i915_gem_gtt.c 26 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934
  1. /*
  2. * Copyright © 2010 Daniel Vetter
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21. * IN THE SOFTWARE.
  22. *
  23. */
  24. #include <drm/drmP.h>
  25. #include <drm/i915_drm.h>
  26. #include "i915_drv.h"
  27. #include "i915_trace.h"
  28. #include "intel_drv.h"
  29. #define GEN6_PPGTT_PD_ENTRIES 512
  30. #define I915_PPGTT_PT_ENTRIES (PAGE_SIZE / sizeof(gen6_gtt_pte_t))
  31. /* PPGTT stuff */
  32. #define GEN6_GTT_ADDR_ENCODE(addr) ((addr) | (((addr) >> 28) & 0xff0))
  33. #define HSW_GTT_ADDR_ENCODE(addr) ((addr) | (((addr) >> 28) & 0x7f0))
  34. #define GEN6_PDE_VALID (1 << 0)
  35. /* gen6+ has bit 11-4 for physical addr bit 39-32 */
  36. #define GEN6_PDE_ADDR_ENCODE(addr) GEN6_GTT_ADDR_ENCODE(addr)
  37. #define GEN6_PTE_VALID (1 << 0)
  38. #define GEN6_PTE_UNCACHED (1 << 1)
  39. #define HSW_PTE_UNCACHED (0)
  40. #define GEN6_PTE_CACHE_LLC (2 << 1)
  41. #define GEN7_PTE_CACHE_L3_LLC (3 << 1)
  42. #define GEN6_PTE_ADDR_ENCODE(addr) GEN6_GTT_ADDR_ENCODE(addr)
  43. #define HSW_PTE_ADDR_ENCODE(addr) HSW_GTT_ADDR_ENCODE(addr)
  44. /* Cacheability Control is a 4-bit value. The low three bits are stored in *
  45. * bits 3:1 of the PTE, while the fourth bit is stored in bit 11 of the PTE.
  46. */
  47. #define HSW_CACHEABILITY_CONTROL(bits) ((((bits) & 0x7) << 1) | \
  48. (((bits) & 0x8) << (11 - 3)))
  49. #define HSW_WB_LLC_AGE3 HSW_CACHEABILITY_CONTROL(0x2)
  50. #define HSW_WB_LLC_AGE0 HSW_CACHEABILITY_CONTROL(0x3)
  51. #define HSW_WB_ELLC_LLC_AGE0 HSW_CACHEABILITY_CONTROL(0xb)
  52. static gen6_gtt_pte_t snb_pte_encode(dma_addr_t addr,
  53. enum i915_cache_level level)
  54. {
  55. gen6_gtt_pte_t pte = GEN6_PTE_VALID;
  56. pte |= GEN6_PTE_ADDR_ENCODE(addr);
  57. switch (level) {
  58. case I915_CACHE_L3_LLC:
  59. case I915_CACHE_LLC:
  60. pte |= GEN6_PTE_CACHE_LLC;
  61. break;
  62. case I915_CACHE_NONE:
  63. pte |= GEN6_PTE_UNCACHED;
  64. break;
  65. default:
  66. WARN_ON(1);
  67. }
  68. return pte;
  69. }
  70. static gen6_gtt_pte_t ivb_pte_encode(dma_addr_t addr,
  71. enum i915_cache_level level)
  72. {
  73. gen6_gtt_pte_t pte = GEN6_PTE_VALID;
  74. pte |= GEN6_PTE_ADDR_ENCODE(addr);
  75. switch (level) {
  76. case I915_CACHE_L3_LLC:
  77. pte |= GEN7_PTE_CACHE_L3_LLC;
  78. break;
  79. case I915_CACHE_LLC:
  80. pte |= GEN6_PTE_CACHE_LLC;
  81. break;
  82. case I915_CACHE_NONE:
  83. pte |= GEN6_PTE_UNCACHED;
  84. break;
  85. default:
  86. WARN_ON(1);
  87. }
  88. return pte;
  89. }
  90. #define BYT_PTE_WRITEABLE (1 << 1)
  91. #define BYT_PTE_SNOOPED_BY_CPU_CACHES (1 << 2)
  92. static gen6_gtt_pte_t byt_pte_encode(dma_addr_t addr,
  93. enum i915_cache_level level)
  94. {
  95. gen6_gtt_pte_t pte = GEN6_PTE_VALID;
  96. pte |= GEN6_PTE_ADDR_ENCODE(addr);
  97. /* Mark the page as writeable. Other platforms don't have a
  98. * setting for read-only/writable, so this matches that behavior.
