);
  2442. vcpu->arch.mmu.pdptrs[1] = vmcs_read64(GUEST_PDPTR1);
  2443. vcpu->arch.mmu.pdptrs[2] = vmcs_read64(GUEST_PDPTR2);
  2444. vcpu->arch.mmu.pdptrs[3] = vmcs_read64(GUEST_PDPTR3);
  2445. }
  2446. __set_bit(VCPU_EXREG_PDPTR,
  2447. (unsigned long *)&vcpu->arch.regs_avail);
  2448. __set_bit(VCPU_EXREG_PDPTR,
  2449. (unsigned long *)&vcpu->arch.regs_dirty);
  2450. }
  2451. static int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
  2452. static void ept_update_paging_mode_cr0(unsigned long *hw_cr0,
  2453. unsigned long cr0,
  2454. struct kvm_vcpu *vcpu)
  2455. {
  2456. if (!test_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail))
  2457. vmx_decache_cr3(vcpu);
  2458. if (!(cr0 & X86_CR0_PG)) {
  2459. /* From paging/starting to nonpaging */
  2460. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
  2461. vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) |
  2462. (CPU_BASED_CR3_LOAD_EXITING |
  2463. CPU_BASED_CR3_STORE_EXITING));
  2464. vcpu->arch.cr0 = cr0;
  2465. vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
  2466. } else if (!is_paging(vcpu)) {
  2467. /* From nonpaging to paging */
  2468. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
  2469. vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) &
  2470. ~(CPU_BASED_CR3_LOAD_EXITING |
  2471. CPU_BASED_CR3_STORE_EXITING));
  2472. vcpu->arch.cr0 = cr0;
  2473. vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
  2474. }
  2475. if (!(cr0 & X86_CR0_WP))
  2476. *hw_cr0 &= ~X86_CR0_WP;
  2477. }
  2478. static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
  2479. {
  2480. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2481. unsigned long hw_cr0;
  2482. if (enable_unrestricted_guest)
  2483. hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK_UNRESTRICTED_GUEST)
  2484. | KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST;
  2485. else
  2486. hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK) | KVM_VM_CR0_ALWAYS_ON;
  2487. if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE))
  2488. enter_pmode(vcpu);
  2489. if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE))
  2490. enter_rmode(vcpu);
  2491. #ifdef CONFIG_X86_64
  2492. if (vcpu->arch.efer & EFER_LME) {
  2493. if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
  2494. enter_lmode(vcpu);
  2495. if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
  2496. exit_lmode(vcpu);
  2497. }
  2498. #endif
  2499. if (enable_ept)
  2500. ept_update_paging_mode_cr0(&hw_cr0, cr0, vcpu);
  2501. if (!vcpu->fpu_active)
  2502. hw_cr0 |= X86_CR0_TS | X86_CR0_MP;
  2503. vmcs_writel(CR0_READ_SHADOW, cr0);
  2504. vmcs_writel(GUEST_CR0, hw_cr0);
  2505. vcpu->arch.cr0 = cr0;
  2506. __clear_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail);
  2507. }
  2508. static u64 construct_eptp(unsigned long root_hpa)
  2509. {
  2510. u64 eptp;
  2511. /* TODO write the value reading from MSR */
  2512. eptp = VMX_EPT_DEFAULT_MT |
  2513. VMX_EPT_DEFAULT_GAW << VMX_EPT_GAW_EPTP_SHIFT;
  2514. eptp |= (root_hpa & PAGE_MASK);
  2515. return eptp;
  2516. }
  2517. static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
  2518. {
  2519. unsigned long guest_cr3;
  2520. u64 eptp;
  2521. guest_cr3 = cr3;
  2522. if (enable_ept) {
  2523. eptp = construct_eptp(cr3);
  2524. vmcs_write64(EPT_POINTER, eptp);
  2525. guest_cr3 = is_paging(vcpu) ? kvm_read_cr3(vcpu) :
  2526. vcpu->kvm->arch.ept_identity_map_addr;
  2527. ept_load_pdptrs(vcpu);
  2528. }
  2529. vmx_flush_tlb(vcpu);
  2530. vmcs_writel(GUEST_CR3, guest_cr3);
  2531. }
  2532. static int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
  2533. {
  2534. unsigned long hw_cr4 = cr4 | (to_vmx(vcpu)->rmode.vm86_active ?
  2535. KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON);
  2536. if (cr4 & X86_CR4_VMXE) {
  2537. /*
  2538. * To use VMXON (and later other VMX instructions), a guest
  2539. * must first be able to turn on cr4.VMXE (see handle_vmon()).
  2540. * So basically the check on whether to allow nested VMX
  2541. * is here.
  2542. */
  2543. if (!nested_vmx_allowed(vcpu))
  2544. return 1;
  2545. } else if (to_vmx(vcpu)->nested.vmxon)
  2546. return 1;
  2547. vcpu->arch.cr4 = cr4;
  2548. if (enable_ept) {
  2549. if (!is_paging(vcpu)) {
  2550. hw_cr4 &= ~X86_CR4_PAE;
  2551. hw_cr4 |= X86_CR4_PSE;
  2552. } else if (!(cr4 & X86_CR4_PAE)) {
  2553. hw_cr4 &= ~X86_CR4_PAE;
  2554. }
  2555. }
  2556. vmcs_writel(CR4_READ_SHADOW, cr4);
  2557. vmcs_writel(GUEST_CR4, hw_cr4);
  2558. return 0;
  2559. }
  2560. static void vmx_get_segment(struct kvm_vcpu *vcpu,
  2561. struct kvm_segment *var, int seg)
  2562. {
  2563. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2564. struct kvm_save_segment *save;
  2565. u32 ar;
  2566. if (vmx->rmode.vm86_active
  2567. && (seg == VCPU_SREG_TR || seg == VCPU_SREG_ES
  2568. || seg == VCPU_SREG_DS || seg == VCPU_SREG_FS
  2569. || seg == VCPU_SREG_GS)
  2570. && !emulate_invalid_guest_state) {
  2571. switch (seg) {
  2572. case VCPU_SREG_TR: save = &vmx->rmode.tr; break;
  2573. case VCPU_SREG_ES: save = &vmx->rmode.es; break;
  2574. case VCPU_SREG_DS: save = &vmx->rmode.ds; break;
  2575. case VCPU_SREG_FS: save = &vmx->rmode.fs; break;
  2576. case VCPU_SREG_GS: save = &vmx->rmode.gs; break;
  2577. default: BUG();
  2578. }
  2579. var->selector = save->selector;
  2580. var->base = save->base;
  2581. var->limit = save->limit;
  2582. ar = save->ar;
  2583. if (seg == VCPU_SREG_TR
  2584. || var->selector == vmx_read_guest_seg_selector(vmx, seg))
  2585. goto use_saved_rmode_seg;
  2586. }
  2587. var->base = vmx_read_guest_seg_base(vmx, seg);
  2588. var->limit = vmx_read_guest_seg_limit(vmx, seg);
  2589. var->selector = vmx_read_guest_seg_selector(vmx, seg);
  2590. ar = vmx_read_guest_seg_ar(vmx, seg);
  2591. use_saved_rmode_seg:
  2592. if ((ar & AR_UNUSABLE_MASK) && !emulate_invalid_guest_state)
  2593. ar = 0;
  2594. var->type = ar & 15;
  2595. var->s = (ar >> 4) & 1;
  2596. var->dpl = (ar >> 5) & 3;
  2597. var->present = (ar >> 7) & 1;
  2598. var->avl = (ar >> 12) & 1;
  2599. var->l = (ar >> 13) & 1;
  2600. var->db = (ar >> 14) & 1;
  2601. var->g = (ar >> 15) & 1;
  2602. var->unusable = (ar >> 16) & 1;
  2603. }
  2604. static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
  2605. {
  2606. struct kvm_segment s;
  2607. if (to_vmx(vcpu)->rmode.vm86_active) {
  2608. vmx_get_segment(vcpu, &s, seg);
  2609. return s.base;
  2610. }
  2611. return vmx_read_guest_seg_base(to_vmx(vcpu), seg);
  2612. }
  2613. static int __vmx_get_cpl(struct kvm_vcpu *vcpu)
  2614. {
  2615. if (!is_protmode(vcpu))
  2616. return 0;
  2617. if (!is_long_mode(vcpu)
  2618. && (kvm_get_rflags(vcpu) & X86_EFLAGS_VM)) /* if virtual 8086 */
  2619. return 3;
  2620. return vmx_read_guest_seg_selector(to_vmx(vcpu), VCPU_SREG_CS) & 3;
  2621. }
  2622. static int vmx_get_cpl(struct kvm_vcpu *vcpu)
  2623. {
  2624. if (!test_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail)) {
  2625. __set_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail);
  2626. to_vmx(vcpu)->cpl = __vmx_get_cpl(vcpu);
  2627. }
  2628. return to_vmx(vcpu)->cpl;
  2629. }
  2630. static u32 vmx_segment_access_rights(struct kvm_segment *var)
  2631. {
  2632. u32 ar;
  2633. if (var->unusable)
  2634. ar = 1 << 16;
  2635. else {
  2636. ar = var->type & 15;
  2637. ar |= (var->s & 1) << 4;
  2638. ar |= (var->dpl & 3) << 5;
  2639. ar |= (var->present & 1) << 7;
  2640. ar |= (var->avl & 1) << 12;
  2641. ar |= (var->l & 1) << 13;
  2642. ar |= (var->db & 1) << 14;
  2643. ar |= (var->g & 1) << 15;
  2644. }
  2645. if (ar == 0) /* a 0 value means unusable */
  2646. ar = AR_UNUSABLE_MASK;
  2647. return ar;
  2648. }
  2649. static void vmx_set_segment(struct kvm_vcpu *vcpu,
  2650. struct kvm_segment *var, int seg)
  2651. {
  2652. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2653. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  2654. u32 ar;
  2655. vmx_segment_cache_clear(vmx);
  2656. if (vmx->rmode.vm86_active && seg == VCPU_SREG_TR) {
  2657. vmcs_write16(sf->selector, var->selector);
  2658. vmx->rmode.tr.selector = var->selector;
  2659. vmx->rmode.tr.base = var->base;
  2660. vmx->rmode.tr.limit = var->limit;
  2661. vmx->rmode.tr.ar = vmx_segment_access_rights(var);
  2662. return;
  2663. }
  2664. vmcs_writel(sf->base, var->base);
  2665. vmcs_write32(sf->limit, var->limit);
  2666. vmcs_write16(sf->selector, var->selector);
  2667. if (vmx->rmode.vm86_active && var->s) {
  2668. /*
  2669. * Hack real-mode segments into vm86 compatibility.
  2670. */
  2671. if (var->base == 0xffff0000 && var->selector == 0xf000)
  2672. vmcs_writel(sf->base, 0xf0000);
  2673. ar = 0xf3;
  2674. } else
  2675. ar = vmx_segment_access_rights(var);
  2676. /*
  2677. * Fix the "Accessed" bit in AR field of segment registers for older
  2678. * qemu binaries.
  2679. * IA32 arch specifies that at the time of processor reset the
  2680. * "Accessed" bit in the AR field of segment registers is 1. And qemu
  2681. * is setting it to 0 in the usedland code. This causes invalid guest
  2682. * state vmexit when "unrestricted guest" mode is turned on.
  2683. * Fix for this setup issue in cpu_reset is being pushed in the qemu
  2684. * tree. Newer qemu binaries with that qemu fix would not need this
  2685. * kvm hack.
  2686. */
  2687. if (enable_unrestricted_guest && (seg != VCPU_SREG_LDTR))
  2688. ar |= 0x1; /* Accessed */
  2689. vmcs_write32(sf->ar_bytes, ar);
  2690. __clear_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail);
  2691. }
  2692. static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
  2693. {
  2694. u32 ar = vmx_read_guest_seg_ar(to_vmx(vcpu), VCPU_SREG_CS);
  2695. *db = (ar >> 14) & 1;
  2696. *l = (ar >> 13) & 1;
  2697. }
  2698. static void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
  2699. {
  2700. dt->size = vmcs_read32(GUEST_IDTR_LIMIT);
  2701. dt->address = vmcs_readl(GUEST_IDTR_BASE);
  2702. }
  2703. static void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
  2704. {
  2705. vmcs_write32(GUEST_IDTR_LIMIT, dt->size);
  2706. vmcs_writel(GUEST_IDTR_BASE, dt->address);
  2707. }
  2708. static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
  2709. {
  2710. dt->size = vmcs_read32(GUEST_GDTR_LIMIT);
  2711. dt->address = vmcs_readl(GUEST_GDTR_BASE);
  2712. }
  2713. static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
  2714. {
  2715. vmcs_write32(GUEST_GDTR_LIMIT, dt->size);
  2716. vmcs_writel(GUEST_GDTR_BASE, dt->address);
  2717. }
  2718. static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
  2719. {
  2720. struct kvm_segment var;
  2721. u32 ar;
  2722. vmx_get_segment(vcpu, &var, seg);
  2723. ar = vmx_segment_access_rights(&var);
  2724. if (var.base != (var.selector << 4))
  2725. return false;
  2726. if (var.limit != 0xffff)
  2727. return false;
  2728. if (ar != 0xf3)
  2729. return false;
  2730. return true;
  2731. }
  2732. static bool code_segment_valid(struct kvm_vcpu *vcpu)
  2733. {
  2734. struct kvm_segment cs;
  2735. unsigned int cs_rpl;
  2736. vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
  2737. cs_rpl = cs.selector & SELECTOR_RPL_MASK;
  2738. if (cs.unusable)
  2739. return false;
  2740. if (~cs.type & (AR_TYPE_CODE_MASK|AR_TYPE_ACCESSES_MASK))
  2741. return false;
  2742. if (!cs.s)
  2743. return false;
  2744. if (cs.type & AR_TYPE_WRITEABLE_MASK) {
  2745. if (cs.dpl > cs_rpl)
  2746. return false;
  2747. } else {
  2748. if (cs.dpl != cs_rpl)
  2749. return false;
  2750. }
  2751. if (!cs.present)
  2752. return false;
  2753. /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
  2754. return true;
  2755. }
  2756. static bool stack_segment_valid(struct kvm_vcpu *vcpu)
  2757. {
  2758. struct kvm_segment ss;
  2759. unsigned int ss_rpl;
  2760. vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
  2761. ss_rpl = ss.selector & SELECTOR_RPL_MASK;
  2762. if (ss.unusable)
  2763. return true;
  2764. if (ss.type != 3 && ss.type != 7)
  2765. return false;
  2766. if (!ss.s)
  2767. return false;
  2768. if (ss.dpl != ss_rpl) /* DPL != RPL */
  2769. return false;
  2770. if (!ss.present)
  2771. return false;
  2772. return true;
  2773. }
  2774. static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
  2775. {
  2776. struct kvm_segment var;
  2777. unsigned int rpl;
  2778. vmx_get_segment(vcpu, &var, seg);
  2779. rpl = var.selector & SELECTOR_RPL_MASK;
  2780. if (var.unusable)
  2781. return true;
  2782. if (!var.s)
  2783. return false;
  2784. if (!var.present)
  2785. return false;
  2786. if (~var.type & (AR_TYPE_CODE_MASK|AR_TYPE_WRITEABLE_MASK)) {
  2787. if (var.dpl < rpl) /* DPL < RPL */
  2788. return false;
  2789. }
  2790. /* TODO: Add other members to kvm_segment_field to allow checking for other access
  2791. * rights flags
  2792. */
  2793. return true;
  2794. }
  2795. static bool tr_valid(struct kvm_vcpu *vcpu)
  2796. {
  2797. struct kvm_segment tr;
  2798. vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
  2799. if (tr.unusable)
  2800. return false;
  2801. if (tr.selector & SELECTOR_TI_MASK) /* TI = 1 */
  2802. return false;
  2803. if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
  2804. return false;
  2805. if (!tr.present)
  2806. return false;
  2807. return true;
  2808. }
  2809. static bool ldtr_valid(struct kvm_vcpu *vcpu)
  2810. {
  2811. struct kvm_segment ldtr;
  2812. vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
  2813. if (ldtr.unusable)
  2814. return true;
  2815. if (ldtr.selector & SELECTOR_TI_MASK) /* TI = 1 */
  2816. return false;
  2817. if (ldtr.type != 2)
  2818. return false;
  2819. if (!ldtr.present)
  2820. return false;
  2821. return true;
  2822. }
  2823. static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
  2824. {
  2825. struct kvm_segment cs, ss;
  2826. vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
  2827. vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
  2828. return ((cs.selector & SELECTOR_RPL_MASK) ==
  2829. (ss.selector & SELECTOR_RPL_MASK));
  2830. }
  2831. /*
  2832. * Check if guest state is valid. Returns true if valid, false if
  2833. * not.
  2834. * We assume that registers are always usable
  2835. */
  2836. static bool guest_state_valid(struct kvm_vcpu *vcpu)
  2837. {
  2838. /* real mode guest state checks */
  2839. if (!is_protmode(vcpu)) {
  2840. if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
  2841. return false;
  2842. if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
  2843. return false;
  2844. if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
  2845. return false;
  2846. if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
  2847. return false;
  2848. if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
  2849. return false;
  2850. if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
  2851. return false;
  2852. } else {
  2853. /* protected mode guest state checks */
  2854. if (!cs_ss_rpl_check(vcpu))
  2855. return false;
  2856. if (!code_segment_valid(vcpu))
  2857. return false;
  2858. if (!stack_segment_valid(vcpu))
  2859. return false;
  2860. if (!data_segment_valid(vcpu, VCPU_SREG_DS))
  2861. return false;
  2862. if (!data_segment_valid(vcpu, VCPU_SREG_ES))
  2863. return false;
  2864. if (!data_segment_valid(vcpu, VCPU_SREG_FS))
  2865. return false;
  2866. if (!data_segment_valid(vcpu, VCPU_SREG_GS))
  2867. return false;
  2868. if (!tr_valid(vcpu))
  2869. return false;
  2870. if (!ldtr_valid(vcpu))
  2871. return false;
  2872. }
  2873. /* TODO:
  2874. * - Add checks on RIP
  2875. * - Add checks on RFLAGS
  2876. */
  2877. return true;
  2878. }
  2879. static int init_rmode_tss(struct kvm *kvm)
  2880. {
  2881. gfn_t fn;
  2882. u16 data = 0;
  2883. int r, idx, ret = 0;
  2884. idx = srcu_read_lock(&kvm->srcu);
  2885. fn = rmode_tss_base(kvm) >> PAGE_SHIFT;
  2886. r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
  2887. if (r < 0)
  2888. goto out;
  2889. data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
  2890. r = kvm_write_guest_page(kvm, fn++, &data,
  2891. TSS_IOPB_BASE_OFFSET, sizeof(u16));
  2892. if (r < 0)
  2893. goto out;
  2894. r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE);
  2895. if (r < 0)
  2896. goto out;
  2897. r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
  2898. if (r < 0)
  2899. goto out;
  2900. data = ~0;
  2901. r = kvm_write_guest_page(kvm, fn, &data,
  2902. RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1,
  2903. sizeof(u8));
  2904. if (r < 0)
  2905. goto out;
  2906. ret = 1;
  2907. out:
  2908. srcu_read_unlock(&kvm->srcu, idx);
  2909. return ret;
  2910. }
  2911. static int init_rmode_identity_map(struct kvm *kvm)
  2912. {
  2913. int i, idx, r, ret;
  2914. pfn_t identity_map_pfn;
  2915. u32 tmp;
  2916. if (!enable_ept)
  2917. return 1;
  2918. if (unlikely(!kvm->arch.ept_identity_pagetable)) {
  2919. printk(KERN_ERR "EPT: identity-mapping pagetable "
  2920. "haven't been allocated!\n");
  2921. return 0;
  2922. }
  2923. if (likely(kvm->arch.ept_identity_pagetable_done))
  2924. return 1;
  2925. ret = 0;
  2926. identity_map_pfn = kvm->arch.ept_identity_map_addr >> PAGE_SHIFT;
  2927. idx = srcu_read_lock(&kvm->srcu);
  2928. r = kvm_clear_guest_page(kvm, identity_map_pfn, 0, PAGE_SIZE);
  2929. if (r < 0)
  2930. goto out;
  2931. /* Set up identity-mapping pagetable for EPT in real mode */
  2932. for (i = 0; i < PT32_ENT_PER_PAGE; i++) {
  2933. tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
  2934. _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
  2935. r = kvm_write_guest_page(kvm, identity_map_pfn,
  2936. &tmp, i * sizeof(tmp), sizeof(tmp));
  2937. if (r < 0)
  2938. goto out;
  2939. }
  2940. kvm->arch.ept_identity_pagetable_done = true;
  2941. ret = 1;
  2942. out:
  2943. srcu_read_unlock(&kvm->srcu, idx);
  2944. return ret;
  2945. }
  2946. static void seg_setup(int seg)
  2947. {
  2948. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  2949. unsigned int ar;
  2950. vmcs_write16(sf->selector, 0);
  2951. vmcs_writel(sf->base, 0);
  2952. vmcs_write32(sf->limit, 0xffff);
  2953. if (enable_unrestricted_guest) {
  2954. ar = 0x93;
  2955. if (seg == VCPU_SREG_CS)
  2956. ar |= 0x08; /* code segment */
  2957. } else
  2958. ar = 0xf3;
  2959. vmcs_write32(sf->ar_bytes, ar);
  2960. }
  2961. static int alloc_apic_access_page(struct kvm *kvm)
  2962. {
  2963. struct kvm_userspace_memory_region kvm_userspace_mem;
  2964. int r = 0;
  2965. mutex_lock(&kvm->slots_lock);
  2966. if (kvm->arch.apic_access_page)
  2967. goto out;
  2968. kvm_userspace_mem.slot = APIC_ACCESS_PAGE_PRIVATE_MEMSLOT;
  2969. kvm_userspace_mem.flags = 0;
  2970. kvm_userspace_mem.guest_phys_addr = 0xfee00000ULL;
  2971. kvm_userspace_mem.memory_size = PAGE_SIZE;
  2972. r = __kvm_set_memory_region(kvm, &kvm_userspace_mem, 0);
  2973. if (r)
  2974. goto out;
  2975. kvm->arch.apic_access_page = gfn_to_page(kvm, 0xfee00);
  2976. out:
  2977. mutex_unlock(&kvm->slots_lock);
  2978. return r;
  2979. }
  2980. static int alloc_identity_pagetable(struct kvm *kvm)
  2981. {
  2982. struct kvm_userspace_memory_region kvm_userspace_mem;
  2983. int r = 0;
  2984. mutex_lock(&kvm->slots_lock);
  2985. if (kvm->arch.ept_identity_pagetable)
  2986. goto out;
  2987. kvm_userspace_mem.slot = IDENTITY_PAGETABLE_PRIVATE_MEMSLOT;
  2988. kvm_userspace_mem.flags = 0;
  2989. kvm_userspace_mem.guest_phys_addr =
  2990. kvm->arch.ept_identity_map_addr;
  2991. kvm_userspace_mem.memory_size = PAGE_SIZE;
  2992. r = __kvm_set_memory_region(kvm, &kvm_userspace_mem, 0);
  2993. if (r)
  2994. goto out;
  2995. kvm->arch.ept_identity_pagetable = gfn_to_page(kvm,
  2996. kvm->arch.ept_identity_map_addr >> PAGE_SHIFT);
  2997. out:
  2998. mutex_unlock(&kvm->slots_lock);
  2999. return r;
  3000. }
  3001. static void allocate_vpid(struct vcpu_vmx *vmx)
  3002. {
  3003. int vpid;
  3004. vmx->vpid = 0;
  3005. if (!enable_vpid)
  3006. return;
  3007. spin_lock(&vmx_vpid_lock);
  3008. vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
  3009. if (vpid < VMX_NR_VPIDS) {
  3010. vmx->vpid = vpid;
  3011. __set_bit(vpid, vmx_vpid_bitmap);
  3012. }
  3013. spin_unlock(&vmx_vpid_lock);
  3014. }
  3015. static void free_vpid(struct vcpu_vmx *vmx)
  3016. {
  3017. if (!enable_vpid)
  3018. return;
  3019. spin_lock(&vmx_vpid_lock);
  3020. if (vmx->vpid != 0)
  3021. __clear_bit(vmx->vpid, vmx_vpid_bitmap);
  3022. spin_unlock(&vmx_vpid_lock);
  3023. }
  3024. static void __vmx_disable_intercept_for_msr(unsigned long *msr_bitmap, u32 msr)
  3025. {
  3026. int f = sizeof(unsigned long);
  3027. if (!cpu_has_vmx_msr_bitmap())
  3028. return;
  3029. /*
  3030. * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
  3031. * have the write-low and read-high bitmap offsets the wrong way round.
