init_64.c 29 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190
  1. /*
  2. * linux/arch/x86_64/mm/init.c
  3. *
  4. * Copyright (C) 1995 Linus Torvalds
  5. * Copyright (C) 2000 Pavel Machek <pavel@suse.cz>
  6. * Copyright (C) 2002,2003 Andi Kleen <ak@suse.de>
  7. */
  8. #include <linux/signal.h>
  9. #include <linux/sched.h>
  10. #include <linux/kernel.h>
  11. #include <linux/errno.h>
  12. #include <linux/string.h>
  13. #include <linux/types.h>
  14. #include <linux/ptrace.h>
  15. #include <linux/mman.h>
  16. #include <linux/mm.h>
  17. #include <linux/swap.h>
  18. #include <linux/smp.h>
  19. #include <linux/init.h>
  20. #include <linux/initrd.h>
  21. #include <linux/pagemap.h>
  22. #include <linux/bootmem.h>
  23. #include <linux/proc_fs.h>
  24. #include <linux/pci.h>
  25. #include <linux/pfn.h>
  26. #include <linux/poison.h>
  27. #include <linux/dma-mapping.h>
  28. #include <linux/module.h>
  29. #include <linux/memory_hotplug.h>
  30. #include <linux/nmi.h>
  31. #include <asm/processor.h>
  32. #include <asm/system.h>
  33. #include <asm/uaccess.h>
  34. #include <asm/pgtable.h>
  35. #include <asm/pgalloc.h>
  36. #include <asm/dma.h>
  37. #include <asm/fixmap.h>
  38. #include <asm/e820.h>
  39. #include <asm/apic.h>
  40. #include <asm/tlb.h>
  41. #include <asm/mmu_context.h>
  42. #include <asm/proto.h>
  43. #include <asm/smp.h>
  44. #include <asm/sections.h>
  45. #include <asm/kdebug.h>
  46. #include <asm/numa.h>
  47. #include <asm/cacheflush.h>
  48. /*
  49. * end_pfn only includes RAM, while max_pfn_mapped includes all e820 entries.
  50. * The direct mapping extends to max_pfn_mapped, so that we can directly access
  51. * apertures, ACPI and other tables without having to play with fixmaps.
  52. */
  53. unsigned long max_pfn_mapped;
  54. static unsigned long dma_reserve __initdata;
  55. DEFINE_PER_CPU(struct mmu_gather, mmu_gathers);
  56. int direct_gbpages __meminitdata
  57. #ifdef CONFIG_DIRECT_GBPAGES
  58. = 1
  59. #endif
  60. ;
  61. static int __init parse_direct_gbpages_off(char *arg)
  62. {
  63. direct_gbpages = 0;
  64. return 0;
  65. }
  66. early_param("nogbpages", parse_direct_gbpages_off);
  67. static int __init parse_direct_gbpages_on(char *arg)
  68. {
  69. direct_gbpages = 1;
  70. return 0;
  71. }
  72. early_param("gbpages", parse_direct_gbpages_on);
  73. /*
  74. * NOTE: pagetable_init alloc all the fixmap pagetables contiguous on the
  75. * physical space so we can cache the place of the first one and move
  76. * around without checking the pgd every time.
  77. */
  78. void show_mem(void)
  79. {
  80. long i, total = 0, reserved = 0;
  81. long shared = 0, cached = 0;
  82. struct page *page;
  83. pg_data_t *pgdat;
  84. printk(KERN_INFO "Mem-info:\n");
  85. show_free_areas();
  86. for_each_online_pgdat(pgdat) {
  87. for (i = 0; i < pgdat->node_spanned_pages; ++i) {
  88. /*
  89. * This loop can take a while with 256 GB and
  90. * 4k pages so defer the NMI watchdog:
  91. */
  92. if (unlikely(i % MAX_ORDER_NR_PAGES == 0))
  93. touch_nmi_watchdog();
  94. if (!pfn_valid(pgdat->node_start_pfn + i))
  95. continue;
  96. page = pfn_to_page(pgdat->node_start_pfn + i);
  97. total++;
  98. if (PageReserved(page))
  99. reserved++;
  100. else if (PageSwapCache(page))
  101. cached++;
  102. else if (page_count(page))
  103. shared += page_count(page) - 1;
  104. }
  105. }
  106. printk(KERN_INFO "%lu pages of RAM\n", total);
  107. printk(KERN_INFO "%lu reserved pages\n", reserved);
  108. printk(KERN_INFO "%lu pages shared\n", shared);
  109. printk(KERN_INFO "%lu pages swap cached\n", cached);
  110. }
  111. int after_bootmem;
  112. static __init void *spp_getpage(void)
  113. {
  114. void *ptr;
  115. if (after_bootmem)
  116. ptr = (void *) get_zeroed_page(GFP_ATOMIC);
  117. else
  118. ptr = alloc_bootmem_pages(PAGE_SIZE);
  119. if (!ptr || ((unsigned long)ptr & ~PAGE_MASK)) {
  120. panic("set_pte_phys: cannot allocate page data %s\n",
  121. after_bootmem ? "after bootmem" : "");
  122. }
  123. pr_debug("spp_getpage %p\n", ptr);
  124. return ptr;
  125. }
  126. void
  127. set_pte_vaddr_pud(pud_t *pud_page, unsigned long vaddr, pte_t new_pte)
  128. {
  129. pud_t *pud;
  130. pmd_t *pmd;
  131. pte_t *pte;
  132. pud = pud_page + pud_index(vaddr);
  133. if (pud_none(*pud)) {
  134. pmd = (pmd_t *) spp_getpage();
  135. pud_populate(&init_mm, pud, pmd);
  136. if (pmd != pmd_offset(pud, 0)) {
  137. printk(KERN_ERR "PAGETABLE BUG #01! %p <-> %p\n",
  138. pmd, pmd_offset(pud, 0));
  139. return;
  140. }
  141. }
  142. pmd = pmd_offset(pud, vaddr);
  143. if (pmd_none(*pmd)) {
  144. pte = (pte_t *) spp_getpage();
  145. pmd_populate_kernel(&init_mm, pmd, pte);
  146. if (pte != pte_offset_kernel(pmd, 0)) {
  147. printk(KERN_ERR "PAGETABLE BUG #02!\n");
  148. return;
  149. }
  150. }
  151. pte = pte_offset_kernel(pmd, vaddr);
  152. if (!pte_none(*pte) && pte_val(new_pte) &&
  153. pte_val(*pte) != (pte_val(new_pte) & __supported_pte_mask))
  154. pte_ERROR(*pte);
  155. set_pte(pte, new_pte);
  156. /*
  157. * It's enough to flush this one mapping.