  99. */
  100. pte |= BYT_PTE_WRITEABLE;
  101. if (level != I915_CACHE_NONE)
  102. pte |= BYT_PTE_SNOOPED_BY_CPU_CACHES;
  103. return pte;
  104. }
  105. static gen6_gtt_pte_t hsw_pte_encode(dma_addr_t addr,
  106. enum i915_cache_level level)
  107. {
  108. gen6_gtt_pte_t pte = GEN6_PTE_VALID;
  109. pte |= HSW_PTE_ADDR_ENCODE(addr);
  110. if (level != I915_CACHE_NONE)
  111. pte |= HSW_WB_LLC_AGE3;
  112. return pte;
  113. }
  114. static gen6_gtt_pte_t iris_pte_encode(dma_addr_t addr,
  115. enum i915_cache_level level)
  116. {
  117. gen6_gtt_pte_t pte = GEN6_PTE_VALID;
  118. pte |= HSW_PTE_ADDR_ENCODE(addr);
  119. if (level != I915_CACHE_NONE)
  120. pte |= HSW_WB_ELLC_LLC_AGE0;
  121. return pte;
  122. }
  123. static void gen6_write_pdes(struct i915_hw_ppgtt *ppgtt)
  124. {
  125. struct drm_i915_private *dev_priv = ppgtt->base.dev->dev_private;
  126. gen6_gtt_pte_t __iomem *pd_addr;
  127. uint32_t pd_entry;
  128. int i;
  129. WARN_ON(ppgtt->pd_offset & 0x3f);
  130. pd_addr = (gen6_gtt_pte_t __iomem*)dev_priv->gtt.gsm +
  131. ppgtt->pd_offset / sizeof(gen6_gtt_pte_t);
  132. for (i = 0; i < ppgtt->num_pd_entries; i++) {
  133. dma_addr_t pt_addr;
  134. pt_addr = ppgtt->pt_dma_addr[i];
  135. pd_entry = GEN6_PDE_ADDR_ENCODE(pt_addr);
  136. pd_entry |= GEN6_PDE_VALID;
  137. writel(pd_entry, pd_addr + i);
  138. }
  139. readl(pd_addr);
  140. }
  141. static int gen6_ppgtt_enable(struct drm_device *dev)
  142. {
  143. drm_i915_private_t *dev_priv = dev->dev_private;
  144. uint32_t pd_offset;
  145. struct intel_ring_buffer *ring;
  146. struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
  147. int i;
  148. BUG_ON(ppgtt->pd_offset & 0x3f);
  149. gen6_write_pdes(ppgtt);
  150. pd_offset = ppgtt->pd_offset;
  151. pd_offset /= 64; /* in cachelines, */
  152. pd_offset <<= 16;
  153. if (INTEL_INFO(dev)->gen == 6) {
  154. uint32_t ecochk, gab_ctl, ecobits;
  155. ecobits = I915_READ(GAC_ECO_BITS);
  156. I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_SNB_BIT |
  157. ECOBITS_PPGTT_CACHE64B);
  158. gab_ctl = I915_READ(GAB_CTL);
  159. I915_WRITE(GAB_CTL, gab_ctl | GAB_CTL_CONT_AFTER_PAGEFAULT);
  160. ecochk = I915_READ(GAM_ECOCHK);
  161. I915_WRITE(GAM_ECOCHK, ecochk | ECOCHK_SNB_BIT |
  162. ECOCHK_PPGTT_CACHE64B);
  163. I915_WRITE(GFX_MODE, _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
  164. } else if (INTEL_INFO(dev)->gen >= 7) {
  165. uint32_t ecochk, ecobits;
  166. ecobits = I915_READ(GAC_ECO_BITS);
  167. I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_PPGTT_CACHE64B);
  168. ecochk = I915_READ(GAM_ECOCHK);
  169. if (IS_HASWELL(dev)) {
  170. ecochk |= ECOCHK_PPGTT_WB_HSW;
  171. } else {
  172. ecochk |= ECOCHK_PPGTT_LLC_IVB;
  173. ecochk &= ~ECOCHK_PPGTT_GFDT_IVB;
  174. }
  175. I915_WRITE(GAM_ECOCHK, ecochk);
  176. /* GFX_MODE is per-ring on gen7+ */
  177. }
  178. for_each_ring(ring, dev_priv, i) {
  179. if (INTEL_INFO(dev)->gen >= 7)
  180. I915_WRITE(RING_MODE_GEN7(ring),
  181. _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
  182. I915_WRITE(RING_PP_DIR_DCLV(ring), PP_DIR_DCLV_2G);
  183. I915_WRITE(RING_PP_DIR_BASE(ring), pd_offset);
  184. }
  185. return 0;
  186. }
  187. /* PPGTT support for Sandybdrige/Gen6 and later */
  188. static void gen6_ppgtt_clear_range(struct i915_address_space *vm,