  3032. * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
  3033. */
  3034. if (msr <= 0x1fff) {
  3035. __clear_bit(msr, msr_bitmap + 0x000 / f); /* read-low */
  3036. __clear_bit(msr, msr_bitmap + 0x800 / f); /* write-low */
  3037. } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
  3038. msr &= 0x1fff;
  3039. __clear_bit(msr, msr_bitmap + 0x400 / f); /* read-high */
  3040. __clear_bit(msr, msr_bitmap + 0xc00 / f); /* write-high */
  3041. }
  3042. }
  3043. static void vmx_disable_intercept_for_msr(u32 msr, bool longmode_only)
  3044. {
  3045. if (!longmode_only)
  3046. __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy, msr);
  3047. __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode, msr);
  3048. }
  3049. /*
  3050. * Set up the vmcs's constant host-state fields, i.e., host-state fields that
  3051. * will not change in the lifetime of the guest.
  3052. * Note that host-state that does change is set elsewhere. E.g., host-state
  3053. * that is set differently for each CPU is set in vmx_vcpu_load(), not here.
  3054. */
  3055. static void vmx_set_constant_host_state(void)
  3056. {
  3057. u32 low32, high32;
  3058. unsigned long tmpl;
  3059. struct desc_ptr dt;
  3060. vmcs_writel(HOST_CR0, read_cr0() | X86_CR0_TS); /* 22.2.3 */
  3061. vmcs_writel(HOST_CR4, read_cr4()); /* 22.2.3, 22.2.5 */
  3062. vmcs_writel(HOST_CR3, read_cr3()); /* 22.2.3 FIXME: shadow tables */
  3063. vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS); /* 22.2.4 */
  3064. vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
  3065. vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS); /* 22.2.4 */
  3066. vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
  3067. vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8); /* 22.2.4 */
  3068. native_store_idt(&dt);
  3069. vmcs_writel(HOST_IDTR_BASE, dt.address); /* 22.2.4 */
  3070. asm("mov $.Lkvm_vmx_return, %0" : "=r"(tmpl));
  3071. vmcs_writel(HOST_RIP, tmpl); /* 22.2.5 */
  3072. rdmsr(MSR_IA32_SYSENTER_CS, low32, high32);
  3073. vmcs_write32(HOST_IA32_SYSENTER_CS, low32);
  3074. rdmsrl(MSR_IA32_SYSENTER_EIP, tmpl);
  3075. vmcs_writel(HOST_IA32_SYSENTER_EIP, tmpl); /* 22.2.3 */
  3076. if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
  3077. rdmsr(MSR_IA32_CR_PAT, low32, high32);
  3078. vmcs_write64(HOST_IA32_PAT, low32 | ((u64) high32 << 32));
  3079. }
  3080. }
  3081. static void set_cr4_guest_host_mask(struct vcpu_vmx *vmx)
  3082. {
  3083. vmx->vcpu.arch.cr4_guest_owned_bits = KVM_CR4_GUEST_OWNED_BITS;
  3084. if (enable_ept)
  3085. vmx->vcpu.arch.cr4_guest_owned_bits |= X86_CR4_PGE;
  3086. if (is_guest_mode(&vmx->vcpu))
  3087. vmx->vcpu.arch.cr4_guest_owned_bits &=
  3088. ~get_vmcs12(&vmx->vcpu)->cr4_guest_host_mask;
  3089. vmcs_writel(CR4_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr4_guest_owned_bits);
  3090. }
  3091. static u32 vmx_exec_control(struct vcpu_vmx *vmx)
  3092. {
  3093. u32 exec_control = vmcs_config.cpu_based_exec_ctrl;
  3094. if (!vm_need_tpr_shadow(vmx->vcpu.kvm)) {
  3095. exec_control &= ~CPU_BASED_TPR_SHADOW;
  3096. #ifdef CONFIG_X86_64
  3097. exec_control |= CPU_BASED_CR8_STORE_EXITING |
  3098. CPU_BASED_CR8_LOAD_EXITING;
  3099. #endif
  3100. }
  3101. if (!enable_ept)
  3102. exec_control |= CPU_BASED_CR3_STORE_EXITING |
  3103. CPU_BASED_CR3_LOAD_EXITING |
  3104. CPU_BASED_INVLPG_EXITING;
  3105. return exec_control;
  3106. }
  3107. static u32 vmx_secondary_exec_control(struct vcpu_vmx *vmx)
  3108. {
  3109. u32 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
  3110. if (!vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
  3111. exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
  3112. if (vmx->vpid == 0)
  3113. exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
  3114. if (!enable_ept) {
  3115. exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
  3116. enable_unrestricted_guest = 0;
  3117. }
  3118. if (!enable_unrestricted_guest)
  3119. exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
  3120. if (!ple_gap)
  3121. exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING;
  3122. return exec_control;
  3123. }
  3124. /*
  3125. * Sets up the vmcs for emulated real mode.
  3126. */
  3127. static int vmx_vcpu_setup(struct vcpu_vmx *vmx)
  3128. {
  3129. #ifdef CONFIG_X86_64
  3130. unsigned long a;
  3131. #endif
  3132. int i;
  3133. /* I/O */
  3134. vmcs_write64(IO_BITMAP_A, __pa(vmx_io_bitmap_a));
  3135. vmcs_write64(IO_BITMAP_B, __pa(vmx_io_bitmap_b));
  3136. if (cpu_has_vmx_msr_bitmap())
  3137. vmcs_write64(MSR_BITMAP, __pa(vmx_msr_bitmap_legacy));
  3138. vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
  3139. /* Control */
  3140. vmcs_write32(PIN_BASED_VM_EXEC_CONTROL,
  3141. vmcs_config.pin_based_exec_ctrl);
  3142. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, vmx_exec_control(vmx));
  3143. if (cpu_has_secondary_exec_ctrls()) {
  3144. vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
  3145. vmx_secondary_exec_control(vmx));
  3146. }
  3147. if (ple_gap) {
  3148. vmcs_write32(PLE_GAP, ple_gap);
  3149. vmcs_write32(PLE_WINDOW, ple_window);
  3150. }
  3151. vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
  3152. vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
  3153. vmcs_write32(CR3_TARGET_COUNT, 0); /* 22.2.1 */
  3154. vmcs_write16(HOST_FS_SELECTOR, 0); /* 22.2.4 */
  3155. vmcs_write16(HOST_GS_SELECTOR, 0); /* 22.2.4 */
  3156. vmx_set_constant_host_state();
  3157. #ifdef CONFIG_X86_64
  3158. rdmsrl(MSR_FS_BASE, a);
  3159. vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
  3160. rdmsrl(MSR_GS_BASE, a);
  3161. vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */
  3162. #else
  3163. vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
  3164. vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
  3165. #endif
  3166. vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
  3167. vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
  3168. vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host));
  3169. vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
  3170. vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest));
  3171. if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
  3172. u32 msr_low, msr_high;
  3173. u64 host_pat;
  3174. rdmsr(MSR_IA32_CR_PAT, msr_low, msr_high);
  3175. host_pat = msr_low | ((u64) msr_high << 32);
  3176. /* Write the default value follow host pat */
  3177. vmcs_write64(GUEST_IA32_PAT, host_pat);
  3178. /* Keep arch.pat sync with GUEST_IA32_PAT */
  3179. vmx->vcpu.arch.pat = host_pat;
  3180. }
  3181. for (i = 0; i < NR_VMX_MSR; ++i) {
  3182. u32 index = vmx_msr_index[i];
  3183. u32 data_low, data_high;
  3184. int j = vmx->nmsrs;
  3185. if (rdmsr_safe(index, &data_low, &data_high) < 0)
  3186. continue;
  3187. if (wrmsr_safe(index, data_low, data_high) < 0)
  3188. continue;
  3189. vmx->guest_msrs[j].index = i;
  3190. vmx->guest_msrs[j].data = 0;
  3191. vmx->guest_msrs[j].mask = -1ull;
  3192. ++vmx->nmsrs;
  3193. }
  3194. vmcs_write32(VM_EXIT_CONTROLS, vmcs_config.vmexit_ctrl);
  3195. /* 22.2.1, 20.8.1 */
  3196. vmcs_write32(VM_ENTRY_CONTROLS, vmcs_config.vmentry_ctrl);
  3197. vmcs_writel(CR0_GUEST_HOST_MASK, ~0UL);
  3198. set_cr4_guest_host_mask(vmx);
  3199. kvm_write_tsc(&vmx->vcpu, 0);
  3200. return 0;
  3201. }
  3202. static int vmx_vcpu_reset(struct kvm_vcpu *vcpu)
  3203. {
  3204. struct vcpu_vmx *vmx = to_vmx(vcpu);
  3205. u64 msr;
  3206. int ret;
  3207. vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP));
  3208. vmx->rmode.vm86_active = 0;
  3209. vmx->soft_vnmi_blocked = 0;
  3210. vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val();
  3211. kvm_set_cr8(&vmx->vcpu, 0);
  3212. msr = 0xfee00000 | MSR_IA32_APICBASE_ENABLE;
  3213. if (kvm_vcpu_is_bsp(&vmx->vcpu))
  3214. msr |= MSR_IA32_APICBASE_BSP;
  3215. kvm_set_apic_base(&vmx->vcpu, msr);
  3216. ret = fx_init(&vmx->vcpu);
  3217. if (ret != 0)
  3218. goto out;
  3219. vmx_segment_cache_clear(vmx);
  3220. seg_setup(VCPU_SREG_CS);
  3221. /*
  3222. * GUEST_CS_BASE should really be 0xffff0000, but VT vm86 mode
  3223. * insists on having GUEST_CS_BASE == GUEST_CS_SELECTOR << 4. Sigh.
  3224. */
  3225. if (kvm_vcpu_is_bsp(&vmx->vcpu)) {
  3226. vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
  3227. vmcs_writel(GUEST_CS_BASE, 0x000f0000);
  3228. } else {
  3229. vmcs_write16(GUEST_CS_SELECTOR, vmx->vcpu.arch.sipi_vector << 8);
  3230. vmcs_writel(GUEST_CS_BASE, vmx->vcpu.arch.sipi_vector << 12);
  3231. }
  3232. seg_setup(VCPU_SREG_DS);
  3233. seg_setup(VCPU_SREG_ES);
  3234. seg_setup(VCPU_SREG_FS);
  3235. seg_setup(VCPU_SREG_GS);
  3236. seg_setup(VCPU_SREG_SS);
  3237. vmcs_write16(GUEST_TR_SELECTOR, 0);
  3238. vmcs_writel(GUEST_TR_BASE, 0);
  3239. vmcs_write32(GUEST_TR_LIMIT, 0xffff);
  3240. vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
  3241. vmcs_write16(GUEST_LDTR_SELECTOR, 0);
  3242. vmcs_writel(GUEST_LDTR_BASE, 0);
  3243. vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
  3244. vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
  3245. vmcs_write32(GUEST_SYSENTER_CS, 0);
  3246. vmcs_writel(GUEST_SYSENTER_ESP, 0);
  3247. vmcs_writel(GUEST_SYSENTER_EIP, 0);
  3248. vmcs_writel(GUEST_RFLAGS, 0x02);
  3249. if (kvm_vcpu_is_bsp(&vmx->vcpu))
  3250. kvm_rip_write(vcpu, 0xfff0);
  3251. else
  3252. kvm_rip_write(vcpu, 0);
  3253. kvm_register_write(vcpu, VCPU_REGS_RSP, 0);
  3254. vmcs_writel(GUEST_DR7, 0x400);
  3255. vmcs_writel(GUEST_GDTR_BASE, 0);
  3256. vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
  3257. vmcs_writel(GUEST_IDTR_BASE, 0);
  3258. vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
  3259. vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
  3260. vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
  3261. vmcs_write32(GUEST_PENDING_DBG_EXCEPTIONS, 0);
  3262. /* Special registers */
  3263. vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
  3264. setup_msrs(vmx);
  3265. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); /* 22.2.1 */
  3266. if (cpu_has_vmx_tpr_shadow()) {
  3267. vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
  3268. if (vm_need_tpr_shadow(vmx->vcpu.kvm))
  3269. vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
  3270. __pa(vmx->vcpu.arch.apic->regs));
  3271. vmcs_write32(TPR_THRESHOLD, 0);
  3272. }
  3273. if (vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
  3274. vmcs_write64(APIC_ACCESS_ADDR,
  3275. page_to_phys(vmx->vcpu.kvm->arch.apic_access_page));
  3276. if (vmx->vpid != 0)
  3277. vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
  3278. vmx->vcpu.arch.cr0 = X86_CR0_NW | X86_CR0_CD | X86_CR0_ET;
  3279. vmx_set_cr0(&vmx->vcpu, kvm_read_cr0(vcpu)); /* enter rmode */
  3280. vmx_set_cr4(&vmx->vcpu, 0);
  3281. vmx_set_efer(&vmx->vcpu, 0);
  3282. vmx_fpu_activate(&vmx->vcpu);
  3283. update_exception_bitmap(&vmx->vcpu);
  3284. vpid_sync_context(vmx);
  3285. ret = 0;
  3286. /* HACK: Don't enable emulation on guest boot/reset */
  3287. vmx->emulation_required = 0;
  3288. out:
  3289. return ret;
  3290. }
  3291. /*
  3292. * In nested virtualization, check if L1 asked to exit on external interrupts.
  3293. * For most existing hypervisors, this will always return true.
  3294. */
  3295. static bool nested_exit_on_intr(struct kvm_vcpu *vcpu)
  3296. {
  3297. return get_vmcs12(vcpu)->pin_based_vm_exec_control &
  3298. PIN_BASED_EXT_INTR_MASK;
  3299. }
  3300. static void enable_irq_window(struct kvm_vcpu *vcpu)
  3301. {
  3302. u32 cpu_based_vm_exec_control;
  3303. if (is_guest_mode(vcpu) && nested_exit_on_intr(vcpu))
  3304. /* We can get here when nested_run_pending caused
  3305. * vmx_interrupt_allowed() to return false. In this case, do
  3306. * nothing - the interrupt will be injected later.
  3307. */
  3308. return;
  3309. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  3310. cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
  3311. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  3312. }
  3313. static void enable_nmi_window(struct kvm_vcpu *vcpu)
  3314. {
  3315. u32 cpu_based_vm_exec_control;
  3316. if (!cpu_has_virtual_nmis()) {
  3317. enable_irq_window(vcpu);
  3318. return;
  3319. }
  3320. if (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_STI) {
  3321. enable_irq_window(vcpu);
  3322. return;
  3323. }
  3324. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  3325. cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_NMI_PENDING;
  3326. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  3327. }
  3328. static void vmx_inject_irq(struct kvm_vcpu *vcpu)
  3329. {
  3330. struct vcpu_vmx *vmx = to_vmx(vcpu);
  3331. uint32_t intr;
  3332. int irq = vcpu->arch.interrupt.nr;
  3333. trace_kvm_inj_virq(irq);
  3334. ++vcpu->stat.irq_injections;
  3335. if (vmx->rmode.vm86_active) {
  3336. int inc_eip = 0;
  3337. if (vcpu->arch.interrupt.soft)
  3338. inc_eip = vcpu->arch.event_exit_inst_len;
  3339. if (kvm_inject_realmode_interrupt(vcpu, irq, inc_eip) != EMULATE_DONE)
  3340. kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
  3341. return;
  3342. }
  3343. intr = irq | INTR_INFO_VALID_MASK;
  3344. if (vcpu->arch.interrupt.soft) {
  3345. intr |= INTR_TYPE_SOFT_INTR;
  3346. vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
  3347. vmx->vcpu.arch.event_exit_inst_len);
  3348. } else
  3349. intr |= INTR_TYPE_EXT_INTR;
  3350. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr);
  3351. vmx_clear_hlt(vcpu);
  3352. }
  3353. static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
  3354. {
  3355. struct vcpu_vmx *vmx = to_vmx(vcpu);
  3356. if (is_guest_mode(vcpu))
  3357. return;
  3358. if (!cpu_has_virtual_nmis()) {
  3359. /*
  3360. * Tracking the NMI-blocked state in software is built upon
  3361. * finding the next open IRQ window. This, in turn, depends on
  3362. * well-behaving guests: They have to keep IRQs disabled at
  3363. * least as long as the NMI handler runs. Otherwise we may
  3364. * cause NMI nesting, maybe breaking the guest. But as this is
  3365. * highly unlikely, we can live with the residual risk.
  3366. */
  3367. vmx->soft_vnmi_blocked = 1;
  3368. vmx->vnmi_blocked_time = 0;
  3369. }
  3370. ++vcpu->stat.nmi_injections;
  3371. vmx->nmi_known_unmasked = false;
  3372. if (vmx->rmode.vm86_active) {
  3373. if (kvm_inject_realmode_interrupt(vcpu, NMI_VECTOR, 0) != EMULATE_DONE)
  3374. kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
  3375. return;
  3376. }
  3377. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  3378. INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
  3379. vmx_clear_hlt(vcpu);
  3380. }
  3381. static int vmx_nmi_allowed(struct kvm_vcpu *vcpu)
  3382. {
  3383. if (!cpu_has_virtual_nmis() && to_vmx(vcpu)->soft_vnmi_blocked)
  3384. return 0;
  3385. return !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
  3386. (GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_STI
  3387. | GUEST_INTR_STATE_NMI));
  3388. }
  3389. static bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu)
  3390. {
  3391. if (!cpu_has_virtual_nmis())
  3392. return to_vmx(vcpu)->soft_vnmi_blocked;
  3393. if (to_vmx(vcpu)->nmi_known_unmasked)
  3394. return false;
  3395. return vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_NMI;
  3396. }
  3397. static void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
  3398. {
  3399. struct vcpu_vmx *vmx = to_vmx(vcpu);
  3400. if (!cpu_has_virtual_nmis()) {
  3401. if (vmx->soft_vnmi_blocked != masked) {
  3402. vmx->soft_vnmi_blocked = masked;
  3403. vmx->vnmi_blocked_time = 0;
  3404. }
  3405. } else {
  3406. vmx->nmi_known_unmasked = !masked;
  3407. if (masked)
  3408. vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
  3409. GUEST_INTR_STATE_NMI);
  3410. else
  3411. vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
  3412. GUEST_INTR_STATE_NMI);
  3413. }
  3414. }
  3415. static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu)
  3416. {
  3417. if (is_guest_mode(vcpu) && nested_exit_on_intr(vcpu)) {
  3418. struct vmcs12 *vmcs12;
  3419. if (to_vmx(vcpu)->nested.nested_run_pending)
  3420. return 0;
  3421. nested_vmx_vmexit(vcpu);
  3422. vmcs12 = get_vmcs12(vcpu);
  3423. vmcs12->vm_exit_reason = EXIT_REASON_EXTERNAL_INTERRUPT;
  3424. vmcs12->vm_exit_intr_info = 0;
  3425. /* fall through to normal code, but now in L1, not L2 */
  3426. }
  3427. return (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
  3428. !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
  3429. (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS));
  3430. }
  3431. static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
  3432. {
  3433. int ret;
  3434. struct kvm_userspace_memory_region tss_mem = {
  3435. .slot = TSS_PRIVATE_MEMSLOT,
  3436. .guest_phys_addr = addr,
  3437. .memory_size = PAGE_SIZE * 3,
  3438. .flags = 0,
  3439. };
  3440. ret = kvm_set_memory_region(kvm, &tss_mem, 0);
  3441. if (ret)
  3442. return ret;
  3443. kvm->arch.tss_addr = addr;
  3444. if (!init_rmode_tss(kvm))
  3445. return -ENOMEM;
  3446. return 0;
  3447. }
  3448. static int handle_rmode_exception(struct kvm_vcpu *vcpu,
  3449. int vec, u32 err_code)
  3450. {
  3451. /*
  3452. * Instruction with address size override prefix opcode 0x67
  3453. * Cause the #SS fault with 0 error code in VM86 mode.
  3454. */
  3455. if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0)
  3456. if (emulate_instruction(vcpu, 0) == EMULATE_DONE)
  3457. return 1;
  3458. /*
  3459. * Forward all other exceptions that are valid in real mode.
  3460. * FIXME: Breaks guest debugging in real mode, needs to be fixed with
  3461. * the required debugging infrastructure rework.
  3462. */
  3463. switch (vec) {
  3464. case DB_VECTOR:
  3465. if (vcpu->guest_debug &
  3466. (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
  3467. return 0;
  3468. kvm_queue_exception(vcpu, vec);
  3469. return 1;
  3470. case BP_VECTOR:
  3471. /*
  3472. * Update instruction length as we may reinject the exception
  3473. * from user space while in guest debugging mode.
  3474. */
  3475. to_vmx(vcpu)->vcpu.arch.event_exit_inst_len =
  3476. vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
  3477. if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
  3478. return 0;
  3479. /* fall through */
  3480. case DE_VECTOR:
  3481. case OF_VECTOR:
  3482. case BR_VECTOR:
  3483. case UD_VECTOR:
  3484. case DF_VECTOR:
  3485. case SS_VECTOR:
  3486. case GP_VECTOR:
  3487. case MF_VECTOR:
  3488. kvm_queue_exception(vcpu, vec);
  3489. return 1;
  3490. }
  3491. return 0;
  3492. }
  3493. /*
  3494. * Trigger machine check on the host. We assume all the MSRs are already set up
  3495. * by the CPU and that we still run on the same CPU as the MCE occurred on.
