setup.c 31 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223
  1. /*
  2. * linux/arch/x86-64/kernel/setup.c
  3. *
  4. * Copyright (C) 1995 Linus Torvalds
  5. *
  6. * Nov 2001 Dave Jones <davej@suse.de>
  7. * Forked from i386 setup code.
  8. */
  9. /*
  10. * This file handles the architecture-dependent parts of initialization
  11. */
  12. #include <linux/errno.h>
  13. #include <linux/sched.h>
  14. #include <linux/kernel.h>
  15. #include <linux/mm.h>
  16. #include <linux/stddef.h>
  17. #include <linux/unistd.h>
  18. #include <linux/ptrace.h>
  19. #include <linux/slab.h>
  20. #include <linux/user.h>
  21. #include <linux/a.out.h>
  22. #include <linux/screen_info.h>
  23. #include <linux/ioport.h>
  24. #include <linux/delay.h>
  25. #include <linux/init.h>
  26. #include <linux/initrd.h>
  27. #include <linux/highmem.h>
  28. #include <linux/bootmem.h>
  29. #include <linux/module.h>
  30. #include <asm/processor.h>
  31. #include <linux/console.h>
  32. #include <linux/seq_file.h>
  33. #include <linux/crash_dump.h>
  34. #include <linux/root_dev.h>
  35. #include <linux/pci.h>
  36. #include <linux/acpi.h>
  37. #include <linux/kallsyms.h>
  38. #include <linux/edd.h>
  39. #include <linux/mmzone.h>
  40. #include <linux/kexec.h>
  41. #include <linux/cpufreq.h>
  42. #include <linux/dmi.h>
  43. #include <linux/dma-mapping.h>
  44. #include <linux/ctype.h>
  45. #include <asm/mtrr.h>
  46. #include <asm/uaccess.h>
  47. #include <asm/system.h>
  48. #include <asm/io.h>
  49. #include <asm/smp.h>
  50. #include <asm/msr.h>
  51. #include <asm/desc.h>
  52. #include <video/edid.h>
  53. #include <asm/e820.h>
  54. #include <asm/dma.h>
  55. #include <asm/mpspec.h>
  56. #include <asm/mmu_context.h>
  57. #include <asm/bootsetup.h>
  58. #include <asm/proto.h>
  59. #include <asm/setup.h>
  60. #include <asm/mach_apic.h>
  61. #include <asm/numa.h>
  62. #include <asm/sections.h>
  63. #include <asm/dmi.h>
  64. /*
  65. * Machine setup..
  66. */
  67. struct cpuinfo_x86 boot_cpu_data __read_mostly;
  68. EXPORT_SYMBOL(boot_cpu_data);
  69. unsigned long mmu_cr4_features;
  70. /* Boot loader ID as an integer, for the benefit of proc_dointvec */
  71. int bootloader_type;
  72. unsigned long saved_video_mode;
  73. /*
  74. * Early DMI memory
  75. */
  76. int dmi_alloc_index;
  77. char dmi_alloc_data[DMI_MAX_DATA];
  78. /*
  79. * Setup options
  80. */
  81. struct screen_info screen_info;
  82. EXPORT_SYMBOL(screen_info);
  83. struct sys_desc_table_struct {
  84. unsigned short length;
  85. unsigned char table[0];
  86. };
  87. struct edid_info edid_info;
  88. EXPORT_SYMBOL_GPL(edid_info);
  89. struct e820map e820;
  90. extern int root_mountflags;
  91. char command_line[COMMAND_LINE_SIZE];
  92. struct resource standard_io_resources[] = {
  93. { .name = "dma1", .start = 0x00, .end = 0x1f,
  94. .flags = IORESOURCE_BUSY | IORESOURCE_IO },
  95. { .name = "pic1", .start = 0x20, .end = 0x21,
  96. .flags = IORESOURCE_BUSY | IORESOURCE_IO },
  97. { .name = "timer0", .start = 0x40, .end = 0x43,
  98. .flags = IORESOURCE_BUSY | IORESOURCE_IO },
  99. { .name = "timer1", .start = 0x50, .end = 0x53,
  100. .flags = IORESOURCE_BUSY | IORESOURCE_IO },
  101. { .name = "keyboard", .start = 0x60, .end = 0x6f,
  102. .flags = IORESOURCE_BUSY | IORESOURCE_IO },
  103. { .name = "dma page reg", .start = 0x80, .end = 0x8f,
  104. .flags = IORESOURCE_BUSY | IORESOURCE_IO },
  105. { .name = "pic2", .start = 0xa0, .end = 0xa1,
  106. .flags = IORESOURCE_BUSY | IORESOURCE_IO },
  107. { .name = "dma2", .start = 0xc0, .end = 0xdf,
  108. .flags = IORESOURCE_BUSY | IORESOURCE_IO },
  109. { .name = "fpu", .start = 0xf0, .end = 0xff,
  110. .flags = IORESOURCE_BUSY | IORESOURCE_IO }
  111. };
  112. #define STANDARD_IO_RESOURCES \
  113. (sizeof standard_io_resources / sizeof standard_io_resources[0])
  114. #define IORESOURCE_RAM (IORESOURCE_BUSY | IORESOURCE_MEM)
  115. struct resource data_resource = {
  116. .name = "Kernel data",
  117. .start = 0,
  118. .end = 0,
  119. .flags = IORESOURCE_RAM,
  120. };
  121. struct resource code_resource = {
  122. .name = "Kernel code",
  123. .start = 0,
  124. .end = 0,
  125. .flags = IORESOURCE_RAM,
  126. };
  127. #define IORESOURCE_ROM (IORESOURCE_BUSY | IORESOURCE_READONLY | IORESOURCE_MEM)
  128. static struct resource system_rom_resource = {
  129. .name = "System ROM",
  130. .start = 0xf0000,
  131. .end = 0xfffff,
  132. .flags = IORESOURCE_ROM,
  133. };
  134. static struct resource extension_rom_resource = {
  135. .name = "Extension ROM",
  136. .start = 0xe0000,
  137. .end = 0xeffff,
  138. .flags = IORESOURCE_ROM,
  139. };
  140. static struct resource adapter_rom_resources[] = {
