inode.c 157 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437
  1. /*
  2. * linux/fs/ext4/inode.c
  3. *
  4. * Copyright (C) 1992, 1993, 1994, 1995
  5. * Remy Card (card@masi.ibp.fr)
  6. * Laboratoire MASI - Institut Blaise Pascal
  7. * Universite Pierre et Marie Curie (Paris VI)
  8. *
  9. * from
  10. *
  11. * linux/fs/minix/inode.c
  12. *
  13. * Copyright (C) 1991, 1992 Linus Torvalds
  14. *
  15. * Goal-directed block allocation by Stephen Tweedie
  16. * (sct@redhat.com), 1993, 1998
  17. * Big-endian to little-endian byte-swapping/bitmaps by
  18. * David S. Miller (davem@caip.rutgers.edu), 1995
  19. * 64-bit file support on 64-bit platforms by Jakub Jelinek
  20. * (jj@sunsite.ms.mff.cuni.cz)
  21. *
  22. * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
  23. */
  24. #include <linux/module.h>
  25. #include <linux/fs.h>
  26. #include <linux/time.h>
  27. #include <linux/jbd2.h>
  28. #include <linux/highuid.h>
  29. #include <linux/pagemap.h>
  30. #include <linux/quotaops.h>
  31. #include <linux/string.h>
  32. #include <linux/buffer_head.h>
  33. #include <linux/writeback.h>
  34. #include <linux/pagevec.h>
  35. #include <linux/mpage.h>
  36. #include <linux/namei.h>
  37. #include <linux/uio.h>
  38. #include <linux/bio.h>
  39. #include "ext4_jbd2.h"
  40. #include "xattr.h"
  41. #include "acl.h"
  42. #include "ext4_extents.h"
  43. #include <trace/events/ext4.h>
  44. #define MPAGE_DA_EXTENT_TAIL 0x01
  45. static inline int ext4_begin_ordered_truncate(struct inode *inode,
  46. loff_t new_size)
  47. {
  48. return jbd2_journal_begin_ordered_truncate(
  49. EXT4_SB(inode->i_sb)->s_journal,
  50. &EXT4_I(inode)->jinode,
  51. new_size);
  52. }
  53. static void ext4_invalidatepage(struct page *page, unsigned long offset);
  54. /*
  55. * Test whether an inode is a fast symlink.
  56. */
  57. static int ext4_inode_is_fast_symlink(struct inode *inode)
  58. {
  59. int ea_blocks = EXT4_I(inode)->i_file_acl ?
  60. (inode->i_sb->s_blocksize >> 9) : 0;
  61. return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
  62. }
  63. /*
  64. * The ext4 forget function must perform a revoke if we are freeing data
  65. * which has been journaled. Metadata (eg. indirect blocks) must be
  66. * revoked in all cases.
  67. *
  68. * "bh" may be NULL: a metadata block may have been freed from memory
  69. * but there may still be a record of it in the journal, and that record
  70. * still needs to be revoked.
  71. *
  72. * If the handle isn't valid we're not journaling so there's nothing to do.
  73. */
  74. int ext4_forget(handle_t *handle, int is_metadata, struct inode *inode,
  75. struct buffer_head *bh, ext4_fsblk_t blocknr)
  76. {
  77. int err;
  78. if (!ext4_handle_valid(handle))
  79. return 0;
  80. might_sleep();
  81. BUFFER_TRACE(bh, "enter");
  82. jbd_debug(4, "forgetting bh %p: is_metadata = %d, mode %o, "
  83. "data mode %x\n",
  84. bh, is_metadata, inode->i_mode,
  85. test_opt(inode->i_sb, DATA_FLAGS));
  86. /* Never use the revoke function if we are doing full data
  87. * journaling: there is no need to, and a V1 superblock won't
  88. * support it. Otherwise, only skip the revoke on un-journaled
  89. * data blocks. */
  90. if (test_opt(inode->i_sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA ||
  91. (!is_metadata && !ext4_should_journal_data(inode))) {
  92. if (bh) {
  93. BUFFER_TRACE(bh, "call jbd2_journal_forget");
  94. return ext4_journal_forget(handle, bh);
  95. }
  96. return 0;
  97. }
  98. /*
  99. * data!=journal && (is_metadata || should_journal_data(inode))
  100. */
  101. BUFFER_TRACE(bh, "call ext4_journal_revoke");
  102. err = ext4_journal_revoke(handle, blocknr, bh);
  103. if (err)
  104. ext4_abort(inode->i_sb, __func__,
  105. "error %d when attempting revoke", err);
  106. BUFFER_TRACE(bh, "exit");
  107. return err;
  108. }
  109. /*
  110. * Work out how many blocks we need to proceed with the next chunk of a
  111. * truncate transaction.
  112. */
  113. static unsigned long blocks_for_truncate(struct inode *inode)
  114. {
  115. ext4_lblk_t needed;
  116. needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);
  117. /* Give ourselves just enough room to cope with inodes in which
  118. * i_blocks is corrupt: we've seen disk corruptions in the past
  119. * which resulted in random data in an inode which looked enough
  120. * like a regular file for ext4 to try to delete it. Things
  121. * will go a bit crazy if that happens, but at least we should
  122. * try not to panic the whole kernel. */
  123. if (needed < 2)
  124. needed = 2;
  125. /* But we need to bound the transaction so we don't overflow the
  126. * journal. */
  127. if (needed > EXT4_MAX_TRANS_DATA)
  128. needed = EXT4_MAX_TRANS_DATA;
  129. return EXT4_DATA_TRANS_BLOCKS(inode->i_sb) + needed;
  130. }
  131. /*
  132. * Truncate transactions can be complex and absolutely huge. So we need to
  133. * be able to restart the transaction at a conventient checkpoint to make
  134. * sure we don't overflow the journal.
  135. *
  136. * start_transaction gets us a new handle for a truncate transaction,
  137. * and extend_transaction tries to extend the existing one a bit. If
  138. * extend fails, we need to propagate the failure up and restart the
  139. * transaction in the top-level truncate loop. --sct
  140. */
  141. static handle_t *start_transaction(struct inode *inode)
  142. {
  143. handle_t *result;
  144. result = ext4_journal_start(inode, blocks_for_truncate(inode));
  145. if (!IS_ERR(result))
  146. return result;
  147. ext4_std_error(inode->i_sb, PTR_ERR(result));
  148. return result;
  149. }
  150. /*
  151. * Try to extend this transaction for the purposes of truncation.
  152. *
  153. * Returns 0 if we managed to create more room. If we can't create more
  154. * room, and the transaction must be restarted we return 1.
  155. */
  156. static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
  157. {
  158. if (!ext4_handle_valid(handle))
  159. return 0;
  160. if (ext4_handle_has_enough_credits(handle, EXT4_RESERVE_TRANS_BLOCKS+1))
  161. return 0;
  162. if (!ext4_journal_extend(handle, blocks_for_truncate(inode)))
  163. return 0;
  164. return 1;
  165. }
  166. /*
  167. * Restart the transaction associated with *handle. This does a commit,
  168. * so before we call here everything must be consistently dirtied against
  169. * this transaction.
  170. */
  171. static int ext4_journal_test_restart(handle_t *handle, struct inode *inode)
  172. {
  173. BUG_ON(EXT4_JOURNAL(inode) == NULL);
  174. jbd_debug(2, "restarting handle %p\n", handle);
  175. return ext4_journal_restart(handle, blocks_for_truncate(inode));
  176. }
  177. /*
  178. * Called at the last iput() if i_nlink is zero.
  179. */
  180. void ext4_delete_inode(struct inode *inode)
  181. {
  182. handle_t *handle;
  183. int err;
  184. if (ext4_should_order_data(inode))
  185. ext4_begin_ordered_truncate(inode, 0);
  186. truncate_inode_pages(&inode->i_data, 0);
  187. if (is_bad_inode(inode))
  188. goto no_delete;
  189. handle = ext4_journal_start(inode, blocks_for_truncate(inode)+3);
  190. if (IS_ERR(handle)) {
  191. ext4_std_error(inode->i_sb, PTR_ERR(handle));
  192. /*
  193. * If we're going to skip the normal cleanup, we still need to
  194. * make sure that the in-core orphan linked list is properly
  195. * cleaned up.
  196. */
  197. ext4_orphan_del(NULL, inode);
  198. goto no_delete;
  199. }
  200. if (IS_SYNC(inode))
  201. ext4_handle_sync(handle);
  202. inode->i_size = 0;
  203. err = ext4_mark_inode_dirty(handle, inode);
  204. if (err) {
  205. ext4_warning(inode->i_sb, __func__,
  206. "couldn't mark inode dirty (err %d)", err);
  207. goto stop_handle;
  208. }
  209. if (inode->i_blocks)
  210. ext4_truncate(inode);
  211. /*
  212. * ext4_ext_truncate() doesn't reserve any slop when it
  213. * restarts journal transactions; therefore there may not be
  214. * enough credits left in the handle to remove the inode from
  215. * the orphan list and set the dtime field.
  216. */
  217. if (!ext4_handle_has_enough_credits(handle, 3)) {
  218. err = ext4_journal_extend(handle, 3);
  219. if (err > 0)
  220. err = ext4_journal_restart(handle, 3);
  221. if (err != 0) {
  222. ext4_warning(inode->i_sb, __func__,
  223. "couldn't extend journal (err %d)", err);
  224. stop_handle:
  225. ext4_journal_stop(handle);
  226. goto no_delete;
  227. }
  228. }
  229. /*
  230. * Kill off the orphan record which ext4_truncate created.
  231. * AKPM: I think this can be inside the above `if'.
  232. * Note that ext4_orphan_del() has to be able to cope with the
  233. * deletion of a non-existent orphan - this is because we don't
  234. * know if ext4_truncate() actually created an orphan record.
  235. * (Well, we could do this if we need to, but heck - it works)
  236. */
  237. ext4_orphan_del(handle, inode);
  238. EXT4_I(inode)->i_dtime = get_seconds();
  239. /*
  240. * One subtle ordering requirement: if anything has gone wrong
  241. * (transaction abort, IO errors, whatever), then we can still
  242. * do these next steps (the fs will already have been marked as
  243. * having errors), but we can't free the inode if the mark_dirty
  244. * fails.
  245. */
  246. if (ext4_mark_inode_dirty(handle, inode))
  247. /* If that failed, just do the required in-core inode clear. */
  248. clear_inode(inode);
  249. else
  250. ext4_free_inode(handle, inode);
  251. ext4_journal_stop(handle);
  252. return;
  253. no_delete:
  254. clear_inode(inode); /* We must guarantee clearing of inode... */
  255. }
  256. typedef struct {
  257. __le32 *p;
  258. __le32 key;
  259. struct buffer_head *bh;
  260. } Indirect;
  261. static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
  262. {
  263. p->key = *(p->p = v);
  264. p->bh = bh;
  265. }
  266. /**
  267. * ext4_block_to_path - parse the block number into array of offsets
  268. * @inode: inode in question (we are only interested in its superblock)
  269. * @i_block: block number to be parsed
  270. * @offsets: array to store the offsets in
  271. * @boundary: set this non-zero if the referred-to block is likely to be
  272. * followed (on disk) by an indirect block.
  273. *
  274. * To store the locations of file's data ext4 uses a data structure common
  275. * for UNIX filesystems - tree of pointers anchored in the inode, with
  276. * data blocks at leaves and indirect blocks in intermediate nodes.
  277. * This function translates the block number into path in that tree -
  278. * return value is the path length and @offsets[n] is the offset of
  279. * pointer to (n+1)th node in the nth one. If @block is out of range
  280. * (negative or too large) warning is printed and zero returned.
  281. *
  282. * Note: function doesn't find node addresses, so no IO is needed. All
  283. * we need to know is the capacity of indirect blocks (taken from the
  284. * inode->i_sb).
  285. */
  286. /*
  287. * Portability note: the last comparison (check that we fit into triple
  288. * indirect block) is spelled differently, because otherwise on an
  289. * architecture with 32-bit longs and 8Kb pages we might get into trouble
  290. * if our filesystem had 8Kb blocks. We might use long long, but that would
  291. * kill us on x86. Oh, well, at least the sign propagation does not matter -
  292. * i_block would have to be negative in the very beginning, so we would not
  293. * get there at all.
  294. */
  295. static int ext4_block_to_path(struct inode *inode,
  296. ext4_lblk_t i_block,
  297. ext4_lblk_t offsets[4], int *boundary)
  298. {
  299. int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb);
  300. int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb);
  301. const long direct_blocks = EXT4_NDIR_BLOCKS,
  302. indirect_blocks = ptrs,
  303. double_blocks = (1 << (ptrs_bits * 2));
  304. int n = 0;
  305. int final = 0;
  306. if (i_block < 0) {
  307. ext4_warning(inode->i_sb, "ext4_block_to_path", "block < 0");
  308. } else if (i_block < direct_blocks) {
  309. offsets[n++] = i_block;
  310. final = direct_blocks;
  311. } else if ((i_block -= direct_blocks) < indirect_blocks) {
  312. offsets[n++] = EXT4_IND_BLOCK;
  313. offsets[n++] = i_block;
  314. final = ptrs;
  315. } else if ((i_block -= indirect_blocks) < double_blocks) {
  316. offsets[n++] = EXT4_DIND_BLOCK;
  317. offsets[n++] = i_block >> ptrs_bits;
  318. offsets[n++] = i_block & (ptrs - 1);
  319. final = ptrs;
  320. } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
  321. offsets[n++] = EXT4_TIND_BLOCK;
  322. offsets[n++] = i_block >> (ptrs_bits * 2);
  323. offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
  324. offsets[n++] = i_block & (ptrs - 1);
  325. final = ptrs;
  326. } else {
  327. ext4_warning(inode->i_sb, "ext4_block_to_path",
  328. "block %lu > max in inode %lu",
  329. i_block + direct_blocks +
  330. indirect_blocks + double_blocks, inode->i_ino);
  331. }
  332. if (boundary)
  333. *boundary = final - 1 - (i_block & (ptrs - 1));
  334. return n;
  335. }
  336. static int __ext4_check_blockref(const char *function, struct inode *inode,
  337. __le32 *p, unsigned int max)
  338. {
  339. __le32 *bref = p;
  340. unsigned int blk;
  341. while (bref < p+max) {
  342. blk = le32_to_cpu(*bref++);
  343. if (blk &&
  344. unlikely(!ext4_data_block_valid(EXT4_SB(inode->i_sb),
  345. blk, 1))) {
  346. ext4_error(inode->i_sb, function,
  347. "invalid block reference %u "
  348. "in inode #%lu", blk, inode->i_ino);
  349. return -EIO;
  350. }
  351. }
  352. return 0;
  353. }
  354. #define ext4_check_indirect_blockref(inode, bh) \
  355. __ext4_check_blockref(__func__, inode, (__le32 *)(bh)->b_data, \
  356. EXT4_ADDR_PER_BLOCK((inode)->i_sb))
  357. #define ext4_check_inode_blockref(inode) \
  358. __ext4_check_blockref(__func__, inode, EXT4_I(inode)->i_data, \
  359. EXT4_NDIR_BLOCKS)
  360. /**
  361. * ext4_get_branch - read the chain of indirect blocks leading to data
  362. * @inode: inode in question
  363. * @depth: depth of the chain (1 - direct pointer, etc.)
  364. * @offsets: offsets of pointers in inode/indirect blocks
  365. * @chain: place to store the result
  366. * @err: here we store the error value
  367. *
  368. * Function fills the array of triples <key, p, bh> and returns %NULL
  369. * if everything went OK or the pointer to the last filled triple
  370. * (incomplete one) otherwise. Upon the return chain[i].key contains
  371. * the number of (i+1)-th block in the chain (as it is stored in memory,
  372. * i.e. little-endian 32-bit), chain[i].p contains the address of that
  373. * number (it points into struct inode for i==0 and into the bh->b_data
  374. * for i>0) and chain[i].bh points to the buffer_head of i-th indirect
  375. * block for i>0 and NULL for i==0. In other words, it holds the block
  376. * numbers of the chain, addresses they were taken from (and where we can
  377. * verify that chain did not change) and buffer_heads hosting these
  378. * numbers.
  379. *
  380. * Function stops when it stumbles upon zero pointer (absent block)
  381. * (pointer to last triple returned, *@err == 0)
  382. * or when it gets an IO error reading an indirect block
  383. * (ditto, *@err == -EIO)
  384. * or when it reads all @depth-1 indirect blocks successfully and finds
  385. * the whole chain, all way to the data (returns %NULL, *err == 0).
  386. *
  387. * Need to be called with
  388. * down_read(&EXT4_I(inode)->i_data_sem)
  389. */
  390. static Indirect *ext4_get_branch(struct inode *inode, int depth,
  391. ext4_lblk_t *offsets,
  392. Indirect chain[4], int *err)
  393. {
  394. struct super_block *sb = inode->i_sb;
  395. Indirect *p = chain;
  396. struct buffer_head *bh;
  397. *err = 0;
  398. /* i_data is not going away, no lock needed */
  399. add_chain(chain, NULL, EXT4_I(inode)->i_data + *offsets);
  400. if (!p->key)
  401. goto no_block;
  402. while (--depth) {
  403. bh = sb_getblk(sb, le32_to_cpu(p->key));
  404. if (unlikely(!bh))
  405. goto failure;
  406. if (!bh_uptodate_or_lock(bh)) {
  407. if (bh_submit_read(bh) < 0) {
  408. put_bh(bh);
  409. goto failure;
  410. }
  411. /* validate block references */
  412. if (ext4_check_indirect_blockref(inode, bh)) {
  413. put_bh(bh);
  414. goto failure;
  415. }
  416. }
  417. add_chain(++p, bh, (__le32 *)bh->b_data + *++offsets);
  418. /* Reader: end */
  419. if (!p->key)
  420. goto no_block;
  421. }
  422. return NULL;
  423. failure:
  424. *err = -EIO;
  425. no_block:
  426. return p;
  427. }
  428. /**
  429. * ext4_find_near - find a place for allocation with sufficient locality
  430. * @inode: owner
  431. * @ind: descriptor of indirect block.
  432. *
  433. * This function returns the preferred place for block allocation.
  434. * It is used when heuristic for sequential allocation fails.
  435. * Rules are:
  436. * + if there is a block to the left of our position - allocate near it.
  437. * + if pointer will live in indirect block - allocate near that block.
  438. * + if pointer will live in inode - allocate in the same
  439. * cylinder group.
  440. *
  441. * In the latter case we colour the starting block by the callers PID to
  442. * prevent it from clashing with concurrent allocations for a different inode
  443. * in the same block group. The PID is used here so that functionally related
  444. * files will be close-by on-disk.
  445. *
  446. * Caller must make sure that @ind is valid and will stay that way.
  447. */
  448. static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind)
  449. {
  450. struct ext4_inode_info *ei = EXT4_I(inode);
  451. __le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data;
  452. __le32 *p;
  453. ext4_fsblk_t bg_start;
  454. ext4_fsblk_t last_block;
  455. ext4_grpblk_t colour;
  456. ext4_group_t block_group;
  457. int flex_size = ext4_flex_bg_size(EXT4_SB(inode->i_sb));
  458. /* Try to find previous block */
  459. for (p = ind->p - 1; p >= start; p--) {
  460. if (*p)
  461. return le32_to_cpu(*p);
  462. }
  463. /* No such thing, so let's try location of indirect block */
  464. if (ind->bh)
  465. return ind->bh->b_blocknr;
  466. /*
  467. * It is going to be referred to from the inode itself? OK, just put it
  468. * into the same cylinder group then.
  469. */
  470. block_group = ei->i_block_group;
  471. if (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) {
  472. block_group &= ~(flex_size-1);
  473. if (S_ISREG(inode->i_mode))
  474. block_group++;
  475. }
  476. bg_start = ext4_group_first_block_no(inode->i_sb, block_group);
  477. last_block = ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es) - 1;
  478. /*
  479. * If we are doing delayed allocation, we don't need take
  480. * colour into account.
  481. */
  482. if (test_opt(inode->i_sb, DELALLOC))
  483. return bg_start;
  484. if (bg_start + EXT4_BLOCKS_PER_GROUP(inode->i_sb) <= last_block)
  485. colour = (current->pid % 16) *
  486. (EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16);
  487. else
  488. colour = (current->pid % 16) * ((last_block - bg_start) / 16);
  489. return bg_start + colour;
  490. }
  491. /**
  492. * ext4_find_goal - find a preferred place for allocation.
  493. * @inode: owner
  494. * @block: block we want
  495. * @partial: pointer to the last triple within a chain
  496. *
  497. * Normally this function find the preferred place for block allocation,
  498. * returns it.
  499. */
  500. static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block,
  501. Indirect *partial)
  502. {
  503. /*
  504. * XXX need to get goal block from mballoc's data structures
  505. */
  506. return ext4_find_near(inode, partial);
  507. }
  508. /**
  509. * ext4_blks_to_allocate: Look up the block map and count the number
  510. * of direct blocks need to be allocated for the given branch.
  511. *
  512. * @branch: chain of indirect blocks
  513. * @k: number of blocks need for indirect blocks
  514. * @blks: number of data blocks to be mapped.
  515. * @blocks_to_boundary: the offset in the indirect block
  516. *
  517. * return the total number of blocks to be allocate, including the
  518. * direct and indirect blocks.
  519. */
  520. static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned int blks,
  521. int blocks_to_boundary)
  522. {
  523. unsigned int count = 0;
  524. /*
  525. * Simple case, [t,d]Indirect block(s) has not allocated yet
  526. * then it's clear blocks on that path have not allocated
  527. */
  528. if (k > 0) {
  529. /* right now we don't handle cross boundary allocation */
  530. if (blks < blocks_to_boundary + 1)
  531. count += blks;
  532. else
  533. count += blocks_to_boundary + 1;
  534. return count;
  535. }
  536. count++;
  537. while (count < blks && count <= blocks_to_boundary &&
  538. le32_to_cpu(*(branch[0].p + count)) == 0) {
  539. count++;
  540. }
  541. return count;
  542. }
  543. /**
  544. * ext4_alloc_blocks: multiple allocate blocks needed for a branch
  545. * @indirect_blks: the number of blocks need to allocate for indirect
  546. * blocks
  547. *
  548. * @new_blocks: on return it will store the new block numbers for
  549. * the indirect blocks(if needed) and the first direct block,
  550. * @blks: on return it will store the total number of allocated
  551. * direct blocks
  552. */
  553. static int ext4_alloc_blocks(handle_t *handle, struct inode *inode,
  554. ext4_lblk_t iblock, ext4_fsblk_t goal,
  555. int indirect_blks, int blks,
  556. ext4_fsblk_t new_blocks[4], int *err)
  557. {
  558. struct ext4_allocation_request ar;
  559. int target, i;
  560. unsigned long count = 0, blk_allocated = 0;
  561. int index = 0;
  562. ext4_fsblk_t current_block = 0;
  563. int ret = 0;
  564. /*
  565. * Here we try to allocate the requested multiple blocks at once,
  566. * on a best-effort basis.
  567. * To build a branch, we should allocate blocks for
  568. * the indirect blocks(if not allocated yet), and at least
  569. * the first direct block of this branch. That's the
  570. * minimum number of blocks need to allocate(required)
  571. */
  572. /* first we try to allocate the indirect blocks */
  573. target = indirect_blks;
  574. while (target > 0) {
  575. count = target;
  576. /* allocating blocks for indirect blocks and direct blocks */
  577. current_block = ext4_new_meta_blocks(handle, inode,
  578. goal, &count, err);
  579. if (*err)
  580. goto failed_out;
  581. target -= count;
  582. /* allocate blocks for indirect blocks */
  583. while (index < indirect_blks && count) {
  584. new_blocks[index++] = current_block++;
  585. count--;
  586. }
  587. if (count > 0) {
  588. /*
  589. * save the new block number
  590. * for the first direct block
  591. */
  592. new_blocks[index] = current_block;
  593. printk(KERN_INFO "%s returned more blocks than "
  594. "requested\n", __func__);
  595. WARN_ON(1);
  596. break;
  597. }
  598. }
  599. target = blks - count ;
  600. blk_allocated = count;
  601. if (!target)
  602. goto allocated;
  603. /* Now allocate data blocks */
  604. memset(&ar, 0, sizeof(ar));
  605. ar.inode = inode;
  606. ar.goal = goal;
  607. ar.len = target;
  608. ar.logical = iblock;
  609. if (S_ISREG(inode->i_mode))
  610. /* enable in-core preallocation only for regular files */
  611. ar.flags = EXT4_MB_HINT_DATA;
  612. current_block = ext4_mb_new_blocks(handle, &ar, err);
  613. if (*err && (target == blks)) {
  614. /*
  615. * if the allocation failed and we didn't allocate
  616. * any blocks before
  617. */
  618. goto failed_out;
  619. }
  620. if (!*err) {
  621. if (target == blks) {
  622. /*
  623. * save the new block number
  624. * for the first direct block
  625. */
  626. new_blocks[index] = current_block;
  627. }
  628. blk_allocated += ar.len;
  629. }
  630. allocated:
  631. /* total number of blocks allocated for direct blocks */
  632. ret = blk_allocated;
  633. *err = 0;
  634. return ret;
  635. failed_out:
  636. for (i = 0; i < index; i++)
  637. ext4_free_blocks(handle, inode, new_blocks[i], 1, 0);
  638. return ret;
  639. }
  640. /**
  641. * ext4_alloc_branch - allocate and set up a chain of blocks.