  3496. * We pass a fake environment to the machine check handler because we want
  3497. * the guest to be always treated like user space, no matter what context
  3498. * it used internally.
  3499. */
  3500. static void kvm_machine_check(void)
  3501. {
  3502. #if defined(CONFIG_X86_MCE) && defined(CONFIG_X86_64)
  3503. struct pt_regs regs = {
  3504. .cs = 3, /* Fake ring 3 no matter what the guest ran on */
  3505. .flags = X86_EFLAGS_IF,
  3506. };
  3507. do_machine_check(&regs, 0);
  3508. #endif
  3509. }
  3510. static int handle_machine_check(struct kvm_vcpu *vcpu)
  3511. {
  3512. /* already handled by vcpu_run */
  3513. return 1;
  3514. }
  3515. static int handle_exception(struct kvm_vcpu *vcpu)
  3516. {
  3517. struct vcpu_vmx *vmx = to_vmx(vcpu);
  3518. struct kvm_run *kvm_run = vcpu->run;
  3519. u32 intr_info, ex_no, error_code;
  3520. unsigned long cr2, rip, dr6;
  3521. u32 vect_info;
  3522. enum emulation_result er;
  3523. vect_info = vmx->idt_vectoring_info;
  3524. intr_info = vmx->exit_intr_info;
  3525. if (is_machine_check(intr_info))
  3526. return handle_machine_check(vcpu);
  3527. if ((vect_info & VECTORING_INFO_VALID_MASK) &&
  3528. !is_page_fault(intr_info)) {
  3529. vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
  3530. vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX;
  3531. vcpu->run->internal.ndata = 2;
  3532. vcpu->run->internal.data[0] = vect_info;
  3533. vcpu->run->internal.data[1] = intr_info;
  3534. return 0;
  3535. }
  3536. if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR)
  3537. return 1; /* already handled by vmx_vcpu_run() */
  3538. if (is_no_device(intr_info)) {
  3539. vmx_fpu_activate(vcpu);
  3540. return 1;
  3541. }
  3542. if (is_invalid_opcode(intr_info)) {
  3543. er = emulate_instruction(vcpu, EMULTYPE_TRAP_UD);
  3544. if (er != EMULATE_DONE)
  3545. kvm_queue_exception(vcpu, UD_VECTOR);
  3546. return 1;
  3547. }
  3548. error_code = 0;
  3549. if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
  3550. error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
  3551. if (is_page_fault(intr_info)) {
  3552. /* EPT won't cause page fault directly */
  3553. if (enable_ept)
  3554. BUG();
  3555. cr2 = vmcs_readl(EXIT_QUALIFICATION);
  3556. trace_kvm_page_fault(cr2, error_code);
  3557. if (kvm_event_needs_reinjection(vcpu))
  3558. kvm_mmu_unprotect_page_virt(vcpu, cr2);
  3559. return kvm_mmu_page_fault(vcpu, cr2, error_code, NULL, 0);
  3560. }
  3561. if (vmx->rmode.vm86_active &&
  3562. handle_rmode_exception(vcpu, intr_info & INTR_INFO_VECTOR_MASK,
  3563. error_code)) {
  3564. if (vcpu->arch.halt_request) {
  3565. vcpu->arch.halt_request = 0;
  3566. return kvm_emulate_halt(vcpu);
  3567. }
  3568. return 1;
  3569. }
  3570. ex_no = intr_info & INTR_INFO_VECTOR_MASK;
  3571. switch (ex_no) {
  3572. case DB_VECTOR:
  3573. dr6 = vmcs_readl(EXIT_QUALIFICATION);
  3574. if (!(vcpu->guest_debug &
  3575. (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
  3576. vcpu->arch.dr6 = dr6 | DR6_FIXED_1;
  3577. kvm_queue_exception(vcpu, DB_VECTOR);
  3578. return 1;
  3579. }
  3580. kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1;
  3581. kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
  3582. /* fall through */
  3583. case BP_VECTOR:
  3584. /*
  3585. * Update instruction length as we may reinject #BP from
  3586. * user space while in guest debugging mode. Reading it for
  3587. * #DB as well causes no harm, it is not used in that case.
  3588. */
  3589. vmx->vcpu.arch.event_exit_inst_len =
  3590. vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
  3591. kvm_run->exit_reason = KVM_EXIT_DEBUG;
  3592. rip = kvm_rip_read(vcpu);
  3593. kvm_run->debug.arch.pc = vmcs_readl(GUEST_CS_BASE) + rip;
  3594. kvm_run->debug.arch.exception = ex_no;
  3595. break;
  3596. default:
  3597. kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
  3598. kvm_run->ex.exception = ex_no;
  3599. kvm_run->ex.error_code = error_code;
  3600. break;
  3601. }
  3602. return 0;
  3603. }
  3604. static int handle_external_interrupt(struct kvm_vcpu *vcpu)
  3605. {
  3606. ++vcpu->stat.irq_exits;
  3607. return 1;
  3608. }
  3609. static int handle_triple_fault(struct kvm_vcpu *vcpu)
  3610. {
  3611. vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
  3612. return 0;
  3613. }
  3614. static int handle_io(struct kvm_vcpu *vcpu)
  3615. {
  3616. unsigned long exit_qualification;
  3617. int size, in, string;
  3618. unsigned port;
  3619. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  3620. string = (exit_qualification & 16) != 0;
  3621. in = (exit_qualification & 8) != 0;
  3622. ++vcpu->stat.io_exits;
  3623. if (string || in)
  3624. return emulate_instruction(vcpu, 0) == EMULATE_DONE;
  3625. port = exit_qualification >> 16;
  3626. size = (exit_qualification & 7) + 1;
  3627. skip_emulated_instruction(vcpu);
  3628. return kvm_fast_pio_out(vcpu, size, port);
  3629. }
  3630. static void
  3631. vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
  3632. {
  3633. /*
  3634. * Patch in the VMCALL instruction:
  3635. */
  3636. hypercall[0] = 0x0f;
  3637. hypercall[1] = 0x01;
  3638. hypercall[2] = 0xc1;
  3639. }
  3640. /* called to set cr0 as approriate for a mov-to-cr0 exit. */
  3641. static int handle_set_cr0(struct kvm_vcpu *vcpu, unsigned long val)
  3642. {
  3643. if (to_vmx(vcpu)->nested.vmxon &&
  3644. ((val & VMXON_CR0_ALWAYSON) != VMXON_CR0_ALWAYSON))
  3645. return 1;
  3646. if (is_guest_mode(vcpu)) {
  3647. /*
  3648. * We get here when L2 changed cr0 in a way that did not change
  3649. * any of L1's shadowed bits (see nested_vmx_exit_handled_cr),
  3650. * but did change L0 shadowed bits. This can currently happen
  3651. * with the TS bit: L0 may want to leave TS on (for lazy fpu
  3652. * loading) while pretending to allow the guest to change it.
  3653. */
  3654. if (kvm_set_cr0(vcpu, (val & vcpu->arch.cr0_guest_owned_bits) |
  3655. (vcpu->arch.cr0 & ~vcpu->arch.cr0_guest_owned_bits)))
  3656. return 1;
  3657. vmcs_writel(CR0_READ_SHADOW, val);
  3658. return 0;
  3659. } else
  3660. return kvm_set_cr0(vcpu, val);
  3661. }
  3662. static int handle_set_cr4(struct kvm_vcpu *vcpu, unsigned long val)
  3663. {
  3664. if (is_guest_mode(vcpu)) {
  3665. if (kvm_set_cr4(vcpu, (val & vcpu->arch.cr4_guest_owned_bits) |
  3666. (vcpu->arch.cr4 & ~vcpu->arch.cr4_guest_owned_bits)))
  3667. return 1;
  3668. vmcs_writel(CR4_READ_SHADOW, val);
  3669. return 0;
  3670. } else
  3671. return kvm_set_cr4(vcpu, val);
  3672. }
  3673. /* called to set cr0 as approriate for clts instruction exit. */
  3674. static void handle_clts(struct kvm_vcpu *vcpu)
  3675. {
  3676. if (is_guest_mode(vcpu)) {
  3677. /*
  3678. * We get here when L2 did CLTS, and L1 didn't shadow CR0.TS
  3679. * but we did (!fpu_active). We need to keep GUEST_CR0.TS on,
  3680. * just pretend it's off (also in arch.cr0 for fpu_activate).
  3681. */
  3682. vmcs_writel(CR0_READ_SHADOW,
  3683. vmcs_readl(CR0_READ_SHADOW) & ~X86_CR0_TS);
  3684. vcpu->arch.cr0 &= ~X86_CR0_TS;
  3685. } else
  3686. vmx_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS));
  3687. }
  3688. static int handle_cr(struct kvm_vcpu *vcpu)
  3689. {
  3690. unsigned long exit_qualification, val;
  3691. int cr;
  3692. int reg;
  3693. int err;
  3694. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  3695. cr = exit_qualification & 15;
  3696. reg = (exit_qualification >> 8) & 15;
  3697. switch ((exit_qualification >> 4) & 3) {
  3698. case 0: /* mov to cr */
  3699. val = kvm_register_read(vcpu, reg);
  3700. trace_kvm_cr_write(cr, val);
  3701. switch (cr) {
  3702. case 0:
  3703. err = handle_set_cr0(vcpu, val);
  3704. kvm_complete_insn_gp(vcpu, err);
  3705. return 1;
  3706. case 3:
  3707. err = kvm_set_cr3(vcpu, val);
  3708. kvm_complete_insn_gp(vcpu, err);
  3709. return 1;
  3710. case 4:
  3711. err = handle_set_cr4(vcpu, val);
  3712. kvm_complete_insn_gp(vcpu, err);
  3713. return 1;
  3714. case 8: {
  3715. u8 cr8_prev = kvm_get_cr8(vcpu);
  3716. u8 cr8 = kvm_register_read(vcpu, reg);
  3717. err = kvm_set_cr8(vcpu, cr8);
  3718. kvm_complete_insn_gp(vcpu, err);
  3719. if (irqchip_in_kernel(vcpu->kvm))
  3720. return 1;
  3721. if (cr8_prev <= cr8)
  3722. return 1;
  3723. vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
  3724. return 0;
  3725. }
  3726. };
  3727. break;
  3728. case 2: /* clts */
  3729. handle_clts(vcpu);
  3730. trace_kvm_cr_write(0, kvm_read_cr0(vcpu));
  3731. skip_emulated_instruction(vcpu);
  3732. vmx_fpu_activate(vcpu);
  3733. return 1;
  3734. case 1: /*mov from cr*/
  3735. switch (cr) {
  3736. case 3:
  3737. val = kvm_read_cr3(vcpu);
  3738. kvm_register_write(vcpu, reg, val);
  3739. trace_kvm_cr_read(cr, val);
  3740. skip_emulated_instruction(vcpu);
  3741. return 1;
  3742. case 8:
  3743. val = kvm_get_cr8(vcpu);
  3744. kvm_register_write(vcpu, reg, val);
  3745. trace_kvm_cr_read(cr, val);
  3746. skip_emulated_instruction(vcpu);
  3747. return 1;
  3748. }
  3749. break;
  3750. case 3: /* lmsw */
  3751. val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
  3752. trace_kvm_cr_write(0, (kvm_read_cr0(vcpu) & ~0xful) | val);
  3753. kvm_lmsw(vcpu, val);
  3754. skip_emulated_instruction(vcpu);
  3755. return 1;
  3756. default:
  3757. break;
  3758. }
  3759. vcpu->run->exit_reason = 0;
  3760. pr_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
  3761. (int)(exit_qualification >> 4) & 3, cr);
  3762. return 0;
  3763. }
  3764. static int handle_dr(struct kvm_vcpu *vcpu)
  3765. {
  3766. unsigned long exit_qualification;
  3767. int dr, reg;
  3768. /* Do not handle if the CPL > 0, will trigger GP on re-entry */
  3769. if (!kvm_require_cpl(vcpu, 0))
  3770. return 1;
  3771. dr = vmcs_readl(GUEST_DR7);
  3772. if (dr & DR7_GD) {
  3773. /*
  3774. * As the vm-exit takes precedence over the debug trap, we
  3775. * need to emulate the latter, either for the host or the
  3776. * guest debugging itself.
  3777. */
  3778. if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
  3779. vcpu->run->debug.arch.dr6 = vcpu->arch.dr6;
  3780. vcpu->run->debug.arch.dr7 = dr;
  3781. vcpu->run->debug.arch.pc =
  3782. vmcs_readl(GUEST_CS_BASE) +
  3783. vmcs_readl(GUEST_RIP);
  3784. vcpu->run->debug.arch.exception = DB_VECTOR;
  3785. vcpu->run->exit_reason = KVM_EXIT_DEBUG;
  3786. return 0;
  3787. } else {
  3788. vcpu->arch.dr7 &= ~DR7_GD;
  3789. vcpu->arch.dr6 |= DR6_BD;
  3790. vmcs_writel(GUEST_DR7, vcpu->arch.dr7);
  3791. kvm_queue_exception(vcpu, DB_VECTOR);
  3792. return 1;
  3793. }
  3794. }
  3795. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  3796. dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
  3797. reg = DEBUG_REG_ACCESS_REG(exit_qualification);
  3798. if (exit_qualification & TYPE_MOV_FROM_DR) {
  3799. unsigned long val;
  3800. if (!kvm_get_dr(vcpu, dr, &val))
  3801. kvm_register_write(vcpu, reg, val);
  3802. } else
  3803. kvm_set_dr(vcpu, dr, vcpu->arch.regs[reg]);
  3804. skip_emulated_instruction(vcpu);
  3805. return 1;
  3806. }
  3807. static void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val)
  3808. {
  3809. vmcs_writel(GUEST_DR7, val);
  3810. }
  3811. static int handle_cpuid(struct kvm_vcpu *vcpu)
  3812. {
  3813. kvm_emulate_cpuid(vcpu);
  3814. return 1;
  3815. }
  3816. static int handle_rdmsr(struct kvm_vcpu *vcpu)
  3817. {
  3818. u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
  3819. u64 data;
  3820. if (vmx_get_msr(vcpu, ecx, &data)) {
  3821. trace_kvm_msr_read_ex(ecx);
  3822. kvm_inject_gp(vcpu, 0);
  3823. return 1;
  3824. }
  3825. trace_kvm_msr_read(ecx, data);
  3826. /* FIXME: handling of bits 32:63 of rax, rdx */
  3827. vcpu->arch.regs[VCPU_REGS_RAX] = data & -1u;
  3828. vcpu->arch.regs[VCPU_REGS_RDX] = (data >> 32) & -1u;
  3829. skip_emulated_instruction(vcpu);
  3830. return 1;
  3831. }
  3832. static int handle_wrmsr(struct kvm_vcpu *vcpu)
  3833. {
  3834. u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
  3835. u64 data = (vcpu->arch.regs[VCPU_REGS_RAX] & -1u)
  3836. | ((u64)(vcpu->arch.regs[VCPU_REGS_RDX] & -1u) << 32);
  3837. if (vmx_set_msr(vcpu, ecx, data) != 0) {
  3838. trace_kvm_msr_write_ex(ecx, data);
  3839. kvm_inject_gp(vcpu, 0);
  3840. return 1;
  3841. }
  3842. trace_kvm_msr_write(ecx, data);
  3843. skip_emulated_instruction(vcpu);
  3844. return 1;
  3845. }
  3846. static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu)
  3847. {
  3848. kvm_make_request(KVM_REQ_EVENT, vcpu);
  3849. return 1;
  3850. }
  3851. static int handle_interrupt_window(struct kvm_vcpu *vcpu)
  3852. {
  3853. u32 cpu_based_vm_exec_control;
  3854. /* clear pending irq */
  3855. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  3856. cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
  3857. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  3858. kvm_make_request(KVM_REQ_EVENT, vcpu);
  3859. ++vcpu->stat.irq_window_exits;
  3860. /*
  3861. * If the user space waits to inject interrupts, exit as soon as
  3862. * possible
  3863. */
  3864. if (!irqchip_in_kernel(vcpu->kvm) &&
  3865. vcpu->run->request_interrupt_window &&
  3866. !kvm_cpu_has_interrupt(vcpu)) {
  3867. vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
  3868. return 0;
  3869. }
  3870. return 1;
  3871. }
  3872. static int handle_halt(struct kvm_vcpu *vcpu)
  3873. {
  3874. skip_emulated_instruction(vcpu);
  3875. return kvm_emulate_halt(vcpu);
  3876. }
  3877. static int handle_vmcall(struct kvm_vcpu *vcpu)
  3878. {
  3879. skip_emulated_instruction(vcpu);
  3880. kvm_emulate_hypercall(vcpu);
  3881. return 1;
  3882. }
  3883. static int handle_invd(struct kvm_vcpu *vcpu)
  3884. {
  3885. return emulate_instruction(vcpu, 0) == EMULATE_DONE;
  3886. }
  3887. static int handle_invlpg(struct kvm_vcpu *vcpu)
  3888. {
  3889. unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  3890. kvm_mmu_invlpg(vcpu, exit_qualification);
  3891. skip_emulated_instruction(vcpu);
  3892. return 1;
  3893. }
  3894. static int handle_wbinvd(struct kvm_vcpu *vcpu)
  3895. {
  3896. skip_emulated_instruction(vcpu);
  3897. kvm_emulate_wbinvd(vcpu);
  3898. return 1;
  3899. }
  3900. static int handle_xsetbv(struct kvm_vcpu *vcpu)
  3901. {
  3902. u64 new_bv = kvm_read_edx_eax(vcpu);
  3903. u32 index = kvm_register_read(vcpu, VCPU_REGS_RCX);
  3904. if (kvm_set_xcr(vcpu, index, new_bv) == 0)
  3905. skip_emulated_instruction(vcpu);
  3906. return 1;
  3907. }
  3908. static int handle_apic_access(struct kvm_vcpu *vcpu)
  3909. {
  3910. return emulate_instruction(vcpu, 0) == EMULATE_DONE;
  3911. }
  3912. static int handle_task_switch(struct kvm_vcpu *vcpu)
  3913. {
  3914. struct vcpu_vmx *vmx = to_vmx(vcpu);
  3915. unsigned long exit_qualification;
  3916. bool has_error_code = false;
  3917. u32 error_code = 0;
  3918. u16 tss_selector;
  3919. int reason, type, idt_v;
  3920. idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
  3921. type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK);
  3922. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  3923. reason = (u32)exit_qualification >> 30;
  3924. if (reason == TASK_SWITCH_GATE && idt_v) {
  3925. switch (type) {
  3926. case INTR_TYPE_NMI_INTR:
  3927. vcpu->arch.nmi_injected = false;
  3928. vmx_set_nmi_mask(vcpu, true);
  3929. break;
  3930. case INTR_TYPE_EXT_INTR:
  3931. case INTR_TYPE_SOFT_INTR:
  3932. kvm_clear_interrupt_queue(vcpu);
  3933. break;
  3934. case INTR_TYPE_HARD_EXCEPTION:
  3935. if (vmx->idt_vectoring_info &
  3936. VECTORING_INFO_DELIVER_CODE_MASK) {
  3937. has_error_code = true;
  3938. error_code =
  3939. vmcs_read32(IDT_VECTORING_ERROR_CODE);
  3940. }
  3941. /* fall through */
  3942. case INTR_TYPE_SOFT_EXCEPTION:
  3943. kvm_clear_exception_queue(vcpu);
  3944. break;
  3945. default:
  3946. break;
  3947. }
  3948. }
  3949. tss_selector = exit_qualification;
  3950. if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION &&
  3951. type != INTR_TYPE_EXT_INTR &&
  3952. type != INTR_TYPE_NMI_INTR))
  3953. skip_emulated_instruction(vcpu);
  3954. if (kvm_task_switch(vcpu, tss_selector, reason,
  3955. has_error_code, error_code) == EMULATE_FAIL) {
  3956. vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
  3957. vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
  3958. vcpu->run->internal.ndata = 0;
  3959. return 0;
  3960. }
  3961. /* clear all local breakpoint enable flags */
  3962. vmcs_writel(GUEST_DR7, vmcs_readl(GUEST_DR7) & ~55);
  3963. /*
  3964. * TODO: What about debug traps on tss switch?
  3965. * Are we supposed to inject them and update dr6?