  158. * (PGE mappings get flushed as well)
  159. */
  160. __flush_tlb_one(vaddr);
  161. }
  162. void
  163. set_pte_vaddr(unsigned long vaddr, pte_t pteval)
  164. {
  165. pgd_t *pgd;
  166. pud_t *pud_page;
  167. pr_debug("set_pte_vaddr %lx to %lx\n", vaddr, native_pte_val(pteval));
  168. pgd = pgd_offset_k(vaddr);
  169. if (pgd_none(*pgd)) {
  170. printk(KERN_ERR
  171. "PGD FIXMAP MISSING, it should be setup in head.S!\n");
  172. return;
  173. }
  174. pud_page = (pud_t*)pgd_page_vaddr(*pgd);
  175. set_pte_vaddr_pud(pud_page, vaddr, pteval);
  176. }
  177. /*
  178. * Create large page table mappings for a range of physical addresses.
  179. */
  180. static void __init __init_extra_mapping(unsigned long phys, unsigned long size,
  181. pgprot_t prot)
  182. {
  183. pgd_t *pgd;
  184. pud_t *pud;
  185. pmd_t *pmd;
  186. BUG_ON((phys & ~PMD_MASK) || (size & ~PMD_MASK));
  187. for (; size; phys += PMD_SIZE, size -= PMD_SIZE) {
  188. pgd = pgd_offset_k((unsigned long)__va(phys));
  189. if (pgd_none(*pgd)) {
  190. pud = (pud_t *) spp_getpage();
  191. set_pgd(pgd, __pgd(__pa(pud) | _KERNPG_TABLE |
  192. _PAGE_USER));
  193. }
  194. pud = pud_offset(pgd, (unsigned long)__va(phys));
  195. if (pud_none(*pud)) {
  196. pmd = (pmd_t *) spp_getpage();
  197. set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE |
  198. _PAGE_USER));
  199. }
  200. pmd = pmd_offset(pud, phys);
  201. BUG_ON(!pmd_none(*pmd));
  202. set_pmd(pmd, __pmd(phys | pgprot_val(prot)));
  203. }
  204. }
  205. void __init init_extra_mapping_wb(unsigned long phys, unsigned long size)
  206. {
  207. __init_extra_mapping(phys, size, PAGE_KERNEL_LARGE);
  208. }
  209. void __init init_extra_mapping_uc(unsigned long phys, unsigned long size)
  210. {
  211. __init_extra_mapping(phys, size, PAGE_KERNEL_LARGE_NOCACHE);
  212. }
  213. /*
  214. * The head.S code sets up the kernel high mapping:
  215. *
  216. * from __START_KERNEL_map to __START_KERNEL_map + size (== _end-_text)
  217. *
  218. * phys_addr holds the negative offset to the kernel, which is added
  219. * to the compile time generated pmds. This results in invalid pmds up
  220. * to the point where we hit the physaddr 0 mapping.