  642. * @inode: owner
  643. * @indirect_blks: number of allocated indirect blocks
  644. * @blks: number of allocated direct blocks
  645. * @offsets: offsets (in the blocks) to store the pointers to next.
  646. * @branch: place to store the chain in.
  647. *
  648. * This function allocates blocks, zeroes out all but the last one,
  649. * links them into chain and (if we are synchronous) writes them to disk.
  650. * In other words, it prepares a branch that can be spliced onto the
  651. * inode. It stores the information about that chain in the branch[], in
  652. * the same format as ext4_get_branch() would do. We are calling it after
  653. * we had read the existing part of chain and partial points to the last
  654. * triple of that (one with zero ->key). Upon the exit we have the same
  655. * picture as after the successful ext4_get_block(), except that in one
  656. * place chain is disconnected - *branch->p is still zero (we did not
  657. * set the last link), but branch->key contains the number that should
  658. * be placed into *branch->p to fill that gap.
  659. *
  660. * If allocation fails we free all blocks we've allocated (and forget
  661. * their buffer_heads) and return the error value the from failed
  662. * ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
  663. * as described above and return 0.
  664. */
  665. static int ext4_alloc_branch(handle_t *handle, struct inode *inode,
  666. ext4_lblk_t iblock, int indirect_blks,
  667. int *blks, ext4_fsblk_t goal,
  668. ext4_lblk_t *offsets, Indirect *branch)
  669. {
  670. int blocksize = inode->i_sb->s_blocksize;
  671. int i, n = 0;
  672. int err = 0;
  673. struct buffer_head *bh;
  674. int num;
  675. ext4_fsblk_t new_blocks[4];
  676. ext4_fsblk_t current_block;
  677. num = ext4_alloc_blocks(handle, inode, iblock, goal, indirect_blks,
  678. *blks, new_blocks, &err);
  679. if (err)
  680. return err;
  681. branch[0].key = cpu_to_le32(new_blocks[0]);
  682. /*
  683. * metadata blocks and data blocks are allocated.
  684. */
  685. for (n = 1; n <= indirect_blks; n++) {
  686. /*
  687. * Get buffer_head for parent block, zero it out
  688. * and set the pointer to new one, then send
  689. * parent to disk.
  690. */
  691. bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
  692. branch[n].bh = bh;
  693. lock_buffer(bh);
  694. BUFFER_TRACE(bh, "call get_create_access");
  695. err = ext4_journal_get_create_access(handle, bh);
  696. if (err) {
  697. unlock_buffer(bh);
  698. brelse(bh);
  699. goto failed;
  700. }
  701. memset(bh->b_data, 0, blocksize);
  702. branch[n].p = (__le32 *) bh->b_data + offsets[n];
  703. branch[n].key = cpu_to_le32(new_blocks[n]);
  704. *branch[n].p = branch[n].key;
  705. if (n == indirect_blks) {
  706. current_block = new_blocks[n];
  707. /*
  708. * End of chain, update the last new metablock of
  709. * the chain to point to the new allocated
  710. * data blocks numbers
  711. */
  712. for (i = 1; i < num; i++)
  713. *(branch[n].p + i) = cpu_to_le32(++current_block);
  714. }
  715. BUFFER_TRACE(bh, "marking uptodate");
  716. set_buffer_uptodate(bh);
  717. unlock_buffer(bh);
  718. BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
  719. err = ext4_handle_dirty_metadata(handle, inode, bh);
  720. if (err)
  721. goto failed;
  722. }
  723. *blks = num;
  724. return err;
  725. failed:
  726. /* Allocation failed, free what we already allocated */
  727. for (i = 1; i <= n ; i++) {
  728. BUFFER_TRACE(branch[i].bh, "call jbd2_journal_forget");
  729. ext4_journal_forget(handle, branch[i].bh);
  730. }
  731. for (i = 0; i < indirect_blks; i++)
  732. ext4_free_blocks(handle, inode, new_blocks[i], 1, 0);
  733. ext4_free_blocks(handle, inode, new_blocks[i], num, 0);
  734. return err;
  735. }
  736. /**
  737. * ext4_splice_branch - splice the allocated branch onto inode.
  738. * @inode: owner
  739. * @block: (logical) number of block we are adding
  740. * @chain: chain of indirect blocks (with a missing link - see
  741. * ext4_alloc_branch)
  742. * @where: location of missing link
  743. * @num: number of indirect blocks we are adding
  744. * @blks: number of direct blocks we are adding
  745. *
  746. * This function fills the missing link and does all housekeeping needed in
  747. * inode (->i_blocks, etc.). In case of success we end up with the full
  748. * chain to new block and return 0.
  749. */
  750. static int ext4_splice_branch(handle_t *handle, struct inode *inode,
  751. ext4_lblk_t block, Indirect *where, int num,
  752. int blks)
  753. {
  754. int i;
  755. int err = 0;
  756. ext4_fsblk_t current_block;
  757. /*
  758. * If we're splicing into a [td]indirect block (as opposed to the
  759. * inode) then we need to get write access to the [td]indirect block
  760. * before the splice.
  761. */
  762. if (where->bh) {
  763. BUFFER_TRACE(where->bh, "get_write_access");
  764. err = ext4_journal_get_write_access(handle, where->bh);
  765. if (err)
  766. goto err_out;
  767. }
  768. /* That's it */
  769. *where->p = where->key;
  770. /*
  771. * Update the host buffer_head or inode to point to more just allocated
  772. * direct blocks blocks
  773. */
  774. if (num == 0 && blks > 1) {
  775. current_block = le32_to_cpu(where->key) + 1;
  776. for (i = 1; i < blks; i++)
  777. *(where->p + i) = cpu_to_le32(current_block++);
  778. }
  779. /* We are done with atomic stuff, now do the rest of housekeeping */
  780. /* had we spliced it onto indirect block? */
  781. if (where->bh) {
  782. /*
  783. * If we spliced it onto an indirect block, we haven't
  784. * altered the inode. Note however that if it is being spliced
  785. * onto an indirect block at the very end of the file (the
  786. * file is growing) then we *will* alter the inode to reflect
  787. * the new i_size. But that is not done here - it is done in
  788. * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
  789. */
  790. jbd_debug(5, "splicing indirect only\n");
  791. BUFFER_TRACE(where->bh, "call ext4_handle_dirty_metadata");
  792. err = ext4_handle_dirty_metadata(handle, inode, where->bh);
  793. if (err)
  794. goto err_out;
  795. } else {
  796. /*
  797. * OK, we spliced it into the inode itself on a direct block.
  798. */
  799. ext4_mark_inode_dirty(handle, inode);
  800. jbd_debug(5, "splicing direct\n");
  801. }
  802. return err;
  803. err_out:
  804. for (i = 1; i <= num; i++) {
  805. BUFFER_TRACE(where[i].bh, "call jbd2_journal_forget");
  806. ext4_journal_forget(handle, where[i].bh);
  807. ext4_free_blocks(handle, inode,
  808. le32_to_cpu(where[i-1].key), 1, 0);
  809. }
  810. ext4_free_blocks(handle, inode, le32_to_cpu(where[num].key), blks, 0);
  811. return err;
  812. }
  813. /*
  814. * The ext4_ind_get_blocks() function handles non-extents inodes
  815. * (i.e., using the traditional indirect/double-indirect i_blocks
  816. * scheme) for ext4_get_blocks().
  817. *
  818. * Allocation strategy is simple: if we have to allocate something, we will
  819. * have to go the whole way to leaf. So let's do it before attaching anything
  820. * to tree, set linkage between the newborn blocks, write them if sync is
  821. * required, recheck the path, free and repeat if check fails, otherwise
  822. * set the last missing link (that will protect us from any truncate-generated
  823. * removals - all blocks on the path are immune now) and possibly force the
  824. * write on the parent block.
  825. * That has a nice additional property: no special recovery from the failed
  826. * allocations is needed - we simply release blocks and do not touch anything
  827. * reachable from inode.
  828. *
  829. * `handle' can be NULL if create == 0.
  830. *
  831. * return > 0, # of blocks mapped or allocated.
  832. * return = 0, if plain lookup failed.
  833. * return < 0, error case.
  834. *
  835. * The ext4_ind_get_blocks() function should be called with
  836. * down_write(&EXT4_I(inode)->i_data_sem) if allocating filesystem
  837. * blocks (i.e., flags has EXT4_GET_BLOCKS_CREATE set) or
  838. * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system
  839. * blocks.
  840. */
  841. static int ext4_ind_get_blocks(handle_t *handle, struct inode *inode,
  842. ext4_lblk_t iblock, unsigned int maxblocks,
  843. struct buffer_head *bh_result,
  844. int flags)
  845. {
  846. int err = -EIO;
  847. ext4_lblk_t offsets[4];
  848. Indirect chain[4];
  849. Indirect *partial;
  850. ext4_fsblk_t goal;
  851. int indirect_blks;
  852. int blocks_to_boundary = 0;
  853. int depth;
  854. int count = 0;
  855. ext4_fsblk_t first_block = 0;
  856. J_ASSERT(!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL));
  857. J_ASSERT(handle != NULL || (flags & EXT4_GET_BLOCKS_CREATE) == 0);
  858. depth = ext4_block_to_path(inode, iblock, offsets,
  859. &blocks_to_boundary);
  860. if (depth == 0)
  861. goto out;
  862. partial = ext4_get_branch(inode, depth, offsets, chain, &err);
  863. /* Simplest case - block found, no allocation needed */
  864. if (!partial) {
  865. first_block = le32_to_cpu(chain[depth - 1].key);
  866. clear_buffer_new(bh_result);
  867. count++;
  868. /*map more blocks*/
  869. while (count < maxblocks && count <= blocks_to_boundary) {
  870. ext4_fsblk_t blk;
  871. blk = le32_to_cpu(*(chain[depth-1].p + count));
  872. if (blk == first_block + count)
  873. count++;
  874. else
  875. break;
  876. }
  877. goto got_it;
  878. }
  879. /* Next simple case - plain lookup or failed read of indirect block */
  880. if ((flags & EXT4_GET_BLOCKS_CREATE) == 0 || err == -EIO)
  881. goto cleanup;
  882. /*
  883. * Okay, we need to do block allocation.
  884. */
  885. goal = ext4_find_goal(inode, iblock, partial);
  886. /* the number of blocks need to allocate for [d,t]indirect blocks */
  887. indirect_blks = (chain + depth) - partial - 1;
  888. /*
  889. * Next look up the indirect map to count the totoal number of
  890. * direct blocks to allocate for this branch.
  891. */
  892. count = ext4_blks_to_allocate(partial, indirect_blks,
  893. maxblocks, blocks_to_boundary);
  894. /*
  895. * Block out ext4_truncate while we alter the tree
  896. */
  897. err = ext4_alloc_branch(handle, inode, iblock, indirect_blks,
  898. &count, goal,
  899. offsets + (partial - chain), partial);
  900. /*
  901. * The ext4_splice_branch call will free and forget any buffers
  902. * on the new chain if there is a failure, but that risks using
  903. * up transaction credits, especially for bitmaps where the
  904. * credits cannot be returned. Can we handle this somehow? We
  905. * may need to return -EAGAIN upwards in the worst case. --sct
  906. */
  907. if (!err)
  908. err = ext4_splice_branch(handle, inode, iblock,
  909. partial, indirect_blks, count);
  910. else
  911. goto cleanup;
  912. set_buffer_new(bh_result);
  913. got_it:
  914. map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key));
  915. if (count > blocks_to_boundary)
  916. set_buffer_boundary(bh_result);
  917. err = count;
  918. /* Clean up and exit */
  919. partial = chain + depth - 1; /* the whole chain */
  920. cleanup:
  921. while (partial > chain) {
  922. BUFFER_TRACE(partial->bh, "call brelse");
  923. brelse(partial->bh);
  924. partial--;
  925. }
  926. BUFFER_TRACE(bh_result, "returned");
  927. out:
  928. return err;
  929. }
  930. qsize_t ext4_get_reserved_space(struct inode *inode)
  931. {
  932. unsigned long long total;
  933. spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
  934. total = EXT4_I(inode)->i_reserved_data_blocks +
  935. EXT4_I(inode)->i_reserved_meta_blocks;
  936. spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
  937. return total;
  938. }
  939. /*
  940. * Calculate the number of metadata blocks need to reserve
  941. * to allocate @blocks for non extent file based file
  942. */
  943. static int ext4_indirect_calc_metadata_amount(struct inode *inode, int blocks)
  944. {
  945. int icap = EXT4_ADDR_PER_BLOCK(inode->i_sb);
  946. int ind_blks, dind_blks, tind_blks;
  947. /* number of new indirect blocks needed */
  948. ind_blks = (blocks + icap - 1) / icap;
  949. dind_blks = (ind_blks + icap - 1) / icap;
  950. tind_blks = 1;
  951. return ind_blks + dind_blks + tind_blks;
  952. }
  953. /*
  954. * Calculate the number of metadata blocks need to reserve
  955. * to allocate given number of blocks
  956. */
  957. static int ext4_calc_metadata_amount(struct inode *inode, int blocks)
  958. {
  959. if (!blocks)
  960. return 0;
  961. if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)
  962. return ext4_ext_calc_metadata_amount(inode, blocks);
  963. return ext4_indirect_calc_metadata_amount(inode, blocks);
  964. }
  965. static void ext4_da_update_reserve_space(struct inode *inode, int used)
  966. {
  967. struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
  968. int total, mdb, mdb_free;
  969. spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
  970. /* recalculate the number of metablocks still need to be reserved */
  971. total = EXT4_I(inode)->i_reserved_data_blocks - used;
  972. mdb = ext4_calc_metadata_amount(inode, total);
  973. /* figure out how many metablocks to release */
  974. BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
  975. mdb_free = EXT4_I(inode)->i_reserved_meta_blocks - mdb;
  976. if (mdb_free) {
  977. /* Account for allocated meta_blocks */
  978. mdb_free -= EXT4_I(inode)->i_allocated_meta_blocks;
  979. /* update fs dirty blocks counter */
  980. percpu_counter_sub(&sbi->s_dirtyblocks_counter, mdb_free);
  981. EXT4_I(inode)->i_allocated_meta_blocks = 0;
  982. EXT4_I(inode)->i_reserved_meta_blocks = mdb;
  983. }
  984. /* update per-inode reservations */
  985. BUG_ON(used > EXT4_I(inode)->i_reserved_data_blocks);
  986. EXT4_I(inode)->i_reserved_data_blocks -= used;
  987. spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
  988. /*
  989. * free those over-booking quota for metadata blocks
  990. */
  991. if (mdb_free)
  992. vfs_dq_release_reservation_block(inode, mdb_free);
  993. /*
  994. * If we have done all the pending block allocations and if
  995. * there aren't any writers on the inode, we can discard the
  996. * inode's preallocations.
  997. */
  998. if (!total && (atomic_read(&inode->i_writecount) == 0))
  999. ext4_discard_preallocations(inode);
  1000. }
  1001. static int check_block_validity(struct inode *inode, sector_t logical,
  1002. sector_t phys, int len)
  1003. {
  1004. if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), phys, len)) {
  1005. ext4_error(inode->i_sb, "check_block_validity",
  1006. "inode #%lu logical block %llu mapped to %llu "
  1007. "(size %d)", inode->i_ino,
  1008. (unsigned long long) logical,
  1009. (unsigned long long) phys, len);
  1010. WARN_ON(1);
  1011. return -EIO;
  1012. }
  1013. return 0;
  1014. }
  1015. /*
  1016. * The ext4_get_blocks() function tries to look up the requested blocks,
  1017. * and returns if the blocks are already mapped.
  1018. *
  1019. * Otherwise it takes the write lock of the i_data_sem and allocate blocks
  1020. * and store the allocated blocks in the result buffer head and mark it
  1021. * mapped.
  1022. *
  1023. * If file type is extents based, it will call ext4_ext_get_blocks(),
  1024. * Otherwise, call with ext4_ind_get_blocks() to handle indirect mapping
  1025. * based files
  1026. *
  1027. * On success, it returns the number of blocks being mapped or allocate.
  1028. * if create==0 and the blocks are pre-allocated and uninitialized block,
  1029. * the result buffer head is unmapped. If the create ==1, it will make sure
  1030. * the buffer head is mapped.
  1031. *
  1032. * It returns 0 if plain look up failed (blocks have not been allocated), in
  1033. * that casem, buffer head is unmapped
  1034. *
  1035. * It returns the error in case of allocation failure.
  1036. */
  1037. int ext4_get_blocks(handle_t *handle, struct inode *inode, sector_t block,
  1038. unsigned int max_blocks, struct buffer_head *bh,
  1039. int flags)
  1040. {
  1041. int retval;
  1042. clear_buffer_mapped(bh);
  1043. clear_buffer_unwritten(bh);
  1044. /*
  1045. * Try to see if we can get the block without requesting a new
  1046. * file system block.
  1047. */
  1048. down_read((&EXT4_I(inode)->i_data_sem));
  1049. if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
  1050. retval = ext4_ext_get_blocks(handle, inode, block, max_blocks,
  1051. bh, 0);
  1052. } else {
  1053. retval = ext4_ind_get_blocks(handle, inode, block, max_blocks,
  1054. bh, 0);
  1055. }
  1056. up_read((&EXT4_I(inode)->i_data_sem));
  1057. if (retval > 0 && buffer_mapped(bh)) {
  1058. int ret = check_block_validity(inode, block,
  1059. bh->b_blocknr, retval);
  1060. if (ret != 0)
  1061. return ret;
  1062. }
  1063. /* If it is only a block(s) look up */
  1064. if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
  1065. return retval;
  1066. /*
  1067. * Returns if the blocks have already allocated
  1068. *
  1069. * Note that if blocks have been preallocated
  1070. * ext4_ext_get_block() returns th create = 0
  1071. * with buffer head unmapped.
  1072. */
  1073. if (retval > 0 && buffer_mapped(bh))
  1074. return retval;
  1075. /*
  1076. * When we call get_blocks without the create flag, the
  1077. * BH_Unwritten flag could have gotten set if the blocks
  1078. * requested were part of a uninitialized extent. We need to
  1079. * clear this flag now that we are committed to convert all or
  1080. * part of the uninitialized extent to be an initialized
  1081. * extent. This is because we need to avoid the combination
  1082. * of BH_Unwritten and BH_Mapped flags being simultaneously
  1083. * set on the buffer_head.
  1084. */
  1085. clear_buffer_unwritten(bh);
  1086. /*
  1087. * New blocks allocate and/or writing to uninitialized extent
  1088. * will possibly result in updating i_data, so we take
  1089. * the write lock of i_data_sem, and call get_blocks()
  1090. * with create == 1 flag.
  1091. */
  1092. down_write((&EXT4_I(inode)->i_data_sem));
  1093. /*
  1094. * if the caller is from delayed allocation writeout path
  1095. * we have already reserved fs blocks for allocation
  1096. * let the underlying get_block() function know to
  1097. * avoid double accounting
  1098. */
  1099. if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
  1100. EXT4_I(inode)->i_delalloc_reserved_flag = 1;
  1101. /*
  1102. * We need to check for EXT4 here because migrate
  1103. * could have changed the inode type in between
  1104. */
  1105. if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
  1106. retval = ext4_ext_get_blocks(handle, inode, block, max_blocks,
  1107. bh, flags);
  1108. } else {
  1109. retval = ext4_ind_get_blocks(handle, inode, block,
  1110. max_blocks, bh, flags);
  1111. if (retval > 0 && buffer_new(bh)) {
  1112. /*
  1113. * We allocated new blocks which will result in
  1114. * i_data's format changing. Force the migrate
  1115. * to fail by clearing migrate flags
  1116. */
  1117. EXT4_I(inode)->i_flags = EXT4_I(inode)->i_flags &
  1118. ~EXT4_EXT_MIGRATE;
  1119. }
  1120. }
  1121. if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
  1122. EXT4_I(inode)->i_delalloc_reserved_flag = 0;
  1123. /*
  1124. * Update reserved blocks/metadata blocks after successful
  1125. * block allocation which had been deferred till now.
  1126. */
  1127. if ((retval > 0) && (flags & EXT4_GET_BLOCKS_UPDATE_RESERVE_SPACE))
  1128. ext4_da_update_reserve_space(inode, retval);
  1129. up_write((&EXT4_I(inode)->i_data_sem));
  1130. if (retval > 0 && buffer_mapped(bh)) {
  1131. int ret = check_block_validity(inode, block,
  1132. bh->b_blocknr, retval);
  1133. if (ret != 0)
  1134. return ret;
  1135. }
  1136. return retval;
  1137. }
  1138. /* Maximum number of blocks we map for direct IO at once. */
  1139. #define DIO_MAX_BLOCKS 4096
  1140. int ext4_get_block(struct inode *inode, sector_t iblock,
  1141. struct buffer_head *bh_result, int create)
  1142. {
  1143. handle_t *handle = ext4_journal_current_handle();
  1144. int ret = 0, started = 0;
  1145. unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
  1146. int dio_credits;
  1147. if (create && !handle) {
  1148. /* Direct IO write... */
  1149. if (max_blocks > DIO_MAX_BLOCKS)
  1150. max_blocks = DIO_MAX_BLOCKS;
  1151. dio_credits = ext4_chunk_trans_blocks(inode, max_blocks);
  1152. handle = ext4_journal_start(inode, dio_credits);
  1153. if (IS_ERR(handle)) {
  1154. ret = PTR_ERR(handle);
  1155. goto out;
  1156. }
  1157. started = 1;
  1158. }
  1159. ret = ext4_get_blocks(handle, inode, iblock, max_blocks, bh_result,
  1160. create ? EXT4_GET_BLOCKS_CREATE : 0);
  1161. if (ret > 0) {
  1162. bh_result->b_size = (ret << inode->i_blkbits);
  1163. ret = 0;
  1164. }
  1165. if (started)
  1166. ext4_journal_stop(handle);
  1167. out:
  1168. return ret;
  1169. }
  1170. /*
  1171. * `handle' can be NULL if create is zero
  1172. */
  1173. struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
  1174. ext4_lblk_t block, int create, int *errp)
  1175. {
  1176. struct buffer_head dummy;
  1177. int fatal = 0, err;
  1178. int flags = 0;
  1179. J_ASSERT(handle != NULL || create == 0);
  1180. dummy.b_state = 0;
  1181. dummy.b_blocknr = -1000;
  1182. buffer_trace_init(&dummy.b_history);
  1183. if (create)
  1184. flags |= EXT4_GET_BLOCKS_CREATE;
  1185. err = ext4_get_blocks(handle, inode, block, 1, &dummy, flags);
  1186. /*
  1187. * ext4_get_blocks() returns number of blocks mapped. 0 in
  1188. * case of a HOLE.
  1189. */
  1190. if (err > 0) {
  1191. if (err > 1)
  1192. WARN_ON(1);
  1193. err = 0;
  1194. }
  1195. *errp = err;
  1196. if (!err && buffer_mapped(&dummy)) {
  1197. struct buffer_head *bh;
  1198. bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
  1199. if (!bh) {
  1200. *errp = -EIO;
  1201. goto err;
  1202. }
  1203. if (buffer_new(&dummy)) {
  1204. J_ASSERT(create != 0);
  1205. J_ASSERT(handle != NULL);
  1206. /*
  1207. * Now that we do not always journal data, we should
  1208. * keep in mind whether this should always journal the
  1209. * new buffer as metadata. For now, regular file
  1210. * writes use ext4_get_block instead, so it's not a
  1211. * problem.