  141. { .name = "Adapter ROM", .start = 0xc8000, .end = 0,
  142. .flags = IORESOURCE_ROM },
  143. { .name = "Adapter ROM", .start = 0, .end = 0,
  144. .flags = IORESOURCE_ROM },
  145. { .name = "Adapter ROM", .start = 0, .end = 0,
  146. .flags = IORESOURCE_ROM },
  147. { .name = "Adapter ROM", .start = 0, .end = 0,
  148. .flags = IORESOURCE_ROM },
  149. { .name = "Adapter ROM", .start = 0, .end = 0,
  150. .flags = IORESOURCE_ROM },
  151. { .name = "Adapter ROM", .start = 0, .end = 0,
  152. .flags = IORESOURCE_ROM }
  153. };
  154. #define ADAPTER_ROM_RESOURCES \
  155. (sizeof adapter_rom_resources / sizeof adapter_rom_resources[0])
  156. static struct resource video_rom_resource = {
  157. .name = "Video ROM",
  158. .start = 0xc0000,
  159. .end = 0xc7fff,
  160. .flags = IORESOURCE_ROM,
  161. };
  162. static struct resource video_ram_resource = {
  163. .name = "Video RAM area",
  164. .start = 0xa0000,
  165. .end = 0xbffff,
  166. .flags = IORESOURCE_RAM,
  167. };
  168. #define romsignature(x) (*(unsigned short *)(x) == 0xaa55)
  169. static int __init romchecksum(unsigned char *rom, unsigned long length)
  170. {
  171. unsigned char *p, sum = 0;
  172. for (p = rom; p < rom + length; p++)
  173. sum += *p;
  174. return sum == 0;
  175. }
  176. static void __init probe_roms(void)
  177. {
  178. unsigned long start, length, upper;
  179. unsigned char *rom;
  180. int i;
  181. /* video rom */
  182. upper = adapter_rom_resources[0].start;
  183. for (start = video_rom_resource.start; start < upper; start += 2048) {
  184. rom = isa_bus_to_virt(start);
  185. if (!romsignature(rom))
  186. continue;
  187. video_rom_resource.start = start;
  188. /* 0 < length <= 0x7f * 512, historically */
  189. length = rom[2] * 512;
  190. /* if checksum okay, trust length byte */
  191. if (length && romchecksum(rom, length))
  192. video_rom_resource.end = start + length - 1;
  193. request_resource(&iomem_resource, &video_rom_resource);
  194. break;
  195. }
  196. start = (video_rom_resource.end + 1 + 2047) & ~2047UL;
  197. if (start < upper)
  198. start = upper;
  199. /* system rom */
  200. request_resource(&iomem_resource, &system_rom_resource);
  201. upper = system_rom_resource.start;
  202. /* check for extension rom (ignore length byte!) */
  203. rom = isa_bus_to_virt(extension_rom_resource.start);
  204. if (romsignature(rom)) {
  205. length = extension_rom_resource.end - extension_rom_resource.start + 1;
  206. if (romchecksum(rom, length)) {
  207. request_resource(&iomem_resource, &extension_rom_resource);
  208. upper = extension_rom_resource.start;
  209. }
  210. }
  211. /* check for adapter roms on 2k boundaries */
  212. for (i = 0; i < ADAPTER_ROM_RESOURCES && start < upper; start += 2048) {
  213. rom = isa_bus_to_virt(start);
  214. if (!romsignature(rom))
  215. continue;
  216. /* 0 < length <= 0x7f * 512, historically */
  217. length = rom[2] * 512;
  218. /* but accept any length that fits if checksum okay */
  219. if (!length || start + length > upper || !romchecksum(rom, length))
  220. continue;
  221. adapter_rom_resources[i].start = start;
  222. adapter_rom_resources[i].end = start + length - 1;
  223. request_resource(&iomem_resource, &adapter_rom_resources[i]);
  224. start = adapter_rom_resources[i++].end & ~2047UL;
  225. }
  226. }
  227. #ifdef CONFIG_PROC_VMCORE
  228. /* elfcorehdr= specifies the location of elf core header
  229. * stored by the crashed kernel. This option will be passed
  230. * by kexec loader to the capture kernel.
  231. */
  232. static int __init setup_elfcorehdr(char *arg)
  233. {
  234. char *end;
  235. if (!arg)
  236. return -EINVAL;
  237. elfcorehdr_addr = memparse(arg, &end);
  238. return end > arg ? 0 : -EINVAL;
  239. }
  240. early_param("elfcorehdr", setup_elfcorehdr);
  241. #endif
  242. #ifndef CONFIG_NUMA
  243. static void __init
  244. contig_initmem_init(unsigned long start_pfn, unsigned long end_pfn)
  245. {
  246. unsigned long bootmap_size, bootmap;
  247. bootmap_size = bootmem_bootmap_pages(end_pfn)<<PAGE_SHIFT;
  248. bootmap = find_e820_area(0, end_pfn<<PAGE_SHIFT, bootmap_size);
  249. if (bootmap == -1L)
  250. panic("Cannot find bootmem map of size %ld\n",bootmap_size);
  251. bootmap_size = init_bootmem(bootmap >> PAGE_SHIFT, end_pfn);
  252. e820_bootmem_free(NODE_DATA(0), 0, end_pfn << PAGE_SHIFT);
  253. reserve_bootmem(bootmap, bootmap_size);
  254. }
  255. #endif
  256. #if defined(CONFIG_EDD) || defined(CONFIG_EDD_MODULE)
  257. struct edd edd;
  258. #ifdef CONFIG_EDD_MODULE
  259. EXPORT_SYMBOL(edd);
  260. #endif
  261. /**
  262. * copy_edd() - Copy the BIOS EDD information
  263. * from boot_params into a safe place.