  189. unsigned first_entry,
  190. unsigned num_entries)
  191. {
  192. struct i915_hw_ppgtt *ppgtt =
  193. container_of(vm, struct i915_hw_ppgtt, base);
  194. gen6_gtt_pte_t *pt_vaddr, scratch_pte;
  195. unsigned act_pt = first_entry / I915_PPGTT_PT_ENTRIES;
  196. unsigned first_pte = first_entry % I915_PPGTT_PT_ENTRIES;
  197. unsigned last_pte, i;
  198. scratch_pte = vm->pte_encode(vm->scratch.addr, I915_CACHE_LLC);
  199. while (num_entries) {
  200. last_pte = first_pte + num_entries;
  201. if (last_pte > I915_PPGTT_PT_ENTRIES)
  202. last_pte = I915_PPGTT_PT_ENTRIES;
  203. pt_vaddr = kmap_atomic(ppgtt->pt_pages[act_pt]);
  204. for (i = first_pte; i < last_pte; i++)
  205. pt_vaddr[i] = scratch_pte;
  206. kunmap_atomic(pt_vaddr);
  207. num_entries -= last_pte - first_pte;
  208. first_pte = 0;
  209. act_pt++;
  210. }
  211. }
  212. static void gen6_ppgtt_insert_entries(struct i915_address_space *vm,
  213. struct sg_table *pages,
  214. unsigned first_entry,
  215. enum i915_cache_level cache_level)
  216. {
  217. struct i915_hw_ppgtt *ppgtt =
  218. container_of(vm, struct i915_hw_ppgtt, base);
  219. gen6_gtt_pte_t *pt_vaddr;
  220. unsigned act_pt = first_entry / I915_PPGTT_PT_ENTRIES;
  221. unsigned act_pte = first_entry % I915_PPGTT_PT_ENTRIES;
  222. struct sg_page_iter sg_iter;
  223. pt_vaddr = kmap_atomic(ppgtt->pt_pages[act_pt]);
  224. for_each_sg_page(pages->sgl, &sg_iter, pages->nents, 0) {
  225. dma_addr_t page_addr;
  226. page_addr = sg_page_iter_dma_address(&sg_iter);
  227. pt_vaddr[act_pte] = vm->pte_encode(page_addr, cache_level);
  228. if (++act_pte == I915_PPGTT_PT_ENTRIES) {
  229. kunmap_atomic(pt_vaddr);
  230. act_pt++;
  231. pt_vaddr = kmap_atomic(ppgtt->pt_pages[act_pt]);
  232. act_pte = 0;
  233. }
  234. }
  235. kunmap_atomic(pt_vaddr);
  236. }
  237. static void gen6_ppgtt_cleanup(struct i915_address_space *vm)
  238. {
  239. struct i915_hw_ppgtt *ppgtt =
  240. container_of(vm, struct i915_hw_ppgtt, base);
  241. int i;
  242. drm_mm_takedown(&ppgtt->base.mm);
  243. if (ppgtt->pt_dma_addr) {
  244. for (i = 0; i < ppgtt->num_pd_entries; i++)
  245. pci_unmap_page(ppgtt->base.dev->pdev,
  246. ppgtt->pt_dma_addr[i],
  247. 4096, PCI_DMA_BIDIRECTIONAL);
  248. }
  249. kfree(ppgtt->pt_dma_addr);
  250. for (i = 0; i < ppgtt->num_pd_entries; i++)
  251. __free_page(ppgtt->pt_pages[i]);
  252. kfree(ppgtt->pt_pages);
  253. kfree(ppgtt);
  254. }
  255. static int gen6_ppgtt_init(struct i915_hw_ppgtt *ppgtt)
  256. {
  257. struct drm_device *dev = ppgtt->base.dev;
  258. struct drm_i915_private *dev_priv = dev->dev_private;
  259. unsigned first_pd_entry_in_global_pt;
  260. int i;
  261. int ret = -ENOMEM;
  262. /* ppgtt PDEs reside in the global gtt pagetable, which has 512*1024
  263. * entries. For aliasing ppgtt support we just steal them at the end for
  264. * now. */
  265. first_pd_entry_in_global_pt = gtt_total_entries(dev_priv->gtt);
  266. ppgtt->base.pte_encode = dev_priv->gtt.base.pte_encode;
  267. ppgtt->num_pd_entries = GEN6_PPGTT_PD_ENTRIES;
  268. ppgtt->enable = gen6_ppgtt_enable;
  269. ppgtt->base.clear_range = gen6_ppgtt_clear_range;
  270. ppgtt->base.insert_entries = gen6_ppgtt_insert_entries;
  271. ppgtt->base.cleanup = gen6_ppgtt_cleanup;
  272. ppgtt->base.scratch = dev_priv->gtt.base.scratch;