  221. *
  222. * We limit the mappings to the region from _text to _end. _end is
  223. * rounded up to the 2MB boundary. This catches the invalid pmds as
  224. * well, as they are located before _text:
  225. */
  226. void __init cleanup_highmap(void)
  227. {
  228. unsigned long vaddr = __START_KERNEL_map;
  229. unsigned long end = round_up((unsigned long)_end, PMD_SIZE) - 1;
  230. pmd_t *pmd = level2_kernel_pgt;
  231. pmd_t *last_pmd = pmd + PTRS_PER_PMD;
  232. for (; pmd < last_pmd; pmd++, vaddr += PMD_SIZE) {
  233. if (pmd_none(*pmd))
  234. continue;
  235. if (vaddr < (unsigned long) _text || vaddr > end)
  236. set_pmd(pmd, __pmd(0));
  237. }
  238. }
  239. static unsigned long __initdata table_start;
  240. static unsigned long __meminitdata table_end;
  241. static unsigned long __meminitdata table_top;
  242. static __meminit void *alloc_low_page(unsigned long *phys)
  243. {
  244. unsigned long pfn = table_end++;
  245. void *adr;
  246. if (after_bootmem) {
  247. adr = (void *)get_zeroed_page(GFP_ATOMIC);
  248. *phys = __pa(adr);
  249. return adr;
  250. }
  251. if (pfn >= table_top)
  252. panic("alloc_low_page: ran out of memory");
  253. adr = early_ioremap(pfn * PAGE_SIZE, PAGE_SIZE);
  254. memset(adr, 0, PAGE_SIZE);
  255. *phys = pfn * PAGE_SIZE;
  256. return adr;
  257. }
  258. static __meminit void unmap_low_page(void *adr)
  259. {
  260. if (after_bootmem)
  261. return;
  262. early_iounmap(adr, PAGE_SIZE);
  263. }
  264. static void __meminit
  265. phys_pte_init(pte_t *pte_page, unsigned long addr, unsigned long end)
  266. {
  267. unsigned pages = 0;
  268. int i;
  269. pte_t *pte = pte_page + pte_index(addr);
  270. for(i = pte_index(addr); i < PTRS_PER_PTE; i++, addr += PAGE_SIZE, pte++) {
  271. if (addr >= end) {
  272. if (!after_bootmem) {
  273. for(; i < PTRS_PER_PTE; i++, pte++)
  274. set_pte(pte, __pte(0));
  275. }
  276. break;
  277. }
  278. if (pte_val(*pte))
  279. continue;
  280. if (0)
  281. printk(" pte=%p addr=%lx pte=%016lx\n",
  282. pte, addr, pfn_pte(addr >> PAGE_SHIFT, PAGE_KERNEL).pte);
  283. set_pte(pte, pfn_pte(addr >> PAGE_SHIFT, PAGE_KERNEL));
  284. pages++;
  285. }
  286. update_page_count(PG_LEVEL_4K, pages);
  287. }
  288. static void __meminit
  289. phys_pte_update(pmd_t *pmd, unsigned long address, unsigned long end)
  290. {
  291. pte_t *pte = (pte_t *)pmd_page_vaddr(*pmd);
  292. phys_pte_init(pte, address, end);
  293. }
  294. static unsigned long __meminit
  295. phys_pmd_init(pmd_t *pmd_page, unsigned long address, unsigned long end,
  296. unsigned long page_size_mask)
  297. {
  298. unsigned long pages = 0;
  299. int i = pmd_index(address);
  300. for (; i < PTRS_PER_PMD; i++, address += PMD_SIZE) {
  301. unsigned long pte_phys;
  302. pmd_t *pmd = pmd_page + pmd_index(address);
  303. pte_t *pte;
  304. if (address >= end) {
  305. if (!after_bootmem) {
  306. for (; i < PTRS_PER_PMD; i++, pmd++)
  307. set_pmd(pmd, __pmd(0));
  308. }
  309. break;
  310. }
  311. if (pmd_val(*pmd)) {
  312. if (!pmd_large(*pmd))
  313. phys_pte_update(pmd, address, end);
  314. continue;
  315. }
  316. if (page_size_mask & (1<<PG_LEVEL_2M)) {
  317. pages++;
  318. set_pte((pte_t *)pmd,
  319. pfn_pte(address >> PAGE_SHIFT, PAGE_KERNEL_LARGE));
  320. continue;
  321. }
  322. pte = alloc_low_page(&pte_phys);