  264. *
  265. */
  266. static inline void copy_edd(void)
  267. {
  268. memcpy(edd.mbr_signature, EDD_MBR_SIGNATURE, sizeof(edd.mbr_signature));
  269. memcpy(edd.edd_info, EDD_BUF, sizeof(edd.edd_info));
  270. edd.mbr_signature_nr = EDD_MBR_SIG_NR;
  271. edd.edd_info_nr = EDD_NR;
  272. }
  273. #else
  274. static inline void copy_edd(void)
  275. {
  276. }
  277. #endif
  278. #define EBDA_ADDR_POINTER 0x40E
  279. unsigned __initdata ebda_addr;
  280. unsigned __initdata ebda_size;
  281. static void discover_ebda(void)
  282. {
  283. /*
  284. * there is a real-mode segmented pointer pointing to the
  285. * 4K EBDA area at 0x40E
  286. */
  287. ebda_addr = *(unsigned short *)EBDA_ADDR_POINTER;
  288. ebda_addr <<= 4;
  289. ebda_size = *(unsigned short *)(unsigned long)ebda_addr;
  290. /* Round EBDA up to pages */
  291. if (ebda_size == 0)
  292. ebda_size = 1;
  293. ebda_size <<= 10;
  294. ebda_size = round_up(ebda_size + (ebda_addr & ~PAGE_MASK), PAGE_SIZE);
  295. if (ebda_size > 64*1024)
  296. ebda_size = 64*1024;
  297. }
  298. void __init setup_arch(char **cmdline_p)
  299. {
  300. printk(KERN_INFO "Command line: %s\n", saved_command_line);
  301. ROOT_DEV = old_decode_dev(ORIG_ROOT_DEV);
  302. screen_info = SCREEN_INFO;
  303. edid_info = EDID_INFO;
  304. saved_video_mode = SAVED_VIDEO_MODE;
  305. bootloader_type = LOADER_TYPE;
  306. #ifdef CONFIG_BLK_DEV_RAM
  307. rd_image_start = RAMDISK_FLAGS & RAMDISK_IMAGE_START_MASK;
  308. rd_prompt = ((RAMDISK_FLAGS & RAMDISK_PROMPT_FLAG) != 0);
  309. rd_doload = ((RAMDISK_FLAGS & RAMDISK_LOAD_FLAG) != 0);
  310. #endif
  311. setup_memory_region();
  312. copy_edd();
  313. if (!MOUNT_ROOT_RDONLY)
  314. root_mountflags &= ~MS_RDONLY;
  315. init_mm.start_code = (unsigned long) &_text;
  316. init_mm.end_code = (unsigned long) &_etext;
  317. init_mm.end_data = (unsigned long) &_edata;
  318. init_mm.brk = (unsigned long) &_end;
  319. code_resource.start = virt_to_phys(&_text);
  320. code_resource.end = virt_to_phys(&_etext)-1;
  321. data_resource.start = virt_to_phys(&_etext);
  322. data_resource.end = virt_to_phys(&_edata)-1;
  323. early_identify_cpu(&boot_cpu_data);
  324. strlcpy(command_line, saved_command_line, COMMAND_LINE_SIZE);
  325. *cmdline_p = command_line;
  326. parse_early_param();
  327. finish_e820_parsing();
  328. /*
  329. * partially used pages are not usable - thus
  330. * we are rounding upwards:
  331. */
  332. end_pfn = e820_end_of_ram();
  333. num_physpages = end_pfn;
  334. check_efer();
  335. discover_ebda();
  336. init_memory_mapping(0, (end_pfn_map << PAGE_SHIFT));
  337. dmi_scan_machine();
  338. zap_low_mappings(0);
  339. #ifdef CONFIG_ACPI
  340. /*
  341. * Initialize the ACPI boot-time table parser (gets the RSDP and SDT).
  342. * Call this early for SRAT node setup.
  343. */
  344. acpi_boot_table_init();
  345. #endif
  346. /* How many end-of-memory variables you have, grandma! */
  347. max_low_pfn = end_pfn;
  348. max_pfn = end_pfn;
  349. high_memory = (void *)__va(end_pfn * PAGE_SIZE - 1) + 1;
  350. #ifdef CONFIG_ACPI_NUMA
  351. /*
  352. * Parse SRAT to discover nodes.
  353. */
  354. acpi_numa_init();
  355. #endif
  356. #ifdef CONFIG_NUMA
  357. numa_initmem_init(0, end_pfn);
  358. #else
  359. contig_initmem_init(0, end_pfn);
  360. #endif
  361. /* Reserve direct mapping */
  362. reserve_bootmem_generic(table_start << PAGE_SHIFT,
  363. (table_end - table_start) << PAGE_SHIFT);
  364. /* reserve kernel */
  365. reserve_bootmem_generic(__pa_symbol(&_text),
  366. __pa_symbol(&_end) - __pa_symbol(&_text));
  367. /*
  368. * reserve physical page 0 - it's a special BIOS page on many boxes,
  369. * enabling clean reboots, SMP operation, laptop functions.
  370. */
  371. reserve_bootmem_generic(0, PAGE_SIZE);
  372. /* reserve ebda region */
  373. if (ebda_addr)
  374. reserve_bootmem_generic(ebda_addr, ebda_size);
  375. #ifdef CONFIG_SMP
  376. /*
  377. * But first pinch a few for the stack/trampoline stuff
  378. * FIXME: Don't need the extra page at 4K, but need to fix
  379. * trampoline before removing it. (see the GDT stuff)
  380. */
  381. reserve_bootmem_generic(PAGE_SIZE, PAGE_SIZE);
  382. /* Reserve SMP trampoline */
  383. reserve_bootmem_generic(SMP_TRAMPOLINE_BASE, PAGE_SIZE);
  384. #endif
  385. #ifdef CONFIG_ACPI_SLEEP
  386. /*
  387. * Reserve low memory region for sleep support.