  3966. */
  3967. return 1;
  3968. }
  3969. static int handle_ept_violation(struct kvm_vcpu *vcpu)
  3970. {
  3971. unsigned long exit_qualification;
  3972. gpa_t gpa;
  3973. int gla_validity;
  3974. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  3975. if (exit_qualification & (1 << 6)) {
  3976. printk(KERN_ERR "EPT: GPA exceeds GAW!\n");
  3977. return -EINVAL;
  3978. }
  3979. gla_validity = (exit_qualification >> 7) & 0x3;
  3980. if (gla_validity != 0x3 && gla_validity != 0x1 && gla_validity != 0) {
  3981. printk(KERN_ERR "EPT: Handling EPT violation failed!\n");
  3982. printk(KERN_ERR "EPT: GPA: 0x%lx, GVA: 0x%lx\n",
  3983. (long unsigned int)vmcs_read64(GUEST_PHYSICAL_ADDRESS),
  3984. vmcs_readl(GUEST_LINEAR_ADDRESS));
  3985. printk(KERN_ERR "EPT: Exit qualification is 0x%lx\n",
  3986. (long unsigned int)exit_qualification);
  3987. vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
  3988. vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_VIOLATION;
  3989. return 0;
  3990. }
  3991. gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
  3992. trace_kvm_page_fault(gpa, exit_qualification);
  3993. return kvm_mmu_page_fault(vcpu, gpa, exit_qualification & 0x3, NULL, 0);
  3994. }
  3995. static u64 ept_rsvd_mask(u64 spte, int level)
  3996. {
  3997. int i;
  3998. u64 mask = 0;
  3999. for (i = 51; i > boot_cpu_data.x86_phys_bits; i--)
  4000. mask |= (1ULL << i);
  4001. if (level > 2)
  4002. /* bits 7:3 reserved */
  4003. mask |= 0xf8;
  4004. else if (level == 2) {
  4005. if (spte & (1ULL << 7))
  4006. /* 2MB ref, bits 20:12 reserved */
  4007. mask |= 0x1ff000;
  4008. else
  4009. /* bits 6:3 reserved */
  4010. mask |= 0x78;
  4011. }
  4012. return mask;
  4013. }
  4014. static void ept_misconfig_inspect_spte(struct kvm_vcpu *vcpu, u64 spte,
  4015. int level)
  4016. {
  4017. printk(KERN_ERR "%s: spte 0x%llx level %d\n", __func__, spte, level);
  4018. /* 010b (write-only) */
  4019. WARN_ON((spte & 0x7) == 0x2);
  4020. /* 110b (write/execute) */
  4021. WARN_ON((spte & 0x7) == 0x6);
  4022. /* 100b (execute-only) and value not supported by logical processor */
  4023. if (!cpu_has_vmx_ept_execute_only())
  4024. WARN_ON((spte & 0x7) == 0x4);
  4025. /* not 000b */
  4026. if ((spte & 0x7)) {
  4027. u64 rsvd_bits = spte & ept_rsvd_mask(spte, level);
  4028. if (rsvd_bits != 0) {
  4029. printk(KERN_ERR "%s: rsvd_bits = 0x%llx\n",
  4030. __func__, rsvd_bits);
  4031. WARN_ON(1);
  4032. }
  4033. if (level == 1 || (level == 2 && (spte & (1ULL << 7)))) {
  4034. u64 ept_mem_type = (spte & 0x38) >> 3;
  4035. if (ept_mem_type == 2 || ept_mem_type == 3 ||
  4036. ept_mem_type == 7) {
  4037. printk(KERN_ERR "%s: ept_mem_type=0x%llx\n",
  4038. __func__, ept_mem_type);
  4039. WARN_ON(1);
  4040. }
  4041. }
  4042. }
  4043. }
  4044. static int handle_ept_misconfig(struct kvm_vcpu *vcpu)
  4045. {
  4046. u64 sptes[4];
  4047. int nr_sptes, i;
  4048. gpa_t gpa;
  4049. gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
  4050. printk(KERN_ERR "EPT: Misconfiguration.\n");
  4051. printk(KERN_ERR "EPT: GPA: 0x%llx\n", gpa);
  4052. nr_sptes = kvm_mmu_get_spte_hierarchy(vcpu, gpa, sptes);
  4053. for (i = PT64_ROOT_LEVEL; i > PT64_ROOT_LEVEL - nr_sptes; --i)
  4054. ept_misconfig_inspect_spte(vcpu, sptes[i-1], i);
  4055. vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
  4056. vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_MISCONFIG;
  4057. return 0;
  4058. }
  4059. static int handle_nmi_window(struct kvm_vcpu *vcpu)
  4060. {
  4061. u32 cpu_based_vm_exec_control;
  4062. /* clear pending NMI */
  4063. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  4064. cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
  4065. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  4066. ++vcpu->stat.nmi_window_exits;
  4067. kvm_make_request(KVM_REQ_EVENT, vcpu);
  4068. return 1;
  4069. }
  4070. static int handle_invalid_guest_state(struct kvm_vcpu *vcpu)
  4071. {
  4072. struct vcpu_vmx *vmx = to_vmx(vcpu);
  4073. enum emulation_result err = EMULATE_DONE;
  4074. int ret = 1;
  4075. u32 cpu_exec_ctrl;
  4076. bool intr_window_requested;
  4077. cpu_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  4078. intr_window_requested = cpu_exec_ctrl & CPU_BASED_VIRTUAL_INTR_PENDING;
  4079. while (!guest_state_valid(vcpu)) {
  4080. if (intr_window_requested
  4081. && (kvm_get_rflags(&vmx->vcpu) & X86_EFLAGS_IF))
  4082. return handle_interrupt_window(&vmx->vcpu);
  4083. err = emulate_instruction(vcpu, 0);
  4084. if (err == EMULATE_DO_MMIO) {
  4085. ret = 0;
  4086. goto out;
  4087. }
  4088. if (err != EMULATE_DONE)
  4089. return 0;
  4090. if (signal_pending(current))
  4091. goto out;
  4092. if (need_resched())
  4093. schedule();
  4094. }
  4095. vmx->emulation_required = 0;
  4096. out:
  4097. return ret;
  4098. }
  4099. /*
  4100. * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE
  4101. * exiting, so only get here on cpu with PAUSE-Loop-Exiting.
  4102. */
  4103. static int handle_pause(struct kvm_vcpu *vcpu)
  4104. {
  4105. skip_emulated_instruction(vcpu);
  4106. kvm_vcpu_on_spin(vcpu);
  4107. return 1;
  4108. }
  4109. static int handle_invalid_op(struct kvm_vcpu *vcpu)
  4110. {
  4111. kvm_queue_exception(vcpu, UD_VECTOR);
  4112. return 1;
  4113. }
  4114. /*
  4115. * To run an L2 guest, we need a vmcs02 based on the L1-specified vmcs12.
  4116. * We could reuse a single VMCS for all the L2 guests, but we also want the
  4117. * option to allocate a separate vmcs02 for each separate loaded vmcs12 - this
  4118. * allows keeping them loaded on the processor, and in the future will allow
  4119. * optimizations where prepare_vmcs02 doesn't need to set all the fields on
  4120. * every entry if they never change.
  4121. * So we keep, in vmx->nested.vmcs02_pool, a cache of size VMCS02_POOL_SIZE
  4122. * (>=0) with a vmcs02 for each recently loaded vmcs12s, most recent first.
  4123. *
  4124. * The following functions allocate and free a vmcs02 in this pool.
  4125. */
  4126. /* Get a VMCS from the pool to use as vmcs02 for the current vmcs12. */
  4127. static struct loaded_vmcs *nested_get_current_vmcs02(struct vcpu_vmx *vmx)
  4128. {
  4129. struct vmcs02_list *item;
  4130. list_for_each_entry(item, &vmx->nested.vmcs02_pool, list)
  4131. if (item->vmptr == vmx->nested.current_vmptr) {
  4132. list_move(&item->list, &vmx->nested.vmcs02_pool);
  4133. return &item->vmcs02;
  4134. }
  4135. if (vmx->nested.vmcs02_num >= max(VMCS02_POOL_SIZE, 1)) {
  4136. /* Recycle the least recently used VMCS. */
  4137. item = list_entry(vmx->nested.vmcs02_pool.prev,
  4138. struct vmcs02_list, list);
  4139. item->vmptr = vmx->nested.current_vmptr;
  4140. list_move(&item->list, &vmx->nested.vmcs02_pool);
  4141. return &item->vmcs02;
  4142. }
  4143. /* Create a new VMCS */
  4144. item = (struct vmcs02_list *)
  4145. kmalloc(sizeof(struct vmcs02_list), GFP_KERNEL);
  4146. if (!item)
  4147. return NULL;
  4148. item->vmcs02.vmcs = alloc_vmcs();
  4149. if (!item->vmcs02.vmcs) {
  4150. kfree(item);
  4151. return NULL;
  4152. }
  4153. loaded_vmcs_init(&item->vmcs02);
  4154. item->vmptr = vmx->nested.current_vmptr;
  4155. list_add(&(item->list), &(vmx->nested.vmcs02_pool));
  4156. vmx->nested.vmcs02_num++;
  4157. return &item->vmcs02;
  4158. }
  4159. /* Free and remove from pool a vmcs02 saved for a vmcs12 (if there is one) */
  4160. static void nested_free_vmcs02(struct vcpu_vmx *vmx, gpa_t vmptr)
  4161. {
  4162. struct vmcs02_list *item;
  4163. list_for_each_entry(item, &vmx->nested.vmcs02_pool, list)
  4164. if (item->vmptr == vmptr) {
  4165. free_loaded_vmcs(&item->vmcs02);
  4166. list_del(&item->list);
  4167. kfree(item);
  4168. vmx->nested.vmcs02_num--;
  4169. return;
  4170. }
  4171. }
  4172. /*
  4173. * Free all VMCSs saved for this vcpu, except the one pointed by
  4174. * vmx->loaded_vmcs. These include the VMCSs in vmcs02_pool (except the one
  4175. * currently used, if running L2), and vmcs01 when running L2.
  4176. */
  4177. static void nested_free_all_saved_vmcss(struct vcpu_vmx *vmx)
  4178. {
  4179. struct vmcs02_list *item, *n;
  4180. list_for_each_entry_safe(item, n, &vmx->nested.vmcs02_pool, list) {
  4181. if (vmx->loaded_vmcs != &item->vmcs02)
  4182. free_loaded_vmcs(&item->vmcs02);
  4183. list_del(&item->list);
  4184. kfree(item);
  4185. }
  4186. vmx->nested.vmcs02_num = 0;
  4187. if (vmx->loaded_vmcs != &vmx->vmcs01)
  4188. free_loaded_vmcs(&vmx->vmcs01);
  4189. }
  4190. /*
  4191. * Emulate the VMXON instruction.
  4192. * Currently, we just remember that VMX is active, and do not save or even
  4193. * inspect the argument to VMXON (the so-called "VMXON pointer") because we
  4194. * do not currently need to store anything in that guest-allocated memory
  4195. * region. Consequently, VMCLEAR and VMPTRLD also do not verify that the their
  4196. * argument is different from the VMXON pointer (which the spec says they do).
  4197. */
  4198. static int handle_vmon(struct kvm_vcpu *vcpu)
  4199. {
  4200. struct kvm_segment cs;
  4201. struct vcpu_vmx *vmx = to_vmx(vcpu);
  4202. /* The Intel VMX Instruction Reference lists a bunch of bits that
  4203. * are prerequisite to running VMXON, most notably cr4.VMXE must be
  4204. * set to 1 (see vmx_set_cr4() for when we allow the guest to set this).
  4205. * Otherwise, we should fail with #UD. We test these now:
  4206. */
  4207. if (!kvm_read_cr4_bits(vcpu, X86_CR4_VMXE) ||
  4208. !kvm_read_cr0_bits(vcpu, X86_CR0_PE) ||
  4209. (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
  4210. kvm_queue_exception(vcpu, UD_VECTOR);
  4211. return 1;
  4212. }
  4213. vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
  4214. if (is_long_mode(vcpu) && !cs.l) {
  4215. kvm_queue_exception(vcpu, UD_VECTOR);
  4216. return 1;
  4217. }
  4218. if (vmx_get_cpl(vcpu)) {
  4219. kvm_inject_gp(vcpu, 0);
  4220. return 1;
  4221. }
  4222. INIT_LIST_HEAD(&(vmx->nested.vmcs02_pool));
  4223. vmx->nested.vmcs02_num = 0;
  4224. vmx->nested.vmxon = true;
  4225. skip_emulated_instruction(vcpu);
  4226. return 1;
  4227. }
  4228. /*
  4229. * Intel's VMX Instruction Reference specifies a common set of prerequisites
  4230. * for running VMX instructions (except VMXON, whose prerequisites are
  4231. * slightly different). It also specifies what exception to inject otherwise.
  4232. */
  4233. static int nested_vmx_check_permission(struct kvm_vcpu *vcpu)
  4234. {
  4235. struct kvm_segment cs;
  4236. struct vcpu_vmx *vmx = to_vmx(vcpu);
  4237. if (!vmx->nested.vmxon) {
  4238. kvm_queue_exception(vcpu, UD_VECTOR);
  4239. return 0;
  4240. }
  4241. vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
  4242. if ((vmx_get_rflags(vcpu) & X86_EFLAGS_VM) ||
  4243. (is_long_mode(vcpu) && !cs.l)) {
  4244. kvm_queue_exception(vcpu, UD_VECTOR);
  4245. return 0;
  4246. }
  4247. if (vmx_get_cpl(vcpu)) {
  4248. kvm_inject_gp(vcpu, 0);
  4249. return 0;
  4250. }
  4251. return 1;
  4252. }
  4253. /*
  4254. * Free whatever needs to be freed from vmx->nested when L1 goes down, or
  4255. * just stops using VMX.
  4256. */
  4257. static void free_nested(struct vcpu_vmx *vmx)
  4258. {
  4259. if (!vmx->nested.vmxon)
  4260. return;
  4261. vmx->nested.vmxon = false;
  4262. if (vmx->nested.current_vmptr != -1ull) {
  4263. kunmap(vmx->nested.current_vmcs12_page);
  4264. nested_release_page(vmx->nested.current_vmcs12_page);
  4265. vmx->nested.current_vmptr = -1ull;
  4266. vmx->nested.current_vmcs12 = NULL;
  4267. }
  4268. /* Unpin physical memory we referred to in current vmcs02 */
  4269. if (vmx->nested.apic_access_page) {
  4270. nested_release_page(vmx->nested.apic_access_page);
  4271. vmx->nested.apic_access_page = 0;
  4272. }
  4273. nested_free_all_saved_vmcss(vmx);
  4274. }
  4275. /* Emulate the VMXOFF instruction */
  4276. static int handle_vmoff(struct kvm_vcpu *vcpu)
  4277. {
  4278. if (!nested_vmx_check_permission(vcpu))
  4279. return 1;
  4280. free_nested(to_vmx(vcpu));
  4281. skip_emulated_instruction(vcpu);
  4282. return 1;
  4283. }
  4284. /*
  4285. * Decode the memory-address operand of a vmx instruction, as recorded on an
  4286. * exit caused by such an instruction (run by a guest hypervisor).
  4287. * On success, returns 0. When the operand is invalid, returns 1 and throws
  4288. * #UD or #GP.
  4289. */
  4290. static int get_vmx_mem_address(struct kvm_vcpu *vcpu,
  4291. unsigned long exit_qualification,
  4292. u32 vmx_instruction_info, gva_t *ret)
  4293. {
  4294. /*
  4295. * According to Vol. 3B, "Information for VM Exits Due to Instruction
  4296. * Execution", on an exit, vmx_instruction_info holds most of the
  4297. * addressing components of the operand. Only the displacement part
  4298. * is put in exit_qualification (see 3B, "Basic VM-Exit Information").
  4299. * For how an actual address is calculated from all these components,
  4300. * refer to Vol. 1, "Operand Addressing".
  4301. */
  4302. int scaling = vmx_instruction_info & 3;
  4303. int addr_size = (vmx_instruction_info >> 7) & 7;
  4304. bool is_reg = vmx_instruction_info & (1u << 10);
  4305. int seg_reg = (vmx_instruction_info >> 15) & 7;
  4306. int index_reg = (vmx_instruction_info >> 18) & 0xf;
  4307. bool index_is_valid = !(vmx_instruction_info & (1u << 22));
  4308. int base_reg = (vmx_instruction_info >> 23) & 0xf;
  4309. bool base_is_valid = !(vmx_instruction_info & (1u << 27));
  4310. if (is_reg) {
  4311. kvm_queue_exception(vcpu, UD_VECTOR);
  4312. return 1;
  4313. }
  4314. /* Addr = segment_base + offset */
  4315. /* offset = base + [index * scale] + displacement */
  4316. *ret = vmx_get_segment_base(vcpu, seg_reg);
  4317. if (base_is_valid)
  4318. *ret += kvm_register_read(vcpu, base_reg);
  4319. if (index_is_valid)
  4320. *ret += kvm_register_read(vcpu, index_reg)<<scaling;
  4321. *ret += exit_qualification; /* holds the displacement */
  4322. if (addr_size == 1) /* 32 bit */
  4323. *ret &= 0xffffffff;
  4324. /*
  4325. * TODO: throw #GP (and return 1) in various cases that the VM*
  4326. * instructions require it - e.g., offset beyond segment limit,
  4327. * unusable or unreadable/unwritable segment, non-canonical 64-bit
  4328. * address, and so on. Currently these are not checked.
  4329. */
  4330. return 0;
  4331. }
  4332. /*
  4333. * The following 3 functions, nested_vmx_succeed()/failValid()/failInvalid(),
  4334. * set the success or error code of an emulated VMX instruction, as specified
  4335. * by Vol 2B, VMX Instruction Reference, "Conventions".
  4336. */
  4337. static void nested_vmx_succeed(struct kvm_vcpu *vcpu)
  4338. {
  4339. vmx_set_rflags(vcpu, vmx_get_rflags(vcpu)
  4340. & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
  4341. X86_EFLAGS_ZF | X86_EFLAGS_SF | X86_EFLAGS_OF));
  4342. }
  4343. static void nested_vmx_failInvalid(struct kvm_vcpu *vcpu)
  4344. {
  4345. vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
  4346. & ~(X86_EFLAGS_PF | X86_EFLAGS_AF | X86_EFLAGS_ZF |
  4347. X86_EFLAGS_SF | X86_EFLAGS_OF))
  4348. | X86_EFLAGS_CF);
  4349. }
  4350. static void nested_vmx_failValid(struct kvm_vcpu *vcpu,
  4351. u32 vm_instruction_error)
  4352. {
  4353. if (to_vmx(vcpu)->nested.current_vmptr == -1ull) {
  4354. /*
  4355. * failValid writes the error number to the current VMCS, which
  4356. * can't be done there isn't a current VMCS.
  4357. */
  4358. nested_vmx_failInvalid(vcpu);
  4359. return;
  4360. }
  4361. vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
  4362. & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
  4363. X86_EFLAGS_SF | X86_EFLAGS_OF))
  4364. | X86_EFLAGS_ZF);
  4365. get_vmcs12(vcpu)->vm_instruction_error = vm_instruction_error;
  4366. }
  4367. /* Emulate the VMCLEAR instruction */
  4368. static int handle_vmclear(struct kvm_vcpu *vcpu)
  4369. {
  4370. struct vcpu_vmx *vmx = to_vmx(vcpu);
  4371. gva_t gva;
  4372. gpa_t vmptr;
  4373. struct vmcs12 *vmcs12;
  4374. struct page *page;
  4375. struct x86_exception e;
  4376. if (!nested_vmx_check_permission(vcpu))
  4377. return 1;
  4378. if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
  4379. vmcs_read32(VMX_INSTRUCTION_INFO), &gva))
  4380. return 1;
  4381. if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, &vmptr,
  4382. sizeof(vmptr), &e)) {
  4383. kvm_inject_page_fault(vcpu, &e);
  4384. return 1;
  4385. }
  4386. if (!IS_ALIGNED(vmptr, PAGE_SIZE)) {
  4387. nested_vmx_failValid(vcpu, VMXERR_VMCLEAR_INVALID_ADDRESS);
  4388. skip_emulated_instruction(vcpu);
  4389. return 1;
  4390. }
  4391. if (vmptr == vmx->nested.current_vmptr) {
  4392. kunmap(vmx->nested.current_vmcs12_page);
  4393. nested_release_page(vmx->nested.current_vmcs12_page);
  4394. vmx->nested.current_vmptr = -1ull;
  4395. vmx->nested.current_vmcs12 = NULL;
  4396. }
  4397. page = nested_get_page(vcpu, vmptr);
  4398. if (page == NULL) {
  4399. /*
  4400. * For accurate processor emulation, VMCLEAR beyond available
  4401. * physical memory should do nothing at all. However, it is
  4402. * possible that a nested vmx bug, not a guest hypervisor bug,
  4403. * resulted in this case, so let's shut down before doing any
  4404. * more damage:
  4405. */
  4406. kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
  4407. return 1;
  4408. }
  4409. vmcs12 = kmap(page);
  4410. vmcs12->launch_state = 0;
  4411. kunmap(page);
  4412. nested_release_page(page);
  4413. nested_free_vmcs02(vmx, vmptr);
  4414. skip_emulated_instruction(vcpu);
  4415. nested_vmx_succeed(vcpu);
  4416. return 1;
  4417. }
  4418. static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch);
  4419. /* Emulate the VMLAUNCH instruction */
  4420. static int handle_vmlaunch(struct kvm_vcpu *vcpu)
  4421. {
  4422. return nested_vmx_run(vcpu, true);
  4423. }
  4424. /* Emulate the VMRESUME instruction */
  4425. static int handle_vmresume(struct kvm_vcpu *vcpu)
  4426. {
  4427. return nested_vmx_run(vcpu, false);
  4428. }
  4429. enum vmcs_field_type {
  4430. VMCS_FIELD_TYPE_U16 = 0,
  4431. VMCS_FIELD_TYPE_U64 = 1,
  4432. VMCS_FIELD_TYPE_U32 = 2,
  4433. VMCS_FIELD_TYPE_NATURAL_WIDTH = 3
  4434. };
  4435. static inline int vmcs_field_type(unsigned long field)
  4436. {
  4437. if (0x1 & field) /* the *_HIGH fields are all 32 bit */
  4438. return VMCS_FIELD_TYPE_U32;
  4439. return (field >> 13) & 0x3 ;
  4440. }
  4441. static inline int vmcs_field_readonly(unsigned long field)
  4442. {
  4443. return (((field >> 10) & 0x3) == 1);
  4444. }
  4445. /*
  4446. * Read a vmcs12 field. Since these can have varying lengths and we return
  4447. * one type, we chose the biggest type (u64) and zero-extend the return value
  4448. * to that size. Note that the caller, handle_vmread, might need to use only
  4449. * some of the bits we return here (e.g., on 32-bit guests, only 32 bits of
  4450. * 64-bit fields are to be returned).
  4451. */
  4452. static inline bool vmcs12_read_any(struct kvm_vcpu *vcpu,
  4453. unsigned long field, u64 *ret)
  4454. {
  4455. short offset = vmcs_field_to_offset(field);
  4456. char *p;
  4457. if (offset < 0)
  4458. return 0;
  4459. p = ((char *)(get_vmcs12(vcpu))) + offset;
  4460. switch (vmcs_field_type(field)) {
  4461. case VMCS_FIELD_TYPE_NATURAL_WIDTH:
  4462. *ret = *((natural_width *)p);
  4463. return 1;
  4464. case VMCS_FIELD_TYPE_U16:
  4465. *ret = *((u16 *)p);
  4466. return 1;
  4467. case VMCS_FIELD_TYPE_U32:
  4468. *ret = *((u32 *)p);
  4469. return 1;
  4470. case VMCS_FIELD_TYPE_U64:
  4471. *ret = *((u64 *)p);
  4472. return 1;
  4473. default:
  4474. return 0; /* can never happen. */
  4475. }
  4476. }
  4477. /*
  4478. * VMX instructions which assume a current vmcs12 (i.e., that VMPTRLD was
  4479. * used before) all generate the same failure when it is missing.
  4480. */
  4481. static int nested_vmx_check_vmcs12(struct kvm_vcpu *vcpu)
  4482. {
  4483. struct vcpu_vmx *vmx = to_vmx(vcpu);
  4484. if (vmx->nested.current_vmptr == -1ull) {
  4485. nested_vmx_failInvalid(vcpu);
  4486. skip_emulated_instruction(vcpu);
  4487. return 0;
  4488. }
  4489. return 1;
  4490. }
  4491. static int handle_vmread(struct kvm_vcpu *vcpu)
  4492. {
  4493. unsigned long field;
  4494. u64 field_value;
  4495. unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  4496. u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
  4497. gva_t gva = 0;
  4498. if (!nested_vmx_check_permission(vcpu) ||
  4499. !nested_vmx_check_vmcs12(vcpu))
  4500. return 1;
  4501. /* Decode instruction info and find the field to read */
  4502. field = kvm_register_read(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
  4503. /* Read the field, zero-extended to a u64 field_value */
  4504. if (!vmcs12_read_any(vcpu, field, &field_value)) {
  4505. nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
  4506. skip_emulated_instruction(vcpu);
  4507. return 1;
  4508. }
  4509. /*
  4510. * Now copy part of this value to register or memory, as requested.