  323. phys_pte_init(pte, address, end);
  324. unmap_low_page(pte);
  325. pmd_populate_kernel(&init_mm, pmd, __va(pte_phys));
  326. }
  327. update_page_count(PG_LEVEL_2M, pages);
  328. return address;
  329. }
  330. static unsigned long __meminit
  331. phys_pmd_update(pud_t *pud, unsigned long address, unsigned long end,
  332. unsigned long page_size_mask)
  333. {
  334. pmd_t *pmd = pmd_offset(pud, 0);
  335. unsigned long last_map_addr;
  336. spin_lock(&init_mm.page_table_lock);
  337. last_map_addr = phys_pmd_init(pmd, address, end, page_size_mask);
  338. spin_unlock(&init_mm.page_table_lock);
  339. __flush_tlb_all();
  340. return last_map_addr;
  341. }
  342. static unsigned long __meminit
  343. phys_pud_init(pud_t *pud_page, unsigned long addr, unsigned long end,
  344. unsigned long page_size_mask)
  345. {
  346. unsigned long pages = 0;
  347. unsigned long last_map_addr = end;
  348. int i = pud_index(addr);
  349. for (; i < PTRS_PER_PUD; i++, addr = (addr & PUD_MASK) + PUD_SIZE) {
  350. unsigned long pmd_phys;
  351. pud_t *pud = pud_page + pud_index(addr);
  352. pmd_t *pmd;
  353. if (addr >= end)
  354. break;
  355. if (!after_bootmem &&
  356. !e820_any_mapped(addr, addr+PUD_SIZE, 0)) {
  357. set_pud(pud, __pud(0));
  358. continue;
  359. }
  360. if (pud_val(*pud)) {
  361. if (!pud_large(*pud))
  362. last_map_addr = phys_pmd_update(pud, addr, end,
  363. page_size_mask);
  364. continue;
  365. }
  366. if (page_size_mask & (1<<PG_LEVEL_1G)) {
  367. pages++;
  368. set_pte((pte_t *)pud,
  369. pfn_pte(addr >> PAGE_SHIFT, PAGE_KERNEL_LARGE));
  370. last_map_addr = (addr & PUD_MASK) + PUD_SIZE;
  371. continue;
  372. }
  373. pmd = alloc_low_page(&pmd_phys);
  374. spin_lock(&init_mm.page_table_lock);
  375. last_map_addr = phys_pmd_init(pmd, addr, end, page_size_mask);
  376. unmap_low_page(pmd);
  377. pud_populate(&init_mm, pud, __va(pmd_phys));
  378. spin_unlock(&init_mm.page_table_lock);
  379. }
  380. __flush_tlb_all();
  381. update_page_count(PG_LEVEL_1G, pages);
  382. return last_map_addr;
  383. }
  384. static unsigned long __meminit
  385. phys_pud_update(pgd_t *pgd, unsigned long addr, unsigned long end,
  386. unsigned long page_size_mask)
  387. {
  388. pud_t *pud;
  389. pud = (pud_t *)pgd_page_vaddr(*pgd);
  390. return phys_pud_init(pud, addr, end, page_size_mask);
  391. }
  392. static void __init find_early_table_space(unsigned long end)
  393. {
  394. unsigned long puds, pmds, ptes, tables, start;
  395. puds = (end + PUD_SIZE - 1) >> PUD_SHIFT;
  396. tables = round_up(puds * sizeof(pud_t), PAGE_SIZE);
  397. if (direct_gbpages) {
  398. unsigned long extra;
  399. extra = end - ((end>>PUD_SHIFT) << PUD_SHIFT);
  400. pmds = (extra + PMD_SIZE - 1) >> PMD_SHIFT;
  401. } else
  402. pmds = (end + PMD_SIZE - 1) >> PMD_SHIFT;
  403. tables += round_up(pmds * sizeof(pmd_t), PAGE_SIZE);
  404. if (cpu_has_pse) {
  405. unsigned long extra;
  406. extra = end - ((end>>PMD_SHIFT) << PMD_SHIFT);
  407. ptes = (extra + PAGE_SIZE - 1) >> PAGE_SHIFT;
  408. } else
  409. ptes = (end + PAGE_SIZE - 1) >> PAGE_SHIFT;
  410. tables += round_up(ptes * sizeof(pte_t), PAGE_SIZE);
  411. /*
  412. * RED-PEN putting page tables only on node 0 could
  413. * cause a hotspot and fill up ZONE_DMA. The page tables
  414. * need roughly 0.5KB per GB.