  388. */
  389. acpi_reserve_bootmem();
  390. #endif
  391. /*
  392. * Find and reserve possible boot-time SMP configuration:
  393. */
  394. find_smp_config();
  395. #ifdef CONFIG_BLK_DEV_INITRD
  396. if (LOADER_TYPE && INITRD_START) {
  397. if (INITRD_START + INITRD_SIZE <= (end_pfn << PAGE_SHIFT)) {
  398. reserve_bootmem_generic(INITRD_START, INITRD_SIZE);
  399. initrd_start =
  400. INITRD_START ? INITRD_START + PAGE_OFFSET : 0;
  401. initrd_end = initrd_start+INITRD_SIZE;
  402. }
  403. else {
  404. printk(KERN_ERR "initrd extends beyond end of memory "
  405. "(0x%08lx > 0x%08lx)\ndisabling initrd\n",
  406. (unsigned long)(INITRD_START + INITRD_SIZE),
  407. (unsigned long)(end_pfn << PAGE_SHIFT));
  408. initrd_start = 0;
  409. }
  410. }
  411. #endif
  412. #ifdef CONFIG_KEXEC
  413. if (crashk_res.start != crashk_res.end) {
  414. reserve_bootmem_generic(crashk_res.start,
  415. crashk_res.end - crashk_res.start + 1);
  416. }
  417. #endif
  418. paging_init();
  419. early_quirks();
  420. /*
  421. * set this early, so we dont allocate cpu0
  422. * if MADT list doesnt list BSP first
  423. * mpparse.c/MP_processor_info() allocates logical cpu numbers.
  424. */
  425. cpu_set(0, cpu_present_map);
  426. #ifdef CONFIG_ACPI
  427. /*
  428. * Read APIC and some other early information from ACPI tables.
  429. */
  430. acpi_boot_init();
  431. #endif
  432. init_cpu_to_node();
  433. /*
  434. * get boot-time SMP configuration:
  435. */
  436. if (smp_found_config)
  437. get_smp_config();
  438. init_apic_mappings();
  439. /*
  440. * Request address space for all standard RAM and ROM resources
  441. * and also for regions reported as reserved by the e820.
  442. */
  443. probe_roms();
  444. e820_reserve_resources();
  445. request_resource(&iomem_resource, &video_ram_resource);
  446. {
  447. unsigned i;
  448. /* request I/O space for devices used on all i[345]86 PCs */
  449. for (i = 0; i < STANDARD_IO_RESOURCES; i++)
  450. request_resource(&ioport_resource, &standard_io_resources[i]);
  451. }
  452. e820_setup_gap();
  453. #ifdef CONFIG_VT
  454. #if defined(CONFIG_VGA_CONSOLE)
  455. conswitchp = &vga_con;
  456. #elif defined(CONFIG_DUMMY_CONSOLE)
  457. conswitchp = &dummy_con;
  458. #endif
  459. #endif
  460. }
  461. static int __cpuinit get_model_name(struct cpuinfo_x86 *c)
  462. {
  463. unsigned int *v;
  464. if (c->extended_cpuid_level < 0x80000004)
  465. return 0;
  466. v = (unsigned int *) c->x86_model_id;
  467. cpuid(0x80000002, &v[0], &v[1], &v[2], &v[3]);
  468. cpuid(0x80000003, &v[4], &v[5], &v[6], &v[7]);
  469. cpuid(0x80000004, &v[8], &v[9], &v[10], &v[11]);
  470. c->x86_model_id[48] = 0;
  471. return 1;
  472. }
  473. static void __cpuinit display_cacheinfo(struct cpuinfo_x86 *c)
  474. {
  475. unsigned int n, dummy, eax, ebx, ecx, edx;
  476. n = c->extended_cpuid_level;
  477. if (n >= 0x80000005) {
  478. cpuid(0x80000005, &dummy, &ebx, &ecx, &edx);
  479. printk(KERN_INFO "CPU: L1 I Cache: %dK (%d bytes/line), D cache %dK (%d bytes/line)\n",
  480. edx>>24, edx&0xFF, ecx>>24, ecx&0xFF);
  481. c->x86_cache_size=(ecx>>24)+(edx>>24);
  482. /* On K8 L1 TLB is inclusive, so don't count it */
  483. c->x86_tlbsize = 0;
  484. }
  485. if (n >= 0x80000006) {
  486. cpuid(0x80000006, &dummy, &ebx, &ecx, &edx);
  487. ecx = cpuid_ecx(0x80000006);
  488. c->x86_cache_size = ecx >> 16;
  489. c->x86_tlbsize += ((ebx >> 16) & 0xfff) + (ebx & 0xfff);
  490. printk(KERN_INFO "CPU: L2 Cache: %dK (%d bytes/line)\n",
  491. c->x86_cache_size, ecx & 0xFF);
  492. }
  493. if (n >= 0x80000007)
  494. cpuid(0x80000007, &dummy, &dummy, &dummy, &c->x86_power);
  495. if (n >= 0x80000008) {
  496. cpuid(0x80000008, &eax, &dummy, &dummy, &dummy);
  497. c->x86_virt_bits = (eax >> 8) & 0xff;
  498. c->x86_phys_bits = eax & 0xff;
  499. }
  500. }
  501. #ifdef CONFIG_NUMA
  502. static int nearby_node(int apicid)
  503. {
  504. int i;
  505. for (i = apicid - 1; i >= 0; i--) {
  506. int node = apicid_to_node[i];
  507. if (node != NUMA_NO_NODE && node_online(node))
  508. return node;
  509. }
  510. for (i = apicid + 1; i < MAX_LOCAL_APIC; i++) {
  511. int node = apicid_to_node[i];
  512. if (node != NUMA_NO_NODE && node_online(node))
  513. return node;
  514. }
  515. return first_node(node_online_map); /* Shouldn't happen */
  516. }
  517. #endif
  518. /*
  519. * On a AMD dual core setup the lower bits of the APIC id distingush the cores.
