discontig.c 11 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398
  1. /*
  2. * Written by: Patricia Gaughen <gone@us.ibm.com>, IBM Corporation
  3. * August 2002: added remote node KVA remap - Martin J. Bligh
  4. *
  5. * Copyright (C) 2002, IBM Corp.
  6. *
  7. * All rights reserved.
  8. *
  9. * This program is free software; you can redistribute it and/or modify
  10. * it under the terms of the GNU General Public License as published by
  11. * the Free Software Foundation; either version 2 of the License, or
  12. * (at your option) any later version.
  13. *
  14. * This program is distributed in the hope that it will be useful, but
  15. * WITHOUT ANY WARRANTY; without even the implied warranty of
  16. * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
  17. * NON INFRINGEMENT. See the GNU General Public License for more
  18. * details.
  19. *
  20. * You should have received a copy of the GNU General Public License
  21. * along with this program; if not, write to the Free Software
  22. * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  23. */
  24. #include <linux/config.h>
  25. #include <linux/mm.h>
  26. #include <linux/bootmem.h>
  27. #include <linux/mmzone.h>
  28. #include <linux/highmem.h>
  29. #include <linux/initrd.h>
  30. #include <linux/nodemask.h>
  31. #include <asm/e820.h>
  32. #include <asm/setup.h>
  33. #include <asm/mmzone.h>
  34. #include <bios_ebda.h>
  35. struct pglist_data *node_data[MAX_NUMNODES];
  36. bootmem_data_t node0_bdata;
  37. /*
  38. * numa interface - we expect the numa architecture specfic code to have
  39. * populated the following initialisation.
  40. *
  41. * 1) node_online_map - the map of all nodes configured (online) in the system
  42. * 2) physnode_map - the mapping between a pfn and owning node
  43. * 3) node_start_pfn - the starting page frame number for a node
  44. * 3) node_end_pfn - the ending page fram number for a node
  45. */
  46. /*
  47. * physnode_map keeps track of the physical memory layout of a generic
  48. * numa node on a 256Mb break (each element of the array will
  49. * represent 256Mb of memory and will be marked by the node id. so,
  50. * if the first gig is on node 0, and the second gig is on node 1
  51. * physnode_map will contain:
  52. *
  53. * physnode_map[0-3] = 0;
  54. * physnode_map[4-7] = 1;
  55. * physnode_map[8- ] = -1;
  56. */
  57. s8 physnode_map[MAX_ELEMENTS] = { [0 ... (MAX_ELEMENTS - 1)] = -1};
  58. void memory_present(int nid, unsigned long start, unsigned long end)
  59. {
  60. unsigned long pfn;
  61. printk(KERN_INFO "Node: %d, start_pfn: %ld, end_pfn: %ld\n",
  62. nid, start, end);
  63. printk(KERN_DEBUG " Setting physnode_map array to node %d for pfns:\n", nid);
  64. printk(KERN_DEBUG " ");
  65. for (pfn = start; pfn < end; pfn += PAGES_PER_ELEMENT) {
  66. physnode_map[pfn / PAGES_PER_ELEMENT] = nid;
  67. printk("%ld ", pfn);
  68. }
  69. printk("\n");
  70. }
  71. unsigned long node_memmap_size_bytes(int nid, unsigned long start_pfn,
  72. unsigned long end_pfn)
  73. {
  74. unsigned long nr_pages = end_pfn - start_pfn;
  75. if (!nr_pages)
  76. return 0;
  77. return (nr_pages + 1) * sizeof(struct page);
  78. }
  79. unsigned long node_start_pfn[MAX_NUMNODES];
  80. unsigned long node_end_pfn[MAX_NUMNODES];
  81. extern unsigned long find_max_low_pfn(void);
  82. extern void find_max_pfn(void);
  83. extern void one_highpage_init(struct page *, int, int);
  84. extern struct e820map e820;
  85. extern unsigned long init_pg_tables_end;
  86. extern unsigned long highend_pfn, highstart_pfn;
  87. extern unsigned long max_low_pfn;
  88. extern unsigned long totalram_pages;
  89. extern unsigned long totalhigh_pages;
  90. #define LARGE_PAGE_BYTES (PTRS_PER_PTE * PAGE_SIZE)
  91. unsigned long node_remap_start_pfn[MAX_NUMNODES];
  92. unsigned long node_remap_size[MAX_NUMNODES];
  93. unsigned long node_remap_offset[MAX_NUMNODES];
  94. void *node_remap_start_vaddr[MAX_NUMNODES];
  95. void set_pmd_pfn(unsigned long vaddr, unsigned long pfn, pgprot_t flags);
  96. /*
  97. * FLAT - support for basic PC memory model with discontig enabled, essentially
  98. * a single node with all available processors in it with a flat
  99. * memory map.