  415. */
  416. start = 0x8000;
  417. table_start = find_e820_area(start, end, tables, PAGE_SIZE);
  418. if (table_start == -1UL)
  419. panic("Cannot find space for the kernel page tables");
  420. table_start >>= PAGE_SHIFT;
  421. table_end = table_start;
  422. table_top = table_start + (tables >> PAGE_SHIFT);
  423. printk(KERN_DEBUG "kernel direct mapping tables up to %lx @ %lx-%lx\n",
  424. end, table_start << PAGE_SHIFT, table_top << PAGE_SHIFT);
  425. }
  426. static void __init init_gbpages(void)
  427. {
  428. if (direct_gbpages && cpu_has_gbpages)
  429. printk(KERN_INFO "Using GB pages for direct mapping\n");
  430. else
  431. direct_gbpages = 0;
  432. }
  433. #ifdef CONFIG_MEMTEST
  434. static void __init memtest(unsigned long start_phys, unsigned long size,
  435. unsigned pattern)
  436. {
  437. unsigned long i;
  438. unsigned long *start;
  439. unsigned long start_bad;
  440. unsigned long last_bad;
  441. unsigned long val;
  442. unsigned long start_phys_aligned;
  443. unsigned long count;
  444. unsigned long incr;
  445. switch (pattern) {
  446. case 0:
  447. val = 0UL;
  448. break;
  449. case 1:
  450. val = -1UL;
  451. break;
  452. case 2:
  453. val = 0x5555555555555555UL;
  454. break;
  455. case 3:
  456. val = 0xaaaaaaaaaaaaaaaaUL;
  457. break;
  458. default:
  459. return;
  460. }
  461. incr = sizeof(unsigned long);
  462. start_phys_aligned = ALIGN(start_phys, incr);
  463. count = (size - (start_phys_aligned - start_phys))/incr;
  464. start = __va(start_phys_aligned);
  465. start_bad = 0;
  466. last_bad = 0;
  467. for (i = 0; i < count; i++)
  468. start[i] = val;
  469. for (i = 0; i < count; i++, start++, start_phys_aligned += incr) {
  470. if (*start != val) {
  471. if (start_phys_aligned == last_bad + incr) {
  472. last_bad += incr;
  473. } else {
  474. if (start_bad) {
  475. printk(KERN_CONT "\n %016lx bad mem addr %016lx - %016lx reserved",
  476. val, start_bad, last_bad + incr);
  477. reserve_early(start_bad, last_bad - start_bad, "BAD RAM");
  478. }
  479. start_bad = last_bad = start_phys_aligned;
  480. }
  481. }
  482. }
  483. if (start_bad) {
  484. printk(KERN_CONT "\n %016lx bad mem addr %016lx - %016lx reserved",
  485. val, start_bad, last_bad + incr);
  486. reserve_early(start_bad, last_bad - start_bad, "BAD RAM");
  487. }
  488. }
  489. /* default is disabled */
  490. static int memtest_pattern __initdata;
  491. static int __init parse_memtest(char *arg)
  492. {
  493. if (arg)
  494. memtest_pattern = simple_strtoul(arg, NULL, 0);
  495. return 0;
  496. }
  497. early_param("memtest", parse_memtest);
  498. static void __init early_memtest(unsigned long start, unsigned long end)
  499. {
  500. u64 t_start, t_size;
  501. unsigned pattern;
  502. if (!memtest_pattern)
  503. return;
  504. printk(KERN_INFO "early_memtest: pattern num %d", memtest_pattern);
  505. for (pattern = 0; pattern < memtest_pattern; pattern++) {
  506. t_start = start;
  507. t_size = 0;
  508. while (t_start < end) {
  509. t_start = find_e820_area_size(t_start, &t_size, 1);
  510. /* done ? */
  511. if (t_start >= end)
  512. break;
  513. if (t_start + t_size > end)
  514. t_size = end - t_start;
  515. printk(KERN_CONT "\n %016llx - %016llx pattern %d",
  516. (unsigned long long)t_start,
  517. (unsigned long long)t_start + t_size, pattern);
  518. memtest(t_start, t_size, pattern);
  519. t_start += t_size;
  520. }
  521. }
  522. printk(KERN_CONT "\n");
  523. }
  524. #else
  525. static void __init early_memtest(unsigned long start, unsigned long end)
  526. {
  527. }
  528. #endif
  529. static unsigned long __init kernel_physical_mapping_init(unsigned long start,
  530. unsigned long end,
  531. unsigned long page_size_mask)
  532. {
  533. unsigned long next, last_map_addr = end;
  534. start = (unsigned long)__va(start);
  535. end = (unsigned long)__va(end);
  536. for (; start < end; start = next) {
  537. pgd_t *pgd = pgd_offset_k(start);
  538. unsigned long pud_phys;
  539. pud_t *pud;
  540. next = start + PGDIR_SIZE;
  541. if (next > end)
  542. next = end;
  543. if (pgd_val(*pgd)) {
  544. last_map_addr = phys_pud_update(pgd, __pa(start),
  545. __pa(end), page_size_mask);
  546. continue;
  547. }
  548. if (after_bootmem)
  549. pud = pud_offset(pgd, start & PGDIR_MASK);
  550. else
  551. pud = alloc_low_page(&pud_phys);
  552. last_map_addr = phys_pud_init(pud, __pa(start), __pa(next),
  553. page_size_mask);
  554. unmap_low_page(pud);
  555. pgd_populate(&init_mm, pgd_offset_k(start),
  556. __va(pud_phys));
  557. }
  558. return last_map_addr;
  559. }
  560. /*
  561. * Setup the direct mapping of the physical memory at PAGE_OFFSET.
  562. * This runs before bootmem is initialized and gets pages directly from
  563. * the physical memory. To access them they are temporarily mapped.
  564. */
  565. unsigned long __init_refok init_memory_mapping(unsigned long start,
  566. unsigned long end)
  567. {
  568. unsigned long last_map_addr = end;
  569. unsigned long page_size_mask = 0;
  570. unsigned long start_pfn, end_pfn;
  571. printk(KERN_INFO "init_memory_mapping\n");
  572. /*
  573. * Find space for the kernel direct mapping tables.
  574. *
  575. * Later we should allocate these tables in the local node of the