  1212. */
  1213. lock_buffer(bh);
  1214. BUFFER_TRACE(bh, "call get_create_access");
  1215. fatal = ext4_journal_get_create_access(handle, bh);
  1216. if (!fatal && !buffer_uptodate(bh)) {
  1217. memset(bh->b_data, 0, inode->i_sb->s_blocksize);
  1218. set_buffer_uptodate(bh);
  1219. }
  1220. unlock_buffer(bh);
  1221. BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
  1222. err = ext4_handle_dirty_metadata(handle, inode, bh);
  1223. if (!fatal)
  1224. fatal = err;
  1225. } else {
  1226. BUFFER_TRACE(bh, "not a new buffer");
  1227. }
  1228. if (fatal) {
  1229. *errp = fatal;
  1230. brelse(bh);
  1231. bh = NULL;
  1232. }
  1233. return bh;
  1234. }
  1235. err:
  1236. return NULL;
  1237. }
  1238. struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
  1239. ext4_lblk_t block, int create, int *err)
  1240. {
  1241. struct buffer_head *bh;
  1242. bh = ext4_getblk(handle, inode, block, create, err);
  1243. if (!bh)
  1244. return bh;
  1245. if (buffer_uptodate(bh))
  1246. return bh;
  1247. ll_rw_block(READ_META, 1, &bh);
  1248. wait_on_buffer(bh);
  1249. if (buffer_uptodate(bh))
  1250. return bh;
  1251. put_bh(bh);
  1252. *err = -EIO;
  1253. return NULL;
  1254. }
  1255. static int walk_page_buffers(handle_t *handle,
  1256. struct buffer_head *head,
  1257. unsigned from,
  1258. unsigned to,
  1259. int *partial,
  1260. int (*fn)(handle_t *handle,
  1261. struct buffer_head *bh))
  1262. {
  1263. struct buffer_head *bh;
  1264. unsigned block_start, block_end;
  1265. unsigned blocksize = head->b_size;
  1266. int err, ret = 0;
  1267. struct buffer_head *next;
  1268. for (bh = head, block_start = 0;
  1269. ret == 0 && (bh != head || !block_start);
  1270. block_start = block_end, bh = next) {
  1271. next = bh->b_this_page;
  1272. block_end = block_start + blocksize;
  1273. if (block_end <= from || block_start >= to) {
  1274. if (partial && !buffer_uptodate(bh))
  1275. *partial = 1;
  1276. continue;
  1277. }
  1278. err = (*fn)(handle, bh);
  1279. if (!ret)
  1280. ret = err;
  1281. }
  1282. return ret;
  1283. }
  1284. /*
  1285. * To preserve ordering, it is essential that the hole instantiation and
  1286. * the data write be encapsulated in a single transaction. We cannot
  1287. * close off a transaction and start a new one between the ext4_get_block()
  1288. * and the commit_write(). So doing the jbd2_journal_start at the start of
  1289. * prepare_write() is the right place.
  1290. *
  1291. * Also, this function can nest inside ext4_writepage() ->
  1292. * block_write_full_page(). In that case, we *know* that ext4_writepage()
  1293. * has generated enough buffer credits to do the whole page. So we won't
  1294. * block on the journal in that case, which is good, because the caller may
  1295. * be PF_MEMALLOC.
  1296. *
  1297. * By accident, ext4 can be reentered when a transaction is open via
  1298. * quota file writes. If we were to commit the transaction while thus
  1299. * reentered, there can be a deadlock - we would be holding a quota
  1300. * lock, and the commit would never complete if another thread had a
  1301. * transaction open and was blocking on the quota lock - a ranking
  1302. * violation.
  1303. *
  1304. * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
  1305. * will _not_ run commit under these circumstances because handle->h_ref
  1306. * is elevated. We'll still have enough credits for the tiny quotafile
  1307. * write.
  1308. */
  1309. static int do_journal_get_write_access(handle_t *handle,
  1310. struct buffer_head *bh)
  1311. {
  1312. if (!buffer_mapped(bh) || buffer_freed(bh))
  1313. return 0;
  1314. return ext4_journal_get_write_access(handle, bh);
  1315. }
  1316. static int ext4_write_begin(struct file *file, struct address_space *mapping,
  1317. loff_t pos, unsigned len, unsigned flags,
  1318. struct page **pagep, void **fsdata)
  1319. {
  1320. struct inode *inode = mapping->host;
  1321. int ret, needed_blocks;
  1322. handle_t *handle;
  1323. int retries = 0;
  1324. struct page *page;
  1325. pgoff_t index;
  1326. unsigned from, to;
  1327. trace_ext4_write_begin(inode, pos, len, flags);
  1328. /*
  1329. * Reserve one block more for addition to orphan list in case
  1330. * we allocate blocks but write fails for some reason
  1331. */
  1332. needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
  1333. index = pos >> PAGE_CACHE_SHIFT;
  1334. from = pos & (PAGE_CACHE_SIZE - 1);
  1335. to = from + len;
  1336. retry:
  1337. handle = ext4_journal_start(inode, needed_blocks);
  1338. if (IS_ERR(handle)) {
  1339. ret = PTR_ERR(handle);
  1340. goto out;
  1341. }
  1342. /* We cannot recurse into the filesystem as the transaction is already
  1343. * started */
  1344. flags |= AOP_FLAG_NOFS;
  1345. page = grab_cache_page_write_begin(mapping, index, flags);
  1346. if (!page) {
  1347. ext4_journal_stop(handle);
  1348. ret = -ENOMEM;
  1349. goto out;
  1350. }
  1351. *pagep = page;
  1352. ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
  1353. ext4_get_block);
  1354. if (!ret && ext4_should_journal_data(inode)) {
  1355. ret = walk_page_buffers(handle, page_buffers(page),
  1356. from, to, NULL, do_journal_get_write_access);
  1357. }
  1358. if (ret) {
  1359. unlock_page(page);
  1360. page_cache_release(page);
  1361. /*
  1362. * block_write_begin may have instantiated a few blocks
  1363. * outside i_size. Trim these off again. Don't need
  1364. * i_size_read because we hold i_mutex.
  1365. *
  1366. * Add inode to orphan list in case we crash before
  1367. * truncate finishes
  1368. */
  1369. if (pos + len > inode->i_size && ext4_can_truncate(inode))
  1370. ext4_orphan_add(handle, inode);
  1371. ext4_journal_stop(handle);
  1372. if (pos + len > inode->i_size) {
  1373. ext4_truncate(inode);
  1374. /*
  1375. * If truncate failed early the inode might
  1376. * still be on the orphan list; we need to
  1377. * make sure the inode is removed from the
  1378. * orphan list in that case.
  1379. */
  1380. if (inode->i_nlink)
  1381. ext4_orphan_del(NULL, inode);
  1382. }
  1383. }
  1384. if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
  1385. goto retry;
  1386. out:
  1387. return ret;
  1388. }
  1389. /* For write_end() in data=journal mode */
  1390. static int write_end_fn(handle_t *handle, struct buffer_head *bh)
  1391. {
  1392. if (!buffer_mapped(bh) || buffer_freed(bh))
  1393. return 0;
  1394. set_buffer_uptodate(bh);
  1395. return ext4_handle_dirty_metadata(handle, NULL, bh);
  1396. }
  1397. static int ext4_generic_write_end(struct file *file,
  1398. struct address_space *mapping,
  1399. loff_t pos, unsigned len, unsigned copied,
  1400. struct page *page, void *fsdata)
  1401. {
  1402. int i_size_changed = 0;
  1403. struct inode *inode = mapping->host;
  1404. handle_t *handle = ext4_journal_current_handle();
  1405. copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
  1406. /*
  1407. * No need to use i_size_read() here, the i_size
  1408. * cannot change under us because we hold i_mutex.
  1409. *
  1410. * But it's important to update i_size while still holding page lock:
  1411. * page writeout could otherwise come in and zero beyond i_size.
  1412. */
  1413. if (pos + copied > inode->i_size) {
  1414. i_size_write(inode, pos + copied);
  1415. i_size_changed = 1;
  1416. }
  1417. if (pos + copied > EXT4_I(inode)->i_disksize) {
  1418. /* We need to mark inode dirty even if
  1419. * new_i_size is less that inode->i_size
  1420. * bu greater than i_disksize.(hint delalloc)
  1421. */
  1422. ext4_update_i_disksize(inode, (pos + copied));
  1423. i_size_changed = 1;
  1424. }
  1425. unlock_page(page);
  1426. page_cache_release(page);
  1427. /*
  1428. * Don't mark the inode dirty under page lock. First, it unnecessarily
  1429. * makes the holding time of page lock longer. Second, it forces lock
  1430. * ordering of page lock and transaction start for journaling
  1431. * filesystems.
  1432. */
  1433. if (i_size_changed)
  1434. ext4_mark_inode_dirty(handle, inode);
  1435. return copied;
  1436. }
  1437. /*
  1438. * We need to pick up the new inode size which generic_commit_write gave us
  1439. * `file' can be NULL - eg, when called from page_symlink().
  1440. *
  1441. * ext4 never places buffers on inode->i_mapping->private_list. metadata
  1442. * buffers are managed internally.
  1443. */
  1444. static int ext4_ordered_write_end(struct file *file,
  1445. struct address_space *mapping,
  1446. loff_t pos, unsigned len, unsigned copied,
  1447. struct page *page, void *fsdata)
  1448. {
  1449. handle_t *handle = ext4_journal_current_handle();
  1450. struct inode *inode = mapping->host;
  1451. int ret = 0, ret2;
  1452. trace_ext4_ordered_write_end(inode, pos, len, copied);
  1453. ret = ext4_jbd2_file_inode(handle, inode);
  1454. if (ret == 0) {
  1455. ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
  1456. page, fsdata);
  1457. copied = ret2;
  1458. if (pos + len > inode->i_size && ext4_can_truncate(inode))
  1459. /* if we have allocated more blocks and copied
  1460. * less. We will have blocks allocated outside
  1461. * inode->i_size. So truncate them
  1462. */
  1463. ext4_orphan_add(handle, inode);
  1464. if (ret2 < 0)
  1465. ret = ret2;
  1466. }
  1467. ret2 = ext4_journal_stop(handle);
  1468. if (!ret)
  1469. ret = ret2;
  1470. if (pos + len > inode->i_size) {
  1471. ext4_truncate(inode);
  1472. /*
  1473. * If truncate failed early the inode might still be
  1474. * on the orphan list; we need to make sure the inode
  1475. * is removed from the orphan list in that case.
  1476. */
  1477. if (inode->i_nlink)
  1478. ext4_orphan_del(NULL, inode);
  1479. }
  1480. return ret ? ret : copied;
  1481. }
  1482. static int ext4_writeback_write_end(struct file *file,
  1483. struct address_space *mapping,
  1484. loff_t pos, unsigned len, unsigned copied,
  1485. struct page *page, void *fsdata)
  1486. {
  1487. handle_t *handle = ext4_journal_current_handle();
  1488. struct inode *inode = mapping->host;
  1489. int ret = 0, ret2;
  1490. trace_ext4_writeback_write_end(inode, pos, len, copied);
  1491. ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
  1492. page, fsdata);
  1493. copied = ret2;
  1494. if (pos + len > inode->i_size && ext4_can_truncate(inode))
  1495. /* if we have allocated more blocks and copied
  1496. * less. We will have blocks allocated outside
  1497. * inode->i_size. So truncate them
  1498. */
  1499. ext4_orphan_add(handle, inode);
  1500. if (ret2 < 0)
  1501. ret = ret2;
  1502. ret2 = ext4_journal_stop(handle);
  1503. if (!ret)
  1504. ret = ret2;
  1505. if (pos + len > inode->i_size) {
  1506. ext4_truncate(inode);
  1507. /*
  1508. * If truncate failed early the inode might still be
  1509. * on the orphan list; we need to make sure the inode
  1510. * is removed from the orphan list in that case.
  1511. */
  1512. if (inode->i_nlink)
  1513. ext4_orphan_del(NULL, inode);
  1514. }
  1515. return ret ? ret : copied;
  1516. }
  1517. static int ext4_journalled_write_end(struct file *file,
  1518. struct address_space *mapping,
  1519. loff_t pos, unsigned len, unsigned copied,
  1520. struct page *page, void *fsdata)
  1521. {
  1522. handle_t *handle = ext4_journal_current_handle();
  1523. struct inode *inode = mapping->host;
  1524. int ret = 0, ret2;
  1525. int partial = 0;
  1526. unsigned from, to;
  1527. loff_t new_i_size;
  1528. trace_ext4_journalled_write_end(inode, pos, len, copied);
  1529. from = pos & (PAGE_CACHE_SIZE - 1);
  1530. to = from + len;
  1531. if (copied < len) {
  1532. if (!PageUptodate(page))
  1533. copied = 0;
  1534. page_zero_new_buffers(page, from+copied, to);
  1535. }
  1536. ret = walk_page_buffers(handle, page_buffers(page), from,
  1537. to, &partial, write_end_fn);
  1538. if (!partial)
  1539. SetPageUptodate(page);
  1540. new_i_size = pos + copied;
  1541. if (new_i_size > inode->i_size)
  1542. i_size_write(inode, pos+copied);
  1543. EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
  1544. if (new_i_size > EXT4_I(inode)->i_disksize) {
  1545. ext4_update_i_disksize(inode, new_i_size);
  1546. ret2 = ext4_mark_inode_dirty(handle, inode);
  1547. if (!ret)
  1548. ret = ret2;
  1549. }
  1550. unlock_page(page);
  1551. page_cache_release(page);
  1552. if (pos + len > inode->i_size && ext4_can_truncate(inode))
  1553. /* if we have allocated more blocks and copied
  1554. * less. We will have blocks allocated outside
  1555. * inode->i_size. So truncate them
  1556. */
  1557. ext4_orphan_add(handle, inode);
  1558. ret2 = ext4_journal_stop(handle);
  1559. if (!ret)
  1560. ret = ret2;
  1561. if (pos + len > inode->i_size) {
  1562. ext4_truncate(inode);
  1563. /*
  1564. * If truncate failed early the inode might still be
  1565. * on the orphan list; we need to make sure the inode
  1566. * is removed from the orphan list in that case.
  1567. */
  1568. if (inode->i_nlink)
  1569. ext4_orphan_del(NULL, inode);
  1570. }
  1571. return ret ? ret : copied;
  1572. }
  1573. static int ext4_da_reserve_space(struct inode *inode, int nrblocks)
  1574. {
  1575. int retries = 0;
  1576. struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
  1577. unsigned long md_needed, mdblocks, total = 0;
  1578. /*
  1579. * recalculate the amount of metadata blocks to reserve
  1580. * in order to allocate nrblocks
  1581. * worse case is one extent per block
  1582. */
  1583. repeat:
  1584. spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
  1585. total = EXT4_I(inode)->i_reserved_data_blocks + nrblocks;
  1586. mdblocks = ext4_calc_metadata_amount(inode, total);
  1587. BUG_ON(mdblocks < EXT4_I(inode)->i_reserved_meta_blocks);
  1588. md_needed = mdblocks - EXT4_I(inode)->i_reserved_meta_blocks;
  1589. total = md_needed + nrblocks;
  1590. /*
  1591. * Make quota reservation here to prevent quota overflow
  1592. * later. Real quota accounting is done at pages writeout
  1593. * time.
  1594. */
  1595. if (vfs_dq_reserve_block(inode, total)) {
  1596. spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
  1597. return -EDQUOT;
  1598. }
  1599. if (ext4_claim_free_blocks(sbi, total)) {
  1600. spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
  1601. if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
  1602. yield();
  1603. goto repeat;
  1604. }
  1605. vfs_dq_release_reservation_block(inode, total);
  1606. return -ENOSPC;
  1607. }
  1608. EXT4_I(inode)->i_reserved_data_blocks += nrblocks;
  1609. EXT4_I(inode)->i_reserved_meta_blocks = mdblocks;
  1610. spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
  1611. return 0; /* success */
  1612. }
  1613. static void ext4_da_release_space(struct inode *inode, int to_free)
  1614. {
  1615. struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
  1616. int total, mdb, mdb_free, release;
  1617. if (!to_free)
  1618. return; /* Nothing to release, exit */
  1619. spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
  1620. if (!EXT4_I(inode)->i_reserved_data_blocks) {
  1621. /*
  1622. * if there is no reserved blocks, but we try to free some
  1623. * then the counter is messed up somewhere.
  1624. * but since this function is called from invalidate
  1625. * page, it's harmless to return without any action
  1626. */
  1627. printk(KERN_INFO "ext4 delalloc try to release %d reserved "
  1628. "blocks for inode %lu, but there is no reserved "
  1629. "data blocks\n", to_free, inode->i_ino);
  1630. spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
  1631. return;
  1632. }
  1633. /* recalculate the number of metablocks still need to be reserved */
  1634. total = EXT4_I(inode)->i_reserved_data_blocks - to_free;
  1635. mdb = ext4_calc_metadata_amount(inode, total);
  1636. /* figure out how many metablocks to release */
  1637. BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
  1638. mdb_free = EXT4_I(inode)->i_reserved_meta_blocks - mdb;
  1639. release = to_free + mdb_free;
  1640. /* update fs dirty blocks counter for truncate case */
  1641. percpu_counter_sub(&sbi->s_dirtyblocks_counter, release);
  1642. /* update per-inode reservations */
  1643. BUG_ON(to_free > EXT4_I(inode)->i_reserved_data_blocks);
  1644. EXT4_I(inode)->i_reserved_data_blocks -= to_free;
  1645. BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
  1646. EXT4_I(inode)->i_reserved_meta_blocks = mdb;
  1647. spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
  1648. vfs_dq_release_reservation_block(inode, release);
  1649. }
  1650. static void ext4_da_page_release_reservation(struct page *page,
  1651. unsigned long offset)
  1652. {
  1653. int to_release = 0;
  1654. struct buffer_head *head, *bh;
  1655. unsigned int curr_off = 0;
  1656. head = page_buffers(page);
  1657. bh = head;
  1658. do {
  1659. unsigned int next_off = curr_off + bh->b_size;
  1660. if ((offset <= curr_off) && (buffer_delay(bh))) {
  1661. to_release++;
  1662. clear_buffer_delay(bh);
  1663. }
  1664. curr_off = next_off;
  1665. } while ((bh = bh->b_this_page) != head);
  1666. ext4_da_release_space(page->mapping->host, to_release);
  1667. }
  1668. /*
  1669. * Delayed allocation stuff
  1670. */
  1671. struct mpage_da_data {
  1672. struct inode *inode;
  1673. sector_t b_blocknr; /* start block number of extent */
  1674. size_t b_size; /* size of extent */
  1675. unsigned long b_state; /* state of the extent */
  1676. unsigned long first_page, next_page; /* extent of pages */
  1677. struct writeback_control *wbc;
  1678. int io_done;
  1679. int pages_written;
  1680. int retval;
  1681. };
  1682. /*
  1683. * mpage_da_submit_io - walks through extent of pages and try to write
  1684. * them with writepage() call back
  1685. *
  1686. * @mpd->inode: inode
  1687. * @mpd->first_page: first page of the extent
  1688. * @mpd->next_page: page after the last page of the extent
  1689. *
  1690. * By the time mpage_da_submit_io() is called we expect all blocks
  1691. * to be allocated. this may be wrong if allocation failed.
  1692. *
  1693. * As pages are already locked by write_cache_pages(), we can't use it
  1694. */
  1695. static int mpage_da_submit_io(struct mpage_da_data *mpd)
  1696. {
  1697. long pages_skipped;
  1698. struct pagevec pvec;
  1699. unsigned long index, end;
  1700. int ret = 0, err, nr_pages, i;
  1701. struct inode *inode = mpd->inode;
  1702. struct address_space *mapping = inode->i_mapping;
  1703. BUG_ON(mpd->next_page <= mpd->first_page);
  1704. /*
  1705. * We need to start from the first_page to the next_page - 1
  1706. * to make sure we also write the mapped dirty buffer_heads.
  1707. * If we look at mpd->b_blocknr we would only be looking
  1708. * at the currently mapped buffer_heads.
  1709. */
  1710. index = mpd->first_page;
  1711. end = mpd->next_page - 1;
  1712. pagevec_init(&pvec, 0);
  1713. while (index <= end) {
  1714. nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
  1715. if (nr_pages == 0)
  1716. break;
  1717. for (i = 0; i < nr_pages; i++) {
  1718. struct page *page = pvec.pages[i];
  1719. index = page->index;
  1720. if (index > end)
  1721. break;
  1722. index++;
  1723. BUG_ON(!PageLocked(page));
  1724. BUG_ON(PageWriteback(page));
  1725. pages_skipped = mpd->wbc->pages_skipped;
  1726. err = mapping->a_ops->writepage(page, mpd->wbc);
  1727. if (!err && (pages_skipped == mpd->wbc->pages_skipped))
  1728. /*
  1729. * have successfully written the page
  1730. * without skipping the same
  1731. */
  1732. mpd->pages_written++;
  1733. /*
  1734. * In error case, we have to continue because
  1735. * remaining pages are still locked
  1736. * XXX: unlock and re-dirty them?
  1737. */
  1738. if (ret == 0)
  1739. ret = err;
  1740. }
  1741. pagevec_release(&pvec);
  1742. }
  1743. return ret;
  1744. }
  1745. /*
  1746. * mpage_put_bnr_to_bhs - walk blocks and assign them actual numbers
  1747. *
  1748. * @mpd->inode - inode to walk through
  1749. * @exbh->b_blocknr - first block on a disk
  1750. * @exbh->b_size - amount of space in bytes
  1751. * @logical - first logical block to start assignment with
  1752. *
  1753. * the function goes through all passed space and put actual disk
  1754. * block numbers into buffer heads, dropping BH_Delay and BH_Unwritten
  1755. */
  1756. static void mpage_put_bnr_to_bhs(struct mpage_da_data *mpd, sector_t logical,
  1757. struct buffer_head *exbh)
  1758. {
  1759. struct inode *inode = mpd->inode;
  1760. struct address_space *mapping = inode->i_mapping;
  1761. int blocks = exbh->b_size >> inode->i_blkbits;
  1762. sector_t pblock = exbh->b_blocknr, cur_logical;
  1763. struct buffer_head *head, *bh;
  1764. pgoff_t index, end;
  1765. struct pagevec pvec;
  1766. int nr_pages, i;
  1767. index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
  1768. end = (logical + blocks - 1) >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
  1769. cur_logical = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
  1770. pagevec_init(&pvec, 0);
  1771. while (index <= end) {
  1772. /* XXX: optimize tail */
  1773. nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
  1774. if (nr_pages == 0)
  1775. break;
  1776. for (i = 0; i < nr_pages; i++) {
  1777. struct page *page = pvec.pages[i];
  1778. index = page->index;
  1779. if (index > end)
  1780. break;
  1781. index++;
  1782. BUG_ON(!PageLocked(page));
  1783. BUG_ON(PageWriteback(page));
  1784. BUG_ON(!page_has_buffers(page));
  1785. bh = page_buffers(page);
  1786. head = bh;
  1787. /* skip blocks out of the range */
  1788. do {
  1789. if (cur_logical >= logical)
  1790. break;
  1791. cur_logical++;
  1792. } while ((bh = bh->b_this_page) != head);
  1793. do {
  1794. if (cur_logical >= logical + blocks)
  1795. break;
  1796. if (buffer_delay(bh) ||
  1797. buffer_unwritten(bh)) {
  1798. BUG_ON(bh->b_bdev != inode->i_sb->s_bdev);
  1799. if (buffer_delay(bh)) {
  1800. clear_buffer_delay(bh);
  1801. bh->b_blocknr = pblock;
  1802. } else {
  1803. /*
  1804. * unwritten already should have
  1805. * blocknr assigned. Verify that
  1806. */
  1807. clear_buffer_unwritten(bh);
  1808. BUG_ON(bh->b_blocknr != pblock);
  1809. }
  1810. } else if (buffer_mapped(bh))
  1811. BUG_ON(bh->b_blocknr != pblock);
  1812. cur_logical++;
  1813. pblock++;
  1814. } while ((bh = bh->b_this_page) != head);
  1815. }
  1816. pagevec_release(&pvec);
  1817. }
  1818. }
  1819. /*
  1820. * __unmap_underlying_blocks - just a helper function to unmap
  1821. * set of blocks described by @bh
  1822. */
  1823. static inline void __unmap_underlying_blocks(struct inode *inode,
  1824. struct buffer_head *bh)
  1825. {
  1826. struct block_device *bdev = inode->i_sb->s_bdev;
  1827. int blocks, i;
  1828. blocks = bh->b_size >> inode->i_blkbits;
  1829. for (i = 0; i < blocks; i++)
  1830. unmap_underlying_metadata(bdev, bh->b_blocknr + i);
  1831. }
  1832. static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd,
  1833. sector_t logical, long blk_cnt)
  1834. {
  1835. int nr_pages, i;
  1836. pgoff_t index, end;
  1837. struct pagevec pvec;
  1838. struct inode *inode = mpd->inode;
  1839. struct address_space *mapping = inode->i_mapping;
  1840. index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
  1841. end = (logical + blk_cnt - 1) >>
  1842. (PAGE_CACHE_SHIFT - inode->i_blkbits);
  1843. while (index <= end) {
  1844. nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
  1845. if (nr_pages == 0)
  1846. break;
  1847. for (i = 0; i < nr_pages; i++) {
  1848. struct page *page = pvec.pages[i];
  1849. index = page->index;
  1850. if (index > end)
  1851. break;
  1852. index++;
  1853. BUG_ON(!PageLocked(page));
  1854. BUG_ON(PageWriteback(page));
  1855. block_invalidatepage(page, 0);
  1856. ClearPageUptodate(page);
  1857. unlock_page(page);
  1858. }
  1859. }
  1860. return;
  1861. }
  1862. static void ext4_print_free_blocks(struct inode *inode)
  1863. {
  1864. struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
  1865. printk(KERN_EMERG "Total free blocks count %lld\n",
  1866. ext4_count_free_blocks(inode->i_sb));
  1867. printk(KERN_EMERG "Free/Dirty block details\n");
  1868. printk(KERN_EMERG "free_blocks=%lld\n",
  1869. (long long)percpu_counter_sum(&sbi->s_freeblocks_counter));
  1870. printk(KERN_EMERG "dirty_blocks=%lld\n",
  1871. (long long)percpu_counter_sum(&sbi->s_dirtyblocks_counter));
  1872. printk(KERN_EMERG "Block reservation details\n");
  1873. printk(KERN_EMERG "i_reserved_data_blocks=%u\n",
  1874. EXT4_I(inode)->i_reserved_data_blocks);
  1875. printk(KERN_EMERG "i_reserved_meta_blocks=%u\n",
  1876. EXT4_I(inode)->i_reserved_meta_blocks);
  1877. return;
  1878. }
  1879. /*
  1880. * mpage_da_map_blocks - go through given space
  1881. *
  1882. * @mpd - bh describing space
  1883. *
  1884. * The function skips space we know is already mapped to disk blocks.