  100. */
  101. int __init get_memcfg_numa_flat(void)
  102. {
  103. printk("NUMA - single node, flat memory mode\n");
  104. /* Run the memory configuration and find the top of memory. */
  105. find_max_pfn();
  106. node_start_pfn[0] = 0;
  107. node_end_pfn[0] = max_pfn;
  108. memory_present(0, 0, max_pfn);
  109. /* Indicate there is one node available. */
  110. nodes_clear(node_online_map);
  111. node_set_online(0);
  112. return 1;
  113. }
  114. /*
  115. * Find the highest page frame number we have available for the node
  116. */
  117. static void __init find_max_pfn_node(int nid)
  118. {
  119. if (node_end_pfn[nid] > max_pfn)
  120. node_end_pfn[nid] = max_pfn;
  121. /*
  122. * if a user has given mem=XXXX, then we need to make sure
  123. * that the node _starts_ before that, too, not just ends
  124. */
  125. if (node_start_pfn[nid] > max_pfn)
  126. node_start_pfn[nid] = max_pfn;
  127. if (node_start_pfn[nid] > node_end_pfn[nid])
  128. BUG();
  129. }
  130. /* Find the owning node for a pfn. */
  131. int early_pfn_to_nid(unsigned long pfn)
  132. {
  133. int nid;
  134. for_each_node(nid) {
  135. if (node_end_pfn[nid] == 0)
  136. break;
  137. if (node_start_pfn[nid] <= pfn && node_end_pfn[nid] >= pfn)
  138. return nid;
  139. }
  140. return 0;
  141. }
  142. /*
  143. * Allocate memory for the pg_data_t for this node via a crude pre-bootmem
  144. * method. For node zero take this from the bottom of memory, for
  145. * subsequent nodes place them at node_remap_start_vaddr which contains
  146. * node local data in physically node local memory. See setup_memory()
  147. * for details.
  148. */
  149. static void __init allocate_pgdat(int nid)
  150. {
  151. if (nid && node_has_online_mem(nid))
  152. NODE_DATA(nid) = (pg_data_t *)node_remap_start_vaddr[nid];
  153. else {
  154. NODE_DATA(nid) = (pg_data_t *)(__va(min_low_pfn << PAGE_SHIFT));
  155. min_low_pfn += PFN_UP(sizeof(pg_data_t));
  156. }
  157. }
  158. void __init remap_numa_kva(void)
  159. {
  160. void *vaddr;
  161. unsigned long pfn;
  162. int node;
  163. for_each_online_node(node) {
  164. if (node == 0)
  165. continue;
  166. for (pfn=0; pfn < node_remap_size[node]; pfn += PTRS_PER_PTE) {
  167. vaddr = node_remap_start_vaddr[node]+(pfn<<PAGE_SHIFT);
  168. set_pmd_pfn((ulong) vaddr,
  169. node_remap_start_pfn[node] + pfn,
  170. PAGE_KERNEL_LARGE);
  171. }
  172. }
  173. }
  174. static unsigned long calculate_numa_remap_pages(void)
  175. {
  176. int nid;
  177. unsigned long size, reserve_pages = 0;
  178. for_each_online_node(nid) {
  179. if (nid == 0)
  180. continue;
  181. if (!node_remap_size[nid])
  182. continue;
  183. /*
  184. * The acpi/srat node info can show hot-add memroy zones
  185. * where memory could be added but not currently present.