  4511. * Note that the number of bits actually copied is 32 or 64 depending
  4512. * on the guest's mode (32 or 64 bit), not on the given field's length.
  4513. */
  4514. if (vmx_instruction_info & (1u << 10)) {
  4515. kvm_register_write(vcpu, (((vmx_instruction_info) >> 3) & 0xf),
  4516. field_value);
  4517. } else {
  4518. if (get_vmx_mem_address(vcpu, exit_qualification,
  4519. vmx_instruction_info, &gva))
  4520. return 1;
  4521. /* _system ok, as nested_vmx_check_permission verified cpl=0 */
  4522. kvm_write_guest_virt_system(&vcpu->arch.emulate_ctxt, gva,
  4523. &field_value, (is_long_mode(vcpu) ? 8 : 4), NULL);
  4524. }
  4525. nested_vmx_succeed(vcpu);
  4526. skip_emulated_instruction(vcpu);
  4527. return 1;
  4528. }
  4529. static int handle_vmwrite(struct kvm_vcpu *vcpu)
  4530. {
  4531. unsigned long field;
  4532. gva_t gva;
  4533. unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  4534. u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
  4535. char *p;
  4536. short offset;
  4537. /* The value to write might be 32 or 64 bits, depending on L1's long
  4538. * mode, and eventually we need to write that into a field of several
  4539. * possible lengths. The code below first zero-extends the value to 64
  4540. * bit (field_value), and then copies only the approriate number of
  4541. * bits into the vmcs12 field.
  4542. */
  4543. u64 field_value = 0;
  4544. struct x86_exception e;
  4545. if (!nested_vmx_check_permission(vcpu) ||
  4546. !nested_vmx_check_vmcs12(vcpu))
  4547. return 1;
  4548. if (vmx_instruction_info & (1u << 10))
  4549. field_value = kvm_register_read(vcpu,
  4550. (((vmx_instruction_info) >> 3) & 0xf));
  4551. else {
  4552. if (get_vmx_mem_address(vcpu, exit_qualification,
  4553. vmx_instruction_info, &gva))
  4554. return 1;
  4555. if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva,
  4556. &field_value, (is_long_mode(vcpu) ? 8 : 4), &e)) {
  4557. kvm_inject_page_fault(vcpu, &e);
  4558. return 1;
  4559. }
  4560. }
  4561. field = kvm_register_read(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
  4562. if (vmcs_field_readonly(field)) {
  4563. nested_vmx_failValid(vcpu,
  4564. VMXERR_VMWRITE_READ_ONLY_VMCS_COMPONENT);
  4565. skip_emulated_instruction(vcpu);
  4566. return 1;
  4567. }
  4568. offset = vmcs_field_to_offset(field);
  4569. if (offset < 0) {
  4570. nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
  4571. skip_emulated_instruction(vcpu);
  4572. return 1;
  4573. }
  4574. p = ((char *) get_vmcs12(vcpu)) + offset;
  4575. switch (vmcs_field_type(field)) {
  4576. case VMCS_FIELD_TYPE_U16:
  4577. *(u16 *)p = field_value;
  4578. break;
  4579. case VMCS_FIELD_TYPE_U32:
  4580. *(u32 *)p = field_value;
  4581. break;
  4582. case VMCS_FIELD_TYPE_U64:
  4583. *(u64 *)p = field_value;
  4584. break;
  4585. case VMCS_FIELD_TYPE_NATURAL_WIDTH:
  4586. *(natural_width *)p = field_value;
  4587. break;
  4588. default:
  4589. nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
  4590. skip_emulated_instruction(vcpu);
  4591. return 1;
  4592. }
  4593. nested_vmx_succeed(vcpu);
  4594. skip_emulated_instruction(vcpu);
  4595. return 1;
  4596. }
  4597. /* Emulate the VMPTRLD instruction */
  4598. static int handle_vmptrld(struct kvm_vcpu *vcpu)
  4599. {
  4600. struct vcpu_vmx *vmx = to_vmx(vcpu);
  4601. gva_t gva;
  4602. gpa_t vmptr;
  4603. struct x86_exception e;
  4604. if (!nested_vmx_check_permission(vcpu))
  4605. return 1;
  4606. if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
  4607. vmcs_read32(VMX_INSTRUCTION_INFO), &gva))
  4608. return 1;
  4609. if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, &vmptr,
  4610. sizeof(vmptr), &e)) {
  4611. kvm_inject_page_fault(vcpu, &e);
  4612. return 1;
  4613. }
  4614. if (!IS_ALIGNED(vmptr, PAGE_SIZE)) {
  4615. nested_vmx_failValid(vcpu, VMXERR_VMPTRLD_INVALID_ADDRESS);
  4616. skip_emulated_instruction(vcpu);
  4617. return 1;
  4618. }
  4619. if (vmx->nested.current_vmptr != vmptr) {
  4620. struct vmcs12 *new_vmcs12;
  4621. struct page *page;
  4622. page = nested_get_page(vcpu, vmptr);
  4623. if (page == NULL) {
  4624. nested_vmx_failInvalid(vcpu);
  4625. skip_emulated_instruction(vcpu);
  4626. return 1;
  4627. }
  4628. new_vmcs12 = kmap(page);
  4629. if (new_vmcs12->revision_id != VMCS12_REVISION) {
  4630. kunmap(page);
  4631. nested_release_page_clean(page);
  4632. nested_vmx_failValid(vcpu,
  4633. VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
  4634. skip_emulated_instruction(vcpu);
  4635. return 1;
  4636. }
  4637. if (vmx->nested.current_vmptr != -1ull) {
  4638. kunmap(vmx->nested.current_vmcs12_page);
  4639. nested_release_page(vmx->nested.current_vmcs12_page);
  4640. }
  4641. vmx->nested.current_vmptr = vmptr;
  4642. vmx->nested.current_vmcs12 = new_vmcs12;
  4643. vmx->nested.current_vmcs12_page = page;
  4644. }
  4645. nested_vmx_succeed(vcpu);
  4646. skip_emulated_instruction(vcpu);
  4647. return 1;
  4648. }
  4649. /* Emulate the VMPTRST instruction */
  4650. static int handle_vmptrst(struct kvm_vcpu *vcpu)
  4651. {
  4652. unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  4653. u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
  4654. gva_t vmcs_gva;
  4655. struct x86_exception e;
  4656. if (!nested_vmx_check_permission(vcpu))
  4657. return 1;
  4658. if (get_vmx_mem_address(vcpu, exit_qualification,
  4659. vmx_instruction_info, &vmcs_gva))
  4660. return 1;
  4661. /* ok to use *_system, as nested_vmx_check_permission verified cpl=0 */
  4662. if (kvm_write_guest_virt_system(&vcpu->arch.emulate_ctxt, vmcs_gva,
  4663. (void *)&to_vmx(vcpu)->nested.current_vmptr,
  4664. sizeof(u64), &e)) {
  4665. kvm_inject_page_fault(vcpu, &e);
  4666. return 1;
  4667. }
  4668. nested_vmx_succeed(vcpu);
  4669. skip_emulated_instruction(vcpu);
  4670. return 1;
  4671. }
  4672. /*
  4673. * The exit handlers return 1 if the exit was handled fully and guest execution
  4674. * may resume. Otherwise they set the kvm_run parameter to indicate what needs
  4675. * to be done to userspace and return 0.
  4676. */
  4677. static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = {
  4678. [EXIT_REASON_EXCEPTION_NMI] = handle_exception,
  4679. [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt,
  4680. [EXIT_REASON_TRIPLE_FAULT] = handle_triple_fault,
  4681. [EXIT_REASON_NMI_WINDOW] = handle_nmi_window,
  4682. [EXIT_REASON_IO_INSTRUCTION] = handle_io,
  4683. [EXIT_REASON_CR_ACCESS] = handle_cr,
  4684. [EXIT_REASON_DR_ACCESS] = handle_dr,
  4685. [EXIT_REASON_CPUID] = handle_cpuid,
  4686. [EXIT_REASON_MSR_READ] = handle_rdmsr,
  4687. [EXIT_REASON_MSR_WRITE] = handle_wrmsr,
  4688. [EXIT_REASON_PENDING_INTERRUPT] = handle_interrupt_window,
  4689. [EXIT_REASON_HLT] = handle_halt,
  4690. [EXIT_REASON_INVD] = handle_invd,
  4691. [EXIT_REASON_INVLPG] = handle_invlpg,
  4692. [EXIT_REASON_VMCALL] = handle_vmcall,
  4693. [EXIT_REASON_VMCLEAR] = handle_vmclear,
  4694. [EXIT_REASON_VMLAUNCH] = handle_vmlaunch,
  4695. [EXIT_REASON_VMPTRLD] = handle_vmptrld,
  4696. [EXIT_REASON_VMPTRST] = handle_vmptrst,
  4697. [EXIT_REASON_VMREAD] = handle_vmread,
  4698. [EXIT_REASON_VMRESUME] = handle_vmresume,
  4699. [EXIT_REASON_VMWRITE] = handle_vmwrite,
  4700. [EXIT_REASON_VMOFF] = handle_vmoff,
  4701. [EXIT_REASON_VMON] = handle_vmon,
  4702. [EXIT_REASON_TPR_BELOW_THRESHOLD] = handle_tpr_below_threshold,
  4703. [EXIT_REASON_APIC_ACCESS] = handle_apic_access,
  4704. [EXIT_REASON_WBINVD] = handle_wbinvd,
  4705. [EXIT_REASON_XSETBV] = handle_xsetbv,
  4706. [EXIT_REASON_TASK_SWITCH] = handle_task_switch,
  4707. [EXIT_REASON_MCE_DURING_VMENTRY] = handle_machine_check,
  4708. [EXIT_REASON_EPT_VIOLATION] = handle_ept_violation,
  4709. [EXIT_REASON_EPT_MISCONFIG] = handle_ept_misconfig,
  4710. [EXIT_REASON_PAUSE_INSTRUCTION] = handle_pause,
  4711. [EXIT_REASON_MWAIT_INSTRUCTION] = handle_invalid_op,
  4712. [EXIT_REASON_MONITOR_INSTRUCTION] = handle_invalid_op,
  4713. };
  4714. static const int kvm_vmx_max_exit_handlers =
  4715. ARRAY_SIZE(kvm_vmx_exit_handlers);
  4716. /*
  4717. * Return 1 if we should exit from L2 to L1 to handle an MSR access access,
  4718. * rather than handle it ourselves in L0. I.e., check whether L1 expressed
  4719. * disinterest in the current event (read or write a specific MSR) by using an
  4720. * MSR bitmap. This may be the case even when L0 doesn't use MSR bitmaps.
  4721. */
  4722. static bool nested_vmx_exit_handled_msr(struct kvm_vcpu *vcpu,
  4723. struct vmcs12 *vmcs12, u32 exit_reason)
  4724. {
  4725. u32 msr_index = vcpu->arch.regs[VCPU_REGS_RCX];
  4726. gpa_t bitmap;
  4727. if (!nested_cpu_has(get_vmcs12(vcpu), CPU_BASED_USE_MSR_BITMAPS))
  4728. return 1;
  4729. /*
  4730. * The MSR_BITMAP page is divided into four 1024-byte bitmaps,
  4731. * for the four combinations of read/write and low/high MSR numbers.
  4732. * First we need to figure out which of the four to use:
  4733. */
  4734. bitmap = vmcs12->msr_bitmap;
  4735. if (exit_reason == EXIT_REASON_MSR_WRITE)
  4736. bitmap += 2048;
  4737. if (msr_index >= 0xc0000000) {
  4738. msr_index -= 0xc0000000;
  4739. bitmap += 1024;
  4740. }
  4741. /* Then read the msr_index'th bit from this bitmap: */
  4742. if (msr_index < 1024*8) {
  4743. unsigned char b;
  4744. kvm_read_guest(vcpu->kvm, bitmap + msr_index/8, &b, 1);
  4745. return 1 & (b >> (msr_index & 7));
  4746. } else
  4747. return 1; /* let L1 handle the wrong parameter */
  4748. }
  4749. /*
  4750. * Return 1 if we should exit from L2 to L1 to handle a CR access exit,
  4751. * rather than handle it ourselves in L0. I.e., check if L1 wanted to
  4752. * intercept (via guest_host_mask etc.) the current event.
  4753. */
  4754. static bool nested_vmx_exit_handled_cr(struct kvm_vcpu *vcpu,
  4755. struct vmcs12 *vmcs12)
  4756. {
  4757. unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  4758. int cr = exit_qualification & 15;
  4759. int reg = (exit_qualification >> 8) & 15;
  4760. unsigned long val = kvm_register_read(vcpu, reg);
  4761. switch ((exit_qualification >> 4) & 3) {
  4762. case 0: /* mov to cr */
  4763. switch (cr) {
  4764. case 0:
  4765. if (vmcs12->cr0_guest_host_mask &
  4766. (val ^ vmcs12->cr0_read_shadow))
  4767. return 1;
  4768. break;
  4769. case 3:
  4770. if ((vmcs12->cr3_target_count >= 1 &&
  4771. vmcs12->cr3_target_value0 == val) ||
  4772. (vmcs12->cr3_target_count >= 2 &&
  4773. vmcs12->cr3_target_value1 == val) ||
  4774. (vmcs12->cr3_target_count >= 3 &&
  4775. vmcs12->cr3_target_value2 == val) ||
  4776. (vmcs12->cr3_target_count >= 4 &&
  4777. vmcs12->cr3_target_value3 == val))
  4778. return 0;
  4779. if (nested_cpu_has(vmcs12, CPU_BASED_CR3_LOAD_EXITING))
  4780. return 1;
  4781. break;
  4782. case 4:
  4783. if (vmcs12->cr4_guest_host_mask &
  4784. (vmcs12->cr4_read_shadow ^ val))
  4785. return 1;
  4786. break;
  4787. case 8:
  4788. if (nested_cpu_has(vmcs12, CPU_BASED_CR8_LOAD_EXITING))
  4789. return 1;
  4790. break;
  4791. }
  4792. break;
  4793. case 2: /* clts */
  4794. if ((vmcs12->cr0_guest_host_mask & X86_CR0_TS) &&
  4795. (vmcs12->cr0_read_shadow & X86_CR0_TS))
  4796. return 1;
  4797. break;
  4798. case 1: /* mov from cr */
  4799. switch (cr) {
  4800. case 3:
  4801. if (vmcs12->cpu_based_vm_exec_control &
  4802. CPU_BASED_CR3_STORE_EXITING)
  4803. return 1;
  4804. break;
  4805. case 8:
  4806. if (vmcs12->cpu_based_vm_exec_control &
  4807. CPU_BASED_CR8_STORE_EXITING)
  4808. return 1;
  4809. break;
  4810. }
  4811. break;
  4812. case 3: /* lmsw */
  4813. /*
  4814. * lmsw can change bits 1..3 of cr0, and only set bit 0 of
  4815. * cr0. Other attempted changes are ignored, with no exit.
  4816. */
  4817. if (vmcs12->cr0_guest_host_mask & 0xe &
  4818. (val ^ vmcs12->cr0_read_shadow))
  4819. return 1;
  4820. if ((vmcs12->cr0_guest_host_mask & 0x1) &&
  4821. !(vmcs12->cr0_read_shadow & 0x1) &&
  4822. (val & 0x1))
  4823. return 1;
  4824. break;
  4825. }
  4826. return 0;
  4827. }
  4828. /*
  4829. * Return 1 if we should exit from L2 to L1 to handle an exit, or 0 if we
  4830. * should handle it ourselves in L0 (and then continue L2). Only call this
  4831. * when in is_guest_mode (L2).
  4832. */
  4833. static bool nested_vmx_exit_handled(struct kvm_vcpu *vcpu)
  4834. {
  4835. u32 exit_reason = vmcs_read32(VM_EXIT_REASON);
  4836. u32 intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
  4837. struct vcpu_vmx *vmx = to_vmx(vcpu);
  4838. struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
  4839. if (vmx->nested.nested_run_pending)
  4840. return 0;
  4841. if (unlikely(vmx->fail)) {
  4842. printk(KERN_INFO "%s failed vm entry %x\n",
  4843. __func__, vmcs_read32(VM_INSTRUCTION_ERROR));
  4844. return 1;
  4845. }
  4846. switch (exit_reason) {
  4847. case EXIT_REASON_EXCEPTION_NMI:
  4848. if (!is_exception(intr_info))
  4849. return 0;
  4850. else if (is_page_fault(intr_info))
  4851. return enable_ept;
  4852. return vmcs12->exception_bitmap &
  4853. (1u << (intr_info & INTR_INFO_VECTOR_MASK));
  4854. case EXIT_REASON_EXTERNAL_INTERRUPT:
  4855. return 0;
  4856. case EXIT_REASON_TRIPLE_FAULT:
  4857. return 1;
  4858. case EXIT_REASON_PENDING_INTERRUPT:
  4859. case EXIT_REASON_NMI_WINDOW:
  4860. /*
  4861. * prepare_vmcs02() set the CPU_BASED_VIRTUAL_INTR_PENDING bit
  4862. * (aka Interrupt Window Exiting) only when L1 turned it on,
  4863. * so if we got a PENDING_INTERRUPT exit, this must be for L1.
  4864. * Same for NMI Window Exiting.
  4865. */
  4866. return 1;
  4867. case EXIT_REASON_TASK_SWITCH:
  4868. return 1;
  4869. case EXIT_REASON_CPUID:
  4870. return 1;
  4871. case EXIT_REASON_HLT:
  4872. return nested_cpu_has(vmcs12, CPU_BASED_HLT_EXITING);
  4873. case EXIT_REASON_INVD:
  4874. return 1;
  4875. case EXIT_REASON_INVLPG:
  4876. return nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
  4877. case EXIT_REASON_RDPMC:
  4878. return nested_cpu_has(vmcs12, CPU_BASED_RDPMC_EXITING);
  4879. case EXIT_REASON_RDTSC:
  4880. return nested_cpu_has(vmcs12, CPU_BASED_RDTSC_EXITING);
  4881. case EXIT_REASON_VMCALL: case EXIT_REASON_VMCLEAR:
  4882. case EXIT_REASON_VMLAUNCH: case EXIT_REASON_VMPTRLD:
  4883. case EXIT_REASON_VMPTRST: case EXIT_REASON_VMREAD:
  4884. case EXIT_REASON_VMRESUME: case EXIT_REASON_VMWRITE:
  4885. case EXIT_REASON_VMOFF: case EXIT_REASON_VMON:
  4886. /*
  4887. * VMX instructions trap unconditionally. This allows L1 to
  4888. * emulate them for its L2 guest, i.e., allows 3-level nesting!
  4889. */
  4890. return 1;
  4891. case EXIT_REASON_CR_ACCESS:
  4892. return nested_vmx_exit_handled_cr(vcpu, vmcs12);
  4893. case EXIT_REASON_DR_ACCESS:
  4894. return nested_cpu_has(vmcs12, CPU_BASED_MOV_DR_EXITING);
  4895. case EXIT_REASON_IO_INSTRUCTION:
  4896. /* TODO: support IO bitmaps */
  4897. return 1;
  4898. case EXIT_REASON_MSR_READ:
  4899. case EXIT_REASON_MSR_WRITE:
  4900. return nested_vmx_exit_handled_msr(vcpu, vmcs12, exit_reason);
  4901. case EXIT_REASON_INVALID_STATE:
  4902. return 1;
  4903. case EXIT_REASON_MWAIT_INSTRUCTION:
  4904. return nested_cpu_has(vmcs12, CPU_BASED_MWAIT_EXITING);
  4905. case EXIT_REASON_MONITOR_INSTRUCTION:
  4906. return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_EXITING);
  4907. case EXIT_REASON_PAUSE_INSTRUCTION:
  4908. return nested_cpu_has(vmcs12, CPU_BASED_PAUSE_EXITING) ||
  4909. nested_cpu_has2(vmcs12,
  4910. SECONDARY_EXEC_PAUSE_LOOP_EXITING);
  4911. case EXIT_REASON_MCE_DURING_VMENTRY:
  4912. return 0;
  4913. case EXIT_REASON_TPR_BELOW_THRESHOLD:
  4914. return 1;
  4915. case EXIT_REASON_APIC_ACCESS:
  4916. return nested_cpu_has2(vmcs12,
  4917. SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES);
  4918. case EXIT_REASON_EPT_VIOLATION:
  4919. case EXIT_REASON_EPT_MISCONFIG:
  4920. return 0;
  4921. case EXIT_REASON_WBINVD:
  4922. return nested_cpu_has2(vmcs12, SECONDARY_EXEC_WBINVD_EXITING);
  4923. case EXIT_REASON_XSETBV:
  4924. return 1;
  4925. default:
  4926. return 1;
  4927. }
  4928. }
  4929. static void vmx_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2)
  4930. {
  4931. *info1 = vmcs_readl(EXIT_QUALIFICATION);
  4932. *info2 = vmcs_read32(VM_EXIT_INTR_INFO);
  4933. }
  4934. /*
  4935. * The guest has exited. See if we can fix it or if we need userspace
  4936. * assistance.
  4937. */
  4938. static int vmx_handle_exit(struct kvm_vcpu *vcpu)
  4939. {
  4940. struct vcpu_vmx *vmx = to_vmx(vcpu);
  4941. u32 exit_reason = vmx->exit_reason;
  4942. u32 vectoring_info = vmx->idt_vectoring_info;
  4943. trace_kvm_exit(exit_reason, vcpu, KVM_ISA_VMX);
  4944. /* If guest state is invalid, start emulating */
  4945. if (vmx->emulation_required && emulate_invalid_guest_state)
  4946. return handle_invalid_guest_state(vcpu);
  4947. /*
  4948. * the KVM_REQ_EVENT optimization bit is only on for one entry, and if
  4949. * we did not inject a still-pending event to L1 now because of
  4950. * nested_run_pending, we need to re-enable this bit.
  4951. */
  4952. if (vmx->nested.nested_run_pending)
  4953. kvm_make_request(KVM_REQ_EVENT, vcpu);
  4954. if (!is_guest_mode(vcpu) && (exit_reason == EXIT_REASON_VMLAUNCH ||
  4955. exit_reason == EXIT_REASON_VMRESUME))
  4956. vmx->nested.nested_run_pending = 1;
  4957. else
  4958. vmx->nested.nested_run_pending = 0;
  4959. if (is_guest_mode(vcpu) && nested_vmx_exit_handled(vcpu)) {
  4960. nested_vmx_vmexit(vcpu);
  4961. return 1;
  4962. }
  4963. if (exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY) {
  4964. vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
  4965. vcpu->run->fail_entry.hardware_entry_failure_reason
  4966. = exit_reason;
  4967. return 0;
  4968. }
  4969. if (unlikely(vmx->fail)) {
  4970. vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
  4971. vcpu->run->fail_entry.hardware_entry_failure_reason
  4972. = vmcs_read32(VM_INSTRUCTION_ERROR);
  4973. return 0;
  4974. }
  4975. if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
  4976. (exit_reason != EXIT_REASON_EXCEPTION_NMI &&
  4977. exit_reason != EXIT_REASON_EPT_VIOLATION &&
  4978. exit_reason != EXIT_REASON_TASK_SWITCH))
  4979. printk(KERN_WARNING "%s: unexpected, valid vectoring info "
  4980. "(0x%x) and exit reason is 0x%x\n",
  4981. __func__, vectoring_info, exit_reason);
  4982. if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked &&
  4983. !(is_guest_mode(vcpu) && nested_cpu_has_virtual_nmis(
  4984. get_vmcs12(vcpu), vcpu)))) {
  4985. if (vmx_interrupt_allowed(vcpu)) {
  4986. vmx->soft_vnmi_blocked = 0;
  4987. } else if (vmx->vnmi_blocked_time > 1000000000LL &&
  4988. vcpu->arch.nmi_pending) {
  4989. /*
  4990. * This CPU don't support us in finding the end of an
  4991. * NMI-blocked window if the guest runs with IRQs
  4992. * disabled. So we pull the trigger after 1 s of
  4993. * futile waiting, but inform the user about this.