  1885. *
  1886. */
  1887. static int mpage_da_map_blocks(struct mpage_da_data *mpd)
  1888. {
  1889. int err, blks, get_blocks_flags;
  1890. struct buffer_head new;
  1891. sector_t next = mpd->b_blocknr;
  1892. unsigned max_blocks = mpd->b_size >> mpd->inode->i_blkbits;
  1893. loff_t disksize = EXT4_I(mpd->inode)->i_disksize;
  1894. handle_t *handle = NULL;
  1895. /*
  1896. * We consider only non-mapped and non-allocated blocks
  1897. */
  1898. if ((mpd->b_state & (1 << BH_Mapped)) &&
  1899. !(mpd->b_state & (1 << BH_Delay)) &&
  1900. !(mpd->b_state & (1 << BH_Unwritten)))
  1901. return 0;
  1902. /*
  1903. * If we didn't accumulate anything to write simply return
  1904. */
  1905. if (!mpd->b_size)
  1906. return 0;
  1907. handle = ext4_journal_current_handle();
  1908. BUG_ON(!handle);
  1909. /*
  1910. * Call ext4_get_blocks() to allocate any delayed allocation
  1911. * blocks, or to convert an uninitialized extent to be
  1912. * initialized (in the case where we have written into
  1913. * one or more preallocated blocks).
  1914. *
  1915. * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to
  1916. * indicate that we are on the delayed allocation path. This
  1917. * affects functions in many different parts of the allocation
  1918. * call path. This flag exists primarily because we don't
  1919. * want to change *many* call functions, so ext4_get_blocks()
  1920. * will set the magic i_delalloc_reserved_flag once the
  1921. * inode's allocation semaphore is taken.
  1922. *
  1923. * If the blocks in questions were delalloc blocks, set
  1924. * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting
  1925. * variables are updated after the blocks have been allocated.
  1926. */
  1927. new.b_state = 0;
  1928. get_blocks_flags = (EXT4_GET_BLOCKS_CREATE |
  1929. EXT4_GET_BLOCKS_DELALLOC_RESERVE);
  1930. if (mpd->b_state & (1 << BH_Delay))
  1931. get_blocks_flags |= EXT4_GET_BLOCKS_UPDATE_RESERVE_SPACE;
  1932. blks = ext4_get_blocks(handle, mpd->inode, next, max_blocks,
  1933. &new, get_blocks_flags);
  1934. if (blks < 0) {
  1935. err = blks;
  1936. /*
  1937. * If get block returns with error we simply
  1938. * return. Later writepage will redirty the page and
  1939. * writepages will find the dirty page again
  1940. */
  1941. if (err == -EAGAIN)
  1942. return 0;
  1943. if (err == -ENOSPC &&
  1944. ext4_count_free_blocks(mpd->inode->i_sb)) {
  1945. mpd->retval = err;
  1946. return 0;
  1947. }
  1948. /*
  1949. * get block failure will cause us to loop in
  1950. * writepages, because a_ops->writepage won't be able
  1951. * to make progress. The page will be redirtied by
  1952. * writepage and writepages will again try to write
  1953. * the same.
  1954. */
  1955. printk(KERN_EMERG "%s block allocation failed for inode %lu "
  1956. "at logical offset %llu with max blocks "
  1957. "%zd with error %d\n",
  1958. __func__, mpd->inode->i_ino,
  1959. (unsigned long long)next,
  1960. mpd->b_size >> mpd->inode->i_blkbits, err);
  1961. printk(KERN_EMERG "This should not happen.!! "
  1962. "Data will be lost\n");
  1963. if (err == -ENOSPC) {
  1964. ext4_print_free_blocks(mpd->inode);
  1965. }
  1966. /* invalidate all the pages */
  1967. ext4_da_block_invalidatepages(mpd, next,
  1968. mpd->b_size >> mpd->inode->i_blkbits);
  1969. return err;
  1970. }
  1971. BUG_ON(blks == 0);
  1972. new.b_size = (blks << mpd->inode->i_blkbits);
  1973. if (buffer_new(&new))
  1974. __unmap_underlying_blocks(mpd->inode, &new);
  1975. /*
  1976. * If blocks are delayed marked, we need to
  1977. * put actual blocknr and drop delayed bit
  1978. */
  1979. if ((mpd->b_state & (1 << BH_Delay)) ||
  1980. (mpd->b_state & (1 << BH_Unwritten)))
  1981. mpage_put_bnr_to_bhs(mpd, next, &new);
  1982. if (ext4_should_order_data(mpd->inode)) {
  1983. err = ext4_jbd2_file_inode(handle, mpd->inode);
  1984. if (err)
  1985. return err;
  1986. }
  1987. /*
  1988. * Update on-disk size along with block allocation.
  1989. */
  1990. disksize = ((loff_t) next + blks) << mpd->inode->i_blkbits;
  1991. if (disksize > i_size_read(mpd->inode))
  1992. disksize = i_size_read(mpd->inode);
  1993. if (disksize > EXT4_I(mpd->inode)->i_disksize) {
  1994. ext4_update_i_disksize(mpd->inode, disksize);
  1995. return ext4_mark_inode_dirty(handle, mpd->inode);
  1996. }
  1997. return 0;
  1998. }
  1999. #define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
  2000. (1 << BH_Delay) | (1 << BH_Unwritten))
  2001. /*
  2002. * mpage_add_bh_to_extent - try to add one more block to extent of blocks
  2003. *
  2004. * @mpd->lbh - extent of blocks
  2005. * @logical - logical number of the block in the file
  2006. * @bh - bh of the block (used to access block's state)
  2007. *
  2008. * the function is used to collect contig. blocks in same state
  2009. */
  2010. static void mpage_add_bh_to_extent(struct mpage_da_data *mpd,
  2011. sector_t logical, size_t b_size,
  2012. unsigned long b_state)
  2013. {
  2014. sector_t next;
  2015. int nrblocks = mpd->b_size >> mpd->inode->i_blkbits;
  2016. /* check if thereserved journal credits might overflow */
  2017. if (!(EXT4_I(mpd->inode)->i_flags & EXT4_EXTENTS_FL)) {
  2018. if (nrblocks >= EXT4_MAX_TRANS_DATA) {
  2019. /*
  2020. * With non-extent format we are limited by the journal
  2021. * credit available. Total credit needed to insert
  2022. * nrblocks contiguous blocks is dependent on the
  2023. * nrblocks. So limit nrblocks.
  2024. */
  2025. goto flush_it;
  2026. } else if ((nrblocks + (b_size >> mpd->inode->i_blkbits)) >
  2027. EXT4_MAX_TRANS_DATA) {
  2028. /*
  2029. * Adding the new buffer_head would make it cross the
  2030. * allowed limit for which we have journal credit
  2031. * reserved. So limit the new bh->b_size
  2032. */
  2033. b_size = (EXT4_MAX_TRANS_DATA - nrblocks) <<
  2034. mpd->inode->i_blkbits;
  2035. /* we will do mpage_da_submit_io in the next loop */
  2036. }
  2037. }
  2038. /*
  2039. * First block in the extent
  2040. */
  2041. if (mpd->b_size == 0) {
  2042. mpd->b_blocknr = logical;
  2043. mpd->b_size = b_size;
  2044. mpd->b_state = b_state & BH_FLAGS;
  2045. return;
  2046. }
  2047. next = mpd->b_blocknr + nrblocks;
  2048. /*
  2049. * Can we merge the block to our big extent?
  2050. */
  2051. if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) {
  2052. mpd->b_size += b_size;
  2053. return;
  2054. }
  2055. flush_it:
  2056. /*
  2057. * We couldn't merge the block to our extent, so we
  2058. * need to flush current extent and start new one
  2059. */
  2060. if (mpage_da_map_blocks(mpd) == 0)
  2061. mpage_da_submit_io(mpd);
  2062. mpd->io_done = 1;
  2063. return;
  2064. }
  2065. static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
  2066. {
  2067. return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
  2068. }
  2069. /*
  2070. * __mpage_da_writepage - finds extent of pages and blocks
  2071. *
  2072. * @page: page to consider
  2073. * @wbc: not used, we just follow rules
  2074. * @data: context
  2075. *
  2076. * The function finds extents of pages and scan them for all blocks.
  2077. */
  2078. static int __mpage_da_writepage(struct page *page,
  2079. struct writeback_control *wbc, void *data)
  2080. {
  2081. struct mpage_da_data *mpd = data;
  2082. struct inode *inode = mpd->inode;
  2083. struct buffer_head *bh, *head;
  2084. sector_t logical;
  2085. if (mpd->io_done) {
  2086. /*
  2087. * Rest of the page in the page_vec
  2088. * redirty then and skip then. We will
  2089. * try to to write them again after
  2090. * starting a new transaction
  2091. */
  2092. redirty_page_for_writepage(wbc, page);
  2093. unlock_page(page);
  2094. return MPAGE_DA_EXTENT_TAIL;
  2095. }
  2096. /*
  2097. * Can we merge this page to current extent?
  2098. */
  2099. if (mpd->next_page != page->index) {
  2100. /*
  2101. * Nope, we can't. So, we map non-allocated blocks
  2102. * and start IO on them using writepage()
  2103. */
  2104. if (mpd->next_page != mpd->first_page) {
  2105. if (mpage_da_map_blocks(mpd) == 0)
  2106. mpage_da_submit_io(mpd);
  2107. /*
  2108. * skip rest of the page in the page_vec
  2109. */
  2110. mpd->io_done = 1;
  2111. redirty_page_for_writepage(wbc, page);
  2112. unlock_page(page);
  2113. return MPAGE_DA_EXTENT_TAIL;
  2114. }
  2115. /*
  2116. * Start next extent of pages ...
  2117. */
  2118. mpd->first_page = page->index;
  2119. /*
  2120. * ... and blocks
  2121. */
  2122. mpd->b_size = 0;
  2123. mpd->b_state = 0;
  2124. mpd->b_blocknr = 0;
  2125. }
  2126. mpd->next_page = page->index + 1;
  2127. logical = (sector_t) page->index <<
  2128. (PAGE_CACHE_SHIFT - inode->i_blkbits);
  2129. if (!page_has_buffers(page)) {
  2130. mpage_add_bh_to_extent(mpd, logical, PAGE_CACHE_SIZE,
  2131. (1 << BH_Dirty) | (1 << BH_Uptodate));
  2132. if (mpd->io_done)
  2133. return MPAGE_DA_EXTENT_TAIL;
  2134. } else {
  2135. /*
  2136. * Page with regular buffer heads, just add all dirty ones
  2137. */
  2138. head = page_buffers(page);
  2139. bh = head;
  2140. do {
  2141. BUG_ON(buffer_locked(bh));
  2142. /*
  2143. * We need to try to allocate
  2144. * unmapped blocks in the same page.
  2145. * Otherwise we won't make progress
  2146. * with the page in ext4_da_writepage
  2147. */
  2148. if (ext4_bh_delay_or_unwritten(NULL, bh)) {
  2149. mpage_add_bh_to_extent(mpd, logical,
  2150. bh->b_size,
  2151. bh->b_state);
  2152. if (mpd->io_done)
  2153. return MPAGE_DA_EXTENT_TAIL;
  2154. } else if (buffer_dirty(bh) && (buffer_mapped(bh))) {
  2155. /*
  2156. * mapped dirty buffer. We need to update
  2157. * the b_state because we look at
  2158. * b_state in mpage_da_map_blocks. We don't
  2159. * update b_size because if we find an
  2160. * unmapped buffer_head later we need to
  2161. * use the b_state flag of that buffer_head.
  2162. */
  2163. if (mpd->b_size == 0)
  2164. mpd->b_state = bh->b_state & BH_FLAGS;
  2165. }
  2166. logical++;
  2167. } while ((bh = bh->b_this_page) != head);
  2168. }
  2169. return 0;
  2170. }
  2171. /*
  2172. * This is a special get_blocks_t callback which is used by
  2173. * ext4_da_write_begin(). It will either return mapped block or
  2174. * reserve space for a single block.
  2175. *
  2176. * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
  2177. * We also have b_blocknr = -1 and b_bdev initialized properly
  2178. *
  2179. * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
  2180. * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
  2181. * initialized properly.
  2182. */
  2183. static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
  2184. struct buffer_head *bh_result, int create)
  2185. {
  2186. int ret = 0;
  2187. sector_t invalid_block = ~((sector_t) 0xffff);
  2188. if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
  2189. invalid_block = ~0;
  2190. BUG_ON(create == 0);
  2191. BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
  2192. /*
  2193. * first, we need to know whether the block is allocated already
  2194. * preallocated blocks are unmapped but should treated
  2195. * the same as allocated blocks.
  2196. */
  2197. ret = ext4_get_blocks(NULL, inode, iblock, 1, bh_result, 0);
  2198. if ((ret == 0) && !buffer_delay(bh_result)) {
  2199. /* the block isn't (pre)allocated yet, let's reserve space */
  2200. /*
  2201. * XXX: __block_prepare_write() unmaps passed block,
  2202. * is it OK?
  2203. */
  2204. ret = ext4_da_reserve_space(inode, 1);
  2205. if (ret)
  2206. /* not enough space to reserve */
  2207. return ret;
  2208. map_bh(bh_result, inode->i_sb, invalid_block);
  2209. set_buffer_new(bh_result);
  2210. set_buffer_delay(bh_result);
  2211. } else if (ret > 0) {
  2212. bh_result->b_size = (ret << inode->i_blkbits);
  2213. if (buffer_unwritten(bh_result)) {
  2214. /* A delayed write to unwritten bh should
  2215. * be marked new and mapped. Mapped ensures
  2216. * that we don't do get_block multiple times
  2217. * when we write to the same offset and new
  2218. * ensures that we do proper zero out for
  2219. * partial write.
  2220. */
  2221. set_buffer_new(bh_result);
  2222. set_buffer_mapped(bh_result);
  2223. }
  2224. ret = 0;
  2225. }
  2226. return ret;
  2227. }
  2228. /*
  2229. * This function is used as a standard get_block_t calback function
  2230. * when there is no desire to allocate any blocks. It is used as a
  2231. * callback function for block_prepare_write(), nobh_writepage(), and
  2232. * block_write_full_page(). These functions should only try to map a
  2233. * single block at a time.
  2234. *
  2235. * Since this function doesn't do block allocations even if the caller
  2236. * requests it by passing in create=1, it is critically important that
  2237. * any caller checks to make sure that any buffer heads are returned
  2238. * by this function are either all already mapped or marked for
  2239. * delayed allocation before calling nobh_writepage() or
  2240. * block_write_full_page(). Otherwise, b_blocknr could be left
  2241. * unitialized, and the page write functions will be taken by
  2242. * surprise.
  2243. */
  2244. static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
  2245. struct buffer_head *bh_result, int create)
  2246. {
  2247. int ret = 0;
  2248. unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
  2249. BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
  2250. /*
  2251. * we don't want to do block allocation in writepage
  2252. * so call get_block_wrap with create = 0
  2253. */
  2254. ret = ext4_get_blocks(NULL, inode, iblock, max_blocks, bh_result, 0);
  2255. if (ret > 0) {
  2256. bh_result->b_size = (ret << inode->i_blkbits);
  2257. ret = 0;
  2258. }
  2259. return ret;
  2260. }
  2261. /*
  2262. * This function can get called via...
  2263. * - ext4_da_writepages after taking page lock (have journal handle)
  2264. * - journal_submit_inode_data_buffers (no journal handle)
  2265. * - shrink_page_list via pdflush (no journal handle)
  2266. * - grab_page_cache when doing write_begin (have journal handle)
  2267. */
  2268. static int ext4_da_writepage(struct page *page,
  2269. struct writeback_control *wbc)
  2270. {
  2271. int ret = 0;
  2272. loff_t size;
  2273. unsigned int len;
  2274. struct buffer_head *page_bufs;
  2275. struct inode *inode = page->mapping->host;
  2276. trace_ext4_da_writepage(inode, page);
  2277. size = i_size_read(inode);
  2278. if (page->index == size >> PAGE_CACHE_SHIFT)
  2279. len = size & ~PAGE_CACHE_MASK;
  2280. else
  2281. len = PAGE_CACHE_SIZE;
  2282. if (page_has_buffers(page)) {
  2283. page_bufs = page_buffers(page);
  2284. if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
  2285. ext4_bh_delay_or_unwritten)) {
  2286. /*
  2287. * We don't want to do block allocation
  2288. * So redirty the page and return
  2289. * We may reach here when we do a journal commit
  2290. * via journal_submit_inode_data_buffers.
  2291. * If we don't have mapping block we just ignore
  2292. * them. We can also reach here via shrink_page_list
  2293. */
  2294. redirty_page_for_writepage(wbc, page);
  2295. unlock_page(page);
  2296. return 0;
  2297. }
  2298. } else {
  2299. /*
  2300. * The test for page_has_buffers() is subtle:
  2301. * We know the page is dirty but it lost buffers. That means
  2302. * that at some moment in time after write_begin()/write_end()
  2303. * has been called all buffers have been clean and thus they
  2304. * must have been written at least once. So they are all
  2305. * mapped and we can happily proceed with mapping them
  2306. * and writing the page.
  2307. *
  2308. * Try to initialize the buffer_heads and check whether
  2309. * all are mapped and non delay. We don't want to
  2310. * do block allocation here.
  2311. */
  2312. ret = block_prepare_write(page, 0, len,
  2313. noalloc_get_block_write);
  2314. if (!ret) {
  2315. page_bufs = page_buffers(page);
  2316. /* check whether all are mapped and non delay */
  2317. if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
  2318. ext4_bh_delay_or_unwritten)) {
  2319. redirty_page_for_writepage(wbc, page);
  2320. unlock_page(page);
  2321. return 0;
  2322. }
  2323. } else {
  2324. /*
  2325. * We can't do block allocation here
  2326. * so just redity the page and unlock
  2327. * and return
  2328. */
  2329. redirty_page_for_writepage(wbc, page);
  2330. unlock_page(page);
  2331. return 0;
  2332. }
  2333. /* now mark the buffer_heads as dirty and uptodate */
  2334. block_commit_write(page, 0, len);
  2335. }
  2336. if (test_opt(inode->i_sb, NOBH) && ext4_should_writeback_data(inode))
  2337. ret = nobh_writepage(page, noalloc_get_block_write, wbc);
  2338. else
  2339. ret = block_write_full_page(page, noalloc_get_block_write,
  2340. wbc);
  2341. return ret;
  2342. }
  2343. /*
  2344. * This is called via ext4_da_writepages() to
  2345. * calulate the total number of credits to reserve to fit
  2346. * a single extent allocation into a single transaction,
  2347. * ext4_da_writpeages() will loop calling this before
  2348. * the block allocation.
  2349. */
  2350. static int ext4_da_writepages_trans_blocks(struct inode *inode)
  2351. {
  2352. int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;
  2353. /*
  2354. * With non-extent format the journal credit needed to
  2355. * insert nrblocks contiguous block is dependent on
  2356. * number of contiguous block. So we will limit
  2357. * number of contiguous block to a sane value
  2358. */
  2359. if (!(inode->i_flags & EXT4_EXTENTS_FL) &&
  2360. (max_blocks > EXT4_MAX_TRANS_DATA))
  2361. max_blocks = EXT4_MAX_TRANS_DATA;
  2362. return ext4_chunk_trans_blocks(inode, max_blocks);
  2363. }
  2364. static int ext4_da_writepages(struct address_space *mapping,
  2365. struct writeback_control *wbc)
  2366. {
  2367. pgoff_t index;
  2368. int range_whole = 0;
  2369. handle_t *handle = NULL;
  2370. struct mpage_da_data mpd;
  2371. struct inode *inode = mapping->host;
  2372. int no_nrwrite_index_update;
  2373. int pages_written = 0;
  2374. long pages_skipped;
  2375. int range_cyclic, cycled = 1, io_done = 0;
  2376. int needed_blocks, ret = 0, nr_to_writebump = 0;
  2377. struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
  2378. trace_ext4_da_writepages(inode, wbc);
  2379. /*
  2380. * No pages to write? This is mainly a kludge to avoid starting
  2381. * a transaction for special inodes like journal inode on last iput()
  2382. * because that could violate lock ordering on umount
  2383. */
  2384. if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
  2385. return 0;
  2386. /*
  2387. * If the filesystem has aborted, it is read-only, so return
  2388. * right away instead of dumping stack traces later on that
  2389. * will obscure the real source of the problem. We test
  2390. * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
  2391. * the latter could be true if the filesystem is mounted
  2392. * read-only, and in that case, ext4_da_writepages should
  2393. * *never* be called, so if that ever happens, we would want
  2394. * the stack trace.
  2395. */
  2396. if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED))
  2397. return -EROFS;
  2398. /*
  2399. * Make sure nr_to_write is >= sbi->s_mb_stream_request
  2400. * This make sure small files blocks are allocated in
  2401. * single attempt. This ensure that small files
  2402. * get less fragmented.
  2403. */
  2404. if (wbc->nr_to_write < sbi->s_mb_stream_request) {
  2405. nr_to_writebump = sbi->s_mb_stream_request - wbc->nr_to_write;
  2406. wbc->nr_to_write = sbi->s_mb_stream_request;
  2407. }
  2408. if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
  2409. range_whole = 1;
  2410. range_cyclic = wbc->range_cyclic;
  2411. if (wbc->range_cyclic) {
  2412. index = mapping->writeback_index;
  2413. if (index)
  2414. cycled = 0;
  2415. wbc->range_start = index << PAGE_CACHE_SHIFT;
  2416. wbc->range_end = LLONG_MAX;
  2417. wbc->range_cyclic = 0;
  2418. } else
  2419. index = wbc->range_start >> PAGE_CACHE_SHIFT;
  2420. mpd.wbc = wbc;
  2421. mpd.inode = mapping->host;
  2422. /*
  2423. * we don't want write_cache_pages to update
  2424. * nr_to_write and writeback_index
  2425. */
  2426. no_nrwrite_index_update = wbc->no_nrwrite_index_update;
  2427. wbc->no_nrwrite_index_update = 1;
  2428. pages_skipped = wbc->pages_skipped;
  2429. retry:
  2430. while (!ret && wbc->nr_to_write > 0) {
  2431. /*
  2432. * we insert one extent at a time. So we need
  2433. * credit needed for single extent allocation.
  2434. * journalled mode is currently not supported
  2435. * by delalloc
  2436. */
  2437. BUG_ON(ext4_should_journal_data(inode));
  2438. needed_blocks = ext4_da_writepages_trans_blocks(inode);
  2439. /* start a new transaction*/
  2440. handle = ext4_journal_start(inode, needed_blocks);
  2441. if (IS_ERR(handle)) {
  2442. ret = PTR_ERR(handle);
  2443. printk(KERN_CRIT "%s: jbd2_start: "
  2444. "%ld pages, ino %lu; err %d\n", __func__,
  2445. wbc->nr_to_write, inode->i_ino, ret);
  2446. dump_stack();
  2447. goto out_writepages;
  2448. }
  2449. /*
  2450. * Now call __mpage_da_writepage to find the next
  2451. * contiguous region of logical blocks that need
  2452. * blocks to be allocated by ext4. We don't actually
  2453. * submit the blocks for I/O here, even though
  2454. * write_cache_pages thinks it will, and will set the
  2455. * pages as clean for write before calling
  2456. * __mpage_da_writepage().
  2457. */
  2458. mpd.b_size = 0;
  2459. mpd.b_state = 0;
  2460. mpd.b_blocknr = 0;
  2461. mpd.first_page = 0;
  2462. mpd.next_page = 0;
  2463. mpd.io_done = 0;
  2464. mpd.pages_written = 0;
  2465. mpd.retval = 0;
  2466. ret = write_cache_pages(mapping, wbc, __mpage_da_writepage,
  2467. &mpd);
  2468. /*
  2469. * If we have a contigous extent of pages and we
  2470. * haven't done the I/O yet, map the blocks and submit
  2471. * them for I/O.