  273. ppgtt->pt_pages = kzalloc(sizeof(struct page *)*ppgtt->num_pd_entries,
  274. GFP_KERNEL);
  275. if (!ppgtt->pt_pages)
  276. return -ENOMEM;
  277. for (i = 0; i < ppgtt->num_pd_entries; i++) {
  278. ppgtt->pt_pages[i] = alloc_page(GFP_KERNEL);
  279. if (!ppgtt->pt_pages[i])
  280. goto err_pt_alloc;
  281. }
  282. ppgtt->pt_dma_addr = kzalloc(sizeof(dma_addr_t) *ppgtt->num_pd_entries,
  283. GFP_KERNEL);
  284. if (!ppgtt->pt_dma_addr)
  285. goto err_pt_alloc;
  286. for (i = 0; i < ppgtt->num_pd_entries; i++) {
  287. dma_addr_t pt_addr;
  288. pt_addr = pci_map_page(dev->pdev, ppgtt->pt_pages[i], 0, 4096,
  289. PCI_DMA_BIDIRECTIONAL);
  290. if (pci_dma_mapping_error(dev->pdev, pt_addr)) {
  291. ret = -EIO;
  292. goto err_pd_pin;
  293. }
  294. ppgtt->pt_dma_addr[i] = pt_addr;
  295. }
  296. ppgtt->base.clear_range(&ppgtt->base, 0,
  297. ppgtt->num_pd_entries * I915_PPGTT_PT_ENTRIES);
  298. ppgtt->pd_offset = first_pd_entry_in_global_pt * sizeof(gen6_gtt_pte_t);
  299. return 0;
  300. err_pd_pin:
  301. if (ppgtt->pt_dma_addr) {
  302. for (i--; i >= 0; i--)
  303. pci_unmap_page(dev->pdev, ppgtt->pt_dma_addr[i],
  304. 4096, PCI_DMA_BIDIRECTIONAL);
  305. }
  306. err_pt_alloc:
  307. kfree(ppgtt->pt_dma_addr);
  308. for (i = 0; i < ppgtt->num_pd_entries; i++) {
  309. if (ppgtt->pt_pages[i])
  310. __free_page(ppgtt->pt_pages[i]);
  311. }
  312. kfree(ppgtt->pt_pages);
  313. return ret;
  314. }
  315. static int i915_gem_init_aliasing_ppgtt(struct drm_device *dev)
  316. {
  317. struct drm_i915_private *dev_priv = dev->dev_private;
  318. struct i915_hw_ppgtt *ppgtt;
  319. int ret;
  320. ppgtt = kzalloc(sizeof(*ppgtt), GFP_KERNEL);
  321. if (!ppgtt)
  322. return -ENOMEM;
  323. ppgtt->base.dev = dev;
  324. if (INTEL_INFO(dev)->gen < 8)
  325. ret = gen6_ppgtt_init(ppgtt);
  326. else
  327. BUG();
  328. if (ret)
  329. kfree(ppgtt);
  330. else {
  331. dev_priv->mm.aliasing_ppgtt = ppgtt;
  332. drm_mm_init(&ppgtt->base.mm, ppgtt->base.start,
  333. ppgtt->base.total);
  334. }
  335. return ret;
  336. }
  337. void i915_gem_cleanup_aliasing_ppgtt(struct drm_device *dev)
  338. {
  339. struct drm_i915_private *dev_priv = dev->dev_private;
  340. struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
  341. if (!ppgtt)
  342. return;
  343. ppgtt->base.cleanup(&ppgtt->base);
  344. dev_priv->mm.aliasing_ppgtt = NULL;
  345. }
  346. void i915_ppgtt_bind_object(struct i915_hw_ppgtt *ppgtt,
  347. struct drm_i915_gem_object *obj,
  348. enum i915_cache_level cache_level)
  349. {
  350. ppgtt->base.insert_entries(&ppgtt->base, obj->pages,
  351. i915_gem_obj_ggtt_offset(obj) >> PAGE_SHIFT,
  352. cache_level);
  353. }
  354. void i915_ppgtt_unbind_object(struct i915_hw_ppgtt *ppgtt,
  355. struct drm_i915_gem_object *obj)
  356. {
  357. ppgtt->base.clear_range(&ppgtt->base,
  358. i915_gem_obj_ggtt_offset(obj) >> PAGE_SHIFT,
  359. obj->base.size >> PAGE_SHIFT);
  360. }
  361. extern int intel_iommu_gfx_mapped;
  362. /* Certain Gen5 chipsets require require idling the GPU before
  363. * unmapping anything from the GTT when VT-d is enabled.
  364. */
  365. static inline bool needs_idle_maps(struct drm_device *dev)
  366. {
  367. #ifdef CONFIG_INTEL_IOMMU
  368. /* Query intel_iommu to see if we need the workaround. Presumably that
  369. * was loaded first.