  576. * memory mapped. Unfortunately this is done currently before the
  577. * nodes are discovered.
  578. */
  579. if (!after_bootmem) {
  580. init_gbpages();
  581. find_early_table_space(end);
  582. }
  583. if (direct_gbpages)
  584. page_size_mask |= 1 << PG_LEVEL_1G;
  585. if (cpu_has_pse)
  586. page_size_mask |= 1 << PG_LEVEL_2M;
  587. /* head if not big page aligment ?*/
  588. start_pfn = start >> PAGE_SHIFT;
  589. end_pfn = ((start + (PMD_SIZE - 1)) >> PMD_SHIFT)
  590. << (PMD_SHIFT - PAGE_SHIFT);
  591. if (start_pfn < end_pfn)
  592. last_map_addr = kernel_physical_mapping_init(
  593. start_pfn<<PAGE_SHIFT,
  594. end_pfn<<PAGE_SHIFT, 0);
  595. /* big page (2M) range*/
  596. start_pfn = ((start + (PMD_SIZE - 1))>>PMD_SHIFT)
  597. << (PMD_SHIFT - PAGE_SHIFT);
  598. end_pfn = ((start + (PUD_SIZE - 1))>>PUD_SHIFT)
  599. << (PUD_SHIFT - PAGE_SHIFT);
  600. if (end_pfn > ((end>>PUD_SHIFT)<<(PUD_SHIFT - PAGE_SHIFT)))
  601. end_pfn = ((end>>PUD_SHIFT)<<(PUD_SHIFT - PAGE_SHIFT));
  602. if (start_pfn < end_pfn)
  603. last_map_addr = kernel_physical_mapping_init(
  604. start_pfn<<PAGE_SHIFT,
  605. end_pfn<<PAGE_SHIFT,
  606. page_size_mask & (1<<PG_LEVEL_2M));
  607. /* big page (1G) range */
  608. start_pfn = end_pfn;
  609. end_pfn = (end>>PUD_SHIFT) << (PUD_SHIFT - PAGE_SHIFT);
  610. if (start_pfn < end_pfn)
  611. last_map_addr = kernel_physical_mapping_init(
  612. start_pfn<<PAGE_SHIFT,
  613. end_pfn<<PAGE_SHIFT,
  614. page_size_mask & ((1<<PG_LEVEL_2M)
  615. | (1<<PG_LEVEL_1G)));
  616. /* tail is not big page (1G) alignment */
  617. start_pfn = end_pfn;
  618. end_pfn = (end>>PMD_SHIFT) << (PMD_SHIFT - PAGE_SHIFT);
  619. if (start_pfn < end_pfn)
  620. last_map_addr = kernel_physical_mapping_init(
  621. start_pfn<<PAGE_SHIFT,
  622. end_pfn<<PAGE_SHIFT,
  623. page_size_mask & (1<<PG_LEVEL_2M));
  624. /* tail is not big page (2M) alignment */
  625. start_pfn = end_pfn;
  626. end_pfn = end>>PAGE_SHIFT;
  627. if (start_pfn < end_pfn)
  628. last_map_addr = kernel_physical_mapping_init(
  629. start_pfn<<PAGE_SHIFT,
  630. end_pfn<<PAGE_SHIFT, 0);
  631. if (!after_bootmem)
  632. mmu_cr4_features = read_cr4();
  633. __flush_tlb_all();
  634. if (!after_bootmem && table_end > table_start)
  635. reserve_early(table_start << PAGE_SHIFT,
  636. table_end << PAGE_SHIFT, "PGTABLE");
  637. printk(KERN_INFO "last_map_addr: %lx end: %lx\n",
  638. last_map_addr, end);
  639. if (!after_bootmem)
  640. early_memtest(start, end);
  641. return last_map_addr >> PAGE_SHIFT;
  642. }
  643. #ifndef CONFIG_NUMA
  644. void __init initmem_init(unsigned long start_pfn, unsigned long end_pfn)
  645. {
  646. unsigned long bootmap_size, bootmap;
  647. bootmap_size = bootmem_bootmap_pages(end_pfn)<<PAGE_SHIFT;
  648. bootmap = find_e820_area(0, end_pfn<<PAGE_SHIFT, bootmap_size,
  649. PAGE_SIZE);
  650. if (bootmap == -1L)
  651. panic("Cannot find bootmem map of size %ld\n", bootmap_size);
  652. /* don't touch min_low_pfn */
  653. bootmap_size = init_bootmem_node(NODE_DATA(0), bootmap >> PAGE_SHIFT,
  654. 0, end_pfn);
  655. e820_register_active_regions(0, start_pfn, end_pfn);
  656. free_bootmem_with_active_regions(0, end_pfn);
  657. early_res_to_bootmem(0, end_pfn<<PAGE_SHIFT);
  658. reserve_bootmem(bootmap, bootmap_size, BOOTMEM_DEFAULT);
  659. }
  660. void __init paging_init(void)
  661. {
  662. unsigned long max_zone_pfns[MAX_NR_ZONES];
  663. memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
  664. max_zone_pfns[ZONE_DMA] = MAX_DMA_PFN;
  665. max_zone_pfns[ZONE_DMA32] = MAX_DMA32_PFN;
  666. max_zone_pfns[ZONE_NORMAL] = max_pfn;
  667. memory_present(0, 0, max_pfn);
  668. sparse_init();
  669. free_area_init_nodes(max_zone_pfns);
  670. }
  671. #endif
  672. /*
  673. * Memory hotplug specific functions
  674. */
  675. #ifdef CONFIG_MEMORY_HOTPLUG
  676. /*
  677. * Memory is added always to NORMAL zone. This means you will never get
  678. * additional DMA/DMA32 memory.
  679. */
  680. int arch_add_memory(int nid, u64 start, u64 size)
  681. {
  682. struct pglist_data *pgdat = NODE_DATA(nid);
  683. struct zone *zone = pgdat->node_zones + ZONE_NORMAL;
  684. unsigned long last_mapped_pfn, start_pfn = start >> PAGE_SHIFT;
  685. unsigned long nr_pages = size >> PAGE_SHIFT;
  686. int ret;
  687. last_mapped_pfn = init_memory_mapping(start, start + size-1);
  688. if (last_mapped_pfn > max_pfn_mapped)
  689. max_pfn_mapped = last_mapped_pfn;
  690. ret = __add_pages(zone, start_pfn, nr_pages);
  691. WARN_ON(1);
  692. return ret;
  693. }
  694. EXPORT_SYMBOL_GPL(arch_add_memory);
  695. #if !defined(CONFIG_ACPI_NUMA) && defined(CONFIG_NUMA)
  696. int memory_add_physaddr_to_nid(u64 start)
  697. {
  698. return 0;
  699. }
  700. EXPORT_SYMBOL_GPL(memory_add_physaddr_to_nid);
  701. #endif
  702. #endif /* CONFIG_MEMORY_HOTPLUG */
  703. /*
  704. * devmem_is_allowed() checks to see if /dev/mem access to a certain address
  705. * is valid. The argument is a physical page number.
  706. *
  707. *
  708. * On x86, access has to be given to the first megabyte of ram because that area
  709. * contains bios code and data regions used by X and dosemu and similar apps.
  710. * Access has to be given to non-kernel-ram areas as well, these contain the PCI
  711. * mmio resources as well as potential bios/acpi data regions.