  2472. */
  2473. if (!mpd.io_done && mpd.next_page != mpd.first_page) {
  2474. if (mpage_da_map_blocks(&mpd) == 0)
  2475. mpage_da_submit_io(&mpd);
  2476. mpd.io_done = 1;
  2477. ret = MPAGE_DA_EXTENT_TAIL;
  2478. }
  2479. wbc->nr_to_write -= mpd.pages_written;
  2480. ext4_journal_stop(handle);
  2481. if ((mpd.retval == -ENOSPC) && sbi->s_journal) {
  2482. /* commit the transaction which would
  2483. * free blocks released in the transaction
  2484. * and try again
  2485. */
  2486. jbd2_journal_force_commit_nested(sbi->s_journal);
  2487. wbc->pages_skipped = pages_skipped;
  2488. ret = 0;
  2489. } else if (ret == MPAGE_DA_EXTENT_TAIL) {
  2490. /*
  2491. * got one extent now try with
  2492. * rest of the pages
  2493. */
  2494. pages_written += mpd.pages_written;
  2495. wbc->pages_skipped = pages_skipped;
  2496. ret = 0;
  2497. io_done = 1;
  2498. } else if (wbc->nr_to_write)
  2499. /*
  2500. * There is no more writeout needed
  2501. * or we requested for a noblocking writeout
  2502. * and we found the device congested
  2503. */
  2504. break;
  2505. }
  2506. if (!io_done && !cycled) {
  2507. cycled = 1;
  2508. index = 0;
  2509. wbc->range_start = index << PAGE_CACHE_SHIFT;
  2510. wbc->range_end = mapping->writeback_index - 1;
  2511. goto retry;
  2512. }
  2513. if (pages_skipped != wbc->pages_skipped)
  2514. printk(KERN_EMERG "This should not happen leaving %s "
  2515. "with nr_to_write = %ld ret = %d\n",
  2516. __func__, wbc->nr_to_write, ret);
  2517. /* Update index */
  2518. index += pages_written;
  2519. wbc->range_cyclic = range_cyclic;
  2520. if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
  2521. /*
  2522. * set the writeback_index so that range_cyclic
  2523. * mode will write it back later
  2524. */
  2525. mapping->writeback_index = index;
  2526. out_writepages:
  2527. if (!no_nrwrite_index_update)
  2528. wbc->no_nrwrite_index_update = 0;
  2529. wbc->nr_to_write -= nr_to_writebump;
  2530. trace_ext4_da_writepages_result(inode, wbc, ret, pages_written);
  2531. return ret;
  2532. }
  2533. #define FALL_BACK_TO_NONDELALLOC 1
  2534. static int ext4_nonda_switch(struct super_block *sb)
  2535. {
  2536. s64 free_blocks, dirty_blocks;
  2537. struct ext4_sb_info *sbi = EXT4_SB(sb);
  2538. /*
  2539. * switch to non delalloc mode if we are running low
  2540. * on free block. The free block accounting via percpu
  2541. * counters can get slightly wrong with percpu_counter_batch getting
  2542. * accumulated on each CPU without updating global counters
  2543. * Delalloc need an accurate free block accounting. So switch
  2544. * to non delalloc when we are near to error range.
  2545. */
  2546. free_blocks = percpu_counter_read_positive(&sbi->s_freeblocks_counter);
  2547. dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyblocks_counter);
  2548. if (2 * free_blocks < 3 * dirty_blocks ||
  2549. free_blocks < (dirty_blocks + EXT4_FREEBLOCKS_WATERMARK)) {
  2550. /*
  2551. * free block count is less that 150% of dirty blocks
  2552. * or free blocks is less that watermark
  2553. */
  2554. return 1;
  2555. }
  2556. return 0;
  2557. }
  2558. static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
  2559. loff_t pos, unsigned len, unsigned flags,
  2560. struct page **pagep, void **fsdata)
  2561. {
  2562. int ret, retries = 0;
  2563. struct page *page;
  2564. pgoff_t index;
  2565. unsigned from, to;
  2566. struct inode *inode = mapping->host;
  2567. handle_t *handle;
  2568. index = pos >> PAGE_CACHE_SHIFT;
  2569. from = pos & (PAGE_CACHE_SIZE - 1);
  2570. to = from + len;
  2571. if (ext4_nonda_switch(inode->i_sb)) {
  2572. *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
  2573. return ext4_write_begin(file, mapping, pos,
  2574. len, flags, pagep, fsdata);
  2575. }
  2576. *fsdata = (void *)0;
  2577. trace_ext4_da_write_begin(inode, pos, len, flags);
  2578. retry:
  2579. /*
  2580. * With delayed allocation, we don't log the i_disksize update
  2581. * if there is delayed block allocation. But we still need
  2582. * to journalling the i_disksize update if writes to the end
  2583. * of file which has an already mapped buffer.
  2584. */
  2585. handle = ext4_journal_start(inode, 1);
  2586. if (IS_ERR(handle)) {
  2587. ret = PTR_ERR(handle);
  2588. goto out;
  2589. }
  2590. /* We cannot recurse into the filesystem as the transaction is already
  2591. * started */
  2592. flags |= AOP_FLAG_NOFS;
  2593. page = grab_cache_page_write_begin(mapping, index, flags);
  2594. if (!page) {
  2595. ext4_journal_stop(handle);
  2596. ret = -ENOMEM;
  2597. goto out;
  2598. }
  2599. *pagep = page;
  2600. ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
  2601. ext4_da_get_block_prep);
  2602. if (ret < 0) {
  2603. unlock_page(page);
  2604. ext4_journal_stop(handle);
  2605. page_cache_release(page);
  2606. /*
  2607. * block_write_begin may have instantiated a few blocks
  2608. * outside i_size. Trim these off again. Don't need
  2609. * i_size_read because we hold i_mutex.
  2610. */
  2611. if (pos + len > inode->i_size)
  2612. ext4_truncate(inode);
  2613. }
  2614. if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
  2615. goto retry;
  2616. out:
  2617. return ret;
  2618. }
  2619. /*
  2620. * Check if we should update i_disksize
  2621. * when write to the end of file but not require block allocation
  2622. */
  2623. static int ext4_da_should_update_i_disksize(struct page *page,
  2624. unsigned long offset)
  2625. {
  2626. struct buffer_head *bh;
  2627. struct inode *inode = page->mapping->host;
  2628. unsigned int idx;
  2629. int i;
  2630. bh = page_buffers(page);
  2631. idx = offset >> inode->i_blkbits;
  2632. for (i = 0; i < idx; i++)
  2633. bh = bh->b_this_page;
  2634. if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
  2635. return 0;
  2636. return 1;
  2637. }
  2638. static int ext4_da_write_end(struct file *file,
  2639. struct address_space *mapping,
  2640. loff_t pos, unsigned len, unsigned copied,
  2641. struct page *page, void *fsdata)
  2642. {
  2643. struct inode *inode = mapping->host;
  2644. int ret = 0, ret2;
  2645. handle_t *handle = ext4_journal_current_handle();
  2646. loff_t new_i_size;
  2647. unsigned long start, end;
  2648. int write_mode = (int)(unsigned long)fsdata;
  2649. if (write_mode == FALL_BACK_TO_NONDELALLOC) {
  2650. if (ext4_should_order_data(inode)) {
  2651. return ext4_ordered_write_end(file, mapping, pos,
  2652. len, copied, page, fsdata);
  2653. } else if (ext4_should_writeback_data(inode)) {
  2654. return ext4_writeback_write_end(file, mapping, pos,
  2655. len, copied, page, fsdata);
  2656. } else {
  2657. BUG();
  2658. }
  2659. }
  2660. trace_ext4_da_write_end(inode, pos, len, copied);
  2661. start = pos & (PAGE_CACHE_SIZE - 1);
  2662. end = start + copied - 1;
  2663. /*
  2664. * generic_write_end() will run mark_inode_dirty() if i_size
  2665. * changes. So let's piggyback the i_disksize mark_inode_dirty
  2666. * into that.
  2667. */
  2668. new_i_size = pos + copied;
  2669. if (new_i_size > EXT4_I(inode)->i_disksize) {
  2670. if (ext4_da_should_update_i_disksize(page, end)) {
  2671. down_write(&EXT4_I(inode)->i_data_sem);
  2672. if (new_i_size > EXT4_I(inode)->i_disksize) {
  2673. /*
  2674. * Updating i_disksize when extending file
  2675. * without needing block allocation
  2676. */
  2677. if (ext4_should_order_data(inode))
  2678. ret = ext4_jbd2_file_inode(handle,
  2679. inode);
  2680. EXT4_I(inode)->i_disksize = new_i_size;
  2681. }
  2682. up_write(&EXT4_I(inode)->i_data_sem);
  2683. /* We need to mark inode dirty even if
  2684. * new_i_size is less that inode->i_size
  2685. * bu greater than i_disksize.(hint delalloc)
  2686. */
  2687. ext4_mark_inode_dirty(handle, inode);
  2688. }
  2689. }
  2690. ret2 = generic_write_end(file, mapping, pos, len, copied,
  2691. page, fsdata);
  2692. copied = ret2;
  2693. if (ret2 < 0)
  2694. ret = ret2;
  2695. ret2 = ext4_journal_stop(handle);
  2696. if (!ret)
  2697. ret = ret2;
  2698. return ret ? ret : copied;
  2699. }
  2700. static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
  2701. {
  2702. /*
  2703. * Drop reserved blocks
  2704. */
  2705. BUG_ON(!PageLocked(page));
  2706. if (!page_has_buffers(page))
  2707. goto out;
  2708. ext4_da_page_release_reservation(page, offset);
  2709. out:
  2710. ext4_invalidatepage(page, offset);
  2711. return;
  2712. }
  2713. /*
  2714. * Force all delayed allocation blocks to be allocated for a given inode.
  2715. */
  2716. int ext4_alloc_da_blocks(struct inode *inode)
  2717. {
  2718. if (!EXT4_I(inode)->i_reserved_data_blocks &&
  2719. !EXT4_I(inode)->i_reserved_meta_blocks)
  2720. return 0;
  2721. /*
  2722. * We do something simple for now. The filemap_flush() will
  2723. * also start triggering a write of the data blocks, which is
  2724. * not strictly speaking necessary (and for users of
  2725. * laptop_mode, not even desirable). However, to do otherwise
  2726. * would require replicating code paths in:
  2727. *
  2728. * ext4_da_writepages() ->
  2729. * write_cache_pages() ---> (via passed in callback function)
  2730. * __mpage_da_writepage() -->
  2731. * mpage_add_bh_to_extent()
  2732. * mpage_da_map_blocks()
  2733. *
  2734. * The problem is that write_cache_pages(), located in
  2735. * mm/page-writeback.c, marks pages clean in preparation for
  2736. * doing I/O, which is not desirable if we're not planning on
  2737. * doing I/O at all.
  2738. *
  2739. * We could call write_cache_pages(), and then redirty all of
  2740. * the pages by calling redirty_page_for_writeback() but that
  2741. * would be ugly in the extreme. So instead we would need to
  2742. * replicate parts of the code in the above functions,
  2743. * simplifying them becuase we wouldn't actually intend to
  2744. * write out the pages, but rather only collect contiguous
  2745. * logical block extents, call the multi-block allocator, and
  2746. * then update the buffer heads with the block allocations.
  2747. *
  2748. * For now, though, we'll cheat by calling filemap_flush(),
  2749. * which will map the blocks, and start the I/O, but not
  2750. * actually wait for the I/O to complete.
  2751. */
  2752. return filemap_flush(inode->i_mapping);
  2753. }
  2754. /*
  2755. * bmap() is special. It gets used by applications such as lilo and by
  2756. * the swapper to find the on-disk block of a specific piece of data.
  2757. *
  2758. * Naturally, this is dangerous if the block concerned is still in the
  2759. * journal. If somebody makes a swapfile on an ext4 data-journaling
  2760. * filesystem and enables swap, then they may get a nasty shock when the
  2761. * data getting swapped to that swapfile suddenly gets overwritten by
  2762. * the original zero's written out previously to the journal and
  2763. * awaiting writeback in the kernel's buffer cache.
  2764. *
  2765. * So, if we see any bmap calls here on a modified, data-journaled file,
  2766. * take extra steps to flush any blocks which might be in the cache.
  2767. */
  2768. static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
  2769. {
  2770. struct inode *inode = mapping->host;
  2771. journal_t *journal;
  2772. int err;
  2773. if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
  2774. test_opt(inode->i_sb, DELALLOC)) {
  2775. /*
  2776. * With delalloc we want to sync the file
  2777. * so that we can make sure we allocate
  2778. * blocks for file
  2779. */
  2780. filemap_write_and_wait(mapping);
  2781. }
  2782. if (EXT4_JOURNAL(inode) && EXT4_I(inode)->i_state & EXT4_STATE_JDATA) {
  2783. /*
  2784. * This is a REALLY heavyweight approach, but the use of
  2785. * bmap on dirty files is expected to be extremely rare:
  2786. * only if we run lilo or swapon on a freshly made file
  2787. * do we expect this to happen.
  2788. *
  2789. * (bmap requires CAP_SYS_RAWIO so this does not
  2790. * represent an unprivileged user DOS attack --- we'd be
  2791. * in trouble if mortal users could trigger this path at
  2792. * will.)
  2793. *
  2794. * NB. EXT4_STATE_JDATA is not set on files other than
  2795. * regular files. If somebody wants to bmap a directory
  2796. * or symlink and gets confused because the buffer
  2797. * hasn't yet been flushed to disk, they deserve
  2798. * everything they get.
  2799. */
  2800. EXT4_I(inode)->i_state &= ~EXT4_STATE_JDATA;
  2801. journal = EXT4_JOURNAL(inode);
  2802. jbd2_journal_lock_updates(journal);
  2803. err = jbd2_journal_flush(journal);
  2804. jbd2_journal_unlock_updates(journal);
  2805. if (err)
  2806. return 0;
  2807. }
  2808. return generic_block_bmap(mapping, block, ext4_get_block);
  2809. }
  2810. static int bget_one(handle_t *handle, struct buffer_head *bh)
  2811. {
  2812. get_bh(bh);
  2813. return 0;
  2814. }
  2815. static int bput_one(handle_t *handle, struct buffer_head *bh)
  2816. {
  2817. put_bh(bh);
  2818. return 0;
  2819. }
  2820. /*
  2821. * Note that we don't need to start a transaction unless we're journaling data
  2822. * because we should have holes filled from ext4_page_mkwrite(). We even don't
  2823. * need to file the inode to the transaction's list in ordered mode because if
  2824. * we are writing back data added by write(), the inode is already there and if
  2825. * we are writing back data modified via mmap(), noone guarantees in which
  2826. * transaction the data will hit the disk. In case we are journaling data, we
  2827. * cannot start transaction directly because transaction start ranks above page
  2828. * lock so we have to do some magic.
  2829. *
  2830. * In all journaling modes block_write_full_page() will start the I/O.
  2831. *
  2832. * Problem:
  2833. *
  2834. * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
  2835. * ext4_writepage()
  2836. *
  2837. * Similar for:
  2838. *
  2839. * ext4_file_write() -> generic_file_write() -> __alloc_pages() -> ...
  2840. *
  2841. * Same applies to ext4_get_block(). We will deadlock on various things like
  2842. * lock_journal and i_data_sem
  2843. *
  2844. * Setting PF_MEMALLOC here doesn't work - too many internal memory
  2845. * allocations fail.
  2846. *
  2847. * 16May01: If we're reentered then journal_current_handle() will be
  2848. * non-zero. We simply *return*.
  2849. *
  2850. * 1 July 2001: @@@ FIXME:
  2851. * In journalled data mode, a data buffer may be metadata against the
  2852. * current transaction. But the same file is part of a shared mapping
  2853. * and someone does a writepage() on it.
  2854. *
  2855. * We will move the buffer onto the async_data list, but *after* it has
  2856. * been dirtied. So there's a small window where we have dirty data on
  2857. * BJ_Metadata.
  2858. *
  2859. * Note that this only applies to the last partial page in the file. The
  2860. * bit which block_write_full_page() uses prepare/commit for. (That's
  2861. * broken code anyway: it's wrong for msync()).
  2862. *
  2863. * It's a rare case: affects the final partial page, for journalled data
  2864. * where the file is subject to bith write() and writepage() in the same
  2865. * transction. To fix it we'll need a custom block_write_full_page().
  2866. * We'll probably need that anyway for journalling writepage() output.
  2867. *
  2868. * We don't honour synchronous mounts for writepage(). That would be
  2869. * disastrous. Any write() or metadata operation will sync the fs for
  2870. * us.
  2871. *
  2872. */
  2873. static int __ext4_normal_writepage(struct page *page,
  2874. struct writeback_control *wbc)
  2875. {
  2876. struct inode *inode = page->mapping->host;
  2877. if (test_opt(inode->i_sb, NOBH))
  2878. return nobh_writepage(page, noalloc_get_block_write, wbc);
  2879. else
  2880. return block_write_full_page(page, noalloc_get_block_write,
  2881. wbc);
  2882. }
  2883. static int ext4_normal_writepage(struct page *page,
  2884. struct writeback_control *wbc)
  2885. {
  2886. struct inode *inode = page->mapping->host;
  2887. loff_t size = i_size_read(inode);
  2888. loff_t len;
  2889. trace_ext4_normal_writepage(inode, page);
  2890. J_ASSERT(PageLocked(page));
  2891. if (page->index == size >> PAGE_CACHE_SHIFT)
  2892. len = size & ~PAGE_CACHE_MASK;
  2893. else
  2894. len = PAGE_CACHE_SIZE;
  2895. if (page_has_buffers(page)) {
  2896. /* if page has buffers it should all be mapped
  2897. * and allocated. If there are not buffers attached
  2898. * to the page we know the page is dirty but it lost
  2899. * buffers. That means that at some moment in time
  2900. * after write_begin() / write_end() has been called
  2901. * all buffers have been clean and thus they must have been
  2902. * written at least once. So they are all mapped and we can
  2903. * happily proceed with mapping them and writing the page.
  2904. */
  2905. BUG_ON(walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
  2906. ext4_bh_delay_or_unwritten));
  2907. }
  2908. if (!ext4_journal_current_handle())
  2909. return __ext4_normal_writepage(page, wbc);
  2910. redirty_page_for_writepage(wbc, page);
  2911. unlock_page(page);
  2912. return 0;
  2913. }
  2914. static int __ext4_journalled_writepage(struct page *page,
  2915. struct writeback_control *wbc)
  2916. {
  2917. loff_t size;
  2918. unsigned int len;
  2919. struct address_space *mapping = page->mapping;
  2920. struct inode *inode = mapping->host;
  2921. struct buffer_head *page_bufs;
  2922. handle_t *handle = NULL;
  2923. int ret = 0;
  2924. int err;
  2925. size = i_size_read(inode);
  2926. if (page->index == size >> PAGE_CACHE_SHIFT)
  2927. len = size & ~PAGE_CACHE_MASK;
  2928. else
  2929. len = PAGE_CACHE_SIZE;
  2930. ret = block_prepare_write(page, 0, len, noalloc_get_block_write);
  2931. if (ret != 0)
  2932. goto out_unlock;
  2933. page_bufs = page_buffers(page);
  2934. walk_page_buffers(handle, page_bufs, 0, len, NULL, bget_one);
  2935. /* As soon as we unlock the page, it can go away, but we have
  2936. * references to buffers so we are safe */
  2937. unlock_page(page);
  2938. handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
  2939. if (IS_ERR(handle)) {
  2940. ret = PTR_ERR(handle);
  2941. goto out;
  2942. }
  2943. ret = walk_page_buffers(handle, page_bufs, 0, len, NULL,
  2944. do_journal_get_write_access);
  2945. err = walk_page_buffers(handle, page_bufs, 0, len, NULL,
  2946. write_end_fn);
  2947. if (ret == 0)
  2948. ret = err;
  2949. err = ext4_journal_stop(handle);
  2950. if (!ret)
  2951. ret = err;
  2952. walk_page_buffers(handle, page_bufs, 0, len, NULL, bput_one);
  2953. EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
  2954. goto out;
  2955. out_unlock:
  2956. unlock_page(page);
  2957. out:
  2958. return ret;
  2959. }
  2960. static int ext4_journalled_writepage(struct page *page,
  2961. struct writeback_control *wbc)
  2962. {
  2963. struct inode *inode = page->mapping->host;
  2964. loff_t size = i_size_read(inode);
  2965. loff_t len;
  2966. trace_ext4_journalled_writepage(inode, page);
  2967. J_ASSERT(PageLocked(page));
  2968. if (page->index == size >> PAGE_CACHE_SHIFT)
  2969. len = size & ~PAGE_CACHE_MASK;
  2970. else
  2971. len = PAGE_CACHE_SIZE;
  2972. if (page_has_buffers(page)) {
  2973. /* if page has buffers it should all be mapped
  2974. * and allocated. If there are not buffers attached
  2975. * to the page we know the page is dirty but it lost
  2976. * buffers. That means that at some moment in time
  2977. * after write_begin() / write_end() has been called
  2978. * all buffers have been clean and thus they must have been
  2979. * written at least once. So they are all mapped and we can
  2980. * happily proceed with mapping them and writing the page.
  2981. */
  2982. BUG_ON(walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
  2983. ext4_bh_delay_or_unwritten));
  2984. }
  2985. if (ext4_journal_current_handle())
  2986. goto no_write;
  2987. if (PageChecked(page)) {
  2988. /*
  2989. * It's mmapped pagecache. Add buffers and journal it. There
  2990. * doesn't seem much point in redirtying the page here.
  2991. */
  2992. ClearPageChecked(page);
  2993. return __ext4_journalled_writepage(page, wbc);
  2994. } else {
  2995. /*
  2996. * It may be a page full of checkpoint-mode buffers. We don't
  2997. * really know unless we go poke around in the buffer_heads.
  2998. * But block_write_full_page will do the right thing.
  2999. */
  3000. return block_write_full_page(page, noalloc_get_block_write,
  3001. wbc);
  3002. }
  3003. no_write:
  3004. redirty_page_for_writepage(wbc, page);
  3005. unlock_page(page);
  3006. return 0;
  3007. }
  3008. static int ext4_readpage(struct file *file, struct page *page)
  3009. {
  3010. return mpage_readpage(page, ext4_get_block);
  3011. }
  3012. static int
  3013. ext4_readpages(struct file *file, struct address_space *mapping,
  3014. struct list_head *pages, unsigned nr_pages)
  3015. {
  3016. return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
  3017. }
  3018. static void ext4_invalidatepage(struct page *page, unsigned long offset)
  3019. {
  3020. journal_t *journal = EXT4_JOURNAL(page->mapping->host);
  3021. /*
  3022. * If it's a full truncate we just forget about the pending dirtying
  3023. */
  3024. if (offset == 0)
  3025. ClearPageChecked(page);
  3026. if (journal)
  3027. jbd2_journal_invalidatepage(journal, page, offset);
  3028. else
  3029. block_invalidatepage(page, offset);
  3030. }
  3031. static int ext4_releasepage(struct page *page, gfp_t wait)
  3032. {
  3033. journal_t *journal = EXT4_JOURNAL(page->mapping->host);
  3034. WARN_ON(PageChecked(page));
  3035. if (!page_has_buffers(page))
  3036. return 0;
  3037. if (journal)
  3038. return jbd2_journal_try_to_free_buffers(journal, page, wait);
  3039. else
  3040. return try_to_free_buffers(page);
  3041. }
  3042. /*
  3043. * If the O_DIRECT write will extend the file then add this inode to the
  3044. * orphan list. So recovery will truncate it back to the original size
  3045. * if the machine crashes during the write.
  3046. *
  3047. * If the O_DIRECT write is intantiating holes inside i_size and the machine
  3048. * crashes then stale disk data _may_ be exposed inside the file. But current
  3049. * VFS code falls back into buffered path in that case so we are safe.
  3050. */
  3051. static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
  3052. const struct iovec *iov, loff_t offset,
  3053. unsigned long nr_segs)
  3054. {
  3055. struct file *file = iocb->ki_filp;
  3056. struct inode *inode = file->f_mapping->host;
  3057. struct ext4_inode_info *ei = EXT4_I(inode);
  3058. handle_t *handle;
  3059. ssize_t ret;
  3060. int orphan = 0;
  3061. size_t count = iov_length(iov, nr_segs);
  3062. if (rw == WRITE) {
  3063. loff_t final_size = offset + count;
  3064. if (final_size > inode->i_size) {
  3065. /* Credits for sb + inode write */
  3066. handle = ext4_journal_start(inode, 2);
  3067. if (IS_ERR(handle)) {
  3068. ret = PTR_ERR(handle);
  3069. goto out;
  3070. }
  3071. ret = ext4_orphan_add(handle, inode);
  3072. if (ret) {
  3073. ext4_journal_stop(handle);
  3074. goto out;
  3075. }
  3076. orphan = 1;
  3077. ei->i_disksize = inode->i_size;
  3078. ext4_journal_stop(handle);
  3079. }
  3080. }
  3081. ret = blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov,
  3082. offset, nr_segs,
  3083. ext4_get_block, NULL);
  3084. if (orphan) {
  3085. int err;
  3086. /* Credits for sb + inode write */
  3087. handle = ext4_journal_start(inode, 2);
  3088. if (IS_ERR(handle)) {
  3089. /* This is really bad luck. We've written the data
  3090. * but cannot extend i_size. Bail out and pretend
  3091. * the write failed... */
  3092. ret = PTR_ERR(handle);
  3093. goto out;
  3094. }
  3095. if (inode->i_nlink)
  3096. ext4_orphan_del(handle, inode);
  3097. if (ret > 0) {
  3098. loff_t end = offset + ret;
  3099. if (end > inode->i_size) {
  3100. ei->i_disksize = end;
  3101. i_size_write(inode, end);
  3102. /*
  3103. * We're going to return a positive `ret'
  3104. * here due to non-zero-length I/O, so there's
  3105. * no way of reporting error returns from
  3106. * ext4_mark_inode_dirty() to userspace. So
  3107. * ignore it.