  370. */
  371. if (IS_GEN5(dev) && IS_MOBILE(dev) && intel_iommu_gfx_mapped)
  372. return true;
  373. #endif
  374. return false;
  375. }
  376. static bool do_idling(struct drm_i915_private *dev_priv)
  377. {
  378. bool ret = dev_priv->mm.interruptible;
  379. if (unlikely(dev_priv->gtt.do_idle_maps)) {
  380. dev_priv->mm.interruptible = false;
  381. if (i915_gpu_idle(dev_priv->dev)) {
  382. DRM_ERROR("Couldn't idle GPU\n");
  383. /* Wait a bit, in hopes it avoids the hang */
  384. udelay(10);
  385. }
  386. }
  387. return ret;
  388. }
  389. static void undo_idling(struct drm_i915_private *dev_priv, bool interruptible)
  390. {
  391. if (unlikely(dev_priv->gtt.do_idle_maps))
  392. dev_priv->mm.interruptible = interruptible;
  393. }
  394. void i915_gem_restore_gtt_mappings(struct drm_device *dev)
  395. {
  396. struct drm_i915_private *dev_priv = dev->dev_private;
  397. struct drm_i915_gem_object *obj;
  398. /* First fill our portion of the GTT with scratch pages */
  399. dev_priv->gtt.base.clear_range(&dev_priv->gtt.base,
  400. dev_priv->gtt.base.start / PAGE_SIZE,
  401. dev_priv->gtt.base.total / PAGE_SIZE);
  402. list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
  403. i915_gem_clflush_object(obj);
  404. i915_gem_gtt_bind_object(obj, obj->cache_level);
  405. }
  406. i915_gem_chipset_flush(dev);
  407. }
  408. int i915_gem_gtt_prepare_object(struct drm_i915_gem_object *obj)
  409. {
  410. if (obj->has_dma_mapping)
  411. return 0;
  412. if (!dma_map_sg(&obj->base.dev->pdev->dev,
  413. obj->pages->sgl, obj->pages->nents,
  414. PCI_DMA_BIDIRECTIONAL))
  415. return -ENOSPC;
  416. return 0;
  417. }
  418. /*
  419. * Binds an object into the global gtt with the specified cache level. The object
  420. * will be accessible to the GPU via commands whose operands reference offsets
  421. * within the global GTT as well as accessible by the GPU through the GMADR
  422. * mapped BAR (dev_priv->mm.gtt->gtt).
  423. */
  424. static void gen6_ggtt_insert_entries(struct i915_address_space *vm,
  425. struct sg_table *st,
  426. unsigned int first_entry,
  427. enum i915_cache_level level)
  428. {
  429. struct drm_i915_private *dev_priv = vm->dev->dev_private;
  430. gen6_gtt_pte_t __iomem *gtt_entries =
  431. (gen6_gtt_pte_t __iomem *)dev_priv->gtt.gsm + first_entry;
  432. int i = 0;
  433. struct sg_page_iter sg_iter;
  434. dma_addr_t addr;
  435. for_each_sg_page(st->sgl, &sg_iter, st->nents, 0) {
  436. addr = sg_page_iter_dma_address(&sg_iter);
  437. iowrite32(vm->pte_encode(addr, level), &gtt_entries[i]);
  438. i++;
  439. }
  440. /* XXX: This serves as a posting read to make sure that the PTE has
  441. * actually been updated. There is some concern that even though
  442. * registers and PTEs are within the same BAR that they are potentially
  443. * of NUMA access patterns. Therefore, even with the way we assume
  444. * hardware should work, we must keep this posting read for paranoia.
  445. */
  446. if (i != 0)
  447. WARN_ON(readl(&gtt_entries[i-1]) !=
  448. vm->pte_encode(addr, level));
  449. /* This next bit makes the above posting read even more important. We
  450. * want to flush the TLBs only after we're certain all the PTE updates
  451. * have finished.
  452. */
  453. I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
  454. POSTING_READ(GFX_FLSH_CNTL_GEN6);
  455. }
  456. static void gen6_ggtt_clear_range(struct i915_address_space *vm,
  457. unsigned int first_entry,
  458. unsigned int num_entries)
  459. {
  460. struct drm_i915_private *dev_priv = vm->dev->dev_private;
  461. gen6_gtt_pte_t scratch_pte, __iomem *gtt_base =
  462. (gen6_gtt_pte_t __iomem *) dev_priv->gtt.gsm + first_entry;
  463. const int max_entries = gtt_total_entries(dev_priv->gtt) - first_entry;
  464. int i;
  465. if (WARN(num_entries > max_entries,
  466. "First entry = %d; Num entries = %d (max=%d)\n",
  467. first_entry, num_entries, max_entries))
  468. num_entries = max_entries;
  469. scratch_pte = vm->pte_encode(vm->scratch.addr, I915_CACHE_LLC);
  470. for (i = 0; i < num_entries; i++)
  471. iowrite32(scratch_pte, &gtt_base[i]);
  472. readl(gtt_base);
  473. }
  474. static void i915_ggtt_insert_entries(struct i915_address_space *vm,
  475. struct sg_table *st,
  476. unsigned int pg_start,
  477. enum i915_cache_level cache_level)
  478. {
  479. unsigned int flags = (cache_level == I915_CACHE_NONE) ?