  520. * Assumes number of cores is a power of two.
  521. */
  522. static void __init amd_detect_cmp(struct cpuinfo_x86 *c)
  523. {
  524. #ifdef CONFIG_SMP
  525. unsigned bits;
  526. #ifdef CONFIG_NUMA
  527. int cpu = smp_processor_id();
  528. int node = 0;
  529. unsigned apicid = hard_smp_processor_id();
  530. #endif
  531. unsigned ecx = cpuid_ecx(0x80000008);
  532. c->x86_max_cores = (ecx & 0xff) + 1;
  533. /* CPU telling us the core id bits shift? */
  534. bits = (ecx >> 12) & 0xF;
  535. /* Otherwise recompute */
  536. if (bits == 0) {
  537. while ((1 << bits) < c->x86_max_cores)
  538. bits++;
  539. }
  540. /* Low order bits define the core id (index of core in socket) */
  541. c->cpu_core_id = c->phys_proc_id & ((1 << bits)-1);
  542. /* Convert the APIC ID into the socket ID */
  543. c->phys_proc_id = phys_pkg_id(bits);
  544. #ifdef CONFIG_NUMA
  545. node = c->phys_proc_id;
  546. if (apicid_to_node[apicid] != NUMA_NO_NODE)
  547. node = apicid_to_node[apicid];
  548. if (!node_online(node)) {
  549. /* Two possibilities here:
  550. - The CPU is missing memory and no node was created.
  551. In that case try picking one from a nearby CPU
  552. - The APIC IDs differ from the HyperTransport node IDs
  553. which the K8 northbridge parsing fills in.
  554. Assume they are all increased by a constant offset,
  555. but in the same order as the HT nodeids.
  556. If that doesn't result in a usable node fall back to the
  557. path for the previous case. */
  558. int ht_nodeid = apicid - (cpu_data[0].phys_proc_id << bits);
  559. if (ht_nodeid >= 0 &&
  560. apicid_to_node[ht_nodeid] != NUMA_NO_NODE)
  561. node = apicid_to_node[ht_nodeid];
  562. /* Pick a nearby node */
  563. if (!node_online(node))
  564. node = nearby_node(apicid);
  565. }
  566. numa_set_node(cpu, node);
  567. printk(KERN_INFO "CPU %d/%x -> Node %d\n", cpu, apicid, node);
  568. #endif
  569. #endif
  570. }
  571. static void __init init_amd(struct cpuinfo_x86 *c)
  572. {
  573. unsigned level;
  574. #ifdef CONFIG_SMP
  575. unsigned long value;
  576. /*
  577. * Disable TLB flush filter by setting HWCR.FFDIS on K8
  578. * bit 6 of msr C001_0015
  579. *
  580. * Errata 63 for SH-B3 steppings
  581. * Errata 122 for all steppings (F+ have it disabled by default)
  582. */
  583. if (c->x86 == 15) {
  584. rdmsrl(MSR_K8_HWCR, value);
  585. value |= 1 << 6;
  586. wrmsrl(MSR_K8_HWCR, value);
  587. }
  588. #endif
  589. /* Bit 31 in normal CPUID used for nonstandard 3DNow ID;
  590. 3DNow is IDd by bit 31 in extended CPUID (1*32+31) anyway */
  591. clear_bit(0*32+31, &c->x86_capability);
  592. /* On C+ stepping K8 rep microcode works well for copy/memset */
  593. level = cpuid_eax(1);
  594. if (c->x86 == 15 && ((level >= 0x0f48 && level < 0x0f50) || level >= 0x0f58))
  595. set_bit(X86_FEATURE_REP_GOOD, &c->x86_capability);
  596. /* Enable workaround for FXSAVE leak */
  597. if (c->x86 >= 6)
  598. set_bit(X86_FEATURE_FXSAVE_LEAK, &c->x86_capability);
  599. level = get_model_name(c);
  600. if (!level) {
  601. switch (c->x86) {
  602. case 15:
  603. /* Should distinguish Models here, but this is only
  604. a fallback anyways. */
  605. strcpy(c->x86_model_id, "Hammer");
  606. break;
  607. }
  608. }
  609. display_cacheinfo(c);
  610. /* c->x86_power is 8000_0007 edx. Bit 8 is constant TSC */
  611. if (c->x86_power & (1<<8))
  612. set_bit(X86_FEATURE_CONSTANT_TSC, &c->x86_capability);
  613. /* Multi core CPU? */
  614. if (c->extended_cpuid_level >= 0x80000008)
  615. amd_detect_cmp(c);
  616. /* Fix cpuid4 emulation for more */
  617. num_cache_leaves = 3;
  618. }
  619. static void __cpuinit detect_ht(struct cpuinfo_x86 *c)
  620. {
  621. #ifdef CONFIG_SMP
  622. u32 eax, ebx, ecx, edx;
  623. int index_msb, core_bits;
  624. cpuid(1, &eax, &ebx, &ecx, &edx);
  625. if (!cpu_has(c, X86_FEATURE_HT))
  626. return;
  627. if (cpu_has(c, X86_FEATURE_CMP_LEGACY))
  628. goto out;
  629. smp_num_siblings = (ebx & 0xff0000) >> 16;
  630. if (smp_num_siblings == 1) {
  631. printk(KERN_INFO "CPU: Hyper-Threading is disabled\n");
  632. } else if (smp_num_siblings > 1 ) {
  633. if (smp_num_siblings > NR_CPUS) {
  634. printk(KERN_WARNING "CPU: Unsupported number of the siblings %d", smp_num_siblings);
  635. smp_num_siblings = 1;
  636. return;
  637. }
  638. index_msb = get_count_order(smp_num_siblings);
  639. c->phys_proc_id = phys_pkg_id(index_msb);
  640. smp_num_siblings = smp_num_siblings / c->x86_max_cores;
  641. index_msb = get_count_order(smp_num_siblings) ;
  642. core_bits = get_count_order(c->x86_max_cores);
  643. c->cpu_core_id = phys_pkg_id(index_msb) &
  644. ((1 << core_bits) - 1);
  645. }
  646. out:
  647. if ((c->x86_max_cores * smp_num_siblings) > 1) {
  648. printk(KERN_INFO "CPU: Physical Processor ID: %d\n", c->phys_proc_id);
  649. printk(KERN_INFO "CPU: Processor Core ID: %d\n", c->cpu_core_id);
  650. }
  651. #endif
  652. }
  653. /*
  654. * find out the number of processor cores on the die
  655. */
  656. static int __cpuinit intel_num_cpu_cores(struct cpuinfo_x86 *c)
  657. {
  658. unsigned int eax, t;
  659. if (c->cpuid_level < 4)
  660. return 1;
  661. cpuid_count(4, 0, &eax, &t, &t, &t);
  662. if (eax & 0x1f)
  663. return ((eax >> 26) + 1);
  664. else
  665. return 1;
  666. }
  667. static void srat_detect_node(void)
  668. {
  669. #ifdef CONFIG_NUMA
  670. unsigned node;
  671. int cpu = smp_processor_id();
  672. int apicid = hard_smp_processor_id();
  673. /* Don't do the funky fallback heuristics the AMD version employs
  674. for now. */
  675. node = apicid_to_node[apicid];
  676. if (node == NUMA_NO_NODE)
  677. node = first_node(node_online_map);
  678. numa_set_node(cpu, node);
  679. printk(KERN_INFO "CPU %d/%x -> Node %d\n", cpu, apicid, node);
  680. #endif
  681. }
  682. static void __cpuinit init_intel(struct cpuinfo_x86 *c)
  683. {
  684. /* Cache sizes */
  685. unsigned n;
  686. init_intel_cacheinfo(c);
  687. if (c->cpuid_level > 9 ) {
  688. unsigned eax = cpuid_eax(10);
  689. /* Check for version and the number of counters */
  690. if ((eax & 0xff) && (((eax>>8) & 0xff) > 1))
  691. set_bit(X86_FEATURE_ARCH_PERFMON, &c->x86_capability);
  692. }
  693. n = c->extended_cpuid_level;
  694. if (n >= 0x80000008) {
  695. unsigned eax = cpuid_eax(0x80000008);
  696. c->x86_virt_bits = (eax >> 8) & 0xff;
  697. c->x86_phys_bits = eax & 0xff;
  698. /* CPUID workaround for Intel 0F34 CPU */
  699. if (c->x86_vendor == X86_VENDOR_INTEL &&
  700. c->x86 == 0xF && c->x86_model == 0x3 &&
  701. c->x86_mask == 0x4)
  702. c->x86_phys_bits = 36;
  703. }
  704. if (c->x86 == 15)
  705. c->x86_cache_alignment = c->x86_clflush_size * 2;
  706. if ((c->x86 == 0xf && c->x86_model >= 0x03) ||
  707. (c->x86 == 0x6 && c->x86_model >= 0x0e))
  708. set_bit(X86_FEATURE_CONSTANT_TSC, &c->x86_capability);
  709. set_bit(X86_FEATURE_SYNC_RDTSC, &c->x86_capability);
  710. c->x86_max_cores = intel_num_cpu_cores(c);
  711. srat_detect_node();
  712. }
  713. static void __cpuinit get_cpu_vendor(struct cpuinfo_x86 *c)
  714. {
  715. char *v = c->x86_vendor_id;
  716. if (!strcmp(v, "AuthenticAMD"))
  717. c->x86_vendor = X86_VENDOR_AMD;
  718. else if (!strcmp(v, "GenuineIntel"))
  719. c->x86_vendor = X86_VENDOR_INTEL;
  720. else
  721. c->x86_vendor = X86_VENDOR_UNKNOWN;
  722. }
  723. struct cpu_model_info {
  724. int vendor;
  725. int family;
  726. char *model_names[16];
  727. };
  728. /* Do some early cpuid on the boot CPU to get some parameter that are
  729. needed before check_bugs. Everything advanced is in identify_cpu
  730. below. */
  731. void __cpuinit early_identify_cpu(struct cpuinfo_x86 *c)
  732. {
  733. u32 tfms;
  734. c->loops_per_jiffy = loops_per_jiffy;
  735. c->x86_cache_size = -1;
  736. c->x86_vendor = X86_VENDOR_UNKNOWN;
  737. c->x86_model = c->x86_mask = 0; /* So far unknown... */
  738. c->x86_vendor_id[0] = '\0'; /* Unset */
  739. c->x86_model_id[0] = '\0'; /* Unset */
  740. c->x86_clflush_size = 64;
  741. c->x86_cache_alignment = c->x86_clflush_size;
  742. c->x86_max_cores = 1;
  743. c->extended_cpuid_level = 0;
  744. memset(&c->x86_capability, 0, sizeof c->x86_capability);
  745. /* Get vendor name */
  746. cpuid(0x00000000, (unsigned int *)&c->cpuid_level,
  747. (unsigned int *)&c->x86_vendor_id[0],
  748. (unsigned int *)&c->x86_vendor_id[8],
  749. (unsigned int *)&c->x86_vendor_id[4]);
  750. get_cpu_vendor(c);
  751. /* Initialize the standard set of capabilities */
  752. /* Note that the vendor-specific code below might override */
  753. /* Intel-defined flags: level 0x00000001 */
  754. if (c->cpuid_level >= 0x00000001) {
  755. __u32 misc;
  756. cpuid(0x00000001, &tfms, &misc, &c->x86_capability[4],
  757. &c->x86_capability[0]);
  758. c->x86 = (tfms >> 8) & 0xf;
  759. c->x86_model = (tfms >> 4) & 0xf;
  760. c->x86_mask = tfms & 0xf;
  761. if (c->x86 == 0xf)
  762. c->x86 += (tfms >> 20) & 0xff;
  763. if (c->x86 >= 0x6)
  764. c->x86_model += ((tfms >> 16) & 0xF) << 4;
  765. if (c->x86_capability[0] & (1<<19))
  766. c->x86_clflush_size = ((misc >> 8) & 0xff) * 8;
  767. } else {
  768. /* Have CPUID level 0 only - unheard of */
  769. c->x86 = 4;
  770. }
  771. #ifdef CONFIG_SMP
  772. c->phys_proc_id = (cpuid_ebx(1) >> 24) & 0xff;
  773. #endif
  774. }
  775. /*
  776. * This does the hard work of actually picking apart the CPU stuff...