  3108. */
  3109. ext4_mark_inode_dirty(handle, inode);
  3110. }
  3111. }
  3112. err = ext4_journal_stop(handle);
  3113. if (ret == 0)
  3114. ret = err;
  3115. }
  3116. out:
  3117. return ret;
  3118. }
  3119. /*
  3120. * Pages can be marked dirty completely asynchronously from ext4's journalling
  3121. * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
  3122. * much here because ->set_page_dirty is called under VFS locks. The page is
  3123. * not necessarily locked.
  3124. *
  3125. * We cannot just dirty the page and leave attached buffers clean, because the
  3126. * buffers' dirty state is "definitive". We cannot just set the buffers dirty
  3127. * or jbddirty because all the journalling code will explode.
  3128. *
  3129. * So what we do is to mark the page "pending dirty" and next time writepage
  3130. * is called, propagate that into the buffers appropriately.
  3131. */
  3132. static int ext4_journalled_set_page_dirty(struct page *page)
  3133. {
  3134. SetPageChecked(page);
  3135. return __set_page_dirty_nobuffers(page);
  3136. }
  3137. static const struct address_space_operations ext4_ordered_aops = {
  3138. .readpage = ext4_readpage,
  3139. .readpages = ext4_readpages,
  3140. .writepage = ext4_normal_writepage,
  3141. .sync_page = block_sync_page,
  3142. .write_begin = ext4_write_begin,
  3143. .write_end = ext4_ordered_write_end,
  3144. .bmap = ext4_bmap,
  3145. .invalidatepage = ext4_invalidatepage,
  3146. .releasepage = ext4_releasepage,
  3147. .direct_IO = ext4_direct_IO,
  3148. .migratepage = buffer_migrate_page,
  3149. .is_partially_uptodate = block_is_partially_uptodate,
  3150. };
  3151. static const struct address_space_operations ext4_writeback_aops = {
  3152. .readpage = ext4_readpage,
  3153. .readpages = ext4_readpages,
  3154. .writepage = ext4_normal_writepage,
  3155. .sync_page = block_sync_page,
  3156. .write_begin = ext4_write_begin,
  3157. .write_end = ext4_writeback_write_end,
  3158. .bmap = ext4_bmap,
  3159. .invalidatepage = ext4_invalidatepage,
  3160. .releasepage = ext4_releasepage,
  3161. .direct_IO = ext4_direct_IO,
  3162. .migratepage = buffer_migrate_page,
  3163. .is_partially_uptodate = block_is_partially_uptodate,
  3164. };
  3165. static const struct address_space_operations ext4_journalled_aops = {
  3166. .readpage = ext4_readpage,
  3167. .readpages = ext4_readpages,
  3168. .writepage = ext4_journalled_writepage,
  3169. .sync_page = block_sync_page,
  3170. .write_begin = ext4_write_begin,
  3171. .write_end = ext4_journalled_write_end,
  3172. .set_page_dirty = ext4_journalled_set_page_dirty,
  3173. .bmap = ext4_bmap,
  3174. .invalidatepage = ext4_invalidatepage,
  3175. .releasepage = ext4_releasepage,
  3176. .is_partially_uptodate = block_is_partially_uptodate,
  3177. };
  3178. static const struct address_space_operations ext4_da_aops = {
  3179. .readpage = ext4_readpage,
  3180. .readpages = ext4_readpages,
  3181. .writepage = ext4_da_writepage,
  3182. .writepages = ext4_da_writepages,
  3183. .sync_page = block_sync_page,
  3184. .write_begin = ext4_da_write_begin,
  3185. .write_end = ext4_da_write_end,
  3186. .bmap = ext4_bmap,
  3187. .invalidatepage = ext4_da_invalidatepage,
  3188. .releasepage = ext4_releasepage,
  3189. .direct_IO = ext4_direct_IO,
  3190. .migratepage = buffer_migrate_page,
  3191. .is_partially_uptodate = block_is_partially_uptodate,
  3192. };
  3193. void ext4_set_aops(struct inode *inode)
  3194. {
  3195. if (ext4_should_order_data(inode) &&
  3196. test_opt(inode->i_sb, DELALLOC))
  3197. inode->i_mapping->a_ops = &ext4_da_aops;
  3198. else if (ext4_should_order_data(inode))
  3199. inode->i_mapping->a_ops = &ext4_ordered_aops;
  3200. else if (ext4_should_writeback_data(inode) &&
  3201. test_opt(inode->i_sb, DELALLOC))
  3202. inode->i_mapping->a_ops = &ext4_da_aops;
  3203. else if (ext4_should_writeback_data(inode))
  3204. inode->i_mapping->a_ops = &ext4_writeback_aops;
  3205. else
  3206. inode->i_mapping->a_ops = &ext4_journalled_aops;
  3207. }
  3208. /*
  3209. * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
  3210. * up to the end of the block which corresponds to `from'.
  3211. * This required during truncate. We need to physically zero the tail end
  3212. * of that block so it doesn't yield old data if the file is later grown.
  3213. */
  3214. int ext4_block_truncate_page(handle_t *handle,
  3215. struct address_space *mapping, loff_t from)
  3216. {
  3217. ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
  3218. unsigned offset = from & (PAGE_CACHE_SIZE-1);
  3219. unsigned blocksize, length, pos;
  3220. ext4_lblk_t iblock;
  3221. struct inode *inode = mapping->host;
  3222. struct buffer_head *bh;
  3223. struct page *page;
  3224. int err = 0;
  3225. page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
  3226. mapping_gfp_mask(mapping) & ~__GFP_FS);
  3227. if (!page)
  3228. return -EINVAL;
  3229. blocksize = inode->i_sb->s_blocksize;
  3230. length = blocksize - (offset & (blocksize - 1));
  3231. iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
  3232. /*
  3233. * For "nobh" option, we can only work if we don't need to
  3234. * read-in the page - otherwise we create buffers to do the IO.
  3235. */
  3236. if (!page_has_buffers(page) && test_opt(inode->i_sb, NOBH) &&
  3237. ext4_should_writeback_data(inode) && PageUptodate(page)) {
  3238. zero_user(page, offset, length);
  3239. set_page_dirty(page);
  3240. goto unlock;
  3241. }
  3242. if (!page_has_buffers(page))
  3243. create_empty_buffers(page, blocksize, 0);
  3244. /* Find the buffer that contains "offset" */
  3245. bh = page_buffers(page);
  3246. pos = blocksize;
  3247. while (offset >= pos) {
  3248. bh = bh->b_this_page;
  3249. iblock++;
  3250. pos += blocksize;
  3251. }
  3252. err = 0;
  3253. if (buffer_freed(bh)) {
  3254. BUFFER_TRACE(bh, "freed: skip");
  3255. goto unlock;
  3256. }
  3257. if (!buffer_mapped(bh)) {
  3258. BUFFER_TRACE(bh, "unmapped");
  3259. ext4_get_block(inode, iblock, bh, 0);
  3260. /* unmapped? It's a hole - nothing to do */
  3261. if (!buffer_mapped(bh)) {
  3262. BUFFER_TRACE(bh, "still unmapped");
  3263. goto unlock;
  3264. }
  3265. }
  3266. /* Ok, it's mapped. Make sure it's up-to-date */
  3267. if (PageUptodate(page))
  3268. set_buffer_uptodate(bh);
  3269. if (!buffer_uptodate(bh)) {
  3270. err = -EIO;
  3271. ll_rw_block(READ, 1, &bh);
  3272. wait_on_buffer(bh);
  3273. /* Uhhuh. Read error. Complain and punt. */
  3274. if (!buffer_uptodate(bh))
  3275. goto unlock;
  3276. }
  3277. if (ext4_should_journal_data(inode)) {
  3278. BUFFER_TRACE(bh, "get write access");
  3279. err = ext4_journal_get_write_access(handle, bh);
  3280. if (err)
  3281. goto unlock;
  3282. }
  3283. zero_user(page, offset, length);
  3284. BUFFER_TRACE(bh, "zeroed end of block");
  3285. err = 0;
  3286. if (ext4_should_journal_data(inode)) {
  3287. err = ext4_handle_dirty_metadata(handle, inode, bh);
  3288. } else {
  3289. if (ext4_should_order_data(inode))
  3290. err = ext4_jbd2_file_inode(handle, inode);
  3291. mark_buffer_dirty(bh);
  3292. }
  3293. unlock:
  3294. unlock_page(page);
  3295. page_cache_release(page);
  3296. return err;
  3297. }
  3298. /*
  3299. * Probably it should be a library function... search for first non-zero word
  3300. * or memcmp with zero_page, whatever is better for particular architecture.
  3301. * Linus?
  3302. */
  3303. static inline int all_zeroes(__le32 *p, __le32 *q)
  3304. {
  3305. while (p < q)
  3306. if (*p++)
  3307. return 0;
  3308. return 1;
  3309. }
  3310. /**
  3311. * ext4_find_shared - find the indirect blocks for partial truncation.
  3312. * @inode: inode in question
  3313. * @depth: depth of the affected branch
  3314. * @offsets: offsets of pointers in that branch (see ext4_block_to_path)
  3315. * @chain: place to store the pointers to partial indirect blocks
  3316. * @top: place to the (detached) top of branch
  3317. *
  3318. * This is a helper function used by ext4_truncate().
  3319. *
  3320. * When we do truncate() we may have to clean the ends of several
  3321. * indirect blocks but leave the blocks themselves alive. Block is
  3322. * partially truncated if some data below the new i_size is refered
  3323. * from it (and it is on the path to the first completely truncated
  3324. * data block, indeed). We have to free the top of that path along
  3325. * with everything to the right of the path. Since no allocation
  3326. * past the truncation point is possible until ext4_truncate()
  3327. * finishes, we may safely do the latter, but top of branch may
  3328. * require special attention - pageout below the truncation point
  3329. * might try to populate it.
  3330. *
  3331. * We atomically detach the top of branch from the tree, store the
  3332. * block number of its root in *@top, pointers to buffer_heads of
  3333. * partially truncated blocks - in @chain[].bh and pointers to
  3334. * their last elements that should not be removed - in
  3335. * @chain[].p. Return value is the pointer to last filled element
  3336. * of @chain.
  3337. *
  3338. * The work left to caller to do the actual freeing of subtrees:
  3339. * a) free the subtree starting from *@top
  3340. * b) free the subtrees whose roots are stored in
  3341. * (@chain[i].p+1 .. end of @chain[i].bh->b_data)
  3342. * c) free the subtrees growing from the inode past the @chain[0].
  3343. * (no partially truncated stuff there). */
  3344. static Indirect *ext4_find_shared(struct inode *inode, int depth,
  3345. ext4_lblk_t offsets[4], Indirect chain[4],
  3346. __le32 *top)
  3347. {
  3348. Indirect *partial, *p;
  3349. int k, err;
  3350. *top = 0;
  3351. /* Make k index the deepest non-null offest + 1 */
  3352. for (k = depth; k > 1 && !offsets[k-1]; k--)
  3353. ;
  3354. partial = ext4_get_branch(inode, k, offsets, chain, &err);
  3355. /* Writer: pointers */
  3356. if (!partial)
  3357. partial = chain + k-1;
  3358. /*
  3359. * If the branch acquired continuation since we've looked at it -
  3360. * fine, it should all survive and (new) top doesn't belong to us.
  3361. */
  3362. if (!partial->key && *partial->p)
  3363. /* Writer: end */
  3364. goto no_top;
  3365. for (p = partial; (p > chain) && all_zeroes((__le32 *) p->bh->b_data, p->p); p--)
  3366. ;
  3367. /*
  3368. * OK, we've found the last block that must survive. The rest of our
  3369. * branch should be detached before unlocking. However, if that rest
  3370. * of branch is all ours and does not grow immediately from the inode
  3371. * it's easier to cheat and just decrement partial->p.
  3372. */
  3373. if (p == chain + k - 1 && p > chain) {
  3374. p->p--;
  3375. } else {
  3376. *top = *p->p;
  3377. /* Nope, don't do this in ext4. Must leave the tree intact */
  3378. #if 0
  3379. *p->p = 0;
  3380. #endif
  3381. }
  3382. /* Writer: end */
  3383. while (partial > p) {
  3384. brelse(partial->bh);
  3385. partial--;
  3386. }
  3387. no_top:
  3388. return partial;
  3389. }
  3390. /*
  3391. * Zero a number of block pointers in either an inode or an indirect block.
  3392. * If we restart the transaction we must again get write access to the
  3393. * indirect block for further modification.
  3394. *
  3395. * We release `count' blocks on disk, but (last - first) may be greater
  3396. * than `count' because there can be holes in there.
  3397. */
  3398. static void ext4_clear_blocks(handle_t *handle, struct inode *inode,
  3399. struct buffer_head *bh,
  3400. ext4_fsblk_t block_to_free,
  3401. unsigned long count, __le32 *first,
  3402. __le32 *last)
  3403. {
  3404. __le32 *p;
  3405. if (try_to_extend_transaction(handle, inode)) {
  3406. if (bh) {
  3407. BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
  3408. ext4_handle_dirty_metadata(handle, inode, bh);
  3409. }
  3410. ext4_mark_inode_dirty(handle, inode);
  3411. ext4_journal_test_restart(handle, inode);
  3412. if (bh) {
  3413. BUFFER_TRACE(bh, "retaking write access");
  3414. ext4_journal_get_write_access(handle, bh);
  3415. }
  3416. }
  3417. /*
  3418. * Any buffers which are on the journal will be in memory. We
  3419. * find them on the hash table so jbd2_journal_revoke() will
  3420. * run jbd2_journal_forget() on them. We've already detached
  3421. * each block from the file, so bforget() in
  3422. * jbd2_journal_forget() should be safe.
  3423. *
  3424. * AKPM: turn on bforget in jbd2_journal_forget()!!!
  3425. */
  3426. for (p = first; p < last; p++) {
  3427. u32 nr = le32_to_cpu(*p);
  3428. if (nr) {
  3429. struct buffer_head *tbh;
  3430. *p = 0;
  3431. tbh = sb_find_get_block(inode->i_sb, nr);
  3432. ext4_forget(handle, 0, inode, tbh, nr);
  3433. }
  3434. }
  3435. ext4_free_blocks(handle, inode, block_to_free, count, 0);
  3436. }
  3437. /**
  3438. * ext4_free_data - free a list of data blocks
  3439. * @handle: handle for this transaction
  3440. * @inode: inode we are dealing with
  3441. * @this_bh: indirect buffer_head which contains *@first and *@last
  3442. * @first: array of block numbers
  3443. * @last: points immediately past the end of array
  3444. *
  3445. * We are freeing all blocks refered from that array (numbers are stored as
  3446. * little-endian 32-bit) and updating @inode->i_blocks appropriately.
  3447. *
  3448. * We accumulate contiguous runs of blocks to free. Conveniently, if these
  3449. * blocks are contiguous then releasing them at one time will only affect one
  3450. * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
  3451. * actually use a lot of journal space.
  3452. *
  3453. * @this_bh will be %NULL if @first and @last point into the inode's direct
  3454. * block pointers.
  3455. */
  3456. static void ext4_free_data(handle_t *handle, struct inode *inode,
  3457. struct buffer_head *this_bh,
  3458. __le32 *first, __le32 *last)
  3459. {
  3460. ext4_fsblk_t block_to_free = 0; /* Starting block # of a run */
  3461. unsigned long count = 0; /* Number of blocks in the run */
  3462. __le32 *block_to_free_p = NULL; /* Pointer into inode/ind
  3463. corresponding to
  3464. block_to_free */
  3465. ext4_fsblk_t nr; /* Current block # */
  3466. __le32 *p; /* Pointer into inode/ind
  3467. for current block */
  3468. int err;
  3469. if (this_bh) { /* For indirect block */
  3470. BUFFER_TRACE(this_bh, "get_write_access");
  3471. err = ext4_journal_get_write_access(handle, this_bh);
  3472. /* Important: if we can't update the indirect pointers
  3473. * to the blocks, we can't free them. */
  3474. if (err)
  3475. return;
  3476. }
  3477. for (p = first; p < last; p++) {
  3478. nr = le32_to_cpu(*p);
  3479. if (nr) {
  3480. /* accumulate blocks to free if they're contiguous */
  3481. if (count == 0) {
  3482. block_to_free = nr;
  3483. block_to_free_p = p;
  3484. count = 1;
  3485. } else if (nr == block_to_free + count) {
  3486. count++;
  3487. } else {
  3488. ext4_clear_blocks(handle, inode, this_bh,
  3489. block_to_free,
  3490. count, block_to_free_p, p);
  3491. block_to_free = nr;
  3492. block_to_free_p = p;
  3493. count = 1;
  3494. }
  3495. }
  3496. }
  3497. if (count > 0)
  3498. ext4_clear_blocks(handle, inode, this_bh, block_to_free,
  3499. count, block_to_free_p, p);
  3500. if (this_bh) {
  3501. BUFFER_TRACE(this_bh, "call ext4_handle_dirty_metadata");
  3502. /*
  3503. * The buffer head should have an attached journal head at this
  3504. * point. However, if the data is corrupted and an indirect
  3505. * block pointed to itself, it would have been detached when
  3506. * the block was cleared. Check for this instead of OOPSing.
  3507. */
  3508. if ((EXT4_JOURNAL(inode) == NULL) || bh2jh(this_bh))
  3509. ext4_handle_dirty_metadata(handle, inode, this_bh);
  3510. else
  3511. ext4_error(inode->i_sb, __func__,
  3512. "circular indirect block detected, "
  3513. "inode=%lu, block=%llu",
  3514. inode->i_ino,
  3515. (unsigned long long) this_bh->b_blocknr);
  3516. }
  3517. }
  3518. /**
  3519. * ext4_free_branches - free an array of branches
  3520. * @handle: JBD handle for this transaction
  3521. * @inode: inode we are dealing with
  3522. * @parent_bh: the buffer_head which contains *@first and *@last
  3523. * @first: array of block numbers
  3524. * @last: pointer immediately past the end of array
  3525. * @depth: depth of the branches to free
  3526. *
  3527. * We are freeing all blocks refered from these branches (numbers are
  3528. * stored as little-endian 32-bit) and updating @inode->i_blocks
  3529. * appropriately.
  3530. */
  3531. static void ext4_free_branches(handle_t *handle, struct inode *inode,
  3532. struct buffer_head *parent_bh,
  3533. __le32 *first, __le32 *last, int depth)
  3534. {
  3535. ext4_fsblk_t nr;
  3536. __le32 *p;
  3537. if (ext4_handle_is_aborted(handle))
  3538. return;
  3539. if (depth--) {
  3540. struct buffer_head *bh;
  3541. int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
  3542. p = last;
  3543. while (--p >= first) {
  3544. nr = le32_to_cpu(*p);
  3545. if (!nr)
  3546. continue; /* A hole */
  3547. /* Go read the buffer for the next level down */
  3548. bh = sb_bread(inode->i_sb, nr);
  3549. /*
  3550. * A read failure? Report error and clear slot
  3551. * (should be rare).
  3552. */
  3553. if (!bh) {
  3554. ext4_error(inode->i_sb, "ext4_free_branches",
  3555. "Read failure, inode=%lu, block=%llu",
  3556. inode->i_ino, nr);
  3557. continue;
  3558. }
  3559. /* This zaps the entire block. Bottom up. */
  3560. BUFFER_TRACE(bh, "free child branches");
  3561. ext4_free_branches(handle, inode, bh,
  3562. (__le32 *) bh->b_data,
  3563. (__le32 *) bh->b_data + addr_per_block,
  3564. depth);
  3565. /*
  3566. * We've probably journalled the indirect block several
  3567. * times during the truncate. But it's no longer
  3568. * needed and we now drop it from the transaction via
  3569. * jbd2_journal_revoke().
  3570. *
  3571. * That's easy if it's exclusively part of this
  3572. * transaction. But if it's part of the committing
  3573. * transaction then jbd2_journal_forget() will simply
  3574. * brelse() it. That means that if the underlying
  3575. * block is reallocated in ext4_get_block(),
  3576. * unmap_underlying_metadata() will find this block
  3577. * and will try to get rid of it. damn, damn.
  3578. *
  3579. * If this block has already been committed to the
  3580. * journal, a revoke record will be written. And
  3581. * revoke records must be emitted *before* clearing
  3582. * this block's bit in the bitmaps.
  3583. */
  3584. ext4_forget(handle, 1, inode, bh, bh->b_blocknr);
  3585. /*
  3586. * Everything below this this pointer has been
  3587. * released. Now let this top-of-subtree go.
  3588. *
  3589. * We want the freeing of this indirect block to be
  3590. * atomic in the journal with the updating of the
  3591. * bitmap block which owns it. So make some room in
  3592. * the journal.
  3593. *
  3594. * We zero the parent pointer *after* freeing its
  3595. * pointee in the bitmaps, so if extend_transaction()
  3596. * for some reason fails to put the bitmap changes and
  3597. * the release into the same transaction, recovery
  3598. * will merely complain about releasing a free block,
  3599. * rather than leaking blocks.
  3600. */
  3601. if (ext4_handle_is_aborted(handle))
  3602. return;
  3603. if (try_to_extend_transaction(handle, inode)) {
  3604. ext4_mark_inode_dirty(handle, inode);
  3605. ext4_journal_test_restart(handle, inode);
  3606. }
  3607. ext4_free_blocks(handle, inode, nr, 1, 1);
  3608. if (parent_bh) {
  3609. /*
  3610. * The block which we have just freed is
  3611. * pointed to by an indirect block: journal it
  3612. */
  3613. BUFFER_TRACE(parent_bh, "get_write_access");
  3614. if (!ext4_journal_get_write_access(handle,
  3615. parent_bh)){
  3616. *p = 0;
  3617. BUFFER_TRACE(parent_bh,
  3618. "call ext4_handle_dirty_metadata");
  3619. ext4_handle_dirty_metadata(handle,
  3620. inode,
  3621. parent_bh);
  3622. }
  3623. }
  3624. }
  3625. } else {
  3626. /* We have reached the bottom of the tree. */
  3627. BUFFER_TRACE(parent_bh, "free data blocks");
  3628. ext4_free_data(handle, inode, parent_bh, first, last);
  3629. }
  3630. }
  3631. int ext4_can_truncate(struct inode *inode)
  3632. {
  3633. if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
  3634. return 0;
  3635. if (S_ISREG(inode->i_mode))
  3636. return 1;
  3637. if (S_ISDIR(inode->i_mode))
  3638. return 1;
  3639. if (S_ISLNK(inode->i_mode))
  3640. return !ext4_inode_is_fast_symlink(inode);
  3641. return 0;
  3642. }
  3643. /*
  3644. * ext4_truncate()
  3645. *
  3646. * We block out ext4_get_block() block instantiations across the entire
  3647. * transaction, and VFS/VM ensures that ext4_truncate() cannot run
  3648. * simultaneously on behalf of the same inode.
  3649. *
  3650. * As we work through the truncate and commmit bits of it to the journal there
  3651. * is one core, guiding principle: the file's tree must always be consistent on
  3652. * disk. We must be able to restart the truncate after a crash.
  3653. *
  3654. * The file's tree may be transiently inconsistent in memory (although it
  3655. * probably isn't), but whenever we close off and commit a journal transaction,
  3656. * the contents of (the filesystem + the journal) must be consistent and
  3657. * restartable. It's pretty simple, really: bottom up, right to left (although
  3658. * left-to-right works OK too).
  3659. *
  3660. * Note that at recovery time, journal replay occurs *before* the restart of
  3661. * truncate against the orphan inode list.
  3662. *
  3663. * The committed inode has the new, desired i_size (which is the same as
  3664. * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
  3665. * that this inode's truncate did not complete and it will again call
  3666. * ext4_truncate() to have another go. So there will be instantiated blocks
  3667. * to the right of the truncation point in a crashed ext4 filesystem. But
  3668. * that's fine - as long as they are linked from the inode, the post-crash
  3669. * ext4_truncate() run will find them and release them.