  480. AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY;
  481. intel_gtt_insert_sg_entries(st, pg_start, flags);
  482. }
  483. static void i915_ggtt_clear_range(struct i915_address_space *vm,
  484. unsigned int first_entry,
  485. unsigned int num_entries)
  486. {
  487. intel_gtt_clear_range(first_entry, num_entries);
  488. }
  489. void i915_gem_gtt_bind_object(struct drm_i915_gem_object *obj,
  490. enum i915_cache_level cache_level)
  491. {
  492. struct drm_device *dev = obj->base.dev;
  493. struct drm_i915_private *dev_priv = dev->dev_private;
  494. const unsigned long entry = i915_gem_obj_ggtt_offset(obj) >> PAGE_SHIFT;
  495. dev_priv->gtt.base.insert_entries(&dev_priv->gtt.base, obj->pages,
  496. entry,
  497. cache_level);
  498. obj->has_global_gtt_mapping = 1;
  499. }
  500. void i915_gem_gtt_unbind_object(struct drm_i915_gem_object *obj)
  501. {
  502. struct drm_device *dev = obj->base.dev;
  503. struct drm_i915_private *dev_priv = dev->dev_private;
  504. const unsigned long entry = i915_gem_obj_ggtt_offset(obj) >> PAGE_SHIFT;
  505. dev_priv->gtt.base.clear_range(&dev_priv->gtt.base,
  506. entry,
  507. obj->base.size >> PAGE_SHIFT);
  508. obj->has_global_gtt_mapping = 0;
  509. }
  510. void i915_gem_gtt_finish_object(struct drm_i915_gem_object *obj)
  511. {
  512. struct drm_device *dev = obj->base.dev;
  513. struct drm_i915_private *dev_priv = dev->dev_private;
  514. bool interruptible;
  515. interruptible = do_idling(dev_priv);
  516. if (!obj->has_dma_mapping)
  517. dma_unmap_sg(&dev->pdev->dev,
  518. obj->pages->sgl, obj->pages->nents,
  519. PCI_DMA_BIDIRECTIONAL);
  520. undo_idling(dev_priv, interruptible);
  521. }
  522. static void i915_gtt_color_adjust(struct drm_mm_node *node,
  523. unsigned long color,
  524. unsigned long *start,
  525. unsigned long *end)
  526. {
  527. if (node->color != color)
  528. *start += 4096;
  529. if (!list_empty(&node->node_list)) {
  530. node = list_entry(node->node_list.next,
  531. struct drm_mm_node,
  532. node_list);
  533. if (node->allocated && node->color != color)
  534. *end -= 4096;
  535. }
  536. }
  537. void i915_gem_setup_global_gtt(struct drm_device *dev,
  538. unsigned long start,
  539. unsigned long mappable_end,
  540. unsigned long end)
  541. {
  542. /* Let GEM Manage all of the aperture.
  543. *
  544. * However, leave one page at the end still bound to the scratch page.
  545. * There are a number of places where the hardware apparently prefetches
  546. * past the end of the object, and we've seen multiple hangs with the
  547. * GPU head pointer stuck in a batchbuffer bound at the last page of the
  548. * aperture. One page should be enough to keep any prefetching inside
  549. * of the aperture.
  550. */
  551. struct drm_i915_private *dev_priv = dev->dev_private;
  552. struct i915_address_space *ggtt_vm = &dev_priv->gtt.base;
  553. struct drm_mm_node *entry;
  554. struct drm_i915_gem_object *obj;
  555. unsigned long hole_start, hole_end;
  556. BUG_ON(mappable_end > end);
  557. /* Subtract the guard page ... */
  558. drm_mm_init(&ggtt_vm->mm, start, end - start - PAGE_SIZE);
  559. if (!HAS_LLC(dev))
  560. dev_priv->gtt.base.mm.color_adjust = i915_gtt_color_adjust;
  561. /* Mark any preallocated objects as occupied */
  562. list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
  563. struct i915_vma *vma = i915_gem_obj_to_vma(obj, ggtt_vm);
  564. int ret;
  565. DRM_DEBUG_KMS("reserving preallocated space: %lx + %zx\n",
  566. i915_gem_obj_ggtt_offset(obj), obj->base.size);
  567. WARN_ON(i915_gem_obj_ggtt_bound(obj));
  568. ret = drm_mm_reserve_node(&ggtt_vm->mm, &vma->node);
  569. if (ret)
  570. DRM_DEBUG_KMS("Reservation failed\n");
  571. obj->has_global_gtt_mapping = 1;
  572. list_add(&vma->vma_link, &obj->vma_list);
  573. }
  574. dev_priv->gtt.base.start = start;
  575. dev_priv->gtt.base.total = end - start;