  777. */
  778. void __cpuinit identify_cpu(struct cpuinfo_x86 *c)
  779. {
  780. int i;
  781. u32 xlvl;
  782. early_identify_cpu(c);
  783. /* AMD-defined flags: level 0x80000001 */
  784. xlvl = cpuid_eax(0x80000000);
  785. c->extended_cpuid_level = xlvl;
  786. if ((xlvl & 0xffff0000) == 0x80000000) {
  787. if (xlvl >= 0x80000001) {
  788. c->x86_capability[1] = cpuid_edx(0x80000001);
  789. c->x86_capability[6] = cpuid_ecx(0x80000001);
  790. }
  791. if (xlvl >= 0x80000004)
  792. get_model_name(c); /* Default name */
  793. }
  794. /* Transmeta-defined flags: level 0x80860001 */
  795. xlvl = cpuid_eax(0x80860000);
  796. if ((xlvl & 0xffff0000) == 0x80860000) {
  797. /* Don't set x86_cpuid_level here for now to not confuse. */
  798. if (xlvl >= 0x80860001)
  799. c->x86_capability[2] = cpuid_edx(0x80860001);
  800. }
  801. c->apicid = phys_pkg_id(0);
  802. /*
  803. * Vendor-specific initialization. In this section we
  804. * canonicalize the feature flags, meaning if there are
  805. * features a certain CPU supports which CPUID doesn't
  806. * tell us, CPUID claiming incorrect flags, or other bugs,
  807. * we handle them here.
  808. *
  809. * At the end of this section, c->x86_capability better
  810. * indicate the features this CPU genuinely supports!
  811. */
  812. switch (c->x86_vendor) {
  813. case X86_VENDOR_AMD:
  814. init_amd(c);
  815. break;
  816. case X86_VENDOR_INTEL:
  817. init_intel(c);
  818. break;
  819. case X86_VENDOR_UNKNOWN:
  820. default:
  821. display_cacheinfo(c);
  822. break;
  823. }
  824. select_idle_routine(c);
  825. detect_ht(c);
  826. /*
  827. * On SMP, boot_cpu_data holds the common feature set between
  828. * all CPUs; so make sure that we indicate which features are
  829. * common between the CPUs. The first time this routine gets
  830. * executed, c == &boot_cpu_data.
  831. */
  832. if (c != &boot_cpu_data) {
  833. /* AND the already accumulated flags with these */
  834. for (i = 0 ; i < NCAPINTS ; i++)
  835. boot_cpu_data.x86_capability[i] &= c->x86_capability[i];
  836. }
  837. #ifdef CONFIG_X86_MCE
  838. mcheck_init(c);
  839. #endif
  840. if (c == &boot_cpu_data)
  841. mtrr_bp_init();
  842. else
  843. mtrr_ap_init();
  844. #ifdef CONFIG_NUMA
  845. numa_add_cpu(smp_processor_id());
  846. #endif
  847. }
  848. void __cpuinit print_cpu_info(struct cpuinfo_x86 *c)
  849. {
  850. if (c->x86_model_id[0])
  851. printk("%s", c->x86_model_id);
  852. if (c->x86_mask || c->cpuid_level >= 0)
  853. printk(" stepping %02x\n", c->x86_mask);
  854. else
  855. printk("\n");
  856. }
  857. /*
  858. * Get CPU information for use by the procfs.
  859. */
  860. static int show_cpuinfo(struct seq_file *m, void *v)
  861. {
  862. struct cpuinfo_x86 *c = v;
  863. /*
  864. * These flag bits must match the definitions in <asm/cpufeature.h>.
  865. * NULL means this bit is undefined or reserved; either way it doesn't
  866. * have meaning as far as Linux is concerned. Note that it's important
  867. * to realize there is a difference between this table and CPUID -- if
  868. * applications want to get the raw CPUID data, they should access
  869. * /dev/cpu/<cpu_nr>/cpuid instead.