  3670. */
  3671. void ext4_truncate(struct inode *inode)
  3672. {
  3673. handle_t *handle;
  3674. struct ext4_inode_info *ei = EXT4_I(inode);
  3675. __le32 *i_data = ei->i_data;
  3676. int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
  3677. struct address_space *mapping = inode->i_mapping;
  3678. ext4_lblk_t offsets[4];
  3679. Indirect chain[4];
  3680. Indirect *partial;
  3681. __le32 nr = 0;
  3682. int n;
  3683. ext4_lblk_t last_block;
  3684. unsigned blocksize = inode->i_sb->s_blocksize;
  3685. if (!ext4_can_truncate(inode))
  3686. return;
  3687. if (ei->i_disksize && inode->i_size == 0 &&
  3688. !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
  3689. ei->i_state |= EXT4_STATE_DA_ALLOC_CLOSE;
  3690. if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
  3691. ext4_ext_truncate(inode);
  3692. return;
  3693. }
  3694. handle = start_transaction(inode);
  3695. if (IS_ERR(handle))
  3696. return; /* AKPM: return what? */
  3697. last_block = (inode->i_size + blocksize-1)
  3698. >> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
  3699. if (inode->i_size & (blocksize - 1))
  3700. if (ext4_block_truncate_page(handle, mapping, inode->i_size))
  3701. goto out_stop;
  3702. n = ext4_block_to_path(inode, last_block, offsets, NULL);
  3703. if (n == 0)
  3704. goto out_stop; /* error */
  3705. /*
  3706. * OK. This truncate is going to happen. We add the inode to the
  3707. * orphan list, so that if this truncate spans multiple transactions,
  3708. * and we crash, we will resume the truncate when the filesystem
  3709. * recovers. It also marks the inode dirty, to catch the new size.
  3710. *
  3711. * Implication: the file must always be in a sane, consistent
  3712. * truncatable state while each transaction commits.
  3713. */
  3714. if (ext4_orphan_add(handle, inode))
  3715. goto out_stop;
  3716. /*
  3717. * From here we block out all ext4_get_block() callers who want to
  3718. * modify the block allocation tree.
  3719. */
  3720. down_write(&ei->i_data_sem);
  3721. ext4_discard_preallocations(inode);
  3722. /*
  3723. * The orphan list entry will now protect us from any crash which
  3724. * occurs before the truncate completes, so it is now safe to propagate
  3725. * the new, shorter inode size (held for now in i_size) into the
  3726. * on-disk inode. We do this via i_disksize, which is the value which
  3727. * ext4 *really* writes onto the disk inode.
  3728. */
  3729. ei->i_disksize = inode->i_size;
  3730. if (n == 1) { /* direct blocks */
  3731. ext4_free_data(handle, inode, NULL, i_data+offsets[0],
  3732. i_data + EXT4_NDIR_BLOCKS);
  3733. goto do_indirects;
  3734. }
  3735. partial = ext4_find_shared(inode, n, offsets, chain, &nr);
  3736. /* Kill the top of shared branch (not detached) */
  3737. if (nr) {
  3738. if (partial == chain) {
  3739. /* Shared branch grows from the inode */
  3740. ext4_free_branches(handle, inode, NULL,
  3741. &nr, &nr+1, (chain+n-1) - partial);
  3742. *partial->p = 0;
  3743. /*
  3744. * We mark the inode dirty prior to restart,
  3745. * and prior to stop. No need for it here.
  3746. */
  3747. } else {
  3748. /* Shared branch grows from an indirect block */
  3749. BUFFER_TRACE(partial->bh, "get_write_access");
  3750. ext4_free_branches(handle, inode, partial->bh,
  3751. partial->p,
  3752. partial->p+1, (chain+n-1) - partial);
  3753. }
  3754. }
  3755. /* Clear the ends of indirect blocks on the shared branch */
  3756. while (partial > chain) {
  3757. ext4_free_branches(handle, inode, partial->bh, partial->p + 1,
  3758. (__le32*)partial->bh->b_data+addr_per_block,
  3759. (chain+n-1) - partial);
  3760. BUFFER_TRACE(partial->bh, "call brelse");
  3761. brelse(partial->bh);
  3762. partial--;
  3763. }
  3764. do_indirects:
  3765. /* Kill the remaining (whole) subtrees */
  3766. switch (offsets[0]) {
  3767. default:
  3768. nr = i_data[EXT4_IND_BLOCK];
  3769. if (nr) {
  3770. ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
  3771. i_data[EXT4_IND_BLOCK] = 0;
  3772. }
  3773. case EXT4_IND_BLOCK:
  3774. nr = i_data[EXT4_DIND_BLOCK];
  3775. if (nr) {
  3776. ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
  3777. i_data[EXT4_DIND_BLOCK] = 0;
  3778. }
  3779. case EXT4_DIND_BLOCK:
  3780. nr = i_data[EXT4_TIND_BLOCK];
  3781. if (nr) {
  3782. ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
  3783. i_data[EXT4_TIND_BLOCK] = 0;
  3784. }
  3785. case EXT4_TIND_BLOCK:
  3786. ;
  3787. }
  3788. up_write(&ei->i_data_sem);
  3789. inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
  3790. ext4_mark_inode_dirty(handle, inode);
  3791. /*
  3792. * In a multi-transaction truncate, we only make the final transaction
  3793. * synchronous
  3794. */
  3795. if (IS_SYNC(inode))
  3796. ext4_handle_sync(handle);
  3797. out_stop:
  3798. /*
  3799. * If this was a simple ftruncate(), and the file will remain alive
  3800. * then we need to clear up the orphan record which we created above.
  3801. * However, if this was a real unlink then we were called by
  3802. * ext4_delete_inode(), and we allow that function to clean up the
  3803. * orphan info for us.
  3804. */
  3805. if (inode->i_nlink)
  3806. ext4_orphan_del(handle, inode);
  3807. ext4_journal_stop(handle);
  3808. }
  3809. /*
  3810. * ext4_get_inode_loc returns with an extra refcount against the inode's
  3811. * underlying buffer_head on success. If 'in_mem' is true, we have all
  3812. * data in memory that is needed to recreate the on-disk version of this
  3813. * inode.
  3814. */
  3815. static int __ext4_get_inode_loc(struct inode *inode,
  3816. struct ext4_iloc *iloc, int in_mem)
  3817. {
  3818. struct ext4_group_desc *gdp;
  3819. struct buffer_head *bh;
  3820. struct super_block *sb = inode->i_sb;
  3821. ext4_fsblk_t block;
  3822. int inodes_per_block, inode_offset;
  3823. iloc->bh = NULL;
  3824. if (!ext4_valid_inum(sb, inode->i_ino))
  3825. return -EIO;
  3826. iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
  3827. gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
  3828. if (!gdp)
  3829. return -EIO;
  3830. /*
  3831. * Figure out the offset within the block group inode table
  3832. */
  3833. inodes_per_block = (EXT4_BLOCK_SIZE(sb) / EXT4_INODE_SIZE(sb));
  3834. inode_offset = ((inode->i_ino - 1) %
  3835. EXT4_INODES_PER_GROUP(sb));
  3836. block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
  3837. iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
  3838. bh = sb_getblk(sb, block);
  3839. if (!bh) {
  3840. ext4_error(sb, "ext4_get_inode_loc", "unable to read "
  3841. "inode block - inode=%lu, block=%llu",
  3842. inode->i_ino, block);
  3843. return -EIO;
  3844. }
  3845. if (!buffer_uptodate(bh)) {
  3846. lock_buffer(bh);
  3847. /*
  3848. * If the buffer has the write error flag, we have failed
  3849. * to write out another inode in the same block. In this
  3850. * case, we don't have to read the block because we may
  3851. * read the old inode data successfully.
  3852. */
  3853. if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
  3854. set_buffer_uptodate(bh);
  3855. if (buffer_uptodate(bh)) {
  3856. /* someone brought it uptodate while we waited */
  3857. unlock_buffer(bh);
  3858. goto has_buffer;
  3859. }
  3860. /*
  3861. * If we have all information of the inode in memory and this
  3862. * is the only valid inode in the block, we need not read the
  3863. * block.
  3864. */
  3865. if (in_mem) {
  3866. struct buffer_head *bitmap_bh;
  3867. int i, start;
  3868. start = inode_offset & ~(inodes_per_block - 1);
  3869. /* Is the inode bitmap in cache? */
  3870. bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
  3871. if (!bitmap_bh)
  3872. goto make_io;
  3873. /*
  3874. * If the inode bitmap isn't in cache then the
  3875. * optimisation may end up performing two reads instead
  3876. * of one, so skip it.
  3877. */
  3878. if (!buffer_uptodate(bitmap_bh)) {
  3879. brelse(bitmap_bh);
  3880. goto make_io;
  3881. }
  3882. for (i = start; i < start + inodes_per_block; i++) {
  3883. if (i == inode_offset)
  3884. continue;
  3885. if (ext4_test_bit(i, bitmap_bh->b_data))
  3886. break;
  3887. }
  3888. brelse(bitmap_bh);
  3889. if (i == start + inodes_per_block) {
  3890. /* all other inodes are free, so skip I/O */
  3891. memset(bh->b_data, 0, bh->b_size);
  3892. set_buffer_uptodate(bh);
  3893. unlock_buffer(bh);
  3894. goto has_buffer;
  3895. }
  3896. }
  3897. make_io:
  3898. /*
  3899. * If we need to do any I/O, try to pre-readahead extra
  3900. * blocks from the inode table.
  3901. */
  3902. if (EXT4_SB(sb)->s_inode_readahead_blks) {
  3903. ext4_fsblk_t b, end, table;
  3904. unsigned num;
  3905. table = ext4_inode_table(sb, gdp);
  3906. /* s_inode_readahead_blks is always a power of 2 */
  3907. b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1);
  3908. if (table > b)
  3909. b = table;
  3910. end = b + EXT4_SB(sb)->s_inode_readahead_blks;
  3911. num = EXT4_INODES_PER_GROUP(sb);
  3912. if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
  3913. EXT4_FEATURE_RO_COMPAT_GDT_CSUM))
  3914. num -= ext4_itable_unused_count(sb, gdp);
  3915. table += num / inodes_per_block;
  3916. if (end > table)
  3917. end = table;
  3918. while (b <= end)
  3919. sb_breadahead(sb, b++);
  3920. }
  3921. /*
  3922. * There are other valid inodes in the buffer, this inode
  3923. * has in-inode xattrs, or we don't have this inode in memory.
  3924. * Read the block from disk.
  3925. */
  3926. get_bh(bh);
  3927. bh->b_end_io = end_buffer_read_sync;
  3928. submit_bh(READ_META, bh);
  3929. wait_on_buffer(bh);
  3930. if (!buffer_uptodate(bh)) {
  3931. ext4_error(sb, __func__,
  3932. "unable to read inode block - inode=%lu, "
  3933. "block=%llu", inode->i_ino, block);
  3934. brelse(bh);
  3935. return -EIO;
  3936. }
  3937. }
  3938. has_buffer:
  3939. iloc->bh = bh;
  3940. return 0;
  3941. }
  3942. int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
  3943. {
  3944. /* We have all inode data except xattrs in memory here. */
  3945. return __ext4_get_inode_loc(inode, iloc,
  3946. !(EXT4_I(inode)->i_state & EXT4_STATE_XATTR));
  3947. }
  3948. void ext4_set_inode_flags(struct inode *inode)
  3949. {
  3950. unsigned int flags = EXT4_I(inode)->i_flags;
  3951. inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
  3952. if (flags & EXT4_SYNC_FL)
  3953. inode->i_flags |= S_SYNC;
  3954. if (flags & EXT4_APPEND_FL)
  3955. inode->i_flags |= S_APPEND;
  3956. if (flags & EXT4_IMMUTABLE_FL)
  3957. inode->i_flags |= S_IMMUTABLE;
  3958. if (flags & EXT4_NOATIME_FL)
  3959. inode->i_flags |= S_NOATIME;
  3960. if (flags & EXT4_DIRSYNC_FL)
  3961. inode->i_flags |= S_DIRSYNC;
  3962. }
  3963. /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
  3964. void ext4_get_inode_flags(struct ext4_inode_info *ei)
  3965. {
  3966. unsigned int flags = ei->vfs_inode.i_flags;
  3967. ei->i_flags &= ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
  3968. EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|EXT4_DIRSYNC_FL);
  3969. if (flags & S_SYNC)
  3970. ei->i_flags |= EXT4_SYNC_FL;
  3971. if (flags & S_APPEND)
  3972. ei->i_flags |= EXT4_APPEND_FL;
  3973. if (flags & S_IMMUTABLE)
  3974. ei->i_flags |= EXT4_IMMUTABLE_FL;
  3975. if (flags & S_NOATIME)
  3976. ei->i_flags |= EXT4_NOATIME_FL;
  3977. if (flags & S_DIRSYNC)
  3978. ei->i_flags |= EXT4_DIRSYNC_FL;
  3979. }
  3980. static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
  3981. struct ext4_inode_info *ei)
  3982. {
  3983. blkcnt_t i_blocks ;
  3984. struct inode *inode = &(ei->vfs_inode);
  3985. struct super_block *sb = inode->i_sb;
  3986. if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
  3987. EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
  3988. /* we are using combined 48 bit field */
  3989. i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
  3990. le32_to_cpu(raw_inode->i_blocks_lo);
  3991. if (ei->i_flags & EXT4_HUGE_FILE_FL) {
  3992. /* i_blocks represent file system block size */
  3993. return i_blocks << (inode->i_blkbits - 9);
  3994. } else {
  3995. return i_blocks;
  3996. }
  3997. } else {
  3998. return le32_to_cpu(raw_inode->i_blocks_lo);
  3999. }
  4000. }
  4001. struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
  4002. {
  4003. struct ext4_iloc iloc;
  4004. struct ext4_inode *raw_inode;
  4005. struct ext4_inode_info *ei;
  4006. struct buffer_head *bh;
  4007. struct inode *inode;
  4008. long ret;
  4009. int block;
  4010. inode = iget_locked(sb, ino);
  4011. if (!inode)
  4012. return ERR_PTR(-ENOMEM);
  4013. if (!(inode->i_state & I_NEW))
  4014. return inode;
  4015. ei = EXT4_I(inode);
  4016. ret = __ext4_get_inode_loc(inode, &iloc, 0);
  4017. if (ret < 0)
  4018. goto bad_inode;
  4019. bh = iloc.bh;
  4020. raw_inode = ext4_raw_inode(&iloc);
  4021. inode->i_mode = le16_to_cpu(raw_inode->i_mode);
  4022. inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
  4023. inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
  4024. if (!(test_opt(inode->i_sb, NO_UID32))) {
  4025. inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
  4026. inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
  4027. }
  4028. inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);
  4029. ei->i_state = 0;
  4030. ei->i_dir_start_lookup = 0;
  4031. ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
  4032. /* We now have enough fields to check if the inode was active or not.
  4033. * This is needed because nfsd might try to access dead inodes
  4034. * the test is that same one that e2fsck uses
  4035. * NeilBrown 1999oct15
  4036. */
  4037. if (inode->i_nlink == 0) {
  4038. if (inode->i_mode == 0 ||
  4039. !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
  4040. /* this inode is deleted */
  4041. brelse(bh);
  4042. ret = -ESTALE;
  4043. goto bad_inode;
  4044. }
  4045. /* The only unlinked inodes we let through here have
  4046. * valid i_mode and are being read by the orphan
  4047. * recovery code: that's fine, we're about to complete
  4048. * the process of deleting those. */
  4049. }
  4050. ei->i_flags = le32_to_cpu(raw_inode->i_flags);
  4051. inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
  4052. ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
  4053. if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
  4054. ei->i_file_acl |=
  4055. ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
  4056. inode->i_size = ext4_isize(raw_inode);
  4057. ei->i_disksize = inode->i_size;
  4058. inode->i_generation = le32_to_cpu(raw_inode->i_generation);
  4059. ei->i_block_group = iloc.block_group;
  4060. ei->i_last_alloc_group = ~0;
  4061. /*
  4062. * NOTE! The in-memory inode i_data array is in little-endian order
  4063. * even on big-endian machines: we do NOT byteswap the block numbers!
  4064. */
  4065. for (block = 0; block < EXT4_N_BLOCKS; block++)
  4066. ei->i_data[block] = raw_inode->i_block[block];
  4067. INIT_LIST_HEAD(&ei->i_orphan);
  4068. if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
  4069. ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
  4070. if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
  4071. EXT4_INODE_SIZE(inode->i_sb)) {
  4072. brelse(bh);
  4073. ret = -EIO;
  4074. goto bad_inode;
  4075. }
  4076. if (ei->i_extra_isize == 0) {
  4077. /* The extra space is currently unused. Use it. */
  4078. ei->i_extra_isize = sizeof(struct ext4_inode) -
  4079. EXT4_GOOD_OLD_INODE_SIZE;
  4080. } else {
  4081. __le32 *magic = (void *)raw_inode +
  4082. EXT4_GOOD_OLD_INODE_SIZE +
  4083. ei->i_extra_isize;
  4084. if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
  4085. ei->i_state |= EXT4_STATE_XATTR;
  4086. }
  4087. } else
  4088. ei->i_extra_isize = 0;
  4089. EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
  4090. EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
  4091. EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
  4092. EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
  4093. inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
  4094. if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
  4095. if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
  4096. inode->i_version |=
  4097. (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
  4098. }
  4099. ret = 0;
  4100. if (ei->i_file_acl &&
  4101. ((ei->i_file_acl <
  4102. (le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block) +
  4103. EXT4_SB(sb)->s_gdb_count)) ||
  4104. (ei->i_file_acl >= ext4_blocks_count(EXT4_SB(sb)->s_es)))) {
  4105. ext4_error(sb, __func__,
  4106. "bad extended attribute block %llu in inode #%lu",
  4107. ei->i_file_acl, inode->i_ino);
  4108. ret = -EIO;
  4109. goto bad_inode;
  4110. } else if (ei->i_flags & EXT4_EXTENTS_FL) {
  4111. if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
  4112. (S_ISLNK(inode->i_mode) &&
  4113. !ext4_inode_is_fast_symlink(inode)))
  4114. /* Validate extent which is part of inode */
  4115. ret = ext4_ext_check_inode(inode);
  4116. } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
  4117. (S_ISLNK(inode->i_mode) &&
  4118. !ext4_inode_is_fast_symlink(inode))) {
  4119. /* Validate block references which are part of inode */
  4120. ret = ext4_check_inode_blockref(inode);
  4121. }
  4122. if (ret) {
  4123. brelse(bh);
  4124. goto bad_inode;
  4125. }
  4126. if (S_ISREG(inode->i_mode)) {
  4127. inode->i_op = &ext4_file_inode_operations;
  4128. inode->i_fop = &ext4_file_operations;
  4129. ext4_set_aops(inode);
  4130. } else if (S_ISDIR(inode->i_mode)) {
  4131. inode->i_op = &ext4_dir_inode_operations;
  4132. inode->i_fop = &ext4_dir_operations;
  4133. } else if (S_ISLNK(inode->i_mode)) {
  4134. if (ext4_inode_is_fast_symlink(inode)) {
  4135. inode->i_op = &ext4_fast_symlink_inode_operations;
  4136. nd_terminate_link(ei->i_data, inode->i_size,
  4137. sizeof(ei->i_data) - 1);
  4138. } else {
  4139. inode->i_op = &ext4_symlink_inode_operations;
  4140. ext4_set_aops(inode);
  4141. }
  4142. } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
  4143. S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
  4144. inode->i_op = &ext4_special_inode_operations;
  4145. if (raw_inode->i_block[0])
  4146. init_special_inode(inode, inode->i_mode,
  4147. old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
  4148. else
  4149. init_special_inode(inode, inode->i_mode,
  4150. new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
  4151. } else {
  4152. brelse(bh);
  4153. ret = -EIO;
  4154. ext4_error(inode->i_sb, __func__,
  4155. "bogus i_mode (%o) for inode=%lu",
  4156. inode->i_mode, inode->i_ino);
  4157. goto bad_inode;
  4158. }
  4159. brelse(iloc.bh);
  4160. ext4_set_inode_flags(inode);
  4161. unlock_new_inode(inode);
  4162. return inode;
  4163. bad_inode:
  4164. iget_failed(inode);
  4165. return ERR_PTR(ret);
  4166. }
  4167. static int ext4_inode_blocks_set(handle_t *handle,
  4168. struct ext4_inode *raw_inode,
  4169. struct ext4_inode_info *ei)
  4170. {
  4171. struct inode *inode = &(ei->vfs_inode);
  4172. u64 i_blocks = inode->i_blocks;
  4173. struct super_block *sb = inode->i_sb;
  4174. if (i_blocks <= ~0U) {
  4175. /*
  4176. * i_blocks can be represnted in a 32 bit variable
  4177. * as multiple of 512 bytes
  4178. */
  4179. raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
  4180. raw_inode->i_blocks_high = 0;
  4181. ei->i_flags &= ~EXT4_HUGE_FILE_FL;
  4182. return 0;
  4183. }
  4184. if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
  4185. return -EFBIG;
  4186. if (i_blocks <= 0xffffffffffffULL) {
  4187. /*
  4188. * i_blocks can be represented in a 48 bit variable
  4189. * as multiple of 512 bytes
  4190. */
  4191. raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
  4192. raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
  4193. ei->i_flags &= ~EXT4_HUGE_FILE_FL;
  4194. } else {
  4195. ei->i_flags |= EXT4_HUGE_FILE_FL;
  4196. /* i_block is stored in file system block size */
  4197. i_blocks = i_blocks >> (inode->i_blkbits - 9);
  4198. raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
  4199. raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
  4200. }
  4201. return 0;
  4202. }
  4203. /*
  4204. * Post the struct inode info into an on-disk inode location in the
  4205. * buffer-cache. This gobbles the caller's reference to the
  4206. * buffer_head in the inode location struct.
  4207. *
  4208. * The caller must have write access to iloc->bh.
  4209. */
  4210. static int ext4_do_update_inode(handle_t *handle,
  4211. struct inode *inode,
  4212. struct ext4_iloc *iloc)
  4213. {
  4214. struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
  4215. struct ext4_inode_info *ei = EXT4_I(inode);
  4216. struct buffer_head *bh = iloc->bh;
  4217. int err = 0, rc, block;
  4218. /* For fields not not tracking in the in-memory inode,
  4219. * initialise them to zero for new inodes. */
  4220. if (ei->i_state & EXT4_STATE_NEW)
  4221. memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
  4222. ext4_get_inode_flags(ei);
  4223. raw_inode->i_mode = cpu_to_le16(inode->i_mode);
  4224. if (!(test_opt(inode->i_sb, NO_UID32))) {
  4225. raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
  4226. raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
  4227. /*
  4228. * Fix up interoperability with old kernels. Otherwise, old inodes get
  4229. * re-used with the upper 16 bits of the uid/gid intact
  4230. */
  4231. if (!ei->i_dtime) {
  4232. raw_inode->i_uid_high =
  4233. cpu_to_le16(high_16_bits(inode->i_uid));
  4234. raw_inode->i_gid_high =
  4235. cpu_to_le16(high_16_bits(inode->i_gid));
  4236. } else {
  4237. raw_inode->i_uid_high = 0;
  4238. raw_inode->i_gid_high = 0;
  4239. }
  4240. } else {
  4241. raw_inode->i_uid_low =
  4242. cpu_to_le16(fs_high2lowuid(inode->i_uid));
  4243. raw_inode->i_gid_low =
  4244. cpu_to_le16(fs_high2lowgid(inode->i_gid));
  4245. raw_inode->i_uid_high = 0;
  4246. raw_inode->i_gid_high = 0;
  4247. }
  4248. raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
  4249. EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
  4250. EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
  4251. EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
  4252. EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
  4253. if (ext4_inode_blocks_set(handle, raw_inode, ei))
  4254. goto out_brelse;
  4255. raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
  4256. /* clear the migrate flag in the raw_inode */
  4257. raw_inode->i_flags = cpu_to_le32(ei->i_flags & ~EXT4_EXT_MIGRATE);
  4258. if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
  4259. cpu_to_le32(EXT4_OS_HURD))
  4260. raw_inode->i_file_acl_high =
  4261. cpu_to_le16(ei->i_file_acl >> 32);
  4262. raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
  4263. ext4_isize_set(raw_inode, ei->i_disksize);
  4264. if (ei->i_disksize > 0x7fffffffULL) {
  4265. struct super_block *sb = inode->i_sb;
  4266. if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
  4267. EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
  4268. EXT4_SB(sb)->s_es->s_rev_level ==
  4269. cpu_to_le32(EXT4_GOOD_OLD_REV)) {
  4270. /* If this is the first large file
  4271. * created, add a flag to the superblock.