  576. /* Clear any non-preallocated blocks */
  577. drm_mm_for_each_hole(entry, &ggtt_vm->mm, hole_start, hole_end) {
  578. const unsigned long count = (hole_end - hole_start) / PAGE_SIZE;
  579. DRM_DEBUG_KMS("clearing unused GTT space: [%lx, %lx]\n",
  580. hole_start, hole_end);
  581. ggtt_vm->clear_range(ggtt_vm, hole_start / PAGE_SIZE, count);
  582. }
  583. /* And finally clear the reserved guard page */
  584. ggtt_vm->clear_range(ggtt_vm, end / PAGE_SIZE - 1, 1);
  585. }
  586. static bool
  587. intel_enable_ppgtt(struct drm_device *dev)
  588. {
  589. if (i915_enable_ppgtt >= 0)
  590. return i915_enable_ppgtt;
  591. #ifdef CONFIG_INTEL_IOMMU
  592. /* Disable ppgtt on SNB if VT-d is on. */
  593. if (INTEL_INFO(dev)->gen == 6 && intel_iommu_gfx_mapped)
  594. return false;
  595. #endif
  596. return true;
  597. }
  598. void i915_gem_init_global_gtt(struct drm_device *dev)
  599. {
  600. struct drm_i915_private *dev_priv = dev->dev_private;
  601. unsigned long gtt_size, mappable_size;
  602. gtt_size = dev_priv->gtt.base.total;
  603. mappable_size = dev_priv->gtt.mappable_end;
  604. if (intel_enable_ppgtt(dev) && HAS_ALIASING_PPGTT(dev)) {
  605. int ret;
  606. if (INTEL_INFO(dev)->gen <= 7) {
  607. /* PPGTT pdes are stolen from global gtt ptes, so shrink the
  608. * aperture accordingly when using aliasing ppgtt. */
  609. gtt_size -= GEN6_PPGTT_PD_ENTRIES * PAGE_SIZE;
  610. }
  611. i915_gem_setup_global_gtt(dev, 0, mappable_size, gtt_size);
  612. ret = i915_gem_init_aliasing_ppgtt(dev);
  613. if (!ret)
  614. return;
  615. DRM_ERROR("Aliased PPGTT setup failed %d\n", ret);
  616. drm_mm_takedown(&dev_priv->gtt.base.mm);
  617. gtt_size += GEN6_PPGTT_PD_ENTRIES * PAGE_SIZE;
  618. }
  619. i915_gem_setup_global_gtt(dev, 0, mappable_size, gtt_size);
  620. }
  621. static int setup_scratch_page(struct drm_device *dev)
  622. {
  623. struct drm_i915_private *dev_priv = dev->dev_private;
  624. struct page *page;
  625. dma_addr_t dma_addr;
  626. page = alloc_page(GFP_KERNEL | GFP_DMA32 | __GFP_ZERO);
  627. if (page == NULL)
  628. return -ENOMEM;
  629. get_page(page);
  630. set_pages_uc(page, 1);
  631. #ifdef CONFIG_INTEL_IOMMU
  632. dma_addr = pci_map_page(dev->pdev, page, 0, PAGE_SIZE,
  633. PCI_DMA_BIDIRECTIONAL);
  634. if (pci_dma_mapping_error(dev->pdev, dma_addr))
  635. return -EINVAL;
  636. #else
  637. dma_addr = page_to_phys(page);
  638. #endif
  639. dev_priv->gtt.base.scratch.page = page;
  640. dev_priv->gtt.base.scratch.addr = dma_addr;
  641. return 0;
  642. }
  643. static void teardown_scratch_page(struct drm_device *dev)
  644. {
  645. struct drm_i915_private *dev_priv = dev->dev_private;
  646. struct page *page = dev_priv->gtt.base.scratch.page;
  647. set_pages_wb(page, 1);
  648. pci_unmap_page(dev->pdev, dev_priv->gtt.base.scratch.addr,
  649. PAGE_SIZE, PCI_DMA_BIDIRECTIONAL);
  650. put_page(page);
  651. __free_page(page);
  652. }
  653. static inline unsigned int gen6_get_total_gtt_size(u16 snb_gmch_ctl)
  654. {
  655. snb_gmch_ctl >>= SNB_GMCH_GGMS_SHIFT;
  656. snb_gmch_ctl &= SNB_GMCH_GGMS_MASK;
  657. return snb_gmch_ctl << 20;
  658. }
  659. static inline size_t gen6_get_stolen_size(u16 snb_gmch_ctl)
  660. {
  661. snb_gmch_ctl >>= SNB_GMCH_GMS_SHIFT;
  662. snb_gmch_ctl &= SNB_GMCH_GMS_MASK;
  663. return snb_gmch_ctl << 25; /* 32 MB units */
  664. }
  665. static int gen6_gmch_probe(struct drm_device *dev,
  666. size_t *gtt_total,
  667. size_t *stolen,
  668. phys_addr_t *mappable_base,
  669. unsigned long *mappable_end)
  670. {
  671. struct drm_i915_private *dev_priv = dev->dev_private;
  672. phys_addr_t gtt_bus_addr;
  673. unsigned int gtt_size;
  674. u16 snb_gmch_ctl;
  675. int ret;
  676. *mappable_base = pci_resource_start(dev->pdev, 2);
  677. *mappable_end = pci_resource_len(dev->pdev, 2);
  678. /* 64/512MB is the current min/max we actually know of, but this is just
  679. * a coarse sanity check.