  870. */
  871. static char *x86_cap_flags[] = {
  872. /* Intel-defined */
  873. "fpu", "vme", "de", "pse", "tsc", "msr", "pae", "mce",
  874. "cx8", "apic", NULL, "sep", "mtrr", "pge", "mca", "cmov",
  875. "pat", "pse36", "pn", "clflush", NULL, "dts", "acpi", "mmx",
  876. "fxsr", "sse", "sse2", "ss", "ht", "tm", "ia64", NULL,
  877. /* AMD-defined */
  878. NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
  879. NULL, NULL, NULL, "syscall", NULL, NULL, NULL, NULL,
  880. NULL, NULL, NULL, NULL, "nx", NULL, "mmxext", NULL,
  881. NULL, "fxsr_opt", NULL, "rdtscp", NULL, "lm", "3dnowext", "3dnow",
  882. /* Transmeta-defined */
  883. "recovery", "longrun", NULL, "lrti", NULL, NULL, NULL, NULL,
  884. NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
  885. NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
  886. NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
  887. /* Other (Linux-defined) */
  888. "cxmmx", NULL, "cyrix_arr", "centaur_mcr", NULL,
  889. "constant_tsc", NULL, NULL,
  890. "up", NULL, NULL, NULL, NULL, NULL, NULL, NULL,
  891. NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
  892. NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
  893. /* Intel-defined (#2) */
  894. "pni", NULL, NULL, "monitor", "ds_cpl", "vmx", "smx", "est",
  895. "tm2", NULL, "cid", NULL, NULL, "cx16", "xtpr", NULL,
  896. NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
  897. NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
  898. /* VIA/Cyrix/Centaur-defined */
  899. NULL, NULL, "rng", "rng_en", NULL, NULL, "ace", "ace_en",
  900. NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
  901. NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
  902. NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
  903. /* AMD-defined (#2) */
  904. "lahf_lm", "cmp_legacy", "svm", NULL, "cr8_legacy", NULL, NULL, NULL,
  905. NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
  906. NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
  907. NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
  908. };
  909. static char *x86_power_flags[] = {
  910. "ts", /* temperature sensor */
  911. "fid", /* frequency id control */
  912. "vid", /* voltage id control */
  913. "ttp", /* thermal trip */
  914. "tm",
  915. "stc",
  916. NULL,
  917. /* nothing */ /* constant_tsc - moved to flags */
  918. };
  919. #ifdef CONFIG_SMP
  920. if (!cpu_online(c-cpu_data))
  921. return 0;
  922. #endif
  923. seq_printf(m,"processor\t: %u\n"
  924. "vendor_id\t: %s\n"
  925. "cpu family\t: %d\n"
  926. "model\t\t: %d\n"
  927. "model name\t: %s\n",
  928. (unsigned)(c-cpu_data),
  929. c->x86_vendor_id[0] ? c->x86_vendor_id : "unknown",
  930. c->x86,
  931. (int)c->x86_model,
  932. c->x86_model_id[0] ? c->x86_model_id : "unknown");
  933. if (c->x86_mask || c->cpuid_level >= 0)
  934. seq_printf(m, "stepping\t: %d\n", c->x86_mask);
  935. else
  936. seq_printf(m, "stepping\t: unknown\n");
  937. if (cpu_has(c,X86_FEATURE_TSC)) {
  938. unsigned int freq = cpufreq_quick_get((unsigned)(c-cpu_data));
  939. if (!freq)
  940. freq = cpu_khz;
  941. seq_printf(m, "cpu MHz\t\t: %u.%03u\n",
  942. freq / 1000, (freq % 1000));
  943. }
  944. /* Cache size */
  945. if (c->x86_cache_size >= 0)
  946. seq_printf(m, "cache size\t: %d KB\n", c->x86_cache_size);
  947. #ifdef CONFIG_SMP
  948. if (smp_num_siblings * c->x86_max_cores > 1) {
  949. int cpu = c - cpu_data;
  950. seq_printf(m, "physical id\t: %d\n", c->phys_proc_id);
  951. seq_printf(m, "siblings\t: %d\n", cpus_weight(cpu_core_map[cpu]));
  952. seq_printf(m, "core id\t\t: %d\n", c->cpu_core_id);
  953. seq_printf(m, "cpu cores\t: %d\n", c->booted_cores);
  954. }
  955. #endif
  956. seq_printf(m,
  957. "fpu\t\t: yes\n"
  958. "fpu_exception\t: yes\n"
  959. "cpuid level\t: %d\n"
  960. "wp\t\t: yes\n"
  961. "flags\t\t:",
  962. c->cpuid_level);
  963. {
  964. int i;
  965. for ( i = 0 ; i < 32*NCAPINTS ; i++ )
  966. if (cpu_has(c, i) && x86_cap_flags[i] != NULL)
  967. seq_printf(m, " %s", x86_cap_flags[i]);
  968. }
  969. seq_printf(m, "\nbogomips\t: %lu.%02lu\n",
  970. c->loops_per_jiffy/(500000/HZ),
  971. (c->loops_per_jiffy/(5000/HZ)) % 100);
  972. if (c->x86_tlbsize > 0)
  973. seq_printf(m, "TLB size\t: %d 4K pages\n", c->x86_tlbsize);
  974. seq_printf(m, "clflush size\t: %d\n", c->x86_clflush_size);
  975. seq_printf(m, "cache_alignment\t: %d\n", c->x86_cache_alignment);
  976. seq_printf(m, "address sizes\t: %u bits physical, %u bits virtual\n",
  977. c->x86_phys_bits, c->x86_virt_bits);
  978. seq_printf(m, "power management:");
  979. {
  980. unsigned i;
  981. for (i = 0; i < 32; i++)
  982. if (c->x86_power & (1 << i)) {
  983. if (i < ARRAY_SIZE(x86_power_flags) &&
  984. x86_power_flags[i])
  985. seq_printf(m, "%s%s",
  986. x86_power_flags[i][0]?" ":"",
  987. x86_power_flags[i]);
  988. else
  989. seq_printf(m, " [%d]", i);
  990. }
  991. }
  992. seq_printf(m, "\n\n");
  993. return 0;
  994. }
  995. static void *c_start(struct seq_file *m, loff_t *pos)
  996. {
  997. return *pos < NR_CPUS ? cpu_data + *pos : NULL;
  998. }
  999. static void *c_next(struct seq_file *m, void *v, loff_t *pos)
  1000. {
  1001. ++*pos;
  1002. return c_start(m, pos);
  1003. }
  1004. static void c_stop(struct seq_file *m, void *v)
  1005. {
  1006. }
  1007. struct seq_operations cpuinfo_op = {
  1008. .start =c_start,
  1009. .next = c_next,
  1010. .stop = c_stop,
  1011. .show = show_cpuinfo,
  1012. };
  1013. #if defined(CONFIG_INPUT_PCSPKR) || defined(CONFIG_INPUT_PCSPKR_MODULE)
  1014. #include <linux/platform_device.h>
  1015. static __init int add_pcspkr(void)
  1016. {
  1017. struct platform_device *pd;
  1018. int ret;
  1019. pd = platform_device_alloc("pcspkr", -1);
  1020. if (!pd)
  1021. return -ENOMEM;
  1022. ret = platform_device_add(pd);
  1023. if (ret)
  1024. platform_device_put(pd);
  1025. return ret;
  1026. }
  1027. device_initcall(add_pcspkr);
  1028. #endif