  712. */
  713. int devmem_is_allowed(unsigned long pagenr)
  714. {
  715. if (pagenr <= 256)
  716. return 1;
  717. if (!page_is_ram(pagenr))
  718. return 1;
  719. return 0;
  720. }
  721. static struct kcore_list kcore_mem, kcore_vmalloc, kcore_kernel,
  722. kcore_modules, kcore_vsyscall;
  723. void __init mem_init(void)
  724. {
  725. long codesize, reservedpages, datasize, initsize;
  726. pci_iommu_alloc();
  727. /* clear_bss() already clear the empty_zero_page */
  728. reservedpages = 0;
  729. /* this will put all low memory onto the freelists */
  730. #ifdef CONFIG_NUMA
  731. totalram_pages = numa_free_all_bootmem();
  732. #else
  733. totalram_pages = free_all_bootmem();
  734. #endif
  735. reservedpages = max_pfn - totalram_pages -
  736. absent_pages_in_range(0, max_pfn);
  737. after_bootmem = 1;
  738. codesize = (unsigned long) &_etext - (unsigned long) &_text;
  739. datasize = (unsigned long) &_edata - (unsigned long) &_etext;
  740. initsize = (unsigned long) &__init_end - (unsigned long) &__init_begin;
  741. /* Register memory areas for /proc/kcore */
  742. kclist_add(&kcore_mem, __va(0), max_low_pfn << PAGE_SHIFT);
  743. kclist_add(&kcore_vmalloc, (void *)VMALLOC_START,
  744. VMALLOC_END-VMALLOC_START);
  745. kclist_add(&kcore_kernel, &_stext, _end - _stext);
  746. kclist_add(&kcore_modules, (void *)MODULES_VADDR, MODULES_LEN);
  747. kclist_add(&kcore_vsyscall, (void *)VSYSCALL_START,
  748. VSYSCALL_END - VSYSCALL_START);
  749. printk(KERN_INFO "Memory: %luk/%luk available (%ldk kernel code, "
  750. "%ldk reserved, %ldk data, %ldk init)\n",
  751. (unsigned long) nr_free_pages() << (PAGE_SHIFT-10),
  752. max_pfn << (PAGE_SHIFT-10),
  753. codesize >> 10,
  754. reservedpages << (PAGE_SHIFT-10),
  755. datasize >> 10,
  756. initsize >> 10);
  757. cpa_init();
  758. }
  759. void free_init_pages(char *what, unsigned long begin, unsigned long end)
  760. {
  761. unsigned long addr = begin;
  762. if (addr >= end)
  763. return;
  764. /*
  765. * If debugging page accesses then do not free this memory but
  766. * mark them not present - any buggy init-section access will
  767. * create a kernel page fault:
  768. */
  769. #ifdef CONFIG_DEBUG_PAGEALLOC
  770. printk(KERN_INFO "debug: unmapping init memory %08lx..%08lx\n",
  771. begin, PAGE_ALIGN(end));
  772. set_memory_np(begin, (end - begin) >> PAGE_SHIFT);
  773. #else
  774. printk(KERN_INFO "Freeing %s: %luk freed\n", what, (end - begin) >> 10);
  775. for (; addr < end; addr += PAGE_SIZE) {
  776. ClearPageReserved(virt_to_page(addr));
  777. init_page_count(virt_to_page(addr));
  778. memset((void *)(addr & ~(PAGE_SIZE-1)),
  779. POISON_FREE_INITMEM, PAGE_SIZE);
  780. free_page(addr);
  781. totalram_pages++;
  782. }
  783. #endif
  784. }
  785. void free_initmem(void)
  786. {
  787. free_init_pages("unused kernel memory",
  788. (unsigned long)(&__init_begin),
  789. (unsigned long)(&__init_end));
  790. }
  791. #ifdef CONFIG_DEBUG_RODATA
  792. const int rodata_test_data = 0xC3;
  793. EXPORT_SYMBOL_GPL(rodata_test_data);
  794. void mark_rodata_ro(void)
  795. {
  796. unsigned long start = PFN_ALIGN(_stext), end = PFN_ALIGN(__end_rodata);
  797. printk(KERN_INFO "Write protecting the kernel read-only data: %luk\n",
  798. (end - start) >> 10);
  799. set_memory_ro(start, (end - start) >> PAGE_SHIFT);
  800. /*
  801. * The rodata section (but not the kernel text!) should also be
  802. * not-executable.
  803. */
  804. start = ((unsigned long)__start_rodata + PAGE_SIZE - 1) & PAGE_MASK;
  805. set_memory_nx(start, (end - start) >> PAGE_SHIFT);
  806. rodata_test();
  807. #ifdef CONFIG_CPA_DEBUG
  808. printk(KERN_INFO "Testing CPA: undo %lx-%lx\n", start, end);
  809. set_memory_rw(start, (end-start) >> PAGE_SHIFT);
  810. printk(KERN_INFO "Testing CPA: again\n");
  811. set_memory_ro(start, (end-start) >> PAGE_SHIFT);
  812. #endif
  813. }
  814. #endif
  815. #ifdef CONFIG_BLK_DEV_INITRD
  816. void free_initrd_mem(unsigned long start, unsigned long end)
  817. {
  818. free_init_pages("initrd memory", start, end);
  819. }
  820. #endif
  821. int __init reserve_bootmem_generic(unsigned long phys, unsigned long len,
  822. int flags)
  823. {
  824. #ifdef CONFIG_NUMA
  825. int nid, next_nid;
  826. int ret;
  827. #endif
  828. unsigned long pfn = phys >> PAGE_SHIFT;
  829. if (pfn >= max_pfn) {
  830. /*
  831. * This can happen with kdump kernels when accessing
  832. * firmware tables:
  833. */
  834. if (pfn < max_pfn_mapped)
  835. return -EFAULT;
  836. printk(KERN_ERR "reserve_bootmem: illegal reserve %lx %lu\n",
  837. phys, len);
  838. return -EFAULT;
  839. }
  840. /* Should check here against the e820 map to avoid double free */
  841. #ifdef CONFIG_NUMA
  842. nid = phys_to_nid(phys);
  843. next_nid = phys_to_nid(phys + len - 1);
  844. if (nid == next_nid)
  845. ret = reserve_bootmem_node(NODE_DATA(nid), phys, len, flags);