  186. */
  187. if (node_start_pfn[nid] > max_pfn)
  188. continue;
  189. if (node_end_pfn[nid] > max_pfn)
  190. node_end_pfn[nid] = max_pfn;
  191. /* ensure the remap includes space for the pgdat. */
  192. size = node_remap_size[nid] + sizeof(pg_data_t);
  193. /* convert size to large (pmd size) pages, rounding up */
  194. size = (size + LARGE_PAGE_BYTES - 1) / LARGE_PAGE_BYTES;
  195. /* now the roundup is correct, convert to PAGE_SIZE pages */
  196. size = size * PTRS_PER_PTE;
  197. printk("Reserving %ld pages of KVA for lmem_map of node %d\n",
  198. size, nid);
  199. node_remap_size[nid] = size;
  200. reserve_pages += size;
  201. node_remap_offset[nid] = reserve_pages;
  202. printk("Shrinking node %d from %ld pages to %ld pages\n",
  203. nid, node_end_pfn[nid], node_end_pfn[nid] - size);
  204. node_end_pfn[nid] -= size;
  205. node_remap_start_pfn[nid] = node_end_pfn[nid];
  206. }
  207. printk("Reserving total of %ld pages for numa KVA remap\n",
  208. reserve_pages);
  209. return reserve_pages;
  210. }
  211. extern void setup_bootmem_allocator(void);
  212. unsigned long __init setup_memory(void)
  213. {
  214. int nid;
  215. unsigned long system_start_pfn, system_max_low_pfn;
  216. unsigned long reserve_pages;
  217. /*
  218. * When mapping a NUMA machine we allocate the node_mem_map arrays
  219. * from node local memory. They are then mapped directly into KVA
  220. * between zone normal and vmalloc space. Calculate the size of
  221. * this space and use it to adjust the boundry between ZONE_NORMAL
  222. * and ZONE_HIGHMEM.
  223. */
  224. find_max_pfn();
  225. get_memcfg_numa();
  226. reserve_pages = calculate_numa_remap_pages();
  227. /* partially used pages are not usable - thus round upwards */
  228. system_start_pfn = min_low_pfn = PFN_UP(init_pg_tables_end);
  229. system_max_low_pfn = max_low_pfn = find_max_low_pfn() - reserve_pages;
  230. printk("reserve_pages = %ld find_max_low_pfn() ~ %ld\n",
  231. reserve_pages, max_low_pfn + reserve_pages);
  232. printk("max_pfn = %ld\n", max_pfn);
  233. #ifdef CONFIG_HIGHMEM
  234. highstart_pfn = highend_pfn = max_pfn;
  235. if (max_pfn > system_max_low_pfn)
  236. highstart_pfn = system_max_low_pfn;
  237. printk(KERN_NOTICE "%ldMB HIGHMEM available.\n",
  238. pages_to_mb(highend_pfn - highstart_pfn));
  239. #endif
  240. printk(KERN_NOTICE "%ldMB LOWMEM available.\n",
  241. pages_to_mb(system_max_low_pfn));
  242. printk("min_low_pfn = %ld, max_low_pfn = %ld, highstart_pfn = %ld\n",
  243. min_low_pfn, max_low_pfn, highstart_pfn);
  244. printk("Low memory ends at vaddr %08lx\n",
  245. (ulong) pfn_to_kaddr(max_low_pfn));
  246. for_each_online_node(nid) {
  247. node_remap_start_vaddr[nid] = pfn_to_kaddr(
  248. (highstart_pfn + reserve_pages) - node_remap_offset[nid]);
  249. allocate_pgdat(nid);
  250. printk ("node %d will remap to vaddr %08lx - %08lx\n", nid,
  251. (ulong) node_remap_start_vaddr[nid],
  252. (ulong) pfn_to_kaddr(highstart_pfn + reserve_pages
  253. - node_remap_offset[nid] + node_remap_size[nid]));
  254. }
  255. printk("High memory starts at vaddr %08lx\n",
  256. (ulong) pfn_to_kaddr(highstart_pfn));
  257. vmalloc_earlyreserve = reserve_pages * PAGE_SIZE;
  258. for_each_online_node(nid)
  259. find_max_pfn_node(nid);
  260. memset(NODE_DATA(0), 0, sizeof(struct pglist_data));
  261. NODE_DATA(0)->bdata = &node0_bdata;
  262. setup_bootmem_allocator();
  263. return max_low_pfn;
  264. }
  265. void __init zone_sizes_init(void)
  266. {
  267. int nid;
  268. /*
  269. * Insert nodes into pgdat_list backward so they appear in order.