  680. */
  681. if ((*mappable_end < (64<<20) || (*mappable_end > (512<<20)))) {
  682. DRM_ERROR("Unknown GMADR size (%lx)\n",
  683. dev_priv->gtt.mappable_end);
  684. return -ENXIO;
  685. }
  686. if (!pci_set_dma_mask(dev->pdev, DMA_BIT_MASK(40)))
  687. pci_set_consistent_dma_mask(dev->pdev, DMA_BIT_MASK(40));
  688. pci_read_config_word(dev->pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
  689. gtt_size = gen6_get_total_gtt_size(snb_gmch_ctl);
  690. *stolen = gen6_get_stolen_size(snb_gmch_ctl);
  691. *gtt_total = (gtt_size / sizeof(gen6_gtt_pte_t)) << PAGE_SHIFT;
  692. /* For Modern GENs the PTEs and register space are split in the BAR */
  693. gtt_bus_addr = pci_resource_start(dev->pdev, 0) +
  694. (pci_resource_len(dev->pdev, 0) / 2);
  695. dev_priv->gtt.gsm = ioremap_wc(gtt_bus_addr, gtt_size);
  696. if (!dev_priv->gtt.gsm) {
  697. DRM_ERROR("Failed to map the gtt page table\n");
  698. return -ENOMEM;
  699. }
  700. ret = setup_scratch_page(dev);
  701. if (ret)
  702. DRM_ERROR("Scratch setup failed\n");
  703. dev_priv->gtt.base.clear_range = gen6_ggtt_clear_range;
  704. dev_priv->gtt.base.insert_entries = gen6_ggtt_insert_entries;
  705. return ret;
  706. }
  707. static void gen6_gmch_remove(struct i915_address_space *vm)
  708. {
  709. struct i915_gtt *gtt = container_of(vm, struct i915_gtt, base);
  710. iounmap(gtt->gsm);
  711. teardown_scratch_page(vm->dev);
  712. }
  713. static int i915_gmch_probe(struct drm_device *dev,
  714. size_t *gtt_total,
  715. size_t *stolen,
  716. phys_addr_t *mappable_base,
  717. unsigned long *mappable_end)
  718. {
  719. struct drm_i915_private *dev_priv = dev->dev_private;
  720. int ret;
  721. ret = intel_gmch_probe(dev_priv->bridge_dev, dev_priv->dev->pdev, NULL);
  722. if (!ret) {
  723. DRM_ERROR("failed to set up gmch\n");
  724. return -EIO;
  725. }
  726. intel_gtt_get(gtt_total, stolen, mappable_base, mappable_end);
  727. dev_priv->gtt.do_idle_maps = needs_idle_maps(dev_priv->dev);
  728. dev_priv->gtt.base.clear_range = i915_ggtt_clear_range;
  729. dev_priv->gtt.base.insert_entries = i915_ggtt_insert_entries;
  730. return 0;
  731. }
  732. static void i915_gmch_remove(struct i915_address_space *vm)
  733. {
  734. intel_gmch_remove();
  735. }
  736. int i915_gem_gtt_init(struct drm_device *dev)
  737. {
  738. struct drm_i915_private *dev_priv = dev->dev_private;
  739. struct i915_gtt *gtt = &dev_priv->gtt;
  740. int ret;
  741. if (INTEL_INFO(dev)->gen <= 5) {
  742. gtt->gtt_probe = i915_gmch_probe;
  743. gtt->base.cleanup = i915_gmch_remove;
  744. } else {
  745. gtt->gtt_probe = gen6_gmch_probe;
  746. gtt->base.cleanup = gen6_gmch_remove;
  747. if (IS_HASWELL(dev) && dev_priv->ellc_size)
  748. gtt->base.pte_encode = iris_pte_encode;
  749. else if (IS_HASWELL(dev))
  750. gtt->base.pte_encode = hsw_pte_encode;
  751. else if (IS_VALLEYVIEW(dev))
  752. gtt->base.pte_encode = byt_pte_encode;
  753. else if (INTEL_INFO(dev)->gen >= 7)
  754. gtt->base.pte_encode = ivb_pte_encode;
  755. else
  756. gtt->base.pte_encode = snb_pte_encode;
  757. }
  758. ret = gtt->gtt_probe(dev, &gtt->base.total, &gtt->stolen_size,
  759. &gtt->mappable_base, &gtt->mappable_end);
  760. if (ret)
  761. return ret;
  762. gtt->base.dev = dev;
  763. /* GMADR is the PCI mmio aperture into the global GTT. */
  764. DRM_INFO("Memory usable by graphics device = %zdM\n",
  765. gtt->base.total >> 20);
  766. DRM_DEBUG_DRIVER("GMADR size = %ldM\n", gtt->mappable_end >> 20);
  767. DRM_DEBUG_DRIVER("GTT stolen size = %zdM\n", gtt->stolen_size >> 20);
  768. return 0;
  769. }