  4994. */
  4995. printk(KERN_WARNING "%s: Breaking out of NMI-blocked "
  4996. "state on VCPU %d after 1 s timeout\n",
  4997. __func__, vcpu->vcpu_id);
  4998. vmx->soft_vnmi_blocked = 0;
  4999. }
  5000. }
  5001. if (exit_reason < kvm_vmx_max_exit_handlers
  5002. && kvm_vmx_exit_handlers[exit_reason])
  5003. return kvm_vmx_exit_handlers[exit_reason](vcpu);
  5004. else {
  5005. vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
  5006. vcpu->run->hw.hardware_exit_reason = exit_reason;
  5007. }
  5008. return 0;
  5009. }
  5010. static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
  5011. {
  5012. if (irr == -1 || tpr < irr) {
  5013. vmcs_write32(TPR_THRESHOLD, 0);
  5014. return;
  5015. }
  5016. vmcs_write32(TPR_THRESHOLD, irr);
  5017. }
  5018. static void vmx_complete_atomic_exit(struct vcpu_vmx *vmx)
  5019. {
  5020. u32 exit_intr_info;
  5021. if (!(vmx->exit_reason == EXIT_REASON_MCE_DURING_VMENTRY
  5022. || vmx->exit_reason == EXIT_REASON_EXCEPTION_NMI))
  5023. return;
  5024. vmx->exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
  5025. exit_intr_info = vmx->exit_intr_info;
  5026. /* Handle machine checks before interrupts are enabled */
  5027. if (is_machine_check(exit_intr_info))
  5028. kvm_machine_check();
  5029. /* We need to handle NMIs before interrupts are enabled */
  5030. if ((exit_intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR &&
  5031. (exit_intr_info & INTR_INFO_VALID_MASK)) {
  5032. kvm_before_handle_nmi(&vmx->vcpu);
  5033. asm("int $2");
  5034. kvm_after_handle_nmi(&vmx->vcpu);
  5035. }
  5036. }
  5037. static void vmx_recover_nmi_blocking(struct vcpu_vmx *vmx)
  5038. {
  5039. u32 exit_intr_info;
  5040. bool unblock_nmi;
  5041. u8 vector;
  5042. bool idtv_info_valid;
  5043. idtv_info_valid = vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK;
  5044. if (cpu_has_virtual_nmis()) {
  5045. if (vmx->nmi_known_unmasked)
  5046. return;
  5047. /*
  5048. * Can't use vmx->exit_intr_info since we're not sure what
  5049. * the exit reason is.
  5050. */
  5051. exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
  5052. unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
  5053. vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
  5054. /*
  5055. * SDM 3: 27.7.1.2 (September 2008)
  5056. * Re-set bit "block by NMI" before VM entry if vmexit caused by
  5057. * a guest IRET fault.
  5058. * SDM 3: 23.2.2 (September 2008)
  5059. * Bit 12 is undefined in any of the following cases:
  5060. * If the VM exit sets the valid bit in the IDT-vectoring
  5061. * information field.
  5062. * If the VM exit is due to a double fault.
  5063. */
  5064. if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi &&
  5065. vector != DF_VECTOR && !idtv_info_valid)
  5066. vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
  5067. GUEST_INTR_STATE_NMI);
  5068. else
  5069. vmx->nmi_known_unmasked =
  5070. !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO)
  5071. & GUEST_INTR_STATE_NMI);
  5072. } else if (unlikely(vmx->soft_vnmi_blocked))
  5073. vmx->vnmi_blocked_time +=
  5074. ktime_to_ns(ktime_sub(ktime_get(), vmx->entry_time));
  5075. }
  5076. static void __vmx_complete_interrupts(struct vcpu_vmx *vmx,
  5077. u32 idt_vectoring_info,
  5078. int instr_len_field,
  5079. int error_code_field)
  5080. {
  5081. u8 vector;
  5082. int type;
  5083. bool idtv_info_valid;
  5084. idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
  5085. vmx->vcpu.arch.nmi_injected = false;
  5086. kvm_clear_exception_queue(&vmx->vcpu);
  5087. kvm_clear_interrupt_queue(&vmx->vcpu);
  5088. if (!idtv_info_valid)
  5089. return;
  5090. kvm_make_request(KVM_REQ_EVENT, &vmx->vcpu);
  5091. vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
  5092. type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
  5093. switch (type) {
  5094. case INTR_TYPE_NMI_INTR:
  5095. vmx->vcpu.arch.nmi_injected = true;
  5096. /*
  5097. * SDM 3: 27.7.1.2 (September 2008)
  5098. * Clear bit "block by NMI" before VM entry if a NMI
  5099. * delivery faulted.
  5100. */
  5101. vmx_set_nmi_mask(&vmx->vcpu, false);
  5102. break;
  5103. case INTR_TYPE_SOFT_EXCEPTION:
  5104. vmx->vcpu.arch.event_exit_inst_len =
  5105. vmcs_read32(instr_len_field);
  5106. /* fall through */
  5107. case INTR_TYPE_HARD_EXCEPTION:
  5108. if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
  5109. u32 err = vmcs_read32(error_code_field);
  5110. kvm_queue_exception_e(&vmx->vcpu, vector, err);
  5111. } else
  5112. kvm_queue_exception(&vmx->vcpu, vector);
  5113. break;
  5114. case INTR_TYPE_SOFT_INTR:
  5115. vmx->vcpu.arch.event_exit_inst_len =
  5116. vmcs_read32(instr_len_field);
  5117. /* fall through */
  5118. case INTR_TYPE_EXT_INTR:
  5119. kvm_queue_interrupt(&vmx->vcpu, vector,
  5120. type == INTR_TYPE_SOFT_INTR);
  5121. break;
  5122. default:
  5123. break;
  5124. }
  5125. }
  5126. static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
  5127. {
  5128. if (is_guest_mode(&vmx->vcpu))
  5129. return;
  5130. __vmx_complete_interrupts(vmx, vmx->idt_vectoring_info,
  5131. VM_EXIT_INSTRUCTION_LEN,
  5132. IDT_VECTORING_ERROR_CODE);
  5133. }
  5134. static void vmx_cancel_injection(struct kvm_vcpu *vcpu)
  5135. {
  5136. if (is_guest_mode(vcpu))
  5137. return;
  5138. __vmx_complete_interrupts(to_vmx(vcpu),
  5139. vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
  5140. VM_ENTRY_INSTRUCTION_LEN,
  5141. VM_ENTRY_EXCEPTION_ERROR_CODE);
  5142. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
  5143. }
  5144. #ifdef CONFIG_X86_64
  5145. #define R "r"
  5146. #define Q "q"
  5147. #else
  5148. #define R "e"
  5149. #define Q "l"
  5150. #endif
  5151. static void __noclone vmx_vcpu_run(struct kvm_vcpu *vcpu)
  5152. {
  5153. struct vcpu_vmx *vmx = to_vmx(vcpu);
  5154. if (is_guest_mode(vcpu) && !vmx->nested.nested_run_pending) {
  5155. struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
  5156. if (vmcs12->idt_vectoring_info_field &
  5157. VECTORING_INFO_VALID_MASK) {
  5158. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  5159. vmcs12->idt_vectoring_info_field);
  5160. vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
  5161. vmcs12->vm_exit_instruction_len);
  5162. if (vmcs12->idt_vectoring_info_field &
  5163. VECTORING_INFO_DELIVER_CODE_MASK)
  5164. vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE,
  5165. vmcs12->idt_vectoring_error_code);
  5166. }
  5167. }
  5168. /* Record the guest's net vcpu time for enforced NMI injections. */
  5169. if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked))
  5170. vmx->entry_time = ktime_get();
  5171. /* Don't enter VMX if guest state is invalid, let the exit handler
  5172. start emulation until we arrive back to a valid state */
  5173. if (vmx->emulation_required && emulate_invalid_guest_state)
  5174. return;
  5175. if (test_bit(VCPU_REGS_RSP, (unsigned long *)&vcpu->arch.regs_dirty))
  5176. vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
  5177. if (test_bit(VCPU_REGS_RIP, (unsigned long *)&vcpu->arch.regs_dirty))
  5178. vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
  5179. /* When single-stepping over STI and MOV SS, we must clear the
  5180. * corresponding interruptibility bits in the guest state. Otherwise
  5181. * vmentry fails as it then expects bit 14 (BS) in pending debug
  5182. * exceptions being set, but that's not correct for the guest debugging
  5183. * case. */
  5184. if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
  5185. vmx_set_interrupt_shadow(vcpu, 0);
  5186. vmx->__launched = vmx->loaded_vmcs->launched;
  5187. asm(
  5188. /* Store host registers */
  5189. "push %%"R"dx; push %%"R"bp;"
  5190. "push %%"R"cx \n\t" /* placeholder for guest rcx */
  5191. "push %%"R"cx \n\t"
  5192. "cmp %%"R"sp, %c[host_rsp](%0) \n\t"
  5193. "je 1f \n\t"
  5194. "mov %%"R"sp, %c[host_rsp](%0) \n\t"
  5195. __ex(ASM_VMX_VMWRITE_RSP_RDX) "\n\t"
  5196. "1: \n\t"
  5197. /* Reload cr2 if changed */
  5198. "mov %c[cr2](%0), %%"R"ax \n\t"
  5199. "mov %%cr2, %%"R"dx \n\t"
  5200. "cmp %%"R"ax, %%"R"dx \n\t"
  5201. "je 2f \n\t"
  5202. "mov %%"R"ax, %%cr2 \n\t"
  5203. "2: \n\t"
  5204. /* Check if vmlaunch of vmresume is needed */
  5205. "cmpl $0, %c[launched](%0) \n\t"
  5206. /* Load guest registers. Don't clobber flags. */
  5207. "mov %c[rax](%0), %%"R"ax \n\t"
  5208. "mov %c[rbx](%0), %%"R"bx \n\t"
  5209. "mov %c[rdx](%0), %%"R"dx \n\t"
  5210. "mov %c[rsi](%0), %%"R"si \n\t"
  5211. "mov %c[rdi](%0), %%"R"di \n\t"
  5212. "mov %c[rbp](%0), %%"R"bp \n\t"
  5213. #ifdef CONFIG_X86_64
  5214. "mov %c[r8](%0), %%r8 \n\t"
  5215. "mov %c[r9](%0), %%r9 \n\t"
  5216. "mov %c[r10](%0), %%r10 \n\t"
  5217. "mov %c[r11](%0), %%r11 \n\t"
  5218. "mov %c[r12](%0), %%r12 \n\t"
  5219. "mov %c[r13](%0), %%r13 \n\t"
  5220. "mov %c[r14](%0), %%r14 \n\t"
  5221. "mov %c[r15](%0), %%r15 \n\t"
  5222. #endif
  5223. "mov %c[rcx](%0), %%"R"cx \n\t" /* kills %0 (ecx) */
  5224. /* Enter guest mode */
  5225. "jne .Llaunched \n\t"
  5226. __ex(ASM_VMX_VMLAUNCH) "\n\t"
  5227. "jmp .Lkvm_vmx_return \n\t"
  5228. ".Llaunched: " __ex(ASM_VMX_VMRESUME) "\n\t"
  5229. ".Lkvm_vmx_return: "
  5230. /* Save guest registers, load host registers, keep flags */
  5231. "mov %0, %c[wordsize](%%"R"sp) \n\t"
  5232. "pop %0 \n\t"
  5233. "mov %%"R"ax, %c[rax](%0) \n\t"
  5234. "mov %%"R"bx, %c[rbx](%0) \n\t"
  5235. "pop"Q" %c[rcx](%0) \n\t"
  5236. "mov %%"R"dx, %c[rdx](%0) \n\t"
  5237. "mov %%"R"si, %c[rsi](%0) \n\t"
  5238. "mov %%"R"di, %c[rdi](%0) \n\t"
  5239. "mov %%"R"bp, %c[rbp](%0) \n\t"
  5240. #ifdef CONFIG_X86_64
  5241. "mov %%r8, %c[r8](%0) \n\t"
  5242. "mov %%r9, %c[r9](%0) \n\t"
  5243. "mov %%r10, %c[r10](%0) \n\t"
  5244. "mov %%r11, %c[r11](%0) \n\t"
  5245. "mov %%r12, %c[r12](%0) \n\t"
  5246. "mov %%r13, %c[r13](%0) \n\t"
  5247. "mov %%r14, %c[r14](%0) \n\t"
  5248. "mov %%r15, %c[r15](%0) \n\t"
  5249. #endif
  5250. "mov %%cr2, %%"R"ax \n\t"
  5251. "mov %%"R"ax, %c[cr2](%0) \n\t"
  5252. "pop %%"R"bp; pop %%"R"dx \n\t"
  5253. "setbe %c[fail](%0) \n\t"
  5254. : : "c"(vmx), "d"((unsigned long)HOST_RSP),
  5255. [launched]"i"(offsetof(struct vcpu_vmx, __launched)),
  5256. [fail]"i"(offsetof(struct vcpu_vmx, fail)),
  5257. [host_rsp]"i"(offsetof(struct vcpu_vmx, host_rsp)),
  5258. [rax]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RAX])),
  5259. [rbx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBX])),
  5260. [rcx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RCX])),
  5261. [rdx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDX])),
  5262. [rsi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RSI])),
  5263. [rdi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDI])),
  5264. [rbp]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBP])),
  5265. #ifdef CONFIG_X86_64
  5266. [r8]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R8])),
  5267. [r9]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R9])),
  5268. [r10]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R10])),
  5269. [r11]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R11])),
  5270. [r12]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R12])),
  5271. [r13]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R13])),
  5272. [r14]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R14])),
  5273. [r15]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R15])),
  5274. #endif
  5275. [cr2]"i"(offsetof(struct vcpu_vmx, vcpu.arch.cr2)),
  5276. [wordsize]"i"(sizeof(ulong))
  5277. : "cc", "memory"
  5278. , R"ax", R"bx", R"di", R"si"
  5279. #ifdef CONFIG_X86_64
  5280. , "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
  5281. #endif
  5282. );
  5283. vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP)
  5284. | (1 << VCPU_EXREG_RFLAGS)
  5285. | (1 << VCPU_EXREG_CPL)
  5286. | (1 << VCPU_EXREG_PDPTR)
  5287. | (1 << VCPU_EXREG_SEGMENTS)
  5288. | (1 << VCPU_EXREG_CR3));
  5289. vcpu->arch.regs_dirty = 0;
  5290. vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
  5291. if (is_guest_mode(vcpu)) {
  5292. struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
  5293. vmcs12->idt_vectoring_info_field = vmx->idt_vectoring_info;
  5294. if (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK) {
  5295. vmcs12->idt_vectoring_error_code =
  5296. vmcs_read32(IDT_VECTORING_ERROR_CODE);
  5297. vmcs12->vm_exit_instruction_len =
  5298. vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
  5299. }
  5300. }
  5301. asm("mov %0, %%ds; mov %0, %%es" : : "r"(__USER_DS));
  5302. vmx->loaded_vmcs->launched = 1;
  5303. vmx->exit_reason = vmcs_read32(VM_EXIT_REASON);
  5304. vmx_complete_atomic_exit(vmx);
  5305. vmx_recover_nmi_blocking(vmx);
  5306. vmx_complete_interrupts(vmx);
  5307. }
  5308. #undef R
  5309. #undef Q
  5310. static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
  5311. {
  5312. struct vcpu_vmx *vmx = to_vmx(vcpu);
  5313. free_vpid(vmx);
  5314. free_nested(vmx);
  5315. free_loaded_vmcs(vmx->loaded_vmcs);
  5316. kfree(vmx->guest_msrs);
  5317. kvm_vcpu_uninit(vcpu);
  5318. kmem_cache_free(kvm_vcpu_cache, vmx);
  5319. }
  5320. static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id)
  5321. {
  5322. int err;
  5323. struct vcpu_vmx *vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
  5324. int cpu;
  5325. if (!vmx)
  5326. return ERR_PTR(-ENOMEM);
  5327. allocate_vpid(vmx);
  5328. err = kvm_vcpu_init(&vmx->vcpu, kvm, id);
  5329. if (err)
  5330. goto free_vcpu;
  5331. vmx->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
  5332. err = -ENOMEM;
  5333. if (!vmx->guest_msrs) {
  5334. goto uninit_vcpu;
  5335. }
  5336. vmx->loaded_vmcs = &vmx->vmcs01;
  5337. vmx->loaded_vmcs->vmcs = alloc_vmcs();
  5338. if (!vmx->loaded_vmcs->vmcs)
  5339. goto free_msrs;
  5340. if (!vmm_exclusive)
  5341. kvm_cpu_vmxon(__pa(per_cpu(vmxarea, raw_smp_processor_id())));
  5342. loaded_vmcs_init(vmx->loaded_vmcs);
  5343. if (!vmm_exclusive)
  5344. kvm_cpu_vmxoff();
  5345. cpu = get_cpu();
  5346. vmx_vcpu_load(&vmx->vcpu, cpu);
  5347. vmx->vcpu.cpu = cpu;
  5348. err = vmx_vcpu_setup(vmx);
  5349. vmx_vcpu_put(&vmx->vcpu);
  5350. put_cpu();
  5351. if (err)
  5352. goto free_vmcs;
  5353. if (vm_need_virtualize_apic_accesses(kvm))
  5354. err = alloc_apic_access_page(kvm);
  5355. if (err)
  5356. goto free_vmcs;
  5357. if (enable_ept) {
  5358. if (!kvm->arch.ept_identity_map_addr)
  5359. kvm->arch.ept_identity_map_addr =
  5360. VMX_EPT_IDENTITY_PAGETABLE_ADDR;
  5361. err = -ENOMEM;
  5362. if (alloc_identity_pagetable(kvm) != 0)
  5363. goto free_vmcs;
  5364. if (!init_rmode_identity_map(kvm))
  5365. goto free_vmcs;
  5366. }
  5367. vmx->nested.current_vmptr = -1ull;
  5368. vmx->nested.current_vmcs12 = NULL;
  5369. return &vmx->vcpu;
  5370. free_vmcs:
  5371. free_vmcs(vmx->loaded_vmcs->vmcs);
  5372. free_msrs:
  5373. kfree(vmx->guest_msrs);
  5374. uninit_vcpu:
  5375. kvm_vcpu_uninit(&vmx->vcpu);
  5376. free_vcpu:
  5377. free_vpid(vmx);
  5378. kmem_cache_free(kvm_vcpu_cache, vmx);
  5379. return ERR_PTR(err);
  5380. }
  5381. static void __init vmx_check_processor_compat(void *rtn)
  5382. {
  5383. struct vmcs_config vmcs_conf;
  5384. *(int *)rtn = 0;
  5385. if (setup_vmcs_config(&vmcs_conf) < 0)
  5386. *(int *)rtn = -EIO;
  5387. if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
  5388. printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
  5389. smp_processor_id());
  5390. *(int *)rtn = -EIO;
  5391. }
  5392. }
  5393. static int get_ept_level(void)
  5394. {
  5395. return VMX_EPT_DEFAULT_GAW + 1;
  5396. }
  5397. static u64 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
  5398. {
  5399. u64 ret;
  5400. /* For VT-d and EPT combination
  5401. * 1. MMIO: always map as UC
  5402. * 2. EPT with VT-d:
  5403. * a. VT-d without snooping control feature: can't guarantee the
  5404. * result, try to trust guest.
  5405. * b. VT-d with snooping control feature: snooping control feature of
  5406. * VT-d engine can guarantee the cache correctness. Just set it
  5407. * to WB to keep consistent with host. So the same as item 3.
  5408. * 3. EPT without VT-d: always map as WB and set IPAT=1 to keep
  5409. * consistent with host MTRR
  5410. */
  5411. if (is_mmio)
  5412. ret = MTRR_TYPE_UNCACHABLE << VMX_EPT_MT_EPTE_SHIFT;
  5413. else if (vcpu->kvm->arch.iommu_domain &&
  5414. !(vcpu->kvm->arch.iommu_flags & KVM_IOMMU_CACHE_COHERENCY))
  5415. ret = kvm_get_guest_memory_type(vcpu, gfn) <<
  5416. VMX_EPT_MT_EPTE_SHIFT;
  5417. else
  5418. ret = (MTRR_TYPE_WRBACK << VMX_EPT_MT_EPTE_SHIFT)
  5419. | VMX_EPT_IPAT_BIT;
  5420. return ret;
  5421. }
  5422. #define _ER(x) { EXIT_REASON_##x, #x }
  5423. static const struct trace_print_flags vmx_exit_reasons_str[] = {
  5424. _ER(EXCEPTION_NMI),
  5425. _ER(EXTERNAL_INTERRUPT),
  5426. _ER(TRIPLE_FAULT),
  5427. _ER(PENDING_INTERRUPT),
  5428. _ER(NMI_WINDOW),
  5429. _ER(TASK_SWITCH),
  5430. _ER(CPUID),
  5431. _ER(HLT),
  5432. _ER(INVLPG),
  5433. _ER(RDPMC),
  5434. _ER(RDTSC),
  5435. _ER(VMCALL),
  5436. _ER(VMCLEAR),
  5437. _ER(VMLAUNCH),
  5438. _ER(VMPTRLD),
  5439. _ER(VMPTRST),
  5440. _ER(VMREAD),
  5441. _ER(VMRESUME),
  5442. _ER(VMWRITE),
  5443. _ER(VMOFF),
  5444. _ER(VMON),
  5445. _ER(CR_ACCESS),
  5446. _ER(DR_ACCESS),
  5447. _ER(IO_INSTRUCTION),
  5448. _ER(MSR_READ),
  5449. _ER(MSR_WRITE),
  5450. _ER(MWAIT_INSTRUCTION),
  5451. _ER(MONITOR_INSTRUCTION),
  5452. _ER(PAUSE_INSTRUCTION),
  5453. _ER(MCE_DURING_VMENTRY),
  5454. _ER(TPR_BELOW_THRESHOLD),
  5455. _ER(APIC_ACCESS),
  5456. _ER(EPT_VIOLATION),
  5457. _ER(EPT_MISCONFIG),
  5458. _ER(WBINVD),
  5459. { -1, NULL }
  5460. };
  5461. #undef _ER
  5462. static int vmx_get_lpage_level(void)
  5463. {
  5464. if (enable_ept && !cpu_has_vmx_ept_1g_page())
  5465. return PT_DIRECTORY_LEVEL;
  5466. else
  5467. /* For shadow and EPT supported 1GB page */
  5468. return PT_PDPE_LEVEL;
  5469. }
  5470. static void vmx_cpuid_update(struct kvm_vcpu *vcpu)
  5471. {
  5472. struct kvm_cpuid_entry2 *best;
  5473. struct vcpu_vmx *vmx = to_vmx(vcpu);
  5474. u32 exec_control;
  5475. vmx->rdtscp_enabled = false;
  5476. if (vmx_rdtscp_supported()) {
  5477. exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
  5478. if (exec_control & SECONDARY_EXEC_RDTSCP) {
  5479. best = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
  5480. if (best && (best->edx & bit(X86_FEATURE_RDTSCP)))
  5481. vmx->rdtscp_enabled = true;
  5482. else {
  5483. exec_control &= ~SECONDARY_EXEC_RDTSCP;
  5484. vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
  5485. exec_control);
  5486. }
  5487. }
  5488. }
  5489. }
  5490. static void vmx_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry)
  5491. {
  5492. if (func == 1 && nested)
  5493. entry->ecx |= bit(X86_FEATURE_VMX);
  5494. }
  5495. /*
  5496. * prepare_vmcs02 is called when the L1 guest hypervisor runs its nested
  5497. * L2 guest. L1 has a vmcs for L2 (vmcs12), and this function "merges" it
  5498. * with L0's requirements for its guest (a.k.a. vmsc01), so we can run the L2
  5499. * guest in a way that will both be appropriate to L1's requests, and our
  5500. * needs. In addition to modifying the active vmcs (which is vmcs02), this
  5501. * function also has additional necessary side-effects, like setting various
  5502. * vcpu->arch fields.