  270. * Clobber node 0's links and NULL out pgdat_list before starting.
  271. */
  272. pgdat_list = NULL;
  273. for (nid = MAX_NUMNODES - 1; nid >= 0; nid--) {
  274. if (!node_online(nid))
  275. continue;
  276. NODE_DATA(nid)->pgdat_next = pgdat_list;
  277. pgdat_list = NODE_DATA(nid);
  278. }
  279. for_each_online_node(nid) {
  280. unsigned long zones_size[MAX_NR_ZONES] = {0, 0, 0};
  281. unsigned long *zholes_size;
  282. unsigned int max_dma;
  283. unsigned long low = max_low_pfn;
  284. unsigned long start = node_start_pfn[nid];
  285. unsigned long high = node_end_pfn[nid];
  286. max_dma = virt_to_phys((char *)MAX_DMA_ADDRESS) >> PAGE_SHIFT;
  287. if (node_has_online_mem(nid)){
  288. if (start > low) {
  289. #ifdef CONFIG_HIGHMEM
  290. BUG_ON(start > high);
  291. zones_size[ZONE_HIGHMEM] = high - start;
  292. #endif
  293. } else {
  294. if (low < max_dma)
  295. zones_size[ZONE_DMA] = low;
  296. else {
  297. BUG_ON(max_dma > low);
  298. BUG_ON(low > high);
  299. zones_size[ZONE_DMA] = max_dma;
  300. zones_size[ZONE_NORMAL] = low - max_dma;
  301. #ifdef CONFIG_HIGHMEM
  302. zones_size[ZONE_HIGHMEM] = high - low;
  303. #endif
  304. }
  305. }
  306. }
  307. zholes_size = get_zholes_size(nid);
  308. /*
  309. * We let the lmem_map for node 0 be allocated from the
  310. * normal bootmem allocator, but other nodes come from the
  311. * remapped KVA area - mbligh
  312. */
  313. if (!nid)
  314. free_area_init_node(nid, NODE_DATA(nid),
  315. zones_size, start, zholes_size);
  316. else {
  317. unsigned long lmem_map;
  318. lmem_map = (unsigned long)node_remap_start_vaddr[nid];
  319. lmem_map += sizeof(pg_data_t) + PAGE_SIZE - 1;
  320. lmem_map &= PAGE_MASK;
  321. NODE_DATA(nid)->node_mem_map = (struct page *)lmem_map;
  322. free_area_init_node(nid, NODE_DATA(nid), zones_size,
  323. start, zholes_size);
  324. }
  325. }
  326. return;
  327. }
  328. void __init set_highmem_pages_init(int bad_ppro)
  329. {
  330. #ifdef CONFIG_HIGHMEM
  331. struct zone *zone;
  332. for_each_zone(zone) {
  333. unsigned long node_pfn, node_high_size, zone_start_pfn;
  334. struct page * zone_mem_map;
  335. if (!is_highmem(zone))
  336. continue;
  337. printk("Initializing %s for node %d\n", zone->name,
  338. zone->zone_pgdat->node_id);
  339. node_high_size = zone->spanned_pages;
  340. zone_mem_map = zone->zone_mem_map;
  341. zone_start_pfn = zone->zone_start_pfn;
  342. for (node_pfn = 0; node_pfn < node_high_size; node_pfn++) {
  343. one_highpage_init((struct page *)(zone_mem_map + node_pfn),
  344. zone_start_pfn + node_pfn, bad_ppro);
  345. }
  346. }
  347. totalram_pages += totalhigh_pages;
  348. #endif
  349. }