  4272. */
  4273. err = ext4_journal_get_write_access(handle,
  4274. EXT4_SB(sb)->s_sbh);
  4275. if (err)
  4276. goto out_brelse;
  4277. ext4_update_dynamic_rev(sb);
  4278. EXT4_SET_RO_COMPAT_FEATURE(sb,
  4279. EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
  4280. sb->s_dirt = 1;
  4281. ext4_handle_sync(handle);
  4282. err = ext4_handle_dirty_metadata(handle, inode,
  4283. EXT4_SB(sb)->s_sbh);
  4284. }
  4285. }
  4286. raw_inode->i_generation = cpu_to_le32(inode->i_generation);
  4287. if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
  4288. if (old_valid_dev(inode->i_rdev)) {
  4289. raw_inode->i_block[0] =
  4290. cpu_to_le32(old_encode_dev(inode->i_rdev));
  4291. raw_inode->i_block[1] = 0;
  4292. } else {
  4293. raw_inode->i_block[0] = 0;
  4294. raw_inode->i_block[1] =
  4295. cpu_to_le32(new_encode_dev(inode->i_rdev));
  4296. raw_inode->i_block[2] = 0;
  4297. }
  4298. } else
  4299. for (block = 0; block < EXT4_N_BLOCKS; block++)
  4300. raw_inode->i_block[block] = ei->i_data[block];
  4301. raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
  4302. if (ei->i_extra_isize) {
  4303. if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
  4304. raw_inode->i_version_hi =
  4305. cpu_to_le32(inode->i_version >> 32);
  4306. raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
  4307. }
  4308. BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
  4309. rc = ext4_handle_dirty_metadata(handle, inode, bh);
  4310. if (!err)
  4311. err = rc;
  4312. ei->i_state &= ~EXT4_STATE_NEW;
  4313. out_brelse:
  4314. brelse(bh);
  4315. ext4_std_error(inode->i_sb, err);
  4316. return err;
  4317. }
  4318. /*
  4319. * ext4_write_inode()
  4320. *
  4321. * We are called from a few places:
  4322. *
  4323. * - Within generic_file_write() for O_SYNC files.
  4324. * Here, there will be no transaction running. We wait for any running
  4325. * trasnaction to commit.
  4326. *
  4327. * - Within sys_sync(), kupdate and such.
  4328. * We wait on commit, if tol to.
  4329. *
  4330. * - Within prune_icache() (PF_MEMALLOC == true)
  4331. * Here we simply return. We can't afford to block kswapd on the
  4332. * journal commit.
  4333. *
  4334. * In all cases it is actually safe for us to return without doing anything,
  4335. * because the inode has been copied into a raw inode buffer in
  4336. * ext4_mark_inode_dirty(). This is a correctness thing for O_SYNC and for
  4337. * knfsd.
  4338. *
  4339. * Note that we are absolutely dependent upon all inode dirtiers doing the
  4340. * right thing: they *must* call mark_inode_dirty() after dirtying info in
  4341. * which we are interested.
  4342. *
  4343. * It would be a bug for them to not do this. The code:
  4344. *
  4345. * mark_inode_dirty(inode)
  4346. * stuff();
  4347. * inode->i_size = expr;
  4348. *
  4349. * is in error because a kswapd-driven write_inode() could occur while
  4350. * `stuff()' is running, and the new i_size will be lost. Plus the inode
  4351. * will no longer be on the superblock's dirty inode list.
  4352. */
  4353. int ext4_write_inode(struct inode *inode, int wait)
  4354. {
  4355. if (current->flags & PF_MEMALLOC)
  4356. return 0;
  4357. if (ext4_journal_current_handle()) {
  4358. jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
  4359. dump_stack();
  4360. return -EIO;
  4361. }
  4362. if (!wait)
  4363. return 0;
  4364. return ext4_force_commit(inode->i_sb);
  4365. }
  4366. /*
  4367. * ext4_setattr()
  4368. *
  4369. * Called from notify_change.
  4370. *
  4371. * We want to trap VFS attempts to truncate the file as soon as
  4372. * possible. In particular, we want to make sure that when the VFS
  4373. * shrinks i_size, we put the inode on the orphan list and modify
  4374. * i_disksize immediately, so that during the subsequent flushing of
  4375. * dirty pages and freeing of disk blocks, we can guarantee that any
  4376. * commit will leave the blocks being flushed in an unused state on
  4377. * disk. (On recovery, the inode will get truncated and the blocks will
  4378. * be freed, so we have a strong guarantee that no future commit will
  4379. * leave these blocks visible to the user.)
  4380. *
  4381. * Another thing we have to assure is that if we are in ordered mode
  4382. * and inode is still attached to the committing transaction, we must
  4383. * we start writeout of all the dirty pages which are being truncated.
  4384. * This way we are sure that all the data written in the previous
  4385. * transaction are already on disk (truncate waits for pages under
  4386. * writeback).
  4387. *
  4388. * Called with inode->i_mutex down.
  4389. */
  4390. int ext4_setattr(struct dentry *dentry, struct iattr *attr)
  4391. {
  4392. struct inode *inode = dentry->d_inode;
  4393. int error, rc = 0;
  4394. const unsigned int ia_valid = attr->ia_valid;
  4395. error = inode_change_ok(inode, attr);
  4396. if (error)
  4397. return error;
  4398. if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
  4399. (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
  4400. handle_t *handle;
  4401. /* (user+group)*(old+new) structure, inode write (sb,
  4402. * inode block, ? - but truncate inode update has it) */
  4403. handle = ext4_journal_start(inode, 2*(EXT4_QUOTA_INIT_BLOCKS(inode->i_sb)+
  4404. EXT4_QUOTA_DEL_BLOCKS(inode->i_sb))+3);
  4405. if (IS_ERR(handle)) {
  4406. error = PTR_ERR(handle);
  4407. goto err_out;
  4408. }
  4409. error = vfs_dq_transfer(inode, attr) ? -EDQUOT : 0;
  4410. if (error) {
  4411. ext4_journal_stop(handle);
  4412. return error;
  4413. }
  4414. /* Update corresponding info in inode so that everything is in
  4415. * one transaction */
  4416. if (attr->ia_valid & ATTR_UID)
  4417. inode->i_uid = attr->ia_uid;
  4418. if (attr->ia_valid & ATTR_GID)
  4419. inode->i_gid = attr->ia_gid;
  4420. error = ext4_mark_inode_dirty(handle, inode);
  4421. ext4_journal_stop(handle);
  4422. }
  4423. if (attr->ia_valid & ATTR_SIZE) {
  4424. if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)) {
  4425. struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
  4426. if (attr->ia_size > sbi->s_bitmap_maxbytes) {
  4427. error = -EFBIG;
  4428. goto err_out;
  4429. }
  4430. }
  4431. }
  4432. if (S_ISREG(inode->i_mode) &&
  4433. attr->ia_valid & ATTR_SIZE && attr->ia_size < inode->i_size) {
  4434. handle_t *handle;
  4435. handle = ext4_journal_start(inode, 3);
  4436. if (IS_ERR(handle)) {
  4437. error = PTR_ERR(handle);
  4438. goto err_out;
  4439. }
  4440. error = ext4_orphan_add(handle, inode);
  4441. EXT4_I(inode)->i_disksize = attr->ia_size;
  4442. rc = ext4_mark_inode_dirty(handle, inode);
  4443. if (!error)
  4444. error = rc;
  4445. ext4_journal_stop(handle);
  4446. if (ext4_should_order_data(inode)) {
  4447. error = ext4_begin_ordered_truncate(inode,
  4448. attr->ia_size);
  4449. if (error) {
  4450. /* Do as much error cleanup as possible */
  4451. handle = ext4_journal_start(inode, 3);
  4452. if (IS_ERR(handle)) {
  4453. ext4_orphan_del(NULL, inode);
  4454. goto err_out;
  4455. }
  4456. ext4_orphan_del(handle, inode);
  4457. ext4_journal_stop(handle);
  4458. goto err_out;
  4459. }
  4460. }
  4461. }
  4462. rc = inode_setattr(inode, attr);
  4463. /* If inode_setattr's call to ext4_truncate failed to get a
  4464. * transaction handle at all, we need to clean up the in-core
  4465. * orphan list manually. */
  4466. if (inode->i_nlink)
  4467. ext4_orphan_del(NULL, inode);
  4468. if (!rc && (ia_valid & ATTR_MODE))
  4469. rc = ext4_acl_chmod(inode);
  4470. err_out:
  4471. ext4_std_error(inode->i_sb, error);
  4472. if (!error)
  4473. error = rc;
  4474. return error;
  4475. }
  4476. int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
  4477. struct kstat *stat)
  4478. {
  4479. struct inode *inode;
  4480. unsigned long delalloc_blocks;
  4481. inode = dentry->d_inode;
  4482. generic_fillattr(inode, stat);
  4483. /*
  4484. * We can't update i_blocks if the block allocation is delayed
  4485. * otherwise in the case of system crash before the real block
  4486. * allocation is done, we will have i_blocks inconsistent with
  4487. * on-disk file blocks.
  4488. * We always keep i_blocks updated together with real
  4489. * allocation. But to not confuse with user, stat
  4490. * will return the blocks that include the delayed allocation
  4491. * blocks for this file.
  4492. */
  4493. spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
  4494. delalloc_blocks = EXT4_I(inode)->i_reserved_data_blocks;
  4495. spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
  4496. stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
  4497. return 0;
  4498. }
  4499. static int ext4_indirect_trans_blocks(struct inode *inode, int nrblocks,
  4500. int chunk)
  4501. {
  4502. int indirects;
  4503. /* if nrblocks are contiguous */
  4504. if (chunk) {
  4505. /*
  4506. * With N contiguous data blocks, it need at most
  4507. * N/EXT4_ADDR_PER_BLOCK(inode->i_sb) indirect blocks
  4508. * 2 dindirect blocks
  4509. * 1 tindirect block
  4510. */
  4511. indirects = nrblocks / EXT4_ADDR_PER_BLOCK(inode->i_sb);
  4512. return indirects + 3;
  4513. }
  4514. /*
  4515. * if nrblocks are not contiguous, worse case, each block touch
  4516. * a indirect block, and each indirect block touch a double indirect
  4517. * block, plus a triple indirect block
  4518. */
  4519. indirects = nrblocks * 2 + 1;
  4520. return indirects;
  4521. }
  4522. static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
  4523. {
  4524. if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL))
  4525. return ext4_indirect_trans_blocks(inode, nrblocks, chunk);
  4526. return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
  4527. }
  4528. /*
  4529. * Account for index blocks, block groups bitmaps and block group
  4530. * descriptor blocks if modify datablocks and index blocks
  4531. * worse case, the indexs blocks spread over different block groups
  4532. *
  4533. * If datablocks are discontiguous, they are possible to spread over
  4534. * different block groups too. If they are contiugous, with flexbg,
  4535. * they could still across block group boundary.
  4536. *
  4537. * Also account for superblock, inode, quota and xattr blocks
  4538. */
  4539. int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
  4540. {
  4541. ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
  4542. int gdpblocks;
  4543. int idxblocks;
  4544. int ret = 0;
  4545. /*
  4546. * How many index blocks need to touch to modify nrblocks?
  4547. * The "Chunk" flag indicating whether the nrblocks is
  4548. * physically contiguous on disk
  4549. *
  4550. * For Direct IO and fallocate, they calls get_block to allocate
  4551. * one single extent at a time, so they could set the "Chunk" flag
  4552. */
  4553. idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);
  4554. ret = idxblocks;
  4555. /*
  4556. * Now let's see how many group bitmaps and group descriptors need
  4557. * to account
  4558. */
  4559. groups = idxblocks;
  4560. if (chunk)
  4561. groups += 1;
  4562. else
  4563. groups += nrblocks;
  4564. gdpblocks = groups;
  4565. if (groups > ngroups)
  4566. groups = ngroups;
  4567. if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
  4568. gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
  4569. /* bitmaps and block group descriptor blocks */
  4570. ret += groups + gdpblocks;
  4571. /* Blocks for super block, inode, quota and xattr blocks */
  4572. ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
  4573. return ret;
  4574. }
  4575. /*
  4576. * Calulate the total number of credits to reserve to fit
  4577. * the modification of a single pages into a single transaction,
  4578. * which may include multiple chunks of block allocations.
  4579. *
  4580. * This could be called via ext4_write_begin()
  4581. *
  4582. * We need to consider the worse case, when
  4583. * one new block per extent.
  4584. */
  4585. int ext4_writepage_trans_blocks(struct inode *inode)
  4586. {
  4587. int bpp = ext4_journal_blocks_per_page(inode);
  4588. int ret;
  4589. ret = ext4_meta_trans_blocks(inode, bpp, 0);
  4590. /* Account for data blocks for journalled mode */
  4591. if (ext4_should_journal_data(inode))
  4592. ret += bpp;
  4593. return ret;
  4594. }
  4595. /*
  4596. * Calculate the journal credits for a chunk of data modification.
  4597. *
  4598. * This is called from DIO, fallocate or whoever calling
  4599. * ext4_get_blocks() to map/allocate a chunk of contigous disk blocks.
  4600. *
  4601. * journal buffers for data blocks are not included here, as DIO
  4602. * and fallocate do no need to journal data buffers.
  4603. */
  4604. int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
  4605. {
  4606. return ext4_meta_trans_blocks(inode, nrblocks, 1);
  4607. }
  4608. /*
  4609. * The caller must have previously called ext4_reserve_inode_write().
  4610. * Give this, we know that the caller already has write access to iloc->bh.
  4611. */
  4612. int ext4_mark_iloc_dirty(handle_t *handle,
  4613. struct inode *inode, struct ext4_iloc *iloc)
  4614. {
  4615. int err = 0;
  4616. if (test_opt(inode->i_sb, I_VERSION))
  4617. inode_inc_iversion(inode);
  4618. /* the do_update_inode consumes one bh->b_count */
  4619. get_bh(iloc->bh);
  4620. /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
  4621. err = ext4_do_update_inode(handle, inode, iloc);
  4622. put_bh(iloc->bh);
  4623. return err;
  4624. }
  4625. /*
  4626. * On success, We end up with an outstanding reference count against
  4627. * iloc->bh. This _must_ be cleaned up later.
  4628. */
  4629. int
  4630. ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
  4631. struct ext4_iloc *iloc)
  4632. {
  4633. int err;
  4634. err = ext4_get_inode_loc(inode, iloc);
  4635. if (!err) {
  4636. BUFFER_TRACE(iloc->bh, "get_write_access");
  4637. err = ext4_journal_get_write_access(handle, iloc->bh);
  4638. if (err) {
  4639. brelse(iloc->bh);
  4640. iloc->bh = NULL;
  4641. }
  4642. }
  4643. ext4_std_error(inode->i_sb, err);
  4644. return err;
  4645. }
  4646. /*
  4647. * Expand an inode by new_extra_isize bytes.
  4648. * Returns 0 on success or negative error number on failure.
  4649. */
  4650. static int ext4_expand_extra_isize(struct inode *inode,
  4651. unsigned int new_extra_isize,
  4652. struct ext4_iloc iloc,
  4653. handle_t *handle)
  4654. {
  4655. struct ext4_inode *raw_inode;
  4656. struct ext4_xattr_ibody_header *header;
  4657. struct ext4_xattr_entry *entry;
  4658. if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
  4659. return 0;
  4660. raw_inode = ext4_raw_inode(&iloc);
  4661. header = IHDR(inode, raw_inode);
  4662. entry = IFIRST(header);
  4663. /* No extended attributes present */
  4664. if (!(EXT4_I(inode)->i_state & EXT4_STATE_XATTR) ||
  4665. header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
  4666. memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
  4667. new_extra_isize);
  4668. EXT4_I(inode)->i_extra_isize = new_extra_isize;
  4669. return 0;
  4670. }
  4671. /* try to expand with EAs present */
  4672. return ext4_expand_extra_isize_ea(inode, new_extra_isize,
  4673. raw_inode, handle);
  4674. }
  4675. /*
  4676. * What we do here is to mark the in-core inode as clean with respect to inode
  4677. * dirtiness (it may still be data-dirty).
  4678. * This means that the in-core inode may be reaped by prune_icache
  4679. * without having to perform any I/O. This is a very good thing,
  4680. * because *any* task may call prune_icache - even ones which
  4681. * have a transaction open against a different journal.
  4682. *
  4683. * Is this cheating? Not really. Sure, we haven't written the
  4684. * inode out, but prune_icache isn't a user-visible syncing function.
  4685. * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
  4686. * we start and wait on commits.
  4687. *
  4688. * Is this efficient/effective? Well, we're being nice to the system
  4689. * by cleaning up our inodes proactively so they can be reaped
  4690. * without I/O. But we are potentially leaving up to five seconds'
  4691. * worth of inodes floating about which prune_icache wants us to
  4692. * write out. One way to fix that would be to get prune_icache()
  4693. * to do a write_super() to free up some memory. It has the desired
  4694. * effect.
  4695. */
  4696. int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
  4697. {
  4698. struct ext4_iloc iloc;
  4699. struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
  4700. static unsigned int mnt_count;
  4701. int err, ret;
  4702. might_sleep();
  4703. err = ext4_reserve_inode_write(handle, inode, &iloc);
  4704. if (ext4_handle_valid(handle) &&
  4705. EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
  4706. !(EXT4_I(inode)->i_state & EXT4_STATE_NO_EXPAND)) {
  4707. /*
  4708. * We need extra buffer credits since we may write into EA block
  4709. * with this same handle. If journal_extend fails, then it will
  4710. * only result in a minor loss of functionality for that inode.
  4711. * If this is felt to be critical, then e2fsck should be run to
  4712. * force a large enough s_min_extra_isize.
  4713. */
  4714. if ((jbd2_journal_extend(handle,
  4715. EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
  4716. ret = ext4_expand_extra_isize(inode,
  4717. sbi->s_want_extra_isize,
  4718. iloc, handle);
  4719. if (ret) {
  4720. EXT4_I(inode)->i_state |= EXT4_STATE_NO_EXPAND;
  4721. if (mnt_count !=
  4722. le16_to_cpu(sbi->s_es->s_mnt_count)) {
  4723. ext4_warning(inode->i_sb, __func__,
  4724. "Unable to expand inode %lu. Delete"
  4725. " some EAs or run e2fsck.",
  4726. inode->i_ino);
  4727. mnt_count =
  4728. le16_to_cpu(sbi->s_es->s_mnt_count);
  4729. }
  4730. }
  4731. }
  4732. }
  4733. if (!err)
  4734. err = ext4_mark_iloc_dirty(handle, inode, &iloc);
  4735. return err;
  4736. }
  4737. /*
  4738. * ext4_dirty_inode() is called from __mark_inode_dirty()
  4739. *
  4740. * We're really interested in the case where a file is being extended.
  4741. * i_size has been changed by generic_commit_write() and we thus need
  4742. * to include the updated inode in the current transaction.
  4743. *
  4744. * Also, vfs_dq_alloc_block() will always dirty the inode when blocks
  4745. * are allocated to the file.
  4746. *
  4747. * If the inode is marked synchronous, we don't honour that here - doing
  4748. * so would cause a commit on atime updates, which we don't bother doing.
  4749. * We handle synchronous inodes at the highest possible level.
  4750. */
  4751. void ext4_dirty_inode(struct inode *inode)
  4752. {
  4753. handle_t *current_handle = ext4_journal_current_handle();
  4754. handle_t *handle;
  4755. if (!ext4_handle_valid(current_handle)) {
  4756. ext4_mark_inode_dirty(current_handle, inode);
  4757. return;
  4758. }
  4759. handle = ext4_journal_start(inode, 2);
  4760. if (IS_ERR(handle))
  4761. goto out;
  4762. if (current_handle &&
  4763. current_handle->h_transaction != handle->h_transaction) {
  4764. /* This task has a transaction open against a different fs */
  4765. printk(KERN_EMERG "%s: transactions do not match!\n",
  4766. __func__);
  4767. } else {
  4768. jbd_debug(5, "marking dirty. outer handle=%p\n",
  4769. current_handle);
  4770. ext4_mark_inode_dirty(handle, inode);
  4771. }
  4772. ext4_journal_stop(handle);
  4773. out:
  4774. return;
  4775. }
  4776. #if 0
  4777. /*
  4778. * Bind an inode's backing buffer_head into this transaction, to prevent
  4779. * it from being flushed to disk early. Unlike
  4780. * ext4_reserve_inode_write, this leaves behind no bh reference and
  4781. * returns no iloc structure, so the caller needs to repeat the iloc
  4782. * lookup to mark the inode dirty later.
  4783. */
  4784. static int ext4_pin_inode(handle_t *handle, struct inode *inode)
  4785. {
  4786. struct ext4_iloc iloc;
  4787. int err = 0;
  4788. if (handle) {
  4789. err = ext4_get_inode_loc(inode, &iloc);
  4790. if (!err) {
  4791. BUFFER_TRACE(iloc.bh, "get_write_access");
  4792. err = jbd2_journal_get_write_access(handle, iloc.bh);
  4793. if (!err)
  4794. err = ext4_handle_dirty_metadata(handle,
  4795. inode,
  4796. iloc.bh);
  4797. brelse(iloc.bh);
  4798. }
  4799. }
  4800. ext4_std_error(inode->i_sb, err);
  4801. return err;
  4802. }
  4803. #endif
  4804. int ext4_change_inode_journal_flag(struct inode *inode, int val)
  4805. {
  4806. journal_t *journal;
  4807. handle_t *handle;
  4808. int err;
  4809. /*
  4810. * We have to be very careful here: changing a data block's
  4811. * journaling status dynamically is dangerous. If we write a
  4812. * data block to the journal, change the status and then delete
  4813. * that block, we risk forgetting to revoke the old log record
  4814. * from the journal and so a subsequent replay can corrupt data.
  4815. * So, first we make sure that the journal is empty and that
  4816. * nobody is changing anything.
  4817. */
  4818. journal = EXT4_JOURNAL(inode);
  4819. if (!journal)
  4820. return 0;
  4821. if (is_journal_aborted(journal))
  4822. return -EROFS;
  4823. jbd2_journal_lock_updates(journal);
  4824. jbd2_journal_flush(journal);
  4825. /*
  4826. * OK, there are no updates running now, and all cached data is
  4827. * synced to disk. We are now in a completely consistent state
  4828. * which doesn't have anything in the journal, and we know that
  4829. * no filesystem updates are running, so it is safe to modify
  4830. * the inode's in-core data-journaling state flag now.
  4831. */
  4832. if (val)
  4833. EXT4_I(inode)->i_flags |= EXT4_JOURNAL_DATA_FL;
  4834. else
  4835. EXT4_I(inode)->i_flags &= ~EXT4_JOURNAL_DATA_FL;
  4836. ext4_set_aops(inode);
  4837. jbd2_journal_unlock_updates(journal);
  4838. /* Finally we can mark the inode as dirty. */
  4839. handle = ext4_journal_start(inode, 1);
  4840. if (IS_ERR(handle))
  4841. return PTR_ERR(handle);
  4842. err = ext4_mark_inode_dirty(handle, inode);
  4843. ext4_handle_sync(handle);
  4844. ext4_journal_stop(handle);
  4845. ext4_std_error(inode->i_sb, err);
  4846. return err;
  4847. }
  4848. static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
  4849. {
  4850. return !buffer_mapped(bh);
  4851. }
  4852. int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
  4853. {
  4854. struct page *page = vmf->page;
  4855. loff_t size;
  4856. unsigned long len;
  4857. int ret = -EINVAL;
  4858. void *fsdata;
  4859. struct file *file = vma->vm_file;
  4860. struct inode *inode = file->f_path.dentry->d_inode;
  4861. struct address_space *mapping = inode->i_mapping;
  4862. /*
  4863. * Get i_alloc_sem to stop truncates messing with the inode. We cannot
  4864. * get i_mutex because we are already holding mmap_sem.
  4865. */
  4866. down_read(&inode->i_alloc_sem);
  4867. size = i_size_read(inode);
  4868. if (page->mapping != mapping || size <= page_offset(page)
  4869. || !PageUptodate(page)) {
  4870. /* page got truncated from under us? */
  4871. goto out_unlock;
  4872. }
  4873. ret = 0;
  4874. if (PageMappedToDisk(page))
  4875. goto out_unlock;
  4876. if (page->index == size >> PAGE_CACHE_SHIFT)
  4877. len = size & ~PAGE_CACHE_MASK;
  4878. else
  4879. len = PAGE_CACHE_SIZE;
  4880. if (page_has_buffers(page)) {
  4881. /* return if we have all the buffers mapped */
  4882. if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
  4883. ext4_bh_unmapped))
  4884. goto out_unlock;
  4885. }
  4886. /*
  4887. * OK, we need to fill the hole... Do write_begin write_end
  4888. * to do block allocation/reservation.We are not holding
  4889. * inode.i__mutex here. That allow * parallel write_begin,
  4890. * write_end call. lock_page prevent this from happening
  4891. * on the same page though
  4892. */
  4893. ret = mapping->a_ops->write_begin(file, mapping, page_offset(page),
  4894. len, AOP_FLAG_UNINTERRUPTIBLE, &page, &fsdata);
  4895. if (ret < 0)
  4896. goto out_unlock;
  4897. ret = mapping->a_ops->write_end(file, mapping, page_offset(page),
  4898. len, len, page, fsdata);
  4899. if (ret < 0)
  4900. goto out_unlock;
  4901. ret = 0;
  4902. out_unlock:
  4903. if (ret)
  4904. ret = VM_FAULT_SIGBUS;
  4905. up_read(&inode->i_alloc_sem);
  4906. return ret;
  4907. }