  5503. */
  5504. static void prepare_vmcs02(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
  5505. {
  5506. struct vcpu_vmx *vmx = to_vmx(vcpu);
  5507. u32 exec_control;
  5508. vmcs_write16(GUEST_ES_SELECTOR, vmcs12->guest_es_selector);
  5509. vmcs_write16(GUEST_CS_SELECTOR, vmcs12->guest_cs_selector);
  5510. vmcs_write16(GUEST_SS_SELECTOR, vmcs12->guest_ss_selector);
  5511. vmcs_write16(GUEST_DS_SELECTOR, vmcs12->guest_ds_selector);
  5512. vmcs_write16(GUEST_FS_SELECTOR, vmcs12->guest_fs_selector);
  5513. vmcs_write16(GUEST_GS_SELECTOR, vmcs12->guest_gs_selector);
  5514. vmcs_write16(GUEST_LDTR_SELECTOR, vmcs12->guest_ldtr_selector);
  5515. vmcs_write16(GUEST_TR_SELECTOR, vmcs12->guest_tr_selector);
  5516. vmcs_write32(GUEST_ES_LIMIT, vmcs12->guest_es_limit);
  5517. vmcs_write32(GUEST_CS_LIMIT, vmcs12->guest_cs_limit);
  5518. vmcs_write32(GUEST_SS_LIMIT, vmcs12->guest_ss_limit);
  5519. vmcs_write32(GUEST_DS_LIMIT, vmcs12->guest_ds_limit);
  5520. vmcs_write32(GUEST_FS_LIMIT, vmcs12->guest_fs_limit);
  5521. vmcs_write32(GUEST_GS_LIMIT, vmcs12->guest_gs_limit);
  5522. vmcs_write32(GUEST_LDTR_LIMIT, vmcs12->guest_ldtr_limit);
  5523. vmcs_write32(GUEST_TR_LIMIT, vmcs12->guest_tr_limit);
  5524. vmcs_write32(GUEST_GDTR_LIMIT, vmcs12->guest_gdtr_limit);
  5525. vmcs_write32(GUEST_IDTR_LIMIT, vmcs12->guest_idtr_limit);
  5526. vmcs_write32(GUEST_ES_AR_BYTES, vmcs12->guest_es_ar_bytes);
  5527. vmcs_write32(GUEST_CS_AR_BYTES, vmcs12->guest_cs_ar_bytes);
  5528. vmcs_write32(GUEST_SS_AR_BYTES, vmcs12->guest_ss_ar_bytes);
  5529. vmcs_write32(GUEST_DS_AR_BYTES, vmcs12->guest_ds_ar_bytes);
  5530. vmcs_write32(GUEST_FS_AR_BYTES, vmcs12->guest_fs_ar_bytes);
  5531. vmcs_write32(GUEST_GS_AR_BYTES, vmcs12->guest_gs_ar_bytes);
  5532. vmcs_write32(GUEST_LDTR_AR_BYTES, vmcs12->guest_ldtr_ar_bytes);
  5533. vmcs_write32(GUEST_TR_AR_BYTES, vmcs12->guest_tr_ar_bytes);
  5534. vmcs_writel(GUEST_ES_BASE, vmcs12->guest_es_base);
  5535. vmcs_writel(GUEST_CS_BASE, vmcs12->guest_cs_base);
  5536. vmcs_writel(GUEST_SS_BASE, vmcs12->guest_ss_base);
  5537. vmcs_writel(GUEST_DS_BASE, vmcs12->guest_ds_base);
  5538. vmcs_writel(GUEST_FS_BASE, vmcs12->guest_fs_base);
  5539. vmcs_writel(GUEST_GS_BASE, vmcs12->guest_gs_base);
  5540. vmcs_writel(GUEST_LDTR_BASE, vmcs12->guest_ldtr_base);
  5541. vmcs_writel(GUEST_TR_BASE, vmcs12->guest_tr_base);
  5542. vmcs_writel(GUEST_GDTR_BASE, vmcs12->guest_gdtr_base);
  5543. vmcs_writel(GUEST_IDTR_BASE, vmcs12->guest_idtr_base);
  5544. vmcs_write64(GUEST_IA32_DEBUGCTL, vmcs12->guest_ia32_debugctl);
  5545. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  5546. vmcs12->vm_entry_intr_info_field);
  5547. vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE,
  5548. vmcs12->vm_entry_exception_error_code);
  5549. vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
  5550. vmcs12->vm_entry_instruction_len);
  5551. vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
  5552. vmcs12->guest_interruptibility_info);
  5553. vmcs_write32(GUEST_ACTIVITY_STATE, vmcs12->guest_activity_state);
  5554. vmcs_write32(GUEST_SYSENTER_CS, vmcs12->guest_sysenter_cs);
  5555. vmcs_writel(GUEST_DR7, vmcs12->guest_dr7);
  5556. vmcs_writel(GUEST_RFLAGS, vmcs12->guest_rflags);
  5557. vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
  5558. vmcs12->guest_pending_dbg_exceptions);
  5559. vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->guest_sysenter_esp);
  5560. vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->guest_sysenter_eip);
  5561. vmcs_write64(VMCS_LINK_POINTER, -1ull);
  5562. vmcs_write32(PIN_BASED_VM_EXEC_CONTROL,
  5563. (vmcs_config.pin_based_exec_ctrl |
  5564. vmcs12->pin_based_vm_exec_control));
  5565. /*
  5566. * Whether page-faults are trapped is determined by a combination of
  5567. * 3 settings: PFEC_MASK, PFEC_MATCH and EXCEPTION_BITMAP.PF.
  5568. * If enable_ept, L0 doesn't care about page faults and we should
  5569. * set all of these to L1's desires. However, if !enable_ept, L0 does
  5570. * care about (at least some) page faults, and because it is not easy
  5571. * (if at all possible?) to merge L0 and L1's desires, we simply ask
  5572. * to exit on each and every L2 page fault. This is done by setting
  5573. * MASK=MATCH=0 and (see below) EB.PF=1.
  5574. * Note that below we don't need special code to set EB.PF beyond the
  5575. * "or"ing of the EB of vmcs01 and vmcs12, because when enable_ept,
  5576. * vmcs01's EB.PF is 0 so the "or" will take vmcs12's value, and when
  5577. * !enable_ept, EB.PF is 1, so the "or" will always be 1.
  5578. *
  5579. * A problem with this approach (when !enable_ept) is that L1 may be
  5580. * injected with more page faults than it asked for. This could have
  5581. * caused problems, but in practice existing hypervisors don't care.
  5582. * To fix this, we will need to emulate the PFEC checking (on the L1
  5583. * page tables), using walk_addr(), when injecting PFs to L1.
  5584. */
  5585. vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK,
  5586. enable_ept ? vmcs12->page_fault_error_code_mask : 0);
  5587. vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH,
  5588. enable_ept ? vmcs12->page_fault_error_code_match : 0);
  5589. if (cpu_has_secondary_exec_ctrls()) {
  5590. u32 exec_control = vmx_secondary_exec_control(vmx);
  5591. if (!vmx->rdtscp_enabled)
  5592. exec_control &= ~SECONDARY_EXEC_RDTSCP;
  5593. /* Take the following fields only from vmcs12 */
  5594. exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
  5595. if (nested_cpu_has(vmcs12,
  5596. CPU_BASED_ACTIVATE_SECONDARY_CONTROLS))
  5597. exec_control |= vmcs12->secondary_vm_exec_control;
  5598. if (exec_control & SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) {
  5599. /*
  5600. * Translate L1 physical address to host physical
  5601. * address for vmcs02. Keep the page pinned, so this
  5602. * physical address remains valid. We keep a reference
  5603. * to it so we can release it later.
  5604. */
  5605. if (vmx->nested.apic_access_page) /* shouldn't happen */
  5606. nested_release_page(vmx->nested.apic_access_page);
  5607. vmx->nested.apic_access_page =
  5608. nested_get_page(vcpu, vmcs12->apic_access_addr);
  5609. /*
  5610. * If translation failed, no matter: This feature asks
  5611. * to exit when accessing the given address, and if it
  5612. * can never be accessed, this feature won't do
  5613. * anything anyway.
  5614. */
  5615. if (!vmx->nested.apic_access_page)
  5616. exec_control &=
  5617. ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
  5618. else
  5619. vmcs_write64(APIC_ACCESS_ADDR,
  5620. page_to_phys(vmx->nested.apic_access_page));
  5621. }
  5622. vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
  5623. }
  5624. /*
  5625. * Set host-state according to L0's settings (vmcs12 is irrelevant here)
  5626. * Some constant fields are set here by vmx_set_constant_host_state().
  5627. * Other fields are different per CPU, and will be set later when
  5628. * vmx_vcpu_load() is called, and when vmx_save_host_state() is called.
  5629. */
  5630. vmx_set_constant_host_state();
  5631. /*
  5632. * HOST_RSP is normally set correctly in vmx_vcpu_run() just before
  5633. * entry, but only if the current (host) sp changed from the value
  5634. * we wrote last (vmx->host_rsp). This cache is no longer relevant
  5635. * if we switch vmcs, and rather than hold a separate cache per vmcs,
  5636. * here we just force the write to happen on entry.
  5637. */
  5638. vmx->host_rsp = 0;
  5639. exec_control = vmx_exec_control(vmx); /* L0's desires */
  5640. exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
  5641. exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
  5642. exec_control &= ~CPU_BASED_TPR_SHADOW;
  5643. exec_control |= vmcs12->cpu_based_vm_exec_control;
  5644. /*
  5645. * Merging of IO and MSR bitmaps not currently supported.
  5646. * Rather, exit every time.
  5647. */
  5648. exec_control &= ~CPU_BASED_USE_MSR_BITMAPS;
  5649. exec_control &= ~CPU_BASED_USE_IO_BITMAPS;
  5650. exec_control |= CPU_BASED_UNCOND_IO_EXITING;
  5651. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, exec_control);
  5652. /* EXCEPTION_BITMAP and CR0_GUEST_HOST_MASK should basically be the
  5653. * bitwise-or of what L1 wants to trap for L2, and what we want to
  5654. * trap. Note that CR0.TS also needs updating - we do this later.
  5655. */
  5656. update_exception_bitmap(vcpu);
  5657. vcpu->arch.cr0_guest_owned_bits &= ~vmcs12->cr0_guest_host_mask;
  5658. vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
  5659. /* Note: IA32_MODE, LOAD_IA32_EFER are modified by vmx_set_efer below */
  5660. vmcs_write32(VM_EXIT_CONTROLS,
  5661. vmcs12->vm_exit_controls | vmcs_config.vmexit_ctrl);
  5662. vmcs_write32(VM_ENTRY_CONTROLS, vmcs12->vm_entry_controls |
  5663. (vmcs_config.vmentry_ctrl & ~VM_ENTRY_IA32E_MODE));
  5664. if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT)
  5665. vmcs_write64(GUEST_IA32_PAT, vmcs12->guest_ia32_pat);
  5666. else if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT)
  5667. vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
  5668. set_cr4_guest_host_mask(vmx);
  5669. vmcs_write64(TSC_OFFSET,
  5670. vmx->nested.vmcs01_tsc_offset + vmcs12->tsc_offset);
  5671. if (enable_vpid) {
  5672. /*
  5673. * Trivially support vpid by letting L2s share their parent
  5674. * L1's vpid. TODO: move to a more elaborate solution, giving
  5675. * each L2 its own vpid and exposing the vpid feature to L1.
  5676. */
  5677. vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
  5678. vmx_flush_tlb(vcpu);
  5679. }
  5680. if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER)
  5681. vcpu->arch.efer = vmcs12->guest_ia32_efer;
  5682. if (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE)
  5683. vcpu->arch.efer |= (EFER_LMA | EFER_LME);
  5684. else
  5685. vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
  5686. /* Note: modifies VM_ENTRY/EXIT_CONTROLS and GUEST/HOST_IA32_EFER */
  5687. vmx_set_efer(vcpu, vcpu->arch.efer);
  5688. /*
  5689. * This sets GUEST_CR0 to vmcs12->guest_cr0, with possibly a modified
  5690. * TS bit (for lazy fpu) and bits which we consider mandatory enabled.
  5691. * The CR0_READ_SHADOW is what L2 should have expected to read given
  5692. * the specifications by L1; It's not enough to take
  5693. * vmcs12->cr0_read_shadow because on our cr0_guest_host_mask we we
  5694. * have more bits than L1 expected.
  5695. */
  5696. vmx_set_cr0(vcpu, vmcs12->guest_cr0);
  5697. vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
  5698. vmx_set_cr4(vcpu, vmcs12->guest_cr4);
  5699. vmcs_writel(CR4_READ_SHADOW, nested_read_cr4(vmcs12));
  5700. /* shadow page tables on either EPT or shadow page tables */
  5701. kvm_set_cr3(vcpu, vmcs12->guest_cr3);
  5702. kvm_mmu_reset_context(vcpu);
  5703. kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->guest_rsp);
  5704. kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->guest_rip);
  5705. }
  5706. /*
  5707. * nested_vmx_run() handles a nested entry, i.e., a VMLAUNCH or VMRESUME on L1
  5708. * for running an L2 nested guest.
  5709. */
  5710. static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch)
  5711. {
  5712. struct vmcs12 *vmcs12;
  5713. struct vcpu_vmx *vmx = to_vmx(vcpu);
  5714. int cpu;
  5715. struct loaded_vmcs *vmcs02;
  5716. if (!nested_vmx_check_permission(vcpu) ||
  5717. !nested_vmx_check_vmcs12(vcpu))
  5718. return 1;
  5719. skip_emulated_instruction(vcpu);
  5720. vmcs12 = get_vmcs12(vcpu);
  5721. /*
  5722. * The nested entry process starts with enforcing various prerequisites
  5723. * on vmcs12 as required by the Intel SDM, and act appropriately when
  5724. * they fail: As the SDM explains, some conditions should cause the
  5725. * instruction to fail, while others will cause the instruction to seem
  5726. * to succeed, but return an EXIT_REASON_INVALID_STATE.
  5727. * To speed up the normal (success) code path, we should avoid checking
  5728. * for misconfigurations which will anyway be caught by the processor
  5729. * when using the merged vmcs02.
  5730. */
  5731. if (vmcs12->launch_state == launch) {
  5732. nested_vmx_failValid(vcpu,
  5733. launch ? VMXERR_VMLAUNCH_NONCLEAR_VMCS
  5734. : VMXERR_VMRESUME_NONLAUNCHED_VMCS);
  5735. return 1;
  5736. }
  5737. if ((vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_MSR_BITMAPS) &&
  5738. !IS_ALIGNED(vmcs12->msr_bitmap, PAGE_SIZE)) {
  5739. /*TODO: Also verify bits beyond physical address width are 0*/
  5740. nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
  5741. return 1;
  5742. }
  5743. if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) &&
  5744. !IS_ALIGNED(vmcs12->apic_access_addr, PAGE_SIZE)) {
  5745. /*TODO: Also verify bits beyond physical address width are 0*/
  5746. nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
  5747. return 1;
  5748. }
  5749. if (vmcs12->vm_entry_msr_load_count > 0 ||
  5750. vmcs12->vm_exit_msr_load_count > 0 ||
  5751. vmcs12->vm_exit_msr_store_count > 0) {
  5752. if (printk_ratelimit())
  5753. printk(KERN_WARNING
  5754. "%s: VMCS MSR_{LOAD,STORE} unsupported\n", __func__);
  5755. nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
  5756. return 1;
  5757. }
  5758. if (!vmx_control_verify(vmcs12->cpu_based_vm_exec_control,
  5759. nested_vmx_procbased_ctls_low, nested_vmx_procbased_ctls_high) ||
  5760. !vmx_control_verify(vmcs12->secondary_vm_exec_control,
  5761. nested_vmx_secondary_ctls_low, nested_vmx_secondary_ctls_high) ||
  5762. !vmx_control_verify(vmcs12->pin_based_vm_exec_control,
  5763. nested_vmx_pinbased_ctls_low, nested_vmx_pinbased_ctls_high) ||
  5764. !vmx_control_verify(vmcs12->vm_exit_controls,
  5765. nested_vmx_exit_ctls_low, nested_vmx_exit_ctls_high) ||
  5766. !vmx_control_verify(vmcs12->vm_entry_controls,
  5767. nested_vmx_entry_ctls_low, nested_vmx_entry_ctls_high))
  5768. {
  5769. nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
  5770. return 1;
  5771. }
  5772. if (((vmcs12->host_cr0 & VMXON_CR0_ALWAYSON) != VMXON_CR0_ALWAYSON) ||
  5773. ((vmcs12->host_cr4 & VMXON_CR4_ALWAYSON) != VMXON_CR4_ALWAYSON)) {
  5774. nested_vmx_failValid(vcpu,
  5775. VMXERR_ENTRY_INVALID_HOST_STATE_FIELD);
  5776. return 1;
  5777. }
  5778. if (((vmcs12->guest_cr0 & VMXON_CR0_ALWAYSON) != VMXON_CR0_ALWAYSON) ||
  5779. ((vmcs12->guest_cr4 & VMXON_CR4_ALWAYSON) != VMXON_CR4_ALWAYSON)) {
  5780. nested_vmx_entry_failure(vcpu, vmcs12,
  5781. EXIT_REASON_INVALID_STATE, ENTRY_FAIL_DEFAULT);
  5782. return 1;
  5783. }
  5784. if (vmcs12->vmcs_link_pointer != -1ull) {
  5785. nested_vmx_entry_failure(vcpu, vmcs12,
  5786. EXIT_REASON_INVALID_STATE, ENTRY_FAIL_VMCS_LINK_PTR);
  5787. return 1;
  5788. }
  5789. /*
  5790. * We're finally done with prerequisite checking, and can start with
  5791. * the nested entry.
  5792. */
  5793. vmcs02 = nested_get_current_vmcs02(vmx);
  5794. if (!vmcs02)
  5795. return -ENOMEM;
  5796. enter_guest_mode(vcpu);
  5797. vmx->nested.vmcs01_tsc_offset = vmcs_read64(TSC_OFFSET);
  5798. cpu = get_cpu();
  5799. vmx->loaded_vmcs = vmcs02;
  5800. vmx_vcpu_put(vcpu);
  5801. vmx_vcpu_load(vcpu, cpu);
  5802. vcpu->cpu = cpu;
  5803. put_cpu();
  5804. vmcs12->launch_state = 1;
  5805. prepare_vmcs02(vcpu, vmcs12);
  5806. /*
  5807. * Note no nested_vmx_succeed or nested_vmx_fail here. At this point
  5808. * we are no longer running L1, and VMLAUNCH/VMRESUME has not yet
  5809. * returned as far as L1 is concerned. It will only return (and set
  5810. * the success flag) when L2 exits (see nested_vmx_vmexit()).
  5811. */
  5812. return 1;
  5813. }
  5814. /*
  5815. * On a nested exit from L2 to L1, vmcs12.guest_cr0 might not be up-to-date
  5816. * because L2 may have changed some cr0 bits directly (CRO_GUEST_HOST_MASK).
  5817. * This function returns the new value we should put in vmcs12.guest_cr0.
  5818. * It's not enough to just return the vmcs02 GUEST_CR0. Rather,
  5819. * 1. Bits that neither L0 nor L1 trapped, were set directly by L2 and are now
  5820. * available in vmcs02 GUEST_CR0. (Note: It's enough to check that L0
  5821. * didn't trap the bit, because if L1 did, so would L0).
  5822. * 2. Bits that L1 asked to trap (and therefore L0 also did) could not have
  5823. * been modified by L2, and L1 knows it. So just leave the old value of
  5824. * the bit from vmcs12.guest_cr0. Note that the bit from vmcs02 GUEST_CR0
  5825. * isn't relevant, because if L0 traps this bit it can set it to anything.
  5826. * 3. Bits that L1 didn't trap, but L0 did. L1 believes the guest could have
  5827. * changed these bits, and therefore they need to be updated, but L0
  5828. * didn't necessarily allow them to be changed in GUEST_CR0 - and rather
  5829. * put them in vmcs02 CR0_READ_SHADOW. So take these bits from there.
  5830. */
  5831. static inline unsigned long
  5832. vmcs12_guest_cr0(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
  5833. {
  5834. return
  5835. /*1*/ (vmcs_readl(GUEST_CR0) & vcpu->arch.cr0_guest_owned_bits) |
  5836. /*2*/ (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask) |
  5837. /*3*/ (vmcs_readl(CR0_READ_SHADOW) & ~(vmcs12->cr0_guest_host_mask |
  5838. vcpu->arch.cr0_guest_owned_bits));
  5839. }
  5840. static inline unsigned long
  5841. vmcs12_guest_cr4(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
  5842. {
  5843. return
  5844. /*1*/ (vmcs_readl(GUEST_CR4) & vcpu->arch.cr4_guest_owned_bits) |
  5845. /*2*/ (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask) |
  5846. /*3*/ (vmcs_readl(CR4_READ_SHADOW) & ~(vmcs12->cr4_guest_host_mask |
  5847. vcpu->arch.cr4_guest_owned_bits));
  5848. }
  5849. /*
  5850. * prepare_vmcs12 is part of what we need to do when the nested L2 guest exits
  5851. * and we want to prepare to run its L1 parent. L1 keeps a vmcs for L2 (vmcs12),
  5852. * and this function updates it to reflect the changes to the guest state while
  5853. * L2 was running (and perhaps made some exits which were handled directly by L0
  5854. * without going back to L1), and to reflect the exit reason.