  846. else
  847. ret = reserve_bootmem(phys, len, flags);
  848. if (ret != 0)
  849. return ret;
  850. #else
  851. reserve_bootmem(phys, len, BOOTMEM_DEFAULT);
  852. #endif
  853. if (phys+len <= MAX_DMA_PFN*PAGE_SIZE) {
  854. dma_reserve += len / PAGE_SIZE;
  855. set_dma_reserve(dma_reserve);
  856. }
  857. return 0;
  858. }
  859. int kern_addr_valid(unsigned long addr)
  860. {
  861. unsigned long above = ((long)addr) >> __VIRTUAL_MASK_SHIFT;
  862. pgd_t *pgd;
  863. pud_t *pud;
  864. pmd_t *pmd;
  865. pte_t *pte;
  866. if (above != 0 && above != -1UL)
  867. return 0;
  868. pgd = pgd_offset_k(addr);
  869. if (pgd_none(*pgd))
  870. return 0;
  871. pud = pud_offset(pgd, addr);
  872. if (pud_none(*pud))
  873. return 0;
  874. pmd = pmd_offset(pud, addr);
  875. if (pmd_none(*pmd))
  876. return 0;
  877. if (pmd_large(*pmd))
  878. return pfn_valid(pmd_pfn(*pmd));
  879. pte = pte_offset_kernel(pmd, addr);
  880. if (pte_none(*pte))
  881. return 0;
  882. return pfn_valid(pte_pfn(*pte));
  883. }
  884. /*
  885. * A pseudo VMA to allow ptrace access for the vsyscall page. This only
  886. * covers the 64bit vsyscall page now. 32bit has a real VMA now and does
  887. * not need special handling anymore:
  888. */
  889. static struct vm_area_struct gate_vma = {
  890. .vm_start = VSYSCALL_START,
  891. .vm_end = VSYSCALL_START + (VSYSCALL_MAPPED_PAGES * PAGE_SIZE),
  892. .vm_page_prot = PAGE_READONLY_EXEC,
  893. .vm_flags = VM_READ | VM_EXEC
  894. };
  895. struct vm_area_struct *get_gate_vma(struct task_struct *tsk)
  896. {
  897. #ifdef CONFIG_IA32_EMULATION
  898. if (test_tsk_thread_flag(tsk, TIF_IA32))
  899. return NULL;
  900. #endif
  901. return &gate_vma;
  902. }
  903. int in_gate_area(struct task_struct *task, unsigned long addr)
  904. {
  905. struct vm_area_struct *vma = get_gate_vma(task);
  906. if (!vma)
  907. return 0;
  908. return (addr >= vma->vm_start) && (addr < vma->vm_end);
  909. }
  910. /*
  911. * Use this when you have no reliable task/vma, typically from interrupt
  912. * context. It is less reliable than using the task's vma and may give
  913. * false positives:
  914. */
  915. int in_gate_area_no_task(unsigned long addr)
  916. {
  917. return (addr >= VSYSCALL_START) && (addr < VSYSCALL_END);
  918. }
  919. const char *arch_vma_name(struct vm_area_struct *vma)
  920. {
  921. if (vma->vm_mm && vma->vm_start == (long)vma->vm_mm->context.vdso)
  922. return "[vdso]";
  923. if (vma == &gate_vma)
  924. return "[vsyscall]";
  925. return NULL;
  926. }
  927. #ifdef CONFIG_SPARSEMEM_VMEMMAP
  928. /*
  929. * Initialise the sparsemem vmemmap using huge-pages at the PMD level.
  930. */
  931. static long __meminitdata addr_start, addr_end;
  932. static void __meminitdata *p_start, *p_end;
  933. static int __meminitdata node_start;
  934. int __meminit
  935. vmemmap_populate(struct page *start_page, unsigned long size, int node)
  936. {
  937. unsigned long addr = (unsigned long)start_page;
  938. unsigned long end = (unsigned long)(start_page + size);
  939. unsigned long next;
  940. pgd_t *pgd;
  941. pud_t *pud;
  942. pmd_t *pmd;
  943. for (; addr < end; addr = next) {
  944. void *p = NULL;
  945. pgd = vmemmap_pgd_populate(addr, node);
  946. if (!pgd)
  947. return -ENOMEM;
  948. pud = vmemmap_pud_populate(pgd, addr, node);
  949. if (!pud)
  950. return -ENOMEM;
  951. if (!cpu_has_pse) {
  952. next = (addr + PAGE_SIZE) & PAGE_MASK;
  953. pmd = vmemmap_pmd_populate(pud, addr, node);
  954. if (!pmd)
  955. return -ENOMEM;
  956. p = vmemmap_pte_populate(pmd, addr, node);
  957. if (!p)
  958. return -ENOMEM;
  959. addr_end = addr + PAGE_SIZE;
  960. p_end = p + PAGE_SIZE;
  961. } else {
  962. next = pmd_addr_end(addr, end);
  963. pmd = pmd_offset(pud, addr);
  964. if (pmd_none(*pmd)) {
  965. pte_t entry;
  966. p = vmemmap_alloc_block(PMD_SIZE, node);
  967. if (!p)
  968. return -ENOMEM;
  969. entry = pfn_pte(__pa(p) >> PAGE_SHIFT,
  970. PAGE_KERNEL_LARGE);
  971. set_pmd(pmd, __pmd(pte_val(entry)));
  972. /* check to see if we have contiguous blocks */
  973. if (p_end != p || node_start != node) {
  974. if (p_start)
  975. printk(KERN_DEBUG " [%lx-%lx] PMD -> [%p-%p] on node %d\n",
  976. addr_start, addr_end-1, p_start, p_end-1, node_start);
  977. addr_start = addr;
  978. node_start = node;
  979. p_start = p;
  980. }
  981. addr_end = addr + PMD_SIZE;
  982. p_end = p + PMD_SIZE;
  983. } else
  984. vmemmap_verify((pte_t *)pmd, node, addr, next);
  985. }
  986. }
  987. return 0;
  988. }
  989. void __meminit vmemmap_populate_print_last(void)
  990. {
  991. if (p_start) {
  992. printk(KERN_DEBUG " [%lx-%lx] PMD -> [%p-%p] on node %d\n",
  993. addr_start, addr_end-1, p_start, p_end-1, node_start);
  994. p_start = NULL;
  995. p_end = NULL;
  996. node_start = 0;
  997. }
  998. }
  999. #endif