  5855. * Note that we do not have to copy here all VMCS fields, just those that
  5856. * could have changed by the L2 guest or the exit - i.e., the guest-state and
  5857. * exit-information fields only. Other fields are modified by L1 with VMWRITE,
  5858. * which already writes to vmcs12 directly.
  5859. */
  5860. void prepare_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
  5861. {
  5862. /* update guest state fields: */
  5863. vmcs12->guest_cr0 = vmcs12_guest_cr0(vcpu, vmcs12);
  5864. vmcs12->guest_cr4 = vmcs12_guest_cr4(vcpu, vmcs12);
  5865. kvm_get_dr(vcpu, 7, (unsigned long *)&vmcs12->guest_dr7);
  5866. vmcs12->guest_rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
  5867. vmcs12->guest_rip = kvm_register_read(vcpu, VCPU_REGS_RIP);
  5868. vmcs12->guest_rflags = vmcs_readl(GUEST_RFLAGS);
  5869. vmcs12->guest_es_selector = vmcs_read16(GUEST_ES_SELECTOR);
  5870. vmcs12->guest_cs_selector = vmcs_read16(GUEST_CS_SELECTOR);
  5871. vmcs12->guest_ss_selector = vmcs_read16(GUEST_SS_SELECTOR);
  5872. vmcs12->guest_ds_selector = vmcs_read16(GUEST_DS_SELECTOR);
  5873. vmcs12->guest_fs_selector = vmcs_read16(GUEST_FS_SELECTOR);
  5874. vmcs12->guest_gs_selector = vmcs_read16(GUEST_GS_SELECTOR);
  5875. vmcs12->guest_ldtr_selector = vmcs_read16(GUEST_LDTR_SELECTOR);
  5876. vmcs12->guest_tr_selector = vmcs_read16(GUEST_TR_SELECTOR);
  5877. vmcs12->guest_es_limit = vmcs_read32(GUEST_ES_LIMIT);
  5878. vmcs12->guest_cs_limit = vmcs_read32(GUEST_CS_LIMIT);
  5879. vmcs12->guest_ss_limit = vmcs_read32(GUEST_SS_LIMIT);
  5880. vmcs12->guest_ds_limit = vmcs_read32(GUEST_DS_LIMIT);
  5881. vmcs12->guest_fs_limit = vmcs_read32(GUEST_FS_LIMIT);
  5882. vmcs12->guest_gs_limit = vmcs_read32(GUEST_GS_LIMIT);
  5883. vmcs12->guest_ldtr_limit = vmcs_read32(GUEST_LDTR_LIMIT);
  5884. vmcs12->guest_tr_limit = vmcs_read32(GUEST_TR_LIMIT);
  5885. vmcs12->guest_gdtr_limit = vmcs_read32(GUEST_GDTR_LIMIT);
  5886. vmcs12->guest_idtr_limit = vmcs_read32(GUEST_IDTR_LIMIT);
  5887. vmcs12->guest_es_ar_bytes = vmcs_read32(GUEST_ES_AR_BYTES);
  5888. vmcs12->guest_cs_ar_bytes = vmcs_read32(GUEST_CS_AR_BYTES);
  5889. vmcs12->guest_ss_ar_bytes = vmcs_read32(GUEST_SS_AR_BYTES);
  5890. vmcs12->guest_ds_ar_bytes = vmcs_read32(GUEST_DS_AR_BYTES);
  5891. vmcs12->guest_fs_ar_bytes = vmcs_read32(GUEST_FS_AR_BYTES);
  5892. vmcs12->guest_gs_ar_bytes = vmcs_read32(GUEST_GS_AR_BYTES);
  5893. vmcs12->guest_ldtr_ar_bytes = vmcs_read32(GUEST_LDTR_AR_BYTES);
  5894. vmcs12->guest_tr_ar_bytes = vmcs_read32(GUEST_TR_AR_BYTES);
  5895. vmcs12->guest_es_base = vmcs_readl(GUEST_ES_BASE);
  5896. vmcs12->guest_cs_base = vmcs_readl(GUEST_CS_BASE);
  5897. vmcs12->guest_ss_base = vmcs_readl(GUEST_SS_BASE);
  5898. vmcs12->guest_ds_base = vmcs_readl(GUEST_DS_BASE);
  5899. vmcs12->guest_fs_base = vmcs_readl(GUEST_FS_BASE);
  5900. vmcs12->guest_gs_base = vmcs_readl(GUEST_GS_BASE);
  5901. vmcs12->guest_ldtr_base = vmcs_readl(GUEST_LDTR_BASE);
  5902. vmcs12->guest_tr_base = vmcs_readl(GUEST_TR_BASE);
  5903. vmcs12->guest_gdtr_base = vmcs_readl(GUEST_GDTR_BASE);
  5904. vmcs12->guest_idtr_base = vmcs_readl(GUEST_IDTR_BASE);
  5905. vmcs12->guest_activity_state = vmcs_read32(GUEST_ACTIVITY_STATE);
  5906. vmcs12->guest_interruptibility_info =
  5907. vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
  5908. vmcs12->guest_pending_dbg_exceptions =
  5909. vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS);
  5910. /* TODO: These cannot have changed unless we have MSR bitmaps and
  5911. * the relevant bit asks not to trap the change */
  5912. vmcs12->guest_ia32_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);
  5913. if (vmcs12->vm_entry_controls & VM_EXIT_SAVE_IA32_PAT)
  5914. vmcs12->guest_ia32_pat = vmcs_read64(GUEST_IA32_PAT);
  5915. vmcs12->guest_sysenter_cs = vmcs_read32(GUEST_SYSENTER_CS);
  5916. vmcs12->guest_sysenter_esp = vmcs_readl(GUEST_SYSENTER_ESP);
  5917. vmcs12->guest_sysenter_eip = vmcs_readl(GUEST_SYSENTER_EIP);
  5918. /* update exit information fields: */
  5919. vmcs12->vm_exit_reason = vmcs_read32(VM_EXIT_REASON);
  5920. vmcs12->exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  5921. vmcs12->vm_exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
  5922. vmcs12->vm_exit_intr_error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
  5923. vmcs12->idt_vectoring_info_field =
  5924. vmcs_read32(IDT_VECTORING_INFO_FIELD);
  5925. vmcs12->idt_vectoring_error_code =
  5926. vmcs_read32(IDT_VECTORING_ERROR_CODE);
  5927. vmcs12->vm_exit_instruction_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
  5928. vmcs12->vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
  5929. /* clear vm-entry fields which are to be cleared on exit */
  5930. if (!(vmcs12->vm_exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY))
  5931. vmcs12->vm_entry_intr_info_field &= ~INTR_INFO_VALID_MASK;
  5932. }
  5933. /*
  5934. * A part of what we need to when the nested L2 guest exits and we want to
  5935. * run its L1 parent, is to reset L1's guest state to the host state specified
  5936. * in vmcs12.
  5937. * This function is to be called not only on normal nested exit, but also on
  5938. * a nested entry failure, as explained in Intel's spec, 3B.23.7 ("VM-Entry
  5939. * Failures During or After Loading Guest State").
  5940. * This function should be called when the active VMCS is L1's (vmcs01).
  5941. */
  5942. void load_vmcs12_host_state(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
  5943. {
  5944. if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER)
  5945. vcpu->arch.efer = vmcs12->host_ia32_efer;
  5946. if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
  5947. vcpu->arch.efer |= (EFER_LMA | EFER_LME);
  5948. else
  5949. vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
  5950. vmx_set_efer(vcpu, vcpu->arch.efer);
  5951. kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->host_rsp);
  5952. kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->host_rip);
  5953. /*
  5954. * Note that calling vmx_set_cr0 is important, even if cr0 hasn't
  5955. * actually changed, because it depends on the current state of
  5956. * fpu_active (which may have changed).
  5957. * Note that vmx_set_cr0 refers to efer set above.
  5958. */
  5959. kvm_set_cr0(vcpu, vmcs12->host_cr0);
  5960. /*
  5961. * If we did fpu_activate()/fpu_deactivate() during L2's run, we need
  5962. * to apply the same changes to L1's vmcs. We just set cr0 correctly,
  5963. * but we also need to update cr0_guest_host_mask and exception_bitmap.
  5964. */
  5965. update_exception_bitmap(vcpu);
  5966. vcpu->arch.cr0_guest_owned_bits = (vcpu->fpu_active ? X86_CR0_TS : 0);
  5967. vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
  5968. /*
  5969. * Note that CR4_GUEST_HOST_MASK is already set in the original vmcs01
  5970. * (KVM doesn't change it)- no reason to call set_cr4_guest_host_mask();
  5971. */
  5972. vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
  5973. kvm_set_cr4(vcpu, vmcs12->host_cr4);
  5974. /* shadow page tables on either EPT or shadow page tables */
  5975. kvm_set_cr3(vcpu, vmcs12->host_cr3);
  5976. kvm_mmu_reset_context(vcpu);
  5977. if (enable_vpid) {
  5978. /*
  5979. * Trivially support vpid by letting L2s share their parent
  5980. * L1's vpid. TODO: move to a more elaborate solution, giving
  5981. * each L2 its own vpid and exposing the vpid feature to L1.
  5982. */
  5983. vmx_flush_tlb(vcpu);
  5984. }
  5985. vmcs_write32(GUEST_SYSENTER_CS, vmcs12->host_ia32_sysenter_cs);
  5986. vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->host_ia32_sysenter_esp);
  5987. vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->host_ia32_sysenter_eip);
  5988. vmcs_writel(GUEST_IDTR_BASE, vmcs12->host_idtr_base);
  5989. vmcs_writel(GUEST_GDTR_BASE, vmcs12->host_gdtr_base);
  5990. vmcs_writel(GUEST_TR_BASE, vmcs12->host_tr_base);
  5991. vmcs_writel(GUEST_GS_BASE, vmcs12->host_gs_base);
  5992. vmcs_writel(GUEST_FS_BASE, vmcs12->host_fs_base);
  5993. vmcs_write16(GUEST_ES_SELECTOR, vmcs12->host_es_selector);
  5994. vmcs_write16(GUEST_CS_SELECTOR, vmcs12->host_cs_selector);
  5995. vmcs_write16(GUEST_SS_SELECTOR, vmcs12->host_ss_selector);
  5996. vmcs_write16(GUEST_DS_SELECTOR, vmcs12->host_ds_selector);
  5997. vmcs_write16(GUEST_FS_SELECTOR, vmcs12->host_fs_selector);
  5998. vmcs_write16(GUEST_GS_SELECTOR, vmcs12->host_gs_selector);
  5999. vmcs_write16(GUEST_TR_SELECTOR, vmcs12->host_tr_selector);
  6000. if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT)
  6001. vmcs_write64(GUEST_IA32_PAT, vmcs12->host_ia32_pat);
  6002. if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
  6003. vmcs_write64(GUEST_IA32_PERF_GLOBAL_CTRL,
  6004. vmcs12->host_ia32_perf_global_ctrl);
  6005. }
  6006. /*
  6007. * Emulate an exit from nested guest (L2) to L1, i.e., prepare to run L1
  6008. * and modify vmcs12 to make it see what it would expect to see there if
  6009. * L2 was its real guest. Must only be called when in L2 (is_guest_mode())
  6010. */
  6011. static void nested_vmx_vmexit(struct kvm_vcpu *vcpu)
  6012. {
  6013. struct vcpu_vmx *vmx = to_vmx(vcpu);
  6014. int cpu;
  6015. struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
  6016. leave_guest_mode(vcpu);
  6017. prepare_vmcs12(vcpu, vmcs12);
  6018. cpu = get_cpu();
  6019. vmx->loaded_vmcs = &vmx->vmcs01;
  6020. vmx_vcpu_put(vcpu);
  6021. vmx_vcpu_load(vcpu, cpu);
  6022. vcpu->cpu = cpu;
  6023. put_cpu();
  6024. /* if no vmcs02 cache requested, remove the one we used */
  6025. if (VMCS02_POOL_SIZE == 0)
  6026. nested_free_vmcs02(vmx, vmx->nested.current_vmptr);
  6027. load_vmcs12_host_state(vcpu, vmcs12);
  6028. /* Update TSC_OFFSET if vmx_adjust_tsc_offset() was used while L2 ran */
  6029. vmcs_write64(TSC_OFFSET, vmx->nested.vmcs01_tsc_offset);
  6030. /* This is needed for same reason as it was needed in prepare_vmcs02 */
  6031. vmx->host_rsp = 0;
  6032. /* Unpin physical memory we referred to in vmcs02 */
  6033. if (vmx->nested.apic_access_page) {
  6034. nested_release_page(vmx->nested.apic_access_page);
  6035. vmx->nested.apic_access_page = 0;
  6036. }
  6037. /*
  6038. * Exiting from L2 to L1, we're now back to L1 which thinks it just
  6039. * finished a VMLAUNCH or VMRESUME instruction, so we need to set the
  6040. * success or failure flag accordingly.
  6041. */
  6042. if (unlikely(vmx->fail)) {
  6043. vmx->fail = 0;
  6044. nested_vmx_failValid(vcpu, vmcs_read32(VM_INSTRUCTION_ERROR));
  6045. } else
  6046. nested_vmx_succeed(vcpu);
  6047. }
  6048. /*
  6049. * L1's failure to enter L2 is a subset of a normal exit, as explained in
  6050. * 23.7 "VM-entry failures during or after loading guest state" (this also
  6051. * lists the acceptable exit-reason and exit-qualification parameters).
  6052. * It should only be called before L2 actually succeeded to run, and when
  6053. * vmcs01 is current (it doesn't leave_guest_mode() or switch vmcss).
  6054. */
  6055. static void nested_vmx_entry_failure(struct kvm_vcpu *vcpu,
  6056. struct vmcs12 *vmcs12,
  6057. u32 reason, unsigned long qualification)
  6058. {
  6059. load_vmcs12_host_state(vcpu, vmcs12);
  6060. vmcs12->vm_exit_reason = reason | VMX_EXIT_REASONS_FAILED_VMENTRY;
  6061. vmcs12->exit_qualification = qualification;
  6062. nested_vmx_succeed(vcpu);
  6063. }
  6064. static int vmx_check_intercept(struct kvm_vcpu *vcpu,
  6065. struct x86_instruction_info *info,
  6066. enum x86_intercept_stage stage)
  6067. {
  6068. return X86EMUL_CONTINUE;
  6069. }
  6070. static struct kvm_x86_ops vmx_x86_ops = {
  6071. .cpu_has_kvm_support = cpu_has_kvm_support,
  6072. .disabled_by_bios = vmx_disabled_by_bios,
  6073. .hardware_setup = hardware_setup,
  6074. .hardware_unsetup = hardware_unsetup,
  6075. .check_processor_compatibility = vmx_check_processor_compat,
  6076. .hardware_enable = hardware_enable,
  6077. .hardware_disable = hardware_disable,
  6078. .cpu_has_accelerated_tpr = report_flexpriority,
  6079. .vcpu_create = vmx_create_vcpu,
  6080. .vcpu_free = vmx_free_vcpu,
  6081. .vcpu_reset = vmx_vcpu_reset,
  6082. .prepare_guest_switch = vmx_save_host_state,
  6083. .vcpu_load = vmx_vcpu_load,
  6084. .vcpu_put = vmx_vcpu_put,
  6085. .set_guest_debug = set_guest_debug,
  6086. .get_msr = vmx_get_msr,
  6087. .set_msr = vmx_set_msr,
  6088. .get_segment_base = vmx_get_segment_base,
  6089. .get_segment = vmx_get_segment,
  6090. .set_segment = vmx_set_segment,
  6091. .get_cpl = vmx_get_cpl,
  6092. .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
  6093. .decache_cr0_guest_bits = vmx_decache_cr0_guest_bits,
  6094. .decache_cr3 = vmx_decache_cr3,
  6095. .decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
  6096. .set_cr0 = vmx_set_cr0,
  6097. .set_cr3 = vmx_set_cr3,
  6098. .set_cr4 = vmx_set_cr4,
  6099. .set_efer = vmx_set_efer,
  6100. .get_idt = vmx_get_idt,
  6101. .set_idt = vmx_set_idt,
  6102. .get_gdt = vmx_get_gdt,
  6103. .set_gdt = vmx_set_gdt,
  6104. .set_dr7 = vmx_set_dr7,
  6105. .cache_reg = vmx_cache_reg,
  6106. .get_rflags = vmx_get_rflags,
  6107. .set_rflags = vmx_set_rflags,
  6108. .fpu_activate = vmx_fpu_activate,
  6109. .fpu_deactivate = vmx_fpu_deactivate,
  6110. .tlb_flush = vmx_flush_tlb,
  6111. .run = vmx_vcpu_run,
  6112. .handle_exit = vmx_handle_exit,
  6113. .skip_emulated_instruction = skip_emulated_instruction,
  6114. .set_interrupt_shadow = vmx_set_interrupt_shadow,
  6115. .get_interrupt_shadow = vmx_get_interrupt_shadow,
  6116. .patch_hypercall = vmx_patch_hypercall,
  6117. .set_irq = vmx_inject_irq,
  6118. .set_nmi = vmx_inject_nmi,
  6119. .queue_exception = vmx_queue_exception,
  6120. .cancel_injection = vmx_cancel_injection,
  6121. .interrupt_allowed = vmx_interrupt_allowed,
  6122. .nmi_allowed = vmx_nmi_allowed,
  6123. .get_nmi_mask = vmx_get_nmi_mask,
  6124. .set_nmi_mask = vmx_set_nmi_mask,
  6125. .enable_nmi_window = enable_nmi_window,
  6126. .enable_irq_window = enable_irq_window,
  6127. .update_cr8_intercept = update_cr8_intercept,
  6128. .set_tss_addr = vmx_set_tss_addr,
  6129. .get_tdp_level = get_ept_level,
  6130. .get_mt_mask = vmx_get_mt_mask,
  6131. .get_exit_info = vmx_get_exit_info,
  6132. .exit_reasons_str = vmx_exit_reasons_str,
  6133. .get_lpage_level = vmx_get_lpage_level,
  6134. .cpuid_update = vmx_cpuid_update,
  6135. .rdtscp_supported = vmx_rdtscp_supported,
  6136. .set_supported_cpuid = vmx_set_supported_cpuid,
  6137. .has_wbinvd_exit = cpu_has_vmx_wbinvd_exit,
  6138. .set_tsc_khz = vmx_set_tsc_khz,
  6139. .write_tsc_offset = vmx_write_tsc_offset,
  6140. .adjust_tsc_offset = vmx_adjust_tsc_offset,
  6141. .compute_tsc_offset = vmx_compute_tsc_offset,
  6142. .set_tdp_cr3 = vmx_set_cr3,
  6143. .check_intercept = vmx_check_intercept,
  6144. };
  6145. static int __init vmx_init(void)
  6146. {
  6147. int r, i;
  6148. rdmsrl_safe(MSR_EFER, &host_efer);
  6149. for (i = 0; i < NR_VMX_MSR; ++i)
  6150. kvm_define_shared_msr(i, vmx_msr_index[i]);
  6151. vmx_io_bitmap_a = (unsigned long *)__get_free_page(GFP_KERNEL);
  6152. if (!vmx_io_bitmap_a)
  6153. return -ENOMEM;
  6154. vmx_io_bitmap_b = (unsigned long *)__get_free_page(GFP_KERNEL);
  6155. if (!vmx_io_bitmap_b) {
  6156. r = -ENOMEM;
  6157. goto out;
  6158. }
  6159. vmx_msr_bitmap_legacy = (unsigned long *)__get_free_page(GFP_KERNEL);
  6160. if (!vmx_msr_bitmap_legacy) {
  6161. r = -ENOMEM;
  6162. goto out1;
  6163. }
  6164. vmx_msr_bitmap_longmode = (unsigned long *)__get_free_page(GFP_KERNEL);
  6165. if (!vmx_msr_bitmap_longmode) {
  6166. r = -ENOMEM;
  6167. goto out2;
  6168. }
  6169. /*
  6170. * Allow direct access to the PC debug port (it is often used for I/O
  6171. * delays, but the vmexits simply slow things down).
  6172. */
  6173. memset(vmx_io_bitmap_a, 0xff, PAGE_SIZE);
  6174. clear_bit(0x80, vmx_io_bitmap_a);
  6175. memset(vmx_io_bitmap_b, 0xff, PAGE_SIZE);
  6176. memset(vmx_msr_bitmap_legacy, 0xff, PAGE_SIZE);
  6177. memset(vmx_msr_bitmap_longmode, 0xff, PAGE_SIZE);
  6178. set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
  6179. r = kvm_init(&vmx_x86_ops, sizeof(struct vcpu_vmx),
  6180. __alignof__(struct vcpu_vmx), THIS_MODULE);
  6181. if (r)
  6182. goto out3;
  6183. vmx_disable_intercept_for_msr(MSR_FS_BASE, false);
  6184. vmx_disable_intercept_for_msr(MSR_GS_BASE, false);
  6185. vmx_disable_intercept_for_msr(MSR_KERNEL_GS_BASE, true);
  6186. vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_CS, false);
  6187. vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_ESP, false);
  6188. vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_EIP, false);
  6189. if (enable_ept) {
  6190. kvm_mmu_set_mask_ptes(0ull, 0ull, 0ull, 0ull,
  6191. VMX_EPT_EXECUTABLE_MASK);
  6192. kvm_enable_tdp();
  6193. } else
  6194. kvm_disable_tdp();
  6195. return 0;
  6196. out3:
  6197. free_page((unsigned long)vmx_msr_bitmap_longmode);
  6198. out2:
  6199. free_page((unsigned long)vmx_msr_bitmap_legacy);
  6200. out1:
  6201. free_page((unsigned long)vmx_io_bitmap_b);
  6202. out:
  6203. free_page((unsigned long)vmx_io_bitmap_a);
  6204. return r;
  6205. }
  6206. static void __exit vmx_exit(void)
  6207. {
  6208. free_page((unsigned long)vmx_msr_bitmap_legacy);
  6209. free_page((unsigned long)vmx_msr_bitmap_longmode);
  6210. free_page((unsigned long)vmx_io_bitmap_b);
  6211. free_page((unsigned long)vmx_io_bitmap_a);
  6212. kvm_exit();
  6213. }
  6214. module_init(vmx_init)
  6215. module_exit(vmx_exit)